
SCIATool: A Tool for Analyzing SELinux
Policies Based on Access Control Spaces,

Information Flows and CPNs

Gaoshou Zhai1(&), Tao Guo1,2, and Jie Huang1

1 School of Computer and Information Technology,
Beijing Jiaotong University, Beijing, China

{gszhai,11120437,13120394}@bjtu.edu.cn
2 Henan Center of Patent Examination Cooperation of the Patent Office SPIO,

Henan, China

Abstract. Although security policies configuration is crucial for operating
systems to constrain applications’ operations and to protect the confidentiality
and integrity of sensitive resources inside the systems, it is an intractable work
for security administrators to accomplish correctly and consistently solely by
hands. Thus policies analysis methods are becoming research hotspots. A great
deal of such researches are focused on SELinux, which is a security-enhanced
module of open-source and popular Linux. Among various analysis methods for
SELinux policies, those based on access control spaces, information flows and
colored Petri-nets (CPNs) can be thought as the three most valuable methods
and they can be exploited together and complementarily. In this paper, a pro-
totype of SELinux policies Configuration Integrated Analysis Tool, i.e. SCIA-
Tool, is designed and implemented by integrating these three methods together.
Test results are provided and further researches as to construct a computer-aided
configuration tool for SELinux policies are discussed.

Keywords: Security policies configuration � Analysis method � Access control
spaces � Information flows � Colored Petri-nets � SELinux

1 Introduction

Security of operating systems is always the research focus in the fields of information
security for their irreplaceable position inside the whole information systems. As Linux
is becoming popular and powerful SELinux has been embedded into the Linux kernel,
they are being research hotspots in domain of security of operating systems.

SELinux can enforce mandatory access control through policies configuration based
on TE, RBAC and MLS models [1, 2] to defend against local and remote attacks and to
protect systematic integrity and confidentiality and thus make Linux fulfill various
security requirements for most situations. However, statements and rules of policies
configuration are immense and complex because there are so many programs that can
become potential subjects and somany objects including processes,files, devices, sockets
and other resources of sorts inside computer systems. Moreover, subjects, objects and
relationships among them are complicated and confused. Thereafter, it is difficult and

© Springer International Publishing Switzerland 2015
M. Yung et al. (Eds.): INTRUST 2014, LNCS 9473, pp. 294–309, 2015.
DOI: 10.1007/978-3-319-27998-5_19

error-prone for security administrators to accomplish the correct and consistent config-
uration manually without auxiliary means.

Computer-aided policies analysis is thus becoming an effective way to provide
more helpful information for policies configuration. Such analysis typically includes
TCB integrity analysis and validity analysis. Generally, the former is to find all rules
that could potentially influence integrity of the initially specified TCB while the latter is
to work out authorized or prohibited permissions as for a specified subject and/or a
specified object as well as a specified information flow path so as to verify whether the
policies configuration satisfies the security targets.

A lot of researches have been done as to policies analysis methods and those based
upon access control spaces [3–6], information flow [5–8] and colored Petri-nets (CPNs)
[9–12] reflect more practical values. In addition, the last method also depends on
information flow query and verification and is essentially an information flow analysis
method. Furthermore, all of these methods have their own limitation while more
analysis targets or results will be more helpful for policies configuration. In details, the
policy analysis method using access control method is convenient for designing
security policies while the other two methods can be used to verify whether a special
security goal is in practice enforced by corresponding policies configuration. In addi-
tion, the latter two methods can provide more detailed security requirements for val-
idation by information flow inquiries. Therefore, they are complementary and can be
exploited together.

In this paper, a prototype of SELinux policies Configuration Integrated Analysis
Tool, i.e. SCIATool, is designed and implemented in C language by integrating
methods based on access control spaces, information flows and colored Petri-nets. The
main contributions of this paper are:

• The approach presented in this paper is, to the best of our knowledge, among the
first efforts on systematic integration of such three methods for SELinux policies
configuration analysis. And SCIATool is the first such prototype implemented
independently without other software tools.

• Integrating different methods is always a challenging problem because it is not only
to put them together but also to bring them into full play in a redundancy minimized
framework. An integrated architecture is put forward for SCIATool so as to make
full use of different analysis methods but minimize the redundant design.

• Both the TCB integrity analysis and various validity analyses can be achieved
effectively by SCIATool. Various analysis targets such as all rules that could
potentially influence integrity of the initially specified TCB, authorized or prohib-
ited permissions as for a specified subject and/or a specified object as well as
information flow path in CPN of policy configuration as for a specified information
flow path requirement can be worked out, which provides richer analysis results
than many available analysis prototypes and will be more helpful for
computer-aided policies configuration.

SCIATool: A Tool for Analyzing SELinux Policies 295

The remaining part of the paper is organized as follows: Sect. 2 introduces SELinux
policies configuration, typical analysis methods and main idea about our integrated
analysis method; Sect. 3 describes our design and implementation of SCIATool; Sect. 4
tests and evaluates our SCIATool prototype with a SELinux policy configuration
illustration as for some student-teacher application security requirements, then com-
pares our research in this paper with related work of others; Sect. 5 summarize the
research work in this paper and discusses the limitations of SCIATool and future work
as to construct a practical computer-aided configuration tool for SELinux policies.

2 Methodology

2.1 SELinux Policies Configuration

SELinux policies configuration is made up of a series of policy source files. In another
word, it is the collection of statements, i.e. rules that determine allowed access for a
system, and it defines the roles any SELinux user may assume, the domains a role can
access, the types any process can access and how. When a process tries to gain access
to a particular object, a security decision has to be made whether the access is allowed
or denied depending on the security context (i.e. <useri, rolej, typek>) of the subject, the
security context of the object, and the corresponding policies.

SELinux has combined three different policy models in its policies configuration,
where its RBAC model associates users with roles and roles to TE domains that are
authorized to specific access permissions. All roles are used to constrain the association
of users with the types of processes, except that the dummy role object_r is used in
security contexts for all object types. The SELinux types are classified based on the
functions performed by processes and the operations performed on the different objects.
Types in SELinux can be classified into domain types, security types, device types, file
types, procfs types, devpts types, nfs types and network types while domain types are
special for processes and can be further classified into system domains, user program
domains, and user login domains. In general, Security policy description language of
SELinux provide users the following top-level components such as Flask definitions,
TE and RBAC declarations and rules, user declarations, constraint definitions, and
security context specifications for a policy configuration.

2.2 Typical SELinux Policies Analysis Methods

Among analysis methods for SELinux security policies, those based upon access
control spaces, information flows and colored Petri-nets are the three most valuable
types of methods that can be exploited in practical configuration.

Method Based on Access Control Spaces. The policy analysis method based on
access control spaces is put forward by Trent Jaeger et al. and is firstly used in Gokyo
[3] to analyze a SELinux policy configuration for ApacheWeb server system and the
example policy of the SELinux for Linux 2.4.16. And a formal model called SELAC is
developed on this basis by Giorgio Zanin and Luigi Vincenzo Mancini [4] for ana-
lyzing an arbitrary security policy configuration for the SELinux system.

296 G. Zhai et al.

Access control space is the core concept for this method, which is defined as the set
of all possible permission assignments of a subject (or role) and can be divided into
three natural subspaces: the permissible subspace (contains the permission assignments
in the current configuration), the prohibited subspace (contains the permission
assignments precluded by the constraints) and the unknown subspace (contains the
permission assignments that are neither permitted nor prohibited). Ideally, these three
subspaces should partition the access control space without intersection and the
unknown subspace should be minimal. But in practice, subspaces are not disjoint and
the unknown subspace is large. In another word, sometimes the specified space con-
flicts with the prohibited space and the unknown space. In addition, the permission
assignments within the permissible subspace can be divided into two parts: one part is
explicitly expressed in the configuration and the other part is not yet specified. The
former part constitutes so-called the specified subspace and it contains a subset of the
permissible assignments (accordingly named by the obligated subspace) that are
obligated required for correct operation of the system.

Once access control spaces are constructed for a given SELinux policies configu-
ration, all possible integrity conflicts embodied by the conflicting subspaces for TCB
subjects can then be identified and classified for solving related conflicts. So the
method can be used to help security administrator to accomplish custom-made SELi-
nux policies configuration. However, it is focused on single special analysis target and
it is not appropriate for analysis on multiple targets.

Method Based on Information Flows. The policy analysis method based on infor-
mation flows is firstly developed and applied in SELinux policies for the e-commerce
processing system by Guttman et al. [7, 8].

Information flow is the key conception for this method. If a subject with security
context <u1, r1, t1> can write an object with security context <u2, r2, t2>, we say that
there is a write-like information flow transition from the subject with security context
<u1, r1, t1> to the object with security context <u2, r2, t2>. Similarly, if a subject with
security context <u2, r2, t2> can read an object with security context <u1, r1, t1>, we say
that there is a read-like information flow transition from the object with security context
<u1, r1, t1> to the subject with security context <u2, r2, t2>. Both cases can be for-
malized as an information flow from security context <u1, r1, t1> to security context
<u2, r2, t2> through event <c, p> where c, p represents corresponding class and per-
mission for the object. Furthermore, if there is an information flow from security
context <ui, ri, ti> to security context <ui+1, ri+1, ti+1> through event <ci, pi> for all
0 ≤ i ≤ n − 1, it can be concluded that there is an information flow from security
context <u0, r0, t0> to security context <un, rn, tn> through event sequence {<ci, pi> |
0 ≤ i ≤ n − 1}. In addition, an information flow can be accepted if and only if all
entities passed in the flow are trusted.

Once the information flow model for a given SELinux policies configuration is
built up, information flow security goal statements for the objectives that SELinux is
intended to achieve can be expressed in linear temporal logic and model checking
method can be used to determine whether security goals hold in the given system. So
the method is focused on the whole information flow path and can be used to validate
whether the SELinux policies configuration is fully in accordance with the whole

SCIATool: A Tool for Analyzing SELinux Policies 297

desired security objectives of the system. At the same time, those expressions or
inquiries for security goal statements to be validated are difficult to write and provide
and thus its application is restricted to some extent. Moreover, it is not appropriate for
designing or developing policies configuration directly.

Method Based on Colored Petri-Nets. The policy analysis method based on colored
Petri-nets is firstly developed and applied in SELinux policies for the e-commerce
processing system by Chen and Kao [9]. It is also used to model the trusted computing
based secure systems [10].

This method is also developed based on information flows model thus it can be
viewed as a special policy analysis method based on information flows. But it describes
the SELinux policies configuration and security objectives in the way of colored
Petri-nets instead of information flow graphs. It is obvious that colored Petri-net is the
key conception for this method. Colored Petri-net (CPN) is formulated on the basis of
traditional Petri-net concept by introducing color set. Furthermore, colored Petri-net
can be formally defined by a tuple CPN = <Σ,P,T,A,NA,CP,GT,EA,IP> which satisfies
the following requirements: (1) Σ is color set, i.e. a finite set of non-empty data types.
Different color stands for different place sort, i.e. type place or permission place.
(2) P is a finite set of places which are used to describe types and permissions in
SELinux. Each place can hold 0, 1 or several token(s). (3) T is a finite set of transitions
which are used to describe access relationships between type places and permission
places. (4) A is a finite set of directed arcs which are used to link places and transitions
and to describe flow directions. (5) NA: A → P × T [T × P is a node function that
associates directed arcs with two nodes (place or transition). (6) CP: P → Σ is a color
function that associates places with color set. (7) GT: T → EXP is a guard function that
associates transitions with expressions such that: 8t 2 T, (type(GT(t)) = bool) ∧ (type
(var(GT(t))) � Σ), where type(e) denotes the data type of an expression e, type({e1,
e2, …}) denotes the set of data types of expressions e1,e2, …, var(e) denotes the set of
free variables of an expression e, and EXP denotes the set of all expression. GT is used
to describe necessary conditions for information flows. (8) EA: A → EXP is an arc
expression function that associates directed arcs with expressions such that: 8a 2 A,
(type(EA(a)) = CP(p(a))MS) ∧ (type(var(EA(a))) � Σ), where p(a) is the place of NA(a),
and ‘tMS’ denotes type ‘multi-set of type t’. EA is used to describe the tokens passes the
directed arcs and corresponding update modes. (9) IP: P → EXP is an initialization
function that associates places with expressions such that: 8p 2 P, type
(IP(p)) = CP(p)MS. IP is used to set initial token values for those places corresponding
with source types of inquiry statements.

In addition, two type places are generally linked by one permission place and two
transitions. This means that the former type place has the authorization of permission
denoted by the permission place against the latter type place. Obviously, it is consistent
completely to allow statements in SELinux policies configuration. Thereafter, it is
mainly by analysis and process of allow statements to construct the CPN model for
policy analysis.

A token is a dynamic entity in a place and it can move from one place to another
place. A transition can be initiated if and only if the value of the token in the place
matches the description on the directed arc and thus pass the test of guard function

298 G. Zhai et al.

associated with the transition. During the procedure of analysis as for a given inquiry, a
token will record types, permissions and all other information related to inquiry in the
information flow path from the place corresponding to source type of the inquiry
statement to the current place, called inquiry information flow path. So it can be
denoted as a tuple <bool, queryType, typeList, permissionList> where bool is a Boolean
value to store the decision result whether the type in the current place matches the type
in the inquiry statement; queryType is a char string to record the recent classification
label in the inquiry statement during analysis procedure; typeList is a char string list to
store all types on the inquiry information flow path; permissionList is also char string
list but it is used to record all permissions on the inquiry information flow path. Values
of tokens in places on the inquiry information flow path ought to be updated with the
proceeding of analysis according to corresponding different classification labels.

This method has powerful analysis and verification capabilities for SELinux poli-
cies configuration. But it has also the disadvantage at difficult inquiry description as
well as the information flow analysis method for its essence of information flow.

2.3 Main Idea About an Integrated Analysis Method Based on Access
Control Spaces, Information Flows and Colored Petri-Nets

SELinux policies configuration is the basic foundation for systematic security
enforcement and it can be viewed as the embodiment of security objectives. Thus the
analysis of SELinux policies configuration ought to dedicate to validate if it faithfully
supports confidentiality and integrity under mandatory access control, to check if there
is any loophole that may impair the security goals, and to help security administrator to
make appropriate configuration solution that accords with principles such as least
privilege and separation of permission. According to the facts that each method has its
own advantages and disadvantages, an integrated analysis method should be developed
based upon access control spaces, information flows and colored Petri-nets. Thus
different analysis method can be exploited to achieve different analysis goals so as to
make full use of respective advantages.

The main idea of the integrated analysis method can be induced as follows:

1. Method based on access control spaces can be used for validity analysis (i.e. to check if
policies configuration meets security goals), e.g. to sum up all objects that a specified
subject can access and all subjects that can access a specified object and to decide if a
specified subject can access a specified object (where subject/object specification can
take the way of assigning security context and access can also be assigned as a special
access mode), and it is helpful for security administrator to separate permissions,
detect configuration bugs (such as undesired authorization or obligations that cannot
be fulfilled because of the lack of authorizations) and make complete configuration.

2. Method based on information flows can be used along with access control spaces to
analyze integrity and the integrity of trusted computing base (TCB) is the premise
and foundation to ensure the security of whole system. By analyzing integrity
conflicts between the TCB entities and the non-TCB entities, information can be
provided to help security administrators to ameliorate SELinux policies configu-
ration and to optimize and consummate the assignment of TCB entities.

SCIATool: A Tool for Analyzing SELinux Policies 299

3. Method based on colored Petri-nets can be also used for validity analysis and to find
potential problems such as information flow leaks. By elaborate design to make it
support both inquiries in positive description and those in negative description as
well as inquiries including intermediate types, it will be convenient for security
administrators to check completeness and consistency of policies configuration
against security objectives.

4. All these methods ought to be implemented in a uniform architecture while mod-
ular, simple but effective design principle should be pursued and followed.

3 Prototype Design and Implementation

3.1 Architecture Design

SCIATool takes aims at validity analysis and integrity analysis for a given SELinux
policies configuration.

Validity analysis is to make sure that the configuration has put expected access
regulations into effect and met corresponding security goals thus inquiries ought to be
processed correctly for the following cases. Firstly, if a subject is specified by security
context, all objects with corresponding security context and permissions (in the form of
<class_name, access_mode>) that it is authorized to access can be worked out. Sec-
ondly, if an object is specified by security context, all subjects with corresponding
security context and permissions that it is authorized to be accessed can also be worked
out. Thirdly, if a subject is specified by security context, all objects with corresponding
security context and permissions that it is prohibited to access can be worked out.
Fourthly, if an object is specified by security context, all subjects with corresponding
security context and permissions that it is prohibited to be accessed can also be worked
out. Fifthly, if a subject and an object are specified in the way of security context
respectively, corresponding access relationships (i.e. authorized or prohibited permis-
sions) can be figured out. Finally, if the feature of an information flow path is specified,
whether it can be supported by the configuration ought to be analyzed and concluded.
Except that last inquiry is processed using colored Petri-nets method, all others are
analyzed based on access control spaces.

Integrity analysis in this paper is processed around the TCB. Integrity of the TCB
holds if there is no type that can be written by a type outside the TCB and read by a
type inside the TCB, except for special cases in which a designated trusted program
sanitizes untrusted data when it enters the TCB. Thereafter, integrity analysis is to
verify that subjects inside TCB are prohibited to read wrong information from
non-trusted objects while sensible information inside TCB objects are protected from
wrongly modified. If results show that no non-TCB subject or object can infect any
TCB ones, it can be proved that the integrity of TCB is protected by the policy
configuration. In fact, it is necessary that information flow from a non-TCB one into a
TCB one in some cases. But such information flow ought to be audited, which can be
ensured by a different authorization way of auditallow statement (opposite to allow
authorization way). So that any information flow ought to be worked out if it could

300 G. Zhai et al.

influence the integrity of TCB without audit. Integrity analysis is performed based upon
access control spaces and information flows.

Accordingly, SCIATool can be divided into following functional parts: (1) a
common module that is to extract security elements from source files for SELinux
policies configuration and to store them in elaborated data structures in memory; (2) a
pair of modules that are to construct security context spaces for subjects and objects
respectively; (3) a group of modules that are to construct valid access control spaces for
subjects and objects respectively so that analysis of authorization and prohibition for
special subject and/or object denoted by security context can be figured out conve-
niently; (4) a group of modules that are to perform analysis of authorization and
prohibition as for inquiry with specified subject and/or object; (5) a pair of modules that
are to construct TCB space and to analyze integrity conflicts of TCB on premise of
specifying initial TCB entities; (6) a pair of modules that are to construct colored
Petri-nets for SELinux policies configuration and to perform inquiry analysis for
specified information flow path. The modular architecture of SCIATool can thus be
designed and illustrated as Fig. 1.

3.2 Main Problems and Solutions About Integration

Because we have already designed and implemented three prototypes based on the
former three methods respectively, the prototype of SCIATool is implemented by the
way of integrating them together.

Module of Extracting Security Elements
from Configuration

SetC, SetCP, SetA, SetT, SetR and SetU;
MappingSubtoObjCP

Module of Generating
Security Context

Spaces for Subjects

Module of Generating
Security Context

Spaces for Objects

Module of
Generating Valid

Authorized
Access Spaces for

Subjects

Module of
Generating Valid

Prohibited
Access Spaces

for Objects

Source Files of SELinux
Configuration

Module of
Generating
TCB Space

Module of
Constructing

Colored
 Petri-Nets for

SELinux
Policy

Configuration

Module of
Integrity
Analysis
Output

Module of
Authorization
Analysis for

Subject

Module of
Authorization
Analysis for

Object

Module of
Prohibition
Analysis for

Subject

Module of
Prohibition
Analysis for

Object

Module of
Permission
Analysis for

Subject/Object

Module of
Information

Flow Analysis
for Inquiry

Module of
Generating Valid

Prohibited
 Access Spaces for

Subjects

Module of
Generating Valid

Authorized
Access Spaces

for Objects

Fig. 1. Architecture of SCIATool

SCIATool: A Tool for Analyzing SELinux Policies 301

The primary problem about integration is to start with clear and relationships among
both data structures and modules whether within same prototype or across different
prototypes and then to figure out a uniform framework to place those necessary modules
at appropriate layer together with corresponding data structures. Just as the architecture
of SCIATool we have designed finally (refer to Fig. 1), the module of extracting security
elements from configuration is concluded as the fundamental module of SCIATool (thus
completeness and correctness of policy information that it extracted will affect all other
modules and quality for all kinds of analysis) while modules of generating security
context spaces for subjects or objects and that of constructing colored Petri-nets can be
placed at the second layer. In addition, all other modules can be placed at a higher layer to
perform various practical and flexible analyses.

Another critical problem is that different programming styles and identifier naming
habits reflected in different prototypes. So it is a rather difficult work to compose them
together, especially when we select the module of extracting security elements from
configuration and put it into the final prototype. The module version we have selected is
more compatible with other modules placed in the final prototype but another eliminated
module version have more strong extracting functions, e.g. it can process policy con-
figuration sources files across different directories which is more closer to real appli-
cation situations. Therefore, a great deal of work needs to be done to strengthen functions
and to improve compatibility as for those modules of the SCIATool prototype.

The third aspect is to enrich practical analysis functions and to provide a more
complete analysis result in a more convenient way for security administrators. For
example, all sorts of inquiry services are provided including what kind of objects (i.e.
objects in what security context) with what permissions a specified subject has been
authorized or prohibited, who (i.e. subjects in what security context) is authorized or
prohibited to access a specified object with what permissions and what permissions are
authorized or prohibited as for a specified subject and a specified object. In addition, both
input of formal inquiry statement and wizard-style inquiry input are supported by our
prototype of SCIATool to provide security administrator with convenient inquiry input.

3.3 Prototype Implementation

The prototype of SCIATool is developed on Red Hat Enterprise Linux Server release
5.4 while it is written in standard C language and compiled by GCC 4.1.2 20080704
(Red Hat 4.1.2-46). Source codes of the prototype are made up of more than 6000 lines.
Compared with some typical SElinux policy analysis tools such as SLAT [7, 8],
SEAnalyzer [9] and etc., SCIATool is implemented completely independently and it
can be executed and perform analysis tasks without any other available software tools.

4 Test Results and Discussion

The prototype is tested by using a suite of SELinux policies configuration designed for
a simplified student-teacher system. And related test cases are devised around validity
analysis about authorized or prohibited permissions as for a specified subject or object

302 G. Zhai et al.

in the way of security context, validity analysis as for inquiry of a specified information
flow path, and integrity analysis of the TCB.

4.1 Test Results and Analysis

Validity analysis about authorized and prohibited permissions is tested by having
security administrator specified any subject and/or object with security context. Test
results for validating prohibited permissions by specifying an object with security
context <student_u, student_r, student_t>, and validating authorized permissions by
specifying a subject with security context <teacher_u, object_r, coursemark_t> are
illustrated in Figs. 2 and 3 respectively.

By careful analysis and comparison, it is confirmed that test results are consistent
with the policy configuration and the configuration faithfully satisfies the original
security goals of the system.

Validity analysis about inquiry of an information flow path is focused on allow
rules in the policy configuration. So a series of formal description of inquiry statements
are devised for its test (refer to Table 1). Because some security goals of configuration

Fig. 2. Test results for prohibited permissions of subject <student_u, student_r, student_t>

Fig. 3. Test results for authorized permissions of object <teacher_u, object_r, coursemark_t>

SCIATool: A Tool for Analyzing SELinux Policies 303

are not convenient to be described in positive mode (i.e. inquiry described in accor-
dance with security goal), negative mode (i.e. inquiry described opposite to or not in
accordance with configuration) is also adopted for some inquiries, e.g. inquiry state-
ments of No. 16–18 in Table 1.

Screenshot about test for inquiry statement No. 11 in Table 1 is illustrated as Fig. 4.
Note that the inquiry statement is input by a wizard-style way.

It can be seen from Fig. 4 that a subject with type student_t can operate firstly in the
way of process transition and turn into a subject with type accessrecord_t and then can
write the object with type courserecord_t.

Inquiry statements in Table 1 have been input into the running prototype and test
results show that all the security targets can be met with the policy configuration.

In order to verify whether the prototype can executed effectively as for policy
configuration with some bugs, some test cases are also devised and used to test the
prototype. For example, it is required that a subject with type student_t ought to be
authorized to have read permission as for an object with type coursesourse_t. Thus a
new test case for inquiry statement No. 7 in Table 1 is devised for validity analysis
based on CPN that the rule statement “allow student_t coursesourse_t:file{read}” is
deleted from the configuration. Then run the prototype again with the same inquiry
statement and test result shows that no information flow can be found and verifies that
there is some bug about permission authorization for type student_t and coursesourse_t
in the configuration. Therefore, the prototype is proved to be correct and effective from
the negative aspect.

Table 1. Inquiry statements about security configuration goals

No Mode Inquiry statements

1 positive collegeadmin_t:(RL,-,!()):coursepremark_t
2 positive collegeadmin_t:(RL,-,!()):coursemark_t
3 positive collegeadmin_t:(RL,-,!()):coursework_t
4 positive collegeadmin_t:(RL,-,!()):coursesourse_t
5 positive collegeadmin_t:(RL,-,!()):coursesourse_t
6 positive collegeadmin_t:(WL,+,!()):coursemark_t
7 positive student_t:(RL,-,!()):coursesourse_t
8 positive student_t:(RL,-,!()):courserecord_t
9 positive student_t:(RL,-,!()):coursemark_t
10 positive student_t:(WL,+,!()):coursework_t
11 positive student_t:(WL,+,!()):courserecord_t
12 positive teacher_t:(RL,-,!()):coursesourse_t
13 positive teacher_t:(RL,-,!()):coursework_t
14 positive teacher_t:(WL,+,!()):coursesourse_t
15 positive teacher_t:(WL,+,!()):coursepremark_t
16 negative student_t:(WL,+,!()):coursepremark_t
17 negative student_t:(WL,+,!()):coursemark_t
18 negative teacher_t:(WL,+,!(coursepremark_t)):coursemark_t

304 G. Zhai et al.

Above results show that the prototype can not only work out all objects (or sub-
jects) with corresponding permissions that any subject (or objects) with specified
security context are authorized or prohibited according to the given SELinux policies
configuration, but also can it verify correctness of configuration based upon informa-
tion flow inquiry. In addition, the TCB integrity analysis can be done successfully and
all rules that could potentially influence integrity of TCB subjects and objects can be
detected.

4.2 Related Work and Discussion

A lot of research work has been done around SELinux policies analysis. As mentioned
in the Sect. 2, Gokyo [3] and [13, 14], SELAC [4], SLAT [7, 8] and [15] and
SEAnalyzer [9] provide valuable reference for our research in this paper. However,
Gokyo is mainly used to check integrity of a proposed trusted computing base (i.e. to
identify where untrusted data may enter the TCB) and to resolve constraint conflicts for
SELinux that has multiple security goals with obviously different kinds of trust rela-
tionship, and it cannot cover all the aspects of policy violations; SELAC is focused on
formalization of SELinux configuration language and to model the relationships
occurring among sets of configuration rules and verification whether a given subject
can access a given object in a given mode as for an arbitrary given security policy
configuration; SLAT draws support from the model checker NuSMV for information
flow model checking; SEAnalyzer also makes use of a software tool named CPN to aid
its analysis procedure. Only one analysis method either based on access control space
or based on information flow or based on colored Petri-net is used for policy analysis
by each of them, and the analysis must be restricted by limitations of each method.

Fig. 4. Screenshot about test for inquiry statement No. 11

SCIATool: A Tool for Analyzing SELinux Policies 305

In addition, logic-programming approach [16, 17], deductive database approach
[18], deductive spreadsheets based approach [19], model-based approach [20] and
learning-based approach [21] are also used or put forward for analyzing SELinux
policies. Specifically, PAL [16] uses SLAT’s information flow model and creates a
logic program using the XSB logic-programming system to run queries for analyzing
SELinux policies; PALMS [17] is implemented in Prolog for policy analysis based on a
logical specification for SELinux MLS policies; Lopol [18] normalizes and encodes
SELinux policies as logical relations in conjunction with inference rules to perform a
number of simple analyses and it can quickly tailor a large default policy (such as strict,
targeted, or reference policy) to the specific needs of a system or a class of systems by
using a logical rule set as a high-level language; XcelLog [19] is implemented based
upon deductive spreadsheets as an add-in to Microsoft Excel and the XSB tabled logic
programming system is used as the underlying deductive engine for security policy
analysis while SELinux policies in policy.conf format are loaded into XcelLog by using
a Perl script to transform the policy into comma-separated-value (.csv) format and then
opening the .csv files in Excel; A model-based approach [20] is presented to analyze
the dynamic proliferation of access rights in SELinux, which maps SELinux policies to
an isomorphic HRU security model whose safety properties can then be analyzed by
applying methods and tools available for the analysis of HRU model safety; A
learning-based approach [21] is devised to analyze system call logs and to monitor an
application’s behavior through system calls and an application’s policy within SELinux
can be improved by reducing the number of Domain-Type associations, i.e. reducing
SELinux application access to minimum set of types used by the application.

Compared with above research, SCIATool integrates methods based on access
control spaces, information flows and colored Petri-nets organically and realizes the
mutual supplement with each other’s advantages. Most importantly, SCIATool is
implemented independently in C language and its policy analysis doesn’t require the
help of other available software tools, thus it is easier to be enlarged to construct a
well-functioning computer-aided SELinux configuration tool and is convenient to be
integrated into other available SELinux configuration tools. However, trends of visu-
alization and engineering [22–30] reflected in recent work to improve SELinux policy
configuration ought to be considered and referenced in our future efforts to put
SCIATool into practice. Furthermore, SCIATool can be improved by adopting a
visualization-based policy analysis framework and it should be implemented as a
policy engineering workbench encompassing the automation of engineering steps,
prebuilt model patterns, integrated plausibility checks, and model analysis tools.

5 Conclusions

In this paper, we have done some exploratory research and practice for the analysis of
SELinux policies configuration by making integrated use of three typical analysis
methods based upon access control spaces, information flows and colored Petri-nets.
And corresponding prototype, i.e. SCIATool is designed and implemented and tested.
To our best of knowledge, SCIATool is the first analysis tool that integrating such three
methods together.

306 G. Zhai et al.

By synthesizing complementary advantages of different methods, SCIATool can
perform the TCB integrity analysis and various validity analyses effectively, as have
been verified by test results. Furthermore, it can not only detect all rules that could
potentially influence integrity of the initially specified TCB, but also can it figure out
authorized or prohibited permissions as for a specified subject and/or a specified object
as well as information flow path in CPN of policy configuration as for a specified
information flow path requirement.

Specially, by using inquiry analysis based on colored Petri-nets, a whole or com-
paratively independent part of security goals can be described as a series of inquiry
statement and then be testified by SCIATool. Therefore, SCIATool can not only per-
form analysis tasks of security goals (i.e. authorized and prohibited permissions) as for
a single entity (i.e. subject, object or subject-object pair), but also can it perform
analysis tasks of security goals as for a whole system or subsystem by in turn detecting
and deciding whether there is an information flow path that satisfies each statement of
security goals denoted as the specified inquiry requirement.

SCIATool is implemented completely in popular standard C language and can run
independently without the help of any other available software, as make it easy to be
enlarged to construct a well-functioning computer-aided SELinux configuration tool
and be convenient to be integrated into other available SELinux configuration tools.

Although some non-expert oriented interface design schemes (e.g. support of
wizard-style inquiry input and hierarchical display of security elements in policies con-
figuration) have been adopted, a lot of efforts, such as comprehensive support for
graphical interface and policy configuration engineering, need to be taken in order to
make SCIATool achieve real practicality. At the same time, for complexity and
large-scale features that the real configuration of SELinux policies has, performance of
analysis and how to improve analysis efficiency ought to be considered in our futurework.

Acknowledgements. The research presented in this paper was performed with the support of the
Fundamental Research Funds for the Central Universities (No. 2009JBM019). This paper was
also supported by the State Scholarship Fund of China Scholarship Council (File
No. 201307095025).

References

1. Smalley, S., Vance, C., Salamon, W.: Implementing SELinux as a linux security module.
NAI labs report #01-043 (2006)

2. Smalley. S.: Configuring the SELinux policy. NAI Labs Report #02-007 (2005)
3. Jaeger, T., Zhang, X., Edwards, A.: Policy management using access control space. ACM

Trans. Inf. Syst. Secur. 6(3), 327–364 (2003)
4. Zanin, G., Mancini, L.V.: Towards a formal model for security policies specification and

validation in the SELinux system. In: Proceedings of the 9th ACM Symposium on Access
Control Models and Technologies, pp. 136–145. Association for Computing Machinery
(ACM), New York (2004)

5. Zhai, Gaoshou, Tong, Wu: Algorithms for automatic analysis of SELinux security policy.
Int. J. Secur. Appl. 7(1), 71–84 (2013)

SCIATool: A Tool for Analyzing SELinux Policies 307

6. Zhai, Gaoshou, Tong, Wu: Automatic analysis method for SELinux security policy. Int.
J. Secur. Appl. 6(2), 229–234 (2012)

7. Guttman, J.D., Herzog, A.L., Ramsdell, J.D.: Information flow in operating systems: eager
formal methods. In: Workshop on Issues in the Theory of Security (WITS 2003). IFIP WG
1.7, ACM SIGPLAN and GI FoMSESS. Warsaw, Poland (2003)

8. Guttman, J.D., Herzog, A.L., Ramsdell, J.D., Skorupka, C.W.: Verifying information flow
goals in security-enhanced linux. J. Comput. Secur. 13, 115–134 (2005)

9. Chen, Y.-M., Kao, Y.-W.: Information flow query and verification for security policy of
security-enhanced linux. In: Yoshiura, H., Sakurai, K., Rannenberg, K., Murayama, Y.,
Kawamura, S.-I. (eds.) IWSEC 2006. LNCS, vol. 4266, pp. 389–404. Springer, Heidelberg
(2006)

10. Gu, L., Guo, Y., Yang, Y., Bao, F., Mei, H.: Modeling TCG-based secure systems with
colored petri nets. In: Chen, L., Yung, M. (eds.) INTRUST 2010. LNCS, vol. 6802, pp. 67–
86. Springer, Heidelberg (2011)

11. Ahn, G.J., Xu, W., Zhang, X.: Systematic policy analysis for high-assurance services in
SELinux. In: Proceedings of 2008 IEEE Workshop on Policies for Distributed Systems and
Networks, pp. 3–10. IEEE Computer Society (2008)

12. Guo, Tao, Zhai, Gaoshou: Automatic analysis of SELinux security policies based on colored
petri-net (in Chinese). Inf. Secur. Technol. 4(11), 35–40 (2013)

13. Jaeger, T., Sailer, R., Zhang, X.: Analyzing integrity protection in the SELinux example
policy. In: Proceedings of the 12th USENIX Security Symposium, pp. 59–74. Washington,
D.C., USA (2003)

14. Jaeger, T., Sailer, R., Zhang, X.: Resolving constraint conflicts. In: SACMAT 2004,
pp. 105–114. Yorktown Heights, New York, USA (2004)

15. Guttman, J.D., Herzog, A.L., Ramsdell, J.D.: SLAT: information flow in security enhanced
linux. Included in the SLAT distribution, available from http://www.nsa.gov/SELinux
(2003)

16. Sarna-Starosta, B., Stoller, S.D.: Policy analysis for security-enhanced linux. In: Proceedings
of the Workshop on Issues in the Theory of Security (WITS 2004), pp. 1–12. IFIP WG 1.7,
ACM SIGPLAN and GI FoMSESS. Barcelona, Spain (2004)

17. Hicks, B., Rueda, S., St. Clair, L., Jaeger, T., McDaniel, P.: A logical specification and
analysis for SELinux MLS policy. ACM Trans. Inf. Syst. Secur. 13(3), 26 (2010)

18. Kissinger, A., Hale, J.C.: Lopol: a deductive database approach to policy analysis and
rewriting. In: Proceedings of the Second Annual Security-enhanced Linux Symposium.
Baltimore, Maryland, USA (2006)

19. Singh, A., Amakrishnan, C.R., Ramakrishnan, I.V.: Security policy analysis using deductive
spreadsheets. In: FMSE 2007, pp. 42–50. Fairfax, Virginia, USA (2007)

20. Amthor, P., Kühnhauser, W.E., Pölck, A.: Model-based safety analysis of SELinux security
policies. In: 2011 5th International Conference on Network and System Security (NSS),
pp. 208–215. IEEE Press, New York (2011)

21. Marouf, S., Phuong, D.M., Shehab, M.: A learning-based approach for SELinux policy
optimization with type mining. In: Proceedings of the Sixth Annual Workshop on Cyber
Security and Information Intelligence Research (CSIIRW 2010). ACM, New York (2010)

22. Tresys Technology: SETools—policy analysis tools for SELinux. http://oss.tresys.com/
projects/setools

23. Wenjuan, X., Shehab, M., Ahn, G.-J.: Visualization-based policy analysis for SELinux:
framework and user study. Int. J. Inf. Secur. 12, 155–171 (2013)

308 G. Zhai et al.

http://www.nsa.gov/SELinux
http://oss.tresys.com/projects/setools
http://oss.tresys.com/projects/setools

24. Clemente, P., Kaba, B., Rouzaud-Cornabas, J., Alexandre, M., Aujay, G.: SPTrack: visual
analysis of information flows within SELinux policies and attack logs. In: Huang, R.,
Ghorbani, A.A., Pasi, G., Yamaguchi, T., Yen, N.Y., Jin, B. (eds.) AMT 2012. LNCS, vol.
7669, pp. 596–605. Springer, Heidelberg (2012)

25. Marouf, S., Shehab, M.: SEGrapher: visualization-based SELinux policy analysis. In: 2011
4th Symposium on Configuration Analytics and Automation (SAFECONFIG), pp. 1–8.
Arlington, VA. IEEE Press, New York (2011)

26. Amthor, P., Kuhnhauser, W.E., Polck, A.: WorSE: a workbench for model-based security
engineering. Comput. Secur. 42, 40–55 (2014)

27. Athey, J., Ashworth, C., Mayer, F., Miner, D.: Towards Intuitive tools for managing
SELinux: hiding the details but retaining the power. Tresys Technology. http://www.tresys.
com/innovation/papers/Power_of_SELinux.pdf. Accessed 12 March 2007

28. MacMillan, K., Brindle, J., Mayer, F., Caplan, D., Tang, J.: Design and Implementation of
the SELinux policy management server. Tresys Technology. http://www.tresys.com/
innovation/papers/Design-And-Implementation-of-PMS.pdf. Accessed 1 March 2006

29. Singh, S.: Automatic verification of security policy implementations. Doctoral Dissertation
in Computer Science, University of Illinois at Urbana-Champaign (2012)

30. Nakamura, Y., Sameshima, Y., Yamauchi, T.: SELinux security policy configuration system
with higher level language. J. Inf. Process. 18, 201–212 (2010)

SCIATool: A Tool for Analyzing SELinux Policies 309

http://www.tresys.com/innovation/papers/Power_of_SELinux.pdf
http://www.tresys.com/innovation/papers/Power_of_SELinux.pdf
http://www.tresys.com/innovation/papers/Design-And-Implementation-of-PMS.pdf
http://www.tresys.com/innovation/papers/Design-And-Implementation-of-PMS.pdf

	SCIATool: A Tool for Analyzing SELinux Policies Based on Access Control Spaces, Information Flows and CPNs
	Abstract
	1 Introduction
	2 Methodology
	2.1 SELinux Policies Configuration
	2.2 Typical SELinux Policies Analysis Methods
	2.3 Main Idea About an Integrated Analysis Method Based on Access Control Spaces, Information Flows and Colored Petri-Nets

	3 Prototype Design and Implementation
	3.1 Architecture Design
	3.2 Main Problems and Solutions About Integration
	3.3 Prototype Implementation

	4 Test Results and Discussion
	4.1 Test Results and Analysis
	4.2 Related Work and Discussion

	5 Conclusions
	Acknowledgements
	References

