
APP Vetting Based on the Consistency
of Description and APK

Weili Han1,2,3(B), Wei Wang1, Xinyi Zhang 1, Weiwei Peng1, and Zheran Fang1

1 Software School, Fudan University, Shanghai, China
2 Key Lab of Information Network Security,
Ministry of Public Security, Shanghai, China

3 Shanghai Key Laboratory of Data Science, Fudan University, Shanghai, China
wlhan@fudan.edu.cn

Abstract. Android has witnessed a substantial growth over the years, in
the market share as well as in the number of malwares. In this paper, we
proposed a novel approach to detect potentially malicious applications,
based on the semantic relatedness between the applications’ descriptions
and the apk files. We gathered an application database of 7,570 valid
applications for training and testing, finding that about 16.6 % of the
tested applications exhibit a lack of relatedness between the apk files and
descriptions, due to either inadequate embedded text in apk file, too short
a description, unsuited description, or being a malicious application. In
additions, there are 4 % of applications unjustly deemed as unrelated.
Our study showed that the semantic based approach is applicable in
terms of malware detection and in judging the soundness of descriptions.

Keywords: Android security · Malware · NLP · APK · Description

1 Introduction

Recent years, smart phones and mobile devices have become more and more
popular. A recent report from International Data Corporation [5] showed that
the number of Android smart phones reached 81.1 % in the first quarter of 2013.
And the number of Android applications is rapidly growing. According to a
report from AppBrain [1], the official Android Market held a total of 1,316,773
applications by July 30, 2014.

Security on Android has become a hot topic over the years, with a growing
number of malicious applications threatening the privacy and financial security
of users. The automated detection of malicious applications was put forward
by Google in the form of Google Bouncer, which, according to RiskIQ [2], was
able to detect 60 % of the malicious applications in the official android market,
Google Play. However, the detection rate has drastically decreased with time,
by the year 2013, it was able to detect only 23 % of the malicious applications.
This shows a serious need for new methods of malware detection.

Such security problem is due to Android’s open platform and unrestricted
application market, using which any developer, professional, amateur or even
c© Springer International Publishing Switzerland 2015
M. Yung et al. (Eds.): INTRUST 2014, LNCS 9473, pp. 259–277, 2015.
DOI: 10.1007/978-3-319-27998-5 17

260 W. Han et al.

malicious, are able to develop and sell their work to the world [7]. Such a low
barrier attracts many developers unskilled in the English language, flooding
the market with poorly described application, making it possible for malicious
applications to hide among them.

In light of the lacking in malware detection methods and descriptions writing
aids with the android market, we intend to develop a tool, being the first to
utilize the relatedness between the application descriptions and the embedded
text in apk files to achieve malicious application detection and to discover poorly
written descriptions.

Following this innovative approach we designed a framework to analyze the
relatedness between an application’s description and the embedded text in the
apk file. We are able to achieve a recall of 91.2 % in the most tolerant case.
We further analyzed the applications with its descriptions and apk file deemed
unrelated, find that 77 % of them falls into one of the following categories, (1)
Inadequate Embedded Text, (2) Short Description, (3) Unsuited Description,
(4) Malicious Application.

The rest of the paper is organized as follows. In Sect. 2, we introduce the
background of the Android System and some tools used in our work, NLTK and
ESA. Section 3 defines the problem and the objective of our system, while Sect. 4
outlines the framework of our system, the acquisition of data and rationalize
some of the design choices. Section 5 evaluates the system and analyzed the
evaluation results. We then discuss the strength and weakness of the system in
Sect. 6, the related works in Sect. 7. At the end, we conclude the paper in Sect. 8.

2 Background Knowledge

2.1 Android System

Android applications are mainly written in Java, with some configurations and
resources defined in XML format. Developers need to register all the Activities
the application use in the Manifest file. Activity in Android is an application
component that provides a screen with which users can interact in order to per-
form specific operations, generally, the appearance of an Activity is determined
by a layout XML file (e.g. main.xml), where a hierarchy of viewable widgets
is defined. Some of the texts in an Activity are statically determined, like the
text on a button or some description words, these texts can be defined in three
ways: (1) developer declares a string resource in string.xml, and includes the
string resource in the view’s text field within layout XML file, (2) developer
directly assigns a string value to the text field of a view within layout XML file,
(3) developer assigns a constant string to the text fields of a view’s object in
Java code.

By coding convention, text to be displayed to users are written mostly
through the first and the second way. Thus, we can extract the displayed string
from the string.xml file and layout XML file.

APP Vetting Based on the Consistency of Description and APK 261

2.2 Text Sanitization

Natural Language Toolkit (NLTK) is a leading platform providing advanced
language processing tools which are used in our system.

RegexpTokenizer Used to break sentences into words.
tag.pos tag Used to tag words by part of speech.
RegexpParser Based on a grammar, given by regular expression, used to parse

a sequence of words into a tree structure.
PorterStemmer Proposed by Porter in 1980, Porter Stemming algorithm [14]

is used to stem words, by removing word suffix, uniforming tense, converting
plurals and singular noun.

WordNetLemmatizer This stemmer utilize the morphy function of Word-
Net [8], and preform no action if the word is not recognized by WordNet.

2.3 Explicit Relatedness Analysis (ESA)

ESA [9] is used to calculate the relatedness between text. The main idea behind
ESA is to construct a multidimensional semantic space based on a given set
of literature, and then put the vector to be analyzed into the semantic space,
turning the semantic relatedness between two pieces on text into the cosine value
of the angle between two vectors projected into the semantic space.

It is called explicit semantic analysis because each dimension in the seman-
tic space is an explicit article in the literature. While the projection into the
semantic space is based on the overlapping of words between the text.

The reason we choose ESA as the tool of semantic relatedness analysis is
because that ESA has its own literature as the building blocks, greatly decreasing
the size of the data needed for training. In comparison to synonym based tools
like WordNet, ESA is more focused on the relatedness on a broader scale and
provides a quantitative representation of the semantic relatedness.

We use esalib [13], the best maintained open-source ESA library available,
which uses 2005 wikipedia as the literature set.

3 Problem Definition

We define the semantic vector for the embedded text of application app as below:

Tapp = [v1, v2, v3, ..., vn]T

where vi =

{
1 if wi ∈ MT [app]
0 otherwise

Where MT [app] is the list of semantically significant phrases in the embedded
text of app.

262 W. Han et al.

Similarly, semantic vector of app’s description is defined as:

Dapp = [v1, v2, v3, ..., vn]T

where vi =

{
1 if wi ∈ MD[app]
0 otherwise

Where MD[app] is the list of semantically significant phrases in the descrip-
tion of app.

Our objective is to find a relatedness function r̂el approximating the actual
relatedness between the description and embedded text as closely as possible.

r̂el(T,D) =

{
1 if T is deemed related to D

0 otherwise

We then need to introduce a few assumptions.
First, we suppose there is an ideal function rel.

rel(T,D) =

{
1 if T is actually related to D

0 otherwise

Second, suppose that for most applications, its description and embedded
text is related. ∑

app∈App

rel(Tapp,Dapp) ≈ |App|

App here means the set of all applications in the dataset.
Third, there exist some similar applications, among which these descriptions

and embedded text points to similar functionalities and thus relate to each other.
Given an application, the number of applications similar to it grows linearly with
the size of the dataset.

More specifically, given an X uniformly distributed on the set App, there
exist α and β, such that the following equation is satisfied.

E(
∑

app∈App

rel(TX ,Dapp) +
∑

app∈App

rel(Tapp,DX)) ≈ α · |App| + β

The expectation is calculated as:∑
X∈App

∑
app∈App

rel(TX ,Dapp) +
∑

X∈App

∑
app∈App

rel(Tapp,DX)

≈ α · |App|2 + β · |App|
2 ·

∑
app1∈App

∑
app2∈App

rel(Tapp1 ,Dapp2) ≈ α · |App|2 + β · |App|
∑

app1∈App

∑
app2∈App

rel(Tapp1 ,Dapp2) ≈ α′ · |App|2 + β′ · |App|

APP Vetting Based on the Consistency of Description and APK 263

We then introduce two measurements, precision and recall, to examine the
effectiveness of our approximation r̂el. To avoid the introduction of subjective
error, we take the fact of whether the texts are from the same application as
ground truth, which is to say, we deem a piece of embedded text and a description
as matched if and only if they are from the same application. Hence, precision
and recall should be in forms as below.

precision =

∑
app∈App r̂el(Tapp,Dapp)∑

app1∈App

∑
app2∈App r̂el(Tapp1 ,Dapp2)

recall =

∑
app∈App r̂el(Tapp,Dapp)

|App|
Recall stands for the portion of applications that have their own embedded

text and description deem related, which, according to assumption two, should
be approximate to 1. On the other hand, precision stands for the portion of
embedded text and description pairs that actually come from the same applica-
tion, among all that are deemed related, which, according to assumption number
three, is approximately 1

α′·|App|+β′ .
In order to avoid the presence of |App| in precision’s ideal value, we define

precision′ as a replacement of precision. We define precision′ as the expected
precision when each piece of embedded text is compared with two descriptions,
one from the applications itself, and another randomly chosen among all test
samples, which gives,

precision′ =

∑
app∈App r̂el(Tapp, Dapp)

∑
app∈App(EX(r̂el(Tapp, DX)) + r̂el(Tapp, Dapp))

≈ |App|
α′ · |App| + β′ + |App|

≈ 1

α′ + 1
when |App| is large

α′ is dependent on the real life condition. Our goal is to let recall be close to 1,
which precision′ is close to 1

α′+1 ; thus the objective function is defined as,

F1 =

⎧⎨
⎩

2 · precision′·recall
precision′+recall if precision′ ≤ 1

1+α′

2 ·
1

1+α′ ·recall
1

1+α′ +recall
otherwise

And the problem becomes to find a r̂el to make F1 as high as possible.
For example, suppose the total number of applications is 1,000, with a recall

of 90 % and a precision of 10 %, then the adjusted F1 score should be 94 % when
α′ is less than 1 %.

This applies when in the test set, each application has its embedded text
matched against all 1,0000 descriptions. However, we now want to reduce the
workload by randomly selecting 49 descriptions, in addition the one description
from the applications, to matched against the embedded text. Suppose in this
case, the recall is still 90 % which the precision become 12 %, the adjusted F1

score should be 88 % with precision′ as 86 %.

264 W. Han et al.

4 System Design

4.1 Framework

Our system takes in an application and a description, after a serious of processing
and decision making, decides whether these two are related semantically.

Fig. 1. System implementation outline

As shown in Fig. 1, the system is designed into the following modules.

Sanitization. In sanitization, we remove filter and clean the texts to extract
strings with semantic relevance. Using the tools of NLTK, we split the sen-
tences according to regular expression, tag words with their part of speech,
combine words into phrases, stem words and remove stopwords, obtain a list
of phrases in the ends.

Vectorization. Using 0 and 1 to represent the existence of a word in semantic
vector. The involved vectors includes,
v1 The vector representing the given description
v2 The vector representing the embedded text in the given application
V3 The reference semantic vectors generated before hand from 50 randomly

chosen descriptions.
ESA Semantic Relatedness Analysis. Using v1 and v2 generated in Vector-

ization, ESA relatedness are calculated. Average ESA Relatedness are the
average of the relatedness between v2 and the 50 vectors in V3.

APP Vetting Based on the Consistency of Description and APK 265

Logistic Regression Classification. Using the classification function trained
before hand, applying which to input vector given by the current ESA relat-
edness, average ESA relatedness, description, and embedded text, we obtain
a result in the range of 0 to 1. Based on the threshold, the system then gives
a conclusion on whether the two pieces of text are deemed related.

4.2 Data Setup

Obtaining Data. To obtain the description information of Android applica-
tions, we use an open-source third party script, android-market-api [3]. Since
Google Play strictly restricts the number of requests to 500 applications per
user, denying to reply useful information when the limitation is exceeded, we
have to use multiple google account to accomplish the crawling of application
description as well as apk file. Even then, we are only able to obtain about 10,000
applications’ information. To extract semantic information from the apk file, we
use the tool apktool [10] provided by Google to obtain string file strings.xml,
and layout files. Since by coding convention, the text displayed in user interface
would be stored in these files, we choose these as the source of embedded text
information.

Data Sanitization. After gathering the application descriptions, we then san-
itize them to extract key phrases for further processing.

First, we substitute the non English characters to their closest English coun-
terparts, such as converting Loẅis to Lowis.

Second, we customize the RegexpTokenizer to deal with cases of abbrevi-
ation (e.g. U.S.), combined-words and percentage, currency, and numbers (e.g.
10.2 %). Then we split the sentence according to punctuation and spaces. The
specific regular expressions used are as listed.

Abbreviation ([A-Z])(\.[A-Z])+\.?
Combined-words \w+(-\w+)*
Percentage, currency and numbers \$?\d+(\.\d+)?%?
Ellipse \.\.\.

Third, we use the tool tag.pos tag to perform part of speech tagging.
Fourth, we use RegexpParser to extract phrases, focusing mainly on noun

phrases, including single noun, noun+noun, adjective+noun which make up
84.8 % (need change) of the noun phrases in our dataset.

In addition, we decide to keep all the verbs that is identified. These two types
of words are what we believe contains most semantic meaning.

Noun Phrases <NN.*|JJ>*<NN.*>
Verb <VB.*>

At last we stem all the extracted words, remove stopwords, duplicates or
words that are too long or too short.

266 W. Han et al.

Embedded Text. In dealing with embedded text, we need to first remove
spacing characters such as “\n” and “\t”, line numbers and html tags. Texts
embedded in apk file can be classified into two type, phrases and sentences.
Phrases are fragments of words lacking a full grammatical structure, usually
used as texts on buttons, or options; while sentences are used in introduction
of the application, copyright information, documentations, etc. In this case, we
roughly assume that word sequences consisting of more than four words are
sentences.

Sanitization are performed to these sentences in ways similar to those in
descriptions.

Data Model. The semantic information we processed in Sect. 4.2 is then stored
in json file, with a mapping relationship as below.

MD [app] = [wi1 , wi2 , ..., win
]

In the definition, app means the name of the given application, n means the
total number of phrases in the application description. While W is the list of all
phrases extracted from descriptions, with wi meaning the ith words in W . MD
stores the phrases mapping of descriptions.

Embedded text are stored in similar ways.

MT [app] = [wi1 , wi2 , ..., win
]

In the case, MT stores the mapping of embedded text.

4.3 Classification Model

Since the r̂el function to be generated is a classification function, we use logistic
regression, one of the most popular forms of binary regression [15], to derive the
model.

Preliminary Analysis. We give an preliminary analysis of the dataset, which
consists of 7,570 applications.

First, we analyze the difference in relatedness across various categories.
According to Fig. 2, there are actually observable difference in description text
relatedness across categories.

Applications in Categories like “Media and Video”, “Personalization”, “Pro-
ductivity” and “Tools” have a higher relatedness on average. The number of
applications in “Media and Video” is rather low, taking up on 52 among the total
of 7,570 applications. Typical applications in this category include hdplayer,
videoeditor, and utorrent, all require the technique of video encoding or fast
decoding, some even need a high bandwidth to provide video content to the
client. All these functionalities are demanding on the technical side, usually sup-
ported by well developed software company or website, with considerable number

APP Vetting Based on the Consistency of Description and APK 267

of staffs and users. It is quite natural for these kind of applications to have well
written descriptions.

“Personalization” includes mobile theme, mobile font management applica-
tions, lock screens, etc. Descriptions and embedded texts in this category tend
to be short, functionalities tend to be focused; thus the descriptions and texts
do not diverge due to the simplicity.

“Productivity” and “Tools” are mostly used to provide technical service (such
as file management and anti-virus), which are also mostly provided by established
companies.

On the other hand, categories like “Books &References”, “Education”
and “Libraries &Demo” seems to have a lower relatedness on average. With
“Libraries &Demo”, applications in this categories are under development, the
lack of relatedness seems quite natural. For “Education” and “Book &Refer-
ences”, these two categories are mostly intended as a learning aid. Some are
originally intended to meet the developer’s own need, without a marketing team
to write the description.

Fig. 2. ESA relatedness distribution across categories

From Fig. 3, we can reenforce our claim that “Media and Video”, “Produc-
tivity” and “Tools” are mostly developed by established teams since they all
have a longer description length on average; while “Libraries &Demo” have a
very small average description length.

We then go on to analyze whether the relatedness between an application’s
embedded text and its own description is actually higher than that between
others. As the reference point, we randomly selected 50 descriptions; for a given
embedded text, we calculated the average relatedness between it and the selected
descriptions.

268 W. Han et al.

Fig. 3. Description length distribution across categories

Fig. 4. Relatedness and average relatedness distribution

From Fig. 4, we can observe that texts from the same applications generally
have a higher relatedness than the average. However, there is no distinct bound-
ary between these two, which is to say, we will not able to find a threshold that
could perfectly tell apart whether the texts are from one application. Say, we set
the threshold to 0.2, 87.7 % of the applications can have its own embedded text
and description correctly related; while 66.1 % of the average relatedness would
be beyond the threshold, giving a precision’ of 56.9 %.

A sampled average of relatedness is compared to the relatedness from same
applications. As shown in Fig. 5, the dots in the lower triangle stands for applica-
tions whose embedded text has a relatedness to its own description lower than the
average of sample texts, taking up 11.5 % of all applications. This means that using
average relatedness as aid to classification can improve the recall over threshold-

APP Vetting Based on the Consistency of Description and APK 269

Fig. 5. Relatedness against average relatedness

based classification; however, there is still 46.6 % of the average relatedness above
that of the applications own relatedness, giving a precision’ of 65.0 %.

Beyond the usage of relatedness and average relatedness we develop a more
detailed model to perform the classification.

Logistic Regression. First we examine the factors that would possibly reflect
the actual relatedness.

score the ESA relatedness value between the embedded text and description to
be classified

avgScore the average ESA relatedness between the given embedded text and
50 randomly chosen descriptions

descLen the number of phrases in the given description
textLen the number of phrases in the given embedded text

The effect of average relatedness had been discussed in Sect. 4.3. Considering
this avgScore is compared against score, we use reScore which is score

avgScore to
replace it.

In addition, in descLen and textLen affect the dimensions of the semantic
vector they are kept as influencing factors.

Running Logistic Regression on the factors listed gives result are shown in
Table 1.

Using the model, and ground truth classifications we can then project the
four factors on to the region (0, 1), making the projected value for texts from
the same application close to 1 while that for texts from different applications

270 W. Han et al.

Table 1. Weights in logistic regression

Estimate Standard Err Z value p value

Intersect -7.625e+00 4.214e-02 -180.948 < 2e-16

score 6.860e+00 1.427e-01 48.077 < 2e-16

reScore 1.803e+00 3.301e-02 54.628 < 2e-16

descLen -5.570e-04 1.653e-05 -33.699 < 2e-16

textLen 6.077e-07 1.965e-07 3.092 0.00199

close to 0. As shown in Fig. 6, most of the projected value for not matched pairs
are hold in a small region.

Fig. 6. Logistic regression classification

As was described in Sect. 3, given α′ we want to find the threshold, such that
F1 is the highest.

In Fig. 7, we plot recall against precision′, depending on α′ different thresh-
old is selected, detailed values are listed in Table 2.

5 Evaluation

5.1 Prototype Implementation

All codes in python are written and run in Python2.7, with Windows 8 Oper-
ation System, 4-Gigabytes of memory. Functionalities implemented through
python includes text sanitization and storage, handling of length information,
determining threshold, and part of the graphs. ESA relatedness calculation is
implemented in Java, with OpenJDK 7u51 on Operating System Ubuntu 13.10,
16-Gigabytes of memory.

APP Vetting Based on the Consistency of Description and APK 271

Fig. 7. Recall against Precision′

5.2 Experiment Setup

There are 7,570 valid applications obtained and used in our work, whose apk
files and descriptions are crawled from Google’s official Android market, Google
Play. Although the default language is English, due to some intentional of unin-
tentional error, some of the applications’ descriptions are not in English, which
are discarded.

In order to evaluate our system, we divide the applications into two sperate
parts, performing as the training set and the test set. The training set consists
of 347,428 applications while the test set consists of 38,602 applications.

Based on different choice of α′ the measurements are calculated, as is shown
in Table 3.

Table 2. Threshold and corresponding F1 score

1
1+α′ Threshold Recall Precision′ F1

0.6 0.0050 0.915 0.600 0.725

0.7 0.0090 0.861 0.700 0.772

0.8 0.0143 0.803 0.800 0.801

0.9 0.0203 0.767 0.855 0.809

1.0 0.0203 0.767 0.855 0.809

We compare our method, based on Logistic Regression (annotated as LR),
with the straight forward threshold on ESA relatedness approach (annotated
as TH). As shown in Table 4 and illustrated in Fig. 8, logistic regression has

272 W. Han et al.

Table 3. Evaluation results

1
1+α′ TP FP FN Recall Precision Precision’ F1

0.6 662 23743 64 0.912 0.0271 0.576 0.706

0.7 616 14255 110 0.848 0.0414 0.674 0.751

0.8 575 7716 151 0.792 0.0694 0.776 0.784

0.9 544 4837 182 0.749 0.101 0.835 0.790

1 544 4837 182 0.749 0.101 0.835 0.790

Table 4. Comparison with Threshold-based approach

Recall precision precision′ F1

LR TH LR TH LR TH

0.749 0.101 0.0605 0.835 0.752 0.790 0.750

0.792 0.0694 0.0478 0.776 0.705 0.784 0.746

0.848 0.0414 0.0351 0.674 0.637 0.751 0.728

0.912 0.0271 0.0234 0.576 0.539 0.706 0.678

Fig. 8. Method precision comparison

made noticeable improvement in comparison to the threshold-based approach,
especially when recall is not that high.

5.3 Our Findings

We examined the applications that have their own embedded text and descrip-
tion deemed unrelated, and classifies the reason behind such misclassification.
We find that there are about 23 % applications deemed related by manual exam-
ination, containing adequate text length and indicative sentences. However, for
the rest 77 % there are four reasons behind our “misclassification”, the distrib-

APP Vetting Based on the Consistency of Description and APK 273

Table 5. Distribution of reasons behind “Misclassification”

Type Percentage(%)

Related 23

Inadequate Embedded Text 50

Short Description 26

Unsuited Description 12

Malicious Application 1

ution of which is as shown in Table 5. Note that some applications actually fall
in multiple categories.

Inadequate Embedded Text. From Fig. 9, we can observe that some of the
applications deemed unrelated have much less embedded text then normal ones.

The lack of embedded text is normally the result of two conditions. Either the
application has very few functionalities so not much text is displayed in the user
interface, a typical example of which is Muzika. This application only provides
the functionality to search and download copyleft music, therefore, the only
application related words in the embedded text are “search”, “length”, “size”
and “bps”, which can not set up an effective correlation with its description.

Another condition is when the developer do not follow the coding convention
of putting interface text into the string.xml or layout file, but instead hardcoded
it or put it in the database, leaving little useful information for our system. One
typical example of this is ANT+, it has only a few entries in layout file and even
fewer in string.xml, however, the magnitude of the strings hardcoded in the apk
file actually approaches 72 kilo-bytes.

The inadequacy of embedded text can be somewhat mitigated by the intro-
duction of hardcoded string as embedded text, however, it would introduce much
noise to the system, considering that we should encourage the adherence to cod-
ing convention, we decide not to take in the hardcoded string into consideration.

Fig. 9. Distribution of embedded text length

274 W. Han et al.

Fig. 10. Distribution of description length

Short Description. From Fig. 10, some of the applications deems unrelated
has much shorter description then normal ones. This lack to description makes
it harder to establish a connection between the application and the description.
Typical applications that fall into this category is either made by individuals
instead of a company or that it relies on introduction channel other the appli-
cation market.

A typical example is Subway Surfers News, as a fan-made application dis-
playing news, videos for the game Subway Surfer, the application is spread
through fan groups of the game. Hence, its description is rather simple, only
pointing out the functionality of news and video display, with no reference to
functionalities implemented such as, QR-code scanning, initiating events, build-
ing albums, audio recording and coupons.

Inadequate descriptions like this could drive away potential users. Our system
would warn the developers when such things happen, thus help the developers
to better promote their application.

Unsuited Description. Some descriptions, although pretty long, failed to
cover the actual functionalities of the application. Some elaborate on the intro-
duction of their company (e.g. DHgate Mobile, some quoted many reviewers
opinion (e.g. Nexercise), but talk little about the functionality.

All these lacks a strong correlation with the application, thus leading to
a rather low relatedness. Our system can spot such problem, and suggest the
developers to amend their description to a more informative state, making better
impression on the potential users.

Although fetch from the Google Play in U.S., some applications still use
a foreign language as its description (e.g. Weibo), these also pose as unsuited
descriptions. Since some English words are mingled in the description they are
not filtered out during preprocessing.

Malicious Application. Some applications due to reason unknown, use the
application content for other, put on a different name and get into the mar-
ket (e.g. Friend Locator, who stoles content from 360live), which leads to
difference between the application description and the embedded text.

APP Vetting Based on the Consistency of Description and APK 275

6 Discussion

Based on the relatedness between embedded text and description, we study the
state of description writing currently on the Android market. We implemented
an innovative system to decided whether the description is in accordance with
the application, helping the developers and Android market administrator to
evaluate the quality of the description automatically.

Different from related works, our study focus on the semantic related-
ness,using text shown to the user during usage to judge the description, which
is an approach never attempted before.

6.1 Weaknesses

In calculating text-to-text relatedness, because the limit training set size we
currently possess, we use ESA as the tool, which relies on external knowledge
base in calculation. However, since new words are continually emerging in this
age, external knowledge base may become outdated, failing to catch the meaning
of new brand names, product names, etc. This may reduce the accuracy of our
classification over time.

In terms of description aid, we are only able to alert the developers of unjust
descriptions, without detailed suggestions on how it may be improved.

7 Related Work

The closest related work is AutoCog [16], which examines the consistency
between an application’s description on Google Play and the permissions it
requires, they also leverage NPL to understand the functionality of an appli-
cation, while they tried to fetch semantic features from “what the developer
tells the user”, i.e. the description, we get this information from “what the user
actually see”, i.e. the actual semantic strings, we argue that semantic strings
extracted from user interfaces of applications contains more straightforward and
more detailed information about what this application would do.

There are many previous works that focuses on these kinds of problems in
Android permission system. Han et al. [11] proposed a framework of Collabora-
tive policy administration, where the malicious applications can be detected due
to abnormal permission configuration. The descriptions of applications may be
used to measure the similarity of two applications, then help identify the abnor-
mal permission configuration [17]. The descriptions of applications can be used
to help role mining algorithms too. Enck et al. [6] observed that some specific
combinations of permissions could be used as signature of malware, so they intro-
duced a set of security rules and a tool called Kirin to check the application’s
permission requirements against these rules. Kirin cares about application’s per-
mission request only but does not examine whether these permission are really
need by the application. Kathy et al. [4] moved one step further, they introduced

276 W. Han et al.

PScout to statically check the source code of Android and built a set of map-
pings between Android Framework APIs and the permissions each API needed.
With this set of mappings at hand, one can easily verify that whether an appli-
cation over claimed privileges that it would not use, but they cannot handle the
permission misuse problem nor the situation where repackaged malware invoked
additional APIs that are irrelevant to the functionality of the origin application
to do malicious things.

8 Conclusion and Future Work

Our system takes in apk files and descriptions; uses natural language processing
to normalize the text into semantic vectors; calculate the relatedness between
vectors from the given text; taking into consideration size of embedded text,
description length, and relatedness, decide whether the apk file and the descrip-
tion are related.

Assuming tested applications all have their descriptions and embedded text
related, we performed a test over 7,570 applications, and achieved a recall of
91.2 % in the most tolerant scenario. Under a stricter standard, 25.1 % of the
applications are misclassified, by manual examination, we find that among these
25.1 % of applications, about 77 % fall into one of the four categories: (1) Inad-
equate Embedded Text, (2) Short Description, (3) Unsuited Description, (4)
Malicious Application.

We hope to dealt with the problem of inadequate embedded text, finding the
threshold, below which the developers should be notified that the given applica-
tion contains too little information. And if we detect that there is many semantic
information hardcoded in the program, we should suggest the developers to per-
form a reconstruction.

For the to-be-outdated knowledge base, as the training set grows larger we
consider using the training set itself, instead of the external knowledge base, to
generate text-relatedness measurement. Online learning [12] can then be used to
keep the measurement updated.

In the future we may design a better storage schema for the semantic vectors,
so that pieces semantically close to the given text can be quickly located and
used for description suggestion.

Acknowledgement. This paper is supported by 12th Five-Year National Develop-
ment Foundation for Cryptography (MMJJ201301008), Key Lab of Information Net-
work Security, Ministry of Public Security (C13612), Natural Science Foundation of
Shanghai (12ZR1402600). We thanks anonymous reviewers for their comments.

References

1. Number of android applications. Technical report, AppBrain (2014)
2. Research also shows steady and significant drop in number of malicious apps being

removed in past three years. Technical report, RiskIQ (2014)

APP Vetting Based on the Consistency of Description and APK 277

3. An open-source api for the android market. https://code.google.com/p/
android-market-api. Accessed 2014

4. Au, K.W.Y., Zhou, Y.F., Huang, Z., Lie, D.: Pscout: Analyzing the android per-
mission specification. In: Proceedings of the 2012 ACM Conference on Computer
and Communications Security, CCS 2012, pp. 217–228. ACM, New York (2012)

5. Chau, M., Reith, R., Ubrani, J.: Worldwide quarterly mobile phone tracker. Tech-
nical report, International Data Corporation (2014)

6. Enck, W., Ongtang, M., Mcdaniel, P.D.: On lightweight mobile phone application
certification. In: ACM Conference on Computer and Communications Security, pp.
235–245 (2009)

7. Fang, Z., Han, W., Li, Y.: Permission based android security: issues and counter-
measures. Comput. Secur. (COSE) 43, 205–218 (2014)

8. Fellbaum, C.: WordNet An Electronic Lexical Database (1998)
9. Gabrilovich, E., Markovitch, S.: Computing semantic relatedness using wikipedia-

based explicit semantic analysis. In: International Joint Conference on Artificial
Intelligence, pp. 1606–1611 (2007)

10. Google. android-apktool. https://code.google.com/p/android-apktool. Accessed
2014

11. Han, W., Fang, Z., Yang, L.T., Pan, G., Wu, Z.: Collaborative policy administra-
tion. IEEE Trans. Parallel Distrib. Syst. (TPDS) 25(2), 498–507 (2014)

12. Jordan, M.I., Jacobs, R.A.: Hierarchical mixtures of experts and the EM algorithm.
In: International Symposium on Neural Networks (1993)

13. Knoth, P., Zilka, L., Zdrahal, Z.: Cross-lingual link discovery in wikipedia using
explicit semantic analysis. In: The 9th NTCIR Workshop Meeting, pp. 6–9, Tokyo,
Japan, December 2011. Knowledge Media Institute

14. Porter, M.: An algorithm for suffix stripping. Program-electron. Libr. Inf. Syst. 14,
130–137 (1980)

15. Pregibon, D.: Logistic regression diagnostics. Ann. Stat. 9, 705–724 (1981)
16. Qu, Z., Rastogi, V., Zhang, X., Chen, Y., Zhu, T., Chen, Z.: AutoCog: measuring

the description-to-permission fidelity in android applications. In: ACM Conference
on Computer and Communications Security (2014)

17. Zhang, X., Han, W., Fang, Z., Yin, Y., Mustafa, H.: Role mining algorithm evalua-
tion and improvement in large volume android applications. In: Proceedings of the
First International Workshop on Security in embedded systems and smartphones
(SESP 2013), conjunction with ASIACCS 2013 (2013)

https://code.google.com/p/android-market-api
https://code.google.com/p/android-market-api
https://code.google.com/p/android-apktool

	APP Vetting Based on the Consistency of Description and APK
	1 Introduction
	2 Background Knowledge
	2.1 Android System
	2.2 Text Sanitization
	2.3 Explicit Relatedness Analysis (ESA)

	3 Problem Definition
	4 System Design
	4.1 Framework
	4.2 Data Setup
	4.3 Classification Model

	5 Evaluation
	5.1 Prototype Implementation
	5.2 Experiment Setup
	5.3 Our Findings

	6 Discussion
	6.1 Weaknesses

	7 Related Work
	8 Conclusion and Future Work
	References

