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Abstract. Template attacks are widely accepted to be the most power-
ful side-channel attacks from an information theoretic point of view. For
template attacks to be practical, one needs to choose some special sam-
ples as the interesting points in actual power traces. Up to now, many
different approaches were introduced for choosing interesting points for
template attacks. However, it is unknown that whether or not the previ-
ous approaches of choosing interesting points will lead to the best classi-
fication performance of template attacks. In this work, we give a negative
answer to this important question by introducing a practical new app-
roach which has completely different basic principle compared with all
the previous approaches. Our new approach chooses the point whose dis-
tribution of samples approximates to a normal distribution as the inter-
esting point. Evaluation results exhibit that template attacks based on
the interesting points chosen by our new approach can achieve obvious
better classification performance compared with template attacks based
on the interesting points chosen by the previous approaches. Therefore,
our new approach of choosing interesting points should be used in prac-
tice to better understand the practical threats of template attacks.

Keywords: Side-channel attacks · Power analysis attacks · Template
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1 Introduction

Side-channel attacks are one of the most important threats against modern cryp-
tographic implementations. The basic idea of these attacks is to determine the
key of a cryptographic device by exploiting its power consumption [11], its elec-
tromagnetic radiation [19], its execution time [18], and many more [20]. Tradi-
tional security notions (such as chosen-ciphertext security for public-key encryp-
tion schemes) do not provide any security guarantee against such attacks, and
many implementations of provably secure cryptosystems were broken by side-
channel attacks.
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Power analysis attacks have received such a large amount of attention because
they are very powerful and can be conducted relatively easily. Therefore, let us
focus exclusively on power analysis attacks. As an important method of power
analysis attacks, template attacks were firstly proposed by Chari et al. in 2002 [1]
and belong to the category of profiled side-channel attacks. Under the assump-
tion that one (an actual attacker or an evaluator) has a reference device identical
or similar to the target device, and thus be well capable of characterizing power
leakages of the target device, template attacks are widely accepted to be the
strongest side-channel attacks from an information theoretic point of view [1].
We note that, template attacks are also important tools to evaluate the physical
security of a cryptographic device.

Template attacks consist of two stages. The first stage is the profiling stage
and the second stage is the extraction stage. In the profiling stage, one captures
some actual power traces from a reference device identical or similar to the target
device and builds templates for each key-dependent operation with the actual
power traces. In the extraction stage, one can exploit a small number of actual
power traces measured from the target device and the templates obtained from
the profiling stage to classify the correct (sub)key.

1.1 Motivations

Note that for real-world implementation of cryptography devices, a side-channel
leakage trace (i.e. an actual power trace for the case of power analysis attacks)
usually contains multiple samples corresponding to the target intermediate val-
ues. The reason is that the key-dependent operations usually take more than one
instruction cycles. In addition, according to Nyquist-Shannon sampling theorem,
the acquisition rate of the signal acquisition device is always set to be several
times faster than the working frequency of the target cryptographic device.

For template attacks to be practical, it is paramount that not all the samples
of an actual power trace are part of the templates. To reduce the number of
samples and the size of the templates, one needs to choose some special points
as the interesting points in actual power traces. Main previous approaches of
choosing interesting points for template attacks can be divided into two kinds.

Approaches belong to the first kind try to choose the points which contain
the most information about the characterized key-dependent operations as the
interesting points with different principles. Classical template attacks [1] gen-
erally use the approaches belong to the first kind to choose interesting points.
Moreover, many papers [2,3,5,10,12] suggested an accepted guideline for choos-
ing interesting points for the approaches in the first kind. The accepted guideline
is that one should only choose one point as the interesting point per clock cycle
since more points in the same clock cycle do not provide more information.
Disobeying this accepted guideline leads to poorer classification performance of
template attacks even if a higher number of interesting points is chosen due
to some numerical obstacles when one computes the inverse of the covariance
matrices Ci (Please see Sect. 2.2 for more details.). Up to now, many different
approaches of choosing interesting points which belong to the first kind were
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introduced. These approaches are Correlation Power Analysis based approach
(Chap. 6 in [11]) (CPA), Sum Of Squared pairwise T-differences based approach
[10] (SOST), Difference Of Means based approach [1] (DOM), Sum Of Squared
Differences based approach [10] (SOSD), Variance based approach [15] (VAR),
Signal-to-Noise Ratios based approach (pp. 73 in [11]) (SNR), Mutual Infor-
mation Analysis based approach [16] (MIA), and Kolmogorov-Smirnov Analysis
based approach [17] (KSA). One uses these approaches to choose the points which
contain the most information about the characterized key-dependent operations
as the interesting points by computing the signal-strength estimate SSE(t) for
each point Pt. For example, when one uses Correlation Power Analysis based
approach to choose interesting points for template attacks, the signal-strength
estimate SSE(t) is measured by the coefficient of correlation between the actual
power consumptions and the hypothetical power consumptions of a point Pt. For
these approaches, in each clock cycle, the point with the strongest signal-strength
estimate SSE(t) is chosen as the interesting point.

Approaches belong to the second kind based on the principal components
or Fisher’s linear discriminant. Principal Component Analysis based approach
[3] (PCA) and Fisher’s Linear Discriminant Analysis based approach [9] (LDA)
belong to the second kind. We note that, PCA-based template attacks is ineffi-
cient due to its high computational requirements [2] and may not improve the
classification performance [7]. Therefore, PCA-based template attacks are not
considered to be an approach which can be widely used to choose interesting
points for template attacks. Moreover, LDA-based template attacks depends on
the rare condition of equal covariances [4] (Please see Sect. 2.2 for more details.),
which does not hold for most cryptographic devices. Therefore, it is not a better
choice compared with PCA-based template attacks in most settings [4]. Due to
these reasons, we ignore PCA-based template attacks as well as LDA-based tem-
plate attacks and only consider the approaches of choosing interesting points for
classical template attacks which are the most widely used profiled side-channel
attacks in this paper.

However, up to now, it is still unknown that whether or not using the above
approaches of choosing interesting points will lead to the best classification per-
formance of template attacks. In other words, whether or not there exists other
approaches which based on different basic principles will lead to better classi-
fication performance of template attacks is still unclear. If the answer to this
question is negative, we can demonstrate that one can further improve the clas-
sification performance of template attacks by using the more advanced approach
to choose interesting points rather than by designing some kind of improvements
about the mathematical structures of the attacks. In this paper, we try to answer
this important question.

1.2 Contributions

In this paper, we firstly present a new approach of choosing interesting points for
template attacks which has completely different basic principle compared with
all the previous approaches. The theoretical correctness of our new approach is
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supported by an important mathematical property of the multivariate Gaussian
distribution and the Pearson’s chi-squared test for goodness of fit [23].

Furthermore, we experimentally verified that template attacks based on the
interesting points chosen by our new approach can achieve obvious better clas-
sification performance compared with template attacks based on the interesting
points chosen by the previous approaches. This gives a negative answer to the
question that whether or not using the previous approaches of choosing interest-
ing points will lead to the best classification performance of template attacks.

Moreover, the computational price of our new approach is low and practical.
Therefore, our new approach of choosing interesting points for template attacks
can be used in practice to better understand the practical threats of template
attacks.

1.3 Related Work

Template attacks were firstly introduced in [1]. Answers to some basic and prac-
tical issues of template attacks were provided in [2], such as how to choose
interesting points in an efficient way and how to preprocess noisy data. Efficient
methods were proposed in [4] to avoid several possible numerical obstacles when
implementing template attacks.

Hanley et al. [12] presented a variant of template attacks that can be applied
to block ciphers when the plaintext and ciphertext used are unknown. In [8],
template attacks were used to attack a masking protected implementation of a
block cipher. Recently, a simple pre-processing technique of template attacks,
normalizing the sample values using the means and variances was evaluated for
various sizes of test data [7].

Gierlichs et al. [10] made a systematic comparison of template attacks and
stochastic model based attacks [22]. How to best evaluate the profiling stage and
the extraction stage of profiled side-channel attacks by using the information-
theoretic and the security metric was shown in [21].

1.4 Organization of This Paper

The rest of this paper is organized as follows. In Sect. 2, we briefly introduce basic
mathematical concepts and review template attacks. In Sect. 3, we introduce our
new approach of choosing interesting points for template attacks. In Sect. 4, we
experimentally verify the effectiveness of the new approach in improving the
classification performance of template attacks. In Sect. 5, we conclude the whole
paper.

2 Preliminaries

In this section, we first introduce some basic mathematical concepts which are
used in this paper, then briefly review template attacks.
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2.1 Basic Mathematical Concepts

We first introduce the Gamma function and the chi-squared distribution. Then,
we briefly introduce the concept of the goodness of fit of a statistical model and
the Pearson’s chi-squared test for goodness of fit.

Definition 1. The Gamma function is defined as follows:

Γ (x) =
∫ ∞

0

e−ttx−1dt,

where x > 0.

Definition 2. The probability density function of the chi-squared distribution
with k degrees of freedom (denoted by χ2

k) is

f(x; k) =

{
1

Γ ( k
2 )2

k/2 e−x/2x(k−2)/2, x > 0;
0, x ≤ 0,

where Γ (·) denotes the Gamma function.

The goodness of fit of a statistical model describes how well it fits a set
of observations (samples). Measures of goodness of fit typically summarize the
discrepancy between the observed values and the values expected under the
statistical model in question. Such measures of goodness of fit can be used in
statistical hypothesis testing. The Pearson’s chi-squared test for goodness of fit
[23] is used to assess the goodness of fit establishes whether or not an observed
frequency distribution differs from a theoretical distribution. In the following,
we will briefly introduce the Pearson’s chi-squared test for goodness of fit.

Assume that, there is a population X with the following theoretical distrib-
ution:

H0 : Pr[X = ai] = fi (i = 1, . . . , k),

where ai, fi (i = 1, . . . , k) are known and a1, . . . , ak are pairwise different, fi >
0 (i = 1, . . . , k).

One obtains n samples (denoted by X1,X2, . . . , Xn) from the population X
and uses the Pearson’s chi-squared test for goodness of fit to test whether or
not the hypothesis H0 holds. We use the symbol ωi to denote the number of
samples in {X1,X2, . . . , Xn} which equal to ai. If the number n is large enough,
it will has that ωi/n ≈ fi, namely ωi ≈ nfi. The value nfi can be viewed as
the theoretical value (TV for short) of the category “ai”. The value ωi can be
viewed as the empirical value (EV for short) of the category “ai”. Table 1 shows
the theoretical value and the empirical value of the category “ai”.

Clearly, when the discrepancy of the last two lines of Table 1 is smaller, the
hypothesis H0 increasingly seems to be true. It is well known that the Pear-
son’s goodness of fit χ2 statistic (denoted by Z) is used to measure this kind of
discrepancy and is shown as follows:

Z =
k∑

i=1

(nfi − ωi)2/(nfi). (1)
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Table 1. The theoretical value and the empirical value of each category

Category a1 a2 · · · ai · · · ak

TV nf1 nf2 · · · nfi · · · nfk

EV ω1 ω2 · · · ωi · · · ωk

The statistic Z can be exploited to test whether or not the hypothesis H0

holds. For example, after choosing a constant Con under a given level, when
Z ≤ Con, one should accept the hypothesis H0. When Z > Con, one should
reject the hypothesis H0. Now, let’s consider a more general case. The following
lemma about Z was given out by Pearson at 1900 [23] and the proof of Lemma1
is beyond the scope of this paper.

Lemma 1. If the hypothesis H0 holds, when n → ∞, the distribution of Z will
approach to the chi-squared distribution with k − 1 degrees of freedom, namely
χ2

k−1.

Assume that one computes a specific value of Z (denoted by Z0) by a group
of specific data. Let

L(Z0) = Pr[Z ≥ Z0|H0] ≈ 1 − Kk−1(Z0), (2)

where the symbol Kk−1(·) denotes the distribution function of χ2
k−1. Clearly,

when the probability L(Z0) is higher, the hypothesis H0 increasingly
seems to be true. Therefore, the probability L(Z0) can be used as a tool to
test the hypothesis H0.

If the theoretical distribution of the population X is continuous, the Pearson’s
chi-squared test for goodness of fit is also valid. In this case, assume that, one
want to test the following hypothesis:

H1 : The distribution function of the population X is F (x).

The distribution function F (x) is continuous. To test the hypothesis H1, one
should set

−∞ = a0 < a1 < a2 < · · · < ak−1 < ak = ∞,

and let I1 = (a0, a1], · · · , Ii = (ai−1, ai], · · · , Ik = (ak−1, ak). Moreover, one
obtains n samples (denoted by X1,X2, . . . , Xn) from the population X. Let ωi

denotes the cardinality of the set {Xj |Xj ∈ Ii, j ∈ {1, 2, . . . , n}} and

fi = Pr[x ∈ Ii, x ← X] = F (ai) − F (ai−1) (i = 1, . . . , k).

Then, one can also similarly compute L(Z0) (by equation (2)) to test the hypoth-
esis H1.

2.2 Template Attacks

Template attacks consist of two stages. The first stage is the profiling stage and
the second stage is the extraction stage. We will introduce the two stages in the
following.
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The Profiling Stage. Assume that there exist K different (sub)keys keyi, i =
0, 1, . . . ,K − 1 which need to be classified. Also, there exist K different key-
dependent operations Oi, i = 0, 1, . . . ,K−1. Usually, one will built K templates,
one for each key-dependent operation Oi. One can exploit some methods to
choose N interesting points (P0, P1, . . . , PN−1). Each template is composed of
a mean vector and a covariance matrix. Specifically, the mean vector is used to
estimate the data-dependent portion of side-channel leakages. It is the average
signal vector Mi = (Mi[P0], . . . ,Mi[PN−1]) for each one of the key-dependent
operations. The covariance matrix is used to estimate the probability density of
the noises at different interesting points. It is assumed that noises at different
interesting points approximately follow the multivariate normal distribution. A
N dimensional noise vector ni(S) is extracted from each actual power trace
S = (S[P0], . . . , S[PN−1]) representing the template’s key dependency Oi as
ni(S) = (S[P0] − Mi[P0], . . . , S[PN−1] − Mi[PN−1]). One computes the (N × N)
covariance matrix Ci from these noise vectors. The probability density of the
noises occurring under key-dependent operation Oi is given by the N dimensional
multivariate Gaussian distribution pi(·), where the probability of observing a
noise vector ni(S) is:

pi(ni(S)) =
1√

(2π)N |Ci|
exp

(
− 1

2
ni(S)C−1

i ni(S)T
)

ni(S) ∈ R
N . (3)

In equation (3), the symbol |Ci| denotes the determinant of Ci and the symbol
C−1

i denotes its inverse. We know that the matrix Ci is the estimation of the true
covariance Σi. The condition of equal covariances [4] means that the leakages
from different key-dependent operations have the same true covariance Σ =
Σ0 = Σ1 = · · · = ΣK−1. In most settings, the condition of equal covariances
does not hold. Therefore, in this paper, we only consider the device in which the
condition of equal covariances does not hold.

The Extraction Stage. Assume that one obtains t actual power traces (denoted
by S1,S2, . . . ,St) from the target device in the extraction stage. When the actual
power traces are statistically independent, one will apply maximum likelihood
approach on the product of conditional probabilities (pp. 156 in [11]), i.e.

keyck := argmaxkeyi

{ t∏
j=1

Pr[Sj |keyi], i = 0, 1, . . . ,K − 1
}

,

where Pr[Sj |keyi] = pf(Sj ,keyi)(nf(Sj ,keyi)(Sj)). The keyck is considered to be the
correct (sub)key. The output of the function f(Sj , keyi) is the index of a key-
dependent operation. For example, when the output of the first S-box in the first
round of AES-128 is chosen as the target intermediate value, one builds templates
for each output of the S-box. In this case, f(Sj , keyi) = Sbox(mj ⊕ keyi), where
mj is the input plaintext corresponding to the actual power trace Sj .
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3 Our New Approach to Choose Interesting Points
for Template Attacks

Now, we begin to introduce our new approach of choosing interesting points
for template attacks. Firstly, we show the following Lemma whose proof is in
Appendix A.

Lemma 2. The marginal distribution of multivariate Gaussian distribution is
a normal distribution.

The main idea of our new approach is as follows. In template attacks, it is
assumed that the distribution of the noises of multiple interesting points follows
the multivariate Gaussian distribution. Moreover, by Lemma2, we know that
the marginal distribution of the multivariate Gaussian distribution is a normal
distribution. Therefore, in classical template attacks, if the distribution of sam-
ples of each interesting point increasingly to approximate a normal distribution,
the multivariate Gaussian distribution statistical model will increasingly to be
suitable to be exploited to build the templates for template attacks. Otherwise,
if the points whose distributions of samples are not similar to normal distribu-
tions are chosen as the interesting points, the multivariate Gaussian distribution
will not be suitable to be exploited to build the templates and the classification
performance of template attacks will be poor. Therefore, for each clock cycle, our
new approach chooses the point whose distribution of samples is more approxi-
mate to a normal distribution than other points in the same clock cycle as the
interesting point.

The Pearson’s chi-squared test for goodness of fit can be used as a tool to
assess whether or not the distribution of samples of each point approximates to
a normal distribution. Specifically speaking, assume that, for a fixed point Pt,
one obtains n samples (X1,X2, . . . , Xn) for a fixed operation on fixed data and
computes:

μ̂ =
1
n

·
n∑

i=1

Xi, s2 =
1

n − 1
·

n∑
i=1

(Xi − μ̂)2. (4)

Note that, in template attacks, one can operate the reference device as many
times as possible and samples a large number of actual power traces in the
profiling stage. Therefore, the value of n can be large enough. When the value
of n is large enough, one can assume that the theoretical distribution of samples
of the point Pt is the normal distribution N (μ̂, s2) and to test whether this
hypothesis holds by exploiting the Pearson’s chi-squared test for goodness of
fit as follows. The distribution function of the normal distribution N (μ̂, s2) is
denoted by F (x; μ̂, s2). Let a0 = −∞, a1 = μ̂ − 2s, a2 = μ̂ − 1.5s, . . . , a9 =
μ̂ + 2s, a10 = +∞ and I1 = (−∞, μ̂ − 2s], I2 = (μ̂ − 2s, μ̂ − 1.5s], . . . , I10 =
(μ̂ + 2s,+∞). Then, one computes Z0 =

∑10
i=1(nfi − ωi)2/(nfi), where fi =

F (ai; μ̂, s2) − F (ai−1; μ̂, s2) and ωi = |{Xj |Xj ∈ Ii, j ∈ {1, 2, . . . , n}}|. After
obtaining the statistic Z0, one computes the value L(Z0) by using equation (2).
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When the value of n is large enough, if the n samples (X1,X2, . . . , Xn) fit the
normal distribution N (μ̂, s2) well, the value L(Z0) will be high. Otherwise, the
value L(Z0) will be low. Therefore, one can choose the interesting points based
on the value L(Z0). For points in the same clock cycle, one computes the value
L(Z0) of each point with the same actual power traces and chooses a point whose
value L(Z0) is the highest one as the interesting point.

4 Experimental Evaluations

In this section, we will verify and compare the classification performance of
template attacks based on the interesting points chosen by our new approach
and the classification performance of template attacks based on the interesting
points chosen by the previous approaches. Specifically speaking, our experiments
are divided into two groups. In the first group, we tried to choose the interesting
points by using different approaches. In the second group, we computed the
classification performances of template attacks based on the interesting points
chosen by different approaches.

For the implementation of a cryptographic algorithm with countermeasures,
one usually first tries his best to use some methods to delete the countermeasures
from actual power traces. If the countermeasures can be deleted, then one tries to
recover the correct (sub)key using classical attack methods against unprotected
implementation. For example, if one has actual power traces with random delays
[14], he may first use the method proposed in [13] to remove the random delays
from actual power traces and then uses classical attack methods to recover the
correct (sub)key. The methods of deleting countermeasures from actual power
traces are beyond the scope of this paper. Moreover, considering actual power
traces without any countermeasures shows the upper bound of the physical secu-
rity of the target cryptographic device. Therefore, we take unprotected AES-128
implementation as example.

The 1st S-box outputs of the 1st round of an unprotected AES-128 soft-
ware implementation are chosen as the target intermediate values. The unpro-
tected AES-128 software implementation is on an typical 8-bit microcontroller
STC89C58RD+ whose operating frequency is 11 MHz. The actual power traces
are sampled with an Agilent DSA90404A digital oscilloscope and a differential
probe by measurement over a 20 Ω resistor in the ground line of the 8-bit micro-
controller. The sampling rate was set to be 50 MS/s. The average number of
actual power traces during the sampling process was 10 times. For our device,
the condition of equal covariances does not hold. This means that the differ-
ences between different covariance matrixes Ci are very evident (can easily be
observed from visual inspection).

In order to choose interesting points and to test the classification performance
of template attacks, we generated three sets of actual power traces which are
respectively denoted by Set A, Set B, and Set C. The actual power traces in
Set A were used in the profiling stage. The actual power traces in Set B were
used in the extraction stage. The actual power traces in Set C were used to
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choose interesting points. The Set A captured 20,000 actual power traces which
were generated with a fixed main key and random plaintext inputs. The Set B
captured 100,000 actual power traces which were generated with another fixed
main key and random plaintext inputs. The Set C captured 110,000 actual power
traces which were generated with a fixed main key and random plaintext inputs.
Note that, we used the same device to generate the three sets of actual power
traces, which provides a good setting for the focuses of our research.

4.1 Group 1

In all experiments, we chose 4 continual clock cycles about the target intermedi-
ate value (Note that, in our unprotected AES-128 software implementation, the
target intermediate value only continued for 4 clock cycles.). In each clock cycle,
there are 4 points. Therefore, there are 16 points (denoted by P0, P1, . . . , P15)
totally1. Beside our new approach (denoted by CST), we also implemented all
the other approaches of choosing interesting points for template attacks includ-
ing CPA, SOST, DOM, SOSD, VAR, SNR, MIA, and KSA. All the approaches
(CSF, CPA, SOST, DOM, SOSD, VAR, SNR, MIA, and KSA) used 110,000
actual power traces in Set C to choose interesting points. The leakage function
of our device approximates the typical Hamming-Weight Model (pp. 40–41 in
[11]). Therefore, we adopted this model for CPA, MIA, and KSA.

In order to get more accurate results, we conducted our new approach
of choosing interesting points as follows. Due to the leakage function of our
device approximates the typical Hamming-Weight Model, we chose 9 differ-
ent values (denoted by V0, V1, . . . , V8) about the target intermediate value.
The hamming weight of the 9 different values respectively are 0, 1, . . . , 8 (i.e.
HW (Vi) = i, i = 0, 1, . . . , 8). For each Vi (i = 0, 1, . . . , 8), we selected 400
actual power traces in which the target intermediate value equals to Vi from
Set C. Therefore, for each value Vi (i = 0, 1, . . . , 8), there are 400 samples for
each one of the 16 points (P0, P1, . . . , P15) and we computed the empirical mean
value μ̂ and the empirical variance s2 of the 400 samples for each one of the
16 points by equation (4). Then, for each Vi (i = 0, 1, . . . , 8), we tried to assess
the goodness of fit establishes whether or not the actual distribution of samples
of the point Pi (i ∈ {0, 1, . . . , 15}) differs from its assumed theoretical distribu-
tion N (μ̂, s2) by computing the value L(Z0) with the 400 samples like that in
Sect. 3. For the value Vi (i = 0, 1, . . . , 8) and the point Pj (j = 0, 1, . . . , 15), we
computed the value L(Z0) and rewrote it by L(i,j)(Z0). Then, we computed the
value Lj(Z0) (j = 0, 1, . . . , 15) for each one of the 16 points as follows:

Lj(Z0) =
1
9

·
8∑

i=0

L(i,j)(Z0), (j = 0, 1, . . . , 15)

1 The points P0, . . . , P3 are in the first clock cycle. The points P4, . . . , P7 are in the
second clock cycle. The points P8, . . . , P11 are in the third clock cycle. The points
P12, . . . , P15 are in the fourth clock cycle.
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Table 2. The interesting points chosen by different approaches

Clock Cycle 1 2 3 4

CST P2 P4 P11 P12

CPA P1 P5 P8 P12

SOST P1 P5 P8 P12

DOM P3 P7 P10 P12

SOSD P3 P7 P10 P12

VAR P3 P7 P10 P12

SNR P3 P7 P10 P12

MIA P1 P5 P8 P15

KSA P1 P5 P8 P15

and chose the interesting points based on the values L0(Z0), . . . , L15(Z0). In one
clock cycle, the point with the highest Lj(Z0) is chosen as the interesting point.

In Table 2, we show the interesting points chosen by different approaches
using the 110,000 actual power traces in Set C. From Table 2, we find that
our approach chooses different interesting points in the first three clock cycles
compared with other approaches.

4.2 Group 2

For simplicity, let np and ne respectively denote the number of actual power
traces used in the profiling stage and in the extraction stage. In this paper,
we use the typical metric success rate [6] as the metric about the classification
performance of template attacks.

In order to show the success rates of template attacks based on the inter-
esting points chosen by different approaches under different attack scenarios, we
conducted 4 groups of experiments. In these groups of experiments, the numbers
of actual power traces used in the profiling stage are different. This implies that
the level of accuracy of the templates in these groups of experiments are differ-
ent. The higher number of actual power traces used in the profiling stage, the
more accurate templates will be built. Moreover, in each groups of experiments,
we still considered the cases that one can possess different numbers of actual
power traces which can be used in the extraction stage.

Specifically speaking, in the 4 groups of experiments, we respectively chose
5,000, 10,000, 15,000, and 20,000 different actual power traces from Set A to build
the 256 templates based on the interesting points chosen by different approaches
in the profiling stage. Template attacks based on the interesting points chosen
by approach A is denoted by the symbol “A-TA”. We tested the success rates of
template attacks based on the interesting points chosen by different approaches
when one uses ne actual power traces in the extraction stage as follows. We
repeated the 9 attacks (CSF-TA, CPA-TA, SOST-TA, DOM-TA, SOSD-TA,
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SNR-TA, VAR-TA, MIA-TA, and KSA-TA) 1,000 times. For each time, we chose
ne actual power traces from Set B uniformly at random and the 9 attacks were
conducted with the same ne actual power traces. We respectively recorded how
many times the 9 attacks can successfully recover the correct subkey of the 1st
S-box.

From Table 2, we find that the CPA approach and the SOST approach provide
the same result of choosing interesting points. The DOM approach, the SOSD
approach, the VAR approach, and the SNR approach provide the same result of
choosing interesting points. Moreover, the MIA approach and the KSA approach
provide the same result of choosing interesting points. The approaches which
provide the same result of choosing interesting points will lead to the same
classification performance of template attacks. Therefore, in order to show the
success rates more clearly, we only show the success rates of CSF-TA, CPA-TA,
DOM-TA, and MIA-TA in Fig. 1. The success rates of template attacks based
on the interesting points chosen by different approaches when np equals to 5, 000
and ne equals to 4, 8, 12, 16, and 20 are shown in Table 3.
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(b) np =10,000
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(c) np =15,000
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Fig. 1. The experiment results
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Table 3. The success rates of template attacks when np = 5, 000

ne 4 8 12 16 20

CST-TA 0.70 0.94 0.99 1.00 1.00

CPA-TA 0.34 0.58 0.69 0.77 0.79

SOST-TA 0.34 0.58 0.69 0.77 0.79

DOM-TA 0.32 0.63 0.76 0.85 0.90

SOSD-TA 0.32 0.63 0.76 0.85 0.90

VAR-TA 0.32 0.63 0.76 0.85 0.90

SNR-TA 0.32 0.63 0.76 0.85 0.90

MIA-TA 0.19 0.36 0.46 0.53 0.57

KSA-TA 0.19 0.36 0.46 0.53 0.57

From Fig. 1 and Table 3, in all the attack scenarios, we find that template
attacks based on the interesting points chosen by our new approach will achieve
obvious higher success rates compared with template attacks based on the inter-
esting points chosen by the previous approaches. For example, when np = 5, 000
and ne = 4, the success rate of CST-TA equals to 0.70, while the success rate of
DOM-TA equals to 0.32. What’s more, when np = 5, 000, CST-TA only needs 7
actual power traces in the extraction stage to achieve success rate higher than
0.9, while DOM-TA needs 20 actual power traces in the extraction stage to
achieve success rate higher than 0.9 under the same attack scenario. Therefore,
we believe that using our new approach to choose the interesting points can
effectively improve the classification performance of template attacks.

5 Conclusion

In this paper, we give a negative answer to the question that whether or not
using the previous approaches of choosing interesting points will lead to the best
classification performance of template attacks by introduction a new approach
with completely different basic principle. Our new approach is based on the
important mathematical property of the multivariate Gaussian distribution and
exploits the Pearson’s chi-squared test for goodness of fit.

Experiments verified that template attacks based on the interesting points
chosen by our new approach will achieve obvious better classification perfor-
mance compared with template attacks based on the interesting points chosen
by the previous approaches. Moreover, the computational price of our new app-
roach is low and practical. Therefore, our new approach of choosing interesting
points can be used in practice to better understand the practical threats of tem-
plate attacks. In the future, it is necessary to further verify our new approach
in other devices such as ASIC and FPGA.
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Appendix A: The Proof of Lemma2

Proof: For simplicity, we only consider the case when N = 2. For the case
N > 2, this Lemma holds similarly.

Let (ξ, η) denote a 2 dimensional random vector. The continuous distribution
function and the probability density function of the 2 dimensional random vector
respectively are F (x, y) and p(x, y). Then, the marginal distribution functions
are as follows:

F1(x) =
∫ x

−∞

∫ ∞

−∞
p(u, y)dudy, F2(y) =

∫ ∞

−∞

∫ y

−∞
p(x, u)dxdu.

The marginal density functions are as follows:

p1(x) =
∫ ∞

−∞
p(x, y)dy, p2(y) =

∫ ∞

−∞
p(x, y)dx.

For 2 dimensional multivariate Gaussian distribution, it has that

p(x, y) =
1

2π|C|exp
{

− 1
2
(x − a, y − b) · C−1 · (x − a, y − b)T

}
,

where

C =
(

σ2
1 rσ1σ2

rσ1σ2 σ2
2

)

and the values a, b, σ1, σ2, r are constant, σ1 > 0, σ2 > 0, |r| < 1. The probability
density function p(x, y) can be rewritten as follows

p(x, y) =
1

2πσ1σ2

√
1 − r2

exp
{

− 1
2(1 − r2)

·
[ (x − a)2

σ2
1

−2r(x − a)(y − b)
σ1σ2

+
(y − b)2

σ2
2

]}
.

Let
x − a

σ1
= u,

y − b

σ2
= v

and it has that
p1(x) =

∫ ∞

−∞
p(x, y)dy

=
1

2πσ1

√
1 − r2

∫ ∞

−∞
exp

{
− 1

2(1 − r2)
· [u2 − 2ruv + v2]

}
dv

=
1√

2πσ1

e−u2/2

∫ ∞

−∞

1√
2π(1 − r2)

· exp
{

− r2u2 − 2ruv + v2

2(1 − r2)

}
dv
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=
1√

2πσ1

e−u2/2

∫ ∞

−∞

1√
2π(1 − r2)

e−(v−ru)2/2(1−r2)dv

=
1√

2πσ1

e−u2/2 =
1√

2πσ1

e−(x−a)2/2σ2
1 .

Therefore, p1(x) is the probability density function of the normal distribution
N (a, σ2

1). Similarly, we can prove that

p2(y) =
1√

2πσ2

e−(x−b)2/2σ2
2 .

In this way, Lemma 2 is proven. �
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Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003)

2. Rechberger, C., Oswald, E.: Practical template attacks. In: Lim, C.H., Yung, M.
(eds.) WISA 2004. LNCS, vol. 3325, pp. 440–456. Springer, Heidelberg (2005)

3. Archambeau, C., Peeters, E., Standaert, F.-X., Quisquater, J.-J.: Template attacks
in principal subspaces. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol.
4249, pp. 1–14. Springer, Heidelberg (2006)

4. Choudary, O., Kuhn, M.G.: Efficient template attacks. In: Francillon, A., Rohatgi,
P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 253–270. Springer, Heidelberg (2014)

5. Bär, M., Drexler, H., Pulkus, J.: Improved template attacks. In: COSADE2010
(2010)

6. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009)

7. Montminy, D.P., Baldwin, R.O., Temple, M.A., Laspe, E.D.: Improving cross-
device attacks using zero-mean unit-variance mormalization. J. Cryptographic Eng.
3(2), 99–110 (2013)

8. Oswald, E., Mangard, S.: Template attacks on masking—resistance is futile. In:
Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 243–256. Springer, Heidelberg
(2006)

9. Standaert, F.-X., Archambeau, C.: Using subspace-based template attacks to com-
pare and combine power and electromagnetic information leakages. In: Oswald, E.,
Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 411–425. Springer, Heidelberg
(2008)

10. Gierlichs, B., Lemke-Rust, K., Paar, C.: Templates vs. stochastic methods. In:
Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 15–29. Springer,
Heidelberg (2006)

11. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards. Springer, Berlin (2007)

12. Hanley, N., Tunstall, M., Marnane, W.P.: Unknown plaintext template attacks. In:
Youm, H.Y., Yung, M. (eds.) WISA 2009. LNCS, vol. 5932, pp. 148–162. Springer,
Heidelberg (2009)



How to Choose Interesting Points for Template Attacks More Effectively? 183

13. Durvaux, F., Renauld, M., Standaert, F.-X., van Oldeneel tot Oldenzeel, L.,
Veyrat-Charvillon, N.: Efficient removal of random delays from embedded soft-
ware implementations using hidden markov models. In: Mangard, S. (ed.) CARDIS
2012. LNCS, vol. 7771, pp. 123–140. Springer, Heidelberg (2013)

14. Coron, J.-S., Kizhvatov, I.: Analysis and improvement of the random delay coun-
termeasure of CHES 2009. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010.
LNCS, vol. 6225, pp. 95–109. Springer, Heidelberg (2010)

15. Mather, L., Oswald, E., Bandenburg, J., Wójcik, M.: Does my device leak infor-
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