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Abstract This chapter presents a discrete approach for modelling failure of
heterogeneous rock material with discrete crack propagation and internal fluid flow
through the saturated porous medium, where the coupling conditions between the
solid and fluid phase obey the Biot’s porous media theory. Discrete cracks and local-
ized failuremechanisms are provided through the concept of embedded discontinuity
FEM. Furthermore, the basis for presented discrete 2D plane strain model represen-
tation of heterogeneous material consisting of material grains, is an assembly of
Voronoi cells that are kept together by cohesive links in terms of Timoshenko beams.
Embedded discontinuities are built in cohesive links thus providing the discontinuity
propagation between the rock grains in mode I and mode II. The model can also take
into account the fracture process zone with pre-existing microcracks coalescence
prior to the localized failure. Several numerical simulations are given to illustrate
presented discrete approach.

1 Introduction

Cracks and other localized failure mechanisms in rocks and other heterogeneous
materials represent the dominant failure mechanisms, which occur often in civil
engineering practice like in dam failure, foundation collapse, stability of excava-

M. Nikolic
LMT Cachan, École Normale Supérieure de Cachan, 61 Avenue du Président Wilson,
94230 Cachan, France
e-mail: mijo.nikolic@gradst.hr

M. Nikolic · P. Miscevic
University of Split, FCEAG Split, Matice hrvatske 15, 21000 Split, Croatia
e-mail: predrag.miscevic@gradst.hr

A. Ibrahimbegovic (B)
Laboratoire Roberval de Mecanique, Centre de Recherche Royallieu,
Chair for Computational Mechanics, Sorbonne Universitès/UT Compiègne,
60200 Compiègne, France
e-mail: adnan.ibrahimbegovic@utc.fr

© Springer International Publishing Switzerland 2016
A. Ibrahimbegovic (ed.), Computational Methods for Solids and Fluids,
Computational Methods in Applied Sciences 41,
DOI 10.1007/978-3-319-27996-1_12

315



316 M. Nikolic et al.

tions, slopes and tunnels, landslides and rock falls. The risk of localized failure
should be better understood in order to be prevented. The localized failure in rocks
is usually characterized by a sudden and brittle failure without warning in a sense of
larger and visible deformations prior to failure. This happens also under the strong
influence of material heterogeneities, pre-existing cracks and other defects. Numer-
ical modelling represents a main approach in engineering design and research with
the the simulations standing as significant tool for obtaining more insight into the
full control of material behaviour.

The fluid flow through deformable porous rock medium additionally modifies
its mechanical properties and failure response. Two coupling mechanisms play the
key role in the fluid-structure interaction problem of this kind: the first concerns the
influence of of pore pressure increase inducing the material dilation, and the second
pertains to compressive mechanical stress leading to an increase of a pore pressure
and making the material less compliant than in the fully-drained case. This problem
has received a great attention in engineering literature. The elastic and (homogenized)
plastic hardening response was addressed in pioneering works of Terzaghi and Biot
[1, 2] and in more recent contribution [3].

Proper modeling of localized failure demands different approach than continuum
approach used in usual engineering tasks, where Finite Element Method (FEM) has
been considered as the main tool for solving vast majority of applications [4–6]. In
order to provide a reliable predictive model for failure of rocks, the discontinuous
solutions should be found, where pre-existing cracks continue to form into new ones
during the increased loading leading to failure. The evolution of crack patterns shows
that localization is a key factor inducing brittle failure. Thus, the main challenge
tackled is to provide enhanced predictive models for localized failure by taking into
account the material heterogeneities and pre-existing cracks.

Two notable enhanced methods derived from the standard framework of Finite
ElementMethod (FEM) to dealwith localization, i.e. cracks, discontinuities. The first
one is the Finite Element Method with Embedded Discontinuities (ED-FEM), rep-
resenting cracks truly in each element (e.g. see [7–10]). The second one is Extended
Finite Element Method (X-FEM) where cracks are represented globally [11–13].
The same methods have been used recently for simulating the localized failure when
fluid flows through the porous domain. Namely, X-FEM has been used in simulating
hydraulic fracturing of fully-saturated [14] and partially-saturated [15] porous media
with cohesive cracks, as well as in saturated shear band formations [16]. The fluid
saturated poro-elastic and poro-plastic medium with localized failure zones have
been simulated with ED-FEM in [17, 18], while the partially saturated medium can
be found in [19]. Another approach for simulating the failure of porous fractured
media is with automatic mesh refinement process presented in [20], which was also
extended to 3D situation in [21].

This chapter presents an approach for modelling the localized failure in rocks
under the influence of heterogeneities and pre-existing defects like found in [22, 23].
The class of discrete lattice models have been chosen for general framework of the
numerical model that have been previously used in simulating the progressive failure
of concrete and rocks [24]. Namely, the basis of this framework is in representation
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Fig. 1 Grainy structure of different rocks: a breccia (sedimentary), b conglomerate (sedimentary),
c limestone (sedimentary), d gneiss (metamorphic), e granite (igneous), f quartz-diorite (igneous).
The size of all of the samples is approximately 5cm. The photographs are taken from http://geology.
com/rocks/

of heterogeneous material which is considered as assembly of grains of material
held together by cohesive links. This framework corresponds also to the geological
formation of rocks, where many different groups of rocks possess a grainy structure
which allows the grain recognition even with the bare eye (Fig. 1).

Rock domain is discretized with the Voronoi cells representing rock grains,
while Timoshenko beams act as cohesive links between them (Fig. 2).

Several papers developed discrete lattice models, where the domain is discretized
with the Voronoi cells [25, 26].

Fig. 2 The basis of the
proposed discrete model
relies on the lattice of
Timoshenko beams which
represent the cohesive links
keeping the rock grains
(Voronoi cells) together

http://geology.com/rocks/
http://geology.com/rocks/
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Usually, the discrete lattice models simulate the progressive failure characterized
by localization with re-meshing process [27]. Namely, the cohesive links are sequen-
tially removed from the mesh when the discontinuity propagate between the grains.
Themain difference in the presented model, with respect to latter approach, concerns
embedded discontinuities placed within the framework of ED-FEM, where Timo-
shenko beam elements are equipped with enhanced kinematics capable of capturing
the localization effects, like shown in [28–30]. Namely, the embedded discontinu-
ities are placed in the middle of each Timoshenko beam. This corresponds to the
Voronoi cell network, where each cohesive link is cut by half by the edge between
two neighbouring Voronoi cells.

The embedded discontinuity in the longitudinal local direction of cohesive link
(Timoshenko beam) enables the grain dilation due to mode I or tensile failure
mode.However,Timoshenkobeamsalso allow to account for pronounced shear
effects in both elastic and plastic phase which is used here for representing the
failure in mode II (shear sliding along the grains) adding the corresponding
displacement or strong discontinuity in the transversal local direction. This
leads to localized solutions (i.e. discontinuity propagations) which are enabled
like shown in Fig. 3.

Heterogeneities are considered through two different phases representing the ini-
tial state; the intact rock material and the initial weaker material that stands for pre-
existing defects. The macroscopic response of the system is largely influenced by
the distribution and position of the phases. The intact rock material is represented by
the stronger links, (i.e. Timoshenko beams). Thus, the discontinuity is more likely to
propagate through the weaker phase. Failure of the material can occur in both modes
separately, as well as in their combination.

Fig. 3 The strong
discontinuity propagation
between the Voronoi cells
invokes the enhanced
kinematics activation



Modelling of Internal Fluid Flow in Cracks … 319

Fig. 4 The fluid flow is
dispersed across the lattice
network of Timoshenko
beams

Fluid flow through the saturated porous domain is governed by a diffusion
equation incorporating the Darcy law in terms of continuous pore pressures
across the discrete lattice domain (Fig. 4), like shown in [18, 19, 31].

Fluid flow is spread across the lattice of beams, where fluid pressure acts as addi-
tional degree of freedom of the beam. The coupled process between the mechanics
strain and fluid flow in deformable medium with micro-cracks is governed by Biot’s
porous media theory [2].

2 Numerical Model Formulations

Rock is considered as porous solid saturated with a fluid. The flow conditions allows
that convective terms and gravity acceleration be neglected in this problem. Standard
equilibrium equation of saturated two-phase medium is given by relation

∇ · σ = 0, (1)

where the total stress is
σ = σs + σ f = σ ′ − bp (2)

and subscripts s and f denote the solid and the fluid part, respectively. The effective
stress σs = σ ′ measures the material properties of the solid skeleton under drained
conditions, p is fluid pressure and b is Biot coefficient. Fluid equation is given with

1

M

∂p

∂t
+ b∇ · vs + ∇ · v f = 0, (3)

where vectors vs and v f represent the velocities of the solid and the fluid, respectively.
The latter is defined by the Darcy law
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v f = −k f ∇ p (4)

where k f is the permeability of the porous medium, M is Biot’s modulus defined as

1

M
= n f

K f
+ b − n f

Ks
, (5)

and b is a Biot coefficient defined as

b = 1 − Kt

Ks
. (6)

Here, n f denotes porosity, K f is the bulk modulus of the fluid, Ks is a bulk modulus
of the solid and Kt is the overall bulk modulus of the porous medium.

The presented model is based on Timoshenko beam elements connecting the
grains of material in terms of Voronoi cells. Thus, the weak form of the equilibrium
equation (1), in terms of stress resultant (Timoshenko beams) states

∫ le

0

dw
dx

σdx =
∫ le

0
wfdx + wF, (7)

where σ = [N T M]T represents the stress resultant vector, f = [ f q m]T is the
distributed load vector and F = [F Q C]T is the vector of concentrated forces. The
right hand side in (7) provides the vector of external forcesFext with the standardfinite
element manipulations. The vector w represents a virtual generalized displacements
V0 = {w : [0, le] �→ R | [w]�u = 0}, which ought to be differentiable and verify
w ∈ V0.

The constitutive relations for the porous medium (2) are given in terms of total
stresses, effective stresses and pore pressures σ = σ ′ − bp. The total stress in terms
of stress resultants can be decomposed into

⎡
⎣N

T
M

⎤
⎦ =

⎡
⎣N ′

T ′
M ′

⎤
⎦ − b

⎡
⎣p A

0
0

⎤
⎦ , (8)

where the effective stress resultant components can be obtained through the solid’s
skeleton ‘drained’ elasticities denoted with Dsk

⎡
⎣N ′

T ′
M ′

⎤
⎦ =

⎡
⎣E A 0 0

0 G A 0
0 0 E I

⎤
⎦

︸ ︷︷ ︸
Dsk

⎡
⎣ε

γ

κ

⎤
⎦ . (9)

Note that E represents Young’s modulus, G shear modulus and I moment of inertia
of the beam.
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The fluid flow equation (3) takes the weak form for the discrete lattice represen-
tation of the domain

−
∫ le

0
π M−1 dp

dt
dx +

∫ le

0

dπ

dx
αvsdx

+
∫ le

0

dπ

dx
k f

dp

dx
dx = Qext , (10)

where π is the virtual pressure field that obeys the same regularity as the virtual
displacement field.

2.1 Enhanced Kinematics

This section provides the enhanced formulation for Timoshenko beam as cohesive
link, resulting with embedded discontinuities in local longitudinal direction for mode
I failure, and in transversal direction for mode II failure. The localized failure is
accompanied by a softening regime in a global macro-response, where the hetero-
geneous displacement field is used in order to obtain a mesh-independent response.
The formulation for fracture process zone with micro-cracks is also presented here
through the hardening regime with standard plasticity.

The localization implies heterogeneous displacement field which no longer
remains regular, even for smooth stress field. Thus, the displacement field ought
to be introduced and written as the sum of a sufficiently smooth, regular part and a
discontinuous part. Furthermore, the axial and transversal displacement fields need
to be calculated independently.

A cohesive link finite element with two nodes of length le and cross section A
is considered (Fig. 5). The standard degrees of freedom at each node i ∈ [1, 2] are
axial displacement ui , transversal displacement vi and rotation θi , accompanied with
pressure pi degree of freedom. The strainmeasures for standard Timoshenko element
are given

ε(x) = du(x)

dx

γ (x) = dv(x)

dx
− θ(x)

κ(x) = dθ(x)

dx
.

(11)

In order to obtain the displacement jumps in the interiors of the cohesive links, the
displacement fields need to be enhanced leading to regular and singular parts, where
latter can be represented as a product of Heaviside function and displacement jump.
The enhanced displacement fields can thus be written as
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Fig. 5 The enhanced finite
element with it’s degrees of
freedom and discontinuous
shape function M(x) and it’s
derivative G(x)

u(x) = u(x) + αu Hxc

v(x) = v(x) + αv Hxc ,
(12)

where αu and αv represent incompatible mode parameters which denote the displace-
ment jumps in axial and transversal direction providing the failure modes I and II.
Hxc is the Heaviside function being equal to one if x > xc, and zero otherwise, while
xc is the position of the discontinuity. The presented model assumes the position of
discontinuity to be in the middle of the beam. This is the case when each cohesive
link is cut in half by the two neighboring Voronoi cells.

The enhanced deformation fields, in terms of regular and singular parts, results
from (12) with

ε(x) = ε(x) + α(u)δxc

γ (x) = γ (x) + α(v)δxc ,
(13)

where ε and γ denote regular parts, and Dirac delta δxc is the singular part represen-
tation of the deformation field. The Dirac delta function δxc takes an infinite value at
x = xc and remains equal to zero everywhere else.

For this element, standard linear interpolation functions are used for regular dis-
placement approximation

N =
{

N1(x) = 1 − x

le
; N2(x) = x

le

}
, (14)

along with their derivatives

B =
{

B1(x) = − 1

le
; B2(x) = 1

le

}
. (15)
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Beside standard interpolations, the enhanced interpolation function M is derived in
the spirit of ED-FEM (see [6, 22, 23]) and can be used alongside standard inter-
polation functions to describe the heterogeneous displacement fields with activated
discontinuity jump producing embedded discontinuity inside the finite element. The
M(x) is defined as

M(x) =
{ − x

le
; x ∈ [0, xc〉

1 − x
le
; x ∈ 〈xc, le] , (16)

while G(x) represents the derivative of enhanced function M(x), with respect to
local coordinate direction x

G(x) = G + δxc

= − 1

le
+ δxc , x ∈ [0, le]. (17)

Enhanced functions M and G are shown in Fig. 5. This kind of formulation cancels
the contribution of incompatible mode parameter on the element boundary leading
to possibility of computing the discontinuity parameters locally, while the global
equations remain with the nodal displacements as primal unknowns.

Finally, the enhanced finite element displacement interpolations are written in
terms of embedded discontinuity

u(x) =
2∑

a=1

Na(x)ua + M(x)αu

v(x) =
2∑

a=1

Na(x)va + M(x)αv

θ(x) =
2∑

a=1

Na(x)θa .

(18)

The discrete approximation of deformation field can be obtained from the above
displacement field (18) resulting with

ε(x) =
2∑

a=1

Ba(x)ua + G(x)αu

γ (x) =
2∑

a=1

(Ba(x)va − Na(x)θa) + G(x)αv

κ(x) =
2∑

a=1

Ba(x)θa,

(19)
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The fluid flow is enabled by adding the pressure degree of freedom on top of
standard Timoshenko degrees of freedom leading to enhanced element, not only
in terms of added pressures, but also in localized discontinuity contributions. The
enhanced finite element with all degrees of freedom is shown in Fig. 5.

The pressure field is interpolatedwith the linear shape functions as well {N p
1 (x) =

1 − x
le
, N p

2 (x) = x
le
}. The corresponding derivatives are {B p

1 (x) = − 1
le
, B p

2 (x) =
1
le
}. However, the pressure interpolation functions are denoted with the superscript p

for clearer presentation. Since the fluid flow problem is transient, the time parameter
t is introduced and the discretization field for pressure follows

p(x, t) =
2∑

a=1

N p
a (x)pa(t). (20)

The discretization of the pressure gradient is

∂p

∂x
(x, t) =

2∑
a=1

B p
a (x)pa(t), (21)

while its time derivative

∂p

∂t
(x, t) =

2∑
a=1

N p
a (x) ṗa(t). (22)

The generalized nodal pressure field can be denoted with p = (p1, p2)
T .

2.2 The Enhanced Weak Form

The generalized virtual deformations are interpolated in the same way as the real
ones

δε = Bδd + Gδα, (23)

with δ standing for prefix indicating the corresponding virtual field or variation. Such
interpolated fields produce the internal force vector and the finite element residual
vector due to discontinuity

Fint =
∫ le

0
BT σdx,

h(e) =
∫ le

0
(G + δxc)σdx .

(24)
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From the condition of residual equation being equal to zero, the internal forces at the
discontinuity ought to be calculated

h(e) =
∫ le

0
(G + δxc)σdx

=
∫ le

0
Gσdx + t. (25)

Vector t represents the internal forces at discontinuity, which are in relation with the
forces from the bulk

t = −
∫ le

0
Gσdx, t = (tu, tv, 0)

T (26)

2.3 Constitutive Model

It has been observed that representative behaviour of rock material, including the
post-peak behaviour, can be separated into five different stages based upon stress-
strain characteristics. These stages can be defined as: crack closure, linear elastic
deformation, crack initiation and stable crack growth, critical energy release and
unstable crack growth, failure and post-peak behaviour. Figure6 shows typical stress-
strain curve of the brittle rock under the compression test and its failure stages.

Fig. 6 Stress-strain curve showing the elements of crack development
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Stage I is associated to microcrack closure and the initial flaws in the material
which continues with stage II, a linear elastic stage. The inelastic behaviour starts
at the beginning of stage III and until the end of stage, the hardening response
accompanied by fracture process zone with microcrack initiation, can be observed.
With an increase of a loading program, stage IV is activated. The stress value at the
beginning of this stage (point C) can vary between 50–90% of ultimate strength,
while the rest of the stage is characterized by the nonlinear behaviour and more rapid
increase of lateral deformation. At the point D, the ultimate strength of specimen is
reached and the larger macro-cracks start to propagate through the sample leading to
softening of the specimen. At this point, the volumetric strain starts to reverse from
a compressive to dilatation behaviour.

The constitutive relations need to be defined outside and at the discontinuity. The
constitutive models are constructed within the framework of thermodynamics for a
stress resultant beam formulation.

The beam longitudinal and transversal directions are enhanced with additional
kinematics, representing modes I and II with softening behaviour, while the rotations
keep their standard elastic form. The first two stages of rock failure (up to point B) are
kept elastic, with respect to stage I being finished soon after the loading is applied.
The linear elastic behaviour is finished when the point B is reached, continuing with
hardening. When stage III is activated, significant damage caused by micro-crack
propagation starts to occur in the specimen and increases until the highest peak
point (point D). The constitutive model for latter stages, which represents a fracture
process zone, is chosen as classical plasticity model with isotropic hardening. When
the critical point is reached, the complete failure of the specimen is enabled through
the exponential softening law. This invokes the enhanced kinematics activation and
occurrence of the displacement jumps. The carrying capacity of element reduces
with increase in the displacement jump.

In the following equations, the development for the failure of the beam in modes
I and II is presented. When the loading starts and softening has not formed yet,
the classical elasto-plastic model is considered. The total strains can be additively
decomposed into elastic and plastic components

ε = εe + ε p

γ = γ e + γ p.
(27)

Strain energy functions depend upon elastic strains and hardening variables, ξ u , ξ v:

ψu
(
ε, ε p, ξ u

) = 1

2
E A

(
ε − ε p

)2 + 1

2
ξ
2
u K u

ψv
(
γ, γ p, ξ v

) = 1

2
G A

(
γ − γ p

)2 + 1

2
ξ
2
v K v,

(28)
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where K u and K v denote isotropic hardening modulus for longitudinal and transver-
sal direction. The yield criterion is defined as

Φu
(
N , qu

) = N − (
Ny − qu

) ≤ 0

Φv
(
T, qv

) = |T | − (
Ty − qv

) ≤ 0,
(29)

where Ny and Ty represent the forces at yielding point. The state equations are

N = E A
(
ε − ε p

)
T = G A(γ − γ p).

(30)

and
qu = −K uξ u

qv = −K vξ v.
(31)

For the inelastic case, the principle of maximum dissipation is considered, the evo-
lution laws are obtained as

ε̇
p = λ̇u

∂Φu
∂ N = λ̇usign(N ); ξ̇ u = λ̇u

∂Φu
∂qu

= λ̇u

γ̇
p = λ̇v

∂Φv
∂T = λ̇vsign(T ); ξ̇ v = λ̇v

∂Φv
∂qv

= λ̇v,
(32)

where the plastic multiplier parameters λu and λv have been introduced to participate
in evolution equations obtained from Kuhn-Tucker optimality conditions [6]. The
constitutive equations for the elastoplastic case are

Ṅ =
{

E Aε̇; λ̇u = 0
E AK u

E A+K u
ε̇; λ̇u > 0

, Ṫ =
{

G Aγ̇ ; λ̇v = 0
G AK v

G A+K v
γ̇ ; λ̇v > 0.

(33)

Accompanying loading/unloading conditions and consistency condition obey λ̇Φ =
0, λ̇ ≥ 0, Φ ≤ 0, λ̇Φ̇ = 0.

Once the ultimate failure point is reached, enhanced kinematics needs to be acti-
vated.All further plastic deformationwill be accumulated at the discontinuity section,
that once passed the peak resistance. The corresponding strain fields containing reg-
ular and singular components are obtained:

ε = ε + ε = εe + ε p + ε

γ = γ + γ = γ e + γ p + γ .
(34)

The failure criteria for mode I and mode II failure are defined as

Φu
(
tu, qu

) = tu − (
Nu − qu

) ≤ 0

Φv
(
tv, qv

) = |tv| − (
Tu − qv

) ≤ 0,
(35)
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where Nu , Tu are the ultimate capacity forces and qu , qv are stress-like softening
variables which increase exponentially as

qu = Nu

(
1 − exp

(
−ξ u

Nu

G f,u

))

qv = Tu

(
1 − exp

(
−ξ v

Tu

G f,v

))
,

(36)

and tu , tv are traction forces at the discontinuity obtained from equilibrium equations
(26). The evolution of internal variables in softening states

α̇u = λ̇u
∂Φu
∂ N = λ̇usign(N ); ξ̇ u = λ̇u

∂Φu

∂qu
= λ̇u

α̇v = λ̇v
∂Φv
∂T = λ̇vsign(T ); ξ̇ v = λ̇v

∂Φv

∂qv
= λ̇v,

(37)

where λ is the plastic multiplier associated with the softening behaviour and α is an
equivalent to the accumulated plastic strain at the discontinuity.

2.4 The Finite Element Equations of a Coupled
Poroplastic Problem

In this section, the final finite element implementation aspects accounting for each
single element contribution, further denoted with subscript e, are presented.

The regular part of weak form (24/1) leads to the element residual equation

rd = Fext − Anel
e=1

∫ le

0
Bd,T σdx, (38)

where the total stress resultants σ are obtained in terms of effective stress resultants
σ ′ and pore pressures p in (8). The symbol Anel

e=1 denotes the finite element assembly
operator for all element contributions. The effective stress resultants σ ′ are calculated
in terms of regular parts of enhanced strain field (23). The enhanced strain parameters
α, in each element where localization occurs, are obtained by solving the local
equilibrium of the effective stresses

h(e) =
∫ le

0
Gσ ′dx + t′, (39)

where t′ represent the corresponding effective tractions acting at the discontinuity.
The local equilibrium equation in (39) offers the benefit of local computation of
the enhanced parameters. Subsequent static condensation of these parameters allows
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to keep standard matrix at the global level. The local computation algorithm and
numerical procedure are described in the next subsection.

Upon introducing the finite element interpolations, the coupled fluid equation (10)
results with the finite element residual form

rp = Qext − Anel
e=1

[ ∫ le

0
Np,T M−1Npdx ṗe−

−
∫ le

0
Np,T αBddx ḋe −

∫ le

0
Bp,T k f Bpdxpe

]
, (40)

where Qext represent the external applied fluxes and imposed pressures. The consis-
tent linearization of the Eqs. (38) and (40) leads to a set of linear algebraic equations

r(i)
d − Anel

e=1

[
KeΔde − LeΔαe − QeΔpe

]
= 0 (41)

and

r(i)
p − Anel

e=1

[
1

Δt
QT

e Δde +
(

He + 1

Δt
Se

)
Δpe

]
= 0 (42)

in the increments Δt = t (i+1)
n+1 − t (i)

n+1, where (i) denotes iteration counter within the
time interval [tn, tn+1]. The matrices are evaluated in the previous iteration (i) where
all values are known. The element stiffness matrix Ke is defined as

Ke =
∫ le

0
Bd,T DskBddx (43)

and the localized contribution matrix

Le =
∫ le

0
Bd,T DskGdx . (44)

The compressibility matrix Se, the permeability matrix He and the coupling matrix
Qe are given by

Se =
∫ le

0
Np,T M−1Npdx, (45)

He =
∫ le

0
Bp,T k f Bpdx, (46)

Qe =
∫ le

0
Bd,T bNpdx . (47)
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The linearization of local equilibrium equation in (39) results with

h(i)
e − LT

e Δde − FeΔαe = 0, (48)

where

Fe =
∫ le

0
G

T
DskG + Kdis . (49)

Matrix Kdis contains consistent tangent stiffness components for the discontinuity
obtained as a derivatives of the exponential softening laws from (36) with respect to
the corresponding displacement jumps.

The enhanced strain parameters Δα can be obtained by the local operator split
solution procedure and return mapping algorithm presented in the next section.
Finally, the static condensation strategy serves for local elimination of the enhanced
strain parameters which leads to the final statically condensed equation

r(i)
d − Anel

e=1

[(
Ke − LT

e F−1
e Le

)
Δde − QeΔpe

]
= 0. (50)

2.5 The Operator Split Algorithm

The operator split is an element-wise algorithm performed for each directional com-
ponent with its ultimate goal of computing the internal variables related to discon-
tinuity. After computing the internal variables locally, the global solution procedure
with Newton incremental/iterative procedure can be performed.

It is assumed that the best iterative value of displacements u(i)
n+1 and v(i)

n+1 for which
the trial values of the traction forces are obtained

t trial
∗,n+1 = −

∫ le

0
G

[
E A

(
2∑

a=1

Bd
a u(i)

a,n+1 + Gα∗,n

)]
(51)

where α∗,n represents the discontinuity parameters at previous time for softening
plastic deformation. The * denotes each directional component of the Timoshenko
beam. Later on, the trial value of failure functions ought to be calculated

Φ
tr ial

∗,n+1 = t trial
∗,n+1 − (

Nu − q∗,n

)
. (52)

If the trial values of the failure functions are negative or zero, the elastic trial step is
accepted for final, with no modification of the plastic strain from the previous time
step

α∗,n+1 = α∗,n; ξ ∗,n+1 = ξ ∗,n, (53)
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The plastic softening parameter will remain intact, while the traction force will be
changed due to displacement increment.

On the other hand, if the trial values of failure functions are positive, the current
step is in the softening plasticity and there is a need to modify the elastic strain and
internal variables α∗,n , in order to re-establish the plastic admissibility at discontinu-
ity. The internal softening plasticity variables ought to be updated by using evolution
equations

α∗,n+1 = α∗,n + λ∗,n+1sign
(
t trial
∗,n+1

)
(54)

and
ξ ∗,n+1 = ξ ∗,n + λ∗,n+1 (55)

where λ∗,n+1, λ∗,n+1 are softening plastic multipliers. The value of the plastic multi-

plier is determined from the conditionsΦ∗,n+1 ≤ tol and the solutions of a nonlinear
equations are obtained iteratively using the Newton-Raphson method

Φ∗,n+1 = Φ
tr ial

∗,n+1 + (
q∗,n+1 − q∗,n

) + E AGλ∗,n+1 ≤ tol (56)

In the plastic softening step, the traction forces are produced by a change of discon-
tinuity parameters α∗.

3 Numerical Simulations

In this section, the numerical simulations for several numerical tests are presented.
The uniaxial tension and compression tests are performed on heterogeneous 2D rock
specimens. The influence of heterogeneity with different distributions of phase I and
II (strong and weak phase) are studied. Fluid-saturated rock sample with localized
shear band formation development is presented as well. Presented numerical model
formulations are implemented into the research version of the computer code FEAP
[32].

3.1 Preparation of 2D Plain Strain Rock Specimens

2D plane strain rock specimens are constructed. The specimens are of dimensions
10× 10 cm (with unit thickness) and are meshed with triangles by means of Delau-
nay algorithm. The specimen has 253 nodes and 704 elements (Fig. 7). Timoshenko
beam elements are positioned on each edge of every triangle in the specimen. Their
geometric properties represent the corresponding part in specimen volume. Themain
hypothesis in constructing the lattice model is that the cells connected by cohesive
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(a) (b)

Fig. 7 A homogeneous 2D plain strain specimen is constructed. Uniaxial tension (a) and shear test
(b) are performed in linear elastic regime to validate the model

links (beams) correspond to the representative part of the specimen which have
homogeneous properties, while the heterogeneities are introduced through the cohe-
sive links. Thus, the Voronoi cells are derived from Delaunay triangulation and the
beam cross sections are computed from the length of the common size of the neigh-
bouring cells (Fig. 8). Thematerial parameters are taken the same as in the equivalent
standard continuum.

Inorder to validate the latticemodel parameters, the tension and shear tests are con-
ducted in the linear elastic regime on the proposed homogeneous specimen (shown
in Fig. 7) in two versions: lattice model and equivalent standard continuum model
with triangular solid elements. The material parameters are the same for each test
version: E = 1000kN/cm2, ν = 0.2. The results are presented in Fig. 9a, b.

The equivalent standard continuummodel (with triangles as finite elements) oper-
ate only in linear elastic regime and its response matches with linear elastic regime
of lattice models before the failure phase, showing that the proposed model is capa-
ble of reproducing classical linear elastic continuum with such computed lattice
parameters.

Fig. 8 Beam cross sections
are computed from the
length of the common size of
the neighbouring cells
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(a) (b)

Fig. 9 Response of homogeneous specimen in linear elastic regime for a tension test and b shear
test in two versions: solid model with triangles and lattice model

3.2 Influence of Heterogeneity in Tension and Compression
Tests

In this example, the influence of heterogeneity on a global response is studied. Three
different specimens with the same geometric properties (same specimen size), but
different levels of heterogeneity are subjected to uniaxial tension and compression
tests. Table1 summarizes the mechanical and geometric characteristics of the spec-
imen used for these experiments. The corresponding macroscopic results are shown
in Fig. 10a, b.

The specimens are given different initial properties, specifically with 40, 50 and
60% of phase II material. With an increase of phase II material, the global modulus
of elasticity decreases. This is the result of more elements of phase II representing
initial weaker material, which makes the global response of specimen more ductile
and also with a somewhat lower value of modulus of elasticity. However, it can
also be seen from global exponential curve that, when a ratio of phase II material
increases, the failure of the specimen becomes more ductile in fracture process zone
creation, but also more brittle in the softening response phase, for when the fracture

Table 1 Mechanical and
geometric characteristics of
the specimen

Phase I Phase II

E = 7000kN/cm2 E = 1000kN/cm2

ν = 0.2

ν = 0.2 σu = 2.2MPa, τu = 1.15MPa

Tension fr. energ.: G(u)
f = 10N/m,

G(v)
f = 1.5N/m

Comp. fr. energ.: G(u)
f = 350N/m,

G(v)
f = 10N/m

Dimensions: 0.1× 0.1× 0.01 m; 40, 50, 60% phase II
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Fig. 10 The computed macroscopic response with different levels of heterogeneity for: a uniaxial
tension test and b uniaxial compression test

(a) (b) (c)

Fig. 11 Final failure patterns created in tension test for specimens with: a 40% of phase II, b 50%
of phase II and c 60% of phase II (broken links are red coloured) (Color Online)

starts the complete failure happens faster. This is due to appearance of many more
potential macro-cracks, which drives more quickly the stress to zero.

The failure patterns of three different heterogeneous specimens are shown in
Figs. 11 and 12. Figure11 presents the final macro-cracks at the end of tension test
computations for the specimens with 40, 50 and 60% of phase II material. It is
observed that one dominant macro-crack is present in all of the specimens inducing
the final failure mechanism. However, in each specimen the macro-crack formed dif-
ferently depending on the initial heterogeneity which decides the crack path. Failure
due to mode I is more pronounced in tension test.

The ultimate shear strength is defined by the Mohr-Coulomb failure criterion

τ f = τu + σc · tan(φ), (57)

where τu represents cohesion-like value of ultimate shear force when compression
force is equal to zero, σc represents the compression force and φ is internal angle
of friction. Figure12 reveals the final cracks formed at the end of compression tests
where not only one macro-crack is enough to break the specimens. Contrary to
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(a) (b) (c)

Fig. 12 Final failure patterns created in compression test for specimens with: a 40% of phase II,
b 50% of phase II and c 60% of phase II (broken links are red coloured) (Color Online)

tension test crack patterns, in compression test much more macro-cracks are needed
to drive the specimens to failure and these are influencedmore bymode IImechanism,
compared to tension test, which forms the final crack patterns together with mode
I. It is important to note that red coloured links in Figs. 11 and 12 represent the
failed cohesive links. However, the actual cracks are localized inside elements and
enable the crack propagation between the Voronoi cells, which are dual to Dealunay
triangulation.

In either tension or compression, the difference in reduction of the peak stresses
in different specimens remains fairly mild. Having approximately the same peak
resistance is quite realistic to expect for the similar failure pattern is created once the
threshold is reached. However, the similar peak stresses in compression test leads
to conclusion that despite the variations in heterogeneity, crack propagation patterns
in each of the samples remain similar with similar failure mechanism present in
all of them, which can be observed in Fig. 12. Specifically, this means that more
defects were present in the specimens with more phase II material which made the
material softer, but at the same time these were not crucial for complete failure which
was caused by similar macro-cracks in all specimens. This leads to conclusion that
difference in heterogeneity, that was used here: 40, 50, 60% of phase II, is not as
significant to lead to drastically different values of ultimate stresses.

3.3 Drained Compression Test of the Poro-plastic Sample
with the Localized Failure

The fluid saturated rock sample under compression test is considered in this section.
The geometry of the sample and boundary conditions imposed on the displacement
and pore pressure fields are shown in Fig. 13. The external load is applied via constant
velocity v0 = 5 × 10−4 m/s imposed on the top base. With the aim of observing the
coupling effects aswell, the tests are then repeatedwith the imposed constant velocity
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Fig. 13 Geometry of the
poroplastic sample and
imposed boundary
conditions

v0 = 1.5 × 10−3 m/s. The chosen material parameters listed in Table2 correspond to
the limestone fully saturated with the water. The value of hydraulic permeability of
the sample obtained from the parameters in the Table2 is equal to Kh = ρwgK f =
1 × 10−8 m/s, where the procedure of computing lattice permeabilities is used. Such
procedure is performed to find equivalent permeabilities when the fluid flows across

Table 2 Material parameters considered in the numerical simulations of poro-plastic sample

Drained Young modulus Esk = 50GPa

Drained Poisson ratio νsk = 0.25

Tensile yield stress σy,t = 12MPa

Shear yield stress τy = 23MPa

Hardening modulus K = 5GPa

Tensile strength σu,t = 13MPa

Shear strength τu = 25MPa

Angle of friction φ = 35◦

Fracture energies G f,u = 300N/m; G f,v = 600N/m

Biot coefficient b = 0.8

Biot modulus M = 16.9GPa

Porosity n f = 0.1

Permeability K f = 1 × 10−9 m2/(kPa/s)

Fluid density ρw = 1000kg/m3
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the discrete lattice network. Associating K f with given permeability and k f with
lattice permeability, the following expression is obtained

k f = K f

c
, (58)

with c = h f / le being the coefficient of modification of permeability for given lattice.
Here, h f denotes the shortest distance between the two centroids of neighbouring
triangles and le is the length of given element. See [31] formore elaborate explanation
of this procedure.

The final goal is to investigate the influence of heterogeneity upon the localized
failure of the proposed sample. The presented discrete model formulation is capable
of considering the influence of heterogeneity. Here, the two-phase representation
is adopted, where the second phase takes the slightly weaker properties in terms
of material strengths (σu,t = 12MPa; τu = 24MPa). The two-phases are distributed
randomly throughout the sample and each phase participates with equal number of
elements. The differences in two samples are brought by the different distributions
of the phases when the random sampling is performed two times in a row. Figures14
and 15 show the displacements and pore pressures of the heterogeneous samples 1
and 2 plotted in the deformed mesh at the final time step of the simulation. These
results are obtained with the imposed constant velocity of v0 = 5 × 10−4 m/s. It can
be observed from the deformed meshes of both samples that the localized macro
cracks propagate differently in two cases only because of the slight difference in
initial heterogeneity distributions.Macro-cracks also formed the irregular geometries
that propagated through the weaker parts of the material. The main strength of the
presented discrete model is in simulating the heterogeneous materials where macro-
cracks propagate through the material’s weaker phases, avoid the stiffer ones and

(a) (b) (c)

Fig. 14 The state of the 1st heterogeneous sample after the compression test (imposed velocity
v0 = 5 × 10−4 m/s): a horizontal displacement b vertical displacement c pore pressure
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(a) (b) (c)

Fig. 15 The state of the 2nd heterogeneous sample after the compression test (imposed velocity
v0 = 5 × 10−4 m/s): a horizontal displacement b vertical displacement c pore pressure

exhibit the irregular geometries. When it comes to the pore pressures, previoussides
and reach their highest values near the localized zone.

To investigate the coupling effects, the two heterogeneous samples are put under
compression test with a different rate of imposed vertical displacement on the top
base v0 = 1.5 × 10−3 m/s. Themacroscopic curves including the cumulative vertical
reaction and pore pressure in the centre of the sample in the close neighboured of the
localized zone are presented in Fig. 16, for two heterogeneous samples and different
imposed velocities obtained within the compression tests.

The macroscopic vertical reactions indicate that higher rates of imposed displace-
ment cause the samples to be more resistant (larger ultimate stress) and more ductile
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Fig. 16 Macroscopic curves of the poro-plastic sample obtained within the compression test a
cumulative vertical reaction versus impose displacement b pore pressure at the sample centre versus
imposed displacement
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Fig. 17 a Crack length versus time b pore pressure at the sample centre versus time

(larger displacement is needed to drive the samples to the failure). This is due to an
increase of pore pressure which is brought by shorter time left for drainage at the
sample centre (Fig. 16b).

The pronounced coupling effects are more obvious when it comes to the non-
linear behaviour and formation of localization zone. In the beginning of the test, the
vertical reaction is less influenced by higher pore pressure.

No coupling effect is observed in the geometry of themacro-crack for each sample
when it comes to the localized zone formation. More precisely, the discontinuity still
propagated through the same elements for different imposed velocities.

The differences with respect to heterogeneities seem to increase in the nonlinear
zone with the higher imposed velocity. Namely, the increase of flow through cracks
in localization zone, together with the ‘faster’ loading, induces the higher rates of
pore pressures making the heterogeneities’ influence even more profound.

As can be seen from Fig. 17a, where time history of the crack length is presented,
cracks start to propagate at some point in time when the external load produces
significant stress triggering the crack. The cracks then propagate quickly through
the samples. The plots for samples with applied faster external load (v0 = 1.5 ×
10−3 m/s) show, that in these cases, cracks propagate more quickly and the tests are
completed in less time. Figure17b presents the time evolution of pore pressure in the
centre of the sample and in the close neighboured of the crack, showing the shorter
time needed for completion of test and faster rate of the pore pressure increase.

4 Conclusions

In this chapter the discrete element modelling suitable for describing the fracture
process with localized failure zones in heterogeneous non-saturated and fully fluid-
saturated poro-plastic medium is presented, where coupling between the fluid and
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solid obey the Biot theory of poroplasticity. The localized failure mechanisms are
incorporated through the enhanced kinematics of Timoshenko beams that act as
cohesive links between the grains of heterogeneous rock material. The embedded
discontinuities can represent the failure modes I and II, as well as their combination.
The fluid flow is governed by the Darcy law with assumed continuous pore pressure
field.

The model ingredients are incorporated into the framework of embedded discon-
tinuity finite element method, where the computation of the enhanced discontinuity
parameters requires only local element equilibrium. Further use of the static conden-
sation of the enhanced parameters at the element level, leads to the computationally
very efficient approach and numerical implementation that fits within the standard
finite element code architecture.

The main strength of the proposed discrete model lies in its ability to account
for material heterogeneities with localized macro-cracks propagating throughout the
weaker parts of the material and forming the irregular geometries. Such a phenom-
enon is presented by the numerical simulations of two samples with equal geometries
and material properties, but slightly different distribution of material heterogeneities
throughout samples, which present different behaviour in terms of localized macro-
crack propagation. The solid-fluid coupling plays important role here as well, bring-
ing the variations in macroscopic responses and compliance of the samples. It is
important to emphasise that heterogeneous effects become more pronounced with
the coupling effects and higher rates of the imposed velocities.
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