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Preface

This book contains a selection of research works first presented at the 2nd
International Conference on Multiscale Computational Methods for Solids and
Fluids, which was held in Sarajevo, June 10–12, 2015. Among them are the con-
tributions from several experts from France and Germany (A. Ibrahimbegovic,
A. Ouahsine, H. Matthies, N. Limnios, and P. Villon) who jointly taught the
conference short course entitled “Current Research on Solids & Fluids:
Computations, FE Code Coupling, Model Reduction, Probability,” on dates pre-
ceding the conference, June 8 and 9, 2015. With the complementary contributions
from the short-course instructors and a number of other conference participants, we
seek to provide a comprehensive review of the state of the art in this currently active
research domain. The presented contributions pertain to more than one of these
aspects: (i) multiscale computations for solids and fluids, (ii) probability aspects,
and (iii) model reduction. Given that each contribution touched upon more than one
of these aspects, it is deemed the most appropriate to present them in a random-like
order of the first authors’ names.

The main ideas in each chapter are briefly outlined and commented upon for the
benefits of readers.

Beckers Benoit has presented his work on “Multiscale Analysis as a Central
Component of Urban Physics Modeling.” The original aspects of presented point of
view on urban physics are in placing it in between the scales of environmental
physics and building physics. Being able to simulate at this scale is principally
needed for energy exchange. Namely, the urban environment with its rapid
worldwide growth has become a complex dynamic interface for either top-down
problem with generation of an urban microclimate or bottom-up one with influence
of an urban morphology on the final consumption of the entire city, jointly used to
define properly the role of cities in global warming. The main benefits pertain to
energy balance, urban planning, and participation to global climate models.

Brank Boštjan et al. have presented their work on “A Path-Following Method
Based on Plastic Dissipation Control.” The proposed method is a multiscale
solution strategy, the most suitable for dealing with softening phenomena, which
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allows for path-following response computations. Here, the fine-scale representa-
tion is only controlled by the total inelastic dissipation passing to coarse scale.
Detailed validation is presented for elasto-plastic model. An important model
ingredient concerns the discrete approximation, which relies upon the embedded
discontinuity finite element method that uses rigid-plastic cohesive laws with
softening to model material failure process. Illustrative developments are presented
for 2D solid and frame finite elements with embedded discontinuities that describe
cohesive stresses and stress resultants by rigid plasticity with softening.

Cai Shang-Gui et al. have presented their work on “Improved Implicit Immersed
Boundary Method via Operator Splitting.” The main challenge tackled herein is in
providing an efficient approach to fluid-flow simulation over moving solid with
complex shape. The efficiency of the implicit immersed boundary method is
achieved via symmetry of tangent arrays and operator splitting technique. An
additional moving force equation imposes the interface velocity condition exactly
on the immersed surface and the rotational incremental projection method ensures
that the numerical boundary layers are generated towards the velocity and pressure
during the calculation. Cai Shang-Gui et al. have also presented their work on
“Modelling Wave Energy Conversion of a Semi-submerged Heaving Cylinder.”
The proposed model, based upon full 3D viscous Navier–Stokes equations, aims at
simulating the ocean wave energy conversion of a semi-submerged heaving
cylinder.

Dumont Serge et al. have presented their work on “Multiscale Modeling of
Imperfect Interfaces and Applications.” A systematic development of multiscale
approach for an interface model can be developed by using asymptotic techniques
where the thickness of the interface is considered as a small parameter. At the
microscale, the model can account for imperfect interface models by taking into
account microcracks. The homogenization techniques of matched asymptotic for
media with microcracks is used then both in 3D and 2D cases, which leads to a
cracked orthotropic material. It is shown that the Kachanov-type theory leads to soft
interface models, while the approach by Goidescu leads to stiff interface models.
A fully nonlinear variant of the model is also proposed, derived from the St.
Venant–Kirchhoff constitutive equations. Among broad set of applications, the
masonry structures are chosen to illustrate the model performance.

Jehel Pierre has presented his work on “A Stochastic Multi-scale Approach for
Numerical Modeling of Complex Materials—Application to Uniaxial Cyclic
Response of Concrete.” Accounting for inelastic behavior of heterogeneous mate-
rials, such as concrete, calls for development of multi-scale techniques that looks
for sources on nonlinearity at the relevant scale, combined with stochastic methods
accounting for uncertainties. The chosen model represents the mechanical response
of a representative volume of concrete in uniaxial cyclic loading. The hetero-
geneities are represented at mesoscale and inelastic nonlinear local response is
modeled in the framework of thermodynamics with internal variables. Spatial
variability of the local response is represented by correlated random vector fields
generated with the spectral representation method. Macroscale response is recov-
ered through standard homogenization procedure from representative volume
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element and shows salient features of the uniaxial cyclic response of concrete that
are not explicitly modeled at mesoscale.

Kozar Ivica has presented his work on “Relating Structure and Model,” seeking
to gain an additional insight into large structure modeling. The presented approach
deviates from usual model building procedures that leads us to transfer of param-
eters between the model and the real structure. Here, the problem is addressed in a
more general manner, where both modeling and discretization are formulated,
subsequently seeking relationship between relevant parameters of the real structure
and its model. The corresponding procedure provides how to determine the scaling
matrices in parameter and measurement spaces.

Lebon Jérémy et al. have presented their work on “Fat Latin Hypercube
Sampling and efficient Sparse Polynomial Chaos Expansion for Uncertainty
Propagation on Finite Precision Models: Application to 2D Deep Drawing Process.”
The main motivation stems from uncertainty propagation in model parameters, with
the variation range of random variables that may be many orders of magnitude
smaller than their nominal values. This is typical of the nonlinear finite element
method computations involving contact/friction and material nonlinearity.
A particular attention was given to the definition of adapted design of experiment,
taking into account the model sensitivity with respect to infinitesimal numerical
perturbations. The samples are chosen using an adaptation of the Latin hypercube
sampling, requiring them to be sufficiently spaced away to filter the discretization
and the other numerical errors limiting the number of possible numerical experi-
ments, which leave the challenge to building an acceptable polynomial chaos
expansion with such sparse data.

Marenic Eduard and Adnan Ibrahimbegovic have presented their work on
“Multiscale Atomistic-to-Continuum Reduced Models for Micromechanical
Systems.” The main focus is upon the development of multiscale-reduced models
and computational strategy for micromechanical systems, with currently interesting
applications to graphene. The fine scale concerns the atomistic model and is for-
mulated and solved along with the corresponding coarse-scale model obtained by
homogenization. Two mainstream multiscale methods, the quasi-continuum and
bridging domain, are compared and brought to bear upon the optimal model
reduction strategy. Consequently, these two methods are further advanced from
their standard formulation to a unified coupling and implementation strategy. The
method can also deal with a defect-damaged graphene sheet granting an excellent
performance of the proposed multiscale solution strategy.

Matthies Hermann et al. have presented their work on “Inverse Problems in a
Bayesian Setting.” The work reveals the strong connection between the inverse
problems of the parameter identification and the forward computations of uncer-
tainty quantification with parameter uncertainty propagating through response
computations. The connection of this kind is naturally placed in the Bayesian
setting, where the Bayesian updates, or filters, are derived from the variational
problem associated with conditional expectation. Among various constructions of
filters, the most efficient seem to be the linear or nonlinear Bayesian updates based
on functional or spectral approximation constructed with polynomials, which grant
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much higher computational efficiency in forward uncertainty quantification than the
time-consuming and slowly convergent Monte Carlo sampling.

Niekamp Rainer et al. have presented their work on “Heterogeneous Materials
Models, Coupled Mechanics-Probability Problems and Energetically Optimal
Model Reduction.” It is shown that the sound theoretical formulation of a multiscale
model of damage behavior of heterogeneous materials can be cast as coupled
mechanics-probability problem. In particular, such the fine-scale interpretation of
damage mechanisms can provide the most meaningful probability density distri-
bution of material parameters governing the failure phenomena, which can be
described in terms of random fields. The second challenge tackled here pertains to
providing an efficient solution procedure to this coupled mechanics–probability
problem, formulated by the spectral stochastic finite element method. Here, the
curse of dimension, with the coupled mechanics–probability problem dimension
growing with a number of random fields, is handled through low-rank approach and
solution space reductions. In particular, a rank-one update scheme is devised as the
optimal low-rank representation with respect to the minimal energy at the given
rank.

Nikolic Mijo et al. have presented the work on “Modelling of Internal Fluid
Flow in Cracks with Embedded Strong Discontinuities.” The proposed multiscale
model can handle fluid–structure interaction problem typical of localized failure of
heterogeneous rock material under internal fluid flow. Of special interest are the
methods where the fine-scale mechanics failure phenomena are presented only at
the coarse-scale parameter in terms of fracture energy needed to achieve the full
crack creation. The crack propagation induced steep displacement gradients are
accounted for by using the concept of embedded discontinuity FEM. The compu-
tational efficiency is granted by the rock mass representation by Voronoi cells, kept
together by cohesive links. The latter is chosen in terms of the Timoshenko beams
capable of providing the crack-induced discontinuity propagation between the rock
grains both in mode I and mode II. The model can account for rock material
heterogeneities with pre-existing cracks represented by weak links placed in
agreement with given probability distribution.

Papamichail Chrysanthi et al. have presented their work on “Reliability Calculus
on Crack Propagation Problem with a Markov Renewal Process.” The fatigue crack
propagation is defined in terms of a stochastic differential system that describes the
evolution of a degradation mechanism. A Markov or a semi-Markov process was
considered as the perturbing process of the system that models the crack evolution.
With the help of Markov renewal theory, the reliability of a structure is defined in
terms of analytical solution. The method reduces the complexity of the reliability
calculus compared with the previous resolution method, yet delivers good agree-
ment with experimental data set, and Monte Carlo estimations.

Prieto Juan Luis has presented his work on “Multi-scale Simulation of
Newtonian and Non-Newtonian Multi-phase Flows.” The special attention is
given to a level-set method to capture the fluid interface along with Brownian
dynamics simulations to account for the viscoelastic effects of the fluid. The
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solution is obtained by using the second-order semi-Lagrangian scheme and
evolving the level-set function along the characteristic curves of the flow. The
proposed approach can also handle the free-surface flow taking into account viscous
and surface tension effects, by using a semi-Lagrangian particle level-set method
and by adding the marker particles to correct the shape of the free surface. The
multiscale approach is used to solve stochastic, partial differential equations by
using the finitely extensible nonlinear elastic kinetic model and a variance-reduced
technique on a number of ensembles of dumbbells scattered over the domain.

Ravi Srivathsan and Andreas Zilian have presented their work on “Numerical
Modeling of Flow-Driven Piezoelectric Energy Harvesting Devices.” The devices
of this kind provide a smart replacement of batteries with low power energy har-
vesting of flow-induced vibrations. The theoretical formulation leads to a coupled
problem involving fluid, structure, piezo-ceramics, and electric circuit. The main
difficulty pertains to problem nonlinearities and the need for reliable, robust, and
efficient computations, which is here achieved by a monolithic approach involving
surface-coupled fluid-structure interaction, volume-coupled piezoelectric–mechanics
and a control of energy harvesting circuit. A space-time finite element approxi-
mation is used for the numerical solution of the governing equations, which allows
for different types of structural elements (plate, shells) with varying cross sections
and material constitutions and different types of harvesting circuits.

Rosic Bojana et al. have presented their work on “Comparison of Numerical
Approaches to Bayesian Updating.” The main challenge concerns Bayesian process
of identifying unknown probability distribution of model parameters given
prior information and a set of noisy measurement data. Two approaches are pos-
sible: one that uses the classical formula for measures and probability densities, and
the other that leaves the underlying measure unchanged and updates the relevant
random variable. The former is numerically tackled by a Markov chain Monte Carlo
procedure based on the Metropolis–Hastings algorithm, whereas the latter is
implemented via the ensemble/square root ensemble Kalman filters, as well as the
functional approximation approaches in the form of the polynomial chaos based
linear Bayesian filter and its corresponding square root algorithm. It was shown
some of the principal differences between full and linear Bayesian updates when a
direct or a transformed version of measurements are taken into consideration.

Ylinen Antti et al. have presented their work on “Two Models for Hydraulic
Cylinders in Flexible Multibody Simulations.” In modeling hydraulic cylinders,
interaction between the structural response and the hydraulic system needs to be
taken into account. In this work, two approaches for modeling flexible multibody
systems are presented and compared: one with truss-element-like cylinder and
bending flexible cylinder models, and other with bending flexible cylinder element
chosen as a super element combining the geometrically exact Reissner beam ele-
ment, the C1-continuous slide-spring element needed for the telescopic movement,
and the hydraulic fluid field. Both models are embedded with a friction model based
on a bristle approach and can be implemented within the standard finite element
environment. In time the coupled stiff differential equation system is integrated
using the L-stable Rosenbrock method.
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The goal of gathering these contributions in a single book from Springer
ECCOMAS series is to ensure more lasting value to the results first presented at the
2nd ECCOMAS Thematic Conference on Multiscale Computations on Solids and
Fluids, providing the best starting point for further exploration in this currently very
active research field. I would like to thank all the authors for contributing to this
goal.

Adnan Ibrahimbegovic
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Multiscale Analysis as a Central
Component of Urban Physics Modeling

Benoit Beckers

Abstract Urban physics is seeking its place between two better structured scales,
that of environmental physics and that of building physics. The intermediate level
of the city and the urban district is particularly difficult to appreciate, because it
involves huge geometries that must however be precisely detailed and finely meshed.
It has become very important to simulate on this scale, principally energy exchanges,
because the urban environment, with its rapid worldwide growth, has become a com-
plex dynamic interface for both top-down problems (generation of urban microcli-
mates) and bottom-up ones (influence of urbanmorphology on the final consumption
of the entire city), and even properly multiscale applications (involvement of cities
in global warming). This paper provides a starting point (the shortwave radiative
exchange), a process of cross-validation between measurements and simulations
(with emphasis on the contribution of satellite imagery) and three main objectives:
energy balance, urban planning and participation to global climate models.

Keywords Urban physics · Solar energy · Multi-scale · Optimization

1 Introduction

If we observe from a physical and global point of view the contemporary evolu-
tion of human society on the surface of the earth, there is essentially a very rapid
urbanization, accompanied by an equally rapid urban sprawl. Between 2000 and
2030, urban occupation of the land surface of the planet should have tripled [70],
which already causes serious difficulties for food self-sufficiency, exposure to natural
hazards (particularly floods) and health (air pollution, Urban Heat Island) [29].

Cities already account for more than half the world’s population, and soon the
two-thirds; they also concentrate many industrial activities and transport. They are
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2 B. Beckers

therefore necessarily of great importance in the current climate change, especially
by their CO2 production (up to 70% of the greenhouse gases total emission [74]).

Climatologists meeting within the IPCC (Intergovernmental Panel on Climate
Change) operate their digital models on the planet scale with a meshing of approxi-
mately 100km per side. Even in the long term, it is difficult to imagine that the size
of the mesh can drop below 20km [41]. Therefore, urban structures do not appear.
However, if we calculate the total heat production of urban areas on the East Coast
of the United States, on the one hand, and on the East Coast of China on the other
one, and if this production is injected into a climate model, especially in the jet
stream in winter, we see that this contribution may explain the over-warming of per-
mafrost, several thousands of miles away, that is, respectively, in northern Canada
and Siberia [84].

In the present climate models, cities are like phantoms: we do not see them,
but we can measure their effects, sometimes very far from them. In the last IPCC
report, it appears that the many measures taken by thousands of cities (in the form of
climate-energy policies) cannot be quantified [41]. To go further, it will be necessary
to implement a multi-scale method where calculations as fine as necessary at the
urban level make it possible to correctly set the climate models.

This chapter is divided into four parts. Section2, in the form of a state of the art
very concise but expanded to themain involved areas, will remind the knowledge and
existing difficulties. Section3 will indicate how, and in what order, a new framework
can be built for the urban physics. Sections4 and 5 will describe, respectively, the
shortwave and the long wave models principal characteristics.

2 Urban Physics: A State of the Art

2.1 From Environmental Physics

By the late sixties, researchers began to apply the possibilities of numerical simu-
lations to the study of energy, momentum and matter exchanges between soil and
atmosphere, and by that time, T.R. Oke applied these energy balances to specific
environments: the cities [59]. He identified and sought to prioritize the physical phe-
nomena contributing to the production of the Urban Heat Island (mainly, increased
net radiation and absorption of heat by urban surfaces [66]).

We can therefore speak about urban physics, as a particular field of environmental
physics [7, 52].

However, at that time, the resources did not allow simulating complex geometric
patterns, and measures were limited in quality, time and space. Despite substantial
advances in satellite imagery, ground-based measurements are still required and are
still limited to periods of a few months in some parts of the city (cost, difficulty).

Regarding the geometry, researches are oriented in two directions: the urban
canyon study (simplified street), or use of regular and extruded shapes (grid plan).
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At this point, despite some very encouraging intermediate results, it is not possible
to accurately quantify the exchanges at the urban scale, nor to propose substantial
guidelines for urban planning.

2.2 From Urban Planning

Urban planning was developed between the 1850s and 1950s, by G.E. Haussmann in
Paris (bring to all people the air and the sun) and I. Cerdà in Barcelona (the inventor
of the word “urbanism”) to the figure of Le Corbusier (Macià plan in Barcelona,
Chandigarh, Brasilia …), first for hygienist concerns, then for urban comfort ones.

Very large buildings made possible by the invention of the elevator have created
extremely dense downtowns, introducing the economic problem of the depreciation
of land always in the shade (Manhattan and Chicago, then major Asian cities). Sun-
shine, solar right and sky rights were the main tools for planners to think in 3D
[7].

We can then really speak of an intermediate scale, the neighborhood and the city,
which we call “meso”, between the “macro” scale of geographers and climatologists
and the “micro” scale of architects.

In Barcelona, I. Cerdà turns the grid pattern of the Eixample 45◦ with respect
to the north-south axis, to better distribute sunlight on the facades. However, in the
Mediterranean climate, the delicate point is the cross ventilation, which can avoid the
summer air conditioning. This problem can be treated qualitatively (introduction of
light wells), but, as it should be studied at the level of each building, it is impossible
to quantify globally and therefore to validate the insight of Cerdà. In addition, urban
life has changed since then, and has become much noisier. If people have to close
their windows at night for acoustic reasons, the picture is completely changed. The
emergence of these multi-physics and multi-scale problems leads urban planners in
a dead end, and Environmental Physics, which is not adapted to such fine scales,
cannot support them.

2.3 From Building Physics

In the second half of the twentieth century, architects and HVAC engineers met
around building energy efficiency problems and in the wider context of bioclimatic
architecture [61]. Indeed, engineers introduce a scale much finer than that of the
building, the equipment and devices one (windows carpentry, heat pumps…), which
we call “nano”, for which they use finite-element-like computational methods [46].
However, at the micro level, these methods give way to nodal ones and geometry
disappears, breaking dialogue with architects.

For decades, simulations have been limited to the study of single buildings. The
scaling up to the urban block or neighborhood, made necessary by the hardening of
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the thermal regulations, is very difficult. Because of its too specificmethods, Building
Physics has as strong difficulty in getting, through the city, the macro scale, as well
as Environmental Physics has to arrive at the micro scale.

2.4 From Smart City

The application of internet technology tomore physical networks (smart grid), partic-
ularly urban ones (smart city), generally presupposes simplification of the geometry
into topology. In doing so, many researchers in this field emphasize the “urban soft-
ware” (distribution of electricity, water and transport) with respect to its “hardware”
(buildings and infrastructure). This leads to privilege active systems over passive
ones, thus optimizing margins rather than main topics, in the short term rather than
in the long time.

However, the smart city framework is the first one that focuses on the urban scale
and reaches both the nano scale (equipment) and the macro scale (for example, the
national grid). It also generalizes the idea of providing permanent sensors to the city.

3 Urban Physics: A New Framework

3.1 The City as an Interface

Wemust first justify the nomenclature we have proposed for the scales, which is quite
different from that of environmental physics. Nano (equipment, the meter range and
below), micro (buildings, 10m), meso (town, hundreds of meters, kilometers) and
macro (tens and hundreds of kilometers) match with different regulatory frameworks
and different actors, but also bring very different time scales. Indeed, the facilities
have lifetimes of fifteen to twenty years, the buildings of the order of the century,
and cities, although their development is accelerating, have often millennial layouts.

In a multi-scale analysis, the city becomes an interface between the buildings and
the land. Exchange parameters are, for example, albedo, surface temperatures. An
essential element is to preserve the geometry; otherwise it is not possible to under-
stand the urban structure and to act on it or on its elements. The great recent advance
is geometric: construction by procedural methods, adaptive level of detail…[20]

Zooming in the city, one sees the various buildings with their windows. The
window is the primary interface between the outside and inside of the building,
and the only one concerned by daylight. Windows are transparent to visible light
(between 400 and 700nm), but not for the thermal infrared: it is the greenhouse
effect, which has very important consequences for the building thermal behavior.
Special devices, such as glazed balconies or Trombe walls [22, 69], allow enjoying
this effect at the level of an interior. Windows are generally quite complex devices,
with balconies, shutters, curtains…that achieve a desired balance between solar gain,
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protection against excessive inputs, and reduction of thermal losses (insulation). The
configuration of this interface may vary during the day (curtains) and in the year
(mobile protection).

Such characteristics can be correlated to the multiscale study of composite mate-
rials [1, 44] dealing with domain decomposition methods, multi-scale and parallel
simulations.

3.2 Multiband Aspects of the Radiation Interacting
with the Cities

A black body is both perfect receiver and consequently perfect emitter. In 1900, Max
Planck postulated that the electromagnetic energy of a black body is emitted not
continuously (like by vibrating oscillators), but by discrete portions or quanta.

Planck’s law states that the spectral radiance or radiance per unit wavelength
interval Lλ, expressed in Wm−3s r−1 is given by:

L�λ (λ, T ) = 2hc2

λ5

1

e
hc

kλT − 1
(1)

In this relation,T is the temperature expressed inKandλ, thewavelength expressed in
m. This distribution can also be expressed in terms of frequency, but it ismandatory to
express the transformation in terms of energy [72]. Let assume that the new function
is LΩν which depends on ν and T . First, we write the equality:

L�λ (λ, T ) dλ = L�ν (ν, T ) dν (2)

As ν = c/λ, dλ/dν = −c/ν2. For the next step, we can remove the negative sign
which is simply clarifying that increasing wavelengths correspond to decreasing
frequencies. Then

L�ν (ν, T ) dν = L�λ (λ, T )
dλ

dν
= L�λ (λ, T )

c

ν2
(3)

And finally:

L�ν (ν, T ) = 2h ν3

c2
1

e
hν
kT − 1

(4)

which is obviously expressed in Wm−2 s r−1s−1

Three fundamental physical constants are present in these formula:

Planck’s constant: h = 6,62606957× 10−34 J s
Velocity of light: c = 299792458ms−1

Boltzmann constant: k = 7,3806488× 10−23 JK−1

Wien’s law states that λmax T = 2.898 × 10−3
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Fig. 1 Spectral radiance in
Wm−3s r−1 as a function of
the wavelength in
nanometers

Fig. 2 Spectral radiance in
Wm−2s r−1 s−1as a function
of the frequency in hertz

We can check it for the curves of Fig. 1, i.e. for the Sun temperature T = 5780K, we
obtain: λmax = 5.013 × 10−7 m (≈500nm).

The same data can also be expressed in terms of the frequency expressed in hertz
(s−1). They are shown in Fig. 2. According to the interpretation of (2), the maximum
values shown on (Fig. 1) cannot be transposed directly in Fig. 2.

If we try to get the same results for the two temperatures of Sun and Earth, we
obtain two curves with very different scales, which imposes to multiply the second
one by some factor (106 in the situation of Fig. 3).

Fig. 3 Spectral radiance in
Wm−3s r−1 as a function of
the wavelength in
nanometers of Sun and Earth
radiations
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Fig. 4 Spectral radiance in
Wm−3s r−1 as a function of
the decimal logarithm of the
wavelength

If we replace the decimal abscise by a decimal logarithmic one, the result is more
compact and more understandable (Fig. 4).

As observed in (Figs. 3 and 4), the intersection of the continuous and the dashed
curves occurs at ≈4µm. This corresponds to the intersection point when the ampli-
fication factor of the dashed curve is equal to 30,000 (log10(4 × 10−6) = −5.3979).

As the black bodies spectra of ≈6000K (Sun) and ≈300K (Earth) are separated,
it is possible to uncouple the corresponding radiations.

If one accepts the assumption of diffuse reflection essentially, it can be considered
that each surface is characterized by a single parameter: the reflection coefficient. If
one is interested in solar gains, this coefficient should be an average over the complete
solar spectrum (between 0.32 and 4µm), but its assessment is often restricted to the
visible spectrum (from 0.4 to 0.7µm) and weighted by the sensitivity curve of the
human eye in daylight vision. For color images, the latter coefficient is split into three
values (corresponding to the sensitivities of the RGB cones). The optical properties
of the scene surfaces are first simplified (perfectly diffuse reflection) and then adapted
to a particular receptor, the diurnal human vision. However, other receptors may be
considered: plants (photosynthesis also relates to the band 0.4–0.7µm, but with a
very different sensitivity curve having its maximum at extreme red and purple, and
a minimum at the center of the strip, the green color is generally reflected by the
plant), photovoltaic cells (whose sensitivity extends into the near infrared, beyond
micron) …

In the last decades important advances in the terrestrial and satellite measurement
of solar radiation, as hyperspectral remote sensing [36, 37, 63], presage greater
spectral accuracy in weather data and, therefore, greater rigor in the optical charac-
terization of urban surfaces.

3.3 Shortwave

Because shortwaves and long waves are quite perfectly separated, the distribution of
the shortwave on urban geometry does not depend on temperature.At themacro level,
we only have data—meteorological ones (solar paths and clouds) and orographic
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ones (mountain masks—, now available all over the world. On the meso scale, the
geometric model must be detailed enough (roofs slope, facades with their windows
and balconies), but it has a reduced semantic of reflection coefficients. At the micro
level, we go through the windows and the physical and geometric properties are
maintained. On the nano scale, we can define the sensors (for example, computer
monitors for the study of glare in natural light).

The simplicity of shortwave treatments makes them the necessary starting point
to build a framework for multiscale analysis [5]. Shortwave analysis has the twofold
advantage of a large experience acquired in the fields of entertainment and of recov-
ering previously known principles of planners with full scale “test cases”. We are
presently ready to achieve shape optimization in this framework.

At the city level or at least at the district one, the first steps consist in establishing
the possible objective functions, the constraints and the design parameters [10]. The
main difficulty is that the general problem is typically formulated in terms of discrete
variables and that the sensitivity analysis is not reachable, because the involved
functions are mostly not derivable. Evolution algorithms are good candidates for this
kind of optimization and have proven their effectiveness [43, 78].

Some improvements have been achieved with respect to the boundary and initial
conditions in order to solve a problem closely related to the direct solar irradiation
[79].

3.4 Long Waves

The next step is to go into long waves. One can imagine a city under a static
atmosphere (only acting as a filter for the radiation) without inhabitants. Thermogra-
phy has brought infrared in our visual experience, and it seems that we are now able to
refine urban planning criteria on a better consideration of long waves (urban climate,
urban comfort) [30]. The geometrical parameters calculated for the shortwave are
also used for long waves (view factors), but with the consideration of temperatures,
we should now at least study the radiative-conductive coupling [8]. The transition
of current nodal methods to finite element ones [47, 62] has not been met yet, but
the multi-scale analysis could provide an important argument in this direction (same
method at all scales).

The Stefan-Boltzmann law states that the total energy (also known as irradiance or
emissive power) radiated per unit surface of a black body per unit time is proportional
to the fourth power of the black body thermodynamic temperature.

The total radiant energy emitted by a unit area of a blackbody radiator is obtained
by integrating (1) over all wavelengths. The result is the Stefan-Boltzmann law:

Q = σ T 4 (5)
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Fig. 5 Heat flux from wall at 293K to wall at abscise temperature. Max and min error: 10.3
and −9.7%

In this expression, Q is measured in Wm−2, T is the Kelvin temperature, and σ

is the Stefan-Boltzmann constant (5.670373 ×10−8 Wm−2 K−4). It is linked to the
universal constants by the relation:

σ = 2π5k4

15h3c2
(6)

Expressed as a function of the difference of temperatures ΔT = Tr − Ti , with the
reference temperature Ti , this law can be approximated by a linear relation [8, 51]
so that, for instance, between 10 and 30 ◦C, the approximate solution built around
20 ◦C is giving a heat flux with less than 5% error in the 20◦ interval around. For
instance, between two infinite walls, the first one at 293K, the flux increment for
each degree more or less on the other wall is reaching Q293 = 6Wm−2 K−1 (Fig. 5).
Between a source at 279K and a receptor at 0K, the flux is equal to 343.6Wm−2.
Note that the average Sun irradiance [7] at the top atmosphere (or without atmosphere
on the ground) is of 342Wm−2. The temperature of 279K should be the Earth’s
temperature originating longwave radiations able to balance Sun’s radiations in the
lack of atmosphere.

4 Computational Model

The solution of radiative exchange problems is based either on ray tracing methods
[39, 82] and their many variants, either on radiosity methods. The former are widely
used in rendering while the latter were initially introduced in heat transfer problems
[34].
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Radiosity methods have the advantage of addressing the problem of radiative
exchange for the entire scene. They proceed in two steps:

1. Calculation of the view factors
2. Solution of the radiosity equations

There is a clear separation between the pure geometrical step and the radiative cal-
culations. The positive consequence is that the setting of the radiative problem is
completely independent and can be modified retrospectively and inexpensively.

4.1 The Simplest Model

Given a very large urban 3D model, consisting of tens or hundreds of thousands of
facets, we want to mesh most of these faces and to perform some calculations on the
created meshes. The simplest calculations concern solid angles and view factors, or
ultimately direct sunlight hours [9]. Themost efficient solutions are using projections,
mainly the stereographic one [13].

Let, for instance, calculate on the points of a virtual surface (a section of the city)
the solid angle corresponding to the sky: the SSA (Sky Solid Angle) [25]. The sky
contributes from all directions above the horizon that are not hidden by elements of
the scene, and all these directions have equal weight.

If the same calculation is performed on real surfaces, and therefore opaque ones—
ground of the street, facades, roofs—the geometric dimension that has a physical
sense is the sky view factor (SVF), [60] which takes into account the fact that the
grazing directions contribute less than the normal directions and only the directions
whose scalar product with the normal negative contribution (an actual surface is
necessarily oriented). The SVF is directly related to the diffuse or Lambert reflection
[45].

Generally, SSA and SVF are expressed in percent, but while SSA is reported to the
hemisphere of the sky, the SVF is related to the disk resulting from the orthogonal
projection of the hemisphere on the plane containing the studied point. It is known
as the Nusselt analogy [58]. Thus, in some configurations, SVF can be higher than
SSA. For instance, the SSA of a spherical cap of opening α located on the top of the
hemisphere is always greater than its SVF. Indeed, it is equal to 2π(1 − cosα)/2π =
(1 − cosα) while its SVF is equal to π sin2 α/π = sin2 α. Their ratio is then equal
to sin2 α/(1 − cosα) = (1 − cos2 α)/(1 − cosα) = (1 + cosα) varying from 2 for
a very small cap to 1 for the hemispherical cap. When α is small, the cap SSA tends
to α2/2 while its SVF tends to α2. Thus, (SVF/SSA) α→0 = 2.

SSA and SVF depend only on the geometry of the scene and on the concept of
horizontality (to define the sky vault). The sunshine hours add the notion of cardinal
points (north direction), latitude and period of year, to set the solar paths. Most
often, the sunshine hours are calculated on solstice’s extreme days and the equinox’s
average days.
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Fig. 6 Equal area disks
defined on the spherical
surface, so, with the same
solid angles (SSA)

Figures6 and 7 are showing a lot of disks located on two orthogonal meridians of
a hemisphere. All the disks have the same area and thus the same SSA. The top disk
of the hemisphere is seen in true scale in the center of Fig. 7. For the SSA, its cap
area (very close to the disk area if it is small enough) is reported to the hemisphere
area while, for the SVF, the corresponding disk area is reported to the base disk area
validating the results presented above.

Fig. 7 SVF of the 17 equal
area or equal solid angle
spherical caps
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Cities rarely have clear boundaries. More or less remote mountainous areas can
greatly reduce the visibility of the sky, and thus the availability of the sun. With the
exception of sea harbors or extremely flat regions, the horizon is rarely visible from
the city, and only from the highest buildings.

In practice, we only manage a portion of the urbanmodel, and the division is more
or less arbitrary (e.g., according to administrative boundaries). Everything else can
be projected on a cylinder centered on the studied area, in order to have a correct
skyline. If the studied area is moving within the model, it is necessary to check that
the encompassing cylinder remains accurate (parallax problem) [27].

Looking at the scene so organized from different points of themesh, very different
results are obtained. From the ground and the bottom of the facades, we often see very
few objects, but close, while from the top of the facades, one can have a panoramic
view of nearly half of the model. Numerous surfaces then appear with small view
factors. From the roofs, the perceived scene is very different depending on whether
the roof is tilted or horizontal. In the latter case, only are visible the upper portions
of buildings higher than the considered one.

It is therefore natural to introduce technics of adaptive details in order to fully
take into account these perceived scene changes, which can be very sudden, even
browsing the mesh of a single flat surface, because the scene is consisting of discrete
elements with well-defined edges.

The simplest city models are extrusions of urban maps. Because the radiation
incident on a façade is divided into two parts (one reaches the wall, the other enters
through the window), it is accounted from the glazing rate. This simplification is
working well with the philosophy of the nodal methods, which tends to simplify the
geometry to the maximum (e.g., a building is only represented by two nodes, one for
the envelope and one for inside).

To improve the model [12], we can consider the windows as additions in front
of the facades (Fig. 8). The advantage is that it avoids additional Delaunay mesh
generation and that it keeps the model very simple. Thus, in (Fig. 9) all the large
areas are correctly oriented (including the roofs) and the windows are present, with
a final model which remains below 20,000 triangles.

Fig. 8 Scheme of the modelling of individual buildings
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Fig. 9 Model of the Compiègne central district

It has been shown that it is impossible to take into account the thickness of the
walls afterwards. To do this, we must request procedural methods and adaptive level
of detail.

So, the idea of the pinhole [31] becomes very interesting, because it condenses
incoming information on the window itself, and allows optimizing the shape of the
window on the inner illumination criteria without restarting the computation at each
step.

4.2 View Factors

In the solution of radiosity equations, the heaviest part is the computation of the
coefficients of the matrix constituting the system. Indeed, the number of coefficients
is potentially very high (square of the number of elements) and each one involves
the treatment of the visible surface detection.

Fi j = 1

Ai

∫

Ai

∫

A j

cos θi cos θ j

πr2
V (Yi , Y j )d Ai d A j (7)

The view factor (also called form factor, angle factor or configuration factor) is the
basic ingredient of radiative heat transfer studies [20, 71]. It defines the fraction of
the total power leaving patch Ai that is received by patch A j . Its definition is purely
geometric. The angles θi and θ j relate to the directions of the vector connecting the
differential elements with the vectors normal to these elements; r is the distance
between the differential elements.

Except in particular situations, it is not possible to compute the view factors explic-
itly [40]. An additional difficulty appears in presence of obstructions represented in
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the above expression by the visibility function V (Xi , Y j ). This function is equal to
0 or 1 according to the possible presence of an obstacle that does not allow seeing
an element Yi from an element Y j .

It is much easier to compute the differential view factor by removing the exter-
nal integration that will be taken into account only in a second step to achieve the
evaluation of the view factor, using, for instance, the Gauss integration rule in the
concerned patch. The differential view factor in a point surrounded by the element
of area dS is given by:

Fd S−A j =
∫

A j

cos θi cos θ j

πr2
V (Yi , Y j ) d A j (8)

If the visibility function is everywhere equal to 1, the integration (4) performed on
the full hemisphere is giving a view factor equal to 1. Spherical projections combined
with Nusselt analogy provide an efficient solution of this problem [13].

4.3 Radiosity Equations

In order to solve efficiently the interaction problem, it is usual to set up a discrete
formulation derived from the global illumination equation by making the following
assumption. The environment is a collection of a finite number N of small diffusively
reflecting patches each one, with uniform radiosity [15, 71]. A didactic approach of
the radiosity equations solutionwaspresented in [6],which includes the interpretation
of importance, the dual of radiosity, obtained by the solution of the adjoint problem
and is able to initiate new developments in discretization error analysis.

Radiosity is the radiometric quantity that is best suited for quantifying the illu-
mination in a diffuse scene. In practice, when there is one single problem to solve,
iterative solutions are used, which require the treatment of only one line of the matrix
per iteration (see Sect. 4.4).

If the process is dynamic, for instance due to the movement of the Sun and the
varying configurations of the sky [55], it is convenient to mesh the whole sky and
to give to each element of its mesh the emittance corresponding to the concerned
situation.

In this situation, it is more efficient to use the technique of combination of unitary
rightmembers [18]. Itmeans that all the components of a columnof the rightmembers
are zero except one which is equal to one. This system is solved for as many unitary
right members as elements in the sky vault mesh, for instance, 145 cells in the
Tregenza dome [73] and more if necessary (Fig. 10).

The creation of this kind of dome is very simple, because it is based on the two
classical geographical coordinates (latitude and longitude). This choice facilitates
the positioning and the navigation in the mesh [14]. Its definition is given by the
sequence of numbers of elements in each ring. From these data, it is easy to compute
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Fig. 10 Hemisphere
composed of 289 equal area
cells

Fig. 11 Hemisphere
composed of 289 equal view
factor cells

the partition of a disk into equal area elements. The geometric transformation between
a hemisphere and its equal area projection allows projecting the disk elements on
the sphere either by using equal area projection SSA (Fig. 10) or equal view factor
projection SVF (Fig. 11). The orthogonal projection of the dome of (Fig. 10) is shown
in (Fig. 13) while the orthogonal projection of the dome of (Fig. 11) corresponds to
Fig. 12.

After solving the radiosity equations, it is sufficient to recombine the solutions
for each particular situation for which it is possible to evaluate the right member.
The consequence is that the computation of the radiosities is very cheap.

Let us now define R, the diagonal matrix containing the hemispherical diffuse
reflectances.

Ri j = ρiδi j (9)
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Fig. 12 Equal area cells in
the base disk

Fig. 13 Equatorial
projection of the 289 equal
solid angle cells

When the patches are planar polygons, the terms Fii are equal to zero. These coef-
ficients also verify the closure property when the environment (scene and sky), is
taken into account:
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F =

⎛
⎜⎜⎜⎜⎝

F11 F12 · · · F1N

F21 F22
...

...
...

FN1 · · · · · · FN N

⎞
⎟⎟⎟⎟⎠ (10)

Let denote F the matrix of view factors coefficients between patches i and jas
computed in (3):

N∑
i=1

Fi j = 1; i = 1, N (11)

In the next formula, the components Bi of vector B are the radiosities, or, radiant
fluxes per unit area, onpatch i while the components Ei of E , are the radiant exitances.
The radiosity equations can be written:

(I − RF)B = (I − G) B = M B = E (12)

This discrete formulation leads to a linear system of equations for which many
algorithms are available. The RF matrix, formed by the products of the view factors
by the reflectances, is a non-symmetric matrix (except if all the reflectances and
patch areas are equal), but the radiosity matrix M is diagonally dominant and well-
conditioned.

In order to integrate the radiosity method in the environment of finite element
method [35], it is suitable to work with symmetric matrices [56, 57].

The equation structure allows introducing another important property of the radia-
tive exchanges: the principle or reciprocity

∀(i, j) : Ai Fi j = A j Fji (13)

We rewrite (12) explicitly and divide each line i by Ai/ρi

Ai

ρi
Bi − Ai

n∑
k=1

Bk Fik = Ai

ρi
Ei (14)

In pure diffuse reflection, this relation expresses the energy transfers between the N
elements of the scene. If we use the reciprocity relation, we can transform (12) by
multiplying the view factor matrix F by the diagonal matrix Si j = Aiδi j of the patch
areas.

We obtain then a symmetric matrix with N (N+1)/2 elements.



18 B. Beckers

SF =

⎡
⎢⎢⎢⎣

0 A1F12 A1F13 · · ·
A2F21 0 A2F23 · · ·
A3F31 A3F32 0 · · ·
...

...
...

. . .

⎤
⎥⎥⎥⎦ (15)

Then, multiplying (12) by SR−1, we can write:

(
S R−1 − SF

)
B = S R−1E (16)

And in symmetrical form:

S
(
R−1 − F

)
B = S R−1E → B = (

R−1 − F
)−1

R−1E (17)

The second member SR−1E represents the incident power on the patch [3]. To solve
this system of linear equations, a lot of very efficient methods are available. The
Cholesky one [75] is very well known in the field of finite element method. We have
good feedback for problems with more than one million of degrees of freedom. For
thousands of degrees of freedom, it works very well on PCs.

In each line i of matrices F or SF, the nonzero terms indicate what elements are
visible from element i . So, we can build an incidence matrix L composed of integers,
which gives the connections between all the elements of the scene. It will help us
to manage the system of equations and to identify possible ways to condense the
system of equations.

Despite the fact that the heaviest part of the computation time is the evaluation of
matrix F , we can also try to accelerate the step of solution by using iterative methods
as explained in the next section.

4.4 Neumann Series

Because the matrix G = RF, defined in (11), has a norm less than one, the matrix M
is invertible and the Neumann series of successive multiplications of G converges to
its inverse [20, 81, 85].

f ‖G‖ < 1 then M−1 = [I − G]−1 =
∞∑

a=0

Ga (18)

This property gives indications to develop very efficient methods to solve these equa-
tions. It also gives justifications for iterative solutions. As noted by several authors
[2, 26, 42], each step of the iterative process can be interpreted as the introduction
of an additional reflection on all the elements of the scene.
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The ability to decompose the solution of the radiosity equation in orders of reflec-
tion is very interesting, because it allows comparing this method with the ray tracing
one, where the order of reflections is a usual stopping criterion. Therefore, the cal-
culation is often stopped at the second reflection. This is true in ray trace software
as Radiance [28], but it is also the case for a radiosity solver like V-Ray software
(http://www.chaosgroup.com). In the latter, we can choose one or two reflections.

In a city, multiple reflections are possible, for instance between facades of narrow
streets. Considering an average reflectance of 20%, the energy flow is not superior
to 20% after the first reflection, 4% after the second one and less than 1% after the
third one. However, if someone is interested in local results, the overall reasoning
can be confusing, because the reflected energy may be the only available on certain
surfaces, where it takes a considerable importance.

In an inner space, the radiation from the Sun and the sky through the window
illuminates largely the floor and part of the walls, but it leaves the ceiling in full
shade. The first reflection on the ground is the one that illuminates the ceiling. As
it is generally light in color, the ceiling returns a second non-negligible reflection to
the ground. This light is the first to reach parts of the ground from where the sky
is not visible. Two reflections are therefore needed to get a realistic rendering of an
interior space in natural light.

But what happens in an outdoor scene? In an urban scene, because we can almost
always see a bit of the sky, the second reflection does not represent a substantial
change in the results, and the following ones can be ignored (except in very specific
configurations, as for example the entrance of a tunnel).

Modern cities all share some essential characteristics: a network of streets delin-
eates parcels built with heights ranging from a fewmeters to tens ofmeters. However,
other features are highly variable. This is the case of the coatings optical properties.
Facades can be dark (brick) or light (limed walls), with a rate of glazing (and so,
specular reflection) from few percent to almost 100% (towers of glass and steel).

An important parameter of environmental physics is the albedo. This is an average
reflection coefficient over a very large area. For instance, we can refer to the albedo of
a planet (the Earth albedo is about 30%, [7]). The albedo of sea ice, ocean, desert or
forest is fairly easy to assess. Today, while cities cover large parts of the land area, it
is necessary to know their albedo. However, the semi-regular structure of cities gives
highly variable albedo. The relationship between apparently light and dark surfaces
also depends on building height and density of the neighborhood.

Another characteristic of urban settings, due to the fact that cities are relatively low
and very spread out, is that what we can see from a given point is very variable. From
a window on a ground floor, the view can be limited to only two surfaces: the street
and the facing wall. From a window at the top of a tower, we can see dozens, even
hundreds of buildings. Calculating an urban geometry therefore strongly motivates
to play on the buildings level of detail.

Distant buildings can be replaced by their prismatic envelopes. This kind of pro-
cedure has been used for a long time to accelerate the detection of visible surface.
Several options are available; since bounding boxes [32] to prismatic envelopes and
convex bounding polyhedrons.

http://www.chaosgroup.com
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5 Coupling Short and Long Waves in Transient Situations

The shortwave radiative exchanges limited to diffuse reflections can be calculated
on the basis of the radiosity alone. More complete treatments, including the transient
heat transfer in solids and the possible inclusion of the atmosphere, require more
sophisticated methods. Starting from the classical equation of heat conduction in a
solid:

div [k grad T ] + Q = γ cv

∂T

∂t
(19)

Q is the heat density (Wm−3), T the temperature measured in degrees Kelvin, k the
thermal conductivity (Wm−1 K−1), t is the time, cv , the specific heat (J kg−1 K−1)
and γ , the density (kgm−3). The variable conjugated with the temperature is the heat
flux linked to the temperature gradient by Fourier’s law.

Todiscretize these equations, the usual technique is the nodalmethod [50], used for
instance in Esarad [64]. This technique also known as “Lumped Parameter Method”
[65, 68, 78] offers a number of advantages amongwhichwe note that it highlights the
thermal balance and heat flux. The fundamental assumption of the method is the use
of isothermal nodes arranged in a network where they are connected by resistances
and capacitances (electrical analogy). Its main drawback is that it requires a step
of idealization from the geometrical definition of the model (CAD step) and the
definition of the calculation model. For small models, it can be very useful, because
it gives a summary of the exchanges. However, it offers only a coarse representation
of the temperatures distribution.

An alternative is the finite elements method, originally developed in mechanical
and civil engineering. In this method, the domain is covered with a congruent mesh.
In each element, the field is replaced by a polynomial approximation respecting the
required field continuity conditions through the interfaces (borders with neighboring
elements). The border area consists of a boundary layer throughwhich the exchanges
occur with the fluid (here, the atmosphere). Through this boundary are also occurring
radiative exchanges with the outside or with other elements of the scene.

In the thermal problem, the temperature field is discretized, so that the result of
the simulation is a temperature map “painted” on the skin of the solid.

The boundary conditions consist of Dirichlet or essential conditions where the
temperature T is imposed, natural or Neumann conditions where the heat flux is
imposed, and Robin conditions, which are a weighted combination of Dirichlet and
Neumann boundary conditions. These three zones cannot overlap and their union
should be the total boundary.

The loads are of different natures:

Heat flow from the shortwave solar radiation. It is calculated separately in the
“radiosity” module;
Long wave radiative fluxes are travelling towards other elements of the scene or
to the atmosphere. They are proportional to the difference of fourth power of
temperatures.
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Convective flow proportional to the temperature difference between the surface of
the solid and a reference point of the fluid in which it merges [30].
Any other heat flow that may be estimated directly or expressed in terms of tem-
peratures, for example, evapotranspiration [53].

In brief, the solid subjected to these heat flows and where the temperature is known at
least at one point will experience modifications as a result of internal heat conduction
and the ability of materials to store heat. In finite element calculation, it is a classical
problem, its theory was developed in the 1970s [33].

The time component is calculated by a finite difference method. At the level of
discretization, we must ensure that the temporal pattern is consistent with the spatial
discretization.

In this problem, the main difficulty is the calculation of the view factors of the
surfaces brought into contact. It may be assumed they have been calculated in the
previous step (shortwave). If they must apply for both analyses, both meshes have to
coincide.

To calculate the convective exchanges, one must know the temperature of the air,
which requires in principle to include modeling of the fluid.

The calculation of thermal interactions in the city encompasses threemajor phases:

the definition of the geometry,whichmust be structured andhas to allowprocessing
of very large volumes of data,
the view factors calculation, which involves the effective detection of hidden or
viewed parts,
and finally, the solution of the equations of transient heat conduction in the coupled
conduction-radiation problem.

The methods proposed to solve these problems are qualified, but it is still necessary
to verify that the computation time is acceptable.

Treatment of massive geometric data takes advantage of advances in procedural
methods and in “LOD” (methods of levels of detail) [20]. The calculation of view
factors can take advantage of the progresses made in the Monte Carlo methods or in
the effective treatment of hemispheric and stereographic projections.

For the solution of the coupled system, the choice of the finite element method is
motivated by its ability to provide a temperature map that can be easily compared to
telemetry results [76].

Today, the finite element method is widely used to solve nonlinear problems of
millions of degrees of freedom and benefits from the attention of programmers who
have optimized the algorithms. It may be accused of producing an enormous amount
of results but the task of identifying the relevant information is reduced through
visualization techniques.Use of optimization techniques and sensitivity calculation is
another decisive tool to assist in the understanding and interpretation of the analyzed
phenomena.
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5.1 Improving the Performances of the Finite Element
Solution Using Super Elements

The set of transient equations is linear with respect to conduction and convection, but
not to radiation. In clear sky conditions, due to higher differences of temperatures
(about −50 ◦C in the zenith direction, up to 50 ◦C or more on the ground), the heat
exchanges between sky and city are highly nonlinear. However, for cloudy skies,
the difference can drop drastically [80] leading to an apparent sky temperature very
close to the ambient one. It is then very interesting to condense in a super element
the linear part of the model and to iterate on the degrees of freedom corresponding to
the elements of the city participating at high level to the heat fluxes going to the sky,
i.e. by selecting only the roofs or other elements of the scene [8]. The superelement
technique is well known in the fields of structural mechanics and civil engineering
[20]. It is extensively used in the modeling of large structures like full aircraft or oil
platforms. For this problem, procedural methods will help to organize the data [19].

5.2 Other Aspects of the City Behavior Simulation

Another challenge is to consider the convection, which works well with the nodal
methods [5]. Developments have been performed, dealingwith this aspect or with the
interaction of heat and fluid dynamics [21, 83]. The ventilation aspects could then be
addressed in this framework, with a clear objective: to be able to carry everywhere—
in the squares, in the bottom of streets and inside buildings—themeasurements made
at specific points of the city (on some roofs, near the airport) [24].

In general the problems of fluids structures or fluids solids interactions are still a
major field of research and development in the frame of multiscale and multiphysic
disciplines [38, 77].

Solar radiation reaches the Earth’s surface after passing through the atmospheric
layer. It appears in different forms: direct, diffuse, reflected by the environment
or other elements of the scene. Other phenomena also contribute, for example, the
physical and chemical reactions that take place in the atmosphere and the phenomena
induced by vegetation [23].

Finally we can follow the example of previous works concerned by large dimen-
sion problems [48], but wich will take benefits of the still increasing enhancements
of the computers memory and processors.

6 Conclusion

A complete model of multi-scale energy exchanges should allow the following sim-
ulations: investigating major urban design options with their impact on the overall
urban energy efficiency (which, among other things, allows a better evaluation of
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smart city type proposals); helping urban planning (optimization of urban forms
based on energy conservation criteria); supplying atmospheric models at the macro
scale.

Further developments should deal with the following steps:

1. A “shortwave” model for quickly achieving fast simulations on very large geo-
metric models;

2. A “long wave” model to simulate thermography;
3. A “multiphysics” approach for finding optimal solutions adapted to the urban

project;
4. A complete physical model coupling thermodynamics and aeraulics.

On the basis of an urban geometry model built on procedural principles with an
adaptive level of detail, the shortwavemodel must be able to simulate the distribution
of solar radiation from meteorological data, with time steps of a few minutes, and
taking into account the reflections, in order to calculate the main thermal parameters
(solar gain) and the luminous ones (DaylightAutonomyDA [67] andUsefulDaylight
Illuminance UDI [54]). The calculation time is an important issue for the three
main anticipated applications: calculation of the urban albedo variation, urban design
assistance and optimization of urban shapes (on criteria such as solar energy potential
or photovoltaic solar access).

For the long wave model, calculation of surface temperatures can be achieved at a
reasonable cost if we agree to simplify the convection contribution. Thermography is
now present in our visual experience, and architects wish to use it soon as component
of simulation in their projects. The many existing thermographic images, including
at urban scale (above ground thermography performed using satellites, aircraft or
drones), are altogether test cases available to calibrate the simulations. This objective
requires leaving the nodal methods for Finite Element Methods.

Multiphysic studies should then focus on heat, light, acoustics and cross ventila-
tion. To optimize the urban shapes, the last one is indeed much more available—and
then efficient—than forced ventilation (wind). Therefore, these studies do not nec-
essarily need very sophisticated simulations, but rather to follow a methodical order
still to be explored.

Finally, the complete physical model should be able to take into account the heat-
fluid coupling, with, as a primary objective, the transposition anywhere in the city of
the data collected by weather stations. To achieve the quantification of the different
contributions to urban climate, multiscale analysis and model reduction techniques
will undoubtedly be necessary.

To optimize a city on criteria of comfort or energy efficiency, it is clear that prior
understanding of urban climate and precise quantification of the different contribu-
tions to this climate are absolutely necessary. This is even truer in order to act on
the air quality at the urban scale. Pioneering works have shown, first, that the rel-
evant choice of a LoD (Level of Details) of the urban 3D model is essential [49]
and, secondly, that any major action on the climate must be preceded by an analysis
allowing to assess not only the effectiveness of the different possible actions, but
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also the order in which they should be carried out, otherwise unexpected—and pos-
sibly dangerous—results are obtained. Cities are systems, and a systemic approach
is mandatory.

We believe that achieving the first three objectives is needed before we can work
on the last one seriously. Another necessary condition is that the FEM community is
interested in this subject. Raising this interest has been the main motivation of this
chapter.
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A Path-Following Method Based on Plastic
Dissipation Control

Boštjan Brank, Andjelka Stanić and Adnan Ibrahimbegovic

Abstract A path-following method that is based on controlling incremental plastic
dissipation is presented. It can be applied for analysis of an elasto-plastic solid or
structure. It can be also applied for complete failure computation of a solid or struc-
ture that is performed by using amaterial failuremodel. In this work, we applied it for
computations with the embedded-discontinuity finite elements that use rigid-plastic
cohesive laws with softening to model material failure process. The most impor-
tant part of the path-following method is the constraint function. Several constraint
functions are derived and proposed for geometrically nonlinear small strain elasto-
plasticity with linear isotropic hardening. The constraint functions are also derived
for the embedded-discontinuity finite elements. In particular, they are derived for
2-d solid (and frame) embedded-discontinuity finite elements that describe cohe-
sive stresses (or forces and moments) in the discontinuity curve (or point) by rigid-
plasticity with softening. Numerical examples are presented in order to illustrate
performance of the discussed path-following method.

1 Introduction

The most used path-following method in the nonlinear finite element analysis of
solids and structures is probably the Crisfield’s cylindrical arc-length method, see
e.g. [1]. It can be successfully used for solving geometrically linear problems as
well as many types of geometrically and materially nonlinear problems. However,
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it might fail when computing solid or structural failure due to material failures. For
this kind of problems, several modified arc-length methods were proposed, see e.g.
[7, 15] and references therein. The problem of those modifications is that they are
very much problem dependent. A general and robust path-following method for
complete failure computation of solids and structures due to material failures is still
to be designed.

The most important part of the path-following method is the constraint equation.
Recently, [17] presented a path-followingmethod based on constraint equation that is
controlling dissipation of inelastic material. This kind of path-following method can
be used when solid or structural material is modelled by an inelastic material model,
e.g. by an elasto-plastic or damage model. In [17], several constraint functions were
presented. In particular, they derived constraint functions for geometrically linear
and geometrically nonlinear damage, and geometrically linear elasto-plasticity.

In this work we extent the ideas of [17] to geometrically nonlinear small
strain elasto-plasticity and to embedded-discontinuity formulations. In particular,
we derive explicit and implicit constraint functions that control incremental dissipa-
tion for small strain elasto-plasticity with isotropic hardening. Moreover, we derive
explicit constraint functions, based on plastic dissipation control, for solid and beam
embedded-strong-discontinuity-in-displacements (or rotation) finite elements. These
kind of elements have become during the last years an interesting tool for modelling
and simulation of solid or structural failure due tomaterial failure, see e.g. [8, 12, 13].
Two of the authors of this work have been involved in derivation of the embedded-
strong-discontinuity finite elements for analysis of different structures and solids.We
refer to [2, 9, 14] for planar Euler-Bernoulli beams (Fig. 1), to [10] for Timoshenko
beams (Fig. 2), and to [3, 4, 6] for 2d-solids (Fig. 3). In several cases, convergence
problems were observed when computing failure analysis with those complex ele-
ments and standard cylindrical arc-length method. This problem is addressed in this
work. The aimof thiswork is therefore a derivation of a novel path-followingmethod,
based on dissipation control, which should be more robust for analysis of solid and
structural failure problems by the embedded-discontinuity finite elements.

Fig. 1 Euler-Bernoulli beam finite element with embedded-strong-discontinuity in rotation. Cross-
section softening in rotation is described by rigid-plasticity with softening
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Fig. 2 Multi-layered Timoshenko beam finite element with layer-wise embedded-strong discon-
tinuity in axial displacement. Material failure at each layer is described by rigid-plasticity with
softening

m
nxΓ

Ωe− Ωe+

1

4

2

3

Ωe+

αn0

m
nxΓ

Ωe− Ωe+

1

4

2

3

Ωe+

αm0

Fig. 3 2-d solid embedded-discontinuity quadrilateral: constant separations along the discontinuity
line for mode I (left) and mode II (right). Cohesive stresses in discontinuity are described by rigid-
plasticity with softening

2 Path-Following Method Framework

In the nonlinear finite element method for solids and structures, one has to solve a
system of nonlinear equations related to the equilibrium of the nodes of the finite
element mesh

R (u (t) , λ (t)) = Rint (u (t)) − f ext (λ (t)) = 0 (1)

whereRint and f ext are vectors of internal and external (equivalent) nodal forces (and
moments, if they are present in the formulation), respectively, u is vector of unknown
nodal displacements (and rotations, if they are present in the formulation), λ is the
load convergence problems when factor, and t ≥ 0 is a monotonically increasing
parameter called the pseudo-time or the arc-length. In many practical cases, the
system of Eq. (1) is possible to solve only by introducing an additional constraint
equation

g (u (t) − u (t − �t) , λ (t) − λ (t − �t)) = 0 (2)

where � is a (small) incremental change. Solving (1) and (2) simultaneously is
called the path-following method or the arc-length method, see e.g. [1]. The solu-
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tion of (1) and (2) is searched for at discrete pseudo-time points 0 = t0, t1, . . . ,

tn, tn+1, . . . , t f inal . Assume that configuration of solid or structure at tn is known;
it is defined by the pair {u (tn) , λ (tn)} = {un, λn}. At searching for the next config-
uration at tn+1 = tn + �tn , we decompose un+1 and λn+1 as

un+1 = un + �un, λn+1 = λn + �λn (3)

where �un and �λn are the increments of the displacement vector and the load
vector, respectively. With (3), Eqs. (1) and (2) can be rewritten for tn+1 as

Rn+1 (un, λn;�un,�λn) = 0
gn+1 (�un,�λn) = 0

(4)

where�un and�λn are the unknowns. The solution of (4) is searched for iteratively
by the Newton-Raphson method. At iteration i , the following linear system has to
be solved

[
K i

n+1 Ri
n+1,λ[

gi
n+1,u

]T
gi

n+1,λ

] {
�ũi

n

�λ̃i
n

}
= −

{
Ri

n+1

gi
n+1

}
(5)

for the pair
{
�ũi

n,�λ̃i
n

}
, where (◦),λ and (◦),u denote the derivatives of (◦) with

respect to �λn and �un , respectively, and K i
n+1 = Ri

n+1,u is the tangent stiffness
matrix. New iterative guess is obtained as �ui+1

n = �ui
n + �ũi

n and �λi+1
n =

�λi
n + �λ̃i

n . System of Eq. (5) can be effectively solved by the bordering algorithm,
see e.g. [18] for details. When the iteration loop ends due to fulfilment of a conver-
gence criterion, the configuration {un+1, λn+1} at tn+1 is obtained and search for the
solution at the next pseudo-time point can start.

The above presentation is valid for any kind of the constraint function gn+1 in
(4). However, the robustness and efficiency of the path-following method depend
crucially on the specific form of this function. In what follows, we will elaborate for
the case when gn+1 controls the structural plastic dissipation, which can be computed
when elasto-plastic and/or rigid-plastic material models are used.

3 Dissipation Constraint for Geometrically Nonlinear
Small Strain Elasto-plasticity

In this section, we will present several formulations for defining constraint equation
gn+1 = 0 in (4) that controls structural plastic dissipation.
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3.1 Explicit Formulation—Version 1

The rate of plastic dissipation in an elasto-plastic solid or structure is defined as (see
e.g. [8])

Ḋ = Ṗ − �̇ (6)

where Ṗ is the pseudo-time rate of the total energy the solid/structure is receiving,
and �̇ is the rate of the thermodynamic (i.e. the free energy or the stored energy)
potential for plasticity. For the discretized solid/structure in the framework of the
geometrically nonlinear and inelastic finite element method, Ṗ can be written as

Ṗ =
∫

V

ST ĖdV = f ext,T u̇ = λ f̂
ext,T

u̇ (7)

where S and E are vectors comprising 2nd Piola-Kirchhoff stresses and Green-
Lagrange strains, respectively, and V is initial volume. Moreover, it was assumed
in (1) and (7) that the external forces are conservative and can be described as

f ext = λ f̂
ext

, where f̂
ext

is a fixed pattern of nodal forces. The free energy poten-
tial (i.e. the stored energy) of a solid/structure, based on the St. Venant-Kirchhoff
elasticity and plasticity with linear isotropic hardening, is

� = U + H (8)

where the stored energy due to elastic deformations is

U =
∫

V

1

2
Ee,TDEedV =

∫

V

1

2
STD−1SdV (9)

and the stored energy due to material hardening is

H =
∫

V

1

2
Khξ

2
h dV (10)

Here, Ee = E − Ep are elastic strains, E p are plastic strains, D is symmetric con-
stitutive matrix, S = DEe, Kh is hardening modulus, and ξh is strain-like variable
that controls isotropic hardening. For any other type of isotropic and/or kinematic
hardening, H in (10) has to be changed accordingly. Derivation of U with respect to
the pseudo-time gives

U̇ =
∫

V

Ė
T
C

ep
D−1SdV = u̇T

∫

V

BT Cep D−1SdV (11)
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where Cep and B denote the consistent symmetric elasto-plastic tangent modulus
and the strain-displacement matrix, respectively. The following relations were used
in (11): Ṡ = Cep Ė, Ė = Bu̇. Derivation of H with respect to the pseudo-time yields

Ḣ =
∫

V

Khξh ξ̇hdV =
∫

V

Khξh

(
∂ξh

∂u

)T

u̇ (12)

Let us use the forward Euler pseudo-time step to express dissipation at pseudo-time
point tn+1 by using known dissipation at tn

Dn+1 = Dn + Ḋn�tn, �tn = tn+1 − tn (13)

Let us further define the following constraint equation

gn+1 = Dn+1 − Dn − τn = 0 (14)

where τn is a predefined (required) value of dissipation at pseudo-time step
[
tn, tn+1

]
.

It follows from (13), (6)–(8), (11) and (12) that (14) can be rewritten as

gn+1 = Ḋn�tn − τn = �uT
n

(
λn f̂

ext − f ∗
n

)
− τn = 0 (15)

where �un = u̇n�tn was defined, and

f ∗
n =

∫

V

BT
n C

ep
n D−1SndV +

∫

V

Khξh,n

(
∂ξh

∂u

)
n

dV (16)

It follows from (15) that the derivatives needed in (5) are simply

gn+1,λ = 0 , gn+1,u = λn f̂
ext − f ∗

n (17)

Most of the terms in Eq. (16) are computed during the elasto-plastic analysis and can
be readily used to compute (15) and (17). An exception is (∂ξh/∂u)n . In practice,
one should only compute f ∗

n for configuration at tn and use it in the path-following
method when iterating to find configuration at tn+1.

The second integral on the right hand side of (16) should be usually smaller than
the first integral, which might be a justification for neglecting the former integral
when computing (16), i.e.

f ∗
n → f ∗,approx

n =
∫

V

BT
n C

ep
n D−1SndV (18)
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In such a case, the corresponding approximation
(
Ḋn�tn

)approx
would be bigger

than Ḋn�tn in (15).

3.2 Explicit Formulation—Version 2

An alternative for the expression (6) for the rate of plastic dissipation in an elasto-
plastic solid or structure is (see e.g. [8])

Ḋ =
∫

V

(
Ė

p,T
S + ξ̇hq

)
dV (19)

where q = −Khξh . Since Ė
p = Ė − Ė

e = (
I − D−1Cep

)
Ė, one can rewrite (19) as

Ḋ =
∫

V

u̇TBT
(
I − D−1Cep

)T
SdV −

∫

V

ξ̇h KhξhdV (20)

If (20) is used in (15), the constraint Eq. (15) transforms to

gn+1 = Ḋn�tn − τn = �uT
n f̄ n − τn = 0 (21)

where

f̄ n =
∫

V

BT
n

(
I − D−1Cep

n

)T
SndV −

∫

V

Khξh,n

(
∂ξh

∂u

)
n

dV (22)

Comparison of (15) and (16) with (21) and (22) yields (note that
(
I − D−1Cep

n

)T =
I − Cep

n D−1)

λn f̂
ext =

∫

V

BT
n SndV (23)

which states that the equivalent external nodal forces are in equilibrium with the
internal nodal forces at tn , see e.g. [8], a condition already accomplished at the
start of the current pseudo-time step

[
tn, tn+1

]
. This leads us to a conclusion that

constraints (15) and (21) are completely equivalent but computed differently. The
derivatives of (21) are

gn+1,λ = 0 , gn+1,u = f̄ n (24)
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Fig. 4 Plastic dissipation at bulk point of elasto-plastic material with hardening for pseudo-time
increment

[
ty, t̄

]
and 1d case

It can be seen from (19) and (22) that approximation (18) corresponds to approxi-
mation

Ḋ → Ḋapprox =
∫

V

Ė
p,T

SdV (25)

For a 1d case, i.e. stretching/compressing of a bar, integration of (25) relates to
Fig. 4 (left), and integration of (19) and (20) relates to Fig. 4 (right). In Fig. 4, plastic
yielding at a material point of such a bar is presented, where σ , ε p, and σy denote
stress, plastic strain and yield stress, respectively. Let us look at the plastic dissipation
at the end of the pseudo-time increment

[
ty, t̄

]
, where ty is the pseudo-time point

at the beginning of plastic yielding. Since the stress monotonically increases during
this increment, ε p = ξh , see [8]. Plastic dissipation at a material point at t = t̄ is the
grey area on Fig. 4 (right). When energy storage in the material point due to material
hardening is neglected, an approximation of plastic dissipation at t = t̄ is obtained,
which is bigger than the plastic dissipation and corresponds to the grey area on Fig. 4
(left).

Equation that corresponds to (18) and (25), i.e. (15) without the “hardening term”
(more precisely, (15) without the second integral on the right hand side of Eq. (16)),
was used in [17] for geometrically linear elasto-plastic problems. However, it is clear
from the above derivations that the constraints (15) and (21) can be both used for
geometrically linear as well as for geometrically nonlinear small-strain elasto-plastic
problems.

3.3 Implicit Formulations

In this section, we present implicit counterparts of version-1 and version-2 explicit
formulations presented above. The backward Euler pseudo-time step can be used in
(13), i.e.
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Dn+1 = Dn + Ḋn+1�tn, �tn = tn+1 − tn (26)

which leads to the following constraint equation (compare with (15))

gn+1 = Ḋn+1�tn − τn = �uT
n

(
λn+1f̂

ext − f ∗
n+1

)
− τn = 0 (27)

where

f ∗
n+1 =

∫

V

BT
n+1C

ep
n+1D

−1Sn+1dV +
∫

V

Khξh,n+1

(
∂ξh

∂u

)
n+1

dV (28)

Note that �un in (27) is defined as �un = u̇n+1�tn . Expressions for the derivatives
of gn+1 are much more complex in comparison with (17) and can be written as

gn+1,λ = �uT
n f̂

ext
, gn+1,u = λn+1 f̂

ext − f ∗
n+1 − (

f ∗
n+1,u

)T
�un (29)

The problem is to derive f ∗
n+1,u, which demands, among other derivatives, the deriv-

ative of elasto-plastic tangent modulus Cep
n+1,u.

Alternatively to (27), the constraint equation can be expressed as (compare with
(21))

gn+1 = Ḋn+1�tn − τn = �uT
n f̄ n+1 − τn = 0 (30)

where

f̄ n+1 =
∫

V

BT
n+1

(
I − D−1Cep

n+1

)T
Sn+1dV −

∫

V

Khξh,n+1

(
∂ξh

∂u

)
n+1

dV (31)

and
gn+1,λ = 0, gn+1,u = f̄ n+1 − (

f̄ n+1,u

)T
�un (32)

where, again, f̄ n+1,u calls for derivative of elasto-plastic tangent modulus Cep
n+1,u.

It is obvious that f ∗
n+1,u and f̄ n+1,u, needed in (29) and (32), respectively, are not

easy to derive and compute, which renders explicit formulations more attractive for
implementation than implicit. On the other hand, the explicit formulations might turn
to be less robust than the implicit ones.

4 Dissipation Constraint for Embedded Discontinuity
Finite Elements

Let us derive the plastic dissipation constraint for a situation when the material fail-
ure in solid is modelled by the embedded-displacement-discontinuity finite element
formulation and inelastic softening cohesive traction-separation law is used at the
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discontinuity. In what follows, we will restrict to 2-d solids with a single fracture
curve (i.e. with a single discontinuity) and to frames with softening plastic hinges.
Let the bulk of the 2-d solid or frame be modelled as elastic and let the cohesive
stresses at the discontinuity be modelled by rigid-plasticity with linear softening.

The free energy potential (i.e. the stored energy) of the solid can be written as

� = (U − S) + Ss (33)

where the stored energy due to elastic deformations of the bulk

U =
∫

V

1

2
ETDEdV =

∫

V

1

2
STD−1SdV (34)

is diminished for S due to localized plastic deformations at the failure curve. Due to
softening rigid-plasticity, those plastic deformations equal to kinematic variables α

that describe material separation along the discontinuity. The S in (33) is defined as

S =
∫




αT td
 (35)

where t is vector of cohesive stresses in discontinuity, and 
 is length of the discon-
tinuity curve. The Ss in (33) is due to the linear softening and takes the form

Ss =
∫




1

2
Ksξ

2
s d
 (36)

In (36), Ks < 0 is softening modulus, and ξs is displacement-like variable that con-
trols softening. The pseudo-time derivatives of (34), (35) and (36) are

U̇ =
∫

V

Ė
T
SdV , Ṡ =

∫




α̇T td
, Ṡs =
∫




Ksξs ξ̇sd
 (37)

The derivatives in (37) can be expressed by u̇ using Ė = Bu̇ and the chain rule

α̇ = ∂α

∂u
u̇, ξ̇s =

(
∂ξs

∂α

)T
∂α

∂u
u̇ (38)

The constraint equation can be defined for forwardEuler pseudo-time step (according
to the version-1 of above presented explicit formulation, see (15)) as

gn+1 = Ḋn�tn − τn = �uT
n

(
λn f̂

ext − f ∗
n

)
− τn = 0 (39)
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where f ∗
n in (39) is now defined as

f ∗
n =

∫

V

BT
n SndV +

∫




(
∂α

∂u

)T

n

tnd
 +
∫




Ksξs,n

(
∂α

∂u

)T

n

(
∂ξs

∂α

)
n

d


︸ ︷︷ ︸
f̄

∗
n

(40)

The equilibrium of solid or structure at tn demands equality of external and internal

nodal forces, i.e. λn f̂
ext = ∫

V
BT

n SndV . Thus, inserting (40) in (39) yields

gn+1 = Ḋn�tn − τn = �uT
n f̄

∗
n − τn = 0 (41)

where f̄
∗
n is indicated in (40). The derivatives of gn+1 are the expressions from (17)

with f ∗
n from (40). In the implementation of embedded-discontinuity finite elements,

kinematic variables α are condensed on the element level. This enables to compute
(∂α/∂u)n in (40) as assembly of element contributions. Since the condensation on
the element level (e) yields

�α(e)
n = (

Kαα,(e)
)−1

n Kαu,(e)
n �u(e)

n , K (e)
n =

[
Kuu Kuα

Kαu Kαα

](e)

n

(42)

one has

(
∂α

∂u

)(e)

n

= (
Kαα,(e)

)−1

n
Kαu,(e)

n (43)

where K(e)
n is the element stiffness matrix at tn , which can be decomposed as shown

in (42). How (∂ξs/∂u)n in (40) is computed will not be further elaborated.
The third integral on the right hand side of (40) might be neglected, i.e.

f̄
∗
n → f̄

∗,approx
n =

∫




(
∂α

∂u

)T

n

tnd
 (44)

The corresponding approximation
(
Ḋn�tn

)approx
is smaller than Ḋn�tn in (41) since

Ks < 0. This is illustrated for 1d case, i.e. stretching/compressing of a bar, in Fig. 5,
where plastic dissipation for a point at the discontinuity is presented. For a 1d case
integration of (41) relates to Fig. 5 (right), and integration of (41) by using (44) relates
to Fig. 5 (left). In Fig. 5, f is cohesive stress, f f is material failure stress at which
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Fig. 5 Plastic dissipation at discontinuity point for rigid-plastic material with linear softening for
pseudo-time increment

[
ty, t̄

]
and 1d case

softening begins, and α is separation. The plastic dissipation at the end of the pseudo-
time increment

[
t f , t̄

]
is shown, where t f is pseudo-time point at material failure.

Since the cohesive stress monotonically decreases during this increment, α = ξs .
Plastic dissipation at a material point at t = t̄ is the grey area on Fig. 5 (right). When
material softening is neglected, an approximation of plastic dissipation at t = t̄ is
obtained, which is smaller than the plastic dissipation and corresponds to the grey
area on Fig. 5 (left).

The above derivation is the embedded-discontinuity softening-rigid-plasticity
counterpart of the concepts introduced above in section “Explicit formulation—
version 1”. If one wants to exploit the concepts from “Explicit formulation—version
2”, the rate of plastic dissipation has to be considered, which is defined as (since the
plastic dissipation takes place only at the discontinuity curve)

Ḋ =
∫




(
α̇T t + ξ̇sqs

)
d
 (45)

where qs = −Ksξs . It is straightforward to show that the constraint equations related
to (45) is (41). The corresponding implicit formulation will not be considered here.

When dealing with frames with elastic bulk and softening plastic hinges, the
integral over the discontinuity curve in the expressions above is replacedwith the sum
over discontinuity points (i.e. the sum over softening plastic hinges). For example,
in such a case, (35) transforms to

S =
n p∑

i=1

αT
i ti (46)

where n p is number of discontinuity points in the frame, and αi and ti are vectors
comprising jumps in displacements and rotations and cohesive forces and moments,
respectively at i-th softening plastic hinge.
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5 Numerical Examples

In this section, we present two examples. The following finite elements are used: (i)
4-node assumed natural strain (ANS) shell element with stress-resultant Ilyushin-
Shapiro elasto-plasticity (which is a shell stress-resultant counterpart of shell J2
plasticity with hardening and von Mises yield criterion), see [5], (ii) stress-resultant
planar Euler-Bernoulli beam element with embedded-discontinuity in rotation repre-
senting softening plastic hinge. The used material models are elasto-plasticity with
hardening (for the bulk) and rigid-plasticity with softening (for the discontinuity
point), see Fig. 1 and [2, 9]. Those elements and plastic dissipation based path-
following method have been implemented into the computer code AceFEM, see
[11]

The path-following method that is used for the analysis of the first example is
based on Eq. (15) with f ∗

n computed with (18). For the initial, i.e. elastic, part of
the response, standard cylindrical Crisfield arc-length method was used, see e.g. [1],
with

gn+1 = �uT
n �un − τn (47)

see also [16]. The path-following method that is used for the analysis of the second
example is based on the sum of two above presented equations: (i) equation (15)
that takes into account plastic dissipation due to hardening plasticity ( f ∗

n in (15) was
computed with (18)), and (ii) Eq. (41) that takes into account plastic dissipation due
to softening (f̄

∗
n in (41) was computed with (44) and (46)).

5.1 Geometrically Nonlinear Elasto-plastic Shell Analysis

We consider cylindrical panel from Fig. 6, which is subjected to a set of horizon-
tal axial forces λH0 (where H0 = 1000N), applied at each node of the mesh at
curved edge at y = 0, and to a vertical point load λV0 (where V0 = 10N). Geom-
etry and boundary conditions of the panel with thickness h are presented in Fig. 6.
The panel is made of isotropic elasto-plastic material (steel) with elastic modulus
E = 210,000N/mm2, Poisson’s coefficient ν = 0.3, yield stress σ y = 235N/mm2

and hardening modulus Kh = 0. Finite element mesh consists of 24× 24 elements.
Table1 presents the input data for used path-following methods. The analysis started
with standard arc-length, which was later replaced with the dissipation controlled
path-following method.

Figure7 shows initial and deformed finite element meshes. Load factor λ versus
vertical displacement curves for the two nodes, marked on Fig. 7 (left), are presented
in Fig. 8. At point A on Fig. 8, the Crisfield cylindrical arc-length, see (47) and
Table1, failed to converge. If the solution method was switched to the dissipation



42 B. Brank et al.

R = 1270 mm 
L = 2032 mm 
θ = 57.30° 
h = 5 mm 

Fig. 6 Shell panel data

Table 1 Elasto-plastic shell: data for used path-following methods

τ 0 τ n,max Desired number
of iterations

Convergence
tolerance

Arc-length 0.5 1 8 10−8

Dissipation based 102 Nmm 105 Nmm 8 10−8

Fig. 7 Initial mesh and deformed mesh (at the end of the analysis, see Fig. 8)

based path-following method after the plasticity had started (which was before point
A), the solution path could be traced much beyond point A. This example illustrates
that the dissipation based path-following method may be superior to the cylindrical
arc-length for elasto-plastic problems.

5.2 Failure of Steel Frame

A planar steel frame from Fig. 9 is analysed with the stress-resultant elasto-plastic
geometrically linear beam Euler-Bernoulli finite element with the embedded strong
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Fig. 8 Load factor versus vertical displacement uz for nodes 1 and 2

Fig. 9 Planar steel frame and the finite element mesh

discontinuity in rotation, see e.g. [2] and Fig. 1. The columns and the beam are
discretized as shown on Fig. 9 (right). The material Young’s modulus is E =
210,000N/mm2 and the yield stress is σ y = 235N/mm2. It is assumed that the yield
moment of a cross-section depends on the axial force N as

My (N ) = W

(
σy − |N |

A

)
(48)

where W is the bending resistance cross-section modulus, and A is the cross-section
area. Moreover, it is assumed that the ultimate moment Mu is also a function of the
axial force N as
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Fig. 10 Moment-curvature relation for the integration point. Moment versus jump in rotation line
for the plastic hinge

Mu (N ) =
{

Mref,0
u

(
1.03 + 0.85 N

Ny

)
i f N < −0.035Ny

Mref,0
u i f N ≥ −0.035Ny

(49)

where Ny = Aσy and Mref,0
u = Wplσy , where Wpl is the plastic modulus. The stress-

resultant elasto-plasticity for the bulk is presented in Fig. 10 (left). The rigid-plasticity
with softening, used in rotational softening plastic hinge, is presented in Fig. 10
(right). It is assumed that softening rotational hinge response is governed by linear
softening modulus Ks .

The data for the HEA340 are: A = 12721.5mm2, modulus of inertia
I = 264,213,316mm4, Wpl = 1,761,321mm3, linear hardening modulus Kh =
5.3·1011 Nmm2, Ks =–2.0·109 Nmm.Thedata for theHEB300are: A = 14,282mm2,
I = 241,867,801mm4, W pl = 1,780,471mm3, Kh = 6.3·1011 Nmm2 and Ks = –
2.0·109 Nmm. The load consists of the horizontal force λH0, where H0 = 35kN and
two vertical forces V = 2800kN that remain constant throughout the analysis.

The standard arc-length method (see Table2) failed to converge at point A on
Fig. 11. If we replaced it by the path-following method with dissipation control (see
Table2) after the activation of the first plastic hinge, complete failure was computed.
Figure12 (left) shows deformed configuration at pointBmarked onFig. 11. The value
of plastic rotation at softening plastic hinges at that configuration are presented in
Fig. 12 (right).

Table 2 Planar steel frame: data for used path-following methods

τ 0 τ n,max Desired number
of iterations

Convergence
tolerance

Arc-length 500 500 5 10−10

Dissipation based 1 Nmm 105 Nmm 5 10−10
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Fig. 11 Load factor versus horizontal displacement of the upper left corner of the frame

Fig. 12 Deformed configuration. Plastic hinges and corresponding ratio of plastic rotation α/αs
(in percentage)

6 Conclusions

In the first part of this work, we studied in detail different constraint functions for
controlling incremental plastic dissipation in geometrically nonlinear elasto-plastic
solid and structural problems. The derived constraint functions can be used to gov-
ern a dissipation-based path-following method for elasto-plasticity with isotropic
hardening, which is an extension of the work presented in [17]. It turned out (see
1st example in “Numerical examples”) that the resulting path-following method can
be superior to the standard cylindrical Crisfiled’s arc-length method [1]. Moreover,
one should have in mind that the latter method sometimes allows for unrealistic,
spurious elastic unloading of a complete structure [15]. This cannot happen with
the dissipation-based path-following method, since elastic unloading of complete
structure is not possible when using this method.

In the second part of the work, the dissipation-based path-following method was
extended to embedded-discontinuity finite element formulations. Those formulations
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are used to model material failure in solids and structures. The constraint functions
were derived for 2d-solid and plane-frame embedded-discontinuity finite elements
that represent cohesive stresses (or forces and moments) in the discontinuity by
rigid-plasticity with softening. It turned out that the dissipation-based path-following
method is very suitable for computation of complete failure of solids and structures
by using embedded-discontinuity finite elements (see 2nd example in “Numerical
examples”). It should be also very robust for any other finite element formulation
involving material softening.
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Improved Implicit Immersed Boundary
Method via Operator Splitting

Shang-Gui Cai, Abdellatif Ouahsine, Julien Favier
and Yannick Hoarau

Abstract We present an implicit immersed boundary method via operator split-
ting technique for simulating fluid flow over moving solid with complex shape. An
additional moving force equation is derived in order to impose the interface velocity
condition exactly on the immersed surface. The moving force matrix is formulated to
be symmetric and positive definite, thus its calculation is computational inexpensive
by using the conjugate gradient method. Moreover, the proposed immersed bound-
ary method is incorporated into the rotational incremental projection method as a
plug-in. No numerical boundary layers will be generated towards the velocity and
pressure during the calculation. The method is validated through various benchmark
tests.

1 Introduction

The immersed boundary method has gained popularity in recent years for its simplic-
ity and efficiency in simulating flows with complex moving geometries. Traditional
arbitrary Lagrangian-Eulerian (ALE) formulation [16] builds themesh that conforms
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the solid body. For moving geometries, the mesh is deformed or re-established at
each time step. It is always important, but usually difficult, to maintain the quality
of the mesh in ALE formulation. Meshless method, for example the natural element
method [4], removes the issues of excessive mesh distortion. But it also has problems
of their own. The immersed boundary method circumvents the mesh problems by
employing a non body conforming mesh and adopting a boundary force to represent
the immersed solid.

The immersed boundary method is first introduced by Peskin [12] for studying
blood flow through a elastic beating heart. Lai and Peskin [10] extended the method
to apply to rigid boundary problems by using a stiff spring. Goldstein et al. [7]
and Saiki and Biringen [15] used the feedback forcing strategy. However, the time
step is severely limited. Later Mohd-Yosuf [11] and Fadlun et al. [6] proposed the
direct forcing immersed boundary method to enlarge the time step, by modifying
the discretized momentum equation to set the desired interface velocity value on
the immersed surface. To circumvent the oscillation towards the boundary force in
case of moving boundaries, Uhlmann [20] proposed to calculate the boundary force
on the Lagrangian positions and then spread the force to the surrounding fluid cells
using a regularized delta function.

The crucial aspects of the immersed boundary method are the correct imposition
of the interface velocity and the accurate evaluation of the boundary force. However,
the boundary force depends on the fluid velocity, which is not known a priori.

Therefore, aforementioned methods apply an explicit scheme to evaluate the
boundary force, which results in an inexact force between the fluid and solid and
deteriorates the no-slip wall condition. Kempe and Fröhlich [9] improved the accu-
racy of the method of Uhlmann [20] by adding an additional forcing loop between
the viscous and projection step. However, the error will not vanish within a small
number of iteration. To achieve a desired tolerance, manymore iterations are needed,
which is in general time-consuming.

To reduce the error and achieve a fully implicit result, iterative schemes can be
employed [1, 2],where the pressure Poisson equation is solvedwith only one iteration
during the sub-iterations to spare the computational time. Considering the boundary
force as aLagrangemultiplier for satisfying the interface velocity condition, Taira and
Colonius [17] proposed the immersed boundary projection method, where the fluid
equations together with the constraints are formulated into one algebraic system.
The overall system is solved by an inexact factorization. The boundary force and
the pressure are combined into a modified Poisson equation and then solved in the
projection step. The divergence free condition and the interface velocity condition
are satisfied simultaneously in the immersed boundary projection method but at the
cost of increasing system dimension. Especially in case of moving boundaries, the
matrix of the modified Poisson equation has to be updated and the pre-conditioner
needs to be recalculated at each time level, which makes the method less efficient.

In the present paper, we propose an efficient implicit immersed boundary method
by using operator splitting. An additionalmoving force equation is derived for impos-
ing the interface velocity condition. Themoving forcematrix is formulated to be sym-
metric and positive definite, thus conjugate gradient method can be applied directly.



Improved Implicit Immersed Boundary Method via Operator Splitting 51

The overall scheme is performed in a very efficient fractionalmanner, i.e., the viscous
prediction step, the immersed boundary forcing step and the projection step. Hence
the fluid and solid are separated both from the mesh and the matrix. Furthermore, the
present immersed boundary solver can be plugged into any existing fluid code easily.
To illustrate this, we integrate the proposed immersed boundarymethod into the rota-
tional incremental pressure-correction projection method, which does not generate
numerical boundary layers on the velocity and pressure during the calculation [8].

The organization of the paper is as follows. The proposed immersed boundary
method is presented in details in Sect. 2.Various numerical simulations are performed
in Sect. 3 in order to validate the proposed method. We draw the conclusions in the
final section.

2 Methodology

The dimensionalised incompressible fluid Navier-Stokes equations read

∂u
∂t

+ ∇ · (u ⊗ u) = −∇ p + 1

Re
∇2u + f , (1a)

∇ · u = 0, (1b)

u = U s on ∂Ωs, (1c)

where u is the fluid velocity vector, p the pressure, Re the Reynolds number and U s

the solid velocity vector. The Reynolds number is defined as Re = U L/ν, where U ,
L and ν are the reference length, reference velocity and kinematic viscosity, respec-
tively. Here we assume appropriate initial and boundary conditions are assigned to
the Navier-Stokes equations. The immersed boundary force f here is used to sat-
isfy the interface velocity condition (1c). We henceforth designate upper case letters
and lower case letters for the quantities on the Lagrangian and Eulerian locations,
respectively.

The fluid equations are discretized in time with the explicit second order Adams-
Bashforth scheme for the non-linear terms and the implicit Crank-Nicolson scheme
for the linear terms, yielding

un+1 − un

Δt
+

[
3

2
N (un) − 1

2
N (un−1)

]
= −G pn+1 + 1

2Re
L (un+1 + un) + f n+1,

(2a)

Dun+1 = 0, (2b)

un+1 = Un+1
s on ∂Ωn+1

s , (2c)

where L , N , G , D , are the discrete linear, non-linear, gradient and divergence
operators, respectively. The pressure and boundary force are treated implicitly as a
matter of fact that they are the Lagrange multipliers for satisfying the divergence free
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and the interface velocity condition at each time step. The semi-discrete equations
(discrete in time but continuous in space) can be solved by the finite difference
method, finite volume method, finite element method, or other spatial discretization
methods.

The boundary force has a physical meaning that it represents the interaction
between the fluid and solid. It is an unknown that needs to be solved along with
the velocity field. How it is evaluated differs one immersed boundary method from
another and determines the accuracy of the overall scheme. Next we review some
popular immersed boundary methods for rigid boundaries in the literature and pro-
pose the novel method.

2.1 Overview of the Immersed Boundary Methods

The immersed boundary method of Peskin [12] was originally developed for elastic
membranes. For rigid bodies, Lai and Peskin [10] used a spring with a large stiffness
value κ to fix the boundary point X(s, t) on the equilibrium position Xe(s, t). The
boundary force expression is given by

F(s, t) = κ(Xe(s, t) − X(s, t)). (3)

where s is the Lagrangian coordinate of the immersed boundary, irrespective to the
underlying fluid Eulerian grids. Generally the fluid and solid grids are not coincident,
especiallywhen the staggered grid is used. The boundary force F(s, t) is evaluated on
theLagrangian locations and distributed to the fluidEulerian grids using a regularized
delta function

f (x, t) =
∫

s
F(s, t)δh(x − X(s, t))ds (4)

where the one-dimensional function has the form of

δh(r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

8h
(3 − 2|r |/h +

√
1 + 4|r |/h − 4(r/h)2), |r |/h � 1,

1

8h
(5 − 2|r |/h −

√
−7 + 12|r |/h − 4(r/h)2), 1 � |r |/h � 2,

0, otherwise,
(5)

where h is the cell width of the staggered grid in the r -direction. The one-dimensional
function is plotted in Fig. 1 with a unit cell width. The time step is kept small in order
to ensure the maximum displacement of any boundary point is negligible. Goldstein
et al. [7] and Saiki and Biringen [15] used an alternative feedback forcing strategy

F(s, t) = −α

∫ t

0

(
U(s, t ′) − U s(s, t ′)

)
dt ′ − β

(
U(s, t) − U s(s, t ′)

)
, (6)
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Fig. 1 The one-dimensional
function of the regularized
delta function of Peskin [13]
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whereα � 1 andβ � 1 are some large artificial constants. This approach behaves as
a system of springs and dampers to correct U(s, t) to U s(s, t) in a feedback manner.
The major shortcomings of the feedback forcing approach are that big values of α

and β can cause a stiff equation and an over small time step is allowed [6, 7].
To avoid those artificial parameters, Mohd-Yosuf [11] and Fadlun et al. [6] pro-

posed the direct forcing immersed boundary method by replacing un+1 with U s in
the momentum equation. In case of moving boundaries, Uhlmann [20] suggested to
evaluate the boundary force on the Lagrangian locations and spread it to the Eulerian
cells with the regularized delta function, in order to avoid large oscillation towards
the force. The evaluation of the boundary force follows

F(s, t) = U s − U(s, t)

Δt
on ∂Ωs, (7)

where

U(s, t) =
∫

x
u(x, t)δh(x − X(s, t))dx. (8)

Aswe can see that the boundary force is a function of the fluid velocity in the direct
forcing immersed boundary method, which unfortunately is not known a priori. A
simple way to handle this problem is to use the past or predicted velocity fields. The
explicit method is quick but leaves the boundary force inexact. As a consequence, the
final velocity will not satisfy the interface velocity condition. Kempe and Fröhlich [9]
added a small number of forcing loop to improve this accuracy, but the error is not
substantially changed.

To achieve a fully implicit scheme,Taira andColonius [17] proposed the immersed
boundary projection method by combining the two Lagrange multipliers, namely the
boundary force and the pressure, into one algebraic system

[
A Q
QT 0

] (
un+1

λ

)
=

(
r1
r2

)
, (9)
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where λ = [p Fn+1]T, Q = [G ,S T], A = 1
Δt [I − Δt

2ReL ] and r1, r2 include the
boundary conditions, explicit terms and the interface velocity value. This system is
solved by an approximate block LU decomposition

[
A 0
QT −QTBNQ

] [
I BNQ
0 I

] (
un+1

λ

)
=

(
r1
r2

)
+

(−Δt N

2N L NQλ

0

)
, (10)

where BN is the N -th order Taylor series expansion of A −1

BN = Δt I + Δt2

2Re
L + Δt3

(2Re)2
L 2+· · ·+ Δt N

(2Re)N−1
L N−1 =

N∑
j=1

Δt j

(2Re) j−1
L j−1.

(11)
In practice, this algebraic equation is solved as follows

A u∗ = r1, (12a)

QTBNQλ = QT u∗ − r2, (12b)

un+1 = u∗ − BNQλ. (12c)

And N = 3 is suggested in [17] for achieving positive-definiteness of the modified
Poisson equation (12b).

The immersed boundary projection method has successfully satisfied the diver-
gence free condition and the interface velocity condition simultaneously. However,
the fluid and solid are still coupled in terms of matrix at the projection procedure,
which could make the method less efficient. The matrix of the modified Poisson
equation has to be updated and its pre-conditioner needs to be re-computed when
the boundary moves. It is known that the most time-consuming part in the projection
method is solving the Poisson equation. Additionally, the dimension of the modified
Poisson equation is increased, which requires more storage and iterations for a given
tolerance.

2.2 Moving Immersed Boundary Method

In view of the advantages and disadvantages of the immersed boundary methods
discussed previously, we propose the moving immersed boundary method. For the
sake of simplicity, we rewrite the fluid equations as

un+1 − un

Δt
= H (u) + P(u) + F (u), (13a)

Dun+1 = 0, (13b)

un+1 = Un+1
s on ∂Ωn+1

s , (13c)
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where

H (u) = −
[
3

2
N (un) − 1

2
N (un−1)

]
+ 1

2Re
L (un+1 + un) − G pn, (14a)

P(u) = −G φn+1, (14b)

F (u) = f n+1, (14c)

where φ is the pseudo pressure.
It is worth noting that the momentum Eq. (13a) is constrained by the divergence

free condition (13b) and the interface velocity condition (13c). To decouple this, we
perform the following operator splitting algorithm:

(I) Viscous prediction step, ignoring the immersed objects.

û − un

Δt
= H (u). (15)

(II) Immersed boundary forcing step for satisfying the interface velocity condition.

ũ − û
Δt

= F (u), (16a)

ũ = Un+1
s on ∂Ωs . (16b)

Using the direct forcing concept and following Uhlmann [20], we evaluate the
boundary force on the Lagrangian locations and spread it to the fluid Eulerian cells,
namely

IS Fn+1 = U s − I û
Δt

, (17a)

ũ = û + ΔtS Fn+1, (17b)

where I is the interpolation operator matrix for transferring the quantities from
the Eulerian cells to Lagrangian markers, S the spreading operator matrix in the
opposite direction. Donate M = IS the moving force matrix, then we obtain a
concise form of the moving force equation

M Fn+1 = U s − I û
Δt

. (18)

The moving force matrix M is found to be symmetric and positive-definite.
More importantly, its dimension only depends on the number of Lagrangian markers
on the immersed surface, which in general is much smaller than the dimension of
fluid matrix. Therefore, compared to the modified Poisson equation in the immersed
boundary projection method [17], the moving force equation is much easier to work
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with. Even though the interface velocity condition is enforced before the projec-
tion step, we have found that the velocity on the immersed boundary is essentially
unchanged after the projection step. The same observation has also been made by
Kempe and Fröhlich [9] and Fadlun et al. [6].

(III) Projection step for obtaining a divergence free velocity un+1.

un+1 − ũ
Δt

= P(u), (19a)

∇ · un+1 = 0. (19b)

Applying the divergence operator to (19a) and using the divergence free condition
(19b), we have

L φn+1 = 1

Δt
D ũ, (20a)

un+1 = ũ − ΔtGφn+1. (20b)

The time splitting error due to the implicit treatment of viscous terms is found
to be 1

2ReD û, by adding up those sub-steps and comparing to (2a). This error can
introduce a numerical boundary layer to the pressure and velocity. The strength of
this numerical boundary layer decreases when increasing the Reynolds number. But
for low Reynolds number flows, the effects of the numerical boundary layer become
quite severe. However it is advantageous to employ implicit schemes for the viscous
terms for stability when the Reynolds number is small. Guermond et al. [8] indicated
that the numerical boundary layer can be avoided by absorbing this error into the
pressure, viz,

pn+1 = pn + φn+1 − 1

2Re
D û. (21)

The consistent pressure boundary condition is also obtained by considering the
identity ∇2u = −∇ × ∇ × u + ∇(∇ · u). This type of fractional step method for
solving the Navier-Stokes equations is termed as the rotational incremental pressure-
correction projection method in [8].

3 Numerical Results

3.1 Flow over a Stationary Circular Cylinder

First we consider the uniform flow over a stationary circular cylinder to vali-
date our proposed method, since abundant experimental and numerical results are
available. The flow pattern exhibits differently according to the Reynolds number
Re = u∞ D/ν based on the free stream velocity u∞ and the cylinder diameter D.
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Fig. 2 The computational
domain for the flow over a
stationary cylinder problem
(the diameter of the cylinder
is scaled to make it more
visible)

u∞

−15D 15D
−15D

15D

Both the steady case Re = 20 and the unsteady case Re = 185 have been studied
here with our proposed method.

The schematic view of the fluid domain is depicted in Fig. 2. The cylinder with
a unit diameter D = 1 is centered at the origin of the computational domain of
[−15D, 15D] × [−15D, 15D]. The mesh is distributed uniformly with a resolution
of around 0.03D for both steady and unsteady cases.

A uniform free-stream velocity u∞ = 1 is prescribed at the inlet. Free slip bound-
ary conditions are assigned to lateral boundaries. The convective outflow boundary
condition ∂u/∂t + u∞∂u/∂x = 0 is applied to the outlet. The time step is selected
based on the CFL condition CFL = umaxΔt/h � 1.

To compare with the results in the literature, we monitor the drag and lift coeffi-
cients in both cases which are computed by

CD = F ′
x

1

2
ρu2∞ D

, (22)

CL = F ′
y

1

2
ρu2∞ D

, (23)

where ρu2∞ D = 1 and the force on the cylinder, F′, can be evaluated directly on the
immersed surfaces by integrating the forces

F′ =
(

F ′
x

F ′
y

)
= −

∫
s

F(X)ds. (24)

At Re = 20, a steady recirculation zone is developed behind the cylinder. The
characteristic wake dimensions are illustrated in Fig. 3, including the recirculation
zone length l, the horizontal distance from the vortex center to the cylinder a, the
vertical distance between the two vortex centers b and the separation angle θ . The
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Fig. 3 The definition of the
characteristic wake
dimensions for the
steady-state flow around a
circular cylinder

Table 1 Comparison of wake dimensions and drag coefficient for the steady-state flow past a
circular cylinder at Re = 20

l/D a/D b/D θ◦ CD

Present 0.94 0.39 0.41 42.9 2.12

Taira and Colonius [17] 0.94 0.37 0.43 43.3 2.06

Coutanceau and Bouard [3] 0.93 0.33 0.46 45.0 –

Tritton [19] – – – – 2.09

wake dimensions together with the coefficients of drag and lift are presented in
Table1 and compared to the numerical results of the immersed boundary projection
method of Taira and Colonius [17] and the experimental results from Tritton [19]

Fig. 4 Fields of the steady-state flow around a cylinder at Re = 20. a Vorticity contours, where
dashed lines represent negative values; b streamlines; c pressure contours
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and Coutanceau and Bouard [3]. The corresponding flow profiles are shown in Fig. 4.
Good agreements have been found.

The flow becomes unsteady when increasing the Reynolds number to Re =
185. Periodic vortex shedding is observed from Fig.7. The time evolution of the
drag and lift coefficients are shown in Fig. 5. The Strouhal number is defined as
St = D f/u∞, where f is the shedding frequency (see Fig. 6). Table2 compares
the Strouhal number, the mean drag coefficient and the r.m.s. lift coefficient against
results fromother immersedboundarymethods [14, 18, 21] and the experimental data
of Williamson [22]. Excellent agreements are obtained, especially for the Strouhal
number.
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Fig. 5 Time history of the drag and lift coefficients for the flow over a cylinder at Re = 185

Fig. 6 Shedding frequency
for the flow over a cylinder at
Re = 185
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Fig. 7 Profiles for the unsteady-state flow around a cylinder at Re = 185. a Vorticity contours,
where dashed lines represent negative values; b pressure contours

Table 2 Comparison of drag coefficient, lift coefficient and Strouhal number for the unsteady-state
flow over a cylinder at Re = 185

St C D C rms
L

Present 0.193 1.369 0.456

Pinelli et al. [14] 0.196 1.430 0.423

Toja-Silva et al. [18] 0.195 1.31 –

Vanella and Balaras [21] – 1.377 0.461

Williamson [22] 0.193 – –

3.2 Flow over an Oscillating Circular Cylinder

To illustrate our proposed method for simulating fluid flow over moving boundary
problems, we consider the flow induced by an oscillating circular cylinder in a fluid
at rest, which is studied numerically and experimentally by Dütsch et al. [5].

The motion of the cylinder is given by a harmonic oscillation xc(t) = −A sin
(2π f t), where A is the oscillation amplitude and f the frequency. The moving force
matrix is updated each time the boundarymoves to a new position. The flow pattern is
charactered by two main parameters, namely the Reynolds number Re = UmaxD/ν

and the Keulegan-Carpenter number K C = Umax/ f D, where Umax designates the
maximum velocity of the cylinder. The two main parameters are set to Re = 100
and K C = 5 according to Dütsch et al. [5].
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Fig. 8 Comparison of
vorticity fields for the flow
over an oscillating cylinder
problem at Re = 100 and
K C = 5 at four different
positions: a 0◦ , b 96◦, c
192◦, d 288◦. The present
results are plotted in the left
column and compared to the
results of Dütsch et al. [5] in
the right column

The left column of Fig. 8 shows the vorticity contours with present method from
–3 to 3 with an incremental of 0.4 at four different phases (0◦, 96◦, 192◦, 288◦). The
same structures are observed by comparing to the results of Dütsch et al. [5] in the
right column. Figures9, 10 and 11 plot the velocity profiles at three different phases
180◦, 210◦, 330◦, respectively. At each phase, the two velocity components (u, v)
are displayed at four different locations (x/D = −6, 0, 6, 12) against the numerical
and experimental results of Dütsch et al. [5]. The results with our proposed immersed
boundary method are very close to the numerical data of Dütsch et al. [5] with the
body conforming mesh method. Since our method treats all the domain as the fluid,
the velocities inside the solid are not zero. Butwe only consider the exterior flowfield.
The present method gives a rather good accuracy, as the two curves from numerical
solutions overlap outside the cylinder.
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Fig. 9 Comparison of velocity components at the phase 180◦ at four cross-sections: a x/D = −6,
b x/D = 0, c x/D = 6, d x/D = 12. Solid lines represent the results with present method. The
dashed lines are the numerical solution of Dütsch et al. [5]. The squares are the experimental results
of Dütsch et al. [5]
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Fig. 10 Comparison of velocity components at the phase 210◦ at four cross-sections: a x/D = −6,
b x/D = 0, c x/D = 6, d x/D = 12. Solid lines represent the results with present method. The
dashed lines are the numerical solution of Dütsch et al. [5]. The squares are the experimental results
of Dütsch et al. [5]
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Fig. 11 Comparison of velocity components at the phase 330◦ at four cross-sections: a x/D = −6,
b x/D = 0, c x/D = 6, d x/D = 12. Solid lines represent the results with present method. The
dashed lines are the numerical solution of Dütsch et al. [5]. The squares are the experimental results
of Dütsch et al. [5]
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4 Conclusions

In this paper, a novel implicit formulation of the immersed boundary method for
simulating incompressible fluid flow over complex stationary or moving boundaries
was presented. The proposed immersed boundary method is based on the operator
splitting technique that allows to separate the fluid from the solid with respect to
the mesh and the matrix. The overall scheme is solved sequentially following the
viscous prediction step, the immersed boundary forcing step and the projection step.
In the forcing step, a moving force equation is derived to determine the bound-
ary force implicitly. The moving force system is formulated to be symmetric and
positive-definite and quickly solved with the conjugate gradient method. The pro-
posed immersed boundary solver can be easily inserted into any fluid solver as a
plug-in. The results have shown the efficiency and accuracy of the present method.
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Modelling Wave Energy Conversion
of a Semi-submerged Heaving Cylinder

Shang-Gui Cai, Abdellatif Ouahsine and Philippe Sergent

Abstract In the current paper, a numerical model for simulating the ocean wave
energy conversion of a semi-submerged heaving cylinder is presented. Contrary
to the convectional potential flow theory, our solution is based on the full three-
dimensional viscous Navier-Stokes equations. An efficient numerical wave tank is
established to generate waves according to the wave theory. The coupling between
the fluid equations with the rigid body dynamics are also taken into consideration in
the present study.

1 Introduction

The ocean wave energy, as the most conspicuous form of ocean energy, is of con-
siderable interest towards its conversion. Various types of wave energy converters
(WEC) have been designed and tested in recent years, ranging from the simplest
floating body oscillating against a fixed frame of reference, often termed as the point
absorber, to more complicated systems such as the wave carpet [1], SEAREV [2],
Pelamis, and self-rectifying air turbines [3], etc.

Numerous efforts have been devoted to WEC performance analysis with the
potential flow theory, assuming the fluid to be inviscid, which is less true in real-
ity. Nowadays numerical approaches with modern Computational Fluid Dynamics
(CFD) techniques provide a powerful tool for solving the full viscous Navier-Stokes
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equations, thus the viscous effects of boundary layer separation, turbulence, wave
breaking and over-topping can be predicted.

Basically, to establish a numerical wave tank for studying the wave energy con-
version, a free surface model and a wave generation technique are required. Instead
of working with the shallow water equations [4], we focus on the full Navier-Stokes
equations. In general, two types of free surface capturing approaches for Navier-
Stokes equations can be utilized, i.e., the surface tracking method and the interface
capturing method. The former treats the free surface as a sharp boundary evolving
with time. However, this method is quite computational expensive. The interface
capturing methods, such as the Marker-and-Cell (MAC) method, Volume of Fluid
(VOF) method and level set approach, are very efficient since they are based on an
Eulerian approach which do not adapt the mesh for representing the free surface.
The VOF method is employed in the present study, since it is the most widely used
model for describing the free surface, for example in the ship hydrodynamics [5].
The numerical wave can be generated either from an oscillating piston or appropriate
boundary conditions. The oscillating piston is intentionally avoided in the present
study, as it requires deforming boundary meshes each time. Instead, various wave
theories can be employed for this purpose, including the linear Airy wave theory
(Stokes’ first order theory), Stokes’ second order theory, Stokes’ fifth order theory,
etc.

Among a variety of wave energy converters, the semi-submerged heaving cylinder
with one degree of freedom is considered in this study.At each time level, the cylinder
oscillates vertically under the impact of incoming waves and affects the distribution
of the surrounding fluids, resulting in a typical fluid-structure interaction problem. A
fluid-structure interaction algorithm is then proposed in order to simulate the two-way
interactions.

This paper is organized as follows. The mathematical descriptions of the physical
problems arefirst presentedboth for thefluid and solid parts.Nextwediscuss thewave
generation techniques and display thewave propagation according to thewave theory.
In the following, the pressure-velocity decoupling method and the fluid-structure
interaction algorithm are illustrated in details. With the proposed model, numerical
results with respect to the energy extraction are then shown. The conclusions are
drawn finally.

2 Problem Formulation

2.1 Fluid Equations

The viscous fluid flow is governed by the Navier-Stokes equations

∂(ρu)

∂t
+ ∇ · (ρu ⊗ u) = ∇ · σ f + ρg, (1)
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∂ρ

∂t
+ ∇ · (ρu) = 0, (2)

where ρ is the fluid density, u the fluid velocity vector and g the gravity vector.
Under the Stokes assumption for a Newtonian fluid, the fluid stress σ f is then given
by

σ f = −p I + τ = −(p + λ∇ · u)I + 2με, (3)

where p is the pressure, μ the dynamic viscosity, λ the bulk viscosity and ε is the
strain tensor given by (1/2)(∇u + (∇u)T ). For an incompressible fluid (ρ = const),
the governing equations become

∂u
∂t

+ ∇ · (u ⊗ u) = − 1

ρ
∇ p + ν∇2u + g, (4)

∇ · u = 0, (5)

where ν = μ/ρ is the kinematic viscosity.
To capture the free surface between the water and air, the volume of fluid (VOF)

method [6] is applied by introducing a scalar field, namely the liquid volume fraction
α, which is convected by

∂α

∂t
+ ∇ · (uα) = 0. (6)

The multiphase flow interface can be found when α ∈ (0, 1). Generally α = 0
represents the air and α = 1 the water. For each cell, the fluid density is calculated
by

ρ = (1 − α)ρair + αρwater . (7)

The viscosity is determined in the samemanner. Therefore, one single momentum
equation is solved throughout the domain with the velocity fields shared by the two
phases.

2.2 Rigid Body Equations of Motion

The wave energy converter considered in the present study is a semi-submerged
cylinder with one-dimensional freedom [7, 8], usually termed as a point-absorber
(see Fig. 1). The cylinder is constrained by a power take-off (PTO) device, whose
motion is given by

m Z̈ = mU̇ = Fwave + Fgravity + FPTO, (8)
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Fig. 1 The PTO device of a
heaving wave energy
converter

Spring, K Damper, C

Fixed reference

Wave
Heaving WEC

where m, Z , U are the mass, vertical displacement and vertical velocity of the cylin-
der, respectively. In the present study, the diameter and height of the cylinder are set
to D = 2m, L = 2m. Fwave is the wave force on the cylinder, which can be obtained
by integrating the pressure and viscous stresses on the solid surface. Fgravi t y is the
weight of cylinder and FPTO is the force from the PTO device, which can be repre-
sented as a mass-spring-damping system

FPTO = CU + K Z , (9)

where C is the damping coefficient and K is the spring stiffness. The damping
coefficient can be also expressed as

C = 2ξ
√

K m, (10)

where ξ is the damping ratio. Therefore, the generated power from PTO is

PPTO = CU 2. (11)

2.3 Boundary Conditions and Wave Generation

Figure2 displays the computational domain for the wave energy conversion problem.
The symmetry boundary condition is applied to the lateral boundaries to simulate the
open sea situation. And no-slip wall boundary condition is specified at the cylinder
surface. The computational domain with the cylinder are discretized as shown in
Fig. 3. In order to capture the free surface, 20 nodes have been used near the still
water level.

The waves are generated at the inlet side and propagated towards the cylinder.
The wave profile is illustrated in Fig. 4. We employ the Airy wave theory, assuming
the wave to be linear with small amplitude. Other wave theories and their range of
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Fig. 2 Schematic representation of the computational domain

Fig. 3 Computational domain discretization and the surface mesh of the heaving cylinder

Fig. 4 Definition of
progressive surface wave
parameters

validity are shown in Fig. 5 according to [9]. Therefore, the free surface profile in
linear wave theory can be described as

η = H

2
cos(kx − ωt), (12)

where H , k, ω are the wave height, wave number and wave angular frequency,
respectively. As indicated in [9], the velocity profiles in deep water (h/λ ≥ 1/2) are
given by
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Fig. 5 Range of validity of
various wave theories

u = π H

T
ekzcos(kx − ωt), (13a)

w = π H

T
ekzsin(kx − ωt), (13b)

and in intermediate water (1/20 ≤ h/λ ≤ 1/2)

u = π H

T

cosh(k(z + h))

sinh(kh)
cos(kx − ωt), (14a)

w = π H

T

sinh(k(z + h))

sinh(kh)
sin(kx − ωt), (14b)

and in shallow water (h/λ ≤ 1/20)

u = H

2

√
g

h
cos(kx − ωt), (15a)

w = π H

T

z + h

h
sin(kx − ωt), (15b)

where T represents the wave period. The wave parameters are listed in Table 1.
Therefore, our simulation is in the deep water condition. With these given values,
the wave is generated and compared to the analytical solution in Fig. 6.
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Table 1 Wave parameters for the wave energy conversion problem.

H (m) h (m) λ (m) k (rad/m) T (s) ω (rad/s)

1 12 20 0.314 3.581 1.755

Fig. 6 Simulated wave
propagation (black dashed)
corresponding to the Airy
wave theory (red)
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2.4 Pressure-Velocity Decoupling Algorithm

The difficulty of the numerical solution of fluid Navier-Stokes equations lies in
the fact that the velocity and pressure are coupled through the incompressibility
constraint. The fluid governing Eqs. (4) and (5) when discretized with the standard
finite volume method in a control volume (see Fig. 7) can be written as

aP un+1
P = H(un+1) − ∇ pn+1, (16a)

∇ · un+1 =
∑

f

un+1
f · S f = 0, (16b)

where H(un+1) contains the convective, diffusive, temporal terms and all the source
terms, namely

H(un+1) = −
∑

n

aN un+1
N + un

Δt
+ Su. (17)

Apparently the pressure term does not explicitly appear in the continuity equation.
To derive the equation for the pressure, we insert the discrete momentum equation
into the discrete continuity equation, which gives

Fig. 7 A control volume of
the fluid domain
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∇ ·
(

1

aP
∇ pn+1

)
= ∇ ·

(
H(un+1)

aP

)
. (18)

To decouple the velocity and pressure, we adopt the PISO (Pressure implicit with
splitting of operator) algorithm originally proposed by Issa [10]. Other types of
pressure-velocity decoupling algorithms and their comparisons can be found in [11].
PISO algorithm features a predictor-corrector splitting scheme, which predicts the
velocity fields with an initial guess of pressure and corrects the pressure two times
with the predicted velocity, as shown in Fig. 8.

Fig. 8 PISO algorithm for
decoupling pressure and
velocity

Start at t = tn.

Solve discretized momentum equations.

Solve pressure correction equation.

Correct pressure and velocities.

Solve pressure correction equation again.

Correct pressure and velocities again.

Convergence?

Next time step t = tn+1.

yes

no
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2.5 Fluid-Structure Interaction

At each time step, the cylinder oscillates vertically under the impact of incoming
waves and redistributes the surrounding fluids, which results in a typical fluid-
structure interaction problem.

In the present study, we solve the fluid and solid equations with a segregated
scheme for the sake of efficiency. We first start with the fluid equations with previous
solid positions and velocities. Once the fluid fields are calculated, we can obtain the
total force exerted on the solid and use it to solve the solid equations. A new fluid
mesh is then established with the new position of solid. The overall scheme is shown
in Fig. 9.

Note that the fluid and solid are strongly coupled by nature, thus a relative small
time step is used in our explicit implementations. Otherwise, iterations between
the fluid and solid parts are required at each time step, which is in general time-
consuming. Highly efficient iterative schemes are always demanding. Besides, only
small amplitude of oscillation is allowed, so that the mesh around the moving body
will not be largely distorted. However this can be circumvented by the non-body
conforming method, such as the immersed boundary method [12, 13]. Large dis-
placements of solid and even arbitrary motions can be tackled easily. This will be
considered in the future work.

Initialize fluid and solid fields

Solve fluid equations including the free surface

Solve solid equations

Reach final time ?

Finish

Move fluid mesh and advance time

yes

no

Fig. 9 Solution procedure for the fluid-structure interaction
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Fig. 10 Instantaneous free surface elevation

(a)

(b)

(c)

(d)

(e)

Fig. 11 The heaving semi-submerged cylinder at different time levels. a t = 42 s, b t = 43 s,
c t = 44 s, d t = 45 s, e t = 46 s
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3 Energy Extraction

Figure10 shows the instantaneous free surface elevation around the heaving cylinder.
The flow around the cylinder has clearly demonstrated the three-dimensional effect.
The cylinder positions at different time levels are shown in Fig. 11. The velocity
profiles beneath the cylinder are also plotted in Fig. 12.

In this simulation since the power absorption coefficient is a constant value, the
PTO is considered as an ideal linear damper. But the non-linear dampers can be also
incorporated into the model without changing the algorithm structure. Actually the
energy absorption depends on not only the damping coefficient but also the wave
conditions, dimensions of the converter, etc. The instantaneous velocity and power
absorbed by the floating body is shown in Figs. 13 and 14 with the wave parameters
given by Table1.

Fig. 12 Vertical velocity
profiles along the vertical
direction beneath the
cylinder at different time
levels
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Fig. 13 Time evolution of
vertical velocity of the
heaving cylinder
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Fig. 14 Instantaneous
power PPTO absorbed by the
heaving cylinder
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Theoretically the converter can achieve an optimal conversion efficiency when its
natural frequency is equal to the frequency of the waves. At other frequencies, much
less efficiency is obtained. Therefore in practice, control strategies can be used to
improve the conversion efficiency considerably.

4 Conclusions

A numerical model is presented in this paper to demonstrate the ability of CFD tech-
niques for the simulation of wave energy conversion. The solution is obtained with
the viscous Navier-Stokes equations and the free surface is captured by the efficient
VOF method. A numerical wave tank has been established by specifying the wave
boundary conditions according to the wave theory. The fluid-structure interaction
is taken into consideration for predicting the motion of the heaving cylinder. The
numerical results in the present study show the validity of the proposed model.
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Multiscale Modeling of Imperfect Interfaces
and Applications

S. Dumont, F. Lebon, M.L. Raffa, R. Rizzoni and H. Welemane

Abstract Modeling interfaces between solids is of great importance in the fields of
mechanical and civil engineering. Solid/solid interface behavior at the microscale
has a strong influence on the strength of structures at the macroscale, such as gluing,
optical systems, aircraft tires, pavement layers and masonry, for instance. In this
lecture, a deductive approach is used to derive interface models, i.e. the thickness of
the interface is considered as a small parameter and asymptotic techniques are intro-
duced. A family of imperfect interfacemodels is presented taking into account cracks
at microscale. The proposed models combine homogenization techniques for micro-
cracked media both in three-dimensional and two-dimensional cases, which leads to
a cracked orthotropic material, and matched asymptotic method. In particular, it is
shown that the Kachanov type theory leads to soft interfacemodels and, alternatively,
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that Goidescu et al. theory leads to stiff interface models. A fully nonlinear variant
of the model is also proposed, derived from the St. Venant-Kirchhoff constitutive
equations. Some applications to elementary masonry structures are presented.

1 Introduction

The study of interfaces between deformable solids significantly developed thanks to
the rising interest of scientists and industries in mechanics of composite materials.
Those first studies, in particular, focused on the presence of matrix-fiber interfaces
in composite media and their effect on the determination of the effective thermoelas-
tic properties of this kind of materials. Within the framework of these theories
on mechanical behavior of composites, a commonly adopted assumption was the
requirement of the continuity in terms of stresses and displacements at the interfaces
among the principal constituents. The stress-based interface condition origins from
the local equilibrium and the displacement-based interface condition derives from
the hypothesis of perfect bonding. Such an interface condition was defined as per-
fect interface. Nevertheless, the assumption of perfect interfaces is established to
be inappropriate in many mechanical problems. Indeed, the interface between two
bodies or two parts of a body, defined as adherents, is a favorable zone to com-
plex physico-chemical reactions and vulnerable to mechanical damage. Goland and
Reissner [22], in the forties, were surely the first to model a thin adhesive as a weak
interface, i.e. they were the first to assume that the adherents were linked by a con-
tinuous distribution of springs. Such an interface, is defined as spring type. Goland
and Reissner have noted that the thinness suggests to consider constant stresses in
the adhesive, and some years later, Gilibert and Rigolot [19] found a rational justifi-
cation of this fact by means of the asymptotic expansion method, assuming that the
thickness and the elastic properties of the adhesive had the same order of smallness ε.
During the eighties and nineties, the relaxation of the perfect interface approximation
was largely investigated, aiming principally to applicate these theories to compos-
ite materials with coated fibers or particles [3, 26], or in the case of decohesion
and nucleation problems in cohesive zones [44, 45]. One of the first definition of
imperfect interface was certainly due to Hashin and Benveniste [3, 26]. Particu-
larly, Hashin concentrates his research in the case of composite material with thin
layer or coating enveloping its reinforcing constituents (fibers). Such an interfacial
layer is generally referred to as interphase, and its presence can be due to chemical
interaction between the constituents or it may be introduced by design aiming to
improve the mechanical properties of the composite. Several investigations in liter-
ature, before and after the work of Hashin, modeled this kind of problem with the
so-called three-phase-material theory. Such a description requires, obviously, the
knowledge of the interphase properties. These constitutive informations are rarely
available, primarily, because the interphase material properties are in situ proper-
ties which are not necessarily equal to those of the bulk material, and additionally,
the interphase may vary within a transition zone from one constituent to another.



Multiscale Modeling of Imperfect Interfaces and Applications 83

Accordingly, in most cases, the interphase properties are unmeasurable. The Imper-
fect interface theory was formulated by Hashin [26–29] in order to overcome these
challenges. This alternative model was based to the main idea that if the interphase
has significant effects on the overall response, then its properties must be signifi-
cantly different from those of the constituents, in general, much more flexible. To
this aim, the attempts for explicit modeling of the three-dimensional interphase are
highly reduced by replacing it with a two-dimensional imperfect interface. In par-
ticular, within the Hashin imperfect interface model [26] the discontinuity in terms
of displacements is allowed, instead, the continuity in terms of stresses, according
local equilibrium, is preserved. Hashin [26], as Goland [22] before him, made the
simplest assumption that the displacement discontinuity is linearly proportional to
the traction vector:

σ (Ω1)n = σ (Ω2)n = D [u] [u] = u(Ω1) − u(Ω2)

where σ (Ω1),(Ω2)n is the interfacial stress vector relative to the solids Ω1 and Ω2 in
contact; [u] and u(Ω1),(Ω2) are the displacement jump vector and displacement vector,
respectively; D is a matrix which contains the spring constant type material parame-
ters, in normal and tangential directions; these latter have dimension of stress divided
by length. In the following, these parameters are referred as interface stiffnesses. It is
worth to point out that infinite values of the interface stiffnesses imply vanishing of
displacement jumps and therefore perfect interface conditions. At the other asymp-
totic limit, zero values of the stiffnesses imply vanishing of interface tractions and
therefore, debonding conditions. Any finite positive values of the interface stiffnesses
define an imperfect interface.

Hashin, with his pioneering work, determined the effective elastic properties and
thermal expansions coefficients both for unidirectional fiber composites with imper-
fect interfaces conditions [26] and for composites with spherical inclusions and parti-
cles [27, 28]. Moreover, he demonstrated that the three-phase-material approach was
a special case of the imperfect interface theory. It is worth remarking that Hashin, as
first, showed that the interface stiffnesses (he referred them as interface parameters)
can be simply related to the interphase properties and geometry [26].

Hashin and Benveniste, independently, generalized the classical extremum prin-
ciples of the theory of elasticity for composite bodies to the case of an imperfect
interface described by linear relations between interface displacement jumps and
tractions [3, 29].

In the work of Bövik [9], the idea to use a simple tool that is the Taylor expan-
sion of the relevant physical fields in a thin interphase, combined with the use of
surface differential operators on a curved surface, has been applied to achieve the
representation of a thin interphase by an imperfect interface. The idea of a Taylor
expansion was also adopted by Hashin to derive the spring-type interface model for
soft elastic interfaces [28] and for interphases of arbitrary conductivity and elastic
moduli [30]. More recently, Gu [23, 24] derived an imperfect interface model for
coupled multifield phenomena (thermal conductivity, elasticity and piezoelectricity)



84 S. Dumont et al.

by applying Taylor expansion to an arbitrarily curved thin interphase between two
adjoining phases; he also introduced some new coordinate-free interfacial operators.

All the above cited imperfect interface models are derived by assuming an
isotropic interphase.

In a quite recent work Benveniste [4], provided a generalization of the Bövik
model to an arbitrarily curved three-dimensional thin anisotropic layer between two
anisotropic media. Benveniste model is carried out in the setting of unsteady heat
conduction and dynamic elasticity. The derived interface model consists of expres-
sions for the jumps in the physical fields, i.e. temperature and normal heat flux in
conduction, and displacements and tractions in elasticity, across the interface.

Additionally, derivations of spring-type interface models by using asymptotic
methods, for different geometrical configurations, have been given, among other by
Klarbring [36, 37] and Geymonat [18].

A much less studied imperfect interface condition is the one obtained starting
from a stiff and thin interphase, the so called stiff interface (or equivalently hard
interface). Differently from the soft case, the hard interface is characterized by a
jump of the traction vector across the interface and by continuity of displacements.
Benveniste and Miloh [5], generalizing the study made by Caillerie [10] for curved
interfaces, demonstrate that depending on its degree of stiffness with respect to the
bodies in contact, a stiff thin interphase translates itself into a much richer class of
imperfect interfaces than a soft interphase does. Within their study, a thin curved
isotropic layer of constant thickness between two elastic isotropic media in a two-
dimensional plane strain setting, is considered. The properties of the curved layer are
allowed to vary in the tangential direction. It is shown that depending on the softness
or stiffness of the interphase with respect to the neighboring media, as determined
by the magnitude of the non-dimensional Lamé parameters λ̄c and μ̄c, there exists
seven distinct regimes of interface conditions according the following expressions:

λ̄i = λ̃i

εN
μ̄i = μ̃i

εN

where λ̃c and μ̃c are non-dimensional constant Lamé parameters of the mater-
ial interphase, ε in the non-dimensional interphase thickness and N is a negative
or positive integer or zero. Accordingly with the above definition these regimes
may be distinguished in: (a) vacuous contact type interface for N � −2, (b) spring
type interface for N = −1, (c) ideal contact type interface for N = 0, (d) mem-
brane type interface for N = 1, (e) inextensible membrane type interface for N = 2,
(f) inextensible shell type interface for N = 3, (g) rigid contact type interface for
N � 4. The first two conditions are characteristic of a soft interphase whereas the
last four are characteristic of a stiff interphase. The cases (a), (c) and (g) are the
classical ones: in case (a) the tractions vanish (debonding), in case (c) the displace-
ments and tractions are continuous (perfect interface condition), and in case (g) the
displacements vanish. Benveniste and Miloh [5], for the first time, derived the inter-
face conditions for the hard cases (d), (e) and (f), by applying a formal asymptotic
expansion for the displacements and stresses fields in the thin layer interphase.
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In the present chapter, two kind of imperfect interface conditions are essentially
referred to: the soft interphase case which brings to a spring-type, both linear and
nonlinear, interface, and the hard interphase case which brings to a more general
interface model that includes, as will be shown in the next section, the perfect inter-
face conditions. In order to make an analogy with the Benveniste’s classifications,
the cases with N = −1 and N = 0 will be analyzed. It is worth remarking some
differences between the hard interface case considered in this work and that defined
by Benveniste and Miloh for N = 0. In fact in the work, the case N = 0, according
formers papers [14, 38, 39, 52, 53] will be studied within the framework of higher
order theory. This choice, extensively detailed in the following, leads to the evidence
that the case N = 0 is an effective imperfect interface condition, i.e. stress vector
and displacement jump vector in the one-order formulation have been found to be
non-null. As a result, the perfect interface has been established to be a particular case
of the hard interface condition at the zero-order [53], in what follows this evidence
will be analytically derived within the asymptotic framework.

The imperfect interface models, object of the present chapter, are consistently
derived by coupling a homogenization approach for microcracked media under
the non-interacting approximation (NIA) [21, 34, 35, 57, 60], and arguments of
asymptotic analysis [38, 39, 52, 53]. Such a method, is defined imperfect interface
approach.

The text is organized as follows: Sects. 2 and 3 are devoted to detail the frame-
work of the imperfect interface approach and to enforce it in order to derive several
interface models, particularly, in Sect. 3 a nonlinear imperfect interface model is pre-
sented; Sect. 4 is consecrated to a simple numerical application useful to validate
these interface models; finally, in Sect. 5 some conclusions are outlined.

2 Imperfect Interface Approach

In this section, it is shown how matched asymptotic expansion method coupled
together an homogenization technique for microcracked media, give birth to both
soft and hard imperfect interface laws.

2.1 Matched Asymptotic Expansion Method

It is worth pointing out that the application of the asymptotic methods to obtain
governing equations of imperfect interface starting from thin layer problems in the
elasticity framework, has a consistent mathematical background [10–13, 26–28, 30,
55, 56]. Ould Khaoua among other, in his doctoral thesis [46], studied the elastic
equilibrium problem Pε under the hypothesis of small perturbations. The author
demonstrates that the solution of the reference problem (i.e. with an elastic thin layer
of thickness ε)Pε, that is expressed in terms of both stress and displacement fields
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(σ ε, uε), for ε → 0 admits a limit (σ , u) and that this limit solution is also the solution
of the limit problemP (Pε → P for ε → 0). Additionally, Ould Khaoua [46] has
found, as Hashin [26] before, that the mechanical and geometrical characteristics
of the layer (interphase) are retained in the interface stiffnesses of the soft interface
governing equations.

Thematched asymptotic expansionmethod [38–40, 52, 53], adopted in this work,
is detailed in the following paragraphs.

2.1.1 General Notations

With reference to [53], let the problem general notations be detailed. A thin layerBε

with cross-sectionS and uniform small thickness ε � 1 is considered,S being an
open bounded set in R

2 with a smooth boundary. In the following Bε and S will
be called interphase and interface, respectively. The interphase lies between two
bodies, named as adherents, occupying the reference configurations Ωε± ⊂ R

3. In
such a way, the interphase represents the adhesive joining the two bodies Ωε+ and
Ωε−. LetS ε± be taken to denote the plane interfaces between the interphase and the
adherents and letΩε = Ωε± ∪ S ε± ∪ Bε denote the composite system comprising
the interphase and the adherents.

It is assumed that the adhesive and the adherents are perfectly bonded and thus,
the continuity of the displacement and stress vector fields acrossS ε± is ensured.

An orthonormal Cartesian basis (O, i1, i2, i3) is introduced and let (x1, x2, x3) be
taken to denote the three coordinates of a particle. The origin lies at the center of the
interphase midplane and the x3−axis runs perpendicular to the open bounded setS ,
as illustrated in Fig. 1.

The materials of the composite system are assumed to be homogeneous and
initially linearly elastic and let A±,Bε be the fourth-rank elasticity tensors of the

(a) (b) (c)

Fig. 1 Asymptotic procedure—Synoptic sketch of three steps performed in the matched asymp-
totic expansion approach: a the reference configuration with the ε-thick interphase; b the rescaled
configuration; c the final configuration with the zero-thick interface
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adherents and of the interphase, respectively. The tensors A±,Bε are assumed to be
symmetric,with theminor andmajor symmetries, andpositive definite. The adherents
are subjected to a body force density f± : Ωε± �→ R

3 and to a surface force density
g± : Γ ε

g �→ R
3 on Γ ε

g ⊂ (∂Ωε+\S ε+) ∪ (∂Ωε−\S ε−). Body forces are neglected in
the adhesive.

On Γ ε
u = (∂Ωε+\S ε+) ∪ (∂Ωε−\S ε−)\Γ ε

g , homogeneous boundary conditions
are prescribed:

uε = 0 on Γ ε
u , (1)

where uε : Ωε �→ R
3 is the displacement field defined onΩε. Γ ε

g , Γ ε
u are assumed to

be located far from the interphase, in particular, the external boundaries of the inter-
phase Bε (∂S × (− ε

2 ,
ε
2 )) are assumed to be stress-free. The fields of the external

forces are endowed with sufficient regularity to ensure the existence of equilibrium
configuration.

2.1.2 Rescaling Process

The rescaling phase in the asymptotic process represents a mathematical construct
[12], not a physically-based configuration of the studied composed system. This
standard step is used in the asymptotic expansion method, in order to eliminate the
dependency on the small parameter ε of the integration domains. This rescaling
procedure can be seen as a change of spatial variables p̂ : (x1, x2, x3) → (z1, z2, z3)
in the interphase [12]:

z1 = x1, z2 = x2, z3 = x3
ε

(2)

resulting
∂

∂z1
= ∂

∂x1
,

∂

∂z2
= ∂

∂x2
,

∂

∂z3
= ε

∂

∂x3
. (3)

Moreover, in the adherents the following change of variables p̄ : (x1, x2, x3) →
(z1, z2, z3) is also introduced:

z1 = x1, z2 = x2, z3 = x3 ± 1

2
(1 − ε) (4)

where the plus (minus) sign applies whenever x ∈ Ωε+ (x ∈ Ωε−), with

∂

∂z1
= ∂

∂x1
,

∂

∂z2
= ∂

∂x2
,

∂

∂z3
= ∂

∂x3
(5)

After the change of variables (2), the interphase occupies the domain

B = {(z1, z2, z3) ∈ R
3 : (z1, z2) ∈ S , |z3| <

1

2
} (6)
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and the adherents occupy the domains Ω± = Ωε± ± 1
2 (1 − ε)i3, as shown in Fig. 1.

The sets S± = {(z1, z2, z3) ∈ R
3 : (z1, z2) ∈ S , z3 = ± 1

2 } are taken to denote the
interfaces between B and Ω± and Ω = Ω+ ∪ Ω− ∪ B ∪ S+ ∪ S− is the rescaled
configuration of the composite body. Lastly, Γu and Γg indicates the images of Γ ε

u
and Γ ε

g under the change of variables, and f̄± := f± ◦ p̄−1 and ḡ± := g± ◦ p̄−1 the
rescaled external forces.

2.1.3 Concerning Kinematics

Following the approach proposed by [38, 53], let focus on the kinematics of the elastic
problem. After taking ûε = uε ◦ p̂−1 and ūε = uε ◦ p̄−1 to denote the displacement
fields from the rescaled adhesive and adherents, respectively, the asymptotic expan-
sions of the displacement fields with respect to the small parameter ε take the form:

uε(x1, x2, x3) = u0 + εu1 + ε2u2 + o(ε2) (7a)

ûε(z1, z2, z3) = û0 + εû1 + ε2û2 + o(ε2) (7b)

ūε(z1, z2, z3) = ū0 + εū1 + ε2ū2 + o(ε2) (7c)

Interphase:

The displacement gradient tensor of the field ûε in the rescaled interphase is computed
as:

Ĥ = ε−1

[
0 û0

α,3
0 û0

3,3

]
+
[

û0
α,β û1

α,3

û0
3,β û1

3,3

]
+ ε

[
û1

α,β û2
α,3

û1
3,β û2

3,3

]
+ O(ε2) (8)

where α = 1, 2, so that the strain tensor can be obtained as:

e(ûε) = ε−1ê−1 + ê0 + εê1 + O(ε2) (9)

with:

ê−1 =
⎡
⎢⎣ 0

1

2
û0

α,3

1

2
û0

α,3 û0
3,3

⎤
⎥⎦ = Sym(û0

,3 ⊗ i3) (10)

êk =
⎡
⎢⎣ Sym(ûk

α,β)
1

2
(ûk

3,α + ûk+1
α,3 )

1

2
(ûk

3,α + ûk+1
α,3 ) ûk+1

3,3

⎤
⎥⎦ = Sym(ûk

,1 ⊗ i1 + ûk
,2 ⊗ i2 + ûk+1

,3 ⊗ i3)

(11)
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where Sym(·) gives the symmetric part of the enclosed tensor and k = 0, 1, and
⊗ is the dyadic product between vectors such as: (a ⊗ b)i j = ai b j . Moreover, the
following notation for derivatives is adopted: f, j denoting the partial derivative of f
with respect to z j .

Adherents:

The displacement gradient tensor of the field ūε in the adherents is computed as:

H̄ =
[

ū0
α,β ū0

α,3

ū0
3,β ū0

3,3

]
+ ε

[
ū1

α,β ū1
α,3

ū1
3,β ū1

3,3

]
+ O(ε2) (12)

so that the strain tensor can be obtained as:

e(ūε) = ε−1ē−1 + ē0 + εē1 + O(ε2) (13)

with:
ē−1 = 0 (14)

ēk =
⎡
⎢⎣ Sym(ūk

α,β)
1

2
(ūk

3,α + ūk
α,3)

1

2
(ūk

3,α + ūk
α,3) ūk

3,3

⎤
⎥⎦ = Sym(ūk

,1 ⊗ i1 + ūk
,2 ⊗ i2 + ūk

,3 ⊗ i3)

(15)
with k = 0, 1.

2.1.4 Concerning Equilibrium

With reference to the work by [38, 53], the stress fields in the rescaled adhesive
and adherents, σ̂ ε = σ ◦ p̂−1 and σ̄ ε = σ ◦ p̄−1 respectively, can be represented as
asymptotic expansions:

σ ε = σ 0 + εσ 1 + O(ε2) (16a)

σ̂
ε = σ̂

0 + εσ̂
1 + O(ε2) (16b)

σ̄ ε = σ̄ 0 + εσ̄ 1 + O(ε2) (16c)

Equilibrium Equations in the Interphase:

As body forces are neglected in the adhesive, the equilibrium equation is:

divσ̂
ε = 0. (17)
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Substituting the representation from (16b) into the equilibrium equation (17) and
using (3), it becomes:

0 = σ̂ ε
iα,α + ε−1σ̂ ε

i3,3

= ε−1σ̂ 0
i3,3 + σ̂ 0

iα,α + σ̂ 1
i3,3 + εσ̂ 1

iα,α + O(ε) (18)

where α = 1, 2. Equation (18) has to be satisfied for any value of ε, leading to:

σ̂ 0
i3,3 = 0 (19)

σ̂ 0
i1,1 + σ̂ 0

i2,2 + σ̂ 1
i3,3 = 0 (20)

where i = 1, 2, 3.
Equation (19) shows that σ̂ 0

i3 is not dependent on z3 in the adhesive, and thus it
can be written: [

σ̂ 0
i3

] = 0 (21)

where [•] denotes the jump between z3 = 1
2 and z3 = − 1

2 .
In view of (21), Eq. (20), for i = 3, can be rewritten in the integrated form

[σ̂ 1
33] = −σ̂ 0

13,1 − σ̂ 0
23,2 (22)

Equilibrium Equations in the Adherents:

The equilibrium equation in the adherents is:

divσ̄ ε + f̄ = 0 (23)

Substituting the representation form (16c) into the equilibriumEq. (23) and taking
into account that it has to be satisfied for any value of ε, it leads to:

divσ̄ 0 + f̄ = 0 (24)

divσ̄ 1 = 0 (25)

2.1.5 Matching External and Internal Expansions

Due to the perfect bonded assumption betweenBε andΩε±, the continuity conditions
at S ε± for the fields uε and σ ε lead to matching relationships between external and
internal expansions [38, 53]. In particular, in terms of displacements the following
relationship have to be satisfied:

uε(xα,±ε

2
) = ûε(zα,±1

2
) = ūε(zα,±1

2
) (26)
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where xα := (x1, x2), zα := (z1, z2) ∈ S . Expanding the displacement in the adher-
ent, uε, in Taylor series along the x3-direction and taking into account the asymptotic
expansion (7a), it results:

uε(xα,±ε

2
) = uε(xα, 0±) ± ε

2
uε

,3(xα, 0±) + · · ·
= u0(xα, 0±) + εu1(xα, 0±) ± ε

2
u0

,3(xα, 0±) + · · · (27)

Substituting Eqs. (7b) and (7c) together with formula (27) into continuity condition
(26), it holds true:

u0(xα, 0±) + εu1(xα, 0±) ± ε

2
u0

,3(xα, 0±) + · · · = û0(zα,±1

2
) + εû1(zα,±1

2
) + · · ·

= ū0(zα,±1

2
) + εū1(zα,±1

2
) + · · ·

(28)

After identifying the terms in the same powers of ε, Eq. (28) gives:

u0(xα, 0±) = û0(zα,±1

2
) = ū0(zα,±1

2
) (29)

u1(xα, 0±) ± 1

2
u0

,3(xα, 0±) = û1(zα,±1

2
) = ū1(zα,±1

2
) (30)

Following a similar analysis for the stress vector, analogous results are obtained
[38, 53]:

σ 0
i3(xα, 0±) = σ̂ 0

i3(zα,±1

2
) = σ̄ 0

i3(zα,±1

2
) (31)

σ 1
i3(xα, 0±) ± 1

2
σ 0

i3,3(xα, 0±) = σ̂ 1
i3(zα,±1

2
) = σ̄ 1

i3(zα,±1

2
) (32)

for i = 1, 2, 3.
Using the above results, it is possible to rewrite Eqs. (21) and (22) in the following

form:

[[σ 0
i3]] = 0, i = 1, 2, 3

[[σ 1
33]] = −σ 0

13,1 − σ 0
23,2 − 〈〈σ 0

33,3〉〉 (33)

where [[ f ]] := f (xα, 0+) − f (xα, 0−) is taken to denote the jump across the surface
S of a generic function f defined on the limit configuration obtained as ε → 0, as
schematically outlined in Fig. 1, while it is set 〈〈 f 〉〉 := 1

2 ( f (xα, 0+) + f (xα, 0−)).
It is worth to point out that all the equations written so far are independent of the

constitutive behavior of the material.
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2.1.6 Concerning Constitutive Equations

The specific constitutive behavior of the materials is now introduced [38, 53]. In
particular, the linearly elastic constitutive laws for the adherents and the interphase,
relating the stress with the strain, are given by the equations:

σ̄ ε = A±(e(ūε)) (34a)

σ̂
ε = B

ε(e(ûε)) (34b)

where A±
i jkl, Bε

i jkl are the elasticity tensor of the adherents and of the interphase,
respectively.

It is worth pointing out that in order to achieve the interface law via this asymptotic
approach, the only assumption on the constitutive behavior of constituents, to do
necessarily, is that of linear elastic materials. Thereby, no assumption is herein made
on the anisotropy of both constituents and on their soundness.

In what follows, within the framework of the imperfect interface approach it has
been shown that it is possible to account for different interphase anisotropy conditions
and for damage phenomena in the interphase.

In the following section, reference is made to the analysis of interphase behavior,
detailing both the soft and hard interphase cases.

2.1.7 Internal/Interphase Analysis

Recalling the seven-regimes distinguish made by Benveniste and Miloh [5] (see
Sect. 1), basically two of these typologies of interphase are considered in the present
work. The first interphase type, called soft interphase, is defined as an interphase
material whose elastic properties are linearly rescaled with respect to the interphase
thickness ε. The second type, referred as hard interphase, is characterized by elastic
moduli, which, on the contrary, do not depend on the thickness ε. It is worth pointing
out that these hypothesis are referred to the stiffness or the softness of the interphase
with respect to the neighboring media (adherents) and it does not depend on the
constitutive assumptions (in terms of anisotropy) made on the interphase material.
Moreover, the soft interphase behavior is, generally, the simplest constitutive hypoth-
esis made to describe an adhesive layer (e.g. glue). Nevertheless, such an assumption
can be an useful strategy in order to take into account for contact zone or thin zones
between solids in which interacting phenomena occur.

The soft interface definition, as above explained, concerns the capacity to have
a non-negligible displacement jump [[u]] through a surface between two bodies in
contact [5, 26, 41], this kind of interface has been also referred as spring-type model.
The hard interface definition, instead, concerns the capacity to have non-negligible
displacement jump [[u]] and stress jump [[σ ]] through a surface between two bodies
in contact.

The matched asymptotic expansion method applied to soft and hard interphases
gives rise to soft and hard interface laws, respectively.
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These two cases are relevant for the development of the interface laws classically
used in technical problems. Moreover, models of perfect and imperfect interfaces,
which are currently used in finite element codes, are known to arise from the hard
and the soft interface conditions expanded at the first (zero) order [4, 5, 10, 36, 38].
The interface laws at the higher order, both in the soft and in the hard cases, are
object of recent studies [53] which are recalled in the following.

Soft Interphase Analysis:

Assuming that the interphase is soft, let the interphase elasticity tensor Bε be defined
as [53]:

B
ε = εB (35)

where tensorB does not depend on ε.Referring toVoigt notation rule, its components
can be expressed as:

K jl
ki := Bi jkl (36)

Taking into account relations (9), (16b) and (35), the stress-strain law (34b) takes
the following form:

σ̂
0 + εσ̂

1 = B(ê−1 + εê0) + o(ε) (37)

As Eq. (37) is true for any value of ε, the following expressions are derived:

σ̂
0 = B(ê−1) (38a)

σ̂
1 = B(ê0) (38b)

Substituting Eq. (36) into Eq. (38a) it results:

σ̂ 0
i j = Bi jkl ê

−1
kl = K jl

ki ê−1
kl (39)

and using Eq. (10), it follows that:

σ̂
0i j = K3 j û0

,3 (40)

for j = 1, 2, 3. Integrating Eq. (40) written for j = 3, with respect to z3, it results:

σ̂
0i3 = K33

[
û0
]

(41)

which represents the classical law for a soft interface at the zero-order.
Recalling a recent study by Rizzoni et al. [53], it is possible to formulate the soft

interface law at the one-order. Accordingly, by substituting the expression (36) into
(38b) and by using formula (11) written for k = 0, one has:
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σ̂
1i j = K1 j û0

,1 + K2 j û0
,2 + K3 j û1

,3 (42)

for j = 1, 2, 3. Moreover, by taking into account formula (40), written for j = 1, 2,
the equilibrium Eq. (20) explicitly becomes:

(K31û0
,3),1 + (K32û0

,3),2 + (σ̂
1i3),3 = 0 (43)

and thus, integrating with respect to z3 between − 1
2 and 1

2 , it gives:

[
σ̂
1i3
]

= −K31
[
û0
]
,1 − K32

[
û0
]
,2 (44)

It is worth remarking that the stress components σ̂ 0
i3 (with i = 1, 2, 3) are inde-

pendent of z3, because of the Eq. (19). Consequently, taking into account Eq. (40)
written for j = 3, the derivatives û0

i,3 are also independent of z3; thus, the displace-
ment components û0

i are a linear functions of z3. Therefore, Eq. (44) reveals that the
stress components σ̂ 1

i3, with i = 1, 2, 3, are linear functions in z3, allowing to write
the following representation form for the stress components:

σ̂
1i3 =

[
σ̂
1i3
]

z3 + 〈σ̂ 1i3〉 (45)

where 〈 f 〉(zα) := 1
2

(
f (zα, 1

2 ) + f (zα,− 1
2 )
)
. Substituting Eq. (42) written for j = 3

into expression (45) and integrating with respect to z3 it yields:

〈σ̂ 1i3〉 = Kα3〈û0〉,α + K33
[
û1
]

(46)

where the sum over α = 1, 2 is implied. Combining Eqs. (44)–(46), it results:

σ̂
1
(zα,±1

2
)i3 = K33[û1](zα) + 1

2
(Kα3 ∓ K3α)û0

,α(zα,
1

2
)

+ 1

2
(Kα3 ± K3α)û0

,α(zα,−1

2
)

(47)

The soft interface laws at zero-order and at one-order, expressed by Eqs. (41) and
(47) respectively, have to be formulated in their final form in terms of the stresses
and displacements fields in the final configuration (see Fig. 1c). To this aim, using
the matching relations (29)–(32), the final formulations of the soft interface laws at
zero-order and at one-order, respectively, are the following [53]:

σ 0(·, 0)i3 = K33[[u0]], (48)

σ 1(·, 0±)i3 = K33([[u1]] + 〈〈u0
,3〉〉) + 1

2
(Kα3 ∓ K3α)u0

,α(·, 0+)

+1

2
(Kα3 ± K3α)u0

,α(·, 0−) ∓ 1

2
σ 0

,3(·, 0±)i3 (49)



Multiscale Modeling of Imperfect Interfaces and Applications 95

where the symbol (·) represents the coordinates (x1, x2) in a generic point of the
system Ω+ ∪ Ω− in the final configuration. In detail, Eq. (48) represents the clas-
sical spring-type interface law, derived from an interphase characterized by a finite
stiffness. Moreover, Eq. (49) allows to evaluate the stress vector at the higher (one)
order, highlighting that the stress vector σ 1(·, 0±)i3 depends not only on displace-
ment jump at one-order but also on the displacement and stress fields evaluated at
the zero-order and their derivatives.

In order to have a complete expression of the effective stress field in the reference
configuration (see Fig. 1a), Eqs. (16b) and (7c) must be substituted in Eqs. (48) and
(49). Finally, it results:

σ ε(·, 0±)i3 ≈ K33[[uε]] + ε
(

K33〈〈uε
,3〉〉

+1

2
(Kα3 ∓ K3α)uε

,α(·, 0+)

+1

2
(Kα3 ± K3α)uε

,α(·, 0−) ∓ 1

2
σ ε

,3(·, 0±)i3
)

(50)

It is worth remarking that Eq. (50) improves the classic interface law at zero-order
by linearly linking the stress vector and the relative displacement via a higher order
term, involving the in-plane first derivatives of the displacement. Moreover, (50)
allows to clearly quantify the error committed in the interface constitutive equation
by modeling a ε-thick layer with a soft interface law at the zero-order (first right-side
term in Eq. (50)). In particular, if the in-plane gradient of displacement and/or the
out-of-plane gradient of stress are relevant, they can be neglected in the interface
constitutive law.

Hard Interphase Analysis:

For a hard interphase, the elasticity tensor Bε takes the following form [14, 38, 53]:

B
ε = B (51)

where the tensor B does not depend on ε, and K jl is still taken to denote the matrices
such that K jl

ki := Bi jkl (Voigt notation).
Taking into account relations (9) and (16b), the stress-strain Eq. (34b) takes the

following form:
σ̂
0 + εσ̂

1 = B(ε−1ê−1 + ê0 + εê1) + o(ε) (52)
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As Eq. (52) is true for any value of ε, the following conditions are derived:

0 = B(ê−1) (53a)

σ̂
0 = B(ê0) (53b)

Taking into account Eq. (10) and the positive definiteness of the tensor B, relation
(53a) gives:

û0
,3 = 0 ⇒ [û0] = 0 (54)

which corresponds to the kinematics of the perfect interface.
Substituting Eq. (11) written for k = 0 into (53b) one has:

σ̂
0i j = K1 j û0

,1 + K2 j û0
,2 + K3 j û1

,3 (55)

for j = 1, 2, 3. Integrating Eq. (55) written for j = 3, with respect to z3, it results:

[û1] = (K33)−1
(
σ̂
0i3 − Kα3û0

,α

)
(56)

Recalling the Eq. (55) (written for j = 1, 2), equilibrium equation Eq. (20) explic-
itly becomes:

(K11û0
,1 + K21û0

,2 + K31û1
,3),1 + (K12û0

,1 + K22û0
,2 + K32û1

,3),2 + (σ̂
1i3),3 = 0

(57)
and thus, integrating with respect to z3 between −1/2 and 1/2 and using (56), it
gives:

[
σ̂
1i3
]

=
(

− Kαβ û0
,β − K3α[û1]

)
,α

=
(

− Kαβ û0
,β − K3α(K33)−1

(
σ̂
0i3 − Kβ3û0

,β

))
,α

(58)

with the Greek indexes (α, β = 1, 2) are related, as usual, to the in-plane (x1, x2)
quantities.

It is worth noting that in Eq. (58) higher order effects occur and they are related to
the appearance of in-plane derivatives, which are usually neglected in the classical
first (zero) order theories of interfaces [14, 38, 53]. These new terms are related
to second-order derivatives and as a consequence, indirectly, to the curvature of the
deformed interface. By non-neglecting these terms it is possible tomodel amembrane
effect in the adhesive [53].

In the hard case also, it is possible to derive a final form of the interface laws
in terms of the stresses and displacements fields in the final configuration (Fig. 1c).
Using matching relations (29)–(32) the interface laws, calculated both at zero-order
and at one-order, can be rewritten as follows [14, 53]:
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[[u0]] = 0 (59)

[[u1]] = −(K33)−1
(
σ 0i3 − Kα3u0

,α

)
− 〈〈u0

,3〉〉 (60)

[[σ 0 i3]] = 0 (61)

[[σ 1 i3]] =
(

− Kαβu0
,β + K3α(K33)−1

(
σ 0i3 − Kβ3u0

,β

))
,α

− 〈〈σ 0
,3 i3〉〉 (62)

Equations (59) and (61) represent the classical perfect interface law character-
ized by the continuity of the displacement and stress vector fields [5]. Additionally,
Eqs. (60) and (62) are imperfect interface conditions, allowing jumps in the displace-
ment and in the stress vector fields at the higher (one) order across the interface S
[53]. Moreover, Eqs. (60) and (62) highlight that these jumps depend on the dis-
placement and the stress fields at the zero-order and on their first and second order
derivatives [14].

As done in the soft case, the constitutive law for the hard interface written in terms
of displacement jumps and stresses in the reference configuration (Fig. 1a) can be
derived (with reference to [14, 53]). By considering the expansions (16a) and (7a)
combined with Eqs. (59)–(62). The obtained imperfect interface laws reads as:

[[uε]] ≈ −ε
(
(K33)−1

(
σ εi3 + Kα3uε

,α

)
− 〈〈uε

,3〉〉
)

(63)

[[σ ε i3]] ≈ ε
((− Kαβuε

,β + K3α(K33)−1
(
σ εi3 − Kβ3uε

,β

))
,α

−〈〈σ ε
,3 i3〉〉

)
(64)

2.2 Homogenization in Non-interacting Approximation
(NIA) for Microcracked Media

The class of inhomogeneities considered in the paper is that of planar micro-
cracks, both in the two-dimensional framework (rectilinear cracks) and in the three-
dimensional framework (penny-shaped cracks). The considered imperfect interphase
Bε, defined as the thin layer having S as the middle section and ε as the uniform
small thickness, is weakened by non-interacting penny-shaped microcracks of radius
b. Cracks are assumed to be characterized by a periodic transversally isotropic dis-
tribution with symmetry axis i3. Moreover, the non-interacting approximation (NIA)
is enforced [57], accordingly, each crack does not experience mechanical interaction
by surrounding cracks. Within the NIA framework, one recalls that the microcracks
contribution to the material effective properties is obtained as a summation over the
contribution of a single crack (or a family of cracks with characteristic length and
orientation [34]). As a result, a ε-thick representative elementary volume (REV) of
the interphase comprising a single crack can be conveniently introduced as sketched
in Fig. 2. Note that in the case of a family of parallel cracks (with same orientation),
it is possible to identify this family by an equivalent crack with average radius.
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Fig. 2 REV with
a crack—sketch of the
ε-thick representative
elementary volume (REV)
taken into account in the 3-d
homogenization process

The non-interacting approximation is particularly useful for cracked materials,
basically, for two reasons:

• it appears to be relatively accurate to high crack density, where local interaction
effects become substantial, this evidence can be due to the fact that presence of
cracks does not change the average stress in the matrix;

• substantial progress has been made in analyzing shape factors for cracks of com-
plex shapes.

It is worth remarking that, in the following text, for the sake of briefness, the word
crack is often used instead of microcracks; however the whole formulation that will
be discussed belongs to a micromechanics framework.

Mathematically, a crack is characterized by a surface of discontinuity experienced
by displacements (or temperature) when external fields are applied. Property con-
tribution tensors have rather specific structure for cracks. A complicating factor is
that cracks often have irregular shapes (including non-planar and intersected con-
figurations). Nevertheless, this shortcoming is not taken into account in the present
paper.

NIA formulation have two dual forms, which in the following will be referred
as stress-based approach and strain-based approach. They correspond to obtain the
property contribution tensor via a summation of compliance or stiffness contributions
of individual inhomogeneities, respectively. In the following sections, the general
formulation of these homogenization approaches for microcracked media in the NIA
framework is outlined.

2.2.1 Stress-Based Approach

Generally, the additional strain tensor (averaged over the domain Ω of volume V )
due to the presence of a pore is given by the following integral over the pore boundary
∂Ωp:

Δε = − 1

V

∫
∂Ωp

(u ⊗s n) dS (65)
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where ⊗s is the symmetric tensorial product, u is the displacement vector, n is a unit
normal to ∂Ωp directed inward the pore.

Let υ+ and υ− be the displacements at the crack boundariesΓ + andΓ − withΓ =
Γ + ∪ Γ −. Denote also as ucod = 〈υ+ − υ−〉 = [∫

Γ
(υ+ − υ−)dΓ ]/|Γ | the average

measure of the displacement jump across the crack, in the following referred to as
crack opening displacement (COD) vector. Where |Γ | is the measure of the crack
surface. In this case, Eq. (65) takes the form:

Δε = 1

V

∫
Γ +

([υ] ⊗s n) dS (66)

where n is the normal unit vector of the crack surface and [υ] = (υ+ − υ−) is the
displacement discontinuity vector along Γ . Calculation of the integral in terms of
remotely applied stress σ 0 ≡ σ would yield the H-tensor of the crack, defined as:

Δε = V p

V

(
H : σ 0

)
(67)

For a flat (planar) crack (n is constant along Γ ), the additional strain Δε becomes:

Δε = 1

V
(ucod ⊗s n) Γ (68)

Equations (66) and (68) are an immediate consequence of a footnote remark in
the famous work by Hill [31].

Let recall that under the approximation of non-interacting cracks, each crack is
embedded into the σ -field and it does not experience any influence of other cracks.
As a result, for a flat crack of any shape, a second-rank crack compliance tensor B
can be introduced that relates vector ucod to the vector of uniform tractionTn = σ · n
induced at the crack site by the far-field σ [34, 35, 43, 60]:

ucod = TT
n · B (69)

Therefore, according to the hypothesis of linear elasticity of materials and absence
of friction along crack faces, the average COD vector for each crack is expressed in
terms of the vector of uniform traction Tn .

Since B is a symmetric tensor (as follows from application of the Betti reciprocity
theorem to the normal and shear tractions on a crack), three orthogonal principal
directions of the crack compliance exist: application of a uniform traction in one of
them does not generate components of vector ucod in the other two directions. If the
matrix is isotropic, n is one of them and the other two, t and s, lie in the crack plane,
as follows:

B = Bnn(n ⊗ n) + Btt (t ⊗ t) + Bss(s ⊗ s) (70)
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As a definition, let introduce the average, over in-plane directions τ , shear crack
compliance that is of importance for the effective elastic properties of a solid with
multiple cracks [57]:

BT = (Btt + Bss)

2
(71)

It is worth to remark that the B tensor has to be specialized with respect to the bulk
material properties.

Within the NIA framework, the problem of quantitative characterization of
microstructures is reduced to find the proper microstructural parameter of inho-
mogeneities in whose terms the effective property of interest, compliance tensor has
to be expressed [35]. Generally, the concentration parameters of inhomogeneities
in the context of the elastic properties are better identified via the structure of the
additional elastic potential Δ f .

For flat cracks, recalling Eshelby’s theory [16], the elastic potential f (σ ) of
the effective microcracked material, written in terms of microstructural quantities
defined on the crack surfaces Γ i , is [34, 57, 59]:

f (σ ) = f0(σ ) + Δ f = 1

2
σ : S0 : σ + 1

2V

∑
i

(TT
n · ucod)

i Γ i (72)

where f0(σ ) is, as usually, the potential of the bulk matrix (interphase) and the
perturbation term Δ f is obtained as a sum of the contributions of individual cracks,
i.e.
∑

i is a summation over the families of microcracks of length 2 li and normal
vector ni . Recall that the tensor S0 appearing in Eq. (72) is the compliance tensor of
the virgin interphase.

In the important case of randomly oriented circular cracks (penny-shaped) of radii
bi , their concentration is characterized by the crack density parameter introduced by
Bristow [7]:

ρ = 1

V

∑
i

b(i)3 (73)

that in the two-dimensional case of randomly oriented rectilinear cracks of mean-
length li becomes:

ρ = 1

A

∑
i

l(i)2 (74)

This parameter was generalized by Budiansky and O’Connell [8] to the elliptical
in-plane shapes, of areas S(i) and perimeters P (i) (provided aspect ratios of ellipses
are identical) as:

ρ = 2

π

1

V

∑
i

(
S2

P

)i

(75)

For non-random crack orientations, the crack density tensor was introduced by
Kachanov [34]:
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α = 1

V

∑
i

(b3n ⊗ n)i

(
α = 1

A

∑
i

(l2n ⊗ n)i in 2-D case

)
(76)

with ρ = Tr α. Kachanov introduced also a fourth-rank density tensor in three-
dimensional case

1

V

∑
i

(b3n ⊗ n ⊗ n ⊗ n)i (77)

which in general causes a small deviation from orthotropy.
As an example, in the three-dimensional case of an isotropic material weakened

by open penny-shaped cracks the elastic potential f is [35]:

f = f0 + 8(1 − ν20 )

3
(
1 − ν0

2

)
E0

⎡
⎣(σ ∗ σ ) : α − ν0

2

⎛
⎝σ : 1

V

∑
i

(b3n ⊗ n ⊗ n ⊗ n)i : σ

⎞
⎠
⎤
⎦
(78)

2.2.2 Strain-Based Approach

Goidescu-type formulation is developed within the framework of 2-D homoge-
nization problems [20, 21]. It extends the micromechanical approach proposed
by Andrieux et al. [2] and leads to a closed-form expression of the macroscopic
free energy of a 2D orthotropic elastic medium weakened by arbitrarily oriented
microcracks in the dilute limit assumption. It exists a large amount of literature
about the homogenization of microcracked media following a strain-based approach
[25, 31–33, 47]. It is worth to recall that within the framework of this approach
the stiffness contribution tensor ΔC are derived starting from a free energy W .
As done above for the stress-based approach, let the general background be out-
lined. Particularly, reference is herein made to the two-dimensional formulation
by [20, 21].

Let consider a RVE of total area A , the bulk matrix is assumed to be weakened
by an array of N families of flat microcracks with arbitrary orientation relative to
orthotropic axes andmean length 2li , which occupy the domainω. As a general recall
[33], the macroscopic stress Σ and strain E tensors and the macroscopic free energy
W on a cell A are respectively defined as average values of microscopic stress σ

and strain ε fields and local free energy. Let denote by ¯A = A − ω the area of the
matrix phase, v(x) the outward unit normal to ω and T(x, v(x)) the traction along
the crack faces for any point x ∈ ω. Decomposition of local fields over the RVE and
application of the divergence theorem allow to relate macroscopic and microscopic
quantities [31]. For the macroscopic stress Σ , one has:

Σ = 〈σ 〉A = 〈σ 〉 ¯A + N

2

∫
ω

(
T(x, v(x)) ⊗s x

)
dx = 〈σ 〉 ¯A (79)
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For the macroscopic strain E one has, recalling Eq. (66):

E = 〈ε〉A = 〈ε〉 ¯A + N

2

∫
ω+

(
[υ(x)] ⊗s n

)
dx (80)

with the surface integral operator 〈•〉M = 1
|M |

∫
M (•)dS, and v(x) = n for x ∈ ω

the unit vector normal to the cracks, supposed to be constant along ω for flat and
regular cracks. It is worth recalling that both Eqs. (66) and (80) are generalization of
the Hill lemma for continuous media and they are directly derived from a footnote
remark in his work [31]. From Eq. (80) is pointed out that the average strain field
on the solid part 〈ε〉 ¯A is therefore not sufficient to describe E, the contribution of
displacements jump [υ] on the cracks must be taken into account in its expression.

Themacroscopic free energy of thematerial is a finite quantity exclusively defined
on the matrix part of the material, that is:

W = 1

2
〈ε : C0 : ε〉 ¯A (81)

For microcracked media it has been established, among other by Telega [58], that
the following equation holds:

W = 1

2

∫
∂ ¯A

υ(x) · σ (x) · v(x) dx = 1

2
Σ : E − N

2

∫
ω+

[υ(x)] · σ (x) · n dx (82)

with ∂ ¯A = ∂A ∪ ω the boundary of the solid matrix.
Let consider an uniform boundary condition applied on the boundary ∂A of the

RVE, given in terms of stresses as follows:

σ (x) · v(x) = Σ · v(x) ∀x ∈ ∂A (83)

Within the framework of the strain-type approach, in order to derive the local
fields involved and to determine the effective microcracks contribution, the elastic
problem P is decomposed into two sub-problemsP (1) and P (2) [2]:

• in the sub-problem P (1), the displacement field u(1) corresponds to that of the
homogeneous virgin material subjected to uniform stress conditions; accordingly
the related local stress σ (1) and strain ε(1) fields are uniform and must comply with
the average stress rule Σ = 〈σ (1)〉A and E(1) = 〈ε(1)〉A = [C0]

−1 : Σ

• for the sub-problem P (2), the displacement field u(2) is induced by the displace-
ment jump [υ] between the crack faces; the related local stress σ (2) is in this case
self-equilibrated, i.e. 〈σ (2)〉 ¯A = 0 from (79); besides, since 〈ε(2)〉 ¯A = [C0]

−1 :
〈σ (2)〉 ¯A = 0; the macroscopic strain reads from (80):

E(2) = N

2

∫
ω+

([υ(x)] ⊗ n + n ⊗ [υ(x)])dx (84)
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Introducing two scalar variables β and γ related to the normal [uN (x)] = [υ(x)] · n
and tangential [uT (x)] = [υ(x)] · t average displacement jump components on the
cracks faces:

β = N

∫
ω+

[uN (x)] dx γ = N

∫
ω+

[uT (x)] dx (85)

the macroscopic strain inP (2) reads as:

E(2) = β n ⊗ n + γ

2
(n ⊗ t + t ⊗ n) (86)

where (n, t) define an integral orthonormal basis for the crack.
According with the decomposition, the overall macroscopic strain is:

E = E(1) + E(2) (87)

Moreover, the overall free energy per unit surface W defined by Eq. (81) with ε =
ε(u(1) + u(2)) can be expressed as the sum of two terms [2]:

W = 1

2
〈(ε(1) + ε(2)) : C0 : (ε(1) + ε(2))〉 ¯A = W (1) + W (2) (88)

for which have been taken into account the uniformity of ε(1) and the property
〈ε(2)〉 ¯A = 0.

W (1) is the free energy of the virgin material related to the problem P (1):

W (1) = 1

2
〈ε(1) : C0 : ε(1)〉A = 1

2
E(1) : C0 : E(1) (89)

and the termsW (2) is related to the contribution of the jump displacement in problem
P (2). It follows from Eq. (82) that:

W (2) = 1

2
〈ε(2) : C0 : ε(2)〉 ¯A = −N

2

∫
ω+

[υ(x)] · σ (2)(x) · n dx

= −N

2

∫
ω+

([uN (x)] n · σ (2)(x) · n + [uT (x)] n · σ (2)(x) · t) dx

= −1

2
(βn · σ (2) · n + γ n · σ (2) · t) (90)

for which: σ (2)(x) = σ (2) = const, ∀x ∈ ω for a dilute concentration of cracks.
Final expression of the free energy W of the microcracked material with open

cracks parallel to i1 direction (for further details refer to [20, 21]) is:

W = W0 − d
[
Hnn (N : E)2 + Htt (T : E)2

]
(91)
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with

W0 = 1

2
E : C0 : E (92)

be the overall free energy of the virgin initially-orthotropic material and d = N l2

be the microcracks density, where N is the number of cracks per unit surface area,
and as usual, l is the half-length of a crack. Parameters Hnn = C(1 + D) and Htt =
C(1 − D) are identical to Bnn and Btt respectively, of the stress-based approach
of Kachanov type. Constants C and D can be expressed in terms of engineering
mechanical parameters, or equivalently, in terms of the components of tensor C0

[21]. Moreover, second-order tensors N = C0 : (i3 ⊗ i3) and T = C0 : (i1 ⊗s i3) are
used.

Finally, fromEq. (91) the effective stiffness tensorC of themicrocrackedmaterial,
is obtained.

It is worth noting that all the obtained coefficients K jl
ki are of the form f (C0) −

d [g(C0)] with f, g generic functions. It is well highlighted a shortcoming of this
kind of formulation in dilute limit assumption, that is severely limit values of the
microcracks density d. Nevertheless, a great advantage of such a homogenization
can be leading to coefficients which do not depend on the REV geometry.

From a computational point of view, the implementation of a hard interfacemodel,
also for a quite simple geometry, is not an easy issue due to the discontinuities both
in terms of stresses and displacements at the interface. This aspect is not considered
in the present work, nevertheless some numerical results are given in [14].

3 A St. Venant-Kirchhoff Imperfect Interface Model

In this section, a nonlinear-imperfect interface model is proposed. Within the frame-
work of the detailed micromechanical approach, the model is formulated following
the same procedure detailed in Sect. 2, in order to derive both soft and hard imperfect
interface laws. In detail, the matched asymptotic expansion method [1, 4, 38–41, 52,
53] is extended to the finite strain theory [14, 15, 49]. Moreover, the homogeniza-
tion method for microcracked media under the NIA [34, 35, 43, 57, 60] is applied
to a damaged interphase comprising of a hyperelastic St. Venant-Kirchhoff initially
orthotropic material [49].

3.1 Matched Asymptotic Expansion
Method in Finite Strains

Let an orthonormal Cartesian basis (O, i1, i2, i3) be introduced, with x1, x2 and x3
be the corresponding coordinates of a particle belonging to the system Ωε. Refer to
Sect. 2 for the notation and three-dimensional problem statement (see Fig. 1).
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The equations governing the equilibrium problem of such a composite system are
expressed as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(sε
i j + sε

k j u
ε
i,k), j + fi = 0 in Ωε±

(sε
i j + sε

k j u
ε
i,k)n j = pi on Γ1

(sε
i j + sε

k j u
ε
i,k), j = 0 inBε

[[sε
i3 + sε

k3u
ε
i,k]] = 0 on S ε±

[[uε
i ]] = 0 on S ε±

uε
i = 0 on Γ0

sε
i j = A±

i jhk Ehk(uε) in Ωε±
sε

i j = Aε
i jhk Ehk(uε) inBε

(93)

where sε is the second Piola-Kirchhoff stress tensor, E(uε) is the Green-Lagrange
strain tensor (Ei j (uε) = 1

2 (ui, j + u j,i + uk,i uk, j )with i, j = 1, 2, 3) andA±,Aε are
the elasticity tensors of the deformable adherents and of the adhesive, respectively. It
is worth remarking that for the elastic tensorAε holds the following identityAε ≡ B

ε.
Additionally, by the homogenization for microcracked media, detailed in the next
section, the interphase elastic tensor is found to be consistent with the soft interphase
assumption. Such a finding, allows to express its components through the following
relationship:

Aε
i jkl = ε Âi jkl (94)

Since the interphase is assumed to behave as a thin layer of thickness ε, it is
natural to seek the solution of the equilibrium problem, expressed by Eq. (93), by
using asymptotic expansions with respect to the small parameter ε [42]. In particular,
the following asymptotic series with fractional powers are exploited [54]:

{
uε(x1, x2, x3) = u0 + ε1/3u1 + ε2/3u2 + ε u3 + ε4/3u4 + ε5/3u5 + ε2u6 + o(ε2)

sε(x1, x2, x3) = s0 + ε1/3s1 + ε2/3s2 + ε s3 + ε4/3s4 + ε5/3s5 + ε2s6 + o(ε2)

(95)
It is worth remarking that such a choice of a fractional expansion is due to energy-
based evidences [54]. In particular, from a quite simple mono-dimensional example,
proposed in [54], it has been put in evidence that the solution in terms of displacement
jump is proportional to ε

2
3 .

In agreement with [12] and equivalently to what performed in the others models
(see Sect. 2), also in this case, let the change of variable ĝ : (x1, x2, x3) → (z1, z2, z3)
be introduced inBε, with z1 = x1, z2 = x2, z3 = x3/ε. Moreover, let the change of
variable ḡ : (x1, x2, x3) → (z1, z2, z3) be introduced in Ωε±, with z1 = x1, z2 = x2,
z3 = x3 ± (1 − ε)/2. As a result, the interphaseBε and the adherentsΩε± are scaled
in domains of unitary thickness B and Ω±, respectively. In what follows, sym-
bols ·̄ and ·̂ refer to rescaled quantities forB and Ω±, respectively. More precisely,
ûε = uε ◦ ĝ−1 and ŝε = sε ◦ ĝ−1 denote displacement and stress fields for B, and
ūε = uε ◦ ḡ−1 and s̄ε = sε ◦ ḡ−1 are displacement vector and stress tensor for Ω±,
uε and sε being the corresponding fields on the system Ωε. The internal and external
forces, f and p, respectively, are assumed to be independent of ε. As a consequence, it
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is set f̄(z1, z2, z3) = f(x1, x2, x3) and p̄(z1, z2, z3) = p(x1, x2, x3). Moreover, under
the change of variables, the domains Γ0 and Γ1 are transformed into the domains
denoted by Γ̄0 and Γ̄1, respectively. As a result, the governing equations of the
equilibrium problem, in the rescaled composite system, are expressed as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(s̄i j + s̄k j ūi,k), j + f̄i = 0 in Ω±
(s̄i j + s̄k j ūi,k)n j = p̄i on Γ̄1

(ŝiα + ŝkα ûi,k),α + 1
ε
(ŝi3 + ŝk3ûi,k),3 = 0 inB

s̄i3 + s̄k3ūi,k = ŝi3 + ŝα3ûi,α + 1
ε
ŝ33ûi,3 on S±

ūi = ûi on S±
ūi = 0 on Γ̄0

s̄i j = A±
i jhk Ēhk(ū) in Ω±

ŝi j = Aε
i jhk Êhk(û) inB

(96)

where Ē, Ê denote the rescaled Green-Lagrange strain tensors in the adherents and
in the adhesive.

In view of Eq. (95) the relevant fields, in the rescaled adhesive and adherents, can
be expressed as asymptotic expansions in the following way:

⎧⎪⎪⎨
⎪⎪⎩

ŝε(z1, z2, z3) = ŝ0 + ε1/3ŝ1 + ε2/3ŝ2 + εŝ3 + ε4/3ŝ4 + ε5/3ŝ5 + ε2ŝ6 + o(ε2)

s̄ε(z1, z2, z3) = s̄0 + ε1/3s̄1 + ε2/3s̄2 + εs̄3 + ε4/3s̄4 + ε5/3s̄5 + ε2s̄6 + o(ε2)

ûε(z1, z2, z3) = û0 + ε1/3û1 + ε2/3û2 + εû3 + ε4/3û4 + ε5/3û5 + ε2û6 + o(ε2)

ūε(z1, z2, z3) = ū0 + ε1/3ū1 + ε2/3ū2 + εū3 + ε4/3ū4 + ε5/3ū5 + ε2ū6 + o(ε2)

(97)
In the following, the conditions holding in the rescaled interphaseB are detailed.

These latter are obtained by substituting the first of Eq. (97) into the equilibrium
equation holding in the interphase (i.e., third equation of the system (96)) and by
identifying, in a standard way, similar terms with respect to the power of the para-
meter ε:

• Power of ε : −2
(û0

i,3ŝ033),3 = 0, (98)

• Power of ε : −5/3
(û0

i,3ŝ133 + û1
i,3ŝ033),3 = 0, (99)

• Power of ε : −4/3
(û0

i,3ŝ233 + û1
i,3ŝ133 + û2

i,3ŝ033),3 = 0, (100)

• Power of ε : −1

(û0
i,3ŝ03α),α + (ŝ0i3 + û0

i,α ŝ03α),3

+ (û0
i,3ŝ333 + û1

i,3ŝ233 + û2
i,3ŝ133 + û3

i,3ŝ033),3 = 0, (101)
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• Power of ε : −2/3

(û0
i,3ŝ13α + û1

i,3ŝ03α),α + (ŝ1i3 + û0
i,α ŝ13α + û1

i,α ŝ03α),3

+ (û0
i,3ŝ433 + û1

i,3ŝ333 + û2
i,3ŝ233 + û3

i,3ŝ133 + û4
i,3ŝ033),3 = 0, (102)

• Power of ε : −1/3

(û0
i,3ŝ23α + û1

i,3ŝ13α + û2
i,3ŝ03α),α

+ (ŝ2i3 + û0
i,α ŝ23α + û1

i,α ŝ13α + û2
i,α ŝ03α),3

+ (û0
i,3ŝ533 + û1

i,3ŝ433 + û2
i,3ŝ333 + û3

i,3ŝ233 + û4
i,3ŝ133 + û5

i,3ŝ033),3 = 0, (103)

• Power of ε : 0

(û0
i,3ŝ33α + û1

i,3ŝ23α + û2
i,3ŝ13α + û3

i,3ŝ03α),α + (ŝ0iα + ŝ0αβ û0
i,β)α

+ (ŝ3i3 + û0
i,α ŝ33α + û1

i,α ŝ23α + û2
i,α ŝ13α + û3

i,α ŝ03α),3

+ (û0
i,3ŝ633 + û1

i,3ŝ533 + û2
i,3ŝ433 + û3

i,3ŝ333 + û4
i,3ŝ233 + û5

i,3ŝ133 + û6
i,3ŝ033),3 = 0,

(104)

• . . .

By substituting the first two equations of (97) into the continuity condition of the
traction vector holding through the rescaled interfaces S± (i.e., fourth equation
of system (96)), and by applying the usual identification procedure, the following
relationships are obtained:

• Power of ε : −1
0 = (û0

i,3ŝ033) (105)

• Power of ε : −2/3
0 = (û0

i,3ŝ
1
33 + û1

i,3ŝ033) (106)

• Power of ε : −1/3
0 = (û0

i,3ŝ
2
33 + û1

i,3ŝ133 + û2
i,3ŝ033) (107)

• Power of ε : 0

(s̄0i3 + ū0
ik s̄0k3) = (ŝ0i3 + û0

i,α ŝ0α3 + û0
i,3ŝ333 + û1

i,3ŝ233 + û2
i,3ŝ133 + û3

i,3ŝ033) (108)
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• Power of ε : 1/3

(s̄1i3 + ū0
i,k s̄1k3 + ū1

i,k s̄0k3)

= (ŝ1i3 + û0
i,α ŝ1α3 + û1

i,α ŝ0α3)

+ (û0
i,3ŝ

4
33 + û1

i,3ŝ333

+ û2
i,3ŝ

2
33 + û3

i,3ŝ133 + û4
i,3ŝ033) (109)

• Power of ε : 2/3

(s̄2i3 + ū0
i,k s̄2k3 + ū1

i,k s̄1k3 + ū2
i,k s̄0k3)

= (ŝ233 + û0
i,α ŝ2α3 + û1

i,α ŝ1α3 + û0
i,α ŝ2α3)

+ (û0
i,3ŝ533 + û1

i,3ŝ433 + û2
i,3ŝ333 + û3

i,3ŝ233 + û4
i,3ŝ133 + û5

i,3ŝ033) (110)

• Power of ε : 1

(s̄3i3 + ū0
i,k s̄3k3 + ū1

i,k s̄2k3 + ū2
i,k s̄1k3 + ū3

i,k s̄0k3)

= (ŝ3i3 + û0
i,α ŝ3α3 + û1

i,α ŝ2α3 + û2
i,α ŝ1α3 + û3

i,α ŝ0α3)

+ (û0
i,3ŝ633 + û1

i,3ŝ533 + û2
i,3ŝ433 + û3

i,3ŝ333 + û4
i,3ŝ233 + û5

i,3ŝ133 + û6
i,3ŝ033)

(111)

• . . .

It is worth noting that the above equations hold both in S+ and in S−, for the sake
of briefness they have been detailed only in one case. Moreover, by remarking that
the left-hand sides in Eqs. (108)–(111) can be identified as the expansions of the
i3 components of the first Piola-Kirchhoff stress tensor P̄i3 = (s̄i3 + ūik s̄k3) in the
adherents, a significant simplification of these equations it is possible.

According to the soft-material-interphase assumption, by substituting Eq. (94)
in the constitutive law holding in the interphase B of the rescaled domain (i.e.,
last equation of the problem (96)), written for j = 3, the following conditions are
deduced:

• Power of ε : −1
0 = (û0

k,3û0
k,3) (112)

• Power of ε : −2/3
0 = (û0

k,3û
1
k,3 + û1

k,3û0
k,3) (113)

• Power of ε : −1/3
0 = (û0

k,3û2
k,3 + û1

k,3û1
k,3 + û2

k,3û0
k,3) (114)
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• Power of ε : 0

ŝ0α3 = Â33α3
[
û0
3,3 + (û0

s,3û3
s,3 + û1

s,3û2
s,3)
]+ 1

2
Âβ3α3(û

0
β,3 + û0

s,β û0
s,3)

ŝ033 = Â3333
[
û0
3,3 + (û0

s,3û3
s,3 + û1

s,3û2
s,3)
]+ 1

2
Â33β3(û

0
β,3 + û0

s,β û0
s,3)

(115)

• Power of ε : 1/3

ŝ1α3 = Â33α3

[
û1
3,3 + (û0

s,3û4
s,3 + û1

s,3û3
s,3 + 1

2
û2

s,3û2
s,3)

]

+ 1

2
Âβ3α3(û

1
β,3 + û0

s,β û1
s,3 + û1

s,β û0
s,3)

ŝ133 = Â3333

[
û1
3,3 + (û0

s,3û4
s,3 + û1

s,3û3
s,3 + 1

2
û2

s,3û2
s,3)

]

+ 1

2
Â33β3(û

1
β,3 + û0

s,β û1
s,3 + û1

s,β û0
s,3)

(116)

• . . .

From Eqs. (112)–(115) it follows that:

û0
,3 = 0 in B ⇒ [û0] = 0 (117)

û1
,3 = 0 in B ⇒ [û1] = 0 (118)

ŝ0α3 = 0 = ŝ033 in B (119)

where it is set [ f ](z1, z2) = f (z1, z2, 1/2) − f (z1, z2,−1/2) for f : B �→ R
3.

By combining Eqs. (117)–(119) into Eqs. (98)–(101), the following relationship is
obtained:

(û2
i,3ŝ133)3 = 0 in B (120)

which integrated with respect to z3 gives

û2
i,3ŝ133 = const. = P̄0

i3|S± in B (121)

where P̄0
i3|S± is the common value taken at the interfacesS± (cfr. Eq. (108)). More-

over, by substituting Eq. (116) and Eqs. (117)–(119) into Eq. (121) the following
relationship is obtained:

1

2
Â3333(| û2

i,3 |2 û2
i,3) = P̄0

i3 = in B (122)
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By solving with respect to û2
,3 and by integrating with respect to z3 one has:

[û2] = 1

( 12 Â3333)1/3

1

| P̄0i3 |2/3 P̄0i3 (123)

Thereby, substituting Eqs. (112)–(115) into Eqs. (108)–(110) it is obtained that:

[P̄0i3] = 0 (124)

[P̄1i3] = 0 (125)

[P̄2i3] = 0 (126)

with

P̄0
i3 = (s̄0i3 + ū0

i,k s̄0k3) (127)

P̄1
i3 = (s̄1i3 + ū0

i,k s̄1k3 + ū1
i,k s̄0k3) (128)

P̄2
i3 = (s̄2i3 + ū0

i,k s̄2k3 + ū1
i,k s̄1k3 + ū2

i,k s̄0k3) (129)

The final step of the asymptotic expansion method consists in applying the match-
ing conditions in order to find the proper interface law for the limit equilibrium
problem, in which the interphase is replaced by the limit interfaceS and the adher-
ents by the domains Ω0± = {(x1, x2, x3) ∈ Ω : ±x3 > 0}. By taking into account
the asymptotic expansion of the displacement field (95) and assuming that uε in the
adherent can be expanded in a Taylor series representation along the x3-direction, it
results:

uε(x̄,±ε

2
) = uε(x̄, 0±) ± ε

2
uε

,3(x̄, 0±) + · · ·
= u0(x̄, 0±) + ε1/3u1(x̄, 0±) + ε2/3u2(x̄, 0±)

+ε
(
u3(x̄, 0±) ± 1

2
u0

,3(x̄, 0±)
)+ · · · (130)

In view of the continuity of the displacements at the interfacesS ε± andS± one has

u0(x̄, 0±) + ε1/3u1(x̄, 0±) + ε2/3u2(x̄, 0±) + · · ·
= û0(z̄,±1

2
) + ε1/3û1(z̄,±1

2
) + · · ·

= ū0(z̄,±1

2
) + ε1/3ū1(z̄,±1

2
) + · · · (131)

and, identifying the terms in the same powers of ε, it is deduced that:
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u0(x̄, 0±) = û0(z̄,±1

2
) = ū0(z̄,±1

2
)

u1(x̄, 0±) = û1(z̄,±1

2
) = ū1(z̄,±1

2
)

u2(x̄, 0±) = û2(z̄,±1

2
) = ū2(z̄,±1

2
) (132)

Analogous results can be obtained for the tractions vector, herein expressed in
terms of the first Piola-Kirchhoff tensor:

P0(x̄, 0±)i3 = P̂0(z̄,±1

2
)i3 = P̄0(z̄,±1

2
)i3

P1(x̄, 0±)i3 = P̂1(z̄,±1

2
)i3 = P̄1(z̄,±1

2
)i3

P2(x̄, 0±)i3 = P̂2(z̄,±1

2
)i3 = P̄2(z̄,±1

2
)i3 (133)

Let the following notation be adopted: [[f]] := f(x, 0+) − f(x, 0−) with f :
Ω0+ ∪ Ω0− �→ R

3; accordingly, the proper contact conditions for the limit equilib-
rium problem, i.e. expressed in terms of the relevant fields defined on Ω0+ ∪ Ω0−, can
be obtained by using this relation into the interphase laws Eqs. (117), (118), (123),
(124)–(126):

[ūl ] = [[ul]] l = 0, 1, 2

[P̄l i3] = [[Pl i3]] l = 0, 1, 2
(134)

By applying the matching relations (134) and taking into account Eqs. (132) and
(133), the interface laws for the soft interphase can be rewritten in the limit config-
uration Ω0+ ∪ Ω0− ∪ S in a form involving only the fields in the adherents:

[[u0]] = 0 [[P0i3]] = 0 (135)

[[u1]] = 0 [[P1i3]] = 0 (136)

[[u2]] = 1

( 12 Â3333)1/3

1

|P0i3|2/3 P0i3 [[P2i3]] = 0 (137)

which are the final expressions of the interface conditions for the proposed St.Venant-
Kirchhoff anisotropic model. It is worth remarking that the imperfect interface con-
dition, prescribing a jump of the displacement, appears at the second order. By taking
into account the expansions (95) and the relations (127)–(129), one finds:
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Pεi3 = P0i3 + O(ε1/3) (138)

[[Pεi3]] = ε2/3[[P2i3]] + O(ε) (139)

[[uε]] = ε2/3[[u2]] + O(ε) (140)

which, substituted into (135)–(137), give

[[Pεi3]] = 0 + o(ε) (141)

Pεi3 = Aε
3333

2 ε3
| [[uε]] |2 [[uε]] + o(ε1/3) (142)

Note that, to the aim to fully express the interface law Eq. (142) within the interphase
domain, Eq. (94) is taken into account: Â3333 = Aε

3333
ε

.
Finally, the imperfect interface law can be rewritten in terms of the Piola stress

vector P i3 and the displacement jump [[u]] in the limit configuration (Fig. 1c):

P i3 = Â3333

2 ε2
| [[u]] |2 [[u]] (143)

Remark that Eq. (143) is the relevant expression, from a computational point of
view, of the interface law for the proposed St. Venant-Kirchhoff model. Thereby, it
represents the transmission condition for the stress vector P i3 across the interface
S . As a definition, Â3333 is the interface stiffness for this soft nonlinear interface.
Moreover, Eq. (143) highlights that this transmission condition is an effectively non-
linear imperfect interface law. It is worth remarking that such an imperfect interface
condition, in order to be numerically implemented needs to fix a value for the thick-
ness ε. This fact can represent a shortcoming for the proposed model. Nevertheless,
such a parameter, in many cases can be measurable, for instance in the case of the
glue layers in bonding problems.

3.2 Homogenization of the Microcracked Interphase

The interface law (see Eq.142) is a function of the elastic constant Aε
3333 of the

interphase material. This latter is assumed to be orthotropic with principal axes
(i1, i3) and weakened by one family of parallel rectilinear microcracks with length
2l and orientation φ = (i1, t) = 0◦. In order to recover the elastic constant Aε

3333

and consecutively the interface stiffness Â3333, the homogenization technique for
microcracked orthotropic media in the two-dimensional context, refer to [17] for
further details. Therefore, in what follows only the relevant relations are outlined.

Recall the expression of the effective compliance tensor S of the microcracked
interphase, obtained through a stress-based homogenization in NIA:

(S)i jkl = (S0)i jkl + (ΔS)i jkl (144)
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where ΔS is the contribution compliance tensor associated to the perturbative term
in the complementary elastic potential Δ f , and accounting for the crack features.
S0 is the compliance of the undamaged initially orthotropic interphase material. As
a result, the elasticity tensor Aε can be easily derived as: Aε = S

−1. Note that the
tensor Aε depends on the interphase thickness ε through the microcrack density ρ:

ρ = l2

|REA| = l2

ε L
(145)

with L a characteristic dimension of the interphase, and ε is the interphase thickness,
as usual. As a result, the elastic constant Aε

3333 reads as:

Aε
3333 = E1E3

E1 + 2BnnρE1E3 − E3ν
2
13

(146)

with

Bnn = π

2
√

E3

√
2√

E1E3
+ 1

G13
− 2ν13

E1
(147)

where E1, E3, G13 and ν13 are the elastic constants of the undamaged interphase.
It is worth pointing out that these latter can be obtained in terms of the elastic
properties of the two adherents, as the result of a homogenization step performed on
the undamaged ε-thick representative elementary volume [17, 50, 51].

Finally, the interface stiffness Â3333, derived from Eq. (146), is expressed by the
following relationship:

Â3333 = L

2 Bnn l2
(148)

4 Numerical Applications

In this section a numerical benchmark is proposed in order to validate the imperfect-
nonlinear-interface model of the St. Venant-Kirchhoff type detailed in Sect. 3 and
to compare it with the spring-like model described in Sect. 2. A quite simple three-
dimensional geometry is treated, in particular an unit brick (210mm × 100mm ×
50mm) joined with a mortar joint (210mm × 100mm × 10mm). The composite
system is assumed to be fixed on a flat rigid plane. The geometry and the boundary
conditions are outlined in Fig. 3. This simple academic model has been chosen to
focus, in a more accurate way, on the behavior of the brick/mortar interface.

With respect to the hypothesis on the constitutive behavior of the principal con-
stituents, i.e. brick and mortar, a linear and a nonlinear isotropic cases have been
distinguished. In the first case, the materials are assumed to be linearly elastic with
parameters: Young modulus Eb = 13 × 103 MPa and Poisson ratio νb = 0.2 for the
brick, and Young modulus Em = 4 × 103 MPa and Poisson ratio νm = 0.2 for the



114 S. Dumont et al.

Fig. 3 Geometry, boundary conditions and mesh detail—sketch of the three-dimensional model
(on the left). The surface loaded with the incremental displacement is represented in blue and
the red surface is fixed. On the right side, a detail of the free tetrahedral mesh is represented
(color online)

mortar, respectively. Instead, in the nonlinear case, both brick and mortar behave as
hyperelastic materials of the St. Venant-Kirchhoff type with Lamé constants: λb =
3.6 × 103 MPa andμb = 5.4 × 103 MPa for the brick, and λm = 1.1 × 103MPa and
μm = 1.6 × 103MPa for the mortar, respectively.

The interphase, localized at the brick/mortar interface level, is assumed to be
a thin stratified layer comprising of brick and mortar material characteristics. In
all numerical models proposed, the interphase is treated via the imperfect interface
approach. In other words, it is a third material supposed to be initially-transversely
isotropic, whose elastic constants E1, E3, G13 and ν13 are derived starting from
the mechanical properties of the constituents (Eb, Em, νb, νm). In order to obtain its
elastic constants a preliminary standard homogenization for stratified is performed
on the undamaged ε-thick representative elementary volume [48, 50, 51]. Moreover,
this interphase is assumed to be microcracked.

As a result, the following effective elastic constants for the virgin interphase
material are obtained: E1 = 8.5 × 103 MPa, E3 = 6.3 × 103 MPa, G13 = 5 × 103

MPa and ν13 = 0.2.
Two imperfect interface models are taken into account, the nonlinear St. Venant-

Kirchhoff interface, and the soft interface model obtained in Sect. 2. Note that it is
possible to applicate them in a three-dimensional context under the hypothesis of
isotropic interface (i.e. the tangential interface stiffness is assumed to be isotropic
in the interface plane). The nonlinear imperfect interface is modeled according
Eq. (149):

P i3 = Â3333

2 ε2
| [[u]] |2 [[u]] (149)

in which the interface stiffness Â3333 is given by Eq. (148). Assuming the following
values: L = 210 mm, l = L/100 = 2 mm and ε = 0.2 mm, the stiffness results in:
Â3333 = L

2 Bnn l2 = 5.9 × 104 N/mm3.
Concerning the linear-interface case, let the imperfect interface law be recalled:

σ i3 = K33[[u]] (150)
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where the interface stiffnesses in normal and in tangential-to-the-interface directions
comprised in the two-rank matrix K33, are expressed by Eq. (151):

KT = L

Btt l2
, KN = L

2 Bnnl2
(151)

accordingly they result in: KN = 5.9 × 104 N/mm3 and KT = 1.4 × 105 N/mm3.
Several numerical simulations are carried out, aimed at validating the proposed

interface models; in particular, in the model with the linearly elastic constituents, in
what follows denoted as linear model, both the linear and the nonlinear interface laws,
are implemented. In the nonlinear model, i.e. the onewith the hyperelastic St. Venant-
Kirchhoff constituents, only the nonlinear interface law is enforced. Additionally, the
linear and the nonlinearmodels are also implementedwith perfect interface condition
(i.e. [[u]] = 0, [[σ i3]] = 0, [[Pi3]] = 0), in order to have some reference data, in the
following they are referred as LP and NLP, respectively. Moreover, in what follows
the linearmodelwith linear interfacewill be calledL2, the linearmodelwith nonlinear
interface will be called LNL and the nonlinear model with nonlinear interface will
be called NL2.

All analysis are performed with the software COMSOL Multiphysics� 4.3 on
a processor Intel(R) Core(TM) i3-2350M 2.3GHz CPU. A free tetrahedral mesh
of fine size is chosen in all the analysis cases for the whole domain, moreover, the
brick/mortar interface is modeled through interface finite elements of zero thickness,
as represented in Fig. 3. The implemented numericalmodels aim to reproduce a push-
out test on a single brick in a quasi-static loading process. The tests are performed in
displacement-controlled mode with an imposed displacement of a maximum value
equal to 5mm. The degrees of freedom and the solution times expressed in seconds
are summarized in Table1, for all the analysis cases.

It is worth noting that it could be possible to reduce the degrees of freedom and,
consequently, the CPU times, by applying some considerations about the geometrical
symmetries of the considered system. Nevertheless, the remarkable aspect is the
large difference in terms of CPU time among linear and nonlinear calculations,
independently if the nonlinearity is localized at the interface level (LNL) or in the
constituents (NL2). Moreover, both in the linear and in the nonlinear model, the
introduction of the linear and nonlinear-imperfect-interface conditions, i.e. L2 and

Table 1 Values of degrees of freedom (dof) and solution times (in seconds) for all the analyzed
numerical models

Model dof CPU time (s)

LP 2,13,621 309

L2 2,19,822 326

LNL 2,19,822 9716

NLP 2,13,621 8831

NL2 2,19,822 10,317
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Fig. 4 Deformed shape in LNL model—final deformed shape relative to LNLmodel (on the right).
The x1-component of the displacement field is mapped in colors. Final deformed shape of the
interface in the same model (on the left) with color map of the x3-component of the displacement-
jump vector, the maximum value of the displacement is 0.12mm (a factor scale of 5 is applied)
(color online)
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Fig. 5 Comparison in terms of reaction force—reaction force in the x1-direction averaged over the
loaded boundary surface versus the x1-component of the average displacement-jump vector, at the
final step (the maximum value of the imposed displacement is 5mm). Comparison among: L2

(- -� - -); LNL (–�–); and NL2 (- -�- -). A zoom of the curve relative to L2 is represented

NL2 respectively, does not produce a significant increment of the CPU times with
respect to the perfect-interface cases.

The numerical simulations stop when the imposed displacement reaches is max-
imum value (5mm). In Fig. 4 a deformed shape at the final configuration is shown
and the distribution of the displacement field is color-mapped.

The curves shown in Fig. 5 represent the x1-component of the reaction force (i.e.,
in the acting direction of the imposed displacement) averaged on the loaded boundary,
plotted with respect to the x1-component of the displacement jump averaged over the
interface surface, for all the analyzed cases. Interestingly, bothmodels LNL andNL2,
allow to take into account for larger deformations (about one order of magnitude) at
the interface level, than the L2 model.
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Fig. 6 Comparison in terms of displacement jump in x1-direction—final distribution of the
x1-component of the average displacement-jump vector along the interface in the x1-direction
(recall that the maximum value of the imposed displacement is 5mm). Comparison among: L2

(- -� - -); LNL (–�–); and NL2 (- -�- -). A zoom of the curve relative to L2 is represented
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Fig. 7 Comparison in terms of displacement jump in x3-direction—final distribution of the
x3-component of the average displacement-jump vector along the interface in the x1-direction
(recall that the maximum value of the imposed displacement is 5mm). Comparison among: L2

(- -� - -); LNL (–�–); and NL2 (- -�- -). A zoom of the curve relative to L2 is represented

A comparison of Figs. 6 and 7 put in evidence this aspect. The figures represent the
distribution, at the final configuration, of the x1-component and of the x3-component
of the displacement-jump vector, respectively, along a cut line obtained from the
intersection of the interface plane with the plane of symmetry.

Furthermore, Figs. 5, 6 and 7 highlight that is not very useful to model the adher-
ents as hyperelastic materials in order to take into account the geometrical nonlinear-
ities, i.e. large deformations, in terms of global response. In fact, the implementation
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Fig. 8 Von Mises stresses in LNL model—Von Mises stress (MPa) in LNL, with a particular of
the stress distribution at the interface level

Fig. 9 Von Mises stresses in NL2 model—Von Mises stress (MPa) in NL2, with a particular of the
stress distribution at the interface level

of a nonlinear imperfect interface, as the proposed St. Venant Kirchhoff model, in a
linearly elastic composite system (LNL), seems to sufficiently catch the nonlinear-
interface behavior as the fully nonlinear model (NL2), reaching the same order of
magnitude in terms of displacement jumps.

Figures8 and 9 show the distribution of the Von Mises stresses in LNL and in
NL2 respectively, in both cases a detail of the interface zone is represented. It is
worth noting the difference in terms of magnitude of the stresses. In particular, in
NL2 model the Von Mises stresses are significantly smaller than in LNL. Moreover,
by analyzing the particular of the interfaces in both model, a significant difference
in terms of stress distribution can be appreciated.
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5 Conclusions

In the first part of the present paper, the principal tools on which the imperfect inter-
face approach is founded, have been introduced. After a brief recall on modeling
background of imperfect interfaces, the matched asymptotic expansion method and
the homogenization for microcracked media in NIA framework, have been exten-
sively detailed.

The matched asymptotic expansion formulation, based on a higher order theory
[53], has been formulated for both soft and hard interface cases. Thereby, the interface
laws until the second (one) order have been derived, in both soft and hard interface
conditions [53]. Such an asymptoticmethod,within the imperfect interface approach,
is coupled to another tool, that is a micromechanical homogenization technique. In
particular, a homogenization for microcrackedmedia in the NIA framework has been
chosen in order to take into account for damage in interphase. Two dual approaches
in NIA have been presented, the stress-based and the strain-based approach.

In the hard imperfect interface model, the matched asymptotic technique has been
expanded until the order one,within the higher order theory framework, recovering an
imperfect interface law in terms of stresses and displacements jumps. This resulting
interface law, is a challenging issue from a computational point of view. Moreover,
a homogenization technique in the strain-based approach under the hypothesis of
dilute concentration, is adopted [20, 21]. This homogenization technique leads to
an expression of the effective elastic coefficients of the type: f (C0) − d [g(C0)]
with f, g generic functions. From this expression, it is well highlighted that the
values of density d are severely limited. It is worth remarking that there exist other
homogenization techniques in dilute concentration approximation that overcome this
shortcoming, for instance the dilute estimate scheme by [6], for which the stiffness
coefficients, in the initially-isotropic (E0, ν0) interphase case, are given by:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Cρ = 3(2ν0 − 1) + 16((1 − ν0)2)ρ

3(2ν0 − 1) + 32(ν0)2(1 − ν0)ρ
E1
1 = Cρ E0,

E1
3 = E0,

μ1
13 = Cρμ

0,

ν1
31 = Cρν

0.

(152)

Nevertheless, a great advantage of the Goidescu homogenization can be to lead
to coefficients which do not depend on the REV geometry, because of the chosen
form of the microstructural parameter d. For the St. Venant-Kirchhoff type interface
(Sect. 3), a newmatched asymptotic technique, based on fractional expansions of the
relevant fields, has been proposed. This asymptotic procedure has been formulated
by extending the asymptotic method to the finite strain theory [49, 54]. Also in this
case, a homogenization has been performed to treat the microcracked interphase, i.e.
the NIA building block in a stress-based approach.

Finally, a simple three-dimensional benchmark is proposed, in which three
modeling cases have been compared in order to validate the proposed models.
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The chosen application domain is masonry. The first two models, defined as lin-
ear, have been conceived with linearly elastic adherents (brick and mortar), and with
two different interface conditions. In the first case, the brick/mortar interface has
been modeled with the linear spring-type interface law, and in the second case, the
St. Venant-Kirchhoff nonlinear interface law has been implemented. The thirdmodel,
defined as nonlinear, is a fully nonlinear one, in which the adherents are assumed
to be St. Venant-Kirchhoff hyperelastic material and the interface has been modeled
with the St. Venant-Kirchhoff nonlinear interface law. Some comparisons have been
carried out in terms of displacement jumps and of stresses distribution along the
interface. The soundness and the consistency of the proposed interface models are
highlighted, both from a theoretical and a numerical points of view. Moreover, it has
been established that the linear model with the nonlinear interface is able to catch the
large displacements occurring at the interface level as much as the fully nonlinear
model, additionally, the computational cost in the first case is smaller.
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A Stochastic Multi-scale Approach
for Numerical Modeling of Complex
Materials—Application to Uniaxial
Cyclic Response of Concrete

Pierre Jehel

Abstract In complex materials, numerous intertwined phenomena underlie the
overall response at macroscale. These phenomena can pertain to different engineer-
ing fields (mechanical, chemical, electrical), occur at different scales, can appear
as uncertain, and are nonlinear. Interacting with complex materials thus calls for
developing nonlinear computational approaches where multi-scale techniques that
grasp key phenomena at the relevant scale need to be mingled with stochastic meth-
ods accounting for uncertainties. In this chapter, we develop such a computational
approach for modeling the mechanical response of a representative volume of con-
crete in uniaxial cyclic loading. A mesoscale is defined such that it represents an
equivalent heterogeneous medium: nonlinear local response is modeled in the frame-
work of Thermodynamics with Internal Variables; spatial variability of the local
response is represented by correlated randomvector fields generatedwith the Spectral
Representation Method. Macroscale response is recovered through standard homog-
enization procedure fromMicromechanics and shows salient features of the uniaxial
cyclic response of concrete that are not explicitly modeled at mesoscale.

1 Introduction

Widely-used materials in engineering practice such as polymer, composite, steel,
concrete, are characterized by engineering parameters for design purposes, while
these latter homogeneous macroscopic mechanical properties actually result from
heterogeneous structures at lower scales.Material can be qualified as complex as their
macroscopic behavior result from numerous multi-scale intertwined phenomena that
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have nonlinear and uncertain evolution throughout loading history. Modifications in
the underlying structures of this category of materials can result in dramatic changes
in mechanical behavior at the relevant macroscopic scale for engineering applica-
tions. Micro-cracks coalescence in the constitutive material of a structure challenges
its capacity for meeting the performance level targeted during its design process.
Alkali-aggregate reaction in concrete microscopic structure can lead to hazardous
loss of bearing capacity in reinforced concrete structures. Accounting for phenomena
at lower scales to reliably predict macroscopic response of heterogeneous structures
is one of the challenges numericalmulti-scale simulation techniques have been devel-
oped for over the past ([1, 8, 15, 18] among many others).

In continuummechanics, explicitly accounting for relevantmechanisms and struc-
tures in heterogeneous scales underlying macroscopic scale provides the rationale
for representing characteristic features of homogenized material behavior laws at
macroscale that can then be used for engineering design. Micromechanics has been
developed to extract macroscopic local continuum properties from microscopically
heterogeneous media through the concept of Representative Volume Element (RVE).
An RVE for a material point at macroscale is statistically representative of the micro-
scopic structure in a neighborhood of this point [23]. Also, Thermodynamics with
Internal Variables provides a robust framework for modeling material response at
macroscale according to a set of internal variables that carry information about the
history of evolution mechanisms at lower scales without explicitly representing them
[9, 21]. Other strategies to derive macroscopic mechanical properties of heteroge-
neous materials have been developed based on the introduction of a mesoscale, that
is a scale that bridges the micro- and macroscales. In [24], heterogeneities are repre-
sented by randomfields introduced at amesoscale, which defines so-called Statistical
Volume Elements that tends to become RVEs as mesoscale grows; effective prop-
erties at macroscale are retrieved according to two hierarchies of scale-dependent
bounds obtained from either homogenous displacements or homogenous tensions
applied on the boundary of the mesoscale. In [2], a mesoscale is explicitly con-
structed for representing the macroscopic behavior of heterogeneous quasi-brittle
materials. This mesoscale consists of a 3D finite element mesh composed of truss
elements cut by inclusions. Truss element kinematics is enriched to account for dis-
continuities in the strain field due to the presence of inclusions along truss elements
as well as discontinuities in the displacement field to account for possible cracks in
the matrix, in the inclusions, or at their interface. With the improvement of com-
putational ressources, stochastic homogenization of random heterogeneous media
can now be achieved without introducing a mesoscale. In [5], an efficient numerical
strategy is presented to obtain effective tensors of randommaterials by coupling ran-
dom micro-structures to tentative effective models within the Arlequin framework
for model superposition [1]. In [30], micro-structures composed of a medium with
randomly distributed inclusions of random shapes are generated and their behav-
iors are simulated with the extended finite element method (XFEM); homogenized
properties at macroscale are then derived through the computation of mean response
using Monte Carlo simulations.
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Fig. 1 Strain-stress concrete
experimental response in
pseudo-static cyclic uniaxial
compressive loading
(adapted from [29])

In the work presented in this chapter, we focus on the numerical representation of
the homogenized one-dimensional response of a concrete specimen in cyclic com-
pressive loading, as it can be observed in lab tests. Figure1 illustrates the main
features of such an homogenized response: a backbone curve (dashed line) that is a
nonlinear strain hardening phase (0 ≤ E ≤ 2.7 × 10−3) followed by a strain soften-
ing phase where strength degradation is observed; unloading-reloading cycles show
that stiffness decreases while loading increases, hysteresis loops are generated. This
typical response is observed at macroscale and results from numerous underlying
mechanisms of physical or chemical nature at many different scales. For designing
concrete structures, an equivalent homogeneous concrete model is sought, which
has to represent concrete mechanical behavior in different loading conditions while
accounting for mechanisms at lower scales [37]. Heterogeneities can be observed in
concrete at different scales: aggregates of different sizes are distributed in a cement
paste; the so-called interfacial transition zone where the aggregates are bound to
the cement paste plays a key role in the concrete mechanical properties [38]; cement
paste is composed ofwater, voids and of the products of the complete or partial hydra-
tion of the clinker particles, which generates a microscopic structure composed of
numerous intertwined phases.

This chapter presents the basic ingredients of a stochastic multi-scale approach
developed to represent the macroscopic compressive cyclic response of a concrete
specimen while attempting not to sacrifice too much of the complexity of this mate-
rial. To that aim, two scales are considered: the macroscale where an equivalent
homogenous concretemodel capable of representing themain features that are shown
in Fig. 1 is retrieved, and a mesoscale where heterogeneous local nonlinear response
is assumed. Local response at mesoscale is modeled in the framework of Ther-
modynamics with Internal Variables and is seen as the homogenized response of
mechanisms that occur at the micro- or nano-underlying scales. Spatial variability
at mesoscale is introduced using stochastic vector fields. Homogenized macroscopic
response is recovered using standard averaging method from micromechanics.

The chapter is organized as follows. In the next section, the ingredients of
the proposed stochastic multi-scale modeling are presented. First, the averaging
method for computing the homogenized model response at macroscale is recalled.
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Then, the model of the mechanical local behavior of a material point at mesoscale is
constructed. Finally, the Spectral Representation Method for generating stochastic
vector fields that model heterogeneity at mesoscale is presented. In a third section,
the numerical implementation of the approach in the framework of the finite element
method is detailed. Before the conclusion, numerical applications are presented to
demonstrate the capability of the proposed approach (i) for yielding homogeneous
material behavior at macroscale without stochastic homogenization and (ii) for rep-
resenting salient features of macroscopic 1D concrete response in uniaxial cyclic
compressive loading.

2 Multi-scale Stochastic Approach
for Modeling Concrete

Figure2 presents the three following concepts, which further developments are
based on:

• Actual heterogeneous medium (A-mesoscale): Concrete is made of aggregates
distributed in a cement paste. Aggregates, cement and interface between both
of them exhibit different mechanical responses. In the cement paste, micro- and
nano-structures also exist.

• Equivalent heterogeneous medium (E-mesoscale): The proposed approach does
not consist in explicitly generating amulti-phasemediumwith randomdistribution
of aggregates of random geometry in a cement paste with known mechanical
behavior for each phase. The approach followed here consists in generating a
randommedium at each point ofwhich themechanical response obeys a prescribed
behavior that has uncertain parameters and that is the homogenized response of
mixtures of aggregates and cement where mechanisms at lower scales are also
involved but not explicitly modeled.

• Equivalent homogeneous medium (macroscale): Homogenization of E-mesoscale
yields homogenized homogeneous concrete response. It will be shown in the
numerical applications that one realization only of the random E-mesoscale can
be sufficient to retrieve homogeneous properties at macroscale.

Fig. 2 From left to right: equivalent homogeneous concrete (macroscale), equivalent heterogeneous
concrete (E-mesoscale, 5 cm × 5cm-square), actual heterogeneous concrete (A-mesoscale, 5 cm ×
5cm-square), and zoom on the underlying microstructure in the cement paste (20µm × 20µm-
square observed through Scanning Electron Microscope, courtesy Trigo [38])
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2.1 Homogenized Material Behavior at Macroscale

We consider a material elementary domain (ED) that occupies a spatial domain
R ⊂ R

3. The boundary ∂R of the ED has outward normal n, tension t̄ can be
imposed on the part of the boundary ∂σR while displacement ū can be imposed on
∂uR, where ∂σR ∪ ∂uR = ∂R and ∂σR ∩ ∂uR = ∅. There are no external forces
other than t̄ applied on the ED and no dynamic effects are considered either. Then,
the displacement vector field u, and the strain and stress tensor fields, ε andσ, satisfy
at any pseudo-time t ∈ [0, T ]:

div σ(x, t) = 0 ∀x ∈ R

ε(x, t) = sym [∇(u(x, t))] ∀x ∈ R

σ(x, t) = σ̂(ε(x, t)) ∀x ∈ R (1)

σ(x, t) · n(x) = t̄(x, t) ∀x ∈ ∂σR

u(x, t) = ū(x, t) ∀x ∈ ∂uR

sym [∇(·)] := 1
2

(∇(·) + ∇T (·)) is the symmetric part of the gradient tensor ∇(·),
the superscript (·)T denoting the transpose operation. In the set of equations above,
small strains are assumed and behavior law σ̂(ε) can be nonlinear.

We classically assume that any macroscopic quantity Q is connected to its
E-mesoscopic counterpart q through domain averaging over the ED:

Q(X) := 〈q〉(X) = 1

|R|
∫

R
q(x; X)dx (2)

|R| = ∫
R dx is the measure of the spatial domain occupied by the ED centered at

material pointX of themacroscale, and x denotes amaterial point of the E-mesoscale.
In all what follows, we will assume linear displacements imposed all over the

boundary of R:

u(x, t) = E′(X, t) · x; ∀x ∈ ∂R , ∀t ∈ [0, T ] (3)

Hence, ∂uR = ∂R and ∂σR = ∅. With this assumption, it can be shown (see e.g.
[23, Chap.1] or [39]) that:

E′(X, t) = E(X, t) := 〈ε(x, t)〉; x ∈ R(X) (4)

and also, because it is assumed there is no external forces applied on R(X):

Σ(X, t) = 1

|R|
∫

∂R
sym [t(x, t) ⊗ x] d∂R (5)

where t(x, t) := σ(x, t) · n(x) are the tension forces developed over ∂uR.
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Note that other boundary conditions could be considered. In any case, it is in
general not possible to derive the strain or stress fields at E-mesoscale from the
macroscopic quantities, and consequently simplifying assumptions as in (3) are
made. Whether it is displacements or forces that are imposed on R, and whether
these latter conditions are linear or periodic, this can influence the homogenized
macroscopic response of the ED. However, this is out of the scope of this work
where the consequences of assuming linear displacements imposed on ∂R will not
be discussed.

With the boundary conditions (3) applied on R, Hill’s lemma can be proved:

〈σ : ε〉 = 〈σ〉 : 〈ε〉 := Σ : E (6)

which means that the medium recovered at macroscale through homogenization is
energetically equivalent to the heterogeneous medium considered at E-mesoscale.

The possibly nonlinear material response at mesoscale is expressed as:

σ̇ = λ : ε̇ (7)

where λ is the tangent modulus at E-mesoscale and the superimposed dot denotes
partial derivative with respect to pseudo-time. Thanks to Hill’s lemma, we then have
the following two equivalent definitions for the tangent modulus L at the homoge-
nized macroscale:

〈ε : λ : ε̇〉 = E : L : Ė ⇔ Σ̇ = L : Ė (8)

2.2 Material Behavior Law at E-mesoscale

Weassumea coupled damage-plasticitymodel to be suitable for representingmaterial
response at any material point x at E-mesoscale (see Fig. 2). This choice is motivated
by the fact that concrete A-mesoscale is composed of both a ductile cement matrix
that can be represented by a plastic model, and brittle aggregates that are confined
in the cement paste and whose compressive response can be more realistically rep-
resented by a damage model. Hereafter, we develop a model in a way that allows for
explicitly controlling the coupling of damage and plasticity. Indeed, as illustrated in
Fig. 3, the response of material points at mesoscale can be either better represented
by a damage model alone, or a plasticity model alone, or by the appropriate cou-
pling of both models. This is developed in the framework of thermodynamics with
internal variables [9, 21] where the internal variables carry the history of irreversible
mechanisms occurring in the material at lower (micro- and nano-) scales.
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Fig. 3 Each point at E-mesoscale has a different behavior due to the heterogenous structure of
concrete. Behavior laws at E-mesoscale are homogenized responses of aggregate-cement paste
mixtures with also heterogenous microstructures in the cement paste. At point x1 there is an aggre-
gate solely; at point x2 there is mixture of large and small aggregates in the cement paste; at point
x3 there is mainly cement with some small aggregates

2.2.1 Basic Ingredients

The three basic ingredients for developing this model of local behavior law at
E-mesoscale are as follows:

• Total deformation ε is split into damage (εd ) and plastic (εp) parts:

ε := εd + εp (9)

• Stored energy function is defined as:

ψ(ε, D, εp) := σ : εd − 1

2
σ : D : σ (10)

with D the fourth-order damage compliance tensor. D and εp are the internal
variables that drive the evolution of the material. Also, denoting by C the elasticity
tensor, we set initially, as the material is undamaged, D−1 = C. The elements of
C are parameters of the model.

• A criterium function is introduced as:

φ(σ) := h(σ) − σy ≤ 0. (11)

It defines the limit states between the states where there is no evolution of
the internal variables (φ < 0) and those where there is evolution (φ = 0). The
so-called yield stress σy > 0 is a scalar parameter.

More general models coupling damage and plasticity with hardening or soften-
ing could be defined. Then, other internal variables would be introduced (see e.g.
[14, 17, 20]).



130 P. Jehel

2.2.2 Material Dissipation and State Equation

Then, the material dissipation reads:

D := σ : ε̇ − ψ̇ ≥ 0

= σ̇ : (
D : σ − εd

) + 1

2
σ : Ḋ : σ + σ : ε̇p ≥ 0 (12)

D should be non-negative to comply with the principles of thermodynamics. In case
there is no evolution of the internal variables, that is for loading steps that do not
generate any change of state in the material, there is no evolution of the internal
variables: Ḋ = ε̇p = 0 and the process is assumed to be non-dissipative, that isD is
null. According to Eq. (12), it then comes the state equation:

εd := D : σ (13)

Equation (13) is to this damage model what the more classical constitutive relation
σ := C : εe is to linear elasticity model.

Introducing this latter state equation into Eq. (12), we can rewrite:

D = 1

2
σ : Ḋ : σ + σ : ε̇p ≥ 0 (14)

from where we define Dd := 1
2σ : Ḋ : σ ≥ 0 and D p := σ : ε̇p ≥ 0.

2.2.3 Evolution of the Internal Variables

Following what has been done to derive the equations of mechanical models with
plasticity solely [12], the evolution of the internal variables is obtained appealing
to the principle of maximum dissipation. Accordingly, among all the admissible
stresses, that is σ such that φ(σ) ≤ 0, it is those that maximize the material dissipa-
tion D that have to be retained. This can be cast into a minimization problem with
constraint φ ≤ 0 [19]. Lagrange multiplier method can be used to solve it with the
so-called Lagrangian reading:

L (σ, γ̇) := −D + γ̇ φ

= (−Dd + γ̇d φ) + (−D p + γ̇ p φ) (15)

Here, we have split the total Lagrange multiplier γ̇ ≥ 0 so that γ̇ = γ̇d + γ̇ p with
two Lagrange multipliers defined as γ̇d := r γ̇ and γ̇ p := (1 − r) γ̇ where r is to
be taken in the range [0, 1]. r is a damage-plasticity coupling parameter: if r = 0,
γ̇d = 0 and there is plasticity evolution only; if r = 1, only damage evolves in the
material; and for any other r in-between, there is coupled evolution of both damage
and plasticity.
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In turn, the Lagrangian is also split into damage and plasticity parts:

L d(σ, γ̇d) := −1

2
σ : Ḋ : σ + γ̇d φ ; L p(σ, γ̇ p) := −σ : ε̇p + γ̇ p φ

(16)
Both parts have to be minimized to ensure the total Lagrangian is minimum.
The Kuhn-Tucker optimality conditions associated to these minimization problems
result in:

∂L d,p

∂σ
= 0 and

∂L d,p

∂γ̇d,p
= 0 (17)

Setting ν := ∂φ/∂σ, this leads to the following equations of evolution of the internal
variables:

Ḋ : σ = γ̇d ν := r γ̇ ν (18)

ε̇p = γ̇ p ν := (1 − r) γ̇ ν (19)

Besides, this minimizing problem also yields the following so-called loading/
unloading conditions:

γ̇d,p ≥ 0 ; φ ≤ 0 ; γ̇d,p φ = 0 (20)

2.2.4 Damage and Plasticity Multipliers

In the case γ̇d > 0 or γ̇ p > 0, there is damage or plasticity evolution and, according to
(20), φ(σ) as to remain null during the process so that the stresses remain admissible.
We thus have the consistency condition φ̇ = 0 that can be rewritten as:

∂φ

∂σ
: ∂σ

∂t
= ν : σ̇ = 0 (21)

Remarking from (13) that ε̇d = Ḋ : σ + D : σ̇ and using Eqs. (9), (18) and (19), we
have:

D : σ̇ = ε̇ − γ̇ ν (22)

Then, assuming D �= 0, the consistency condition (21) is satisfied when γ̇ > 0 if:

γ̇ ν = ε̇ (23)

Or, with the damage and plasticity multipliers γ̇d > 0 and γ̇ p > 0:

γ̇d ν = r ε̇ and γ̇ p ν = (1 − r) ε̇ (24)
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2.2.5 Tangent Modulus

The tangent modulus at mesoscale λ is a fourth-order tensor that has been defined in
(7) such that σ̇ = λ : ε̇. Assuming that D−1, the inverse of D, exists (D−1 : D = I,
where I is the identity fourth-order tensor), and reminding Eqs. (22) and (23), we
have:

λ =
{

D−1 if γ̇ = 0 (φ(σ) < 0)
0 if γ̇ > 0 (φ(σ) = 0 ; φ̇(σ) = 0)

(25)

To sum up, the proposed material model at E-mesoscale is based on a set of
internal variables that consists of the damage compliance tensor D and the plastic
deformation tensor εp. Besides, the model is parameterized by the elasticity tensor
C, the stress threshold σy above which damage or plastic evolution occurs, and the
damage-plasticity coupling coefficient r : if r = 1, there is no plastic evolution and
the material can only damage, while if r = 0, there is no damage evolution and the
material is perfectly plastic. Figure4 shows material constitutive behavior at two
different material points x1 and x2 of the E-mesoscale where the parameters take
different values: parameters, and consequently local response, vary over the domain
R due to heterogeneities at E-mesoscale.

Fig. 4 Example of the
model response at two
different material points of
the E-mesoscale. Spatial
variability is explicitly
illustrated on the figure.
Initial stiffness is determined
by a spatially variable elastic
modulus (D−1

11 = C11);
yielding threshold σy
fluctuates over R; how fast
damage evolves comparing
to plasticity is governed by
the spatially variable
coupling parameter r
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2.3 Stochastic Modeling of Heterogeneous E-mesoscale

Spatial variability at E-mesoscale of a set of m parameters a over R is
conveyed through stochastic modeling: it is assumed that the fluctuations of corre-
lated stochastic fields can describe the actual material heterogeneous meso-structure
(A-mesoscale). Thus, we introduce the probability space (Θ,S, P) where Θ is
the sample space containing all the possible outcomes θ from the observation
of the random phenomenon that is studied; S is the σ-algebra associated with
Θ; P is a probability measure. A real parameter a ∈ a taking values in Va is
then considered as the realization of a random variable a(θ): Θ → Va . A ran-
dom variable can be completely defined by its cumulative distribution function:
Fa(a) = Pr[a(θ) ≤ a] = ∫

{θ|a(θ)≤a} P(θ) or, when a probability density function
(PDF) pa(a) exists:Fa(a) = ∫

{s∈Va |s≤a} pa(s) ds.
Before we go on with the definition of stochastic fields, we recall some basic

definitions for random variables. The mean μa and the variance s2a of a random
variable a are defined as:

μa := E[a] =
∫ +∞

−∞
a pa(a) da (26)

s2a := E[(a − μa)
2] (27)

where E[·] is the so-called mathematical expectation and pa(a) = 0, ∀a ∈ R \ Va .
Also, a and b being two random variables, the covariance is defined as:

Covab := E[(a − μa)(b − μb)]
:=

∫ +∞

−∞

∫ +∞

−∞
(a − μa)(b − μb) pab(a, b) da db (28)

where pab is the joint PDF of a and b, with pab(a, b) = 0 ∀(a, b) ∈ R
2 \ Va × Vb.

We also introduce the correlation, which is defined as:

Rab := E[a b] = Covab + μa μb (29)

And finally the following correlation coefficient will also be used later on:

ρab := Covab

sa sb
∈ [−1, 1] (30)

2.3.1 Random Vector Fields for Modelind Heterogeneous
Meso-Structure

It is assumed that the heterogeneity of the parameters C, σy and r of the model
developed above for representing material response at E-mesoscale over a concrete
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elementary domain (ED) can be represented as the realization of a random vector
field. A random vector a(θ) is a vector of random variables. Let B ⊂ R

d be a
spatial domain of dimension d; this can be a volume (d = 3), an area (d = 2) or
a length (d = 1). A random vector field g(x; θ) over B is a collection of random
vectors indexed by the position x = (x1, . . . , xd)

T ∈ B. For any fixed x ∈ B, any
component g j (x) of g, j ∈ [1, . . . , m], is a random variable. In the case of random
vector fields, we have the following definitions of the mean, the auto-correlation and
cross-correlation functions respectively:

μ
g
j (x) := E[g j (x)] j ∈ [1, . . . , m] (31)

R g
j j (x, ξ) := E[g j (x) g j (x + ξ)] j ∈ [1, . . . , m] (32)

R g
jk(x, ξ) := E[g j (x) gk(x + ξ)] j ∈ [1, . . . , m] , k ∈ [1, . . . , m] , j �= k

(33)

where ξ = (ξ1, . . . , ξd)
T is the separation distance vector between two points ofB.

To fully characterize random vector fields, we need the marginal and joint PDFs
of all possible combinations of random variables g j (x). From a practical point of
view, this implies that many concrete ED have to be considered, that for each of
them the parameters of interest have to be identified at many points x all overB, so
that these PDFs can be empirically constructed. If gathering such a huge amount of
information was needed, the usefulness of using random vector field for modeling
heterogeneity in concrete structure at mesoscale would be questionable. Therefore,
we will make assumptions on the structure of the random vector field that would
justify the efficiency of the proposed approach.

E-mesoscale construction will rely on the two following assumptions:

1. Random fields will be generated as Gaussian. This means that random field
g j (x; θ) is fully characterizedbyboth itsmean functionμ

g
j (x) and auto-correlation

function R g
j j (x, ξ). Nevertheless, non-Gaussian randomfield can then be obtained

through nonlinear translation of Gaussian field, which will be discussed in
Sect. 2.3.3.

2. Random fields are jointly homogeneous. This means that their mean function
is independent of the position x and that auto- and cross-correlation functions
depend on the separation distance only:

μ
g
j (x) := μ

g
j j ∈ [1, . . . , m] (34)

R g
jk(x, ξ) := R g

jk(ξ) j ∈ [1, . . . , m] , k ∈ [1, . . . , m] (35)

Note that efficient techniques can be used to account for heterogeneity in the
random field (see e.g. [25]).

Also, we will consider the possible ergodicity of the generated random fields in
mean and correlation functions. One realization of such an ergodic random vector
field contains all the statistical information needed to retrieve the first two moments:
means and correlation functions can be computed as spatial averages.
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2.3.2 Spectral Representation of Homogeneous Gaussian Random
Vector Fields

Wepresent here theSpectralRepresentationMethod for generating standard homoge-
nous Gaussian fields [6, 7, 26, 33, 34]. Note that considering the Gaussian random
fields to be standard, that is with zero mean and unit variance, does not introduce
any loss of generality because non-standard Gaussian fields can always be retrieved
through linear transformation.

The basic ingredient is the definition of a target correlation matrix, which can be
built from experimental observations for instance:

R0(ξ) =
⎛

⎜
⎝

R0
11(ξ) · · · R0

1m(ξ)
...

. . .
...

R0
m1(ξ) · · · R0

mm(ξ)

⎞

⎟
⎠ (36)

Superscript 0 has been added to highlight that these functions are target correlations,
which should be retrieved in the statistical analysis of the generated random fields.

According to Wiener-Khinchin theorem, power spectral density functions S0
j j ,

j ∈ [1, . . . , m], and cross-spectral density functions S0
jk , ( j, k) ∈ [1, . . . , m]2, j �=

k, are the Fourier transform of the corresponding correlation functions:

S0
jk(κ) = 1

(2π)d

∫ +∞

−∞
· · ·

∫ +∞

−∞
R0

jk(ξ) e−iκ·ξ dξ1 . . . dξd (37)

R0
jk(ξ) =

∫ +∞

−∞
· · ·

∫ +∞

−∞
S0

jk(κ) eiκ·ξ dκ1 . . . dκd (38)

where κ = (κ1, . . . ,κd)
T is the wave number vector, κ · ξ is the scalar product

of the two vectors κ and ξ, and i is the imaginary unit. Power spectral density
functions are by definition real functions of κ while cross-spectral functions can be
complex functions of κ. It has been shown in [32] that matrix S(κ) is Hermitian
and semidefinite positive, which implies that it can be decomposed using Cholesky’s
method as:

S(κ) = H(κ) H�T (κ) (39)

where (·)� denotes the complex conjugate and H(κ) is a lower triangular matrix. The
diagonal elements Hj j are real and non-negative functions ofκwhile the off-diagonal
elements can be complex:

Hjk(κ) = |Hjk | ei ϕ jk (κ); j ∈ [1, . . . , m] ; k ∈ [1, . . . , m] ; j > k (40)
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Then, the j th component of a realization of a mV-dD homogeneous standard
Gaussian stochastic vector field g(x; θ) with cross-spectral density matrix S(κ)

reads:

g j (x; θ) = 2
√

Δκ1 . . . Δκd

m∑

l=1

N1−1∑

n1=0

. . .

Nd−1∑

nd=0

2d−1∑

α=1

|Hjl(κ
α
n1...nd

)|

× cos
(
κα

n1...nd
· x − ϕ jl(κ

α
n1...nd

) + Φα
l,n1...nd

(θ)
)

(41)

for j ∈ [1, . . . , m] and N1 → +∞,…, Nd → +∞. In Eq. (41), the following nota-
tion has been introduced:

κα
n1...nd

:= (
n1 Δκ1 I α

2 n2 Δκ2 . . . I α
d nd Δκd

)T
(42)

Wave numbers increments are defined as:

Δκi := κu i

Ni
, i ∈ [1, . . . , d] (43)

where κu i ’s are so-called cut-off wave numbers such that S(κ) can be assumed to
be null for any κi ≥ κu i . Also, (I α

1 , I α
2 , . . . , I α

d ) are the α different vectors com-
posed of +1’s and −1’s where I α

1 = 1 for all α. For instance, for d = 3, there
are the following α = 23−1 = 4 different such arrangements: (1, 1, 1), (1, 1,−1),
(1,−1, 1) and (1,−1,−1), so that κ1

n1n2n3
= (n1 Δκ1, n2 Δκ2, n3 Δκ3)

T , κ2
n1n2n3

=
(n1 Δκ1, n2 Δκ2,−n3 Δκ3)

T , κ3
n1n2n3

=(n1 Δκ1,−n2 Δκ2, n3 Δκ3)
T and κ4

n1n2n3
=

(n1 Δκ1,−n2 Δκ2,−n3 Δκ3)
T .Φα

l,n1...nd
(θ) are m × 2d−1 independent sequences of

independent random phase angles drawn at any wave number κα
n1...nd

from a uniform
distribution in the range [0, 2π].

Random fields generated with relation (41) are periodic along the xi axes, i ∈
[1, . . . , d], with period:

L0
i := 2π

Δκi
(44)

Also, the values of the field are bounded according to:

g j (x; θ) ≤ 2
√

Δκ1 . . . Δκd

m∑

l=1

N1−1∑

n1=0

. . .

Nd−1∑

nd=0

2d−1∑

α=1

|Hjl(κ
α
n1...nd

)| (45)

It has been shown that the random fields generated according to Eq. (41) have the
following properties [6, 7, 26, 33, 34]:

1. They tend to be standard Gaussian as Ni → +∞, ∀i ∈ [1, . . . , d]; rate of con-
vergence is investigated in [33].

2. They ensemble auto- and cross-correlations are identical to the target functions.
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3. Each realization is ergodic in mean and correlation (spatial mean and correlation
over domainR are equal to ensemble mean and correlation) when the size of the
spatial domain |R| tends to be infinite in every directions.

4. Each realization is ergodic in mean as |R| = L0
1 × · · · × L0

d (see Eq.44).

For properties 3 and 4 to be true, this further condition has to be satisified:
Hjk(κ1, . . . ,κd) = 0, ( j, k) ∈ [1, . . . , m]2, as any of the κi , i ∈ [1, . . . , d], is equal
to zero.
5. As discussed in Appendix 1, the random fields generated from Eq. (41) are not

ergodic in correlation as |R| = L0
1 × · · · × L0

d . However, using properly defined
wave-number shifts [7, 26], ergodicity in correlation is recovered on a finite
domain as the spatial correlations are calculated over a domain of size |R| =
m L0

1 × · · · × m L0
d . In this case, the wave number vector introduced in Eq. (42)

is modified so as it also depends on the index l, as follows:

κα
l,n1...nd

:=
(

(n1 + l

m
)Δκ1 I α

2 (n2 + l

m
)Δκ2 . . . I α

d (nd + l

m
)Δκd

)T

(46)

Besides, as wave-number shifts are introduced, the condition that functions
Hjk(κ1, . . . ,κd) be equal to zero as any κi = 0 can be removed for properties 3
and 4 to be valid.

2.3.3 Translation to Non-Gaussian Stochastic Vector Fields

The approach presented above generates m zero-mean unit-variance homogeneous
Gaussian stochastic fields g j (x; θ), j ∈ [1, . . . m], with cross-correlation matrix
Rg(ξ). m homogeneous non-Gaussian stochastic translation fields f j (x; θ) can be
obtained from their Gaussian counterparts g j (x; θ). The translation fields are defined
by the followingmemoryless—meaning that the outputs at any point x do not depend
on the inputs at any other point—mapping:

f j (x) = F−1
f j

(
Fg j (g j (x))

) = Fj
(
g j (x)

)
, j ∈ [1, . . . , m] (47)

whereFg j is the standardGaussian cumulative density function (CDF) of the random
variables g j (x), F−1

f j
the inverse of the marginal CDF of the non-Gaussian random

variables f j (x), and Fj = F−1
f j

◦ Fg j
.

Then, the components of the non-Gaussian correlationmatrix can be computed as:

R f
jk(ξ,ρg) :=E[f j (x) fk(x + ξ)]

:=
∫ +∞

−∞

∫ +∞

−∞
Fj

(
g j (x)

)
Fk (gk(x + ξ)) (48)

× pG
g jgk

(
g j (x), gk(x + ξ); ρ

g
jk(ξ)

)
dg j (x) dgk(x + ξ)
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where pG
g jgk

denotes the standard Gaussian joint PDF of the two random variables
g j (x) and gk(x + ξ). Note that in the case of standard Gaussian distribution, we have
ρ

g
jk(ξ) = R g

jk(ξ) (see Eqs. 29 and 30).
In practice, one is interested in generating realizations of non-Gaussian ran-

dom fields f j with targeted marginal PDFF 0
f j
and targeted cross-correlation matrix

R f 0(ξ). To that purpose, the cross-correlation matrix Rg(ξ) of the underlying stan-
dard Gaussian fields g j (x; θ) has to be determined. We recall (see Eqs. 29 and 30)
that:

ρ
f
jk(ξ, ρ

g
jk) := R f

jk(ξ, ρ
g
jk) − μf j μfk

sf j sfk

(49)

Suppose that,∀( j, k) ∈ [1, . . . , m]2,we calculate from relations (48) and (49) the two
quantities ρ

f min
jk (ξ) = ρ

f
jk(ξ,−1) and ρ

f max
jk (ξ) = ρ

f
jk(ξ,+1). Following [10, 11],

if the functions ρ
f
jk(ξ) all fall in the range [ρ f min

jk (ξ), ρ
f max
jk (ξ)], ∀ξ, then Eq. (48)

can be analytically or numerically inverted to calculate a unique ρg(ξ). Besides, it
must be verified that the matrix ρg(ξ) really is a correlation matrix, namely that the
auto-correlation functions ρ

g
j j (ξ), j ∈ [1, . . . m], as well as the correlation matrix

ρg(ξ) are positive semi-definite for every separation distance ξ.
Inverting relation (48) is not always possible, and when it is not, cross-correlation

matrix R f (ξ) and marginal CDFs Ff j (x), j ∈ [1, . . . , m], are said to be “incompat-
ible” [31]. In this case, the iterative method presented in [31] can be implemented
(see also [3]). With this method, the non-Gaussian CDFs are taken asFf j = F 0

f j
and

the correlation functions R g
jk(ξ) of the underlying standard Gaussian fields are itera-

tively modified until the correlation functions of the translated fields are sufficiently
close to the targets: R f (ξ) ≈ R f 0(ξ).

3 Numerical Implementation

3.1 Random Vector Fields Generation Using FFT

For numerical implementation, Eq. (41) is rewritten as:

Bα
jl(κ

α
n1...nd

; θ) := 2
√

Δκ1 . . . Δκd |Hjl(κ
α
n1...nd

)| e−i ϕ jl (κ
α
n1 ...nd

) ei Φα
l,n1 ...nd

(θ) (50)

Gα
jl(xm1...md ; θ) :=

N1−1∑

n1=0

. . .

Nd−1∑

nd=0

Bα
jl(κ

α
n1...nd

; θ) ei κα
n1 ...nd

·xm1 ...md (51)

g j (xm1...md ; θ) = Re
m∑

l=1

2d−1∑

α=1

Gα
jl(xm1...md ; θ) (52)
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for j ∈ [1, . . . , m], with Ni ∈ N
� and Ni → +∞ for all i ∈ [1, . . . , d], where Re(z)

is the real part of the complex number z, and where we introduced:

xm1...md := (m1Δx1 m2Δx2 . . . mdΔxd)
T , mi ∈ [0, . . . , Mi − 1] (53)

Relation (51) can be numerically computed in an efficient way using fast Fourier
transform (FFT) algorithm.

The random fields are generated over a spatial period L0
1 × · · · × L0

d setting

Δxi := 2π

Mi Δκi
(54)

with Mi ≥ 2 Ni to avoid aliasing. Introducing definitions (42) and (57), along with
(44) and (54) in (51), and reminding that Bα

jl(κ
α
n1...nd

; θ) = 0 for any ni ≥ Ni , that is
niΔκi ≥ κui , it comes:

Gα
jl(xm1...md ; θ) :=

M1−1∑

n1=0

. . .

(
Md−1∑

nd=0

Bα
jl(κ

α
n1...nd

; θ) e2iπ I α
d

md nd
Md

)

. . . e2iπ I α
1

m1n1
M1 (55)

where a sequence of d Fourier or inverse Fourier transforms, according to the sign
of I α

i , can be recognized.
Note that in the case wave-number shifts are applied, the equations in this Sect. 3.1

can be straightforwardly adapted by introducing Eq. (46) instead of (43) for the wave
numbers vector. The side effect is that the periods over which random fields are
generated are elongated as:

L0
i = 2π

Δκi
→ L0

i = m × 2π

Δκi
, i ∈ [1, . . . , d] (56)

and with the random fields generated over the grid (compare to (53)):

xm1...md := (m1Δx1 m2Δx2 . . . mdΔxd)
T , mi ∈ [0, . . . , m × Mi − 1]

(57)

3.2 Material Response at Mesoscale

The components of the elasticity tensor C, damage-plasticity ratio r and yield stress
σy are parameters of the material model introduced in Sect. 2.2. These parameters
are realizations of random variables over the EDR, according to the random vector
fields generated as presented in the previous section. For the sake of readability,
reference to the spatial position (x) and to the random experiment (θ) are dropped in
this section.
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3.2.1 Discrete Evolution Equations

We introduce the discrete process for the pseudo-time: T T
0 = {tn, n ∈ [0, . . . , NT ]}

with t0 = 0, tNT = T , and the pseudo-time increment tn+1 − tn := Δt .
The numerical integration of the evolution of the internal variables over the process

TN is performed using the unconditionally stable backward Euler time integration
scheme. Accordingly, the evolution of the internal variables (see Eqs. 18 and 19) are
implemented as:

Dn+1 : σn+1 = Dn : σn+1 + r γn+1νn+1 (58)

ε
p
n+1 = εp

n + (1 − r)γn+1νn+1 (59)

where γn+1 := γ(tn+1) := Δt γ̇n+1.
Besides, considering Eq. (13), we have for the stress tensor:

Dn+1 : σn+1 := εd
n+1 := εn+1 − ε

p
n+1 (60)

⇒Dn : σn+1 = εn+1 − εp
n − γn+1νn+1 (61)

Finally, the tangent modulus in Eq. (25) is computed as:

λn+1 =
{

D−1
n+1 if γn+1 = 0 (φ(σn+1) < 0)

0 if γn+1 > 0 (φ(σn+1) = 0 ; φ̇(σn+1) = 0)
(62)

3.2.2 Solution Procedure

The problem to be solved at any material point x of the mesoscale reads:
Given εn+1 = εn + Δεn+1, find γn+1νn+1 such that φn+1 ≤ 0. This is solved using
a so-called return-mapping algorithm (see e.g. [13, 35]) where a trial state is first
considered and followed by a corrective step if required:

1. Trial state:
It is assumed that there is no inelastic evolution due to deformation increment
Δεn+1, that is γn+1 = 0. Accordingly, the internal variables remain unchanged:
Dtr ial

n+1 = Dn and ε
p,tr ial
n+1 = εp

n . The trial stress along with the trial criterium func-
tion can then be computed as:

σtr ial
n+1 = D−1

n : (εn+1 − εp
n ) (63)

φtr ial
n+1 = h(σtr ial

n+1 ) − σy (64)

The admissibility of this trial state then has to be checked:

• If φtr ial
n+1 ≤ 0, the trial state is admissible and the local variables are updated

accordingly: σn+1 = σtr ial
n+1 , Dn+1 = Dn , ε

p
n+1 = εp

n . Besides, the tangent
modulus is: λn+1 = D−1

n .
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• If φtr ial
n+1 > 0, the trial state is not admissible and it has to be corrected as

described in the next step ‘correction’.

2. Correction:
If trial state is not admissible, thenγn+1 > 0 and, according toEq. (20), the relation
φn+1 = 0 has to be satisfied. Solving φn+1 = 0 yields γn+1νn+1.
Then, the stresses can be calculated following Eq. (61), the internal variables
are updated according to Eqs. (58) and (59), and finally tangent modulus reads
λn+1 = 0.

3.3 Material Response at Macroscale

In this section, we derive the equations to be implemented for the numerical com-
putation of the response of the ED at macroscale, that is the macroscopic behavior
law Σ̇ = L : Ė, where Σ and E are the macroscopic stress and strain tensors while
L denotes the homogenized tangent modulus at macroscale.

3.3.1 Discrete Governing Equations in the ED

The weak form of the boundary value problem in Eq. (1) reads:

0 =
∫

R
δu · div σ dR

=
∫

R
∇sδu : σ(∇su) dR −

∫

∂R
δu · t d∂R (65)

where δu is any virtual displacement field that satisfies δu = 0 on ∂uR.
Finite element (FE) method is used to approximate the displacement field over

the ED. Accordingly, R is meshed into Nel elements Re such that
⋃Nel

e=1 R
e = R.

Then, in each element, displacement fields is computed as (see e.g. [40]):

u(x, t)|Re = Ne(x) de(t) (66)

where Ne(x) contains the element shape functions and de(t) are the displacements
at the nodes of the FE mesh. Equation (65) can then be rewritten as:

0 :=
Nel

A
e=1

{∫

Re

sym
[∇ (

Ne δde
)] : σ

(
sym

[∇ (
Ne de

)])
dRe

−
∫

∂Re

Ne δde · t d∂Re

}
(67)
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where
Nel

A
e=1

denotes the finite element assembly procedure, and ∂Re denotes the por-

tion, if any, of the boundary of the element e that is also a part of the boundary of
the discretized domain ∂R.

Matrix notations can be conveniently adopted at this stage, so that the elements
of the symmetric second-order tensors σ and ε are written as vectors:

σ → σ ; ε := sym
[∇ (

Ne de
)] → ε := Be de (68)

The matrix Be is composed of derivatives of the element shape functions. With these
notations, we have ε : σ → εT σ, so that (67) can be rewritten as:

0 :=
Nel

A
e=1

δdeT

{∫

Re

BeT σ(ε)dRe −
∫

∂Re

NeT t d∂Re

}
(69)

Because the equation above has to be satisfied for any virtual nodal displacements
vector δde that satisfies δde = 0 at any node on ∂uR, this is finally the following set
of nonlinear equations that has to be solved:

0 := r(d) := f int (d) − fext (70)

where:

f int (dn+1) :=
Nel

A
e=1

∫

Re

BeT σn+1 dRe; fext
n+1 :=

Nel

A
e=1

∫

∂Re

NeT te
n+1 d∂Re (71)

Here, we added explicit reference to the time discretization to recall that it is a
nonlinear evolution problem that has to be solved.

3.3.2 Solution Procedure

First, we separate the degrees of freedom of the Nbo nodes that are on the boundary
∂R of the ED—denoted by the subscript ū—from those pertaining to its interior—
denoted by the subscript u—and rearrange them so that:

d =
(

du

dū

)
and r(d) =

(
ru(d)

rū(d)

)
:=

(
f int
u (d)

f int
ū (d)

)
−

(
0

fext
ū

)
(72)

fext
u = 0 because there is no external forces applied on the interior nodes.
As external forces fext

ū increase by Δfext
ū and displacements d increase by Δd,

the residual is linearized such that the problem to be solved now reads:

(
0
0

)
:=

(
f int
u (d)

f int
ū (d)

)
+

(
Ktan

uu Ktan
uū

Ktan
ūu Ktan

ūū

) (
Δdu

Δdū

)
−

(
0

fext
ū + Δfext

ū

)
(73)
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where Ktan is the tangent stiffness matrix defined as:

Ktan := ∂f int (d)

∂d
=

∫

R
BT λ B dR =

Nel

A
e=1

∫

Re

BeT λ Be dRe (74)

λ = ∂σ/∂ε is the matrix form of the material tangent modulus at mesoscale as
introduced in Sect. 2.2.5. Element tangent stiffness and internal forces vector are
numerically computed as:

Ke,tan :=
∫

Re

BeT λ Be dRe ≈
NI P∑

l=1

BeT
l λl Be

l wl (75)

fe,int :=
∫

Re

BeT σ dRe ≈
NI P∑

l=1

BeT
l σl wl (76)

where wl are the weights associated to the NI P quadrature points.
The macroscopic response of the ED R is then computed from its description at

mesoscale as follows:

1. Updating of the imposed displacements on ∂R:
Impose displacement dū = dū + Δdū on the boundary nodes. We recall that we
only consider the case of linear displacements imposed all over the boundary of
the ED (see Eq.3). Following the work presented in [22, 30], we can write these
imposed displacements at any node q of the Nbo nodes of the boundary as:

Δdq = WT
q ΔE ⇒ Δdū = [

W1 W2 . . . WNbo

]T
ΔE = WT ΔE (77)

where E is the matrix form of the strain tensor and where the Wqs are geometric
matrices built from the coordinates xq of the boundary node q.

2. Iterative updating of Δdu:
Because Eq. (73) are nonlinear, we use Newton-Raphson procedure to iteratively
seek du as d(k)

u = 0 + Δd(1)
u + · · · + Δd(k)

u + · · · until f int
u (d(l)

u ) · Δd(l)
u < tol

(ru = f int
u ). Displacements dū on the boundary ∂R are known from step 1 above,

which means that at any iteration k, Δd(k)
ū = 0. Then, according to Eq. (73), we

have at every iteration:

Δd(k+1)
u = − (

Ktan,(k)
uu

)−1
f int
u (d(k)) (78)

3. Compute stresses at macroscale:
First, the external forces vectors fext

q (reactions) at the nodes of the boundary are
retrieved as:

rū(d(l)) := 0 ⇒ fext
q = f int

q (d(l)) , q ∈ [1, . . . , Nbo] (79)
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Then, the approximation t(xq)d∂R ≈ fext
q is introduced in Eq. (5) and we con-

sider the matrix form Σ of the stress tensor, which yields [22]:

ΔΣ = 1

|R|
Nbo∑

q=1

Wq Δfext
q = 1

|R|W Δfext
ū (80)

4. Compute tangent modulus at macroscale:
Considering an equilibrium state, we have f int

u (d) = 0 and f int
ū (d) = fext

ū . Then,
according to Eq. (73), it comes:

Δdu = − (
Ktan

uu

)−1
Ktan

uū Δdū ⇒ Δfext
ū = K̃tan

ūū Δdū (81)

where K̃ūū = Kūū − Kūu K−1
uu Kuū . Now, combining Eqs. (80), (81) and (77), it

comes the following expression for the matrix form of the tangent modulus at
macroscale:

L := ΔΣ

ΔE
= 1

|R|W K̃ūū WT (82)

It has to be reminded that the macroscopic stresses and tangent moduli are com-
puted for a given realization θ of the random fields: we have Σ = Σ(X, θ) and
L = L(X, θ). Consequently, there is no guarantee at this point that these quanti-
ties are representative of the macroscopic behavior of the material. However, it will
be shown in the numerical applications below that for particular structures of the
random vector fields that describe an equivalent mesoscale for the material, these
macroscopic quantities are almost independent of the realization of the vector fields.

4 Numerical Applications

The purpose of the following numerical applications is twofold. (i) It is first demon-
strated in this section that the random vector fields can be parameterized such that a
homogeneous material response can be retrieved at macroscale without stochas-
tic homogenization. In this case, macroscopic response does not depend on the
realization of the random vector fields that represent variability at an underlying
equivalent heterogeneous mesoscale: any realization of the meso-structure yields
the same macroscopic response. Consequently, the computational effort is contained
at the mesoscale where the nonlinear response of numerous material points has to
be computed. (ii) We remind that, because only homogeneous displacement bound-
ary conditions are considered in this work, the homogenous response so retrieved
at macroscale is a priori dependent on the boundary conditions. This issue is out of
the scope here where we focus on showing that the proposed approach can represent
salient features of the concrete macroscopic response in compressive cyclic load-
ing while such features are not explicitly present at the mesoscale (emergence of a
macroscopic response).
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4.1 1D Homogenized Response at Macroscale

Throughout this section, we only consider uni-dimensional (1D) material behavior
in uniaxial loading at any point X of the macroscale. Consequently, strain and stress
vectors E(X, t) andΣ(X, t) degenerate into scalar quantities, respectively E33 := E
and Σ33 := Σ .

4.1.1 Spatial Discretization at E-mesoscale

Accordingly, elementary domain (ED) R(X) is discretized in the framework of the
Finite Element (FE) method as a series of Nel adjacent two-node bar elements as
shown in Fig. 5. The elements do not have commonnodes, they are connected through
the boundary conditions at x3 = 0 and x3 = a3. Each node of the FE mesh has one
degree of freedomalong x3-axis; besides, each of these nodes belongs to the boundary
∂R of the ED, that is dū = d where:

d :=
(

d1
1 d1

2 . . . d Nel
1 d Nel

2

)T
(83)

Then, homogeneous kinematic boundary conditions are imposed such that:

Δd = WT ΔE with W = (0 a3 . . . 0 a3) (84)

At the bar element level: de = (de
1 de

2)
T = (0 a3)

T E , ∀e ∈ [1, . . . , Nel ]. Besides,
the shape functions are:

Ne =
(
1 − x3

a3

x3
a3

)
⇒ Be =

(
− 1

a3

1

a3

)
(85)

Fig. 5 Concrete EDR at material point X of the macroscale. 1D material response only is consid-
ered. ED is discretized into Nel = M f × M f adjacent bar elements of length a3 and cross-section
a × a. Zero displacement is imposed on the left-hand boundary (x3 = 0) and homogeneous dis-
placement ū = a3E is imposed all over the right-hand boundary (x3 = a3) along the x3-axis
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Also, only one numerical integration point is considered along the x3-axis in each
bar element. This implies that the heterogeneity of material properties only has to
be accounted for over an ED cross-section and not all over the 3D domain R. The
size ofR is |R| = � × � × a3 and bar elementsRe are assumed to all have the same
size:

|Re| = a × a × a3 with a := �

M f
, M f ∈ N

� (86)

4.1.2 Homogenized Response

FE approximation introduced above yields, ∀e ∈ [1, . . . , Nel ]:

εe := Be de = E (87)

Also, tangent stiffness matrix and internal forces vector in Eqs. (74) and (71) reads:

Ktan =
⎛

⎜
⎝

K1,tan 0
. . .

0 KNel ,tan

⎞

⎟
⎠ and fe,int =

⎛

⎜
⎝

f1,int

...

f Nel ,int

⎞

⎟
⎠ (88)

with, ∀e ∈ [1, . . . , Nel ]:

Ke,tan = a2 λ
e

a3

(
1 −1

−1 1

)
and fe,int = a2 σe

(−1
1

)
(89)

where λ
e
and σe are the tangent modulus and stress computed at the numerical

integration point in any bar element e given εe = E according to the procedure
described in Sect. 3.2. Finally, the homogenized quantities at macroscale can be
computed as:

Σ = 1

M2
f

Nel∑

e=1

σe and L = 1

M2
f

Nel∑

e=1

λ
e

(90)

4.2 Heterogeneous Structure at E-mesoscale

In this section, it is described how information is transferred from A-mesoscale to
E-mesoscale.

4.2.1 Assumptions About the Structure of the Random Vector Fields

The following assumptions, previously introduced in [26] for modeling material
properties, significantly simplify the equations introduced in Sect. 3.1:
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• The fields have quadrant symmetry, which implies that the cross-correlationmatrix
is symmetric and real (ϕ jl(κ

α
n1n2

) = 0, ∀( j, l) and ∀κα
n1n2

);
• The auto-correlation functions R0

j j = R0 are identical for every components of
the vector field;

• The cross-correlation functions R0
jk , j �= k are expressed as R0

jk = ρ jk R0, where
the ρ jk , j, k = 1, 2, 3, are so-called correlation coefficients between the compo-
nents C , σy and r of the random vector field. They satisfy −1 ≤ ρ jk ≤ 1.

Accordingly, cross-spectral density matrix of the random vector field reads:

S0(κ1,κ2) = S0(κ1,κ2) s with s =
⎛

⎝
1 ρ12 ρ13

ρ12 1 ρ23
ρ13 ρ23 1

⎞

⎠ (91)

and Cholesky’s decomposition can be applied to s yielding:

s = h hT (92)

where h is a lower triangular matrix. Then, matrix H (see Eq.50 for instance), reads:

H(κ1,κ2) =
√

S0(κ1,κ2) h (93)

For auto-correlation function, we choose the following form:

R0(ξ1, ξ2) = s2 exp

⎛

⎝−
(

ξ1
b1

)2

−
(

ξ2
b2

)2
⎞

⎠ (94)

where s2 is the variance of the stochastic fields, ξ = ξ/�, b = b/� is proportional to
�c = �c/� with �c denoting the so-called correlation length.

Appealing to the Wiener-Khinchin theorem, we have the power spectral density
function that corresponds to the Fourier transform of the correlation function:

S0(κ1,κ2) = s2
b1b2

4π
exp

(

−
(

b1κ1

2

)2

−
(

b2κ2

2

)2
)

(95)

where κ = κ × �.
We define in a general way the correlation length �c as the distance such that

R(�c) = εR R(0) with 0 < εR � 1. From Eq. (94) comes:

�c = b

√

ln
1

εR
(96)

which clearly shows how parameter b is related to the correlation length �c.
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Finally, we analogously define the cut-off wave number as S(κu) ≤ εS S(0) with
0 < εS � 1, which from Eq. (95) leads to:

|κu | ≥ 2

b

√

ln
1

εS
(97)

4.2.2 Parameterization for Random Field Discretization

For the numerical applications, random vector fields are generated according to
Eq. (52) with wave-number shifts introduced as in Eq. (46).

Hereafter, random fields parameterization is the same in both directions: N1 =
N2 = N , M1 = M2 = M , κu 1 = κu 2 = κu , and �c 1 = �c 2 = �c. Then, the random
fields are periodic along x1- and x2-axes with same period:

L0 := m
2π N

κu
or L0 := m

2π N

κu
(98)

with the dimensionless quantities L0 = L0/� and κu = κ × �. Also, random fields
are digitized into m · M × m · M points regularly distributed over a square grid of
size L0 × L0. The distance between two adjacent points in both directions of the grid
is Δx = L0/(m M), or Δx = L0/(m M) where Δx = Δx/�.

To define a straightforward mapping of the random field grid onto the FE mesh
over R, we set:

Δx = a ⇒ Δx = 1

M f
⇒ L0 = m M

M f
(99)

Also, we enforce the following condition to avoid any situation where the random
material meso-structure would show some periodicity:

L0 ≥ 1 ⇒ m M ≥ M f (100)

Then, combining Eqs. (98) and (99), we have:

κu = 2π
N

m M
M f (101)

which introduced in relation (97) yields:

M f

m M
≥ 1

π Nb

√

ln
1

εS
(102)
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Finally, recalling Eq. (96), we have the following relations that the parameterization
has to satisfy:

1 ≥ M f

m M
≥ 1

π N�c
ln

1

εRS
(103)

with 0 < εRS = εR = εS � 1.
For all the numerical applications presented hereafter, we choose M f = 96, N =

16 and εRS = 0.01.With this parameterization,Δx = 1/M f = 0.010. Then, to avoid
aliasing in the computation of the FFTs (see Sect. 3.1), we take M ≥ 2 N ≥ 32.With
this choice,m M ≥ 96 ≥ M f so that the left-hand part in (103) is satisfied. The right-
hand part in (103) can be rewritten as:

�c ≥ m M

π N M f
ln

1

εRS
= �cmin (104)

4.2.3 Parameterization of the 1D Material Response at E-mesoscale

The material law Δσe = λ
e
Δεe considered in these numerical applications corre-

sponds to the 1D version of the equations developed in Sect. 2.2 completed by the set
of equations in Appendix 2. Figure4 shows cyclic compressive response obtained
from this model at two material points of E-mesoscale, that is in two different ele-
ments of the FE mesh over the elementary domain R.

In each element e of the FE mesh over R, material parameters Ce, σe
y and re

take different values due to material heterogeneities. The spatial variability of these
three parameters (m = 3) over any cross-section of R (d=2) is represented by a 3-
variate 2-dimensional random vector field that is generated following Sect. 3.1 with
wave-number shifts introduced.

Correlation coefficients in Eq. (91) are set to ρ12 = ρ13 = ρ23 = 0.9. This corre-
sponds to strongly correlated random fields, which comes from considering that the
three parameters all depend on the geometrical structure of concrete at A-mesoscale:
aggregates in a hardened cement paste, as illustrated in Fig. 3.

In the absence of experimental evidence about A-mesoscale, we choose uniform
distributions for the parameters, except for the elastic modulus. The reason why
a log-normal distribution has been retained for C will be apparent in Sect. 4.3.2.
Specifically, Table1 presents the distributions used hereafter to build an E-mesoscale
that would yield a macroscopic response exhibiting salient features of concrete 1D
response in uniaxial compressive cyclic loading. How to translate Gaussian fields to
uniform fields is described in Appendix 3.
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Table 1 Distribution laws for the set of heterogeneous material parameters

Parameter Distribution law Mean Std. deviation COV (%)

C logN (30e3, 15e3) μC = 30.0GPa sC = 15.0GPa 50.0

σy U (0, 70) μσy = 35.0MPa sσy = 20.2MPa 57.7

r U (0, 0.6) μr = 0.3 sr = 0.17 56.7

4.3 Concrete Response in Uniaxial Compressive Cyclic
Loading

Based on the preceding assumptions and equations, 1D macroscopic response of
concrete in uniaxial compressive cyclic loading is now numerically computed. The
general-purpose Finite Element Analysis Program FEAP [36] is used for the finite
element solution procedure; Python [27] has been used for the implementation of the
equations to generate random vector fields; a Python interface has been developed to
both generate the random fields and run the FE analyses in an automatic procedure.

The purpose here is not to present a parametric analysis but to show that with the
proposed approach, homogeneous response can be retrieved at macroscale without
stochastic homogenization and to show that characteristic features of the concrete
uniaxial response in cyclic compressive loading at macroscale can emerge from
numerous simpler correlated nonlinear and uncertain mechanisms at E-mesoscale.
More details about the potential influence of randomfield properties on the stochastic
finite element method, albeit not exactly in the same context as the work presented
here, can be found for instance in [4].

Also, in the absence of detailed information about the correlations at E-mesoscale,
the potential problem of incompatible correlation matrix and marginal CDFs pre-
sented in Sect. 2.3.3 has not been treated in these numerical applications.

4.3.1 Modeling Concrete Representative Elementary Domain

We first investigate whether a representative response of the concrete elementary
domain (ED) R can be retrieved at macroscale by the proposed modeling. It is
reminded that only one typeof boundary conditions is considered in thiswork, namely
homogeneous displacements. Consequently, the results shown hereafter could be
different for other boundary conditions and the terms “representative response” have
to be interpreted accordingly.

Five different combinations of parameter L0 and correlation length �c are con-
sidered (see Table2). 500 realizations of meso-structures are generated for each of
these 5 cases. Figure6 shows samples of such meso-structures in cases #1 and #3.
The 500 corresponding 1D macroscopic responses in uniaxial monotonic compres-
sive loading are computed for each of the 5 cases. Figure7 presents the mean and
standard deviation of these macroscopic responses (Σ-E law) throughout loading
evolution.
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Table 2 500meso-structures are generated for 5 parameterizations. Themeanμ, standard deviation
s and coefficient of variationC OV of themacroscopic responses of the concrete EDR are computed
at the end of the monotonic compressive loading (E = −3.5e−3)

Case # M L0 �c �cmin μ3.5 (M Pa) s3.5 (M Pa) C OV3.5 (%)

1 32 1 0.4 0.09 −36.6 0.89 2.4

2 32 1 0.2 0.09 −38.3 0.44 1.2

3 32 1 0.1 0.09 −39.1 0.22 0.6

4 64 2 0.2 0.18 −39.1 0.61 1.6

5 128 4 0.4 0.37 −39.0 0.22 3.3

Fig. 6 Samples of heterogeneous meso-structures generated over a normalized area R =
{(x1, x2) ∈ [0, 1]2} meshed into M f × M f = 96 × 96 squares and with M = 32. (top) �c = 0.1
(case #3); (bottom) �c = 0.4 (case #1); (left) Elastic modulus C [MPa]; (middle) Yield stress σy
[MPa]; (right) Damage-plasticity coupling ratio r [-]

The mean μ3.5, standard deviation s3.5 and coefficient of variation C OV =
s/|μ| are computed at the end of the loading as the imposed displacement reaches
E = −3.5e−3. These values are reported in Table2. Some noteworthy conclusions
can be drawn from these results:

• As correlation length �c decreases, so does the variability (C OV3.5) of the macro-
scopic response.

• Case #3 shows that it is possible to find a set of parameters that satisfies �c ≥ �cmin

and for which the variability of the macroscopic material response is very small
(C OV3.5 = 0.6%). This means that any E-mesoscale generated in case #3 yields
almost the same material response at macroscale, which can be qualified as a
representative response for the boundary conditions considered.
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Case #1 Case #5

Case #2 Case #4

Case #3 Case #3

Fig. 7 Mean (solid line) alongwithmean plus or minus standard deviation (dashed lines) of the 500
1Dmacroscopic responses of the EDR in uniaxialmonotonic compression for the 5meso-structures
considered (cases #1 to #5)

• There is a strong reduction of the variability that drops from C OV ≥ 50% for
the material parameters at E-mesoscale to C OV3.5 ≤ 3.3% for the macroscopic
material response at maximum compression.

• As L0 is kept constant and equal to 1while �c decreases (scenario #1), that are cases
#1, #2 and #3 (left column in Fig. 7), mean response changes. On the contrary, as
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the �c/L0 ratio is kept constant while �c decreases (scenario #2), that are cases #5,
#4 and #3 (right column in Fig. 7), mean response remains almost unchanged.

• Also, for scenario #1, variability (C OV3.5) is less than for scenario #2 for a same
correlation length.

Considering same correlation length in scenarios #1 and #2, there are still two major
differences between both scenarios. Firstly, the discretization of the power spectral
density function (Eq.95) is not the same because Δκ = κu/N depends on M (see
Eq.101). Secondly,meso-structures have (asymptotically) ergodic properties inmean
and correlation for scenario #1 (L0 = 1), while this is no more the case in scenario
#2 (L0 ≥ 1).

4.3.2 Emergence of a Macroscopic Response

1D macroscopic compressive cyclic response of a concrete elementary area gener-
ated with parameters M = 32 and �c = 0.1 (case #3) is shown in Fig. 8. Two differ-
ent distributions for elastic modulus C are considered: (i) log-normal distribution as
introduced in Table1 and (ii) uniformdistributionC ∼ U (10e3, 50e3). Because con-
cretemacroscopic response ismore realistic for the log-normal distribution (compare
with Fig. 1), this distribution was adopted for the numerical applications previously
shown in Sect. 4.3.1.

Figure8 shows that salient features of the experimentally observed concrete
behavior (Fig. 1) are represented by the multi-scale stochastic approach presented
in this chapter. An initial elastic phase (E ≤ 0.2e−3) is followed by nonlinear strain
hardening; stiffness degradation is observed when unloading (damage); residual
deformation remains after complete unloading (plasticity). Besides, in unloading-
reloading cycles, hysteresic behavior is produced. It is interesting to observe that non-
linear hardening along with hysteresis in unloading-reloading cycles at macroscale
are not explicitly modeled at E-mesoscale (see Fig. 4): they emerge from numer-

Fig. 8 1Dmacroscopic compressive cyclic response of a concrete elementary area for two different
distributions for elastic modulus C : (left) log-normal distribution and (right) uniform distribution
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ous nonlinear and uncertain responses at E-mesoscale consequently to both spatial
variability and averaging of the responses at E-mesoscale over R.

One interesting feature in the macroscopic 1D response of concrete in uniaxial
compressive cyclic loading is the hysteresis observed in unloading-reloading cycles:
while reloading, the Σ-E curve follows another path than while unloading, which
generates energy dissipation at the structural level. As it is a source of damping in
reinforced concrete structures in seismic loading, which modeling is a challenging
issue, modeling this hysteresis has been the focus of researchwork (see e.g. [17, 28]).
In [16], a simplified version of the stochastic multi-scale material model presented in
this chapter has been developed with only the yield stress σy being heterogenous and
without damage-plasticity coupling. The material model has been implemented in a
beam element and the capacity of the concrete behavior law to generate structural
damping has been shown in the numerical testing of reinforced concrete columns in
free vibration. Besides, this has shown that the proposed material model can be used
in solving numerical nonlinear dynamic analyses of structural frame elements.

5 Conclusion

A stochastic multi-scale approach has been presented in this chapter for numerical
modeling of complex materials, that are materials for which macroscopic response
results from the interaction of numerous intertwined nonlinear and uncertain mech-
anisms at lower scales. This approach is based on the construction of an equiva-
lent mesoscale (E-mesoscale) where material properties are heterogenous and where
local behavior is nonlinear, coupling mechanisms such as plasticity and damage.
Macroscopic response is then computed using averaging formula over an elemen-
tary domain (ED). The approach is used to model the uni-dimensional response of
concrete material in uniaxial compressive cyclic loading. It is shown that a random
E-mesoscale can be generated by spectral representation in such away that themacro-
scopic response does not depend on the realization of the random meso-structure.
The ED, equipped with such an E-mesoscale, can then be considered as a represen-
tative material domain because homogeneous macroscopic properties are retrieved.
Besides, this also means that this homogeneous macroscopic behavior is obtained
without stochastic homogenization. Because only homogeneous displacements are
considered for the boundary conditions for the ED, note that the term “representa-
tive” does not imply here independence of the boundary conditions. Moreover, the
macroscopic concrete response modeled by this approach exhibits most of the salient
features observed in experimental uniaxial cyclic compressive tests on concrete
specimens, and particularly the hysteresis loops observed in unloading-reloading
cycles. Considering that some of these features are not explicitly represented at the
E-mesoscale, this shows the capacity of the approach for letting macroscopic behav-
iors emerge from simpler mechanisms at lower scales.
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In this chapter, theE-mesoscale for concretematerial is built on a conjectural basis.
Nevertheless, the assumptions that are made both about the mechanical behavior at
this scale and the description of the heterogeneity in the properties yield a macro-
scopic response that reproduces salient features that can be observed experimentally
testing concrete specimen. Consequently, although the proposed approach needs to
be fed by experimental evidence, it certainly can also trigger experimental research
because it provides a rational explanation of macroscopic mechanisms from lower-
scale information.
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Appendix 1: On the Ergodicity in Correlation
of the Random Fields Simulated with Eq. (41)

From Eq. (41), j ∈ [1, . . . , m]:

g j (x; θ) = 2
√

Δκ1Δκ2

m∑

l=1

2∑

α=1

N1−1∑

n1=0

N2−1∑

n2=0

|Hjl(κ
α
n1n2

)|

× cos(κα
n1n2

· x − ϕ jl(κ
α
n1n2

) + Φα
l,n1n2

(θ)) (105)

On the one hand, because the random phases Φ(θ) are independent and uniformly
distributed over [0 , 2π], the ensemble correlation function of two sample functions
g j (ξ; θ) and gk(ξ; θ) reads:

R jk(ξ) := E
[
g j (x; θ) gk(x + ξ; θ)

]

= 1

4π2

∫ 2π

0

∫ 2π

0
g j (x; θ) gk(x + ξ; θ) dΦa dΦb (106)

On the other hand, the spatial correlation of the two sample functions g j (ξ; θ) and
gk(ξ; θ) over a 2D area of size L0

1 × L0
2 reads:

R̃ jk(ξ) := 〈g j (x; θ) gk(x + ξ; θ)〉L0
1×L0

2

:= 1

L0
1 L0

2

∫ L0
1

0

∫ L0
2

0
g j (x; θ) gk(x + ξ; θ) dx1 dx2 (107)
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Then, we have from Eq. (105):

g j (x; θ) gk(x + ξ; θ) = 4Δκ1Δκ2

×
m∑

la=1

2∑

αa=1

N1−1∑

na
1=0

N2−1∑

na
2=0

m∑

lb=1

2∑

αb=1

N1−1∑

nb
1=0

N2−1∑

nb
2=0

|Hjla (καa

na
1na

2
)|

× |Hklb(καb

nb
1nb

2
)| A jklalb(καa

na
1na

2
,καb

nb
1nb

2
; x, ξ; θ) (108)

where we introduced

A jklalb(καa

na
1na

2
,καb

nb
1nb

2
; x, ξ; θ) = cos(καa

na
1na

2
· x − ϕ jla (καa

na
1na

2
) + Φαa

la ,na
1na

2
(θ))

× cos(καb

nb
1nb

2
· (x + ξ) − ϕklb(καb

nb
1nb

2
) + Φαb

lb,nb
1nb

2
(θ)) (109)

Using now the relation cosβ cos γ = 1
2 {cos(β + γ) + cos(β − γ)}, it comes:

A jklalb (καa

na
1na

2
, καb

nb
1nb

2
; x, ξ; θ) = 1

2

{
cos
(
(καb

nb
1nb

2
+ καa

na
1na

2
) · x + καb

nb
1nb

2
· ξ − ϕ jlb (καb

nb
1nb

2
)

− ϕkla (καa

na
1na

2
) + Φαb

lb,nb
1nb

2
(θ) + Φαa

la ,na
1na

2
(θ)
)

+ cos
(
(καb

nb
1nb

2
− καa

na
1na

2
) · x

+ καb

nb
1nb

2
· ξ − ϕ jlb (καb

nb
1nb

2
) + ϕkla (καa

na
1na

2
) + Φαb

lb,nb
1nb

2
(θ) − Φαa

la ,na
1na

2
(θ)
)}

(110)

To calculate the ensemble correlations R jk(ξ), we have to calculate:

B jklalb(καa

na
1na

2
,καb

nb
1nb

2
; x, ξ) =

∫ 2π

0

∫ 2π

0
A jklalb(καa

na
1na

2
,καb

nb
1nb

2
; x, ξ; θ) dΦa dΦb

(111)
Because functions A jklalb are periodic of period 2π, functions B jklalb = 0 except in
the case where Φαb

lb,nb
1nb

2
(θ) = Φαa

la ,na
1na

2
(θ), that is as na

1 = nb
1 = n1 and na

2 = nb
2 = n2

and αa = αb = α and la = lb = l. This yields:

B jklalb(καa

na
1na

2
,καb

nb
1nb

2
; x, ξ) = 2π2 cos

(
κα

n1n2
· ξ − ϕ jl(κ

α
n1n2

) + ϕkl(κ
α
n1n2

)
)

(112)

and, finally:

R jk(ξ) = 2Δκ1Δκ2

m∑

l=1

2∑

α=1

N1−1∑

n1=0

N2−1∑

n2=0

cos
(
κα

n1n2
· ξ − ϕ jl(κ

α
n1n2

) + ϕkl(κ
α
n1n2

)
)

(113)
Then, to calculate the spatial correlations R̃ jk(ξ), we have to calculate:

B̃ jklalb(καa

na
1na

2
,καb

nb
1nb

2
; ξ; θ) =

∫ L0
1

0

∫ L0
2

0
A jklalb(καa

na
1na

2
,καb

nb
1nb

2
; x, ξ; θ) dx1 dx2 (114)
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Because functions A jklalb are periodic of period L0
1 × L0

2, and with the condition
that Hjk = 0 as any κi = 0, for any ( j, k) ∈ [1, . . . , m]2 and for any i ∈ [1, . . . , d],
functions B̃ jklalb are equal to zero, except if καb

nb
1nb

2
= καa

na
1na

2
, that is na

1 = nb
1 = n1 and

na
2 = nb

2 = n2 and αa = αb = α, in which case:

B̃ jklalb(καa

na
1na

2
,καb

nb
1nb

2
; ξ; θ) = L0

1 L0
2

2
cos

(
κα

n1n2
· ξ − ϕ jlb(κα

n1n2
)

+ϕkla (κα
n1n2

) + Φα
lb,n1n2

(θ) − Φα
la ,n1n2

(θ)
)

(115)

With this expression of the functions B̃ jklalb , we do not have R̃(ξ) = R(ξ). How-
ever, when wave-number shifts are introduced so that wave numbers κ become
dependent on the index l (as in [7, 26]), the condition la = lb = l has to be added for
B̃ jklalb not to be equal to zero. Consequently, Φα

lb,n1n2
(θ) = Φα

la ,n1n2
(θ) in Eq. (115)

and we finally recover R(ξ) = R̃(ξ), meaning that sample fields g j (ξ; θ) are ergodic
in correlation.

Appendix 2: Material Model at Mesoscale
for the Numerical Applications

For the one-dimensional material model at mesoscale used in the numerical applica-
tions shown in Sect. 4, we use h(σ) = |σ| in the definition of the criterium function
(see Eq.11 in Sect. 2.2):

φn+1 = |σn+1| − σy ⇒ νn+1 := ∂φn+1

∂σn+1
= sign(σn+1) (116)

Then, Eq. (61) can be written as:

σn+1 = σtr ial
n+1 − D−1

n γn+1sign(σn+1) (117)

Multiplying both sides of Eq. (117) by sign(σn+1), it comes:

|σn+1| = σtr ial
n+1 sign(σn+1) − D−1

n γn+1 (118)

Multiplying now both sides of Eq. (118) by sign(σtr ial
n+1 ), it comes:

(|σn+1| + D−1
n γn+1

)
sign(σtr ial

n+1 ) = |σtr ial
n+1 |sign(σn+1) (119)

Setting γ0 = 0 and D0 > 0,
(|σn+1| + D−1

n γn+1
)
necessarily is non-negative because

γ̇ ≥ 0 and Ḋ|σ| = r γ̇ ≥ 0. Consequently:

sign(σn+1) = sign(σtr ial
n+1 ) (120)
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Then, we have from Eqs. (117) and (116):

|σn+1| = |σtr ial
n+1 | − D−1

n γn+1 (121)

φn+1 = φtr ial
n+1 − D−1

n γn+1 (122)

with φtr ial
n+1 = |σtr ial

n+1 | − σy , from which we can calculate γn+1 in case of inelastic
evolution:

φn+1 = 0 ⇒ γn+1 = Dn φtr ial
n+1 (123)

Appendix 3: Translation from Gaussian to Uniform
Distributions

Let a1 and a2 be two independent normal Gaussian variables: (a1, a2) ∼ N (0, 1).
Then b = exp(−(a21 + a22)/2) is a random variable with uniform distribution in
[0, 1]: b ∼ U (0, 1). Indeed:

Pr[b ≤ b] = 1

2π

∫

{(a1,a2)|e− 1
2 (a2

1
+a2

2
)≤b}

e− 1
2 (a2

1+a2
2 )da1da2 (124)

Then:

• if b > 1, Pr[b ≤ b] = 1 because e− 1
2 (a2

1+a2
2 ) ≤ 1, ∀(a1, a2) ∈ R

2;
• if b < 0, Pr[b ≤ b] = 0 because e− 1

2 (a2
1+a2

2 ) > 1, ∀(a1, a2) ∈ R
2;

• and, if 0 ≤ b ≤ 1, we can rewrite relation (124) with polar coordinates as:

Pr[b ≤ b] = 1

2π

∫ 2π

0

∫ +∞
√−2 ln b

e− 1
2 r2 r drdθ =

[
−e− 1

2 r2
]+∞

√−2 ln b
= b
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Relating Structure and Model

Ivica Kožar

Abstract In order to gain additional insight into large structure a model is usually
built which leaves us with a problem of transfer of parameters between the model
and the structure. Problem is addressed on the general level but after discretization
and is formulated as a relationship between relevant parameters of the structure and
its model. Scaling matrices in parameter and in measurement space are determined.

Keywords Scaling matrix · Parameter space · Measurement space · Force
reconstruction · Dynamics

1 Introduction

Large structures are usually important in which case they could be under moni-
toring for relevant parameters. Sometimes relevant parameters could not be mon-
itored/measured directly so they are determined using some inverse procedure. In
some cases, relationship between parameters is highly non-linear or includes some
stochastic properties. This is the case of the relationship between strains and loading
in wind power plants. In order to gain additional insight into the structure a model
is usually built. This approach leaves us with a problem of transfer of parameters
between themodel and the structure, i.e. with determination of an appropriate scaling
of parameters. Practical motivation for this work is given in Fig. 1 where the large
structure is 2.5 MW wind turbine produced and owned by Končar—Croatia and the
small structure is a model wind turbine in a wind tunnel of the Faculty of Electrical
Engineering and Computing University of Zagreb.

Our final goal is to relate measurements on those two different structures.
Problem is addressed on the general level but after discretization and is formulated

as a relationship between relevant parameters of a structure and its model. Approach
to inverse problem for beam before discretization can be found e.g. in [1]. It is quite
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Fig. 1 Large structure and its model: how to relate measurements

a different approach from a review of scaling laws presented in [2]. In the case of
wind power plant that is the problem of scaling of forces induced by wind acting on
the structure. Not only is the relationship non-linear, it is highly stochastic (both in
intensity and direction).

Primary intention of the model is to serve for testing of control procedures for
control of blade speed rotationω, which requires for relation between angles of blade
inclination ϕ, e.g. see [3]. We assume the relationship between force on structure
and blade rotational velocity and inclination as F1 = W1(ω,ϕ) and F2 = W2(ω,ϕ)

where indexes ‘1’ and ‘2’ are structure and model respectively.
F1 and F2 are forces induced by the wind and W1 and W2 are unknown functions

relating force on the structure and wind strength and direction expressed through
blade parameters (rotational velocity and blade inclination). Function W2 (belong-
ing to model) can be determined for certain wind conditions by measurements in
wind tunnel. Function W1 (belonging to structure) cannot be determined due to
uncontrolled wind conditions in reality. This paper suggests how to establish their
relationship so that W1 can be determined from W2.

After discretization in structural equations forces F are represented as vectors F
and we can establish the relationship between structural forces as F1 = SF2 where S
is the novel ‘scaling matrix’. F1 and F2 could be determined from measured strains
by applying inverse procedure F1 = H1d1 and F2 = H2d2 where H is a generalized
inverse of a measurement mapping matrix and d is some measured value, e.g. strain,
displacement, velocity, acceleration etc. This inverse procedure could be determin-
istic or stochastic or a combination of both.
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Knowing F1 and F2, S could be determined. There is a review of force recon-
struction methods in [4]. If F would be a simple force vector, the problem would
be undetermined. However, F is a function of time F = F(t) measured in dis-
crete time intervals and can be represented as a rectangular matrix of dimen-
sion [rows = number of forces, columns = number of measurements]. In the case
of constant monitoring number of columns should correspond to the size of time
window for which we conduct analysis (optimal size of this window could depend
on many parameters and is not subject of this work). The above equation for S could
be transformed into quadratic form and solved as an optimization problem. Elements
of matrix S are then coefficients of the quadratic form matrix.

Terminology
We are connecting two linear systems y1 = H1x1 and y2 = H2x2 where ‘y’ stands
for ‘measured values’, ‘x’ are model parameters and ‘H’ is a ‘measurement matrix’
mapping from the parameter space Rn into the measurement space Rm .

2 Scaling

In order to relate (already discretized) structure and its model they have to be of the
same scale, i.e. one of them has to be scaled to match the other. Not all parameters
of the structure can be related at the same time. Assuming that the structure is
described with matrix equation y = A(k)x we could relate parameters y with y1 =
Syy2, parameters x with x1 = Sxx2 or parameters k with k1 = Skk2 where S is some
scaling matrix and indices ‘1’ and ‘2’ could for e.g. represent structure and model
respectively. In this paper x is related in parameter space, y is related in measurement
space and relating of implicit parameters k is not dealt with.

The principle and equations are general and applicable to all structures where a
relation is to be established. In addition, scalar can be introduced anywhere in the
relations so that values are not equal but a multiple of each other.

2.1 Scaling in Parameter Space

In this case we assume y1 = y2 where indices ‘1’ and ‘2’ stand for structure and
model respectively. That means that we want the measured values to be the same on
some points on the structure and on the model and we need to scale the parameters
to achieve that goal (number of points has to be the same [m×1]).

We have:

x2 = Sx x1;
H1x1 = H2x2 (1)
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where Sx is the new ‘scaling matrix’ connecting the two vectors in parameter space
Rn .

Generally A is not square and

Sx = H−gH1 (2)

where H−g is the generalized (Moon-Penrose) inverse and the scaling matrix Sx is
not deterministic but a result of an optimization procedure. In that case x2 = Sxx1 is
valid even if x1 and x2 are of different dimension (e.g. x1 → [p×1] and x2 → [q×1]).
In that case Sx is of dimension [q×p] and exists if Rank[H2] ⇒ q. It is a function
of only the measurement matrices H1 and H2. Scaling in the parameter space Rn

is the least squares problem and Sx corresponds to the model resolution matrix, i.e.
describes how well are model parameters resolved from structural parameters (or
vice versa, describes how are structural parameters related to model parameters).

2.2 Scaling in Measurement Space

In this type of analysis we would like to relate measured values and assume that
some measurement-scaling matrix relates structure and model measurements

y1 = Syy2 (3)

where Sy is the measurement space Rm . In the case when y are single column vectors
Sy is undetermined unless y all have the same size and are independent, in which case
Sy is diagonal. In practice, we have multiple realizations of measurements so y have
dimension [m×t] where ‘t’ stands for time instances (not necessarily the physical
time).

In the case of multiple realizations of measurements, vectors y become matrices
Y [m×t] and the scaling is

Y1 = SyY2 ; Sy = Y−g
2 Y1 (4)

where Y−g is again the generalized (Moon-Penrose) inverse. Scaling matrix Sy in
the measurement space Rm is a function of only series of measurements y and cor-
responds to the data resolution matrix, i.e. describes how well are structural data
(structural measurements) resolved from model data (model measurements) or how
are model data related to structural data.

2.3 Scaling of Dynamically Loaded Structures

D’Alembert’s equilibrium equation of dynamically loaded structures includes two
types of forces: inertial and elastic. We will ignore damping and the scaling equation
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now involves two scalingmatricesSs—static scalingmatrix andSd—dynamic scaling
matrix

M1ÿ1(t) + K1y1(t) = SdM2ÿ2(t) + SsK2y2(t) (5)

where M and K are mass and stiffness matrices of structures ‘1’ and ‘2’ respectively.
First, some relation between measured values is assumed, similar to Eq. (3)

y1 = ISy2 (6)

and the scaling matrix IS is diagonal, i.e. y1 and y2 have the same size and are
independent.We can relate static and dynamic part separately, i.e. even if the problem
is dynamical, we want the same static scaling matrix Ss to relate the static problem
as well, so we write

K1IS = SsK2 (7)

and follows Ss = K1ISK−1
2 . Now, parts belonging to the elastic force are equal and

for inertial forces remains the relation

M1I2S = SdM2 (8)

because ÿ1 = I2S ÿ2. The dynamic scaling matrix is Sd = M1I2SM−1
2 .

Scaling matrices Ss and Sd can be determined and are well conditioned if struc-
tural mass and stiffness matrices are well conditioned. In addition, mass matrices M1

and M2 are in many cases lumped, i.e. diagonal in which case Ss and Sd are easily
calculated. Structures related with Ss and Sd scaling matrices have the same eigen-
values and eigenvectors, i.e. resonant frequencies and the same response to dynamic
loading.

3 Loading Reconstruction

Force reconstruction belongs to a class of source identification problems; problem
is explicitly formulated, i.e. there is no need for special inverse formulation of the
problem. Instead we introduce the measurement matrix equation y = Hx where we
try to determine the parameter vector x from measurements vector y. In the implicit
formulation, some parameter of matrix H would have to be determined requiring
special inverse formulation of the problem. Matrix H relates parameters (in our case
loading) and measurements. The main difficulty is that matrix H is not square (we
usually have more measurements then parameters) and that the measurement vector
y contains some noise so that the real measurement equation is y = Hx + w where
w is somemeasurement noise. Some of necessary assumptions about w can be found
in e.g. [5].
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3.1 Treatment of Measurement Noise

All measurement contains some noise that can be described as a stochastic process
with some probability distribution function. Based on the level of our knowledge
of that stochastic process it is possible to reduce to certain extent the effect of the
measurement noise. It is beneficiary to have more measurement points then parame-
ters that are looked for, in which case we apply least squares (LS) procedure. Here
we apply it through generalized inverse matrix what is equivalent to the LS pro-
cedure [6]. Additional knowledge about noise distribution allows us to implement
weighted least squares (WLS) procedure. Assuming measurement noise in different
in each position then weighting matrix is equal to the reciprocal of the measurement
residual. Knowing probability distribution function of the measurement noise per-
mits us to apply the maximum likelihood (ML) method to reduce the influence of
noise on parameter reconstruction. Finally, knowledge of the pdf of the model para-
meters allows formulation of the simulation procedure, e.g. Monte Carlo procedure.
Adopted approach is based on [6, 7] and LS andWLS approach will be demonstrated
in the examples.

Besides measurement noise, some other measuring properties are important for
loading (and any other) reconstruction, especially in the case of dynamic loading.
So, it is better to measure acceleration then displacement although both are needed in
equations. Obtaining acceleration fromdisplacements requires differentiation, which
ismostly bad conditioned and introduces additional errors. On the other hand, obtain-
ing displacements from accelerations requires integration. There is a comparison of
errors introduced by differentiation and integration of measured data in [8].

3.2 Static Loading

In the case of static loading, we are reconstructing loading forces from displacement
or strain measurements. Better results are obtained when matrix H has more rows
then columns since this results with the real least square problem. That means that
we need more measurement points then recovering parameters what is in most cases
easily accomplished. Measurement matrix H is composed from parts of the structure
flexibility matrix when the measuring values are displacements. For strain measure-
ment, we have to introduce constants that describe the material and cross section
properties.

The measurement equation y = Hx is solved using the generalized (Moon-
Penrose) inverse which is equivalent to the LS method. In the case of the full
column-rank H we could use H−g = (

HT H
)−1

HT . Better elimination of noise can
be obtained with WLS where weighing matrix W is obtained from the measurement
residuals. The measurement residual matrix R is constructed from the estimated
measurement mean and variance
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μmeas. = 1

Nmeas.

∑
meas.

ymeas.

σ 2
meas. = 1

Nmeas.

∑
meas.

(ymeas. − μmeas.)
2 (9)

and
R = diag

[
σ 2

meas.

]

W = R−1 (10)

The inverse equation is now
P = (HT WH)−1

yW = HT Wy

x = PyW (11)

and P contains a-posterior variance of reconstructed parameters

σi = √
Pi,i (12)

σ give good error bound for reconstructed parameters. Off-diagonal elements of P
contain parameter cross-correlation coefficients.

3.3 Dynamic Loading

Dynamically loaded structures are much more sensitive to the measurement noise
because forces change in time and general mean cannot be established. Conse-
quently different noise-canceling procedures have to be applied, e.g. Kalman filter
[7]. Another approach is to usemodal analysis like in [5]. The benefit is that themodal
shapes are assumed to be known from the structure model and can be used to reduce
the measurement noise. In addition, analysis time is reduced (if the reduced modal
space is used which is usual). On the down side, the result has to be transformed from
the modal space back into the global structure space, which is an additional source
of error. Dynamic structure equation in modal space has the well-known form

Mmodÿmod(t) + Kmodymod(t) = Fmod(t) (13)

withMmod = �T M� andKmod = �T K� and Fmod = �T Fwith� being the eigen-
matrix. In forward simulation, Eq. (13) is solved using modified Newmark method
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from [9]. In inverse formulation, we first recover modal components (displacement,
velocities or accelerations)

ymod = H−g
mody (14)

where H−g
mod is the generalized inverse of the modal measurement matrix

Hmod = H0�r (15)

Eigenmatrix �r does not have to cover the whole modal space; only ‘r’ components
could be used. Measurement matrix H0 has to be adapted to the measured values:
displacement, velocities or accelerations or any combination.

After modal components have been recovered from measured values using Eq.
(14), additional, not measured, modal components are determined using numerical
derivatives or numerical integrals or both (in the case when only velocities are mea-
sured). With all the modal components available, modal loading is recovered using
Eq. (13). Modal loading is transferred into global loading using

F = �
−g
modFmod (16)

Number of modes in the eigenmatrix �r has to be such that the matrix is regular,
i.e. ‘r’ has to be equal or greater then the number of measuring points; in the contrary,
special recovery procedures have to be used.

4 Examples

In all the examples, measured data has been synthetically generated using random
number generators in Wolfram Mathematica and MathCad.

Two completely different structures, a truss and a beam, are scaled in parameter
and in measurement space. Structural properties are:
Truss: 33 nodes, 72 bars, EA = 1000., L = 10.0, h = 2.0
Beam: 21 node, 20 beams, EI = 1000.0, L = 1.0
Truss, its supports and loaded nodes are presented in Fig. 2

Structures have been scaled in spaces of the same size, i.e. structural matrices
have been statically condensed Kcond = Kpp − KpsK−1

ss Ksp where Kss is the matrix
part to be condensed and Kpp is the part to be kept. Two examples were calculated,
one with 5 and the other with 7 nodes kept; smaller number of nodes kept gives better
results. Besides the nodes kept, in the full (non-condensed) structure, the other nodes
scale very well, too. Condensed nodes, i.e. points where the scaling is performed are
presented in Fig. 3.

Scaling with 5 nodes kept is not presented (comparison is even better). Index ‘1’
stands for beam and index ‘2’ for truss.
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Fig. 2 Truss: supports and loaded nodes

Fig. 3 Nodes for comparison of truss and beam

4.1 Scaling in Parameter Space

In this example, we are scaling truss forces so that displacements in the beam and in
the truss have the same value at selected nodes x2 = Sx x1. Scaling matrix is given as
Sx = (

AT
2 A2

)−1
AT

2 A1 where A1 and A2 are condensed stiffness matrices of beam
and truss, respectively.

The beam is loaded only in the middle with a unit force and the truss is loaded
with unit forces in three points visible in Fig. 3. Comparison of the results is in Fig. 4
and scaling is excellent.

This example demonstrates how can we scale the loading of two completely dif-
ferent structures (i.e. large structure and a small model) and obtain the same displace-
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Fig. 4 Comparison of displacements of truss and beam with scaled loading

ments. Notice that the scaling matrix Sx is a result of the least squares optimization
procedure and not a deterministic function. Thismeans that it has to be determined for
every structure pair from the beginning, using the presented procedure. Also, matrix
Sx is dense so all measurement points on the truss are loaded, which is opposite to
the beam where only central point is loaded.

4.2 Scaling in Measurement Space

In this example, we are scaling truss displacement so that they are equal to beam’s
displacements under the same loading, y1 = Syy2. Two single displacement vectors
can be related in an arbitrary way. One possibility is to use generalized inverse
matrix in the form of Sy = yT

2

(
y2yT

2

)−1
y1that corresponds to the minimum length

solution. However, scaling results are poor under the general loading (for single
loading case Sy degenerates into a scalar). Under the assumption of independence of
displacements of the truss and the beam, scaling matrix Sy is diagonal with elements
(Sy)i,i = (y1)i/(y2)i .

In Fig. 5 there is a comparison of scaled displacements for the two methods and
diagonal scaling matrix Sy gives excellent results.

Fig. 5 Comparison of displacements of truss and beam with scaled loading
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Fig. 6 Comparison of eigenmodes of truss and beam

4.3 Scaling of Dynamic Properties

We would like to compare eigenfrequencies and modal shapes (eigenvalues) of a
model and a structure, so they have to be scaled. In our example structure is the truss
and model is the beam from above and both have lumped mass matrices. Truss and
beam eigenmodes are presented in Fig. 6.

Eigenmodes in Fig. 6 cannot be scaled ‘per se’; mass and stiffness matrices have
to be scaled to produce the same eigenvalus, instead. Matrix IS from Eq. (6) is made
equal to Sy from example 4.2 producing scaling matrices Ss = K1ISK−1

2 and Sd =
M1

(
I2S

)−1
M−1

2 . The scaled truss dynamic matrix Ds = (
SdM2I2S

) (
SsK2I−1

S

)−1
has

the same eigenvalues and eigenvectors as the beam dynamic matrix D1 = M1K−1
con .

Now, relating the appropriate dynamicmatrices can scale eigenvalues using the eigen-
value decomposition theorem: from ‘r ’ measured eigenvalues � and eigenvectors φ

dynamic matrices are formed D = ∑
r

�r�r

(
�

−g
r

)T
and eigenmodes related.

4.4 Force Reconstruction—Static Loading

Force reconstruction is demonstrated in the example where a console is loaded with
a force and a moment at the top. It is assumed that a number of measurements are
performed at 3 places near the top; actually,measurements are synthetically generated
according to the Gauss distribution with mean equal to the exact displacements for
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force and moment F = 10.0 and M = 5.0 and σ = 5%. TheWolframMathematica
[10] is used for modeling the example. Applied reconstruction procedures are least
squares (LS) and weighed least squares (WLS).

Measurement equation is established y = HF and measuring matrix H formu-
lated, where y are measured values and F is the loading vector whose components
are to be reconstructed from measurements. Since this is a simulation, we know the

exact value of the loading vector F =
{

F = 10.0
M = 5.0

}
. It is inevitable that measure-

ments contain some noise and to reduce its influence to some extent, asmany as possi-
blemeasurement points are needed; the result ismore rows then columns inmatrixH.
Finding the generalized or Moon-Penrose inverse gives the solution in the LS sense

F =
{

F = 10.031
M = 4.778

}
for measured values with small differences from the ‘exact’

ones � =
⎧⎨
⎩

−0.022
−0.007
+0.006

⎫⎬
⎭[%]. Also, a-posterior residual is small � =

⎧⎨
⎩

−0.013
+0.009
−0.007

⎫⎬
⎭[%]

but parameter variance is very large giving very large error bounds

{
σF = 7.5
σM = 52.8

}
.

The loading reconstruction result can be further improved if there are more mea-
surements in eachmeasuring point, as illustrated in Fig. 7. This problem can be solved
as a LS problem as above, by replacing each series of measurements with its mean
value but better results are obtained with WLS method.

Weighing matrix W is constructed from variances of the series of data measure-
ments so that worse measurements are less weighed. A-posterior variance matrix is
then P = (

HT WH
)−1

and the reconstructed solution is

{
F
M

}
m

= PyW , with yW = HT WδS (17)

The solution gives F =
{

F = 9.99
M = 5.02

}
, which is only marginally better then LS but

parameter variance is much smaller giving tighter error bounds

{
σF = 0.836
σM = 5.832

}
. It

can be seen in both methods that F is better resolved then M although there is a high
correlation between them −0.999.
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Fig. 7 Histograms of 114 generated measurements at 3 points on the console
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In the above examples the exact position of the loading has been known but that
is not always the case, e.g. in wind turbines besides the turbine pressure there is also
a wind force along the tower.

4.5 Force Reconstruction—Dynamic Loading

Force reconstruction under the dynamic loading is significantly more difficult
because there is no well-defined mean value; force is constantly changing in time
and an inverse procedure different from above is required. As stated before, inverse
procedure for dynamic loading recovery is formulated in modal space. In order to
assess quality of the procedure, both, forward and inverse problems are solved and
results compared.

Our model console has the following properties: L = 5.0m, EI = 500.0kNm2,
ρ = 2.0 t/m.

Discretization: No. space intervals n = 50, No. time intervals m = 1000, time
increment �T = 0.005s, total analysis time = 5.0 s.

Structure eigenfrequencies: f1 = 0.35Hz, f2 = 2.17Hz, f3 = 6.08Hz, f4 =
11.88Hz, etc.

Forward problem
Dynamic loading acts in three points: (1) at the top, (2) 10% below the top, (3) at the
middle. Force amplitude and frequency is according to equations (Fig. 8).

P1(t) = P1
�x sin

[
2π t

Tperiod

]

P2(t) = P2
�x sin

[
2π(t+0.885Tperiod )

Tperiod

]

P3(t) = P3
�x sin

[
2π(t+1.865T3period )

T3period

]

P1 = 0.1k N

P2 = 0.05k N

P3 = 0.01k N

Tperiod = 2.0 sec

Tperiod = 2.0 sec

T3period = 3.0 sec

Note that all three forces are out of phase. Force 3 has been given the period
close to the first eigenfrequency of the structure but with much smaller amplitude;
the result is visible in accelerations in Fig. 11.

Loading is discretized in advance to speed up the calculation and discretizion
in space (50 intervals) and time (1000 intervals) looks as in Fig. 9 (50000 points
in total).

Fig. 8 Dynamic loading in points 1, 2 and 3 on the console
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Fig. 9 Dynamic loading in points 1, 2 and 3 on the console, discretized in space and time

Fig. 10 Comparison of response in time for the top point of the console, �T = 0.005 s and�T =
0.01 s

After calculation with modified Newmark method (see [9] and [11]), displace-
ments, velocities and accelerations are obtained at each point at each time increment.
Results in time for the top point of the console are visible in Fig. 10 and results in
space and time for the whole structure are in Fig. 11 (total of 50000 points for each
result, units are [m], [m/s] and [m/s2] respectively). We see that velocities and accel-
erations approximately follow the displacements with some shift in phase. Also,
accelerations are not smooth but one can still recognize the shape of displacements
in it; it is so only when there is some loading with the period close to one of the
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Fig. 11 Total response in space and time of the whole structure �T = 0.005s

Fig. 12 DFT of the structure displacement, velocity and acceleration �T = 0.005 s

eigenfrequencies, otherwise, accelerations look quite messy. Out of phase forces at
the initial time increment (t = 0) are well visible in the accelerations plot in Fig. 11.

After results have been obtained in space and time, discrete Fourier transform
(DFT) of the results is performed. DFT has been performed for the top point of
the structure for each group of the results separately: displacements, velocities and
accelerations.

DFT is an important step in understanding howmeasurements are to be performed
and what information can be extracted from the data. Space discretization gives
us measurement points and time discretization represents sampling frequency; by
varying them we can simulate and optimize the measurement process.

DFT in Fig. 12 gives information about structure eigenfrequencies. Higher fre-
quencies are less pronounced and less precise due to spectral leakage, i.e. there are
DFT results around real frequencies that carry power through the structure. Spectral
leakage is a consequence of DFT performed over a finite time interval, a window
in the time domain of which the exact FFT result is a function of infinite width
(Sinc(x) = sin(x)

x ), see [12]. Also, from Fig. 12 it is evident that measurement instru-
ments have to be chosen carefully, accelerations carry more information about fre-
quencies and it is easier to extract eigenfrequencies from them. However, frequency
information depends on the frequency resolution, which is function of sampling
interval � f requency = 1

�T . The same analysis is performed with �T = 0.01 so that
the total analysis time is 10 s. While space and time results do not differ much (see
Fig. 13), DFT has better frequency resolution and longer time interval, resulting in
less spectral leakage (Figs. 14 and 15). By careful numerical simulation we could
deduce about necessary number of samples and sampling time of the instrument.
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Fig. 13 Total response in space and time of the whole structure �T = 0.01 s

Fig. 14 DFT of the structure displacement, velocity and acceleration �T = 0.01 s

Fig. 15 Comparison of DFT from acceleration for �T = 0.005 s and �T = 0.01 s

Influence of frequency resolution (a function of time increment in the model or
sampling interval during measurement) is best visible in Fig. 15. In both figures
the second eigenfrequency (f2 = 2.17Hz) is clearly recognizable but in the first
picture, the first eigenfrequency (f1 = 0.35Hz) is hidden among loading frequencies
(p1 = 0.5Hz and p2 = 0.333Hz). Second picture has better frequency resolution and
two loading frequencies are separated with the first structure eigenfrequency visible
among them.

Inverse problem—displacement measurement
We are trying to recover loading for the console loaded with two dynamic forces
acting in the same points as in the example above. Lower positioned force has half
the amplitude and is shifted in phase



Relating Structure and Model 177

Fig. 16 Dynamic loading in points 1 and 3 on the console, discretized in space and time

Fig. 17 Dynamic loading from Fig. 16 transformed into modal space

P1(t) = P1
�x sin

[
2π t

Tperiod

]

P3(t) = P3
�x sin

[
2π(t+1.865T3period )

T3period

] P1 = 0.1k N

P3 = 0.05k N

Tperiod = 5.0 sec

T3period = 10.0 sec

Loading is discretized in advance to speed up the calculation and discretizion
in space (50 intervals) and time (1000 intervals) looks as in Fig. 16 (50000 points
in total).

Calculation is performed inmodal space using the first five eigenmodes (r = 5) so
loading is transformed into modal space using�mod = �r P and displayed in Fig. 17.

Modal dynamic equation is formedaccording toEq. (13); the twodynamic systems
have the same eigenmodes. For the sake of accuracy assessment, forward analysis is
performed so that we can compare recovered values of displacements, velocities and
accelerations with the exact ones. Of course, all the calculated values are in modal
space.

Measurement vector is defined as tm = (50 45 40 30 25 10) where the point 50 is
at the top of the console. State and measurement equations depend on the measured
values: displacements, velocities or accelerations where the parameter of the state
equation is x(t) = {d(t) v(t)}T (i.e., displacement and velocity) (Table1).
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Table 1 State and measurement equations depending on the measured variable

State equation ẋ (t) =[
0 I

−M−1K 0

]
x (t) +

{
0

M−1H0

}
p (t)

Measurement equation for displacements y (t) =
{

H0

0

}
x (t)

Measurement equation for velocities y (t) =
{

0
H0

}
x (t)

Measurement equation for accelerations y (t) ={
−HaM−1K

0

}
x (t) +

{
HaM−1H0

0

}
p (t)

Modal measuring matrix is formed from measuring matrix by using Eq. (15).
Although is the measurement matrix H0 very sparse, the modal measurement matrix
Hmod is dense; this is important for obtaining the well posed generalized inverse of
the modal measurement matrix H−g

mod.
Calculated modal displacements are polluted with artificial Gaussian noise to

serve as a measured input value. The noise is zero-mean small standard deviation of
0.1% as presented in Fig. 18.

Modal displacements are recovered from ‘noisy’ measurements using Eq. (16)
and are compared with exact values in Fig. 19.

The first mode displacements in Fig. 19 are almost exact but in the second mode
errors are visible; this trend continues for higher modes.

Fig. 18 Gaussian noise introduced to simulate measurements

Fig. 19 Comparison of recovered and exact modal displacements
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Fig. 20 Comparison of recovered and exact modal velocities

Modal velocities are recovered from modal displacements by derivation. Actu-
ally, this is not advisable since derivatives significantly amplify the noise; e.g. if
one performs the derivation on a noisy harmonic function sin (ωy + w), the result
is function amplified ω times, i.e. ω cos (ωy + w). This problem is addressed in [8];
here we use Pade derivative, which is much more exact then finite differences of any
form since it uses all the points to produce a derivative. Note that we do not need to
know the function to calculate its derivative; discrete points are sufficient. For a dis-
crete function represented with 1000 points that signifies solving of a system of 1000
linear equations. Pade derivative is formulated using matrix differentiation operator
similar to [11], Dmat du = dP (u, xa, xb, n)where du is vector of derivatives, u vector
of function points, xa, xb limits of data points interval, n number of points, Dmat is
(sparse) matrix of Pade coefficients and dP is derivative vector produced from func-
tion’s points. In our example, where du is vector of modal velocities φv, u vector of
modal displacementsφd, xa =0, xb =Ttotal time interval of the analysis, n=mnumber
of time increments. After solving the equation φv = D−1

mat dP
(
φd , 0, Ttotal , m

)
, the

result is points representing the velocities. In Fig. 20 there is a comparison of exact
velocities and those calculated through Pade derivative.

Noise in reconstructed modal velocity vector is barely visible; coincidence with
exact values is very good. One of tests the inverse formulation has to pass is its ability
to completely and without any error recovers the modeled function in the absence of
noise. This formulation fulfills this task completely for all recovering quantities.

Further derivation of velocities produces accelerations needed for our state equa-
tion. After solving the equation φa = D−1

mat dP (φv, 0, Ttotal , m), the result is points

Fig. 21 Comparison of recovered and exact modal accelerations
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Fig. 22 Comparison of recovered and exact modal loading for modes 1 and 2

representing the accelerations. Comparison of exact accelerations and those calcu-
lated by solving this equation is in Fig. 21.

Noise in reconstructed modal accelerations is more then noticeable. It would be
advisable to eliminate the noise as much as possible in every step of the force recon-
struction. Nevertheless, in this example we are proceeding without noise elimination
in every step of the force recovery. With recovered modal displacements and modal
accelerations at hand, we can recover modal loading using Eq. (13). The result in
Fig. 22 is a comparison of the exact and recovered modal loading for modes 1 and 2.
Noise in the recovered modal loading seems to be at the level of modal accelerations.

In final stage of the loading recovery process global load is recovered frommodal
load using Eq. (16). There are some restrictions in the application of Eq. (16); number
of modes in the eigenmatrix �r has to be such that the matrix is regular, i.e. ‘r’ has
to be equal or greater then the number of measuring points; in the contrary, �r has
to be regularized and special recovery procedures have to be used. Also, load can
be recovered only in points where measurements have been made (this too, can be
avoided using special formulations but they will not be discussed here). With all the
restrictions applied, the result of force recovery for loaded points 50 and 45 on the
console is compared with exact values in Fig. 23.

Fig. 23 Comparison of recovered and exact global loading in points 50 and 45 of the console
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Fig. 24 Comparison of recovered and exact modal displacements obtained from measured veloc-
ities

Recovered load in point 50 looks satisfactory but load in point 45 is rather noisy.
However, the mean value of recovered forces seems to follow the required trend
and the result can be further enhanced using various techniques. Other nodes are not
loaded and their recovered forces should be zero; in reality small values are obtained.
Instead of improving on this result a posterior, we will try to use a priory approach
by obtain better measurements.

Inverse problem—velocity measurement
We are trying recovery process by measuring velocities instead of displacements;
there will be no need to differentiate twice to obtain accelerations and differentiation
is considered one of great sources of error. Recovery procedure is the same up to
Fig. 18, after which we have to integrate velocities to obtain displacements. This time
Pade matrix differentiation operator is modified so that it can be used for integration
as well; it is modified so that vector function dP is not longer needed. The derivation
equation is now du = Ddu where Dd = D−1

mat dd (xa, xb, n) and dd is modified vector
functiondP so that it does not includeu. Now, the integration is simply the inversion of
matrixDd. Comparison ofmodal displacementsinmodes 1 and 2 in Fig. 24 resembles
modal displacements from Fig. 19.

The modal accelerations in mode 1 and mode 2 are obtained by derivation of
velocities as before; the result is in Fig. 25.

Fig. 25 Comparison of recovered and exact modal accelerations
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Fig. 26 Comparison of recovered and exact modal loading for modes 1 and 2

Fig. 27 Comparison of recovered and exact global loading in points 50 and 45 of the console

Noise in the modal accelerations reconstructed from velocities is barely visible.
Reconstruction of modal loading follows; comparison of reconstructed and exact

values is presented in Fig. 26 (compare with Fig. 22—recovery from displacements).
Finally, the result of force recovery for loaded points 50 and 45 on the console is

compared with exact values in Fig. 27 (compare with Fig. 23—recovery from disp
lacements).

Recovered load in point 50 looks very good and it is satisfactory in point 45.
In this example, too, nodes that are not loaded show some small recovered forces
instead of being zero. The mean value of recovered forces follow the required trend
even more then previous results in Fig. 23 and further enhancing of the result should
be straightforward.

5 Discussion and Conclusion

In the paper we have demonstrated how two structures, usually a real structure and
its model, could be related in order to gain better insight into behavior of large
structures.The relation is established after discretization, through scalingof oneof the
structures to the scale of the other one. Structures are considered undamaged, so we
are dealingwith linear systemsof equations.Author is especially interested in relating
measurements and structure parameters.As a consequence, linear systems canbeover
or underdetermined, depending on the number of parameters and measuring points
on the structure. Structure parameter under consideration is loading and, since load
mostly cannot be directly measured, its recovery from indirect measurements.
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Paper distinguishes between scaling in the parameter space and in measurement
space, between static and dynamic loading. Recovery of static loading is performed
using least squares and weighed least squares and recovery of dynamic loading is
based on inverse modal analysis. Inverse modal analysis applied for force recon-
struction involves several stages: recovery of modal displacements, modal velocities
and modal accelerations from some measurements. In the nest stage modal load is
recovered. Finally, global load is recovered from modal load. Elimination of the
noise, as much as possible, in every step of the force reconstruction is planned in
future development.

Discrete Fourier transform is applied to gain better insight into various stages of
load recovery process. Its main use is to help us to reduce the noise in measurement
through selection of the measuring values and optimization of the measurement
process.

Numerous examples in the paper explain the whole process of structure scaling
and load reconstruction [13].
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Abstract In the context of uncertainty propagation, the variation range of random
variables may be many oder of magnitude smaller than their nominal values. When
evaluating the non-linear Finite Element Model (FEM), simulations involving con-
tact/friction and material non linearity on such small perturbations of the input data,
a numerical noise alters the output data and distorts the statistical quantities and
potentially inhibit the training of Uncertainty Quantification (UQ) models. In this
paper, a particular attention is given to the definition of adapted Design of Exper-
iment (DoE) taking into account the model sensitivity with respect to infinitesimal
numerical perturbations. The samples are chosen using an adaptation of the Latin
Hypercube Sampling (Fat-LHS) and are required to be sufficiently spaced away to
filter the discretization and other numerical errors limiting the number of possible
numerical experiments. In order to build an acceptable Polynomial Chaos Expansion
with such sparse data, we implement a hybrid LARS+Q-norm approach. We show-
case the proposed approach with UQ of springback effect for deep drawing process
of metal sheet, considering up to 8 random variables.
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1 Introduction

The hierarchical combination of a “high-fidelity” (expensive and accurate) model
with a “lower-fidelity” model (less accurate but also less expensive) may lead to
significant decrease of the computational cost involved in the search for optimal
design [1–3], in the characterization of system variability [4, 5] or in sensitivity
studies [6–8]. In an optimization context, rigorous convergence proofs may be estab-
lished as long as the “lower-fidelity” model is consistent (generally to the first [9]
or second order [10]) with the “higher-fidelity” model. “Multi-fidelity” or “variable-
fidelity” refer to models built from simplified physics [11], coarse discretization
[12–14] or partial convergence [15]. Multi-fidelity surrogate-based approaches [16–
18] mostly refer to interpolating or regression based non-physics metamodels such
as polynomial response surface [19], moving least squares [20, 21], kriging, [22],
etc.

Due to strong mathematical basis and functional representations of stochastic vari-
abilities, Polynomial Chaos Expansions (PCE) are attractive for uncertainty quan-
tification. Notably, [23] PCE combined with FE in an intrusive manner forms the
basis of the stochastic finite element method, [24] provides a non-intrusive combina-
tion scheme. [25–27] focuses on PCE computational costs by non intrusive adaptive
schemes to perform robust, reliability, and sensitivity analysis.

In metal forming applications, Monte Carlo simulation on a polynomial response
surface permits to quantify statistical quantities (mean and standard deviation) [28,
29] uses Monte Carlo simulations and linear response surfaces to identify the most
significant variable and to build an approximation of the probabilistic response.
A second order Polynomial Chaos Expansion (PCE) is used in [30] to assess the
variability of the tolerance prediction of the formed metal sheet submitted to random
process and material data and [31] uses the moving least squares instead of the
classical quadratic order response surface to perform reliability analysis of the sheet
metal forming process.

However, nonlinear Finite Elements may suffer from numerical instabilities
resulting from round-off errors, convergence errors and discretization errors [32].
In the general case, nonlinear FEM does not converge in a monotonous way to the
equilibrium state. Taking into account nonlinear phenomena such as large strain,
material non linearities, contact-friction, etc., requires convergence criteria implying
limited precision.

Contact problems are also likely to provide numerical instabilities and
sensitivity problems. Solving a contact problem requires to determine the closest
distance between surfaces. [33] identifies in Sect. 2.2.4, Fig. 2.8 the projection zone
of the slave points with regards to their paths, and concludes that “a small change
in position of the slave point does not always result in a small change in the closest
point projection”. This difficulty is particularly likely to occur when the slave point
is relatively far from the master surface. Then if a small change in the geometry
results in a jump in the projection point, the corresponding dissipated energy will
also experience a jump: the virtual work of frictional forces becomes discontinuous.
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Focusing now on the FEM of deep drawing process, sources of instability come
from the discretization errors [34]. The through-thickness stress profile defines the
internal bending moment which governs the springback phenomenon when removing
tools. When the material undergoes plastic deformation, the stress profile becomes
non-smooth due to the presence of elastic-plastic transitions.

The observed instabilities of the FE model do not provide a clearly established
reference from which we may evaluate the bias or the convergence rate of a surrogate
model. In this context a “good” surrogate model:

• intrinsically contains convergence properties to the actual response, when the num-
ber of training points increases,

• allows to retrieve statistical moment analytically,
• is economical in terms number of high fidelity simulations.

In this paper we propose a custom PCE extrapolating the physical model towards
“very small” perturbations.

We propose to filter the numerical instabilities and to build a custom polynomial
surrogate of the response. The construction of surrogates in presence of epistemic and
random uncertainties is a key component of experimental design [35, 36]. Assessing
the parameters of the response surface requires to define these parameters as random
variables. Various statistical criteria (D-, A-, T-, E-optimality) allow to assess the
quality of the sampling scheme by decreasing the bias and the variance of the model
parameters to evaluate. In such cases, the parameters have to be sampled either from
their prior or posterior distribution, both requiring an extensive number of calls to
the “high-fidelity” model.

The proposed methodology provides:

• the maximal numbers of samples that may be generated taking into account the
finite precision of the FE simulations softwares, and an associated Latin Hypercube
Sampling [37],

• the “best” PCE fit using an adaptive algorithm combining Q-norm and Least Angle
Regression Stagewise algorithm.

• the control of the quality of the PCE by Leave One Out error.

The exhaustive identification of the numerical artefacts and their deepened analy-
sis is beyond the scope of this paper and is still an open research area. Here we
propose a pragmatic methodology which is not aimed at removing the bias induced
by the noisy behavior of the FEM high-fidelity model.

The paper is organized as follows. Section 2 proposes a general insight into errors
produced by FEM modeling and a global error assessment based on the finite
difference scheme. In Sect. 3 an introduction to the basics of PCE is provided.
Section 4 provides a sampling scheme based on the Latin Hypercube Sampling
(LHS), taking the model resolution into account. In Sect. 5 we implement three
different economical (sparse) PCE schemes to efficiently and accurately propa-
gate the uncertainty. Finally, in Sect. 6 we showcase the efficiency of the proposed
approach on the deep drawing process of a 2D, U-shaped metal sheet considering
up to 8 random variables. Conclusions and prospectives are provided in Sect. 7.
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2 FEM Error Assessment Using Finite Difference Scheme

We consider random perturbations on the input parameters ξ = [ξ1, ξ2, . . . , ξM ]
around a nominal value ξ nom = [ξ nom

1 , ξ nom
2 , . . . , ξ nom

M ] and their influence on the
output function y(ξ). To characterize the stability of the model output, we evaluate
the relative adimensional sensitivity of the computational model separately for each
variable ξi , i ∈ {1, . . . , M} using the finite difference scheme:

μi = �y(ξi )

�ξi
× ξ nom

i

y(ξ nom
i )

(1)

where

�y(ξi ) = y

(
ξ nom

i + �ξi

2

)
− y

(
ξ nom

i − �ξi

2

)
. (2)

From actual computation of non linear Finite Element (see Sect. 6.2.4), we
observe that when decreasing the order of magnitude of the perturbation (−log(�ξ )
increasing), one may identify different behaviors of μi (Fig. 1):

1. Firstly, for “large” �ξi , the variation of μi reveals a non-linear behavior of the
model and the model may be considered as trustworthy.

2. Secondly, μi stabilizes around a constant value μ̄i where the model may be
considered as linear. This is the zone used for finite difference gradients (e.g. in
optimization).

3. Thirdly, on reaching the threshold , μi becomes unstable. We call the cor-
responding �ξ ∗

i the resolution threshold of the model. Below, unstable data is
generated and may not be used when training a metamodel.

4. Finally, shows the model sensitivity limit: �y = 0.

The point may be considered as the limit resolution of the model (in the fol-
lowing we simply refer to the resolution of the model). The approach developed in
this paper aims at the cases when random variation of input parameters encompasses
the instability zone.

The question for an automatic identification of the resolution threshold is left
open. For practical implementation, we consider the model output unstable when
one simultaneously observes a significant change in the magnitude of μi followed
by algebraic sign inversions.

3 Introduction to Polynomial Chaos Expansion

The PCE [38] is a stochastic metamodel, that is intended to give an approximation ỹ
of the stochastic behavior of a functional y (scalar random process) that is defined as
a function of an input M-dimensional random vector ξ . We assume that y is a second
order random variable (E(y2) < ∞), that the M coordinates are independent, and
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thus that the probability density function fξ (ξ) may be decomposed on a product of
the marginal probability density functions fξ (i) (Eq. 3):

f (ξ) =
M∏

i=1

fξi (ξi ) (3)

Given the natural inner product for arbitrary function φ with respect to each of
the marginal probability function fξ (ξ), we define an infinite set of mono-variate
orthogonal polynomials ϕ(ξ) = {ϕk(ξ), k ∈ N}. Hermitian polynomials respect this
condition for Gaussian random variables.

For other types of random variables, different orthogonal polynomials may be
used leading to the generalized PCE or Wiener-Askey scheme [39].

Using the tensor product one may obtain an infinite set of multi-variate polyno-
mials (with a preserved orthogonality property) ψ = {ψα,α ∈ N

M} where α ∈ N
M

is a multi-index set.
According to the Cameron-Martin’s theorem [40], the exact polynomial expansion

of the functional y is
y(ξ) =

∑
α∈NM

γαψα(ξ std). (4)

where {γα}, α ∈ N
M are the coefficients of the PCE to be identified and ξ std the

Gaussian standardized counterpart of the physical random input ξ . When solved by
least square (Eq. 7) the transformation from physical to standardized random variable
avoids system matrix to be ill-determined specially when there are model parameters
of very different orders of magnitude. In the general case, where the components of
the random vector ξ are independent and non Gaussian, the transformation to the

Fig. 1 Qualitative sensitivity results issued from actual computation
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standardized, centered and independent variables requires the use of a non linear,
e.g. Nataf [41] or Rosenblatt [42] transformation. In the general non Gaussian case,
the transformations have to be constructed numerically.

In practice we have to truncate the full basis in order to only retain a finite set A
of P polynomial terms

ỹA =
∑
α∈A

γα	α(ξ std). (5)

To compute the coefficients of the PCE, intrusive Galerkin type approach has
been proposed [38]. Non intrusive projection based methods take advantage of the
orthogonal properties of the multivariate polynomials of the expansion. Stochastic
collocation is based on a Lagrangian interpolation in the stochastic space. It may be
proved that this method is equivalent to the former [43].

In the regression based approach (on which we focus in this paper), the set of
coefficients may be computed as

γ = argmin(‖y(ξ) − �(ξ std)γ �‖2) (6)

solved by least squares:

γ = (�(ξ std)�(ξ std)�)−1�(ξ std)y(ξ), (7)

where y(ξ) is the S-sized column vector containing the “high-fidelity” evaluations of
the S samples and � the S × P matrix containing the evaluation of the P polynomial
terms for the S samples.

The optimal number of realizations needed to assess the coefficients with a good
accuracy is still an open research area, but [24] proposes an empirical rule

Slb = (M − 1) × P. (8)

We consider Slb as a lower bound on the number of simulations (S ≥ Slb) to build a
PCE.

Once the set of P coefficients {γα}α∈A has been determined, one may compute
the statistical moments of y analytically avoiding Monte Carlo simulations. The first
two statistical moments are given by:

E(y) =γ0 (9)

σ 2(y) =
∑

α∈A−{0}
E(	2

α)γ 2
α (10)
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4 Sampling Scheme Taking into Account Model Resolution

We propose to modify the classical Latin Hypercube Sampling (LHS) [37] scheme
in order to take into account model resolution thresholds for each of the M variable
separately. LHS randomly distributes samples in equiprobable bins in such a way that
there is exactly one sample point per row in each of the M directions, eventually veri-
fying contraints such as space-filling [44, 45], correlation [46], nested configurations
[47], etc. The LHS advantages are [48]:

• as long as the number of samples S is large compared to the number of variables
M , LHS eventually provides estimators with lower variances for any function with
finite variance,

• in any case S-sized LHS does not perform worse than (S − 1)-sized crude Monte
Carlo.

However, LHS shows also the following limitations:

• The error estimates may not be improved by iteratively increasing the number of
samples: the resulting sampling is not a LHS anymore (see [47, 49, 50] for Nested
LHS).

• There is a risk that some of the random samples form a cluster to the detriment of
some unexplored part of the design space. To circumvent these issues, re-sampling
strategy [46], optimization algorithm [51], or geometrical consideration [44, 52,
53] has been proposed. The two first are straightforwardly compatible with our
approach, but not investigated in the present paper.

When performing stochastic studies, small variations of the random input parame-
ters may result in unstable output responses. To alleviate this limitation, we propose
to build a restricted area (free of other sampling points) around each sampling point.
The shape of this restricted area is parameterized by δ∗

i (Eq. 11) and may be defined
as follows:

δ∗
i = argmin

�ξ(i)

μi (�ξ(i)) > μ∗
i , i ∈ {1, . . . , M}. (11)

Depending on the chosen norm (L1,L2,L∞, . . .), different shapes are obtained
for the restricted area. The influence of the choice of the norm on the performance
of the sampling scheme is still an open issue. However, due to the curse of dimen-
sionality occuring in high dimension we preferentially use L∞ norm. This approach
coupled with LHS requirements permits us to filter the spacial sensitivity but limits
the maximum number of samples available for PCE determination. In the remainder
of the paper we denote this upper bound on the number of samples at hand by Sub.
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4.1 Implementation of the Fat-LHS

The goal of the Algorithm 1 is to identify the maximum number of sufficiently
spaced sample points while preserving LHS criteria. In practice a high number of
candidate of LHS are generated and the DoE with the best properties is kept.

The inputs of the algorithm are:

• the range of variation of M parameters,
• their associated probability density function, pi (ξi ), i = 1, . . . , M
• the resolution of the model associated to each parameter, �ξ ∗

i , i = 1, . . . , M ,
• the number S of initial points. We recommend to choose S such as in each dimen-

sion the size of the narrowest LHS bin is at least one order of magnitude smaller
than the resolution threshold for the considered parameter.

We denote the DoE by

� = {
ξ 1 ξ 2 . . . ξ S

}

where ξ 1, . . . , ξ S are M-dimensional column vectors. If the sampling is uniform, we
denote �U and �P otherwise.

The pairwise distance matrix D is given by:

Dk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 ‖ξ1 − ξ2‖ ‖ξ1 − ξ3‖ . . . ‖ξ1 − ξ S‖
. . . ‖ξ2 − ξ3‖ . . . ‖ξ2 − ξ S‖

SY M
. . .

.

.

.
.
.
.

. . .
.
.
.

‖ξ S − ξ S−1‖ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 d1,2 d1,3 . . . d1,S
. . . d2,3 . . . d2,S

SY M
. . .

.

.

.
.
.
.

. . .
.
.
.

dS,S−1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(12)
where ‖ . ‖ refers to the chosen norm. To remove the illegal neighbors, one has to
identify for each sampling point ξ current the number of illegal neighbors inside its
restricted area. To do so we define:

D�
m = {sign(|ξ current − ξ 1| − μ), . . . , sign(|ξ current − ξ S| − μ)} (13)

If one observes that a particular line l∗ of Dm(l∗, :) = [1, 1, . . . , 1]︸ ︷︷ ︸
M times

then the sampling

point ξ l∗ is located inside the restricted area of ξ current. For each sampling point it is
then possible to identify the number of illegal neighbors. We store this information
into an S × S matrix denoted N . Each line i and column j is set to 1 if ξ i and ξ j
are illegal neighbors and 0 otherwise. Then we sequentially remove the points with
the greatest number of illegal neighbors and update N after each removal operation
until N only contains 0 values.

To discard an illegal neighbor ξ i , we remove it from � and denote the this oper-
ation by:
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�{−i} = {
ξ 1 ξ 2 . . . ξ i−1 ξ i+1 . . . ξ S

}
.

Following steps are then performed within a loop:

• Step 1 is dedicated to the generation of a large number I T of different S-sized
candidate LHS.

• Step 2 consists in the sequential removal of the points with the greatest number of
illegal neighbors for each of the candidate DoE.

The algorithm may be easily implemented into a parallel environment and con-
verges to an LHS containing the maximum number of points sufficiently spaced
away. It provides two outputs:

• the maximum number S of “high-fidelity simulation” on which the PCE construc-
tion relies,

• and the associated S-sized design of experiment (Fig. 2).

Algorithm 1 Fat-LHS algorithm
Inputs
• 	ξ∗

i i , i = 1, . . . , M the given sensitivity for each parameter.
• pi (ξi ), i = 1, . . . , M be their respective probability density functions.

• Set IT, the maximum number of LHS to be generated
• Set M , the number of stochastic variables
• Set S, the initial number of sampling points
• Choose a norm ‖ . ‖ among L1,L2, L∞, ...

for it=1 to IT do
- Set Sit = S
- Generate an Sit -sized and M−dimensional LHS denoted �U uniformly distributed over
[0;1]
- �U,i t is an M × S matrix containing the M-dimensional trial points as column vectors
- Transform the S uniform random vectors into the desired probabilistic space
- �P,i t = T −1(�U,i t )

- Compute Di t the Sit × Sit matrix containing the pairwise distance
- Compute N i t

- Set I N it equals to the number of non zero lines of N
- Set K it = 0
while I N it > 0 do

- Identify using N i t the sampling points with the highest number of illegal neighbors
- Remove one of them and update N i t

- Update the sampling size Sit = S − 1
end while

end for
- i t∗ = argmax

i t
Sit

Outputs:
• Return Sit∗

• Save the LHS �P,i t∗



194 J. Lebon et al.

(a) (b)

Fig. 2 Illustration of the fat latin hypercube sampling points removal procedure, a Two illegal
neighbors with regards to the L∞ norm, b Deleting the illegal neighbors and rearranging the bins
size

5 Sparse PCE Models for Restricted Training Sets

The Fat-LHS (Algorithm 1) provides a set of spaced away sampling points consis-
tent simultaneously with the distribution of the random parameters and the model
resolution. The latter feature decreases the number of available simulations. Among
the infinite set of PCEs terms one has to select the most relevant (correlated) with
regards to the sampling at hand.

5.1 Truncating Multi-variate Polynomials Expansion

For Fat-LHS sampling scheme, we need an economical PCE scheme requiring less
than S ≤ Sub samples. The truncation schemes result in different lower bounds on
sample sizes Slb. In the following we implement a scheme satisfying Slb ≤ S ≤ Sub.

Among all {ψα,α ∈ N
M} the truncation scheme [24, 38, 54] retains only the

multi-variate polynomial terms whose degree does not exceed an a priori fixed N
leading to the following multi-index set:

AM
q = {α ∈ N

M , ||α||q ≤ p}, (14)

where ||α||q =
(

M∑
i=1

α
q
i

)1/q

.

The truncated model may then be written as:

yA
M
q (ξ) ≈

∑
α∈AM

q

γαψα(ξ st). (15)
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(a) (b) (c)

Fig. 3 Illustrations of Q-norm truncation with different values of the truncation parameter q for a
7th order PCE

For q = 1, the number P of coefficients in the PCE is given by

P =
N∑

k=0

Ck
M+k+1 = (N + M)!

N !M ! (16)

and increases exponentially. So does the number of “high-fidelity” function evalua-
tions needed to compute the number of PCE coefficients: whatever the method used,
at least S = P + 1 samples are necessary.

Q-norm generalizes the classical truncation scheme by varying 0 ≤ q ≤ 1 [55].
Figure 3 illustrates typical truncated index sets for different values of q on a 7th order
bi-variate PCE.
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Fig. 4 Number of polynomials terms in truncated PCE with regards to the q truncation parameter
for 8 variables
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Fig. 5 An example of combined Q-norm + LARS truncation for a 7th PCE order, k = 17, q = 0.7

The set of active polynomials in the PCE decomposition is decreased when q
decreases. Figure 4 illustrates the evolution of the number of 8-variate polynomial
terms in log scale against q values. The rightmost value q = 1 corresponds to the
classical truncation Eq. 16.
LARS truncation scheme. The Least Angle Regression Stagewise algorithm [55–57]
issued from the variable selection community iteratively adds to the current model
the polynomial terms which are the most correlated with the residual response.

Figure 5 illustrates truncated index obtained after k = 17 iterations applied to a
2-variate 7th order PCE previously .

At step k, k predictors have been added to the approximated model. We denote
by AM

LARS(k) the corresponding multi-index set whose cardinal is k.

5.2 Combining Q-norm and LARS

Considering the limited Fat-LHS sampling, we need to find the optimal sparse index
setA∗ such that the error produced on the resulting approximation model yA∗ is as low
as possible. To perform this optimization task, we combine in an iterative manner the
Q-norm and LARS truncations. We index by AM

q the set of polynomials �q-truncated

obtained by a Q-norm. From this set, one may apply LARS algorithm to the most
correlated polynomial. We index by AM

q+LARS the sparser set of polynomials �q+k

obtained after a Q-norm and k steps using LARS.
Figure 5 illustrates this method by showing a sparse set of active polynomials

obtained for q = 0.6 and k = 8.We note that card(AM
q+k) ≤ card(AM

q ).
We thus solve a combinatorial optimization problem [26]

⎧⎨
⎩

argmin
N ,q,k

Error(AM
q+k)

s.t. Slb ≤ S ≤ Sub

(17)

where Error is an estimator of the PCE quality that we describe in the Sect. 5.3, and
S is the available number of samples (Algorithm 2).
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Algorithm 2 Optimization of Q-norm + LARS parameters [26]
• Arbitrarily choose a set N = {N1, . . . , Nn} of PCE orders, (Nn possibly high).
• Store the response obtained using an Fat-LHS sampling in a vector y = [y1, . . . , yN ]
for idxn = 1 : n do

• Choose a set of significant q values
q ∈ {q(i)|i ∈ 1, . . . , Q}
for idxq = 1 : Q do

- Compute the N th
idxn

order full polynomial basis �full.
- Truncate the full polynomial basis using the q(idxq ) norm giving �q-truncated

- Let Premain = card(AM
q ) be the number of remaining polynomials after truncation

- Perform a V-fold cross validation as follows, with K=2.
for idxP = 1 : min(Premain, N ) do

- Divide the sampling in 2 populations of equal size ξ test and ξverif
for v = 1 : V do

- Compute the LARS Algorithm on the P1 population
- Verify the results on the P2 population by computing the chosen error estimate.

end for
- Retain the best LARS step k∗ according to the selected error criterion

end for
end for

end for
• Retain the best model with the best N∗, q∗, k∗ according to the selected error criterion

5.3 Error Evaluation of the Polynomial Expansion

According to Cameron Martin’s theorem [40], when truncating the multi-index set,
one may not reach the convergence to the exact solution in the L2 sense. We assess
the results for the corrected Leave-One-Out (LOO) error estimate taking into account
the overfitting phenomenon [55].

An estimation of the L2 error is given by the empirical formula:

Erremp = 1

N

N∑
i=1

(y(ξ i ) − yAM
q+k(ξ i ))

2. (18)

However, Erremp is known to under-estimate the L2 error. When increasing the
complexity of the PCE, Erremp systematically decreases, while the actual L2 error
may eventually increase (overfitting phenomenon). By construction, the LOO error
[26] is less sensitive to the overfitting. It relies on the computation of the predicted
residual

�(i) = y(ξ i ) − y
AM

q+k

−i (ξ i ), (19)

for each evaluation ξi , i ∈ {1, . . . , N }, where y
AM

q+k

−i (ξ i ) denotes the approximated
model evaluated in ξ i trained in �/{ξ i }. The LOO error is then computed as
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ErrLOO = 1

N

N∑
i=1

�(i)2
. (20)

In the general case, the computation of the predicted residuals is a greedy process.
In our case, these may be analytically computed

�(i) = y(ξ i ) − yAM
q+k(ξ i )

1 − hi
(21)

where hi is the i th diagonal term of the �AM
q+k

(
�AM

q+k
�
�AM

q+k

)−1
�AM

q+k
�

matrix.

Finally, we compute the absolute LOO as

ErrLOO = 1

N

N∑
i=1

(
yAM

q+k(ξ i ) − yAM
q+k(ξ i )

1 − hi

)2

. (22)

and its relative counterpart

εLOO = ErrLOO

σ(y)2
. (23)

We use εLOO to control the “goodness of fit” of PCEs.

6 Results and Discussions

6.1 Analytical Example

Let us consider f a 4th order Hermite-based polynomial function

f (ξ) = ξ 4 + ξ 3 − 5 ξ 2 − 2 ξ + 3 + N . (24)

We add to f a noise N built from three independent uniform random variables
n1, n2, n3 such that N has non zero mean, non unitary variance and has a random
magnitude to retrieve a behavior as in Fig. 1

N = n1 ∗ n2 − n3. (25)

Illustrations of the smooth function, the additive noise and the resulting noisy
function are respectively given in Fig. 6a–c.

Let us assume ξ ∈ N (0.75, 1). We limit ξ variation to the interval [−3; 3] by
truncating its Gaussian distribution. The computation of the sensitivity around the
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(a)
(b)

(c)

Fig. 6 Smooth function (a) noise (b) noisy function (c)

Fig. 7 Admissible resolution threshold

mean value has been done using a set of 151 points. Figure 7 provides the obtained
variation of μ. We consider the variation limit threshold �ξ ∗ = 0.7.

We realize two random samplings each containing 5 trials and both consistent with
the Gaussian ξ distribution (Fig. 8). One of this set of random variables is obtained by
repeated random sample generations until the distance between each pair of points
is equal or greater than the model resolution threshold. This sampling is refereed as
“Spaced random trials” in Fig. 8. The second set of sampling trials (“Closer random
trials”) is chosen such as the minimal distance between trial points is lower than
�ξ ∗. PCE approximations are computed using the regression approach described in
Sect. 3.

Figure 8 shows that the proposed Fat-LHS-PCE provides closer results to the
original function than the LHS-PCE scheme.
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Fig. 8 Approximation results considering two different set of spaced and closer trial points

However, the PCE approximation does not allow to correct the approximation
bias. Figure 9a–e plot γ0, γ1, γ2, γ3, γ4 with respect to the number of sampling points.
All figures show that the coefficients computed using the “spaced (random) trials ”
converge with a higher rate than those obtained using the “closer (random) trials” to
a stable value.

(a) (b)

(c) (d)

(e)

Fig. 9 Convergence results of the PCE coefficients for LHS-PCE and Fat-LHS-PCE scheme
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Fig. 10 Geometrical configuration of the modeled Numisheet’93 benchmark (values in mm)

Fig. 11 Representation of the Swift hardening law for the parameters described in Table 1

6.2 2D Deep Drawing Process

We model the variability of the springback parameter of a 2D deep drawn U-shaped
metal sheet from the B3 Numisheet’93 [58] benchmark.

The overall geometrical configuration of the deep drawing process is illustrated
in Fig. 10.

6.2.1 Numerical Experiment Description

The process is modeled using a legacy software [59] using appropriate symmetry
boundary conditions. A single row of 175 first-order shell elements is used to model
the blank with Simpson integration rule using 10 integration points across the thick-
ness. As the problem is essentially in plane strain state (the width of the blank is
35 mm and its thickness nominal value is 0.8 mm), corresponding boundary condi-
tions are applied on each node (Fig. 11). The blank is made of mild steel modeled as
an elastic-plastic material. Isotropic elasticity and the Swift isotropic hardening law
are considered

σ = K0(ε0 + εp)
n0 . (26)
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Table 1 Nominal geometrical, material, loading and contact parameter of the U-shaped B-U-T
model

Geometry Material Loading Contact

Ls : 300 mm E : 71 GPa Fb : 300 N μ : 0.15

h0 : 0.81 mm ν : 0.342 s : 60 mm –

Ws : 1 mm ρ : 2700 kg/m3 – –

rp : 10 mm K0 : 576.79 MPa – –

Wd : 62 mm ε0 : 0.3593 – –

rd : 10 mm n0 : 0.01658 – –

Fig. 12 Definition of springback parameters, ρ (mm), β1 and β2 (degree)

The value of the geometrical, material, loading and contact parameters are sum-
marized in Table 1.

The tools (punch, blank holder and die) are modeled as rigid body surfaces. The
punch velocity is taken here as 15 m/s and its displacement is s = 70 mm. The
blank holder force is defined as Fb = 2.45 kN. The whole deep drawing process is
simulated in two steps.

1. The forming phase is modeled using the explicit dynamic approach. The blank
holder force is applied with a smooth ramp to minimize the inertia effect and the
punch velocity follows a triangle step starting and ending with 0 velocity and
reaching the 15 m/s at the half run. The contact occurring during forming phase
is modeled using contact pairs.

2. The springback phase is modeled using an implicit approach. At the end at this
phase, the springback shape parameters (output functions of interest): the curva-
ture ρ (in mm), the angles β1 and β2 (in ◦) are measured (Fig. 12).
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Fig. 13 Evolution of the stress across the section for different number of integration points (thick-
ness 0.81 mm)

6.2.2 Numerical Instability

When the material undergoes plastic deformation, the stress profile becomes non-
smooth due to the load path. We exhibit this phenomenon by modelling a section of
the metal sheet submitted to a typical 2D deep drawing process undergoing bending-
unbending loading path and focus on the in-plane stress σt t distribution across the
thickness [34, 60]. When increasing the number of integration points across the
cross-section profile, the in-plane stress σt t reaches numerical convergence (Fig. 13
(left)) when the number of integration points through the section is increased from
2 to around 200 (Fig. 13 (right)). The convergence is assessed using the following
mean square error:

Err =
∑I

i=1(σi − σ ref
i )2

∑I
i=1(σ

ref
i )2

. (27)

Due to the non-smoothness of the stress profile for lower (realistic) number of inte-
gration points (here 10) leads to error in bending moment and numerical instabilities
occur for small variation of parameters.
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Table 2 Full stochastic model for the deep drawing process application

ξ min max E(ξ ) cv(ξ) (Coeff. of

variation)

Thickness (h0) 0.805 0.815 0.81 mm 5/3 × 10−3 mm

Young’s modulus (Eb) 70.5 71.5 71 GPa 0.5/3 GPa

K0 575.79 577.79 576.79 MPa 1/3 MPa

ε0 0.3493 0.3693 0.3593 0.01/3

ν0 0.01558 0.01758 0.01658 0.001/3

Poisson’s coefficients (ν) 0.325 0.335 0.33 0.005/3

Friction coefficients (μ) 0.152 0.172 0.162 0.01/3 × 10−3

Clamp force (F) 34.5e3 35.5e3 35e3 kN 0.5/3 × 103 kN

All random variables are assumed to be Gaussian and independent

6.2.3 Stochastic Model

Table 2 gives the set of independent random variables considered in the model. If
the variation range of the parameters may be considered as realistic, the Gaussian
hypothesis is only illustrative.

The mean values correspond to the nominal values, and the standard deviations
are adjusted so that all the possible values lie in the 99, 7 % confidence interval:
ξmin = ξmean − 3σ and ξmax = ξmean + 3σ .

6.2.4 2D Validation Test Case

In this paragraph, we consider only 2 random variables: the blank thickness and
the Young modulus. We start by investigations of sensitivity in Sect. 6.2.4. Then we
apply the sampling methodology developed in Sect. 4 yielding Sub = 343 samples
respecting the sensitivity criterion. These samples have been obtained by applying
the Fat-LHS algorithm using ranges of variation of both variables (thickness and
Young modulus), their associated probability distribution and the observed model
resolution associated with each of these parameters using I T = 10, 000.

Sensitivity analysis. The sensitivity study is performed using the finite
difference scheme described in Sect. 2 under small variations of the thickness (h0)
and of Young modulus (E) for the 1/ρ response. Figure 14 quantitatively illustrates
the FEM numerical instability of simulation of the deep drawing process of 2-D
U-shaped metal sheet introduced in Fig. 1. Responses are given in Fig. 13a, b, d, e
and numerical sensitivities in Fig. 13c–f with respects to different orders of magni-
tude of thickness variation (Table 3).

The comparison of solid lines in Fig. 14c, f reveals local noisy behavior in the
range of variation of the random parameters below the model resolution threshold
(Table 4).
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(a) (b)

(c)

(d) (e)

(f)

Fig. 14 Numerical instability for FEM simulations. a Global behavior. b Zoom around the nominal
value
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Table 3 Relative resolution threshold (order of magnitude)

Variables relative
resolution

Responses

ρ β1 β2

Thickness
(�h∗

0/hnom
0 )

1 × 10−1 1 × 10−1 1 × 10−1

Young’s Modulus
(�E∗/Enom)

1 × 10−4 1 × 10−4 1 × 10−4

Table 4 Relative resolution threshold (order of magnitude)

Variables (relative) Response resolution

ρ β1 β2

Thickness
(�h∗

0/hnom
0 )

1 × 10−1 1 × 10−1 1 × 10−1

Young’s Modulus
(�E∗/Enom)

1 × 10−4 1 × 10−4 1 × 10−4

K0 (�K ∗
0 )/K nom

0 ) 1 × 10−3 1 × 10−3 1 × 10−3

ε0 (�ε∗
0 /εnom) 1 × 10−1 1 × 10−1 1 × 10−1

ν0 (�ν∗
0 /νnom

0 ) 1 × 10−1 1 × 10−1 1 × 10−1

Poisson’s coefficient
(�ν∗/νnom)

1 × 10−1 1 × 10−1 1 × 10−1

Friction coefficient
(�μ∗/μnom)

1 × 10−1 1 × 10−1 1 × 10−1

Clamp force
(�F∗/Fnom)

1 × 10−2 1 × 10−2 1 × 10−2

Illustration of Fat-LHS. Fig. 15a shows 343 LHS samples obtained without taking
into account the model resolution (with illegal neighbors marked in red) and Fig. 15b
shows the equivalent Fat-LHS pattern (without illegal neighbors.)

We compare then the two first statistical moments of 1/ρ for both samplings when
increasing the number of points (β1, β2) exhibits similar trends (Fig. 16).

The Fig. 16 is obtained using the classical LHS and Fat-LHS. When the number
of sampling becomes high, the classical LHS mean and standard deviation converges
to a stable value produced by the Fat-LHS for a smaller number of sampled points.

In Fig. 14a–e solid lines are obtained without taking into account the model reso-
lution. Dashed lines plot a bivariate 4th PCE is trained on sufficiently spaced points
issued from the Fat-LHS sample (Fig. 15). We stress that the proposed approach
allows to retrieve the underlying tendencies approximated by a relatively low 4th
order PCE.
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(a) (b)

Fig. 15 Illustration of LHS obtained with taking (a) and not taking (b) into account the sensitivity
constraint for 343 samplings. In red appears the illegal neighbors (color online)

(a) (b)

Fig. 16 Evolution of the mean (a) and of the standard deviation (b) of curvature against LHS/Fat-
LHS size

6.2.5 8D Example

Sensitivity analysis of the full stochastic model. We now consider 8 random variables.
These are reported in Table 4 which summarizes the relative response resolution
threshold.
Comparison of PCE truncation schemes. We here compare the convergence results of
the different truncation strategies for different 2-variate PCE of increasing order. We
consider a limited number of 457 simulations issued from the Fat-LHS previously
described.

We choose a polynomial order N ∈ {1, . . . , n} for the PCE approximation. For
each PCE order N we apply 3 truncation strategies:

1. Select the Q-norm parameters such that Slb ≤ S ≤ Sub. For all the possible
q parameters compute the approximate model yAM

q
, and retain the one with the

lowest LOO error.
2. Use LARS on the classical truncation scheme and retain the best model.
3. Combine the Q-norm and LARS and retain the best model.
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(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

(g
)

(h
)

(i
)

(j
)

(k
)

(l
)

Fig. 17 Comparison of the evolution of the LOO error corrected for different polynomial degree
with regards to springback parameterρ (a),β1 (b),β2 (c) for random variables in Table 2. a ρ, N = 3,
b ρ, N = 4, c ρ, N = 5, d ρ, N = 6, e β1, N = 3, f β1, N = 4, g β1, N = 5, h β1, N = 6, i
β2, N = 3, j β2, N = 4, k β2, N = 5, l β2, N = 6
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(a) (b)

(c)

Fig. 18 Histograms obtained for the modified cross validation strategy for the 8-variate case using
the εLOO corrected. a ρ, N = 3, εLOO = 9.5e − 2, PεLOO = 17,qεLOO = 0.70, b β1, N = 3, εLOO =
4.2e − 2, PεLOO = 15, qεLOO = 0.70, c β2, N=3, εLOO = 8.5e − 2, PεLOO = 10, qεLOO = 0.5

Figure 17 shows the evolution of the LOO corrected error with regards to the number
of terms contained in the best PCE approximation. Each point refers to the best
model obtained during the truncation for different PCE order. LARS alone provides
the worst results, most of the time less accurate and more costly than the two other
methods. Comparing the Q-norm and the combined LARS+Q-norm we observe
similar results in terms of accuracy. However, a slight advantage may be given to the
Combined LARS+Q-norm as it gives similar accuracy for a sparse PCE expansion.
In addition, we note that due to smooth training data, we finally obtain the best results
for truncated low order PCE.

The histograms (Fig. 18) illustrate the variability obtained for the best model
obtained using the Algorithm 2. A good agreement is observed with the exact “high-
fidelity” simulations as the relative error in mean is close to 0 and in standard deviation
lower than 1 % (Table 5).
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Table 5 Relative error in mean and standard deviation obtained for each response
�E

Ehigh-fidelity

�σ
σhigh-fidelity

ρ ≈10−9 3.7 × 10−3

β1 ≈10−7 4.5 × 10−3

β2 ≈10−12 8.5 × 10−3

7 Conclusions and Prospects

We highlighted a fundamental limitation of the surrogate-based approach for uncer-
tainty propagation. We showed that when using non linear FE “high-fidelity”
simulations involving contact/friction and material non linearities, small variations
of input parameters may lead to unstable training data sets and distort the statistical
quantities of interest. We propose a sampling scheme named Fat-LHS allowing us
to filter numerical instability. This heuristic strategy provides the maximum num-
ber of simulations available considering the finite model sensitivity. We then use
this limited number of non-noisy samples to build a “best available” sparse PCE
according to LOO error estimator. The comparison of LARS, Q-norm and LARS+Q-
norm shows that generally the Q-norm+LARS hybrid is more efficient. Further work
is required to

• economically compute the model sensitivity threshold,
• generate more space-filling LHS design (only the min-max strategy has been

tested)

Finally, to assess the PCE accuracy, we use a LOO corrected PCE error in order to

• assess the goodness of fit of the PCE
• and to limit the overfitting phenomenon simultaneously.

It is difficult to separate which part of the inaccuracy comes from the model mis-
specification and which part comes from the overfitting phenomenon. A formulation
of an overfitting measure for PCE approximation inspired from [61] may open a
new way to efficiently select the most significant polynomials terms in a sparse PCE
expansion.

Moreover, the use of structured sampling grid such as those provided by fully
tensorized and sparse grid of Gaussian quadrature rules is usually limited to low
order polynomial surrogate model with a limited number of random variables. In
fact the associated computational cost increases exponentially with the number of
variables and the polynomial order. In the 8-variate case studied, the results provided
by the proposed iterative approach show that a low order polynomial provides the
best results. A structured sampling grids may constitute an alternative approach in
this particular case. However, in a more general way the proposed method may
allow to build high order polynomial expansion with low order crossed polynomial
terms (sparsity of effect principle) at lower computational cost than fully tensorized
high-order quadrature rules.
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Multiscale Atomistic-to-Continuum Reduced
Models for Micromechanical Systems

Eduard Marenić and Adnan Ibrahimbegovic

Abstract In this work we discuss the multiscale reduced models and computa-
tional strategy for micromechanical systems. The main focus is upon the interplay
between the fine-scale atomistic model and the corresponding model at coarse-scale
reduced by homogenization and placed within the continuummechanics framework.
Two mainstream multiscale methods, the quasi-continuum and bridging domain, are
compared and brought to bear on the chosenmodel reduction strategy. Consequently,
these two methods are further advanced from their standard formulation to a unified
coupling and implementation strategy. An illustrative example of a defect-damaged
grahene sheet is presented in order to confirm an excellent performance of such a
multiscale solution strategy.

1 Introduction

An increased competition in consumer electronics has pushed the boundaries of
technological development towards miniaturisation, with weight/size limitations and
increasing power demands being the twomost stringent requirements. Consequently,
the mainstream scientific research in material science is currently shifting from
micro- and meso-scale to the study of the behavior of materials at the atomistic
or nano-scale. The main novelty with nano-scale is that the effects related to sin-
gle atom, individual molecule, or nano-structural features (like lattice defects) may
come to dominate the material behaviour. Once the occurring dimensions reach the
submicron length scale, many interesting processes can no longer be described nor
completely understood within the continuum mechanics modeling framework. For
example, the computational modeling using the molecular simulation [1, 2] has been
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used for dealingwithmaterials failure andplasticity [3].Besides these important stud-
ies of the nano-scale phenomena effect upon the irreversible deformation processes of
bulk materials, another equally important reason pertains to study of the nano-scaled
materials like graphene. Graphene represents a conceptually new class of materials
that are only one atom thick [4]. Moreover, this is a perfect two-dimensional crystal
exhibiting exceptionally high mechanical and electronic qualities. Advances in the
synthesis of nanoscale materials have stimulated ever-broader research activities in
science and engineering devoted entirely to these materials and their applications.
This is mostly due to the combination of their expected structural perfection, small
size, low density, high stiffness, high strength and excellent electronic properties
[5]. As a result, nano-scale materials may find use in a wide range of applications
from composite design, i.e., material reinforcement, nanoelectronics to sensors and
medical diagnostic [6, 7]. These and other examples stem from different domains
of application ranging from physics, biology, and chemistry to modern material sci-
ences.

1.1 Models at Atomistic Scale

One of the most common tools used for the modeling of nano-materials is molecular
dynamics (MD) (e.g. [3, 8–10]). MD is a common name for the computer simulation
technique where the time evolution of a set of interacting atoms is determined by
integrating their equations of motion. These equations are usually given in terms of
the second Newton’s law expressing the well known proportionality between force
and acceleration. This way each atom is considered as a classical particle. Treat-
ing atomistic system using classical mechanics laws, and not by using Schrödinger
equation and quantum mechanics is simplification related to the complexity of the
Schrödinger equation and high dimension of the space inwhich the equation is posed.
This simplification is based on the fact that the electronmass is much smaller than the
mass of the nuclei. The idea is to split the Schrödinger equation, which describes the
state of both the electrons and nuclei, with a separation approach into two coupled
equations. The influence of the electrons on the interaction between the nuclei is
then described by an effective potential. The latter is based on the simplification that
restricts the whole electronic wave function to a single state, typically the ground
state. This approximation is justified as long as the difference in energy between
the ground state and the first excited state is everywhere large enough compared to
the thermal energy (given as a product of Boltzman constant and absolute temper-
ature kBT ) so that transitions to excited states do not play a significant role. The
validity of this approximation is usually based on the de Broglie thermal wavelength
(see [7, 10] and references therein) since the ground state is an eigenstate with the
smallest energy level.

Concerning the approximation, the nuclei are moved according to the classi-
cal Newton’s equations using either effective potentials which result from quan-
tum mechanical computations (and include the effects of the electrons) or empirical
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potentials. The latter have been fitted to the results of quantum mechanical compu-
tations or to the results of experiments. Note that usage of the effective potential
precludes the approximation errors to be rigorously controlled [7]. Moreover, quan-
tum mechanical effects, and therefore chemical reactions are completely excluded.
Nevertheless, themethod has been proven successful, in particular in the computation
of macroscopic properties (which is our concern in this work).

In this work we focus on the quasi-static problems, i.e., on the minimization of
the potential energy of the system. Energy minimization corresponds to the phys-
ical situation of the system at absolute zero temperature. Methods in which the
deformation behavior of the nano-structure is probed during continuous energy min-
imization is also referred to as molecular statics or molecular mechanics (MM). A
variety of algorithms exist to perform energy minimization, most notably conjugate
gradient methods or steepest descent methods [7]. However, in this work we will use
Newton’s incremental-iterative algorithm which is usually implemented as a solver
in finite element codes, e.g. [11].

The main challenge related to fully atomistic simulations is that atomistic models
typically contain extremely large number of particles, even though the actual physical
dimension may be quite small. For instance, a crystal with dimensions below a
few micrometers side-length has several tens of billions of atoms. Thus, in spite
of the fact that micro-scale systems and processes are becoming more viable for
engineering applications, our ability to model their performance is limited, and fully
atomistic simulations remain out of reach for systems of practical interest. We thus
assume that the calculation of specific quantities from the fine scale solution can be
accurately approximated by replacing the particle model by a reduced model defined
at coarser scale, within the sub-domains where the deformation remains sufficiently
smooth. Thus, the idea is to use atomistic representation only in the localized region
in which the position of each individual atom is important and to use reduced model,
here continuum mechanics combined with the FE method, where the deformation is
homogeneous and smooth.

1.2 Concurrent Atomistic-to-Continuum Methods

Multiscale modeling methods have recently emerged as the tool of choice to link
the mechanical behavior of materials from the smallest scale of atoms to the scale
of structures, thus being named atomistic-to-continuum multiscale (MS) methods.
The approach where the fine scale model is processed simultaneously and directly
coupled to the coarse scale, reduced model is usually called concurrent MS method.
In order to reduce the computational cost, the molecular model must be limited to
small cluster(s) of atoms in the vicinity of a domain of interest where high resolution
models are necessary and a continuum method should be used for the rest of the
domain.

Extensive work has been done in the development of atomistic-to-continuumMS
modelling approaches, starting with early works by Mullins and Dokainish [12] and
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Kohlhoff et al. [13]. Mullins simulated 2D cracks in B.C.C crystal in the context of
a quasi static calculation with the atomistic scale models, and due to the restrictions
of the computational power the question was how to connect the atomistic model
and surrounding continuum. The basic idea is that the stresses are evaluated from
the interatomic potential under the imposing strains stemming from the FE nodal
displacements. Furthermore, these stresses are translated into nodal forces. Kohlhoff
et al. proposed somewhat new method for combined FE and atomistic analysis of
crystal defects, called FEAt. Here, an atomistic model is surrounded by a FE mesh
with a small overlap region enforcing boundary condition on the atomistic as well
as on the continuum domain. In particular, Kohlhoff et al. tried to overcome the
capturing problem described in [12] by a refinement of the FE mesh down to the
atomistic scale with nodal positions dictated by the crystal lattice structure. Both
early works dealt with the problem of proper treatment of the transition between the
lattice and continuum.

These earlyworks initiated further development of a great number ofMSmethods,
see e.g. some of the numerous reviews in [14–20]. Most frequently mentioned meth-
ods are: quasicontinuum (QC) method, bridging domain/Arlequin method (often
abbreviated as BD or BD/A), concurrent coupling of length scales (CLS) [21],
bridging scale (BS) method [22–24], coupled atomistics and discrete dislocations
(CADD) [25], atomistic-to-continuum coupling (AtC) [26–28], macroscopic, atom-
istic, ab initio dynamics (MAAD) [29–31]. This list is by no means exhaustive.
For instance, there is a recent effort of coupling non-local to local continuum,
see [32, 33].

We focus in this work on the bridging domain (BD) method developed by
Belytschko and Xiao [34]. The BD method is in essence a partially overlapping
domain decomposition scheme used for atomistic-to-continuum coupling. The main
idea is to divide the problem in the atomistic and continuum domains which partially
overlap, and this overlap is called bridging domain. Moreover, there is a novel idea to
draw attention towards a special role of adaptivity in providing an optimal form of the
atomistic-to-continuum coupling based on the overlapping domain decomposition.
For motivation, we consider the quasi-continuum (QC) method developed by Tad-
mor [35]. The QC method could be thought of as adaptive coarse graining approach
and is used as a reference for adaptive strategy. Thus, BD and QC are described in
detail, and compared.

This chapter is organized as follows.
Following this introduction, In Sect. 2 we give a brief insight in multiscale prob-

lems reaching from atomistic-to-continuum. The atomistic model problem is firstly
introduced, following the formulation details of the two mainstream representatives
QC and BD methods. In Sect. 3 a brief comparison of the two MS methods is given
focusing of the adaptivity performance. Following this comparison, a possible uni-
fied formulation is given. A numerical example of the BD-based coupling with the
adaptivity featuring goal oriented error estimates is shown in Sect. 4 on the defected
graphene sheet. The concluding remarks are given in Sect. 5.
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2 Problem Definition with Multiple Scales

2.1 Atomistic Model Problem

We focus in this work upon the MM neglecting both the dynamic effects and the
thermal effects, used for quasi-static loading applications with the assumption of
the zero Kelvin temperature. The equilibrium configuration corresponds to a state
of minimum energy of the particle system, and we assume here that the initial con-
figuration is at equilibrium. We consider a domain Ωa in a 3-dimensional Euclidian
space R

3, which is occupied by N atoms placed within graphene microstructure.
Let Ri and ri denote, respectively, the position vectors in the reference and the cur-
rent configurations of atom i, where i = 1, . . . , N . The corresponding displacement
vector of atom i is given by di = ri − Ri. Thus the displacement of the atoms is
conveniently represented in compact form by means of vector d = [d1, d2, . . . , dN ]
from the space V a = {d ∈ R

3×N }. The boundary conditions ought to be defined
atom-wise, such that either the displacement d̄i or the external point force f̄i takes
an imposed value. These conditions are imposed in quasi-static manner, with the
corresponding incremental sequence.

As described in the Introduction, the nature of atomic interactions is governed
by quantum effects taking place at the subatomic level and governing the chemical
properties such as valence and bond energy [5, 7, 10]. Quantum mechanics-based
description of atomic interaction is not discussed in this work, emphasis is rather on
the empirical interaction models that can be derived as the result of such computa-
tions, i.e. from experimental observations. Classical potential is designed to account
for the quantum effects in the average sense. Let U(ri, rel

j ) denote the microscopic
energy function that explicitly account for each atom i with coordinates ri, and each
electronic degree of freedom rel

j . Then the classical potential (used in this work)
pertain to the approximation which considers that the electronic degrees of freedom
are completely removed, which can be written as

U(ri, rel
j ) → Uapprox(ri). (1)

Many different expressions U(ri) can be fit to closely reproduce the energy predicted
from quantum mechanics methods, while retaining computational efficiency [2, 3,
36]. There is no single, universal approach that is suitable for all materials and for
all different phenomena of material behavior. The choice of the interatomic potential
depends very strongly on both the particular application and the material. Thus, the
heart of the MMmodel is the potential which governs the atomic interaction and it’s
choice is really important. The general structure of the potential energy function for
a system of N atoms is

U(r1, r2, . . . , rN ) =
N∑
i

V1(ri) +
N∑

i,j>i

V2(ri, rj) +
N∑

i,j>i,k>i

V3(ri, rj, rk) + · · · , (2)
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where the function Vm, ∀m = 1, 2, . . . is the m-body potential depending on ri, the
position vector of the atom i in current configuration. The first term on the right hand
side of Eq. (2) indicates the effect of an external force field on the system where it
is immersed, such as gravitational or electrostatic. This term is usually ignored in
practice, [5]. The second termV2 showspair-wise interactionwhich is usually given in
terms of the atom pair separation rij = ‖rj − ri‖. Thus this term is usually denoted
as Vij or Vp. The best known examples of pair-wise potentials are Mie, Lennard-
Jones, Morse [37] etc. The three-body term involves energy that characterizes angle-
dependent forces, whereas four-body term includes torsion effects. m-body potential
terms for m > 2 are usually called multi-body potentials. Apart from V2, which
depends on only one independent variable, each further term has 3m − 6 variables.

The total energy Ea
tot of the atomic microstructure is given by

Ea
tot = U(d1, . . . , dN ) −

N∑
i

f̄i · di, (3)

where U denotes the energy stored in the atomic bonds, and the second term on the
right-hand side represents the external energy Eext . The state of equilibrium of the
atomistic system corresponds to the minimum of the total energy which can be given
in the weak form:

Find d ∈ V a such that

Ga(d; w) :=
N∑
i

∂Ea
tot

∂di
· wi −

N∑
i

fi · wi = 0, ∀w ∈ V a
0 . (4)

In the above equation wi represents the kinematically admissible virtual movement
from the set of V a

0 ⊂ R
3×N , vanishing on the Dirichlet boundary. Linearising (4) and

writing the result in matrix notation leads to

K(k)Δd(k) = F(k), (5)

where Δd(k) is displacement increment corresponding to the k-th load increment,
whereas K(k) and F(k) are the tangent stiffness and residual vector, respectively. The
latter can be explicitly defined as

Kij = ∂2U

∂ri∂rj
, Fi = ∂U

∂ri
− f̄i. (6)

An incremental-iterative solver is needed to solve system in (5) due to the nonlinear
nature of the interatomic potential and geometrically nonlinear kinematics. For each
load increment several Newton iterations are performed until convergence criteria
are met in terms of energy test. At each iteration (k) the atomic positions are updated
as follows

r(k+1)
i = r(k)

i + Δd(k)
i . (7)
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The initial iteration (k) = 0 starts at the initial configuration of the atomic system,
with the position vector r(0)

i = Ri. The procedure is terminatedwhen the convergence
is achieved for the last load increment.

2.2 QC and BD Formulations

In this section the formulation of QC and the BD/A methods are given, with only
sufficient details. The goal is to show the evolution of theBD/Arlequin based coupling
and to compare these methods regarding the ability to adapt.

2.2.1 Quasicontinuum Method

The Quasicontinuum (QC)method is originally proposed in late 90s by Tadmor et al.
[35]. Since then it has seen a great deal of development and application by a number
of researchers. The QC method has been used to study a variety of fundamental
aspects of deformation in crystalline solids, including fracture [38–40], grain bound-
ary slip and deformation [41]. The nano-indentation [42] and similar applications
are examples where neither atomistic simulation nor continuum mechanics alone
were appropriate, whereas the QC was able to effectively combine the advantages
of both models. The main goal of the QC method is to provide a seamless link of
the atomistic and continuum scales, and this coupling is further explained. The total
energy of the coupled system consists of the energy of both domains.

In QC the conceptual advantage in developing the coupled energy equation
pertains to the fact that there is no distinction between atoms and nodes. This
goal is achieved by the three main building blocks [43, 44]:

1. Reduction of degrees of freedom (DOF) by coarse-graining of fully atom-
istic resolution via kinematic constraints. The fully atomistic description is
retained only in the regions of interest.

2. An approximation of the energy in the coarse grained region via numerical
quadrature. The main idea is to avoid the need to calculate the energy of
all the atoms, but retain only a few so-called rep-atoms.

3. Ability of the fully refined, atomistic region to evolve with deformation,
where adaptivity is directed by suitable refinement indicator.

Model Reduction or Coarse Graining

If the deformation changes gradually on the atomistic scale, it is not necessary to
explicitly track the displacement of every atom in the region. Instead it is sufficient to
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consider some selected atoms, often called representative atoms or rep-atoms. This
process is in essence the model reduction via coarse graining. Only rep-atoms have
independent DOF while all other atoms are forced to follow the interpolated motion
of the rep-atoms. The QC incorporates such a scheme by means of the interpolation
functions of the FE method, and thus the FE triangulation has to be performed
with rep-atoms as FE mesh nodes. This way continuum assumption is implicitly
introduced in QC method.

Let the total potential energy Etot be given as a function of displacement u (simi-
larly as in (3))

Etot(u) = U(u) −
N∑

i=1

f̄iui, (8)

where f̄i is the external force on the atom i and U is an atomistic internal energy, i.e.
the energy stored in atomistic bonds. We assume further that the internal energy can
be given as the sum of atom energies (Ei)

U =
N∑

i=1

Ei(u). (9)

Next, the kinematic constraint mentioned above is accomplished by replacing U
with Uh

Uh =
N∑

i=1

Ei(uh), (10)

where uh is the approximated displacement field. The displacement approximation
is given via standard FE interpolation

uh =
Nrep∑
i=1

Niui, (11)

where Ni is a shape function and ui is the displacement for the node/rep-atom i.
Clearly, the constraints introduced by the interpolation of the displacements is some
level of approximation. The density of rep-atoms vary in space according to the
considered problem. In the vicinity of region of interest every atom is considered as
rep-atom (fully refined) and in region of more slowly varying deformation gradient,
only a few atoms are chosen.

Efficient Energy Calculation via Cauchy-Born Rule, Local Approach

Described kinematic constraint on most of the atoms in the body will achieve the
goal of reducing the number of degrees of freedom in the problem. However, for
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the purpose of energy minimization the energy of all the atoms (not just rep-atoms)
has to be computed. The way to avoid visiting every atom is the Cauchy-Born (CB)
rule [45–47]. The CB rule postulates that when a simple, mono-atomic crystal is
subjected to small displacement on its boundary, all the atoms in the bulk will follow
this displacement. In QC method this rule is implemented in that every atom in
the region subjected to a uniform deformation gradient is taken to be energetically
equivalent. Thus, energy within an element e can be estimated by computing the
energy of one, single atom in the deformed state. The estimation is performed simply
by multiplying the single atom energy by the number of atoms in the element e.

Let F be the deformation gradient and E0 the energy of the unit cell when its
lattice vectors are distorted according to the given deformation gradient. The strain
energy density (SED) of the element can then be expressed as:

W(F) = E0(F)

Ω0
, (12)

whereΩ0 is the volume of the unit cell. Having this result in hand, the sum in Eq. (10)
where i = 1 . . . N is reduced to number of FEs (Nelem) as

Uh ≈ Uh′ =
Nelem∑
e=1

ΩeW(Fe). (13)

In the above equation, the element volume and unit cell volume are related as
neΩ0 = Ωe, and ne is the number of atoms contained in element e. Using the CB
rule, the QC can be thought of as a purely continuum formulation (local QC), but
with a constitutive law that is based on atomistic model rather than on an assumed
phenomenological form [44]. For a given deformation gradient F the lattice vectors
in a unit cell are deformed according to given F and the SED is obtained according
to Eq. (12). The main limitation pertaining to the CB rule is that it is valid only for
simple lattices. In the original QC formulation the constant strain triangle (CST) ele-
ments (2D) are used with the linear shape functions to interpolate the displacement
field within each element. In this case the deformation gradient is uniform. This boils
down to the following: the Cauchy-Born rule assumes that a uniform deformation
gradient at the macro-scale can be mapped directly to the same uniform deformation
on the micro-scale. We will use this in sequel for the unified coupling formulation.

Non-local QC and Local/Non-local Coupling

In settings where the deformation is varying slowly and the FE size is adequate with
respect to the variations of the deformation, the local QC is sufficiently accurate
and very effective. In the non-local regions, which can be eventually refined to fully
atomistic resolution, the energy in (10) can be calculated by explicitly computing
the energy of the rep-atoms by numerical quadrature
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Uh ≈ Uh′ =
Nrep∑
i=1

niEi(uh), (14)

where ni is theweight for the rep-atom i. The value of theweight is high for rep-atoms
in regions of low rep-atom density, and low for the region of the high density. Thus,
ni is the number of the atoms represented by the i-th rep-atom with the limiting case
of ni = 1 for fully atomistic region and consistency requirement

Nrep∑
i=1

ni = N . (15)

The main advantage of the non-local QC is that when it is refined down to the atom-
istic scale, it reduces exactly to lattice statics, given in (3). High accuracy of non-local
formulation can be combined with the high efficiency of the local formulation. The
rep-atom can be chosen as local or non-local depending on its deformation environ-
ment giving Nrep = Nloc + Nnonloc. The total energy (10) is then approximated as

Uh =
Nnonloc∑

i=1

niEi(uh) +
Nloc∑
i=1

niEi(uh), (16)

The above equation is yet another way of writing that the internal energy of the
coupled system is a sum of atomistic (non-local) and continuum (local, here CB-
based) energies, respectively. Regarding the calculation of the weights ni in the
above equation, for both local or non-local rep-atom, the Voronoi tessellation is used
to create the cells around each rep-atom. Given that the cell of atom i contains ni

atoms, and ne
i of these atoms reside in FE e adjacent to rep-atom i, the weighted

energy contribution of rep-atom i is then found by applying the CB rule within each
element adjacent to i such that

niEi =
Ni

el∑
e

niΩ0cW(Fe), ni =
Ni

el∑
e

ne
i , (17)

where Ω0c is the cell volume for single atom, and Ni
el is the number of FE adjacent

to atom i.

Local/Non-local Criterion

The criterion to trigger the non-local treatment is based on the significant variation
of deformation gradient. Precisely, we say that the state of deformation near a rep-
resentative atom is nearly homogeneous if the deformation gradients that it senses
from the different surrounding elements are nearly equal. The non-locality criterion
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is then:
max
a,b,k

|λa
k − λb

k | < εc, (18)

where λa
k is the k-th eigenvalue of the right stretch tensor for element a, k = 1 . . . 3

and indices a and b (a 	= b) refers to the neighboring elements of rep-atom. The
rep-atom will be made local if this inequality is satisfied, and non-local otherwise,
depending on the empirical constant εc.

Adaptivity

Without a priori knowledge of where the deformation field will require fine-scale
resolution, it is necessary that the method should have a built-in, automatic way to
adapt the finite element mesh through the addition or removal of rep-atoms. This is
a feature that is in QC inherent from the FE literature, where considerable attention
has been given to adaptive meshing techniques for many years, e.g. [48]. Typically
in FE techniques, a scalar measure is defined to quantify the error introduced into
the solution by the current density of nodes (or rep-atoms in the QC). Elements
in which this error estimator is higher than some prescribed tolerance are targeted
for adaptation, while at the same time the error estimator can be used to remove
unnecessary nodes from the model.

The error estimator in terms of deformation gradient is defined as the difference
between the actual solution and the estimate of the higher order (index ‘ho’) solution
(see [44])

εe
F =

√
1

Ωe

∫
Ωe

(Fho − Fe)2dΩe, (19)

where Ωe is the volume of the element e, Fe is the solution for the deformation
gradient in element e, and Fho = NFavg is the higher order estimate obtained by
interpolating nodal values Favg, which simply represents the average of the defor-
mation gradients of the elements sharing the given node. If this error is small, it
implies that the higher order solution is well represented by the lower order elements
in the region, and thus no refinement is required, while the elements for which the
error is greater than the error tolerance are targeted for refinement. The refinement
process advances by adding three new rep-atoms at the atomic sites closest to the
mid-sides of the targeted elements (the constant strain triangle (CST) elements are
used). If the nearest atomic sites to the mid-sides of the elements are the atoms at
the element corners, the region is fully refined and no new rep-atoms can be added.
The same error estimator is used in the QC to remove unnecessary rep-atoms from
the mesh. In this process, a rep-atom is temporarily removed from the mesh and the
surrounding region is locally re-meshed (i.e. nodal connectivity table is rebuilt). If
all of the elements produced by this re-meshing process have a value of the error
estimator below the threshold, the rep-atom can be eliminated. Essentially, the idea is
to examine the necessity of each node. To prevent excessive coarsening of the mesh
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far from defects the nodes corresponding to the initial mesh are usually protected
from deletion [41].

With these ideas in hand we turn to introduce the BD method. Note that initially
emphasis of the research related to atomistic-to-continuum MS methods, namely
BD method, was to make the coupling of the two different models as seamless as
possible. No special attention was devoted to the question how to adaptively refine
the model around the region of interest and where to position the coupling zone, i.e.
how far from the region of interest. This issue is related to the adaptivity feature, and
will be presented in sequel comparing the QC and BD methods.

2.2.2 Bridging Domain/Arlequin Method

The Bridging domain (BD) method is developed by Belytschko and Xiao in [34]
for the static, and [49] for dynamical problems (see also more recent developments
[50–52]). The compatibility in the overlapping domain is enforced by Lagrange
multipliers. More precisely, the domainΩ is divided in three subdomains, atomistic,
continuum and their overlap, as shown in Fig. 1. This overlapping region is also
called handshake, bridging or coupling domain. The atomistic domain Ωa is treated
with MM, as described in Sect. 2.1, whereas the discretization in the continuum
domain Ωc is usually but not necessarily carried out by FEs. The atomistic and
continuum domains overlap is denoted asΩb = Ωa ∩ Ωc. Before proceeding to BD
governing equations and coupling, we will first recall the solution strategy related to
the continuum part.

Continuum Solution Strategy

The role of the continuum mechanics formalism is to provide the reduced model
replacing the molecular model with a coarser, and computationally much cheaper,
model in Ωc ⊂ Ω . The intention is to propagate only the large-scale information of
the nanostructure, i.e. to be “compatibile” to the underlying lattice. Thus, thematerial
parameters of the continuum constitutive model should be calibrated accordingly.

Fig. 1 Scheme of the
coupled model in BD
method denoting the domain
partitioning and overlap
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This calibration is usually performed through numerical homogenization and virtual
experiments on the RVE, see e.g. [53].

We consider a deformable solid bodyΩc where the position of eachmaterial point
is denoted with X in reference and with x in current configuration. The displacement
vector is given as u(X) = x − X. We will consider further in the numerical example
the geometrically linear theory of solid mechanics, assuming the hypothesis of small
displacement gradients ‖∇u(X)‖ � 1, which further allows us to use symmetric part
of displacement gradient tensor as appropriate strain measure, ε = 1

2 (∇u + ∇uT ).
Let W(ε(X), X) represent the continuum potential in terms of strain energy density
(SED) which is given as

W = 1

2
ε(X) · C(X)ε(X), (20)

with C being an elasticity tensor C = ∂2W(·)
∂ε2 that is calibrated by homogenisation.

We now construct the weak form of the continuum boundary value problem inΩc,
satisfying the equilibrium only in average sense. We assume that Dirichlet boundary
conditions u = ū are prescribed on the part Γu of the boundary Γ . The nanostructure
system represented as continuum is in general subjected to tractions t̄ on the part Γσ

of the boundary and to a volume forces b inΩ . We introduce the space of admissible
solutions V = {u ∈ H1(Ω); u = ū on Γu} and space of virtual displacement field
V0 = {v ∈ H1(Ω); v = 0 on Γu}, where each component vi takes a zero value on the
Γu i.e.V0 := {vi : Ω → R | [vi]Γui

= 0}. This choice of real and virtual displacement
fields ensuring sufficient regularity (u, w ∈ H1(Ω)) should also satisfy theweak form
of equilibrium equation

0 = G(u; v) :=
∫

Ω

∇sv · σ (∇su)dΩ −
∫

Ω

v · bdΩ −
∫

Γσ

v · t̄dΓ, (21)

where ∇s(·) = sym[∇(·)]. Under the assumption of hyperelastic material with (20),
the weak form in (21) is identical to the condition of the minimum of the total
potential energy, given as

Ec
tot :=

∫
Ω

W(∇su)dΩ −
∫

Ω

u · bdΩ −
∫

Γσ

u · t̄dΓ. (22)

The weak form given in (21) is used as the basis for constructing the finite element
approximation.

Governing Equations and Coupling

InQCmethod the total potential energy is composed of local and non-local parts (16),
which correspond to continuum and atomistic description. Following the idea of the
seamless transition, this approach somewhat hides the true coupling between the two
descriptions. In BD method the system can be clearly decomposed into continuum
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and atomistic parts which are “glued” together in the coupling domain Ωb. Thus,
the total potential energy (with index w denoting that the energy term is weighted in
Ωb) of the system considering (3) and (22) may be written as

Etot,w = Ea
tot,w(d) + Ec

tot,w(u) = waEa
tot(d) + wcEc

tot(u), (23)

where d and u are displacement vectors in the atomistic and continuum domains,
respectively.

In the bridging domain the two models overlap, and the weighting functions
wa and wc from (23) partition the energy. More precisely, weighting function
serves to blend the behaviour from the continuummodel (wc) and the atomistic
model (wa) as well as to avoid the double counting of the energy in the bridging
domain. The use of an overlapping subdomain obviates the need for the FE
nodes of the continuum model to correspond to the atomic positions.

The weighting functions wc and wa define a partition of unity of the energy in the
bridging domain as follows:

wc(X) = 1 for X ∈ Ωc \ Ωb,

wa(X) = 1 for X ∈ Ωa \ Ωb, (24)

wc(X) + wa(X) = 1 for X ∈ Ωb.

The energy weighting functions are usually taken to be constant, linear (ramp) or
cubic functions in Ωb.

As mentioned, the Lagrange multiplier (LM) method is used to achieve the cou-
pling, and to convert the problem of constrainedminimization into finding the energy
minimum of the larger, unconstrained problem. Thus, we introduce the space of LM
as M = H1(Ωb), and denote LM with λ ∈ M . In order to enforce the compatibil-
ity between the atomistic and continuum domains, the coupling term C in terms of
energy is added to total energy forming so called Lagrangian

WL := Etot,w + C. (25)

The choice of the coupling term determines which quantities and in which fashion
should be coupled. Namely, we can choose whether only displacement or both the
displacement and the displacement gradients are coupled. We will present two types:
the strong (or discrete), and weak coupling. In the former, coupling of the atomistic
and continuum models is achieved by enforcing (only) displacement compatibility
in the bridging domain as u(X = Xi) = di, ∀i ∈ Ωb. The compatibility constraint
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between each atomistic displacement (discrete) and the continuumdisplacement field
can be written as [34, 50]

C1 :=
∑
i∈Ωb

∫
Ωb

λ(X) · [u(X) − di] δ(X − Xi)dΩ, (26)

where δ(·) is Dirac delta function. Note that the right hand side in the above equation
is left in the integral form because the Lagrange multipliers is approximated as a
field.

The evolution of BDmethod hasmuch in common and parallels with recent works
in the FE community on the coupling of nonconforming meshes in the overlapping
subdomain, what is known as Arlequin method [54, 55]. In Arlequin method the
coupling is given in the weak sense, and can be generalised as

C2 :=
∫

Ωb

α1λ · (u − db) + α2∇λ(∇u − ∇db)dΩ, (27)

where the choice of the weighting parameters α1 and α2 determines the coupling
by mixing the displacement and strain coupling terms, and db(X) is the interpolated
atomistic displacement field in Ωb. The two versions of coupling, named L2 and
H1, arise for the value of the weighting given (α1, α2) = (1, 0), and (α1, α2) =
(1, 1), respectively. Note also, that the names L2 and H1, originate from the fact
that they define the scalar products in Lebesgue (L2) and Sobolev (H1) spaces [54],
respectively, and can be defined as

(λ, u − db)L2 :=
∫

Ωb

λ · (u − db)dΩ, (28)

(λ, u − db)H1 :=
∫

Ωb

λ · (u − db) + l2∇λ(∇u − ∇db)dΩ, (29)

where l is usually taken as the width of the bridging zone. An interpolated atomic
displacement field is needed for this formulation of coupling, as well as its derivative.
The interpolation of the discrete atom displacement is obtained by interpolant (Φ)

db(X) = Φdi, ∀i ∈ Ωb. (30)

The first choice of Φ is naturally FE shape function, but the interpolant based on
moving least squares approximation can also be used [50, 56].

Having these results in hand, we present next the weak form of the coupling
problem. Denoting the space of LM with M = {λ,μ ∈ H1(Ω)}, we proceed to the
minimising of the functional in (25) with the coupling term defined as (27), i.e. (28)
or (29). This leads to the saddle point problem, which can be written in terms of its
weak form:
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Find (u, d,λ) ∈ V × V a × M such that

Gc
w(u; v) + Ga

w(d; w) + (λ, v − Φwi|i∈Ωb )L2 orH1 = 0 ∀(v, w) ∈ V0 × V a
0 ,

(μ, u − db)L2 orH1 = 0 ∀μ ∈ M , (31)

where Gc
w and Ga

w are scaled forms of (21) and (4), following the scaling given in
(23).

The numerical implementation of the given coupling formulation with the cou-
pling term C2 (27) further resides to choice of the approximations fields for u, db

and LM field λ.

Adaptivity and Error Estimate

Before proceeding with the numerical examples we will revisit the adaptive features
related to the BD method. Apart from the advances in the coupling itself which
is mostly related to the development of the Arlequin method advocated in initial
work by Ben Dhia [54, 55] and its further application to the atomistic-to-continuum
coupling [56–62], this method is acquiring the ability to accommodate the model
and decrease the error in chosen quantity of interest. That is, the adaptivity described
above for the QC method was included in the BD/Arlequin. This evolution parallels
recent development in goal oriented error estimate theory as discussed in sequel.

In computer simulations of physical models we encounter usually approximation
error due to the discretization, and modeling error related to the model simplifica-
tion or in general to the natural imperfections in abstract models of actual physical
phenomena. We focus here on the estimation and control of modeling error.

This subject has been introduced in recent years and was initially devoted to
estimating global modeling error e.g. [63]. Since then, extensions to a posteriori error
estimates in specific quantities of interest (QOI) have been proposed [64–66],with the
idea to estimate upper and lower bounds of error in linear functionals. In [67] the error
estimates are related to the error between discrete models (lattice) and homogenized
model. Finally, the developments regarding the goal oriented error estimates, were
employed in the coupling of atomic and continuum models. The difficulty in the use
of such coupling methods is to decide where to locate the overlap region between
the two models so as to control the accuracy of the solution with respect to the
fully atomistic model. Initial convergence studies from [58] and later in [60, 62]
are the basis for the development of the adaptive strategy in the Arlequin based
coupled atomistic-to-continuum modeling. Refinement is related to the decrease of
the modeling error in each iteration by locally enriching the surrogate model, i.e. by
locally switching on the atomic model in the subregions where the reduced model is
not accurate enough.



Multiscale Atomistic-to-Continuum Reduced Models 231

3 Comparison and Unified Formulation
with Reduced Model

In this section, we briefly discuss how to achieve the appropriate combination of
both atomistic-to-continuummultiscalemethod and successfully construct a reduced
model to enhance the computational efficiency with no essential sacrifice of the com-
puted results accuracy. QC method is in essence an adaptive FE approach, and adap-
tivity is intrinsically in the formulation. BD/Amethod, on the other hand,was initially
assumed as approach to couple two different models. Nevertheless, the described
evolution associated with the goal oriented error estimate theory, with the strong
mathematical foundations, improved the method so that it shows good performance
in the sense of model adaptivity. However, the choice where to place the atomistic
and where to remain with reduced model, and how to provide the appropriate evo-
lution of that region is still among the most important open questions. The idea of
model adaptivity is shown schematically in the Fig. 2 for the 1D truss-like case. In
this scheme we suppose that the strain field is perturbed in the left end, and the
adaptive procedure advances from some initial model shown on the top.

For QC approach this procedure looks similar to a mesh refinement, however, the
main goal is to address the possibility of model adaptivity in terms of substitution of
the reduced model, based upon continuum mechanics, instead of the atomic one. As
described in QC section, adapting process in this method advances by selecting new
atoms as rep-atoms/nodes in the area where deformation gradient changes severely.
Note that the continuum model, represented with a line Fig. 2 is present in the whole
domain.

In the BD/A-based method, on the other hand, adaptive process concerns the
switch from continuum to atomistic model cell by cell (see Fig. 2 on the right), in
order to deliver accurate results regarding the selected QOI. Note that the overlap
region has to be reconfigured, but the continuum and atomistic domains are separated
except in the overlap.

Fig. 2 Scheme of the adaptive procedure for the QC (left) and BD (right) method in 1D setting.
A perturbation in the strain field which initiates the model adaptation is assumed on the left end of
the truss-like model
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3.1 Unified Coupling Formulation

The idea about model switch introduced above will be further exploited for the
proposition of unified formulation in the step of the incremental loading sequence.
Let us introduce the pseudo-time parameter denoted as t, as is customary in the
incremental analysis. The choice of the load increments in a given load program is
handled through increments in t ∈ [0, T ] according to [0, T ] = ⋃ninc

n=1[tn, tn+1]. What
wewould like to point out is the similarity between the BD coupling and the adaptive,
coarse graining procedure performed in the typical step of the incremental analysis
between tn and tn+1 in QC method, as schematically depicted in the Fig. 3. It is not
directly obvious that the Cauchy-Born (CB) rule as the main ingredient of the QC
method can be regarded as homogenisation approach, and as a kinematic constraint
where the continuum is imposing the displacement gradient to the atoms. In the time
step tn we check for the error estimator εe

F, and if the adaptation criteria is met we
change the model as described in the QC method. Considering that the deformation
gradient is related to the displacement gradient asF = I + ∇u allows us to formulate
the model change as the following coupling term

(λ̄, u − db)QC =
∫

Ωe∈Ωb

λ̄
(∇u − ∇db

)
dΩ, (32)

similarly like in BD method with (28) for the case (α1, α2) = (0, 1). In the above
equation λ̄ is the LM field to impose the constraint, and db is the interpolated dis-
placement of the atoms in the element e (where Ωe ∈ Ωb) which is being adapted
and in which we want to achieve the match of the displacement gradients of the
two domains (Ωa and Ωc). Next, selecting the LM mesh to correspond the lattice
λ̄ = δ(X − Xi)λ̄i, ∀i ∈ Ωb gives

(λ̄, u − db)QC =
∫

Ωe∈Ωb

δ(X − Xi)λ̄i
(∇u − ∇db

)
dΩ, (33)

Fig. 3 Converting atomistic to continuum in the solution step of the incremental analysis between
tn and tn+1. The bridging domain Ωb is where we perform model switch (following the logic from
BD method) by formally imposing deformation gradient coupling (following the strategy from QC
method)
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which boils down to the strong form of coupling of deformation gradients of the two
displacement fields

λ̄i
(∇u − ∇db

) = 0. (34)

Needless to say, this kind of coupling naturally leads to the extremely expensive
model, adding one unknownvariable for every atomistic degree of freedom, and is not
performed this way in practice neither in QC method nor in other MS methods. For
instance in [68, 69] or [11, 70] similar coupling as (34) is implemented. This coupling
is rather implemented by a priori taking the inherent property of the selected finite
element. For instance, taking linear displacement distribution on the edges of the
4-node quadrilateral elements (ue) (as schematically shown on Fig. 3), one can form
a direct transformation matrix Tij which maps kinematic constraints to underlying
atoms giving

dj|Ωe = Tiju
e
i , ∀e ∈ Ωb. (35)

Presented unified interpretation of the coupling gives a new look that allows to
conclude the following. For BD method the inspiration from the QC-based adaptive
strategy shows that overlapping zone Ωb can and should move from step to step
(tn → tn+1). Furthermore, the choice of the LM field as λ̄ ∼ δ(·) the ‘direct’ solution
should be obtained by enforcing the constraint explicitly (see [68]) and not by using
additional unknowns. Regarding the BD-based coupling in the context of the QC
method shows that it is possible to couple Ωa and Ωc not only for F = cst. but also
for non-homogeneous deformation.

4 Numerical Example

Presented numerical example is concerning a 2D case, namely the graphene sheet
with the crack-like defect. Note that this example resembles the well known example
of the through-thickness crack in an plate from linear elastic fracture mechanics,
making it simple enough to have the theoretical, closed form solution, and at the
same time, complex enough to present the performance of the presentedMSmethod.
Moreover, this example considers the problem of large practical interest related to
two-dimensional crystal named graphene [71, 72]. Graphene is a new class of nano-
material with remarkable properties whose immense potential for applications is
driven by an intense current research. In the following example we are showing
the performance of the MS strategy based on BD method presented above (and
implemented in the in-house MATLAB code). The atomistic part of the model is used
to properly capture the heterogeneous strain field produced by the defect, whereas the
continuum is used for the part where the strain field is close enough to homogeneous
state. We will be using the fully atomistic model treated with MM as the reference
model for comparison. We note in passing that for the real problems this reference
model is unavailable. On Fig. 4 bothmodels the reference, and the coupled are shown,
in the undeformed configuration. The former consists of 10,960 atoms, while the
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Fig. 4 Graphene sheet with a hypothetical initial crack modelled using the fully atomistic model
(left) consisting of 10,960 atoms and coupled model (right) with the size of atomistic domain
67.4 × 48.7 Å

Fig. 5 A detail of the rectangular graphene sheet near the left edge. The atomistic model Ωa is
represented with the pair bonds between the neighbouring carbon atoms forming the honeycomb
structure. The bonds parallel with the X2 direction between atoms denoted with (∗) are removed
along the blue line in order to model the crack-like defect (Color Online)

latter provides considerable savingwith 2080 atomswith the size of atomistic domain
67.4 × 48.7Å. On the lattice level, crack-like defect is modelled simply by removing
a line of bonds parallel with the X2 direction, see Fig. 5. This configuration leads to
the introduction of two free edges which stop at the single bond being at the crack
tip. The continuum mesh Mc is represented with the red squares on the right plot in
Fig. 4. The thick lines aroundΩa denotes mesh used for LM interpolation, where Mλ

coincides with the FEmeshMc used for the interpolation of continuum displacement
u. Young’s modulus (E) and Poisson’s ratio (ν) used to describe the linear elastic
behaviour of continuummodel have beendeterminedbymeans of virtual experiments
performed on the atomistic lattice [53].

On the edges of rectangular domain Ω = Ωa ∪ Ωc the displacement boundary
conditions are imposed. They correspond to mode I (KI ), near-tip displacement field
[73] given as
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ū1(r, θ) = KI

2G

√
r

2π

[
κ − 1 + 2 sin2

(
θ

2

)]
, (36)

ū2(r, θ) = KI

2G

√
r

2π

[
κ + 1 − 2 cos2

(
θ

2

)]
, (37)

where ū1 and ū2 are the displacement in the X1 and X2 directions, respectively, G
is the shear modulus, and κ = (3 − ν)/(1 + ν) for plain stress, r and θ denote the
polar coordinates of boundary nodes/atoms measured from the crack tip. The given
geometrical and load data is as follows: the overall size of the graphene sample is
163.7134 × 165.4100 Å, the crack length is 31.3 Å, while the stress intensity factor

is set to KI = 177.8 GPa
√
Å. Deformed shapes obtained for the fully atomistic com-

putation and for the coupled model are depicted in the Fig. 6. Note that in both cases
the atomic interaction is governed by the modified Morse potential. The potential
parameters are tuned to model the carbon-carbon bonds properly, see [34, 53].

In order to quantify the quality of the proposed modeling strategy, we define the
atom-wise relative displacement error as

eu,i =
√

(di − dref
i )T(di − dref

i )
Ωa

‖dref‖Ω

, ∀i ∈ Ωa (38)

where the norm is defined as follows

‖d‖ = 1

na

na∑
i

√
dT

i di. (39)

In the equations above, di and dref
i are the displacement of atom i, ∀i ∈ Ωa related to

the coupled, and fully atomisticmodel, respectively. The contour plot of displacement
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Fig. 6 Deformed shape of the graphene sheet with crack modelled using the fully atomistic model
(left) and coupled model (right) with the size of atomistic domain 67.4 × 48.7 Å. Deformation
scale factor is set to 20
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(a) (b)

(c) (d)

(e) (f)

Fig. 7 The distribution of the local displacement error (eu,i) on the contour of the domain Ωa

is given in the plots on the left. The corresponding deformed shapes (for coupled and reference
models in overlap) are given on the plots on the right. Only half of the deformed plots is given due
to symmetry, with rather large amplification magnitude factor of 40. The uppermost, middle and
lower plots correspond to H1-constant, H1-linear, and L2-linear couplings, respectively. The results
are presented for the coupled model with the size of atomistic domain 67.4 × 48.7 Å

error (38) is given on the Fig. 7a, c and e for the three coupling options. Namely,
the L2 (28) with linear weighting, and the H1 coupling (29) with both constant and
linear weighting in Ωb. The scale maximum is set to 2% on the contour plots. The
latter shows that H1 coupling with constant weighting (Fig. 7a) the displacement
error is noticeable in the entire bridging zone, being in general small and just slightly
more noticeable in the corners. This results with the deformed shape which shows
almost no difference from the reference, fully atomistic model (see Fig. 7b). For the
coupling with linear weighting (Fig. 7c–f) of H1 or L2 type, the error is noticeable



Multiscale Atomistic-to-Continuum Reduced Models 237

only in the corners. However, this error is somewhat larger, which is visible on the
corners of superimposed deformed plots, see Fig. 7d, f. Note that the displacement
is exaggerated with the deformation scaling factor of 40. The error in the corners of
Ωb is related to the problems of the integration of the coupling term for the case of
the linear weighting function. Nevertheless, the error in zone of interest for the given
example (Ωa), is negligible.

4.1 Error Convergence

We proceed here with the adaptivity performance for the BD/A coupling. More
precisely, we will use the size of the fine-scale model as a parameter that needs to be
adapted. For that purpose we choose QOI in terms of relative energy related to the
zone of interest Ωa \ Ωb. Let the global relative error in terms of the displacement
be defined as

eu = ‖d − dref‖Ωa\Ωb

‖dref‖Ω

, (40)

with ‖d‖ defined as in (39). The description of the models presented in the following
results is given in Table1. For the three different sizes of the Ωa, and fully atomistic
model we give the number of atoms na, number of nodes nn, number of LM nodes nλ,
number of degrees of freedom ndof = 2(na + nn + nλ). The convergence in terms of
the selected QOI is presented in Fig. 8. We seek here to show the displacement error
in the zone of interest. Not surprisingly, the convergence is achieved as the size of the
atomistic domain is increased. FromFig. 8we can conclude that for the couplingwith

Fig. 8 Convergence of the
global relative error in
displacement eu given for
three different atomistic
domain dimensions (given in
Table1) and the different
couplings
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H1 the error in terms of the selected QOI is in general higher. Moreover, H1-linear
coupling decreases rapidly with the Ωa increase, and it equates the coupling with L2

for the model denoted as ‘3’ in Table1. It is important to note that for the coupling
H1 with added complexity regarding the calculation of the atomistic displacement
gradient, no advantage over L2 is visible, which leads to conclusion that for the MS
modeling of deformation process of defected graphene in quasi-static application the
L2-linear coupling performs better. Note also that for the model denoted as ‘1’ in the
Table1 the number of degrees of freedom is reduced by 84%. Still the corresponding
solution yields negligible error (less then 0.25%) with respect to the fully atomistic
model. Thus, both considered energy scaling constant and linear and coupling types
that have been investigated show really good performance.

5 Conclusion

The MS atomistic-to-continuum modeling approach is shown to be an elegant way
to keep the atomistic model of lattice structure and retain the computational afford-
ability of reduced model based on continuummechanics in such a way that atomistic
representation is maintained only in the localized region around defect and is cou-
pled to related equivalent continuummodel. There is a number of availablemultiscale
methods, however we focused on the bridging domain which enables inclusion of the
atomistic submodel or patch in the continuum model. We showed that the perturba-
tion caused by the coupling of the atomistic and continuummodels in the overlapping
zone is localized. Next, we confronted bridging domain method with one of the most
prominent multiscalemethods of this type, the quasicontinuummethod, emphasising
the adaptivity features. We implemented model adaptivity algorithm based on the
a posteriori error estimates, and tested its performance choosing quantity of inter-
est in terms of displacement. Moreover, a unified coupling formulation is proposed
which shows that the two mentioned mainstream multiscale methods are similar,
even though on the implementation level they may seem completely different. A
good performance is presented on the problem of defected graphene sheet.
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Inverse Problems in a Bayesian Setting

Hermann G. Matthies, Elmar Zander, Bojana V. Rosić,
Alexander Litvinenko and Oliver Pajonk

Abstract In a Bayesian setting, inverse problems and uncertainty quantification
(UQ)—the propagation of uncertainty through a computational (forward) model—
are strongly connected. In the form of conditional expectation the Bayesian update
becomes computationally attractive. We give a detailed account of this approach via
conditional approximation, various approximations, and the construction of filters.
Together with a functional or spectral approach for the forward UQ there is no need
for time-consuming and slowly convergent Monte Carlo sampling. The developed
sampling-free non-linear Bayesian update in form of a filter is derived from the vari-
ational problem associated with conditional expectation. This formulation in general
calls for further discretisation to make the computation possible, and we choose
a polynomial approximation. After giving details on the actual computation in the
framework of functional or spectral approximations, we demonstrate the workings of
the algorithm on a number of examples of increasing complexity. At last, we compare
the linear and nonlinear Bayesian update in form of a filter on some examples.

1 Introduction

Inverse problems deal with the determination of parameters in computational mod-
els, by comparing the prediction of these models with either real measurements or
observations, or other, presumably more accurate, computations. These parameters
can typically not be observed or measured directly, only other quantities which are
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somehow connected to the one for which the information is sought. But it is typical
that we can compute what the observed response should be, under the assumption
that the unknown parameters have a certain value. And the difference between pre-
dicted or forecast response is obviously a measure for how well these parameters
were identified.

There are different ways of attacking the problem of parameter identification theo-
retically and numerically. Oneway is to define somemeasure of discrepancy between
predicted observation and the actual observation. Then one might use optimisation
algorithms to make this measure of discrepancy as small as possible by changing the
unknown parameters. Classical least squares approaches start from this point. The
parameter values where a minimum is attained is then usually taken as the ‘best’
value and regarded as close to the ‘true’ value.

One of the problems is that for one the measure of discrepancy crops pretty
arbitrarily, and on the other hand the minimum is often not unique. This means
that there are many parameter values which explain the observations in a ‘best’
way. To obtain a unique solution, some kind of ‘niceness’ of the optimal solution
is required, or mathematically speaking, for the optimal solution some regularity is
enforced, typically in competition with discrepancy measure to be minimised. This
optimisation approach hence leads to regularisation procedures, a good overview of
which is given by [5].

Here we take another tack, and base our approach on the Bayesian idea of updat-
ing the knowledge about something like the unknown parameters in a probabilistic
fashion according to Bayes’s theorem. In order to apply this, the knowledge about the
parameters has to be described in a Bayesian way through a probabilistic model [16,
40, 41]. As it turns out, such a probabilistic description of our previous knowledge
can often be interpreted as a regularisation, thus tying these differing approaches
together.

The Bayesian way is on one hand difficult to tackle, i.e. finding a computational
way of doing it; and on the other hand often becomes computationally very demand-
ing. One way the Bayesian update may be achieved computationally is through
sampling. On the other hand, we shall here use a functional approximation setting to
address such stochastic problems. See [26] for a synopsis on our approach to such
parametric problems.

It iswell-known that such aBayesian update is in fact closely related to conditional
expectation [2, 11], and this will be the basis of the method presented. For these and
other probabilistic notions see for example [30] and the references therein.

The functional approximation approach towards stochastic problems is explained
e.g. in [24]. These approximations are in the simplest case known as Wiener’s so-
called homogeneous or polynomial chaos expansion [43], which are polynomials in
independent Gaussian RVs—the ‘chaos’—and which can also be used numerically
in a Galerkin procedure [10, 24, 25]. This approach has been generalised to other
types of RVs [44]. It is a computational variant of white noise analysis, which means
analysis in terms of independent RVs, hence the term ‘white noise’ [13–15], see
also [8, 25, 33] for here relevant results on stochastic regularity. Here we describe
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a computational extensions of this approach to the inverse problem of Bayesian
updating, see also [28, 29, 34, 35].

To be more specific, let us consider the following situation: we are investigating
some physical system which is modelled by an evolution equation for its state:

d

dt
u = A(q; u(t)) + η(q; t); u(0) = ua given. (1)

where u(t) ∈ U describes the state of the system at time t ∈ [0, T ] lying in a Hilbert
spaceU (for the sake of simplicity), A is a—possibly non-linear—operatormodelling
the physics of the system, and η ∈ U∗ is some external influence (action/excitation/
loading). Both A and � may involve some noise—i.e. a random process—so that (1)
is a stochastic evolution equation.

Assume that the model depends on some parameters q ∈ Q, which are uncertain.
These may actually include the initial conditions for the state, ua . To have a concrete
example of Eq. (1), consider the diffusion equation

∂

∂t
u(x, t) − div(κ(x)∇u(x, t)) = η(x, t), x ∈ G, (2)

with appropriate boundary and initial conditions, whereG ⊂ R
n is a suitable domain.

The diffusing quantity is u(x, t) (heat, concentration) and the term η(x, t) models
sinks and sources. Similar examples will be used for the numerical experiments in
Sects. 5 and 6. HereU = H 1

E (G), the subspace of the Sobolev space H 1(G) satisfying
the essential boundary conditions, and we assume that the diffusion coefficient κ(x)

is uncertain. The parameters could be the positive diffusion coefficient field κ(x),
but for reasons to be explained fully later we prefer to take q(x) = log(κ(x)), and
assume q ∈ Q = L2(G).

The updating methods have to be well defined and stable in a continuous setting,
as otherwise one can not guarantee numerical stability with respect to the PDE
discretisation refinement, see [40] for a discussion of related questions. Due to this
we describe the update before any possible discretisation in the simplest Hilbert
space setting.

On the other hand, no harm will result for the basic understanding if the reader
wants to view the occurring spaces as finite dimensional Euclidean spaces. Now
assume that we observe a function of the state Y (u(q), q), and from this observation
we would like to identify the corresponding q. In the concrete example Eq. (2) this
could be the value of u(x j , t) at some points x j ∈ G. This is called the inverse prob-
lem, and as the mapping q �→ Y (q) is usually not invertible, the inverse problem is
ill-posed. Embedding this problem of finding the best q in a larger class by mod-
elling our knowledge about it with the help of probability theory, then in a Bayesian
manner the task becomes to estimate conditional expectations, e.g. see [16, 40, 41],
and the references therein. The problem now is well-posed, but at the price of ‘only’
obtaining probability distributions on the possible values of q, which now ismodelled
as a Q-valued random variable (RV). On the other hand one naturally also obtains
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information about the remaining uncertainty. Predicting what the measurement Y (q)

should be from some assumed q is computing the forward problem. The inverse
problem is then approached by comparing the forecast from the forward problem
with the actual information.

Since the parameters of the model to be estimated are uncertain, all relevant
information may be obtained via their stochastic description. In order to extract
information from the posterior, most estimates take the form of expectations w.r.t.
the posterior. These expectations—mathematically integrals, numerically to be eval-
uated by some quadrature rule—may be computed via asymptotic, deterministic, or
sampling methods. In our review of current work we follow our recent publications
[28, 29, 34, 35].

One often used technique is a Markov chain Monte Carlo (MCMC) method
[9, 21], constructed such that the asymptotic distribution of the Markov chain is
the Bayesian posterior distribution; for further information see [34] and the refer-
ences therein.

These approaches require a large number of samples in order to obtain satisfactory
results. Here the main idea here is to perform the Bayesian update directly on the
polynomial chaos expansion (PCE) without any sampling [26, 28, 29, 34, 35]. This
idea has appeared independently in [1] in a simpler context, whereas in [37] it appears
as a variant of the Kalman filter (e.g. [17]). A PCE for a push-forward of the posterior
measure is constructed in [27].

From this short overview it may already have become apparent that the update
may be seen abstractly in two different ways. Regarding the uncertain parameters

q : Ω → Q as a RV on a probability space (Ω,A,P) (3)

where the set of elementary events is Ω ,A a σ-algebra of events, and P a probability
measure, one set ofmethods performs the update by changing the probabilitymeasure
P and leaving the mapping q(ω) as it is, whereas the other set of methods leaves the
probability measure unchanged and updates the function q(ω). In any case, the push
forwardmeasureq∗P onQ defined byq∗P(R) := P(q−1(R)) for ameasurable subset
R ⊂ Q is changed from prior to posterior. For the sake of simplicity we assume here
that Q—the set containing possible realisations of q—is a Hilbert space. If the
parameter q is a RV, then so is the state u of the system Eq. (1). In order to avoid a
profusion of notation, unless there is a possibility of confusion, we will denote the
random variables q, f, u which now take values in the respective spaces Q,U∗ and
U with the same symbol as the previously deterministic quantities in Eq. (1).

In our overview on [34] spectral methods in identification problems, we show that
Bayesian identificationmethods [11, 16, 40, 41] are a goodway to tackle the identifi-
cation problem, especially when these latest developments in functional approxima-
tion methods are used. In the series of papers [26, 29, 34, 35], Bayesian updating has
been used in a linearised form, strongly related to the Gauss-Markov theorem [20], in
ways very similar to the well-known Kalman filter [17]. These similarities ill be used
to construct an abstract linear filter, which we term the Gauss-Markov-Kalman
filter (GMKF). This turns out to be a linearised version of conditional expectation.
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Here we want to extend this to a non-linear form, and show some examples of linear
(LBU) and non-linear (QBU) Bayesian updates.

The organisation of the remainder of the paper is as follows: in Sect. 2 we review
the Bayesian update—classically defined via conditional probabilities—and recall
the link between conditional probability measures and conditional expectation. In
the Sect. 3, the abstract version of the conditional expectation into real computational
procedures.

We show how to approximate the conditional expectation up to any desired poly-
nomial degree, not only the linearised version [17, 20] which was used in [26, 28,
29, 34, 35].

The numerical realisation in terms of a functional or spectral approximations—
here we use the well knownWiener-Hermite chaos—is shortly sketched in Sect. 4. In
Sect. 5 we then show some computational examples with the linear version (LBU),
whereas in Sect. 6 we show how to compute with the non-linear or quadratic (QBU)
version. Some concluding remarks are offered in Sect. 7.

2 Bayesian Updating

Here we shall describe the frame in which we want to treat the problem of Bayesian
updating, namely a dynamical system with time-discrete observations and updates.
After introducing the setting in Sect. 2.1, we recall Bayes’s theorem in Sect. 2.2 in the
formulation of Laplace, as well as its formulation in the special case where densities
exist, e.g. [2]. The next Sect. 2.3 treats the more general case and its connection with
the notion of conditional expectation, as it was established by Kolmogorov, e.g. [2].
This notion will be the basis of our approach to characterise a RVwhich corresponds
to the posterior measure.

2.1 Setting

In the setting of Eq. (1) consider the following problem: one makes observations yn

at times 0 < t1 < · · · < tn · · · ∈ [0, T ], and from these one would like to infer what
q (and possibly u(q; t)) is. In order to include a possible identification of the state
u(q; tn), we shall define a new variable x = (u, q), which we would thus like to
identify:

Assume that U : U × Q × [0, T ] � (ua, q, t) �→ u(q; t) ∈ U is the flow or solu-
tion operator of Eq. (1), i.e. u(q; t) = U (ua, ta, q, t), where ua is the initial condition
at time ta . We then look at the operator which advances the variable x = (u, q) ∈
X = U × Q from xn = (un, q) at time tn to xn+1 = (un+1, q) at tn+1, where the
Hilbert space X carries the natural inner product implied from U and Q,

xn = (un, q) �→ xn+1 = (un+1, q) = (U (un, tn, q, tn+1), q) ∈ X ,
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or a bit more generally encoded in an operator f̂ :

∀n ∈ N0 : xn+1 = f̂ (xn, wn, n); x0 = xa ∈ X given. (4)

This is a discrete time step advancemap, for example of the dynamical systemEq. (1),
where a random ‘error’ termwn is included, whichmay be used tomodel randomness
in the dynamical system per se, or possible discretisation errors, or both, or similar
things. Most dynamical—and also quasi-static and stationary systems, considering
different loadings as a sequence in some pseudo-time—can be put in the form Eq. (4)
when observed at discrete points in time. Obviously, for fixed model parameters like
q in Eq. (1) the evolution is trivial and does not change anything, but the Eq. (4)
allows to model everything in one formulation.

Often the dependence on the random term is assumed to be linear, so that one has

∀n ∈ N0 : xn+1 = f (xn) + εSx (xn)wn; x0 = xa given, (5)

where the scalar ε ≥ 0 explicitly measures the size of the random term wn , which is
now assumed to be discrete white noise of unit variance and zero mean, and possible
correlations are introduced via the linear operator Sx (xn).

But one cannot observe the entity q or u(q; t), i.e. x = (q, u) directly—like in
Plato’s cave allegory we can only see a ‘shadow’—here denoted by a vector y ∈ Y—
of it, formally given by a ‘measurement operator’

Y : X = Q × U � (q, u(tn)) �→ yn+1 = Y (q; u(tn)) ∈ Y, (6)

where for the sake of simplicity we assume Y to be a Hilbert space.
Typically one considers also some observational ‘error’ εvn , so that the observa-

tion may be expressed as

yn+1 = H(Y (q; u(tn)), εvn) = ĥ(xn, εvn), (7)

where similarly as before vn is a discrete white noise process, and the observer map
H resp. ĥ combines the ‘true’ quantity Y (q; u(tn)) to be measured with the error, to
give the observation yn .

Translating this into the notation of the discrete dynamical system Eq. (4), one
writes

yn+1 = ĥ(xn, εvn) ∈ Y, (8)

where again the operator ĥ is often assumed to be linear in the noise term, so that
one has similarly to Eq. (5)

yn+1 = h(xn) + εSy(xn)wn ∈ Y . (9)
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The mappings Y in Eq. (6), H in Eq. (7), ĥ in Eq. (8), resp. h Eq. (9) are usually
not invertible and hence the problem is called ill-posed. One way to address this is
via regularisation (see e.g. [5]), but here we follow a different track. Modelling our
lack-of-knowledge about q and u(tn) in a Bayesian way [41] by replacing them with
a Q- resp. U-valued random variable (RV), the problem becomes well-posed [40].
But of course one is looking now at the problem of finding a probability distribution
that best fits the data; and one also obtains a probability distribution, not just one pair
xn = (q, u(tn)).

We shall allow forX to be an infinite-dimensional space, aswell as forY; although
practically in any real situation only finitely many components are measured. But by
allowing for the infinite-dimensional case, we can treat the case of partial differen-
tial equations—PDE models—like Eq. (1) directly and not just their discretisations
as it often done, and we only use arguments which are independent on the number
of observations. In particular this prevents hidden dependencies on local compact-
ness, the dimension of the model, or the number of measurements, and the possible
break-down of computational procedures as these dimensions grow, as they will be
designed for the infinite-dimensional case. The procedure practically performed in a
real computation on a finite-dimensional model and a finite-dimensional observation
may then be seen as an approximation of the infinite-dimensional case, and analysed
as such.

Here we focus on the use of a Bayesian approach inspired by the ‘linear Bayesian’
approach of [11] in the framework of ‘white noise’ analysis [13–15, 22, 43, 44].
Please observe that although the unknown ‘truth’ xn may be a deterministic quan-
tity, the model for the observed quantity yn+1 involves randomness, and it therefore
becomes a RV as well.

To complete the mathematical setup we assume thatΩ is a measure space with σ-
algebraA and with a probability measure P, and that x : Ω → X and similarly q, u,
and y are random variables (RVs). The corresponding expectation will be denoted by
x̄ = E (x) = ∫

Ω
x(ω) P(dω), giving themean x̄ of the random variable, also denoted

by 〈x〉 := x̄ . The quantity x̃ := x − x̄ is the zero-mean or fluctuating part of theRV x .
The space of vector valued RVs, say x : Ω → X , will for simplicity only

be considered in the form X = X ⊗ S, where X is a Hilbert space with inner
product 〈·, ·〉X , S is a Hilbert space of scalar RVs—here we shall simply take
S = L2(Ω,A,P)—with inner product 〈·, ·〉S , and the tensor product signifies the
Hilbert space completion with the scalar product as usually defined for elementary
tensors x1 ⊗ s1, x2 ⊗ s2 ∈ X with x1, x2 ∈ X and s1, s2 ∈ S by

〈〈x1 ⊗ s1, x2 ⊗ s2〉〉X := 〈x1, x2〉X 〈s1, s2〉S ,

and extended to all of X by linearity.
Obviously, we may also consider the expectation not only as a linear operator

E : X → X , but, as X is isomorphic to the subspace of constants Xc := X ⊗
span{1} ⊂ X , also as an orthogonal projection onto that subspaceE = PXc , and we
have the orthogonal decomposition
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X = Xc ⊕ X ⊥
c , withX ⊥

c =: X0,

where X0 is the zero-mean subspace, so that

∀x ∈ X : x̄ = E (x) = PXc x ∈ Xc, x̃ = (I − PXc)x ∈ X0.

Later, the covariance operator between two Hilbert-space valued RVs will be
needed. The covariance operator between two RVs x and y is denoted by

Cxy : Y � v �→ E (x̃ 〈ỹ, v〉Y ) ∈ X ∼= Xc.

For x ∈ X ⊗ S and y ∈ Y ⊗ S it is also often written as Cxy = E (x̃ ⊗ ỹ).

2.2 Recollection of Bayes’s Theorem

Bayes’s theorem is commonly accepted as a consistentway to incorporate newknowl-
edge into a probabilistic description [16, 41], and its present mathematical form is
due to Laplace, so that a better denomination would be the Bayes-Laplace theorem.

The elementary textbook statement of the theorem is about conditional
probabilities

P(Ix |My) = P(My |Ix)

P(My)
P(Ix ), P(My) > 0, (10)

where Ix ⊆ X is some measurable subset of possible x’s, and the measurable subset
Mz ⊆ Y is the information provided by themeasurement. Here the conditional prob-
ability P(Ix |My) is called the posterior probability, P(Ix ) is called the prior prob-
ability, the conditional probability P(My |Ix) is called the likelihood, and P(My) is
called the evidence. The Eq. (10) is only valid when the set My has non-vanishing
probability measure, and becomes problematic when P(My) approaches zero, cf.
[16, 32]. This arises often when My = {ym} is a one-point set representing a mea-
sured value ym ∈ Y , as such sets have typically vanishing probabilitymeasure. In fact
the well-known Borel-Kolmogorov paradox has led to numerous controversies and
shows the possible ambiguities [16]. Typically the posterior measure is singular w.r.t.
the prior measure, precluding a formulation in densities. Kolmogorov’s resolution
of this situation shall be sketched later.

One well-known very special case where the formulation in densities is possible,
which has particular requirements on the likelihood, is whenX—as here—is ametric
space, and there is a backgroundmeasureμ on (X ,BX )—BX is theBorel-σ-algebra
of X—and similarly with ν and (Y,BY), and the RVs x and y have probability
density functions (pdf) πx (x) w.r.t. μ and πy(y) w.r.t. ν resp., and a joint density
πxy(x, y) w.r.t. μ ⊗ ν. Then the theorem may be formulated as ([41] Chap.1.5,
[16, 32])
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π(x |y)(x |y) = πxy(x, y)

πy(y)
= π(y|x)(y|x)

Z y
πx (x), (11)

where naturally the marginal density Z y := πy(y) = ∫
X πxy(x, y) μ(dx) (from

German Zustandssumme) is a normalising factor such that the conditional density
π(x |y)(·|y) integrates to unity w.r.t x . In this case the limiting case where P(My)

vanishes may be captured via the metric [16, 32]. The joint density

πxy(x, y) = π(y|x)(y|x)πx (x)

may be factored into the likelihood function π(y|x)(y|x) and the prior density πx (x),
like πy(y) amarginal density, πx (x) = ∫

Y πxy(x, y)ν(dy). These terms in the second
equality inEq. (11) are in direct correspondencewith those inEq. (10). Please observe
that the model for the RV representing the error in Eq. (8) determines the likelihood
functions P(My |Ix ) resp. π(y|x)(y|x). To require the existence of the joint density is
quite restrictive. As Eq. (8) shows, y is a function of x , and a joint density on X × Y
will generally not be possible as (x, y) ∈ X × Y are most likely on a sub-manifold;
but the situation of Eq. (9) is one possibility where a joint density may be established.
The background densities are typically in finite dimensions the Lebesgue measure
on R

d , or more general Haar measures on locally compact Lie-groups [39]. Most
computational approaches determine the pdfs [18, 23, 40].

However, to avoid the critical cases alluded to above, Kolmogorov already defined
conditional probabilities via conditional expectation, e.g. see [2]. Given the condi-
tional expectation operator E

(·|My
)
, the conditional probability is easily recovered

as P(Ix |My) = E
(
χIx |My

)
, where χIx is the characteristic function of the subset

Ix . It may be shown that this extends the simpler formulation described by Eq. (10)
or Eq. (11) and is themore fundamental notion, which we examine next. Its definition
will lead directly to practical computational procedures.

2.3 Conditional Expectation

The easiest point of departure for conditional expectation [2] in our setting is to
define it not just for one piece of measurementMy—which may not even be possi-
ble unambiguously—but for sub-σ-algebras S ⊂ A on Ω . A sub-σ-algebra S is a
mathematical description of a reduced possibility of randomness—the smallest sub-
σ-algebra {∅,Ω} allows only the constants in Xc—as it contains fewer events than
the full algebra A. The connection with a measurement My is to take S := σ(y),
the σ-algebra generated by the measurement y = ĥ(x, εv) from Eq. (8). These are
all events which are consistent with possible observations of some value for y. This
means that the observation of y allows only a certain ‘fineness’ of information to be
obtained, and this is encoded in the sub-σ-algebra S.
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2.3.1 Scalar Random Variables

For scalar RVs—functions r(x) of x with finite variance, i.e. elements of S :=
L2(Ω,A,P)—the subspace corresponding to the sub-σ-algebraS∞ := L2(Ω,S,P)

is a closed subspace [2] of the full space S. One example of such a scalar RV is the
function

r(x) := χIx (x) =
{
1 if x ∈ Ix ,

0 otherwise,

mentioned at the end of Sect. 2.2 used to define conditional probability of the subset
Ix ⊆ X once a conditional expectation operator is defined: P(Ix |S) = E

(
χIx |S

)
.

Definition 1 For scalar functions of x—scalar RVs r(x)—in S, the conditional
expectation E (·|S) is defined as the orthogonal projection onto the closed subspace
S∞, so that E (r(x)|S) ∈ S∞, e.g. see [2].

The question is now on how to characterise this subspace S∞, in order to make it
more accessible for possible numerical computations. In this regard, note that the
Doob-Dynkin lemma [2] assures us that if a RV s(x)—like E (r(x)|S)—is in the
subspace S∞, then s(x) = ϕ(y) for some ϕ ∈ L0(Y), the space of measurable scalar
functions on Y . We state this key fact and the resulting new characterisation of the
conditional expectation in

Proposition 2 The subspace S∞ is given by

S∞ = span{ϕ | ϕ(ĥ(x, εv)); ϕ ∈ L0(Y) and ϕ ∈ S}. (12)

The conditional expectation of a scalar RVr(x) ∈ S, being the orthogonal projection,
minimises the distance to the original RV over the whole subspace:

E (r(x)|S) := PS∞(r(x)) := argminr̃∈S∞ ‖r(x) − r̃‖S , (13)

where PS∞ is the orthogonal projector onto S∞. The Eqs. (12) and (13) imply the
existence of a optimal map φ ∈ L0(Y) such that

E (r(x)|S) = PS∞(r(x)) = φ(ĥ(x, εv)). (14)

In Eq. (13), one may equally well minimise the square of the distance, the loss-
function

βr(x)(r̃) = 1

2
‖r(x) − r̃‖2S . (15)

Taking the vanishing of the first variation/Gâteaux derivative of the loss-function
Eq. (15) as a necessary condition for a minimum leads to a simple geometrical
interpretation: the difference between the original scalar RV r(x) and its projection
has to be perpendicular to the subspace:
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∀r̃ ∈ S∞ : 〈r(x) − E (r(x)|S) , r̃〉S = 0, i.e.r(x) − E (r(x)|S) ∈ S⊥
∞. (16)

Rephrasing Eq. (13) with account to Eqs. (16) and (15) leads for the optimal map
φ ∈ L0(Y) to

E (r(x)|σ(y)) = φ(ĥ(x, εv)) := argminϕ∈L0(Y) βr(x)(ϕ(ĥ(x, εv))), (17)

and the orthogonality condition of Eq. (17) which corresponds to Eq. (16) leads to

∀ϕ ∈ L0(Y) : 〈r(x) − φ(ĥ(x, εv)),ϕ(ĥ(x, εv))〉S = 0. (18)

Proof The Eq. (12) is a direct statement of the Doob-Dynkin lemma [2], and the
Eq. (13) is equivalent to the definition of the conditional expectation being an orthog-
onal projection in L2(Ω,A,P)—actually an elementary fact of Euclidean geometry.

The existence of the optimal map φ in Eq. (14) is a consequence of the minimisa-
tion of a continuous, coercive, and strictly convex function—the normEq. (13)—over
the closed set S∞ in the complete space S. The equivalence of minimising the norm
Eqs. (13) and (15) is elementary, which is re-stated in Eq. (17).

The two equivalents statements—the ‘Galerkin orthogonality’ conditions—
Eqs. (16) and (18) follow not only from requiring the Gâteaux derivative of Eq. (15)
to vanish, but also express an elementary fact of Euclidean geometry.

The square of the distance r(x) − φ(y) may be interpreted as a difference in
variance, tying conditional expectation with variance minimisation; see for example
[2, 30], and the references therein for basic descriptions of conditional expectation.
See also [20].

2.3.2 Vector Valued Random Variables

Now assume that R(x) is a function of x which takes values in a vector spaceR, i.e.
a R-valued RV, where R is a Hilbert space. Two simple examples are given by the
conditional mean where R(x) := x ∈ X with R = X , and by the conditional vari-
ance where one takes R(x) := (x − x̄) ⊗ (x − x̄) = (x̃) ⊗ (x̃), whereR = L (X ).
The Hilbert tensor productR = R ⊗ S is again needed for such vector valued RVs,
where a bit more formalism is required, as we later want to take linear combina-
tions of RVs, but with linear operators as ‘coefficients’ [20], and this is most clearly
expressed in a component-free fashion in terms of L-invariance, wherewe essentially
follow [3, 4]:

Definition 3 Let V be a subspace of R = R ⊗ S. The subspace is called linearly
closed, L-closed, or L-invariant, iff V is closed, and ∀v ∈ V and ∀L ∈ L (R) it
holds that Lv ∈ V .

In finite dimensional spaces one can just apply the notions for the scalar case
in Sect. 2.3.1 component by component, but this is not possible in the infinite
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dimensional case. Of course the vectorial description here collapses to the scalar
case upon taking R = R. From [3] one has the following

Proposition 4 It is obvious that the whole space R = R ⊗ S is linearly closed, and
that for a linearly closed subspace V ⊆ R its orthogonal complement V ⊥ is also
linearly closed. Clearly, for a closed subspace Sa ⊆ S, the tensor space R ⊗ Sa

is linearly closed, and hence the space of constants Rc = R ⊗ span{χΩ} ∼= R is
linearly closed, as well as its orthogonal complement R0 = R⊥

c , the subspace of
zero-mean RVs.

Let v ∈ R be a RV, and denote by

Rv := span v(Ω), σ(v) := {v−1(B) : B ∈ BR} (19)

the closure of the span of the image of v and the σ-algebra generated by v, where
BR is the Borel-σ-algebra of R. Denote the closed subspace generated by σ(v) by
Sv := L2(Ω,σ(v),P) ⊆ S. LetRLv := span {Lv : L ∈ L (R)} ⊆ R, the linearly
closed subspace generated by v, and finally denote byRv := span{v} ⊆ R, the one-
dimensional ray and hence closed subspace generated by v. Obviously it holds that

v ∈ Rv ⊆ RLv ⊆ R ⊗ Sv ⊆ R, and v̄ ∈ Rv,

and R ⊗ Sv is linearly closed according to Proposition 4.

Definition 5 Let V and W be subspaces of R, and v,w ∈ R two RVs.

• The two subspaces are weakly orthogonal or simply just orthogonal, denoted by
V ⊥ W , iff ∀v ∈ V ,∀w ∈ W it holds that 〈〈v,w〉〉R = 0.

• A RV v ∈ R is weakly orthogonal or simply just orthogonal to the subspace W ,
denoted by
v ⊥ W , iffRv ⊥ W , i.e. ∀w ∈ W it holds that 〈〈v,w〉〉R = 0.

• Two RVs v,w ∈ R are weakly orthogonal or as usual simply just orthogonal,
denoted by
v ⊥ w, iff 〈〈v,w〉〉R = 0, i.e.Rv ⊥ Rw.

• The two subspaces V andW are strongly orthogonal or L-orthogonal, iff they are
linearly closed—Definition 3—and it holds that 〈〈Lv,w〉〉R = 0, ∀v ∈ V ,∀w ∈
W and ∀L ∈ L (R). This is denoted by
V ⊥W , and in other words L (R) � Cvw = E (v ⊗ w) = 0.

• The RV v is strongly orthogonal to a linearly closed subspace W ⊆ R, denoted
by
v ⊥W , iffRLv ⊥W , i.e. ∀w ∈ W it holds that Cvw = 0.

• The two RVs v,w are strongly orthogonal or simply just uncorrelated, denoted
by
v ⊥ w, iff Cvw = 0, i.e.RLv ⊥RLw.

• Let C1,C2 ⊆ A be two sub-σ-algebras. They are independent, denoted by
C1 ⊥⊥C2, iff the closed subspaces of S generated by them are orthogonal in S:
L2(Ω,C1,P) ⊥ L2(Ω,C2,P).
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• The two subspaces V and W are stochastically independent, denoted by
V ⊥⊥W , iff the sub-σ-algebras generated are: σ(V )⊥⊥ σ(W ).

• The two RVs v,w are stochastically independent, denoted by
v ⊥⊥ w, iff σ(v)⊥⊥ σ(w), i.e. Sv ⊥ Sw.

Proposition 6 ObviouslyRc ⊥R0. It is equally obvious that for any two closed sub-
spaces Sa,Sb ⊆ S, the condition Sa ⊥ Sb implies that the tensor product subspaces
are strongly orthogonal:

R ⊗ Sa ⊥R ⊗ Sb.

This implies that for a closed subspace Ss ⊆ S the subspaces Rs = R ⊗ Ss ⊆ R
and its orthogonal complement R⊥

s = R ⊗ S⊥
s are linearly closed and strongly

orthogonal.

We note from [3, 4] the following results which we collect in

Proposition 7 Let v,w ∈ R0 be two zero-mean RVs. Then

v ⊥⊥ w ⇒ v ⊥w ⇒ v ⊥ w.

Strong orthogonality in general does not imply independence, and orthogonality
does not imply strong orthogonality, unless R is one-dimensional.

If S ⊆ R is linearly closed, then

v ⊥ S ⇒ v ⊥S , i.e. Rv ⊥ S ⇒ Rv ⊥S ⇒ RLv ⊥S .

From this we obtain the following:

Lemma 8 Set R∞ := R ⊗ S∞ for the R-valued RV R(x) with finite variance on
the sub-σ-algebra S, representing the new information.

Then R∞ is L-invariant or strongly closed, and for any zero mean RV v ∈ R:

v ∈ R⊥
∞ ⇔ v ⊥ R∞ ⇒ v ⊥R∞. (20)

In addition, it holds—even if v ∈ R is not zero mean—that

v ∈ R⊥
∞ ⇔ v ⊥ R∞ ⇒ ∀w ∈ R∞ : E (v ⊗ w) = 0. (21)

Proof R∞ is of the typeR ⊗ S∞ where S∞ is a closed subspace, andR is obviously
closed. From the remarks above it follows that R∞ is L-invariant or linearly resp.
strongly closed. The Eq. (20) is a direct consequence of Proposition 7.

To prove Eq. (21), take any w ∈ R∞ and any L ∈ L (R), then

v ∈ R⊥
∞ ⇒ 0 = 〈〈v,w〉〉R = 〈〈v, Lw〉〉R = E (〈v, Lw〉R) .
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Now, for any r1, r2 ∈ R, take the mapping L : r∗ �→ 〈r2, r∗〉R r1, yielding

0 = E (〈v, Lw〉R) = E (〈v, 〈r2, w〉R r1〉R)

= E (〈v, r1〉R〈r2, w〉R) = 〈r1,E (v ⊗ w) r2〉R ⇔ E (v ⊗ w) ≡ 0.

Extending the scalar case described in Sect. 2.3.1, instead of

S = L2(Ω,P,A) = L2(Ω,P,A;R) ∼= R ⊗ L2(Ω,P,A) = R ⊗ S

and its subspace generated by the measurement

S∞ = L2(Ω,P,S) = L2(Ω,P,S;R) ∼= R ⊗ L2(Ω,P,S) = R ⊗ S∞

one now considers the space Eq. (22) and its subspace Eq. (23)

L2(Ω,P,A;R) ∼= R ⊗ L2(Ω,P,A) = R ⊗ S := R and (22)

L2(Ω,P,S;R) ∼= R ⊗ L2(Ω,P,S) = R ⊗ S∞ := R∞ ⊆ R. (23)

The conditional expectation in the vector-valued case is defined completely analo-
gous to the scalar case, see Definition 1:

Definition 9 For R-valued functions of x—vectorial RVs R(x)—in the Hilbert-
space R Eq. (22), the conditional expectation E (·|S) : R → R is defined as the
orthogonal projection onto the closed subspace R∞ Eq. (23), denoted by PR∞ , so
that E (R(x)|S) = PR∞(R(x)) ∈ R∞, e.g. see [2, 3].

From this one may derive a characterisation of the conditional expectation similar to
Proposition 2.

Theorem 10 The subspace R∞ is given by

R∞ = {ϕ | ϕ(ĥ(x, εv)) ∈ R; ϕ ∈ L0(Y,R)}. (24)

The conditional expectation of a vector-valued RV R(x) ∈ R, being the orthogonal
projection, minimises the distance to the original RV over the whole subspace:

E (R(x)|S) := PR∞(R(x)) := argmin R̃∈R∞ ‖R(x) − R̃‖R, (25)

where PR∞ is the orthogonal projector onto R∞. The Eqs. (24) and (25) imply the
existence of a optimal map Φ ∈ L0(Y,R) such that

E (R(x)|S) = PR∞(R(x)) = Φ(ĥ(x, εv)). (26)

In Eq. (25), one may equally well minimise the square of the distance, the loss-
function

βR(x)(R̃) = 1

2
‖R(x) − R̃‖2R. (27)
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Taking the vanishing of the first variation/Gâteaux derivative of the loss-function
Eq. (27) as a necessary condition for a minimum leads to a simple geometrical
interpretation: the difference between the original vector-valued RV R(x) and its
projection has to be perpendicular to the subspace R∞: ∀R̃ ∈ R∞:

〈〈R(x) − E (R(x)|S) , R̃〉〉R = 0, i.e. R(x) − E (R(x)|S) ∈ R⊥
∞. (28)

Rephrasing Eq. (25) with account to Eqs. (28) and (27) leads for the optimal map
Φ ∈ L0(Y,R) to

E (R(x)|σ(y)) = Φ(ĥ(x, εv)) := argminϕ∈L0(Y,R) βR(x)(ϕ(ĥ(x, εv))), (29)

and the orthogonality condition of Eq. (29) which corresponds to Eq. (28) leads to

∀ϕ ∈ L0(Y,R) : 〈〈R(x) − Φ(ĥ(x, εv)),ϕ(ĥ(x, εv))〉〉R = 0. (30)

In addition, as R∞ is linearly closed, one obtains the useful statement

∀R̃ ∈ R∞ : L (R) � E

(
(R(x) − E (R(x)|S)) ⊗ R̃

)
= 0. (31)

or rephrased ∀ϕ ∈ L0(Y,R):

L (R) � E

(
(R(x) − Φ(ĥ(x, εv))) ⊗ ϕ(ĥ(x, εv))

)
= 0. (32)

Proof The Eq. (24) is just a version of the Doob-Dynkin lemma again [2], this time
for vector-valued functions. The Eqs. (25)–(30) follow just as in the scalar case of
Proposition 2.

As R∞ is linearly closed according to Lemma 8, the Eq. (20) causes Eq. (28) to
imply Eq. (31), and Eq. (30) together with Eq. (21) from Lemma 8 to imply Eq. (32).

Already in [17] it was noted that the conditional expectation is the best estimate
not only for the loss function ‘distance squared’, as in Eqs. (15) and (27), but for a
much larger class of loss functions under certain distributional constraints. However
for the quadratic loss function this is valid without any restrictions.

Requiring the derivative of the quadratic loss function in Eqs. (15) and (27) to
vanish may also be characterised by the Lax-Milgram lemma, as one is minimising a
quadratic functional over the vector spaceR∞, which is closed and hence a Hilbert
space. For later reference, this result is recollected in

Theorem 11 In the scalar case, there is a unique minimiser E (r(x)|S) = PS∞
(r(x)) ∈ S∞ to the problem in Eq. (13), and it is characterised by the orthogonality
condition Eq. (16)

∀r̃ ∈ S∞ : 〈r(x) − E (r(x)|S) , r̃〉S = 0. (33)
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The minimiser is unique as an element of S∞, but the mapping φ ∈ L0(Y) in Eq. (17)
may not necessarily be. It also holds that

‖PS∞(r(x))‖2S = ‖r(x)‖2S − ‖r(x) − PS∞(r(x))‖2S . (34)

As in the scalar case, in the vector-valued case there is a unique minimiser
E (R(x)|S) = PR∞(R(x)) ∈ R∞ to the problem in Eq. (25), which satisfies the
orthogonality condition Eq. (28)

∀R̃ ∈ R∞ : 〈〈R(x) − E (R(x)|S) , R̃〉〉R = 0, (35)

which is equivalent to the strong orthogonality condition Eq. (31)

∀R̃ ∈ R∞ : E

(
R(x) − E (R(x)|S) ⊗ R̃

)
= 0. (36)

The minimiser is unique as an element of R∞, but the mapping Φ ∈ L0(Y,R) in
Eq. (29) may not necessarily be. It also holds that

‖PR∞(R(x))‖2R = ‖R(x)‖2R − ‖R(x) − PR∞(R(x))‖2R. (37)

Proof It is all already contained in Proposition 2 resp. Theorem 10. Except for
Eq. (36), this is just a re-phrasing of the Lax-Milgram lemma, as the bi-linear
functional—in this case the inner product—is naturally coercive and continuous
on the subspace R∞, which is closed and hence a Hilbert space. The only novelty
here are the Eqs. (34) and (37) which follow from Pythagoras’s theorem.

3 Characterising the Posterior

The information contained in the Bayesian update is encoded in the conditional
expectation. And it only characterises the distribution of the posterior. A few different
ways of characterising the distribution via the conditional expectation are sketched in
Sect. 3.1. But in many situations, notably in the setting of Eq. (4) or Eq. (5), with the
observations according to Eq. (8) or Eq. (9), we want to construct a new RV z ∈ X
to serve as an approximation to the solution of Eq. (4) or Eq. (5). This then is a filter,
and a few possibilities will be given in Sect. 3.2.

3.1 The Posterior Distribution Measure

It was already mentioned at the beginning of Sect. 2.3.1, that the scalar function
rIx (x) = χIx (x) may be used to characterise the conditional probability distribution
of x ∈ X . Indeed, if for a RV R(x) ∈ R one defines:
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∀E ∈ BR : P(E |S) := E (χE(R)|S) , (38)

one has completely characterised the posterior distribution, a version of which is
under certain conditions—[2, 16, 32]—a measure on R, the image space of the
RV R.

One may also recall that the characteristic function in the sense of stochastics of
a RV R ∈ R, namely

ϕR : R∗ � r∗ �→ ϕR(r∗) := E
(
exp(i 〈r∗, R〉R)

)
,

completely characterises the distribution of the RV R. As we assume that R is a
Hilbert space, we may identifyR with its dual spaceR∗, and in this case take ϕR as
defined on R. If now a conditional expectation operator E (·|S) is given, it may be
used to define the conditional characteristic function ϕR|S:

∀r ∈ R : ϕR|S(r) := E (exp(i 〈r, R〉R)|S) . (39)

This again completely characterises the posterior distribution.
Another possible way, actually encompassing the previous two, is to look at

all functions ψ : R → R, and compute—when they are defined and finite—the
quantities

μψ := E (ψ(R)|S) , (40)

again completely characterising the posterior distribution. The two previous exam-
ples show that not all functions of R with finite conditional expectation are needed.
The first example uses the set of functions

{ψ | ψ(R) = χE(R), E ∈ BR},

whereas the second example uses the set

{ψ | ψ(R) = exp(i 〈r, R〉R), r ∈ R}.

3.2 A Posterior Random Variable—Filtering

In the context of a situation like in Eq. (4) resp. Eq. (5), which represents the unknown
system and state vector xn , and where one observes yn according to Eq. (8) resp.
Eq. (9), one wants to have an estimating or tracking model system, with a state
estimate zn for xn which would in principle obey Eq. (4) resp. Eq. (5) with the noise
wn set to zero—as one only knows the structure of the system as given by the maps f̂
resp. f but not the initial condition x0 nor the noise. The observations yn can be used
to correct the state estimate zn , as will be shown shortly. The state estimate will be
computed via Bayesian updating. But the Bayesian theory, as explained above, only
characterises the posterior distribution; and there are many random variables which
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might have a given distribution. To obtain a RV zn which can be used to predict the
next state xn+1 through the estimate zn+1 one may use a filter based on Bayesian
theory. The mean vehicle for this will be the notion of conditional expectation as
described in the previous Sect. 2. As we will first consider only one update step,
the time index n will be dropped for the sake of ease of notation: The true state is
x , its forecast is x f , and the forecast of the measurement is y f (x f ), whereas the
observation is ŷ.

To recall, according to Definition 9, the Bayesian update is defined via the condi-
tional expectation E (R(x)|σ(y(x))) through a measurement y(x)—which will for
the sake of simplicity be denoted just by E (R(x)|y)—of a R-valued RV R(x) is
simply the orthogonal projection onto the subspace R∞ in Eq. (24),

E (R(x)|y) = PR∞(R(x)) = ΦR(y(x)),

which is given by the optimalmapΦR fromEq. (26), characterised by Eq. (32), where
we have added an index R to signify that this is the optimal map for the conditional
expectation of the RV R ∈ R.

The linearly closed subspace R∞ induces a orthogonal decomposition

R = R∞ ⊕ R⊥
∞,

where the orthogonal projection onto R⊥∞ is given by I − PR∞ . Hence a RV in R
like R(x) can be decomposed accordingly as

R(x) = PR∞(R(x)) + (
I − PR∞

)
(R(x))

= ΦR(y(x)) + (R(x) − ΦR(y(x))). (41)

This Eq. (41) is the starting point for the updating. A measurement ŷ will inform
us about the component in R∞, namely ΦR(ŷ), while we leave the component
orthogonal to it unchanged: R(x f ) − ΦR(y(x f )). Adding these two terms then gives
an updated or assimilated RV Ra ∈ R:

Ra = ΦR(ŷ) + (R(x f ) − ΦR(y(x f ))) = R̄|ŷ
a + R̃a

= R(x f ) + (ΦR(ŷ) − ΦR(y(x f ))) = R f + R∞, (42)

where R f = R(x f ) ∈ R is the forecast and R∞ = (ΦR(ŷ) − ΦR(y(x f ))) ∈ R is the

innovation. For R̄|ŷ
a = ΦR(ŷ) and R̃a = R(x f ) − ΦR(y(x f )) one has the following

result:

Proposition 12 The assimilated RV Ra from Eq. (42) has the correct conditional
expectation

E (Ra|y) = ΦR(ŷ) + E
(
(R(x f ) − ΦR(y(x f )))|y

) = E
(
R(x f )|ŷ

) = R̄|ŷ
a , (43)

better would be posterior expectation—after the observation ŷ.
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Proof Observe that that the conditional expectation of the second term R̃a in Eq. (42)
vanishes:

E

(
R̃a|y

)
= E ((R(x) − ΦR(y(x)))|y)

= PR∞(R(x) − PR∞(R(x))) = PR∞(R(x)) − PR∞(R(x)) = 0.

This means that the conditional expectation of the second term in Eq. (43) is nought,
whereas the remaining term ΦR(ŷ) is just E

(
R(x f )|ŷ

)
.

From Eq. (42) one can now construct filters. As often the optimal map ΦR is often
not easy to compute, one may even want to replace it by an approximation, say gR ,
so that the update equation is

R̃a = R(x f ) + (gR(ŷ) − gR(y(x f ))). (44)

Whichever way, either the Eq. (42) or Eq. (44), they are composed of the following
elements, the prior knowledge, which gives the prediction or forecast R f = R(x f )

for the RV R, and the correction, innovation, or update

R∞ = (ΦR(ŷ) − ΦR(y(x f ))) ≈ (gR(ŷ) − gR(y(x f ))),

which is the update difference between the actual observation ŷ and the predicted or
forecast observation y(x f ).

3.2.1 Getting the Mean Right

The simplest function R(x) to think of is the identity R(x) := x . This gives an
update—a filter—for the RV x itself. The optimal map will be denoted by Φx in this
case. From Eq. (42) one has:

xa = x f + (Φx (ŷ) − Φx (y(x f ))) = x f + x∞, (45)

and Proposition 12 ensures that the assimilated RV xa has the correct conditional
mean

E (xa|y) = E
(
x f |ŷ

) = Φx (ŷ) =: x̄ |ŷ . (46)

The Eq. (45) is the basis for many filtering algorithms, and many variations on the
basic prescription are possible. Often they will be such that the property according
to Proposition 12, the correct conditional mean, is only approximately satisfied. This
is due to the fact that for one the Eq. (45) is an equation for RVs, which in their
entirety cannot be easily handled, they are typically infinite dimensional objects and
thus have to be discretised for numerical purposes.
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It was also already pointed out that the optimal map Φx is not easy to compute,
and thus approximations are used, Φx ≈ gx , the simplest one being where gx =
Gx ∈ L (Y,X ) is taken as a linear map, leading to linear filters [3, 11]. The well-
known Kalman filter (KF) [17] and its many variants and extensions—e.g. extended
KF, Gauss-Markov-Kalman filter, square root KF, etc.—and simplifications—e.g.
3DVar, 4DVar, Kriging, Gaussian process emulation (GPE)—arise in this way (e.g.
[1, 6, 28–30, 34, 35, 37, 41]).

As the conditional expectation of xa in Eq. (45) is Eq. (46) E
(
xa|ŷ

) = Φx (ŷ) =
x̄ |ŷ , the zero-mean part of xa is x̃a = x f − Φx (y(x f )). The posterior variance of the
RV xa is thus

Cxa xa |ŷ = E
(
x̃a ⊗ x̃a|ŷ

) = E
(
(x f − Φx (y(x f ))) ⊗ (x f − Φx (y(x f )))|ŷ

)
, (47)

and it has been noted many times that this does not depend on the observation ŷ.
Still, one may note (e.g. [41])

Proposition 13 Assume that x f is a Gaussian RV, that the observation y(x f ) =
ĥ(x f , v)—absorbing the scaling ε into v—is affine in x f and in the uncorrelated
Gaussian observational noise v, i.e. v ⊥ x f and Cvx f = 0. Then the optimal map
Φx = Kx ∈ L (Y,X ) is linear, and the updated or assimilated RV xa from Eq. (45) is
also Gaussian, and has the correct posterior distribution, characterised by the mean
Eq. (46), x̄ |ŷ , and the covariance Eq. (47). Setting w = ĥ(x f , v) := H(x f ) + v with
H ∈ L (X ,Y), one obtains from Eq. (47)

Cxa xa |ŷ = E
(
x̃a ⊗ x̃a|ŷ

) = Cx f x f − Kx Cwx f − CT
wx f

K T
x + Kx Cww K T

x

= (I − Kx H)Cx f x f (I − Kx H)T + Kx Cvv K T
x (48)

for the covariance, and for the mean

x̄ |ŷ = E
(
xa|ŷ

) = Kx ŷ. (49)

Proof As this is a well known result, we only show the connection of Eq. (48) with
Eq. (47). Note that

x̃a = x f − Φx (y(x f )) = x f − Kx (ĥ(x f , v))

= x f − Kx (w) = (I − Kx H)x f − Kxv.

This gives the Eq. (48), and the Eq. (49) follows directly from Eq. (46).

This means that in the purely linear Gaussian case described in Proposition 13 a RV
with the correct posterior distribution is given simply by the process of projection.

In the context of the dynamical system Eq. (4) resp. Eq. (5), where the measure-
ment is denoted by yn+1, the update for the tracking equation is
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zn+1 = f̂ (zn, 0, n) + (Φx (yn+1) − Φx (ĥ( f̂ (zn, 0, n), 0))) (50)

for the case Eq. (4), resp. for Eq. (5)

zn+1 = f (zn) + (Φx (yn+1) − Φx (h( f (zn)))). (51)

Again the assimilated or updated state estimate xa := zn+1 is composed of two com-
ponents, the prediction or forecast x f := f̂ (zn, 0, n) resp. x f := f (zn), and the cor-
rection, innovation, or update

x∞ := (Φx (yn+1) − Φx (ĥ( f̂ (zn, 0, n), 0)))

resp. x∞ := (Φx (yn+1) − Φx (h( f (zn)))), which takes into account the difference
resulting from the actual measurement ŷ := yn+1 and the forecast measurement
ĥ( f̂ (zn, 0, n), 0) resp. h( f (zn)).

If the optimal map Φx is not easy to compute, one may want to replace it by an
approximation as in Eq. (44), say g, so that for example the Eq. (51) would read

zn+1 = f (zn) + (g(yn+1) − g(h( f (zn)))) = ( f − g ◦ h ◦ f )(zn) + g(yn+1),

(52)
where one may hope to show that if the map ( f − g ◦ h ◦ f ) is a contraction, the
difference xn − zn will decrease as n → ∞ [19].Many variations on this theme exist,
especially in the case where both the observation map h and the update operator g
are linear [38, 42].

3.2.2 Getting Also the Covariance Right

An approximation to a RV which has the required posterior distribution was con-
structed in Sect. 3.2.1, where at least the mean was correct. One may now go a
step further and also get the correct posterior covariance. As a starting point take
the assimilated RV xa from Eq. (45) that has the correct conditional mean x̄ |ŷ from
Eq. (46), but the covariance, from Eq. (47), is Cxa xa |ŷ = E

(
x̃a ⊗ x̃a|ŷ

)
. To get the

covariance and the mean right, we compute what the correct posterior covariance
should be, by computing the optimal map for R(x) := x ⊗ x . This gives for the
posterior correlation

Ĉ p := E
(
R(x f )|ŷ

) = E
(
(x f ⊗ x f )|ŷ

) = Φx⊗x (ŷ), (53)

so that the posterior covariance is

C p := Ĉ p − x̄ |ŷ ⊗ x̄ |ŷ = Φx⊗x (ŷ) − Φx (ŷ) ⊗ Φx (ŷ). (54)

Proposition 14 A new RV xc with the correct posterior covariance Eq. (54) is built
from xa = x̄ |ŷ + x̃a in Eq. (45) by taking

xc := x̄ |ŷ + C1/2
p C−1/2

xa xa |ŷ x̃a . (55)
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Proof As E
(
xc|ŷ

) = x̄ |ŷ , one has

Cxc xc = E

(
(C1/2

p C−1/2
xa xa |ŷ x̃a) ⊗ (C1/2

p C−1/2
xa xa |ŷ x̃a)|ŷ

)

= C1/2
p C−1/2

xa xa |ŷ E
(
x̃a ⊗ x̃a|ŷ

)
C−1/2

xa xa |ŷ C1/2
p

= C1/2
p C−1/2

xa xa |ŷ Cxa xa |ŷ C−1/2
xa xa |ŷ C1/2

p = C1/2
p C1/2

p = C p,

proving that the RV xc in Eq. (55) has the correct posterior covariance.

Having achieved a RV which has the correct posterior mean and covariance, it
is conceivable to continue in this fashion, building RVs which match the poste-
rior better and better. A similar idea, but from a different starting point, is used in
[27, 31]. In the future, it is planned to combine these two approaches.

3.3 Approximations

In any actual inverse computations several kinds of approximations are usually nec-
essary. Should one pursue an approach of sampling form the posterior distribution
Eq. (11) in Sect. 2.2 for example, then typically a sampling and a quantisation or
binning approximation is performed, often together with some kernel-estimate of
the density. All of these processes usually introduce approximation errors. Here we
want to use methods based on the conditional expectation, which were detailed in
Sect. 2.3.

Looking for example at Theorems 10 and 11 in Sect. 2.3.2, one has to work in the
usually infinite dimensional spaceR = R ⊗ S fromEq. (22) and its subspaceR∞ =
R ⊗ S∞ from Eq. (23), to minimise the functional in Eq. (27) to find the optimal map
representing the conditional expectation for a desired function R(x), Eqs. (26) and
(29),Φ in the space L0(Y,R). Then one has to construct a RVwhose distributionmy
be characterised by the conditional expectation, to represent the posterior measure.
Approximations in this latter respect were discussed in Sect. 3.2. The space R∞ is
computationally accessible via L0(Y,R), which has to be approximated by some
finite dimensional subspace. This will be discussed in this Sect. 3.3. Furthermore, the
component spaces of R = R ⊗ S are also typically infinite dimensional, and have
in actual computations to be replaced by finite dimensional subspaces. This topic
will be sketched in Sect. 4.

Computationally we will not be able to deal with the whole space R∞, so we
look at the effect of approximations. Assume that L0(Y,R) in Eq. (29) or Eq. (30) is
approximated by subspaces L0,m ⊂ L0(Y,R)withL (Y,R) ⊆ L0,m , where m ∈ N

is a parameter describing the level of approximation and L0,m ⊂ L0,k if m < k, such
that the subspaces

Rm = {ϕ(y) | ϕ ∈ L0,m; ϕ(ĥ(x, εv)) ∈ R} ⊆ R∞ (56)
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are linearly closed and their union is dense

⋃
m

Rm = R∞, (57)

a consistency condition.
To obtain results for the situation where the projection PR∞ is replaced by the

orthogonal projection PRm ofR onto Rm , all that is necessary is to reformulate the
Theorems 10 and 11.

Theorem 15 The orthogonal projection PRm of the RV R(x) ∈ R is characterised
by:

PRm (R(x)) := argmin R̃∈Rm

1

2
‖R(x) − R̃‖2R, (58)

The Eq. (56) implies the existence of a optimal map Φm ∈ L0,m(Y,R) such that

PRm (R(x)) = Φm(ĥ(x, εv)). (59)

Taking the vanishing of the first variation/Gâteaux derivative of the loss-function as
a necessary condition for a minimum leads to a simple geometrical interpretation:
the difference between the original vector-valued RV R(x) and its projection has to
be perpendicular to the subspace Rm: ∀R̃ ∈ Rm :

〈〈R(x) − PRm (R(x)), R̃〉〉R = 0, i.e. R(x) − PRm (R(x)) ∈ R⊥
m . (60)

Rephrasing Eq. (58) with account to Eq. (60) leads for the optimal map Φm ∈
L0,n(Y,R) to

PRm (R(x)) = Φm(ĥ(x, εv)) := argminϕ∈L0,m (Y,R) ‖R(x) − ϕ(ĥ(x, εv))‖2R,

(61)
and the orthogonality condition of Eq. (60) leads to

∀ϕ ∈ L0,m(Y,R) : 〈〈R(x) − Φm(ĥ(x, εv)),ϕ(ĥ(x, εv))〉〉R = 0. (62)

In addition, as Rm is linearly closed, one obtains the useful statement

∀R̃ ∈ Rm : L (R) � E

(
(R(x) − PRm (R(x))) ⊗ R̃

)
= 0. (63)

or rephrased ∀ϕ ∈ L0,m(Y,R):

L (R) � E

(
(R(x) − Φm(ĥ(x, εv))) ⊗ ϕ(ĥ(x, εv))

)
= 0. (64)

There is a unique minimiser PRm (R(x)) ∈ Rm to the problem in Eq. (58), which
satisfies the orthogonality condition Eq. (60), which is equivalent to the the strong
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orthogonality condition Eq. (63). The minimiser is unique as an element of Rm, but
the mapping Φm ∈ L0,m(Y,R) in Eq. (61) may not necessarily be. It also holds that

‖PRm (R(x))‖2R = ‖R(x)‖2R − ‖R(x) − PRm (R(x))‖2R. (65)

Additionally, one has

‖PRm (R(x))‖2R ≤ ‖PR∞(R(x))‖2R. (66)

Proof It is all already contained in Theorems 10 and 11 when applied to Rm . The
stability condition Eq. (66) is due to the simple fact that Rm ⊆ R∞.

From the consistency condition, the stability Eq. (66) as shown in Theorem 15,
and Céa’s lemma, one immediately obtains:

Theorem 16 For all RVs R(x) ∈ R, the sequence Rm := PRm (R(x)) converges to
R∞ := PR∞(R(x)):

lim
m→∞ ‖R∞ − Rm‖2R = 0. (67)

Proof Well-posedness is a direct consequence ofTheorem11.As the PRm are orthog-
onal projections onto the subspacesRm , their norms are hence all equal to unity—a
stability condition, as shown in Eq. (66). Application of Céa’s lemma then directly
yields Eq. (67).

3.3.1 Approximation by Polynomials

Here we choose the subspaces of polynomials up to degree m for the purpose of
approximation, i.e.

Rm := span{ϕ | ϕ(ĥ(x, εv)) ∈ R, ϕ ∈ Pm(Y,X )},

where Pm(Y,X ) ⊂ L0(Y,X ) are the polynomials of degree at most m on Y with
values in X . We may write ψm ∈ Pm(Y,X ) as

ψm(y) := H0 + H1 y + · · · + Hk y∨k + · · · + Hm y∨m, (68)

where Hk ∈ L k
s (Y,R) is symmetric and k-linear; and y∨k :=

k︷ ︸︸ ︷
y ∨ . . . ∨ y := Sym

(y⊗k) is the symmetric tensor product of the y’s taken k times with itself. Let us
remark here that the form of Eq. (68), given in monomials, is numerically not a
good form—except for very low m—and straightforward use in computations is
not recommended. The relation Eq. (68) could be re-written in some orthogonal
polynomials—or in fact any other system of multi-variate functions; this generalisa-
tion will be considered in Sect. 3.3.3. For the sake of conceptual simplicity, we stay
with Eq. (68) and then have that for any RV R(x) ∈ R
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ΦR,m(R(x)) := ψR,m(y) := H0 + · · · + · · · + Hm y∨m =: ΨR,m( H0 , . . . , Hm )

(69)
the optimal map in Eq. (59) from Theorem 15—where we have added an index R to
indicate that it depends on the RV R(x), but for simplicity omitted this index on the
coefficient maps Hk —is a functionΨR,m of the coefficient maps Hk . The stationarity
or orthogonality condition Eq. (64) can then be written in terms of the Hk . We need
the following abbreviations for any k, � ∈ N0 and p ∈ R, v ∈ Y :

〈p ⊗ v∨k〉 := E
(

p ⊗ v∨k
) =

∫
Ω

p(ω) ⊗ v(ω)∨k
P(dω)

and
Hk 〈y∨(�+k)〉 := 〈y∨� ∨ ( Hk y∨k)〉 = E

(
y∨� ∨ ( Hk y∨k)

)
.

We may then characterise the Hk in the following way:

Theorem 17 With ΨR,m from Eq. (69), the stationarity condition Eq. (64) becomes,
by the chain rule, for any m ∈ N0

∀� = 0, . . . , m :
m∑

k=0

Hk 〈y∨(�+k)〉 = 〈R(x) ⊗ y∨�〉. (70)

The Hankel operator matrix (〈y∨(�+k)〉)�,k in the linear equations (70) is symmetric
and positive semi-definite, hence the system Eq. (70) has a solution, unique in case
the operator matrix is actually definite.

Proof The relation Eq. (70) is the result of straightforward application of the chain
rule to the Eq. (64).

The symmetry of the operator matrix is obvious—the 〈y∨k〉 are the coefficients—
and positive semi-definiteness follows easily from the fact that it is the gradient of
the functional in Eq. (61), which is convex.

Observe that the operator matrix is independent of the RV R(x) for which the com-
putation is performed. Only the right hand side is influenced by R(x).

The system of operator equations Eq. (70) may be written in more detailed form
as:

� = 0 : H0 · · · + Hk 〈y∨k〉 · · · + Hm 〈y∨m〉 = 〈R(x)〉,
� = 1 : H0 〈y〉 · · · + Hk 〈y∨(1+k)〉 · · · + Hm 〈y∨(1+m)〉 = 〈R(x) ⊗ y〉,
... . . .

...
...

� = m : H0 〈y∨m〉 · · · + Hk 〈y∨(k+m)〉 · · · + Hm 〈y∨2m〉 = 〈R(x) ⊗ y∨m〉.

Using ‘symbolic index’ notation a la Penrose—the readermay just think of indices
in a finite dimensional space with orthonormal basis—the system Eq. (70) can be
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given yet another form: denote in symbolic index notation R(x) = (Rı ), y = (yj ),
and Hk = ( Hk ı

j1...jk
), then Eq. (70) becomes, with the use of the Einstein convention

of summation (a tensor contraction) over repeated indices, and with the symmetry
explicitly indicated:

∀� = 0, . . . , m; j1 ≤ · · · ≤ j� ≤ · · · ≤ j�+k ≤ · · · ≤ j�+m :
〈yj1 · · · yj�〉 ( H0 ı ) + · · · + 〈yj1 · · · yj�+1 · · · yj�+k 〉 ( Hk ı

j�+1...j�+k
)

+ · · · + 〈yj1 · · · yj�+1 · · · yj�+m 〉 ( Hm ı
j�+1...j�+m

) = 〈Rı yj1 · · · yj�〉. (71)

We see in this representation that the matrix does not depend on ı—it is identically
block diagonal after appropriate reordering, which makes the solution of Eq. (70) or
Eq. (71) much easier.

Some special cases are: for m = 0—constant functions. One does not use any
information from the measurement—and from Eq. (70) or Eq. (71) one has

ΦR,0(R(x)) = ψR,0(y) = H0 = 〈R〉 = E (R) = R̄.

Without any information, the conditional expectation is equal to the unconditional
expectation. The update corresponding to Eq. (42)—actually Eq. (44) as we are
approximating the map ΦR by gR = ΦR,0—then becomes Ra ≈ Ra,0 = R(x f ) =
R f , as R∞ = 0 in this case; the assimilated quantity stays equal to the forecast. This
was to be expected, is not of much practical use, but is a consistency check.

The case m = 1 in Eq. (70) or Eq. (71) is more interesting, allowing up to linear
terms:

H0 + H1 〈y〉 = 〈R(x)〉 = R̄

H0 〈y〉 + H1 〈y ∨ y〉 = 〈R(x) ⊗ y〉.

Remembering that CRy = 〈R(x) ⊗ y〉 − 〈R〉 ⊗ 〈y〉 and analogous for Cyy , one
obtains by tensor multiplication with 〈R(x)〉 and symbolic Gaussian elimination

H0 = 〈R〉 − H1 〈y〉 = R̄ − H1 ȳ

H1 (〈y ∨ y〉 − 〈y〉 ∨ 〈y〉) = H1 Cyy = 〈R(x) ⊗ y〉 − 〈R〉 ⊗ 〈y〉 = CRy .

This gives

H1 = CRyC−1
yy =: K (72)

H0 = R̄ − K ȳ. (73)

where K in Eq. (72) is the well-known Kalman gain operator [17], so that finally

ΦR,1(R(x)) = ψR,1(y) = H0 + H1 y = R̄ + CRyC−1
yy (y − ȳ) = R̄ + K (y − ȳ).

(74)
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The update corresponding to Eq. (42)—again actually Eq. (44) as we are approx-
imating the map ΦR by gR = ΦR,1—then becomes

Ra ≈ Ra,1 = R(x f ) + (
(R̄ + K (ŷ − ȳ)) − (R̄ + K (y(x f ) − ȳ))

)
= R f + K (ŷ − y(x f )) = R f + R∞,1. (75)

This may be called a linear Bayesian update (LBU), and is similar to the ‘Bayes lin-
ear’ approach [11]. It is important to see Eq. (75) as a symbolic expression, especially
the inverse C−1

yy indicated in Eq. (74) should not really be computed, especially when
Cyy is ill-conditioned or close to singular. The inverse can in that case be replaced by
the pseudo-inverse, or rather the computation of K , which is in linear algebra terms
a least-squares approximation, should be done with orthogonal transformations and
not by elimination. We will not dwell on these well-known matters here. It is also
obvious that the constant term in Eq. (74)—or even Eq. (69) for that matter—is of no
consequence for the update filter, as it cancels out.

The case m = 2 can still be solved symbolically, the system to be solved is from
Eq. (70) or Eq. (71):

H0 + H1 〈y〉 + H2 〈y∨2〉 = 〈R〉
H0 〈y〉 + H1 〈y∨2〉 + H2 〈y∨3〉 = 〈R ⊗ y〉
H0 〈y∨2〉 + H1 〈y∨3〉 + H2 〈y∨4〉 = 〈R ⊗ y∨2〉.

After some symbolic elimination steps one obtains

H0 + H1 〈y〉 + H2 〈y∨2〉 = R̄

0 + H1 + H2 F = K

0 + 0 + H2 G = E,

with the Kalman gain operator K ∈ (R ⊗ Y)∗ from Eq. (72), the third order tensors
F ∈ (Y⊗3)∗ given in Eq. (76), andE ∈ (R ⊗ Y⊗2)∗ given in Eq. (77), and the fourth
order tensor G ∈ (Y⊗4)∗ given in Eq. (78):

F = (〈y∨3〉 − 〈y∨2〉 ∨ 〈y〉) C−1
yy , (76)

E = 〈R ⊗ y∨2〉 − R̄ ⊗ 〈y∨2〉 − K
(〈y∨3〉 − 〈y〉 ∨ 〈y∨2〉) (77)

G = (〈y∨4〉 − 〈y∨2〉∨2) − F · (〈y∨3〉 − 〈y〉 ∨ 〈y∨2〉) , (78)

where the single central dot ‘·’ denotes as usual a contraction over the appropriate
indices, and a colon ‘:’ a double contraction. From this one easily obtains the solution

H2 = E : G−1 (79)

H1 = K − H2 F (80)
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H0 = R̄ − (K − H1 )ȳ − H2 〈y∨2〉 = R̄ − H2 (F · ȳ + 〈y∨2〉). (81)

The update corresponding to Eq. (42)—again actually Eq. (44) as we are approx-
imating the map ΦR now by gR = ΦR,2—then becomes

Ra ≈ Ra,2 = R(x f ) + (
( H2 ŷ∨2 + H1 ŷ) − ( H2 y(x f )

∨2 + H1 y(x f ))
)

= R f + (
E : G−1 : (

ŷ∨2 − y(x f )
∨2) + (K − E : G−1 : F)(ŷ − y(x f ))

)
= R f + R∞,2. (82)

This may be called a quadratic Bayesian update (QBU), and it is clearly an extension
of Eq. (75).

3.3.2 The Gauss-Markov-Kalman Filter

The m = 1 version of Theorem 17 is well-known for the special case R(x) := x ,
and we rephrase this generalisation of the well-known Gauss-Markov theorem from
[20, Chap.4.6, Theorem 3]:

Proposition 18 The update xa,1, minimising ‖x f − ·‖2X over all elements generated
by affine mappings (the up to m = 1 case of Theorem 17) of the measurement ŷ with
predicted measurement y(x f ) is given

xa,1 = x f + K (ŷ − y(x f )), (83)

where the operator K is the Kalman gain from Eqs. (72) and (75).

The Eq. (83) is reminiscent—actually an extension—not only of the well-known
Gauss-Markov theorem [20], but also of theKalmanfilter [17, 30], so thatwe propose
to call Eq. (83) the Gauss-Markov-Kalman (GMK) filter (GMKF).

We point out that xa,1, x f , and y(x f ) are RVs, i.e. Eq. (83) is an equation in
X = X ⊗ S between RVs, whereas the traditional Kalman filter is an equation in
X . If the mean is taken in Eq. (83), one obtains the familiar Kalman filter formula
[17] for the update of the mean, and onemay show [28] that Eq. (83) also contains the
Kalman update for the covariance by computing Eq. (47) for this case, which gives
the familiar result of Kalman, i.e. the Kalman filter is a low-order part of Eq. (83).

The computational strategy for a typical filter is now to replace and approximate
the—only abstractly given—computation of xa Eq. (45) by the practically possible
calculation of xa,m as in Eq. (69). Thismeans that we approximate xa by xa,m by using
Xm ⊆ X∞, and rely on Theorem 16. This corresponds to some loss of information
from the measurement as one uses a smaller subspace for the projection, but yields
a manageable computation. If the assumptions of Theorem 16 are satisfied, then
one can expect for m large enough that the terms in Eq. (69) converge to zero, thus
providing an error indicator on when a sufficient accuracy has been reached.



Inverse Problems in a Bayesian Setting 273

3.3.3 Approximation by General Functions

The derivation in Sect. 3.3.1 was for the special case where polynomials are used to
find a subspace L0,m(Y,X ) for the approximation. It had the advantage of showing
the connection to the ‘Bayes linear’ approach [11], to the Gauss-Markov theorem
[20], and to the Kalman filter [17, 30], giving in Eq. (83) of Proposition 18 the
Gauss-Markov-Kalman filter (GMKF).

But for a more general approach not limited to polynomials, we proceed similarly
as in Eq. (56), but now concretely assume a set of linearly independent functions, not
necessarily orthonormal,

B := {ψα | α ∈ A, ψα ∈ L0(Y); ψα(ĥ(x, εv)) ∈ S} ⊆ S∞ (84)

where A is some countable index set. Assume now that

S∞ = span B,

i.e. B is a Hilbert basis of S∞, again a consistency condition.
Denote byAk a finite part ofA of cardinality k, such thatAk ⊂ A� for k < � and⋃

k Ak = A, and set
Rk := R ⊗ Sk ⊆ R∞, (85)

where the finite dimensional and hence closed subspaces Sk are given by

Sk := span{ψα | α ∈ Ak, ψα ∈ B} ⊆ S. (86)

Observe that the spaces Rk from Eq. (85) are linearly closed according to Proposi-
tion 4.

Theorems 15 and 16 apply in this case. For a RV R(x) ∈ R wemake the following
‘ansatz’ for the optimal map ΦR,k such that PRk (R(x)) = ΦR,k(ĥ(x, εv)):

ΦR,k(y) =
∑
α∈Ak

vαψα(y), (87)

with as yet unknown coefficients vα ∈ R. This is a normal Galerkin-ansatz, and
Eq. (64) from Theorem 15 can be used to determine these coefficients.

Take Zk := R
Ak with canonical basis {eα | α ∈ Ak}, and let

Gk := (〈ψα(y(x)),ψβ(y(x))〉S)α,β∈Ak ∈ L (Zk)

be the symmetric positive definite Gram matrix of the basis of Sk ; also set

v :=
∑
α∈Ak

eα ⊗ vα ∈ Zk ⊗ R,
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r :=
∑
α∈Ak

eα ⊗ E (ψα(y(x))R(x)) ∈ Zk ⊗ R.

Theorem 19 For any k ∈ N, the coefficients {vα}α∈Ak of the optimal map ΦR,k in
Eq. (87) are given by the unique solution of the Galerkin equation

(Gk ⊗ IR)v = r . (88)

It has the formal solution

v = (Gk ⊗ IR)−1r = (G−1
k ⊗ IR)r ∈ Zk ⊗ R.

Proof The Galerkin Eq. (88) is a simple consequence of Eq. (64) from Theorem 15.
As the Grammatrix Gk and the identity IR onR are positive definite, so is the tensor
operator (Gk ⊗ IR), with inverse (G−1

k ⊗ IR).

As in Eq. (71), the block structure of the equations is clearly visible. Hence, to solve
Eq. (88), one only has to deal with the ‘small’ matrix Gn .

The update corresponding to Eq. (42)—again actually Eq. (44) as we are approx-
imating the map ΦR now by a new map gR = ΦR,k—then becomes

Ra ≈ Ra,k = R(x f ) + (
ΦR,k(ŷ) − ΦR,k(y(x f ))

) = R f + R∞,k . (89)

This may be called a ‘general Bayesian update’. Applying Eq. (89) now again to the
special case R(x) := x , one obtains a possibly nonlinear filter based on the basis B:

xa ≈ xa,k = x f + (
Φx,k(ŷ) − Φx,k(y(x f ))

) = x f + x∞,k . (90)

In case the Y∗ ⊆ span{ψα}α∈Ak , i.e. the basis generates all the linear functions on
Y , this is a true extension of the Kalman filter.

4 Numerical Realisation

In the instances where we want to employ the theory detailed in the previous Sects. 2
and 3, the spaces U and Q and hence X are usually infinite dimensional, as is
the space S = L2(Ω). For an actual computation they all have to be discretised or
approximated by finite dimensional subspaces.

In our examples we will chose finite element discretisations for U , Q, and hence
X , and corresponding subspaces. Hence let XM := span {�m : m = 1, . . . , M} ⊂
X be an M-dimensional subspace with basis {�m}M

m=1. An element of XM will be
represented by the vector x = [x1, . . . , x M ]T ∈ R

M such that
∑M

m=1 xm�m ∈ XM .
To avoid a profusion of notations, the corresponding random vector in R

M ⊗ S—a
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mapping Ω → R
M ∼= XM—will also be denoted by x, as the meaning will be clear

from the context.
The norm ‖x‖M one has to take onRM results from the inner product 〈x1|x2〉M :=

xT
1 Qx2 with Q = (〈�m |�n〉X ), the Grammatrix of the basis. We will later choose an

orthonormal basis, so that Q = I is the identitymatrix. Similarly, onXM = R
M ⊗ S

the inner product is 〈〈x1|x2〉〉XM := E (〈x1|x2〉M).
The space of possible measurements Y can usually be taken to be finite dimen-

sional, otherwise we take similarly as before a R-dimensional subspace YR , whose
elements are similarly represented by a vector of coefficients y ∈ R

R . For the dis-
cretised version of the RV y(x f ) = y(ĥ(x f , εv)) we will often use the shorthand
y f := y(x f ) = y(ĥ(x f , εv)).

As some of the most efficient ways of doing the update are linear filters based on
the general idea of orthogonal decomposition—Eq. (42) in Sect. 3.2—applied to the
mean—Eq. (45) in Sect. 3.2.1—but in the modified form Eq. (44) where g is a linear
map, and especially the optimal linear map of the Gauss-Markov-Kalman (GMK)
filter Eq. (83), we start from Proposition 18 in Sect. 3.3.2. For other approximations
the finite dimensional discretisation would be largely analogous.

On RM , representing XM , the Kalman gain operator in Proposition 18 in Eq. (83)
becomes a matrix K ∈ R

M×R . Then the update corresponding to Eq. (83) is

xa = x f + K ( ŷ − y(x f )), with K = C xy C−1
yy . (91)

Here the covariances are C xy := E
(
x̃ f ỹ(x f )

)
, and similarly for C yy . Often the

measurement error v in the measurement model h̃(x f , εv) = h(x f ) + εSy(x f )v is
independent of x—actually uncorrelated would be sufficient, i.e. C xv = 0—hence,
assuming that Sy does not depend on x , C xx = Chh + ε2Sy Cvv ST

y and C xy = C xh ,
where h = h(x f ).

It is important to emphasise that the theory presented in the foregoing Sects. 2 and
3 is independent of any discretisation of the underlying spaces. But one usually can
still not numerically compute with objects like x ∈ XM = R

M ⊗ S, as S = L2(Ω)

is normally an infinite dimensional space, and has to be discretised. One well-known
possibility are samples, i.e. the RV x(ω) is represented by its value at certain points
ωz , and the points usually come from some quadrature rule. The well-known Monte
Carlo (MC) method uses random samples, the quasi-Monte Carlo (QMC) method
uses low discrepancy samples, and other rules like sparse grids (Smolyak rule) are
possible. Using MC samples in the context of the linear update Eq. (83) is known as
the Ensemble Kalman Filter (EnKF), see [34] for a general overview in this context,
and [6, 7] for a thorough description and analysis. This method is conceptually
fairly simple and is currently a favourite for problems where the computation of
the predicted measurement y(x f (ωz)) is difficult or expensive. It needs far fewer
samples for meaningful results than MCMC, but on the other hand it uses the linear
approximation inherent in Eq. (91).

Here we want to use so-called functional or spectral approximations, so similarly
as for XM , we pick a finite set of linearly independent vectors in S. As S = L2(Ω),
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these abstract vectors are in fact RVs with finite variance. Here we will use the best
known example, namely Wiener’s polynomial chaos expansion (PCE) as basis [10,
14, 15, 22, 24, 43], this allows us to use Eq. (91) without sampling, see [26, 28, 29,
34, 35], and also [1, 37].

The PCE is an expansion inmultivariateHermite polynomials [10, 14, 15, 22, 24];
we denote by Hα(θ) = ∏

k∈N hαk (θk) ∈ S the multivariate polynomial in standard
and independent Gaussian RVs θ(ω) = (θ1(ω), . . . , θk(ω), . . . )k∈N, where h j is the
usual uni-variate Hermite polynomial, and α = (α1, . . . ,αk, . . . )k∈N ∈ N := N

(N)
0

is a multi-index of generally infinite length but with only finitely many entries non-
zero. As h0 ≡ 1, the infinite product is effectively finite and always well-defined.

The Cameron-Martin theorem assures us [14, 15, 22] that the set of these polyno-
mials is dense inS = L2(Ω), and in fact {Hα/

√
(α!)}α∈N is a complete orthonormal

system (CONS), where α! := ∏
k∈N(αk !) is the product of the individual factorials,

also well-defined as except for finitely many k one has αk ! = 0! = 1. So one may
write x(ω) = ∑

α∈N xα Hα(θ(ω)) with xα ∈ R
M , and similarly for y and all other

RVs. In this way the RVs are expressed as functions of other, known RVs θ—hence
the name functional approximation—and not through samples.

The space S may now be discretised by taking a finite subset J ⊂ N of size
J = |J |, and setting SJ = span{Hα : α ∈ J } ⊂ S. The orthogonal projection PJ

onto SJ is then simply

PJ : XM ⊗ S �
∑
α∈N

xα Hα �→
∑
α∈J

xα Hα ∈ XM ⊗ SJ . (92)

Taking Eq. (91), one may rewrite it as

xa = x f + K ( ŷ − y f ) (93)

=
∑
α∈N

xα
a Hα(θ) =

∑
α∈N

(
xα

f + K
(

ŷα − yα
f

))
Hα(θ). (94)

Observe, that as the measurement or observation ŷ is a constant, one has in Eq. (94)
that only ŷ0 = ŷ, all other coefficients ŷα = 0 for α �= 0.

Projecting both sides of Eq. (94) onto XM ⊗ SJ is very simple and results in

∑
α∈J

qα
a Hα =

∑
α∈J

(
qα

f + K
(
zα − yα

f

))
Hα. (95)

Obviously the projection PJ commutes with the Kalman operator K and hence with
its finite dimensional analogue K . One may actually concisely write Eq. (95) as

PJ xa = PJ x f + PJ K ( ŷ − y f ) = PJ x f + K (PJ ŷ − PJ y f ). (96)

Elements of the discretised space XM,J = XM ⊗ SJ ⊂ X thus may be writ-
ten fully expanded as

∑M
m=1

∑
α∈J xα,m�m Hα. The tensor representation is x :=
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∑
α∈J xα ⊗ eα, where the {eα} are the canonical basis in R

J , and may be used to
express Eq. (95) or Eq. (96) succinctly as

xa = x f + K(ŷ − y f ), (97)

again an equation between the tensor representations of some RVs, where K =
K ⊗ I , with K from Eq. (91). Hence the update equation is naturally in a tensorised
form. This is how the update can finally be computed in the PCE representation
without any sampling [26, 28, 34, 35]. Analogous statements hold for the forms of
the update Eq. (68) with higher order terms n > 1, and do not have to be repeated
here. Let us remark that these updates go very seamlessly with very efficient methods
for sparse or low-rank approximation of tensors, c.f. the monograph [12] and the
literature therein. These methods are PCE-forms of the Bayesian update, and in
particular the Eq. (97), because of its formal affinity to the Kalman filter (KF), may
be called the polynomial chaos expansion based Kalman filter (PCEKF).

It remains to say how to compute the terms Hk in the update equation Eq. (68)—or
rather the terms in the defining Eq. (70) in Theorem 17—in this approach. Given the
PCEs of theRVs, this is actually quite simple as anymoment can be computed directly
from the PCE [24, 28, 35]. A typical term 〈y∨k〉 = 〈Sym(y⊗k)〉 = Sym(〈y⊗k〉) in
the operator matrix Eq. (70), where y = ∑

α yα Hα(θ), may be computed through

〈 y⊗k〉 = E

(
k⊗

i=1

∑
αi

(
yαi Hαi

))

= E

( ∑
α1,...,αk

k⊗
i=1

yαi

k∏
i=1

Hαi

)
=

∑
α1,...,αk

k⊗
i=1

yαi E

(
k∏

i=1

Hαi

)
(98)

Ashere the Hα arepolynomials, the last expectation inEq. (98) is finally over products
of powers of pairwise independent normalised Gaussian variables, which actually
may be done analytically [14, 15, 22]. But some simplifications come from remem-
bering that y0 = E ( y) = ȳ, H0 ≡ 1, the orthogonality relation 〈Hα|Hβ〉 = δα,β α!,
and that the Hermite polynomials are an algebra. Hence Hα Hβ = ∑

γ cγ
α,β Hγ ,

where the structure coefficients cγ
α,β are known analytically [22, 24, 28, 35].

Similarly, for a RV R = R(x), for a typical right-hand-side term 〈R(x) ⊗ y∨k〉 =
〈R ⊗ Sym(y⊗k)〉 in Eq. (70) with R = ∑

β Rβ Hβ(θ) one has

〈R ⊗ Sym(y⊗k)〉 =
∑

β,α1,...,αk

R ⊗ Sym

(
k⊗

i=1

yαi

)
E

(
Hβ

k∏
i=1

Hαi

)
. (99)

As these relations may seem a bit involved—they are actually just an intricate com-
bination of known terms—we show here how simple they become for the case of the
covariance needed in the linear update formula Eq. (83) or rather Eq. (91):
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C yy = ∑
α∈N ,α �=0

(α!) yα ⊗ yα ≈
∑

α∈J ,α �=0

(α!) yα ⊗ yα, (100)

C xy = ∑
α∈N ,α �=0

(α!) xα ⊗ yα ≈
∑

α∈J ,α �=0

(α!) xα ⊗ yα. (101)

Looking for example at Eq. (91) and our setup as explained in Sect. 1, we see
that the coefficients of y(x f ) = ∑

α yα
f Hα have to be computed from those of

x f = ∑
β xβ

f Hβ. This propagation of uncertainty through the system is known as
uncertainty quantification (UQ), e.g. [24] and the references therein. For the sake of
brevity, we will not touch further on this subject, which nevertheless is the bedrock
on which the whole computational procedure is built.

We next concentrate in Sect. 5 on examples of updating with ψm for the case
m = 1 in Eq. (68), whereas in Sect. 6 an example for the case m = 2 in Eq. (68) will
be shown.

5 The Linear Bayesian Update

All the examples in this Sect. 5 have been computed with the case m = 1 of up to
linear terms in Eq. (68), i.e. this is the LBU with PCEKF. As the traditional Kalman
filter is highly geared towards Gaussian distributions [17], and also its Monte Carlo
variant EnKF which was mentioned in Sect. 4 tilts towards Gaussianity, we start
with a case—already described in [28]—where the quantity to be identified has
a strongly non-Gaussian distribution, shown in black—the ‘truth’—in Fig. 1. The
operator describing the system is the identity—we compute the quantity directly, but
there is a Gaussian measurement error. The ‘truth’ was represented as a 12th degree
PCE. We use the methods as described in Sect. 4, and here in particular the Eqs. (91)
and (97), the PCEKF.

Fig. 1 Pdfs for linear
Bayesian update (LBU),
from [28]
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Fig. 2 Time evolution of Lorenz-84 state and uncertainty with the LBU, from [28]

The update is repeated several times (here ten times) with new measurements—
see Fig. 1. The task is here to identify the distribution labelled as ‘truth’ with ten
updates of N samples (where N = 10, 100, 1000 was used), and we start with a very
broad Gaussian prior (in blue). Here we see the ability of the polynomial based LBU,
the PCEKF, to identify highly non-Gaussian distributions, the posterior is shown in
red and the pdf estimated from the samples in green; for further details see [28].

The next example is also from [28], where the system is thewell-knownLorenz-84
chaotic model, a system of three nonlinear ordinary differential equations operating
in the chaotic regime. This is truly an example along the description of Eqs. (5) and
(9) in Sect. 2.1. Remember that this was originally a model to describe the evolution
of some amplitudes of a spherical harmonic expansion of variables describing world
climate. As the original scaling of the variables has been kept, the time axis in Fig. 2
is in days. Every ten days a noisy measurement is performed and the state description
is updated. In between the state description evolves according to the chaotic dynamic
of the system. One may observe from Fig. 2 how the uncertainty—the width of the
distribution as given by the quantile lines—shrinks every time a measurement is
performed, and then increases again due to the chaotic and hence noisy dynamics.
Of course, we did not really measure world climate, but rather simulated the ‘truth’
as well, i.e. a virtual experiment, like the others to follow.More details may be found
in [28] and the references therein.

From [35] we take the example shown in Fig. 3, a linear stationary diffusion equa-
tion on an L-shaped plane domain as alluded to in Sect. 1. The diffusion coefficient
κ in Eq. (2) is to be identified. As argued in [34], it is better to work with q = logκ
as the diffusion coefficient has to be positive, but the results are shown in terms of κ.
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Fig. 3 Diffusion domain,
from [35]
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One possible realisation of the diffusion coefficient is shown in Fig. 4. More
realistically, one should assume that κ is a symmetric positive definite tensor field,
unless one knows that the diffusion is isotropic. Also in this case one should do the
updating on the logarithm. For the sake of simplicity we stay with the scalar case, as
there is no principal novelty in the non-isotropic case. The virtual experiments use
different right-hand-sides f in Eq. (2), and the measurement is the observation of the
solution u averaged over little patches.

Fig. 4 Conductivity field, from [35]
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Fig. 5 Convergence of
identification, from [35]
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Fig. 6 Prior and posterior,
from [35]
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In Fig. 5 onemay observe the decrease of the errorwith successive updates, but due
to measurement error and insufficient information from just a few patches, the curves
level off, leaving some residual uncertainty. The pdfs of the diffusion coefficient at
some point in the domain before and after the updating is shown in Fig. 6, the ‘true’
value at that point was κ = 2. Further details can be found in [35].

6 The Nonlinear Bayesian Update

In this section we want to show a computation with the case m = 2 of up to quadratic
terms in ψm in Eq. (68). We go back to the example of the chaotic Lorentz-84 [28]
model already shown in Sect. 5, from Eqs. (5) and (9) in Sect. 2.1. This kind of exper-
iment has several advantages but at the same time also challenges for identification
procedures: it has only a three-dimensional state space, these are the uncertain ‘para-
meters’, i.e. x = (x1, x2, x3) = (x, y, z) ∈ X = R

3, the corresponding operator A
resp. f in the abstract Eq. (1) resp. Eq. (5) is sufficiently nonlinear to make the prob-
lem difficult, and adding to this we operate the equation in its chaotic regime, so that
new uncertainty from the numerical computation is added between measurements.
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Fig. 7 Linear measurement: Comparison posterior for LBU (m = 1) and QBU (m = 2) after one
update

As a first set of experiments we take the measurement operator to be linear in x,
i.e. we can observe the whole state directly. At the moment we consider updates after
each day—whereas in Sect. 5 the updates were performed every 10days. The update
is done once with the linear Bayesian update (LBU), and again with a quadratic
nonlinear BU (QBU) with m = 2. The results for the posterior pdfs are given in
Fig. 7, where the linear update is dotted in blue, and the full red line is the quadratic
QBU; there is hardly any difference between the two, most probably indicating that
the LBU is already very accurate.

As the differences between LBU and QBU were small—we take this as an
indication that the LBU is not too inaccurate an approximation to the conditional
expectation—we change the experiment and take a nonlinear measurement function,
which is now cubic: h(x) = (x3, y3, z3). We now observe larger differences between
LBU and QBU.

These differences in posterior pdfs after one update may be gleaned from Fig. 8,
and they are indeed larger than in the linear case Fig. 7, due to the strongly nonlinear
measurement operator, showing that the QBU may provide much more accurate
tracking of the state, especially for non-linear observation operators.

Fig. 8 Cubic measurement: Comparison posterior for LBU (m = 1) and QBU (m = 2) after one
update
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Fig. 9 Deformations, from [34, 36]

As a last example we take a strongly nonlinear and also non-smooth situa-
tion, namely elasto-plasticity with linear hardening and large deformations and a
Kirchhoff-St. Venant elastic material law [34, 36]. This example is known as Cook’s
membrane, and is shown in Fig. 9 with the undeformed mesh (initial), the deformed
one obtained by computing with average values of the elasticity and plasticity mater-
ial constants (deterministic), and finally the average result from a stochastic forward
calculation of the probabilisticmodel (stochastic), which is described by a variational
inequality [36].

The shear modulus G, a random field and not a deterministic value in this case,
has to be identified, which is made more difficult by the non-smooth non-linearity. In
Fig. 10 one may see the ‘true’ distribution at one point in the domain in an unbroken
black line, with the mode—the maximum of the pdf—marked by a black cross on
the abscissa, whereas the prior is shown in a dotted blue line. The pdf of the LBU
is shown in an unbroken red line, with its mode marked by a red cross, and the pdf
of the QBU is shown in a broken purple line with its mode marked by an asterisk.
Again we see a difference between the LBU and the QBU. But here a curious thing
happens; the mode of the LBU-posterior is actually closer to the mode of the ‘truth’
than the mode of the QBU-posterior. This means that somehow the QBU takes the
priormore into account than the LBU,which is a kind of overshootingwhich has been
observed at other occasions. On the other hand the pdf of the QBU is narrower—has
less uncertainty—than the pdf of the LBU.
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Fig. 10 LBU and QBU for
the shear modulus
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7 Conclusion

The connection between inverse problems and uncertainty quantification was shown.
An abstractmodel of a systemwas introduced, togetherwith ameasurement operator,
which provides a possibility to predict—in a probabilistic sense—a measurement.
The framework chosen is that of Bayesian analysis, where uncertain quantities are
modelled as randomvariables.New information leads to an update of the probabilistic
description via Bayes’s rule.

After elaborating on the—often not well-known—connection between condi-
tional probabilities as in Bayes’s rule and conditional expectation, we set out to
compute and—necessarily—approximate the conditional expectation. As a polyno-
mial approximationwas chosen, there is the choice up towhich degree one should go.
The case with up to linear terms—the linear Bayesian update (LBU)—is best known
and intimately connected with the well-known Kalman filter. We call this update the
Gauss-Markov-Kalman filter. In addition, we show how to compute approximations
of higher order, in particular the quadratic Bayesian update (QBU).

There are several possibilities on how one may choose a numerical realisation of
these theoretical concepts, and we decided on functional or spectral approximations.
It turns out that this approach goes very well with recent very efficient approximation
methods building on separated or so-called low-rank tensor approximations.

Starting with the linear Bayesian update, a series of examples of increasing com-
plexity is shown. The method works well in all cases. Some examples are then
chosen to show the nonlinear or rather quadratic Bayesian update, where we go
up to quadratic terms. A series of experiments is chosen with different measurement
operators, which have quite a marked influence on whether the linear and quadratic
update are close to each other.
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Heterogeneous Materials Models, Coupled
Mechanics-Probability Problems and
Energetically Optimal Model Reduction

Rainer Niekamp, Martin Krosche and Adnan Ibrahimbegović

Abstract The main scientific goal of this chapter is to provide the sound
theoretical basis and an efficient multi-scale computational algorithm for the descrip-
tion of irreversible behaviour of heterogeneous materials, through coupling of non-
linear mechanics and probability. Although we focus upon concrete as the most fre-
quently used construction material, the proposed methodology applies to a number
of other compositematerials of interest for practical applications. The first main chal-
lenge pertains to providing the sound formulation for coupled nonlinear mechanics-
probability computations for the prediction of failure and durability of a massive
concrete structure. We show that the multi-scale interpretation of damage mecha-
nisms can provide the most meaningful probability density description by identify-
ing a limited number of the sources of uncertainty for material parameters governing
the failure phenomena, which can be described in terms of random fields with a
probability description computed from finer scales. The second main challenge is
in providing an efficient solution procedure to this coupled mechanics-probability
problem, which is done by using the Spectral Stochastic Finite Element Method
(SSFEM). In particular, we seek to circumvent the main disadvantage of the classical
SSFEM regarding the Curse ofDimension, where the coupledmechanics-probability
problem dimension grows with a number of random fields. The proposed techniques
include Low-Rank approaches and solution space reductions, with a rank-one update
scheme based upon the variational formulation of the problem. However, since the
resulting Low-Rank representation is not necessarily an optimal one with respect to
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the minimal energy at the given rank, we further extend this scheme to provide an
optional solution space adaptation and the possibility to compute the energetically
optimal reduced basis.

1 Introduction

One of the main issues for concrete structures is their integrity and durability under
long term operational loading and degradation, with crack growth under mechanical
loading or temperature change. Our objective is to develop methods capable of a
detailed representation of crack propagation leading to localised failure phenomena,
which can significantly reduce the structure durability. The second main issue stems
from the fact that the localized failure is very sensitive to material heterogeneities,
and that one needs to quantify the corresponding uncertainty propagation. Special
attention is given tomassive structures with irreplaceable components, which require
the most detailed description of localised failure with non-negligible contributions
from consideration of both fracture process zone mechanisms and macro cracks.
This calls for the development of a heterogeneous multi-scale method capable of
dealing with evolution and interaction of failure mechanisms defined at different
scales through a consistent mechanical and stochastic coupling. In particular, we
need: (i) the meso-scale distinguishing between aggregate and cement paste; (ii) the
macro-scale of concrete with refined damage and/or plasticity criteria capable of
better using information from finer scales than standard phenomenological models
and (iii) the efficient computational procedure for uncertainty propagation by solving
the corresponding coupled mechanics-probability problem.

The computational modelling of localised mechanical failure mechanisms of het-
erogeneous materials, focusing on the technologically important example of con-
crete, has received much attention in recent literature. While at the structural scale
one may view concrete as a homogeneous medium (e.g. [4, 17]), this is not possible
at the scale of localised failure, where concrete is heterogeneous overmany scales. To
be able to computationally model the behaviour of such amaterial, a multi-scale (e.g.
[9]) approach is in order. As the details on the small scales are uncertain, they will be
modelled probabilistically, i.e. as a randommedium (see e.g. [11]). One cah choose to
start with an existing probabilistic model on the micro-scale (1µm–1mm) to define
the bonding of the cement paste with the aggregate on the meso-scale (e.g. [18])
(1mm–10cm) including the inherent uncertainty, by mapping the uncertainty of the
micro-model through uncertainty quantification techniques to the material properties
of the meso-scale. Added to this will be the geometric randomness of the placement,
size, and shape of the aggregate (see e.g. [3]). Here is where the localised failure
mechanisms will be modelled computationally. Asmacroscopic cracks develop from
fracture process zones (FPZ), this has effects on the macro-scale behaviour (10cm–
1m), where a non-local interaction occurs with the reinforcing steel. From here one
may reach the structural scale of e.g. a whole bridge or dam (1–100m). The scale-
transition to span is fully comparable to nano-mechanics challenge, but with a shifts.
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Thus, at each scale transition there is a simplification (model reduction) of both the
mechanical behaviour and the stochastic description (reduction in the number of
random variables used) in order to make the whole model computationally feasible.
While the mechanical conditions at a scale transition are to match displacements and
forces (stresses) as well as energy and dissipation, the probabilistic scale transition
can use Bayesian identification methods to achieve the best match (e.g. [16]). The
uncertainty from a heterogeneous material may be viewed as an epistemic uncer-
tainty, and some researchers favour deterministic methods for their description. Here
we stay with the probabilistic modelling, as this allows the incorporation of new
knowledge via Bayesian methods resulting with updating of probability distribution
at coarse scales.

The multi-scale coupling of highly nonlinear failure mechanisms and probability
has not yet been fully accomplished successfully within a predictive model, and
is thus the main goal of this work. We propose an original multi-scale probability
approach for dealing with failure mechanics, with the fine and coarse scale properties
defined in terms of random fields whose probability distribution is obtained as the
result of uncertainty propagation from the finer scales (see [6]). The final outcome
is a stochastic model for localised failure behaviour which is also able to reflect
and quantify the inherent uncertainties. The model of this kind can better perform
in structural scale testing and validation against existing test results. Moreover, the
data from both material and structural scale experiments can be used in a Bayesian
identification process at various scales.

The main challenge in probabilistic multi-scale analysis is how to account for the
uncertainty propagation through two or more different spatial scales. There is a large
and growing body of literature on how to provide uncertainty propagation at one
scale by means of Monte Carlo or stochastic spectral approximations (collocation,
projection, Galerkin), the vast majority of publications is restricted to linear or mildly
nonlinear problems, or limited to random parameters rather than random fields when
quantifying uncertainties in the inelastic behaviour of materials.

Highly nonlinear mechanical processes such as plasticity and softening have just
started being addressed with properties as random fields, and there are advances
in adding stochastics in a multi-scale framework (e.g. [6]). The computational cost
of multi-scale probabilistic nonlinear analysis is enormous, and ways for reduced
order models (ROM) have been always important. One possibility are POD or PGD
approaches or truncated iterations, which are all a form of low-rank tensor approxi-
mations. A more physically inspired way is in [6], which retains the interpretation of
a reduced model enforcing its compatibility with standard computational formats of
inelastic models (e.g. [8]). Themain challenge that remains is how to combine proba-
bilistic approaches with a multi-scale method with more general evolution equations
for internal variables and still be able to retain the computational efficiency (see
e.g. [6]). Especially as regards to cracking, the identification of suitable probability
distributions is necessary for the description of large deviations which are far from
equilibrium.
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2 Theoretical Formulation Heterogeneous
Multiscale Method

2.1 State-of-the-art Developments

Even in a deterministic setting, propagating information from fine to coarse scales
in nonlinear multi-scale models for failure mechanics of concrete remains a formi-
dable challenge. Two families of methods have emerged. The first method is based
on classical homogenisation procedures, but applied to nonlinear analysis where the
homogenised stress or homogenised tangent modulus (or rather energy) are con-
structed from finer (micro) scales by imposing either the average stress or average
strain from the coarser (macro) scale. The finite element implementation is reduced to
computing the homogenised stress andmodulus at the level of eachGauss integration
point. The second method is used for the case where scale separation does not hold
(due to an insufficiently large difference between macro and micro scales), which
does not allow classical homogenisation. For such a case, the class ical homogeni-
sation results would obtain the apparent properties only and not sharp bounds. The
corresponding replacement of homogenization for such a case has been proposed in
[9], and its finite element formulation and software implementation have been stud-
ied in [13], respectively. The main idea of this method is to use a mesh in an element,
and to store the results of finer scale computations at the level of the particular finite
element in terms of its internal force vector or its tangent stiffness matrix. The subse-
quent developments of this method (e.g. [7]) have shown the benefit of using discrete
elements for representing the fine scales and corresponding inelastic failure mech-
anisms, allowing to describe the material heterogeneities (e.g. [3]). Several other
recent works (e.g. [18]) have pointed out the influence of material heterogeneities
on concrete failure modes, and thus the superiority of the multi-scale approach pro-
viding muchmore predictive interpretation from classical phenomenological models
(e.g. [17]). The goal of this work is to carry on further with these developments based
upon the synergy of two domains in order to provide a sound probability distribution
for these heterogeneities and quantify the corresponding uncertainty propagation,
thus seeking to increase the predictive capabilities of our models.

Modelling of localised failure mechanisms for concrete leading to softening
response represent a very significant challenge for ensuring the convergence of
finite element computations. The standard finite element models cannot deliver a
mesh invariant response, and a number of remedies have proposed over last 20years
(e.g. see [8]) for a summary. The X-FEM method, which is dominant nowadays,
is related to representing the crack-induced displacement discontinuity in the finite
element mesh by using a Heaviside function. Our contribution to that domain [8] was
to further generalise this model for the case where the fracture process zone is not
negligible, where we combine the standard plasticity or damage (representingmicro-
cracks) with a displacement discontinuity (representing macro-cracks). The method
is known as Embedded Discontinuity or ED-FEM, since the discontinuity does not
have to be connected from element to element.We have shownmore recently that the
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damage model of this kind can be applied to capture micro-cracks and macro-cracks
in concrete, and that its parameters can be identified from heterogeneous stress fields
such as in a 3-point bending test. More recently we have further combined the ED-
FEM model for concrete with X-FEM model for bond-slip [5]. This is a multi-scale
approach where the macro-scale of concrete is combined with non-local scale for
bond-slip connecting all the slips along a particular reinforcement bar. In this manner
we provide a sound interpretation of crack spacing and opening in reinforced con-
crete, with respect to previous unsuccessful attempts based upon phenomenological
models of reinforced concrete. There still remains the challenge to further extend
such a multi-scale approach, in connecting more than two-scales but rather spanning
in the most meaningful manner all the scales from micro (cement RVE), over meso
(concrete RVE) to macro (reinforced concrete X-RVE).

2.2 Meso-Scale Model of Material Heterogeneities
With deterministic Material Parameters

At meso-scale, we consider concrete a heterogeneous material built of two different
phases and we assume that each of these phases is described by the inclusions posi-
tions and shapes (see Fig. 1). These two phases introduce two types of discontinuities
(see [7]), namely a discontinuity of the strain field and a discontinuity of the displace-
ment field, both of them lying at the same position (prescribed by the known physical
interface between the two phases). Meshing is one of the major issue in modelling
heterogeneous materials. Namely, trying to provide exact representation of different
phases and their complex shapes might frequently lead to a quite high number of
degrees-of-freedom and also quite distorted meshes. Moreover, the meshing process
itself might consist in a complex and time-consuming algorithm. We show here how

Fig. 1 (i) Three phase representation of concrete meso-structure: aggregate (green), cement matrix
(blue) and interface (red); (ii) Representation of failure mechanisms in uni-axial tension tests indi-
cating broken links
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to employ so-called structured mesh, which employs regular element shaped in order
to simplify the meshing process for two-phase heterogeneous materials. Hence, the
structured meshes are not constraint by the physical interfaces between the different
phases, which can ‘cross’ any of these regular elements. The key ingredients to pro-
vide such mesh are field discontinuities introduced inside the elements in which the
physical interfaces are present. These kinematics enhancements might be developed
within the framework of the Incompatible Modes Method (see [8]), and require a
dedicated solution algorithm which is illustrated next. Using the strain discontinuity
permits the proper strain representation of two different sets of elastic properties
corresponding to each phase. Using the displacement discontinuity leads to the pos-
sibility to model de-bonding or any failure mechanism at the interface. For the latter,
two failure mechanisms are considered: one corresponding to the opening of the
crack in the normal direction and the second one to the sliding in the tangent direc-
tion. Both of these discontinuities are introduced by using the Incompatible Modes
Method. The key advantage of this method is to lead to a constant number of global
degrees-of-freedom in a structured mesh.

For clarity we address a 2D case, where both of those kinematics enhancements
are added on top of the standard CST element (Fig. 2). Hence this element is divided
into two parts by introducing an interface whose position is obtained by the intersec-
tion of the chosen structured mesh with the inclusions placed within the structure.
The domain Ωe of the standard 3-node constant stress triangle (CST) element is
thus divided into two sub-domains Ωe−

and Ωe+
. One of the most important and

well-known features of strong (displacement field) discontinuities models is their
capability to be independent from the mesh, even in localized failure. This ability is
due to the fact that the dissipation process occurs on a line (i.e. the interface) and not
in the whole volume. However, different elastic-plastic or elastic-damage behavior
laws, with positive hardening, might be chosen for each the two sub-domains split
by the interface, with different elastic properties (see Fig. 1). Often the material para-
meters of interface are given the same properties as the cement paste, but this is not
the only possible choice.

It is worth to note that the strain field discontinuity is always present, due to the
different elastic constants between the two phases. On the other hand, the displace-
ment field discontinuity needs to be activate only for representing a localized failure
mechanism between the two phases that activates according to some chosen failure
criterion.

Fig. 2 (i) Structured mesh
representation of two-phase
interface; (ii) Two phase 3
node triangular element,
interface position and
element sub-domains with
phase I and II
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Fig. 3 Incompatible modes
corresponding to
displacements (a) and strain
(b) discontinuities for CST
element

Introducing those discontinuities requires to enhance the kinematics of the element
by using two incompatible modes. Thus, the displacements field might be written as
follows:

uh(x, t) =
3∑

a=1

Na(x)da(t) + Mα
I (x)αI(t) + Mβ

I (x)βI(t) + MII(x)αII(t) (1)

This expression contains four terms: the first one provides a constant strain field inside
the element (as the classical CST element does). The second and third terms both
represent jumps in the displacements field, in the normal and the tangential direc-
tions. Finally, the last part provides the strain field discontinuity. All the strain and
displacement enhancements are limited to a single element only; the latter provides
much better basis for constructing robust operator split analysis from the X-FEM
method. The shape functions MI(x) for the first incompatible mode (see Fig. 3a)
corresponding to the displacements field discontinuity for both normal and tangent
directions might be written as:

MI(x) = HΓS (x) −
∑

a∈Ω+
Na(x) (2)

where Na represents the normal CST shape functions element and HΓS the Heaviside
function placed at the interface position. The shape function MII(x) which provides
the jump in the strain field is shown on Fig. 3b.

Considering the displacement interpolation (1), the strain fieldmight bewritten as:

εh(x, t) = Bd + GIIαII + (nT ⊗ n)Gα
Ir
αI + 1

2

[
nT ⊗ m + mT ⊗ n

]
Gβ

Ir
βI (3)

where B(x) are the well known CST element strain-displacement matrix (e.g. see
[20]) and GIr (x) contains the derivatives of the first incompatible mode. Finally, in
(4), GII is the matrix containing the derivatives of the second shape function MII(x)

Deriving from the IncompatibleModesMethod for the two kind of discontinuities
added on the top of the classical CST element (strain field and displacement field),
the total system to be solve consists of four equilibrium equations, with (4a) as the
global equilibrium equation and (4b–d) are corresponding to the local ones.
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(4)

It is worth to remind that Eq. (4b, c) have to be solved only in case of activation of
the displacement discontinuity in the normal or the tangent direction. The consistent
linearization of this set of equations leads to the linear system, in the matrix form:

⎡
⎢⎢⎢⎣

Ke Fα,e
Ir

Fβ,e
Ir

Fe
II

Fα,eT

Ir
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I Fe
H Fα,e

S
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Ir
FeT
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I Fβ,e

S

Fe,T
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S He
II
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(k)

n+1

⎛
⎜⎜⎝

Δd
ΔαI

ΔβI

ΔαII

⎞
⎟⎟⎠

(k+1)

n+1

=

⎛
⎜⎜⎝

−r
−hα,e

I

−hβ,e
I−he

II

⎞
⎟⎟⎠

(k)

n+1

(5)

The expanded form for each block can be found in [7].
The operator split strategy consists in first solving the local equations of system

(4) (namely equations (4b–d)) at each numerical integration point and for fixed global
degrees-of-freedom values. The second step is then to carry out static condensations.
This leads to the effective stiffness matrix and and thus the last step is to solve the
global system of equations (4) to obtain the updated value of the displacement field
d(k+1)

n+1 = d(k)
n+1 + Δd(k+1)

n+1 .

K̂(k)
n+1 · Δd(k+1)

n+1 = −r (k)
n+1 (6)

One of the key point to note is that the total number of global unknowns remains the
same as with the standard CST element which is the major advantage of Incompati-
ble Modes Method. Simple illustrative examples dealing with the use of structured
meshes might be found in [3]).

Here we aim to make a comparison between structured and unstructured meshes
in order to assess the capability for both cases to get very close results. For this we
consider a porous material made of a perfectly plastic matrix with circular voids
of different sizes. The first case (Fig. 4a) presents an exact mesh obtained by using
the software GMSH. Obviously in this case each element contains only one phase
(namely the matrix or the “voids”). Moreover several elements are strongly distorted
and they exhibit quite different sizes. For these two reasons the stiffness matrix is
poorly conditioned. The second case (Fig. 4b) relies on a structured mesh which is
based on a regular grid. In this case, the elements needs to represent two phases
to model the inclusions and we adopt the strategy presented at the beginning of
this Section. Figure4 shows the axial displacement contour plot (with an amplifica-
tion factor of 100) for both unstructured and structured meshes. Figure5 plots the
corresponding macroscopic axial reactions displacement curve.

We show that both cases provide the results in a very close agreement, but with
a gain of computing time by a factor of 20 in favor of the structured mesh strategy.



Heterogeneous Materials Models, Coupled Mechanics-Probability Problems … 295

Time = 1.00E+00

 4.17E-04
 8.33E-04
 1.25E-03
 1.67E-03
 2.08E-03
 2.50E-03
 2.92E-03
 3.33E-03
 3.75E-03
 4.17E-03
 4.58E-03

 0.00E+00

 5.00E-03

 DISPLACEMENT 1

Min  =  0.00E+00
Max =  5.00E-03

Time = 1.00E+00 Time = 1.00E+00

 4.17E-04
 8.34E-04
 1.25E-03
 1.67E-03
 2.08E-03
 2.50E-03
 2.92E-03
 3.33E-03
 3.75E-03
 4.17E-03
 4.58E-03

 0.00E+00

 5.00E-03

 DISPLACEMENT 1

Min  =  0.00E+00
Max =  5.00E-03

Time = 1.00E+00

(a) (b)

Fig. 4 Longitudinal displacement contour plot corresponding to max.load for adaptive mesh (a)
and regular mesh (b)

Fig. 5 Reactions sum versus
displacement curve (black
unstructured mesh, red
structured mesh)
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This advantage is mainly due to the tangent matrix optimal conditioning. Combined
to a meshing process which is much easier, the structured mesh way appears to be a
good and accurate method tomodel heterogeneous material, especially in the context
of many realizations that have to be analyzed. This last point is one of the key issues
considering probabilistic aspects for heterogeneous materials.

2.3 Probability Aspects of Inelastic Localized Failure
for Heterogenous Materials

At finer scale than the macroscopic one, cement-based materials obviously appear
to be heterogeneous. As an example, at this meso-scale mortars are made of three
phases: two solid ones (the grains and the cement paste) and voids. It is well-known
from experimental data that macroscopic properties of such materials are strongly
linked to the (at least) meso-scale constituents. Moreover, considering a constant
porosity, the voids shapes and positions also have a major influence on the macro-
scopic properties, especially for small specimens. This key point is linked to the
statistical RVE size whose size has to be determined along a prescribed macroscopic
error tolerance.
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To further illustrate these ides, we consider herein a porous material, typical of
mortars at a meso-scale level. At this scale we assume that such material is character-
ized by a two-phase micro-structure with a stiff phase and a soft phase. The former
will be referred as the “matrix” and the latter is supposed to represent the voids or
inclusions. Depending on the number of inclusions, their sizes and positions, the
non-linear macroscopic response of such a material will vary. In other words, the
macroscopic properties, such as Young’s modulus or the yield stress, will be influ-
enced by themeso-scale geometry. Our goals here are: first to determine the statistical
RVE size corresponding to such a geometry (morphological RVE); second to carry
out numerically the variations of the macroscopic characteristics upon the inclusion
sizes and positions. The key point for this study is that the variability introduced
into the model is restricted to the specimen geometry only, whereas the mechanical
characteristics of the two phases are assumed to be deterministic. To be more pre-
cise, the matrix phase is supposed to be accurately modelled by an elastic-perfectly
plastic model based upon the Drucker-Prager criterion. The voids are represented by
a simple linear isotropic elasticity model with very small Young’s modulus value. In
the following sections we first begin to describe the Gibbs point process, leading to
the realizations of the meso-structures.We also show an example of one typical mesh
obtained and the corresponding macroscopic response to a tension test. We focus on
the notion of Statistical RVE leading to a volume element large enough to assure that
its macroscopic properties are assumed to be deterministic, up to a certain tolerance.

We further present the methodology leading to such a RVE definition and discuss
the corresponding procedure, with the size corresponding to a rectangular domain
(3.6 × 1.8 cm2). The meso-structure geometry of such domain is here supposed to
be accurately modelled by a Gibbs point process. Such point process is built on a two
steps scheme. The first one is the determination of the inclusions number according
to a Poisson law. The second step consists in the determination of the inclusion
centers coordinates as well as the radius for each inclusion. While such a Gibbs
process already naturally leads to a set of non-intersecting inclusions, we applied
an even more restrictive criterion, by choosing the minimal distance between the
inclusions (here equal to 2mm). Moreover, in order to be consistent with the mesh
size and the model features, the inclusions radius are bounded between 1 and 3mm.
Figure6 shows a particular realization of the meso-structure and the corresponding

Fig. 6 Meso-structure geometry (a) and corresponding structured mesh (b)



Heterogeneous Materials Models, Coupled Mechanics-Probability Problems … 297

structured mesh. We can notice that each inclusion is correctly modelled by a set of
discontinuities without any major distortion.

Since the material parameters are chosen to be deterministic, the statistics of
the macroscopic response depends on the meso-structure geometry only, defined
by the voids volume fraction and consequently the voids radius and centers’ posi-
tions. Thus the macroscopic problem is stochastic and requires stochastic integration
method which is presented in the next section. Two approaches can be drawn to find
a probability distribution describing a random phenomena. The first one, so-called
frequentist approach, is based on statistical tests, like the χ2 test for the Gaussian
probability law. Results of these tests are error margins that evaluate how the out-
comes of the given random phenomena fit with respect to a given probability law.
The second, so-called Bayesian approach, is trying to use all the available informa-
tion along with the maximum entropy theory in order to provide the most general
probability law for a given state of information; thus, to fully describe this proba-
bility law, the statistical moments of different orders have to be computed. In this
work, the second approach is chosen. The macroscopic material properties we tend
to characterize are all defined on the positive real line. Moreover we assume that
they can be given a mean value and a finite standard deviation. On the basic of such
information, the maximum entropy theory leads to the most general probability law
for this case in terms of the log-normal distribution, which is fully described by its
computed mean value and standard deviation.

Thus, the final product of the proposed approach will be a coupled mechanics-
probability problem, which is posed at the coarse scale. The fine scale computational
results are here used to build the corresponding probability distribution of thematerial
parameters for the coarse scale model defined as random fields. Needless to say, for
a massive structures the size of such coupled mechanics-probability model is still
very large. The solution are presently available only for 1D case [6], representative
of the simple tension test. Thus, we need to provide an efficient solution procedure
with suitable reduction method for more general case, which is discussed next.

3 Stochastic Fields Coupling

The classical form of the SSFEM uses only two parameters to describe the solution
space: the dimension and the order of the spanning basis functions. For instance
properties of the numerical model itself are not taken into account. By using such a
classical choice the size of the solution space grows exponentially when increasing
the two mentioned parameters. This undesired property is known as the Curse of
Dimension in the literature.

Low-Rank representations and adaptive solution space techniques have been
developed recently for a practical applicability of the SSFEM. In [2] a Low-Rank
approximation of the numerical problem to be considered is done on a geometri-
cally coarse mesh to derive afterwards few basis functions to represent the solution
efficiently. These basis functions are transferred to the geometrically fine discre-
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tised numerical problem to be solved actually. A spectral decomposition of the sto-
chastic solution field is derived from the expectation of the minimal total potential
energy principle in [14, 15]. This approach is referred to as the Generalized Spectral
Decomposition (GSD) method. In this context three different numerical algorithms
are presented to solve the resulting numerical system. In [12, 19] a Low-Rank repre-
sentation of the solution field is directly substituted in the fully discretised stationary
diffusion equation with stochastic parameter. Higher rank matrices arise due to the
composition of the system matrix itself. This rank increase is reduced by applying
a truncated Singular Value Decomposition (SVD). This is done so to say on the fly
meaning inside each iteration step of the numerical scheme to solve the problem. A
solution space reduction in a preprocessing step is proposed in [1]. Here the geomet-
rical degrees of freedom are virtually reduced to one. The resulting purely stochastic
model—named zero-dimensional model—is used to extract the best basis functions
(from a predefined set of basis functions) for the actual numerical problem to be
solved.

In general the idea of a Low-Rank approximation is orthogonal to a solution space
reduction. In contrast to [14, 15] we derive directly a rank-one update scheme from
the minimal total potential energy principle. The resulting algorithm is comparable
to a special form of the so called restarting algorithm of the GSD, see [14, 15].
However our algorithm in its standard form does not necessarily produce an optimal
Low-Rank representation concerning theminimal energy at the given rank.Weextend
the algorithm to an optional adaptive solution space technique and a rank reduction
technique to get an optimal Low-Rank decomposition.

3.1 Heterogeneous Multiscale Model

We consider here a stochastic heterogeneous multiscale model of concrete with
uncertain material parameters including microcracks. In order to describe the mech-
anism of degradation of concrete more than spatial scale is needed. This requires the
development of the Heterogeneous Multiscale Method, capable of dealing with dif-
ferent scales simultaneously within a single computation in order to deliver reliable
predictions. The source of damage has to be described here on a mesoscale where
mirocracks can be resolved and their the spatial distribution analysed. A propagation
to the macroscale of this uncertainty is then needed for the stochastic simulation of
a massive structure.

In order to give the ideas in a simple notation we consider the linear stationary
groundwater flow equation (syntactically equal to the stationary diffusion equation)

∇xκ(x, ω)∇xu(x, ω) = f (x) (7)

with the uncertain hydraulic head u and the uncertain hydraulic conductivity κ , each
of both represented by a stochastic field defined onto the geometrical variable x and
the elementary eventω. The source term f and the boundary conditions (not specified
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explicitly here) are considered to be deterministic. κ is assumed to be non-Gaussian
distributed and is available in a truncated Karhunen-Loève Expansion (KLE), a spec-
tral decomposition of the form κ(x, ω) ≈ κ̄(x) + ∑m

i=1

√
λi κi (x) ξi (ω). κ̄ is the

expected value of κ . λi ’s and κi ’s are the i’th largest eigenvalues and corresponding
eigenfunctions of the Fredholm integral of the 2nd kind with the covariance function
of κ as kernel. The random variables {ξi (ω)}i∈{1,...,m} are uncorrelated, centered and
of unit variance. These variables are discretised each by a truncated so called Polyno-
mial Chaos Expansion (PCE) in orthogonal Hermite polynomials {ψγ }γ∈I . defined
onto a Gaussian distributed random vector θ : ξi (ω) ≈ ∑

α∈I . ξi,α ψα(θ(ω)).
Deriving the weak form of Eq.7 and using truncated PCEs for the test and the

ansatz functions as well as an analogous geometrical discretisation leads to the fully
discretised system to be solved. It is given by

l∑
i=0

K i U Δi = F ⇐⇒ A (U) = F (8)

with [Δi ]α,β := ∑
γ∈I .

√
λi ξi,γ [Δγ ]α,β and [Δγ ]α,β := 〈ψαψβψγ 〉. The triple

product 〈ψαψβψγ 〉 marks the expected value of the product of the ansatz func-
tion ψα , the test function ψβ and the basis function ψγ of the discretised parameter
κ . K i is the stiffness matrix, in which the material parameter is declared as the i th
eigenvector (FEM discretised eigenfunction) of the KLE of κ . We refer to [10] for
more details.

3.2 Variational Low-Rank Approach with Successive
Rank-1 Update (VLR-SR1U)

We derive a Low-Rank approach with successive rank-1 update based on a minimi-
sation of the expectation of the total potential energy of a system discretised by the
SSFEM.The demonstrative system is the one inEq.8. The corresponding scheme and
its algorithm are referred as Variational Low-Rank Approach with Successive Rank-1
Update (VLR-SR1U). It comes out, that the proposed algorithm is equivalent to the
restarting algorithm of the Generalized Spectral Decomposition (GSD) method in
[14, 15] with the configuration of stepwise rank-1 updates and without an orthonor-
malisation and global updating. As known the resultant Low-Rank approximations
are suboptimal and may be optimised in additional steps.

For linear operators—like in the considered case of the stationary groundwater
flow problem—we introduce a special handling for more efficiency. This does not
lead to ill-posed realisations of the material parameter, which may happen otherwise.
Furthermore we present a stand-alone optimisation algorithm VLR-OPT used to find
the optimal solution of an approximation of fixed rank. It is derived by applying
VLR-SR1U onto projections of the original system. The algorithm is combined in
different manner with the VLR-SR1U scheme to solve the original system. Addition-
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ally a stand-alone algorithm is proposed to estimate, whether the introduction of new
stochastic basis functionsmay improve the representation of a current approximation
of the solution essentially. The algorithm considers the residual in a solution space
artificially enlarged by the new stochastic basis functions. We denote the algorithm
as Residual-Based Solution Space Estimator (RBSSE). RBSSE is combined with the
VLR-SR1U scheme for an adaptive construction of the solution space.

The basic VLR-SR1U algorithm, the optimisation algorithm VLR-OPT and the
estimator algorithm RBBSE are discussed in Sects. 3.3, 3.4 and 3.5. The last two
algorithms are also combined with the first one.

3.3 Basic VLR-SR1U

We derive the VLR-SR1U scheme demonstratively for the system in Eq.8. The
corresponding minimisation problem is given by

E (U) := 1

2
A (U) : U − F : U −→ min . (9)

This formulation is also identified as the variational formulation in the literature. The
inner product A : B := ∑

i, j Ai j Bi j with A, B ∈ R
n1×n2 is known as the Frobenius

one. The Low-Rank approach is introduced by the ansatz

U = U− + ghT . (10)

It marks a rank-1 update of a given solution U− by the tensor product of the geo-
metrical update vector g and the stochastic update vector hT . The differentiation of
the operator E with respect to U leads to

∂E (U)

∂U
(δU) = (A (U) − F)︸ ︷︷ ︸

=:R(U)

: δU . (11)

Then U can be perturbed by varying once g and once h:

∂U
∂ g

(δg) = δghT

∂U
∂h

(δh) = gδhT .
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The derivatives of E with respect to g and h are given by

∂E (U)

∂ g
(δg) = RU : (δghT ) = δgT RU h

∂E (U)

∂h
(δh) = RU : (gδhT ) = gT RUδh

(12)

with RU := R(U). Now theminimisation problemcan be rewritten as ∂E (U)

∂ g (δg) ≡ 0

and ∂E (U)

∂h (δh) ≡ 0. Due to a possible arbitrary choice of δg and δh it follows:

RU h = 0

gT RU = 0.
(13)

To obtain an iterative scheme the solution U can be substituted by the ansatz Ur+1 =
Ur + gr+1hT

r+1 with rank r . Then Eq.13 ends up in the coupled system to be solved:

G gr+1 = f with G :=
l∑

i=0

hT
r+1Δi hr+1︸ ︷︷ ︸

=:di

K i , f := (F − A (Ur )) hr+1,

H hr+1 = f̄ with H :=
l∑

i=0

gT
r+1K i gr+1︸ ︷︷ ︸

=:ki

Δi , f̄ := (F − A (Ur ))
T gr+1.

(14)
Surely Ur is given in its Low-Rank representation.

When the stiffness matrix K i = K (κi ) is linear with respect to its material κi ,
then matrix G can be expressed as

G =
l∑

i=0

di K (κi ) = K (�l
i=0diκi ).

This reduces the computational costs. Furthermore the sum of the material reali-
sations is positive. In contrast a single material realisation is in general indefinite.
The latter could become problematic, when deterministic solvers are involved, which
permits only positivematerial parameters to confirm the requirementwell-posedness.

The Algorithm 1 describes the basic VLR-SR1U scheme. The coupled system
in 14 is numerically solved by an alternating iterative process. The initial guess is
chosen randomly. The increment of the rank is done inside the first loop located
in code lines 3–22. The alternating iterative process is realised by the second loop
located in the code lines 10–15. The current rank-1 vectors are normalised to keep
them in bounds.
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Algorithm 1 VLR-SR1U
1: H ← ∅, G ← ∅
2: while not accurate enough and max. number of iterations not reached do
3: h ← rand, g ← 0
4: while not accurate enough and max. number of iterations not reached do
5: h ← normalise h
6: g ← solve G g = f

7: g ← normalise g
8: h ← solve H h = f̄
9: end while
10: G ← [G, g]
11: H ← [H, h]
12: end while

3.4 VLR-OPT: Optimisation of Given Low-Rank
Approximation

In this section a stand-alone optimisation algorithm VLR-OPT is introduced to
optimise a given Low Rank approximation. It is combined to VLR-SR1U in two dis-
tinct configurations to optimise the suboptimal solution of VLR-SR1U: VLR-SR1U-
OPT(1) and VLR-SR1U-OPT(2). In the first configuration VLR-OPT is applied on
the fly i.e. during each rank update of VLR-SR1U. The second configuration applies
VLR-OPT in a post-processing step to optimise the Low Rank approximation at the
final rank.

VLR-OPT uses rank-1 update solvers for a subspace iteration. At this the rank
itself is not touched. The initial idea of VLR-OPT is to apply the algorithm of VLR-
SR1U to get rank-1 updates for G and H :

G = G− + gvT and H = H− + hwT . (15)

Therefore the original Eq. 8 is projected onto H :

A (U)H = F H ⇐⇒ AH(G) = F H .

Analogously to Sect. 3.3 the application of the mentioned algorithm onto this pro-
jection leads to the following coupled system to be solved:

G H gr+1 = fH with G H :=
l∑

i=0

vT
r+1HT Δi Hvr+1︸ ︷︷ ︸

=:d̄i ∈R

K i , fH := (
F H − AH (G−)

)
vr+1,

V vr+1 = f̄H with V :=
l∑

i=0

gT
r+1K i gr+1︸ ︷︷ ︸

=:ki ∈R

HT Δi H, f̄H := (
F H − AH (G−)

)T gr+1.

(16)
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The projection of the original equation onto G is considered likewise:

GTA (U) = GT F ⇐⇒ AG(H) = FG .

The corresponding coupled system is given by

H G hr+1 = fG with H G :=
l∑

i=0

wT
r+1GT K i Gwr+1︸ ︷︷ ︸

=:k̄i ∈R

Δi , fH :=
(

FT
G − A T

G (H−)
)

wr+1,

W wr+1 = f̄G with W :=
l∑

i=0

hT
r+1Δi hr+1︸ ︷︷ ︸

=:di ∈R

GT K i G, f̄G :=
(

FT
G − A T

G (H−)
)T

hr+1.

(17)
These coupled systems are solved alternating to obtain rank-1 updates for G and H .
The rank-1 updates are tensorially multiplied and added to the current solution. In
this manner all ranks are updated and the rank itself is maintained.

VLR-OPT is described by Algorithm 2. The input is given by the Low Rank

approximation Ũ = G̃ H̃
T
. The energy minimisations located in code lines 3 and 5

denote to solve the coupled systems 16 and 17. These two lines indicate the rank-1
update solvers described in Algorithms 3 and 4. The tensor product and the additions
located in lines 4 and 6 are performed to update the rank vectors globally.

Algorithm 2 VLR-OPT

1: G ← G̃, H ← H̃
2: while not accurate enough and max. number of iterations not reached do
3: g, v ← minimise E ((G + gvT )HT )

4: G ← G + gvT

5: h,w ← minimise E (G(H + hwT )T )

6: H ← H + hwT

7: end while

Algorithm 3 minimise E ((G + gvT )HT )

1: g ← rand, v ← 0
2: while not accurate enough and max. number of iterations not reached do
3: g ← normalise g
4: v ← solve V v = f̄H
5: v ← normalise v

6: g ← solve G H g = fH
7: end while
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Algorithm 4 minimise E (G(H + hwT )T )

1: h ← rand, w ← 0
2: while not accurate enough and max. number of iterations not reached do
3: h ← normalise h
4: w ← solve W w = f̄G
5: w ← normalise w

6: h ← solve H G h = fG
7: end while

3.5 RBSSE: Adaptive Construction of the Stochastic
Solution Space

The Low Rank approach reveals a possibility to reduce the computational costs and
memory usage. Advantages of the same kinds can be additionally obtained, if a small
solution space can be found representing the solution well. Therefore the solution
space is adaptively constructed in this work. Relevant stochastic basis functions are
selected from a pool of stochastic basis functions by a stand-alone residual-based
indicator already introduced as the RBSSE. It is embedded inside the VLR-SR1U
scheme with or without the optimisation mentioned in Sect. 3.4. A mutual error
control between the rank update of VLR-SR1U and the solution space adaption by
RBSSE may be utilised.

RBSSE uses the residual of the discretised problem with respect to the current
approximation of the solution. It is explained in the following by means of the fully
discretised groundwater flow problem (see Eq.8). The corresponding residual is
defined as

R := F −
l∑

i=0

K i U Δi . (18)

The set of the current stochastic basis functions {ψα}α∈I c (|{ψα}α∈I c | = Ns is now
extended by additional ones {ψα+}α+∈I c+ (|{ψα+}α+∈I c+ | = N +

s ). The influence of
these new stochastic basis functions onto the quality of the solution is estimated by
extending the residual artificially. Therefore each stochastic matrix Δi results in:

Δ⊕
i :=

(
Δi Δ�

i

Δ�
i Δ+

i

)
.

Matrix Δ+
i captures only the additional basis functions. The matrices Δ�

i and
Δ�

i = (Δ�
i )

T describe the coupling between the current and the additional basis func-
tions. The newmatrices are defined by [Δ+

i ]α+,β+ := ∑
γ∈I c

√
λi ξi,γ [Δγ ]α+,β+ and

[Δ�
i ]α+,β := ∑

γ∈I c

√
λi ξi,γ [Δγ ]α+,β . Matrix Δ⊕

i allows to consider the extended
residual:

R⊕ := F⊕ −
l∑

i=0

K i U⊕ Δ⊕
i .
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The coefficients of the extended solution U⊕ associated with the added basis func-
tions are set to zero:U⊕ := [U, 0]with a Nx-by-N +

s zeromatrix0. The extended right-
hand side (RHS) F⊕ results from the concatenation of F and F+: F⊕ := [F, F+]. F+

is the RHS corresponding to the added basis functions. The added zero coefficients
of the extended solution allows to simplify the computation of R⊕:

R⊕ := F⊕ −
l∑

i=0

K i U Δ�
i with Δ�

i := [Δi ,Δ
�
i ].

R⊕ may be considered as the concatenation of R and R+: R⊕ = [R, R+]. R+ is the
residual associatedwith the additional basis functions: R+ := F+ − ∑l

i=0 K i U Δ�
i ,

R+ ∈ R
Nx×N+

s .
R+ is used to obtain a reasonable indicator to rate the basis functions with respect

to their ability to describe the solution. For it R+ is translated to the corresponding
unit of measurement. The best possible translation is specified by the indicator i:

i := (A+)−1 r+ with A+ :=
l∑

i=0

Δ+
i ⊗ K i . (19)

r+ ∈ R
Nx ·N+

s is the proper vectorisation of matrix R+. In practice the symmetric
matrix (A+)−1 is not computed. Instead of using (A+)−1 we use the matrix J :=
(diag(A+))−1 knownas the Jacobi pre-conditioner in the context of pre-conditioning.
The matrix operator diag maintains only the diagonal entries while the other entries
are set to zero. The corresponding indicator is specified by iJ := J r+. The indicator
can be also as a matrix operator IJ := Ĵ � R+. Ĵ is the proper matrix notation of
the diagonal of J ; the operator � marks the component-wise matrix product.

For each stochastic basis function the indicator IJ contains as many values as
geometrical degrees of freedom. These values are reduced to one value by the L2-
norm to rate the corresponding stochastic basis function. This is reflected by function
r(IJ ) := [ ||(IJ )1||L2 , . . . , ||(IJ )N+

s
||L2 ] ∈ R

N+
s ; (IJ ) j means the j’s column of

matrix IJ .
Algorithm 5 describes the RBSSE. The Jacobi pre-conditioner may be replaced

by another one. Also the reduction function r may be chosen differently. The list of
required input arguments is not complete, but shows the essential arguments. The
selection of the relevant additional stochastic basis functions in code line 7 provides
another option: e.g. 10%of the best rated additional basis functions could be selected.

The RBSSE is now applied inside the Algorithm 1 of the VLR-SR1U scheme to
obtain an adaptive construction of the solution space. The resulting Algorithm 6 is
referred as VLR-SR1U-ADAPT. The input arguments are given by an initial set I c

of already accepted stochastic basis functions and a set I c+
of potentially relevant

stochastic basis functions. I c+
may be also generated on the fly, that means it may

vary in the rank iterations. That makes sense, as otherwise the rating of the set of
additional stochastic basis functions may become too memory and time consuming.
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Algorithm 5 RBSSE

Require: I c, I c+
, F+

1: {Δ�
i }i∈{0,...,l} ← construct( I c,I c+

)

2: {Δ+
i }i∈{0,...,l} ← construct( I c+

)
3: R+ ← compute( {Δ�

i }i∈{0,...,l}, F+ )

4: Ĵ ← compute( {Δ+
i }i∈{0,...,l} )

5: IĴ ← compute( J, R+ )
6: r(IJ ) ← reduce( IJ )
7: I + ← select( r(IJ ) )
8: return I +

The set I + contains the current best rated stochastic basis functions, which are
added to the current setI c in the next rank iteration (see code line 5). The adaptive
construction of the solution space is presented in the code lines 4–7. The system
update in code line 6 means to extend the entire system to the added stochastic basis
functions. The rating and selection of the additional stochastic basis functions happen
19–21. Optionally the VLR-OPT Algorithm 2 can be involved also e.g. in code line
18 for an OPT(1) configuration or after code line 22 for an OPT(2) configuration. A
combination is also demonstrated in Sect. 3.6.3.

An interplay between the residuals R and R+ may be observed. ||R|| > ||R+||
(with a suitable matrix norm || · ||) may identify, that more iterations are reasonable
to reach more accuracy before adapting the stochastic solution space. ||R|| < ||R+||
may identify, that an adaption of the solution space is required to reachmore accuracy.

3.6 Numerical Experiments

In the following subsections numerical experiments are presented demonstrating
the behaviour of the proposed basic scheme VLR-SR1U, its optimised extensions
VLR-SR1U-OPT(1) and VLR-SR1U-OPT(2) as well as its adaptive extension VLR-
SR1U-ADAPT. A combination of adaption and optimisation is included also.

The underlying problem to be solved is identified by the stationary groundwater
flow equation defined on a rectangular domain with uncertain hydraulic conductivity
κ . The left and right boundaries are specified by Dirichlet conditions equal zero
and one; the top and bottom boundaries are specified by Neumann conditions equal
zero. Sources and sinks are not introduced. The number of geometrical DoFs is
Nx = 21 × 11 = 231. κ is considered to be lognormal distributed and obtained by an
exponentiation of aGaussian field γ : κ := eγ . γ is defined in five stochastic variables,
which marks simultaneously the stochastic dimension. It exhibits a variance of 1.0
and a correlation lengths of 20.0, which is a fifth of the maximal length of the
geometrical domain. The representation of κ—used in the following experiments—
is described by a KLE capturing approximately 99.99% of the information content
of γ . Unless otherwise stated the maximal polynomial order of the stochastic basis
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Algorithm 6 VLR-SR1U-ADAPT

Require: I c, I c+

1: I + ← ∅
2: H ← ∅, G ← ∅
3: while not accurate enough and max. number of iterations not reached do
4: if I + �= ∅ then
5: I c ← [I c,I +]
6: update system
7: end if
8:
9: h ← rand, g ← init
10: while not accurate enough and max. number of iterations not reached do
11: h ← normalise h
12: g ← solve G g = f
13: g ← normalise g
14: h ← solve H h = f̄

15: end while
16: G ← [G, g]
17: H ← [H, h]
18:
19: F+ ← compute( I c+

)
20: I + ← RBSSE( I c,I c+

, F+ )
21: I c+ ← I c+\I +

22: end while

functions for the solution is fixed to 4. This leads to a full rank of 126 with a standard
choice of stochastic basis functions. The discretion in the geometrical and stochastic
spaces is obviously coarse. This allows to solve the discretised problem resulting
from basic SSFEM—with a standard set of stochastic basis functions—directly. The
corresponding solution is exactly the one to which the solution of the VLR-SR1U
scheme (and its extensions) should converge. An numerical analysis till to machine
precision is therefore possible. The convergence is demonstrated by considering
statistic of moments of a scalar-valued purely stochastic function applied onto the
solution. This function integrates over the geometrical space. Full rank considerations
are done for analytical purposes.

Section3.6.1 contains numerical results concerning the basicVLR-SR1U scheme.
The two VLR-SR1U-OPT configurations are discussed in Sect. 3.6.2. VLR-SR1U-
ADAPT is focused in Sect. 3.6.3.

3.6.1 Basic VLR-SR1U

This subsection discusses the numerical results of the basic VLR-SR1U scheme
towards the mentioned model problem. The convergences of the relative error, the
residual (more precisely its L2 norm) and the minimisation of the expectation of
the energy associated with successive rank-1 updates are presented in Fig. 7. Fur-
thermore the number of required iterations inside a rank-1 update is shown. An
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Fig. 7 Convergence plots of VLR-SR1U with tolerance bound 10−3: (a) shows the relative error
over the current rank. The number of iterations, the residual and the expectation of the energy are
plotted in (b), (c) and (d) over the current rank

iteration means here to update once the current stochastic rank-1 vector and once
the current geometrical rank-1 update. The corresponding loop starts in code line
10 of the VLR-SR1U Algorithm 1; a maximal number of iterations and a tolerance
bound mark the break criterion. The maximal number is chosen, so that the tolerance
bound—set to 10−3—is always reached before. The mentioned suboptimality of the
basic VLR-SR1U scheme is obvious: errors are approximately between 10−4 and
10−6 (depending on the statistic moment) at full rank.

The influence of the tolerance bound on the quality of the solution shall be consid-
ered now. For this the bound is varied from 10−1 to 10−5. The interesting quantities
are compared in table of Fig. 8. The variation of the tolerance bound does not seem
to have an essential effect onto the relative errors. The residual and the energy is
only worse for the bound 10−1. The number of iterations per rank-1 update mark the
largest difference between the tolerance bounds: an error bound of 10−5 performs
9507 iterations till to full rank in contrast to 683 iterations for the error bound 10−1.
Consequently a choice may tend to larger error bounds, e.g. 10−2.
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Fig. 8 Convergence plots of VLR-SR1U for different tolerance bounds 10−1 to 10−5: (a) shows the
relative error of the 2nd absolute stochastic moment over the current rank. The number of iterations,
the residual and the relative error of the expectation of the energy are plotted in (b), (c) and (d) over
the current rank. The reference for the energy is taken from the directly solved SSFEM solution of
the identical problem

3.6.2 VLR-SR1U-OPT

As mentioned the basic VLR-SR1U scheme leads to suboptimal Low-Rank approx-
imation. The configuration VLR-SR1U-OPT(1) optimises on the fly—that means
during each rank-1 update—by applying the optimisation algorithm VLR-OPT; the
configuration VLR-SR1U-OPT(2) applies the optimisation algorithm VLR-OPT at
the end of a preferred rank so to speak in a post-processing step. The numerical results
for both configurations are summarised in the table of Fig. 9. VLR-SR1U-OPT(1) is
compared to the basic VLR-SR1U scheme in figure (a); figure (b) compares VLR-
SR1U-OPT(2) to VLR-SR1U-OPT(1). The entire number of iterations—given in
figure (b)—is specified in the next passage. The convergence behaviour is discussed
afterwards.

One single iteration means in the following to update once the current left rank-
1 vector and once the corresponding right rank-1 vector. Inside the basic VLR-
SR1U scheme these vectors are the geometrical vector g and the stochastic vector
h corresponding to the current rank-1 update. Inside the VLR-OPT scheme these
vectors are either the two rank-1 vectors g and v or the two rank-1 vectors h and w.
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Fig. 9 VLR-SR1U-OPT convergence plots: (a) shows the relative error of the 2nd absolute stochas-
tic moment over the current rank. Here VLR-SR1U-OPT(1) is compared to the basic VLR-SR1U
scheme. The latter has a tolerance bound of 10−3. VLR-SR1U-OPT(1) uses the following setting
per optimisation step: a maximal number of iteration of 10 and the two different tolerance bounds
10−4 and 10−15. (b) Shows the relative error over the current number of entire iterations. Here
VLR-SR1U-OPT(1) with tolerance bound of 10−15 is compared to VLR-SR1U-OPT(2)

Whenever one of these three pairs of rank-1 vectors are computed, the iteration
counter is incremented by one. This leads to the entire number of iterations.

Figure (a) compares VLR-SR1U-OPT(1) to the basic VLR-SR1U scheme. The
break criterion of the basic VLR-SR1U scheme is given by a tolerance bound of
10−3 (the maximal number of iterations is never reached). VLR-SR1U-OPT(1) is
considered in two different settings. Both use the tolerance bound of 10−3 and amax-
imal number of iterations of 10 for the intrinsic VLR-SR1U calls. The optimisation
step is specified differently: the tolerance bound is defined either by 10−4 (setting
A) or by 10−15 (setting B); the maximal number of optimisation steps is 10. VLR-
SR1U-OPT(1) with setting A shows better convergence behaviour only till to rank
20 in comparison to the basic VLR-SR1U scheme. Afterwards the optimisation is
almost not performed, as the larger tolerance bound of 10−4 is already reached after
one optimisation step for a rank >20. VLR-SR1U-OPT(1) with setting B enforces
almost always to pass all 10 optimisation steps in each rank-1 update. The conver-
gence decreases slightly at higher ranks, as higher ranks may have a higher demand
on the optimisation.

Figure (b) compares VLR-SR1U-OPT(2) to VLR-SR1U-OPT(1) with setting A.
In the first stepVLR-SR1U-OPT(2) applies the basicVLR-SR1Uschemewith a large
tolerance bound of 10−1. In this way it obtains quickly an approximation of full rank.
In the second step this approximation is optimised byVLR-OPT.The performed 1250
optimisation steps provide a precision of approximately 10−11. Consequently VLR-
SR1U-OPT(2) is preferable to the VLR-SR1U-OPT(1) concerning the convergence.
However the final rank need to be known in contrast to VLR-SR1U-OPT(1).
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3.6.3 VLR-SR1U-ADAPT

This subsection discusses numerical results of the VLR-SR1U-ADAPT scheme. The
strategy to select new basis functions is here a simple one: the rank-1 solution space
is spanned only by the constant stochastic basis function; a new stochastic basis
function is added at each rank-1 increment. The new basis function is the one best
rated by the RBSSE algorithm. As a consequence the solution space at rank r is
spanned by r stochastic basis functions. The convergence is demonstrated in the
Fig. 10. Here VLR-SR1U-ADAPT is compared to the basic VLR-SR1U scheme.

While the basic VLR-SR1U scheme uses 56 stochastic basis functions up to
order p = 3, the VLR-SR1U-ADAPT scheme chooses from a set of 126 stochastic
basis functions with maximal order 4. The reference of the solution is obtained
by solving the corresponding problem directly with stochastic basis functions of
maximal order 6. Figure (a) shows similar convergence rates for the 2nd absolute
stochastic moment. The amount of information of the solution denotes the number
of floating point numbers required to represent a Low-Rank solution. This is defined
by a function of rank r :

a(r) :=
{

r(Nx + Ns) : fixed solution space
r Nx + ∑r

i=1 i : solution space successively incremented by 1.
(20)

The first case fits to the basic VLR-SR1U scheme; the second case fits to the VLR-
SR1U-ADAPT scheme with the mentioned configuration. The rank is considered
till 56, which marks the full rank for the approximation of the basic VLR-SR1U
scheme. The sets of the stochastic basis functions corresponding to VLR-SR1U and
VLR-SR1U-ADAPT at this full rank are compared in Table1. It can be observed, that
sometimes VLR-SR1U-ADAPT preferred to use stochastic basis functions of order
4. An optimisation of both rank 56 approximations by VLR-SR1U-ADAPT-OPT(2)
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Fig. 10 VLR-SR1U-ADAPT: The relative error over the current amount of information (see Eq. 20)
is shown in (a) for the 2nd absolute stochastic moment. At this VLR-SR1U with stochastic basis
functions of maximal order 3 is compared to VLR-SR1U-ADAPTwith stochastic basis functions of
maximal order 4. (b) Shows the relative error of the 2nd absolute stochasticmoment corresponding to
an optimisation of the approximation of rank 56 obtained by VLR-SR1U and VLR-SR1U-ADAPT
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Table 1 Number of stochastic basis functions per order for VLR-SR1U and VLR-SR1U-ADAPT
at rank 56

Order of basis functions

0 1 2 3 4

VLR-SR1U 1 5 15 35 0

VLR-SR1U-ADAPT 1 5 15 26 9

reveals, that the approximation of VLR-SR1U-ADAPT is the more accurate one, see
figure (b).

Contrary to the second algorithm the first one does not necessarily provide an opti-
mal decomposition regarding the minimum energy at a given rank. The algorithms
are extended by an adaptive technique to construct the solution space a posteriori. In
the latter case the residual is used to indicate, which stochastic degrees of freedom are
the most promising ones for representing the solution. First numerical experiments
show promise. However an adjustment is required.

The numerical behaviour of the VLR-SR1U and its different configurations is
discussed in the previous subsection. In summary the following statements can be
made. The approximations of the basic VLR-SR1U scheme are suboptimal: at full
rank the bounds of the relative errors are between 10−4 and 10−6 depending on
the considered quantity, see Sect. 3.6.1. A single rank vector is on itself optimal,
but the solution does not minimise the energy with respect to all matrices of the
same rank. This is faced by the scheme VLR-OPT to optimise a given Low-Rank
approximation. The VLR-SR1U-OPT(1) scheme uses VLR-OPT during each rank-
1 update. In this way the mentioned error bound is dropped down. It may decrease
till machine precision, but this depends on the settings of the break criterion for
the optimisation loop, see Sect. 3.6.2. VLR-SR1U-OPT(2) applies VLR-OPT only
at the final rank: in comparison to VLR-SR1U-OPT-(1) better convergences can be
observed, see Sect. 3.6.2. The disadvantage ofVLR-SR1U-OPT(2) is the requirement
of an a priori specification of the final rank. TheVLR-SR1U-ADAPT scheme extends
the basic VLR-SR1U scheme to an adaptive construction of the solution space.While
the stochastic basis functions of VLR-SR1U were limited by order 3, VLR-SR1U-
ADAPT could also select stochastic basis functions of order 4. For an approximation
of a fixed rank, it could be observed, that VLR-SR1U-ADAPT chose stochastic
basis functions of order 4 by leaving out some of order 3. However VLR-SR1U and
VLR-SR1U-ADAPT showed similar convergences. Then the VLR-OPT schemewas
applied on both approximations. In this way it could be shown, that the adaptively
chosen stochastic basis functions were describing the solution more accurately than
the a priorly fixed ones from VLR-SR1U, see Sect. 3.6.3.
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Modelling of Internal Fluid Flow in Cracks
with Embedded Strong Discontinuities

Mijo Nikolic, Adnan Ibrahimbegovic and Predrag Miscevic

Abstract This chapter presents a discrete approach for modelling failure of
heterogeneous rock material with discrete crack propagation and internal fluid flow
through the saturated porous medium, where the coupling conditions between the
solid and fluid phase obey the Biot’s porous media theory. Discrete cracks and local-
ized failuremechanisms are provided through the concept of embedded discontinuity
FEM. Furthermore, the basis for presented discrete 2D plane strain model represen-
tation of heterogeneous material consisting of material grains, is an assembly of
Voronoi cells that are kept together by cohesive links in terms of Timoshenko beams.
Embedded discontinuities are built in cohesive links thus providing the discontinuity
propagation between the rock grains in mode I and mode II. The model can also take
into account the fracture process zone with pre-existing microcracks coalescence
prior to the localized failure. Several numerical simulations are given to illustrate
presented discrete approach.

1 Introduction

Cracks and other localized failure mechanisms in rocks and other heterogeneous
materials represent the dominant failure mechanisms, which occur often in civil
engineering practice like in dam failure, foundation collapse, stability of excava-
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tions, slopes and tunnels, landslides and rock falls. The risk of localized failure
should be better understood in order to be prevented. The localized failure in rocks
is usually characterized by a sudden and brittle failure without warning in a sense of
larger and visible deformations prior to failure. This happens also under the strong
influence of material heterogeneities, pre-existing cracks and other defects. Numer-
ical modelling represents a main approach in engineering design and research with
the the simulations standing as significant tool for obtaining more insight into the
full control of material behaviour.

The fluid flow through deformable porous rock medium additionally modifies
its mechanical properties and failure response. Two coupling mechanisms play the
key role in the fluid-structure interaction problem of this kind: the first concerns the
influence of of pore pressure increase inducing the material dilation, and the second
pertains to compressive mechanical stress leading to an increase of a pore pressure
and making the material less compliant than in the fully-drained case. This problem
has received a great attention in engineering literature. The elastic and (homogenized)
plastic hardening response was addressed in pioneering works of Terzaghi and Biot
[1, 2] and in more recent contribution [3].

Proper modeling of localized failure demands different approach than continuum
approach used in usual engineering tasks, where Finite Element Method (FEM) has
been considered as the main tool for solving vast majority of applications [4–6]. In
order to provide a reliable predictive model for failure of rocks, the discontinuous
solutions should be found, where pre-existing cracks continue to form into new ones
during the increased loading leading to failure. The evolution of crack patterns shows
that localization is a key factor inducing brittle failure. Thus, the main challenge
tackled is to provide enhanced predictive models for localized failure by taking into
account the material heterogeneities and pre-existing cracks.

Two notable enhanced methods derived from the standard framework of Finite
ElementMethod (FEM) to dealwith localization, i.e. cracks, discontinuities. The first
one is the Finite Element Method with Embedded Discontinuities (ED-FEM), rep-
resenting cracks truly in each element (e.g. see [7–10]). The second one is Extended
Finite Element Method (X-FEM) where cracks are represented globally [11–13].
The same methods have been used recently for simulating the localized failure when
fluid flows through the porous domain. Namely, X-FEM has been used in simulating
hydraulic fracturing of fully-saturated [14] and partially-saturated [15] porous media
with cohesive cracks, as well as in saturated shear band formations [16]. The fluid
saturated poro-elastic and poro-plastic medium with localized failure zones have
been simulated with ED-FEM in [17, 18], while the partially saturated medium can
be found in [19]. Another approach for simulating the failure of porous fractured
media is with automatic mesh refinement process presented in [20], which was also
extended to 3D situation in [21].

This chapter presents an approach for modelling the localized failure in rocks
under the influence of heterogeneities and pre-existing defects like found in [22, 23].
The class of discrete lattice models have been chosen for general framework of the
numerical model that have been previously used in simulating the progressive failure
of concrete and rocks [24]. Namely, the basis of this framework is in representation
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Fig. 1 Grainy structure of different rocks: a breccia (sedimentary), b conglomerate (sedimentary),
c limestone (sedimentary), d gneiss (metamorphic), e granite (igneous), f quartz-diorite (igneous).
The size of all of the samples is approximately 5cm. The photographs are taken from http://geology.
com/rocks/

of heterogeneous material which is considered as assembly of grains of material
held together by cohesive links. This framework corresponds also to the geological
formation of rocks, where many different groups of rocks possess a grainy structure
which allows the grain recognition even with the bare eye (Fig. 1).

Rock domain is discretized with the Voronoi cells representing rock grains,
while Timoshenko beams act as cohesive links between them (Fig. 2).

Several papers developed discrete lattice models, where the domain is discretized
with the Voronoi cells [25, 26].

Fig. 2 The basis of the
proposed discrete model
relies on the lattice of
Timoshenko beams which
represent the cohesive links
keeping the rock grains
(Voronoi cells) together

http://geology.com/rocks/
http://geology.com/rocks/
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Usually, the discrete lattice models simulate the progressive failure characterized
by localization with re-meshing process [27]. Namely, the cohesive links are sequen-
tially removed from the mesh when the discontinuity propagate between the grains.
Themain difference in the presented model, with respect to latter approach, concerns
embedded discontinuities placed within the framework of ED-FEM, where Timo-
shenko beam elements are equipped with enhanced kinematics capable of capturing
the localization effects, like shown in [28–30]. Namely, the embedded discontinu-
ities are placed in the middle of each Timoshenko beam. This corresponds to the
Voronoi cell network, where each cohesive link is cut by half by the edge between
two neighbouring Voronoi cells.

The embedded discontinuity in the longitudinal local direction of cohesive link
(Timoshenko beam) enables the grain dilation due to mode I or tensile failure
mode.However,Timoshenkobeamsalso allow to account for pronounced shear
effects in both elastic and plastic phase which is used here for representing the
failure in mode II (shear sliding along the grains) adding the corresponding
displacement or strong discontinuity in the transversal local direction. This
leads to localized solutions (i.e. discontinuity propagations) which are enabled
like shown in Fig. 3.

Heterogeneities are considered through two different phases representing the ini-
tial state; the intact rock material and the initial weaker material that stands for pre-
existing defects. The macroscopic response of the system is largely influenced by
the distribution and position of the phases. The intact rock material is represented by
the stronger links, (i.e. Timoshenko beams). Thus, the discontinuity is more likely to
propagate through the weaker phase. Failure of the material can occur in both modes
separately, as well as in their combination.

Fig. 3 The strong
discontinuity propagation
between the Voronoi cells
invokes the enhanced
kinematics activation
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Fig. 4 The fluid flow is
dispersed across the lattice
network of Timoshenko
beams

Fluid flow through the saturated porous domain is governed by a diffusion
equation incorporating the Darcy law in terms of continuous pore pressures
across the discrete lattice domain (Fig. 4), like shown in [18, 19, 31].

Fluid flow is spread across the lattice of beams, where fluid pressure acts as addi-
tional degree of freedom of the beam. The coupled process between the mechanics
strain and fluid flow in deformable medium with micro-cracks is governed by Biot’s
porous media theory [2].

2 Numerical Model Formulations

Rock is considered as porous solid saturated with a fluid. The flow conditions allows
that convective terms and gravity acceleration be neglected in this problem. Standard
equilibrium equation of saturated two-phase medium is given by relation

∇ · σ = 0, (1)

where the total stress is
σ = σs + σ f = σ ′ − bp (2)

and subscripts s and f denote the solid and the fluid part, respectively. The effective
stress σs = σ ′ measures the material properties of the solid skeleton under drained
conditions, p is fluid pressure and b is Biot coefficient. Fluid equation is given with

1

M

∂p

∂t
+ b∇ · vs + ∇ · v f = 0, (3)

where vectors vs and v f represent the velocities of the solid and the fluid, respectively.
The latter is defined by the Darcy law



320 M. Nikolic et al.

v f = −k f ∇ p (4)

where k f is the permeability of the porous medium, M is Biot’s modulus defined as

1

M
= n f

K f
+ b − n f

Ks
, (5)

and b is a Biot coefficient defined as

b = 1 − Kt

Ks
. (6)

Here, n f denotes porosity, K f is the bulk modulus of the fluid, Ks is a bulk modulus
of the solid and Kt is the overall bulk modulus of the porous medium.

The presented model is based on Timoshenko beam elements connecting the
grains of material in terms of Voronoi cells. Thus, the weak form of the equilibrium
equation (1), in terms of stress resultant (Timoshenko beams) states

∫ le

0

dw
dx

σdx =
∫ le

0
wfdx + wF, (7)

where σ = [N T M]T represents the stress resultant vector, f = [ f q m]T is the
distributed load vector and F = [F Q C]T is the vector of concentrated forces. The
right hand side in (7) provides the vector of external forcesFext with the standardfinite
element manipulations. The vector w represents a virtual generalized displacements
V0 = {w : [0, le] �→ R | [w]�u = 0}, which ought to be differentiable and verify
w ∈ V0.

The constitutive relations for the porous medium (2) are given in terms of total
stresses, effective stresses and pore pressures σ = σ ′ − bp. The total stress in terms
of stress resultants can be decomposed into

⎡
⎣N

T
M

⎤
⎦ =

⎡
⎣N ′

T ′
M ′

⎤
⎦ − b

⎡
⎣p A

0
0

⎤
⎦ , (8)

where the effective stress resultant components can be obtained through the solid’s
skeleton ‘drained’ elasticities denoted with Dsk

⎡
⎣N ′

T ′
M ′

⎤
⎦ =

⎡
⎣E A 0 0

0 G A 0
0 0 E I

⎤
⎦

︸ ︷︷ ︸
Dsk

⎡
⎣ε

γ

κ

⎤
⎦ . (9)

Note that E represents Young’s modulus, G shear modulus and I moment of inertia
of the beam.
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The fluid flow equation (3) takes the weak form for the discrete lattice represen-
tation of the domain

−
∫ le

0
π M−1 dp

dt
dx +

∫ le

0

dπ

dx
αvsdx

+
∫ le

0

dπ

dx
k f

dp

dx
dx = Qext , (10)

where π is the virtual pressure field that obeys the same regularity as the virtual
displacement field.

2.1 Enhanced Kinematics

This section provides the enhanced formulation for Timoshenko beam as cohesive
link, resulting with embedded discontinuities in local longitudinal direction for mode
I failure, and in transversal direction for mode II failure. The localized failure is
accompanied by a softening regime in a global macro-response, where the hetero-
geneous displacement field is used in order to obtain a mesh-independent response.
The formulation for fracture process zone with micro-cracks is also presented here
through the hardening regime with standard plasticity.

The localization implies heterogeneous displacement field which no longer
remains regular, even for smooth stress field. Thus, the displacement field ought
to be introduced and written as the sum of a sufficiently smooth, regular part and a
discontinuous part. Furthermore, the axial and transversal displacement fields need
to be calculated independently.

A cohesive link finite element with two nodes of length le and cross section A
is considered (Fig. 5). The standard degrees of freedom at each node i ∈ [1, 2] are
axial displacement ui , transversal displacement vi and rotation θi , accompanied with
pressure pi degree of freedom. The strainmeasures for standard Timoshenko element
are given

ε(x) = du(x)

dx

γ (x) = dv(x)

dx
− θ(x)

κ(x) = dθ(x)

dx
.

(11)

In order to obtain the displacement jumps in the interiors of the cohesive links, the
displacement fields need to be enhanced leading to regular and singular parts, where
latter can be represented as a product of Heaviside function and displacement jump.
The enhanced displacement fields can thus be written as
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Fig. 5 The enhanced finite
element with it’s degrees of
freedom and discontinuous
shape function M(x) and it’s
derivative G(x)

u(x) = u(x) + αu Hxc

v(x) = v(x) + αv Hxc ,
(12)

where αu and αv represent incompatible mode parameters which denote the displace-
ment jumps in axial and transversal direction providing the failure modes I and II.
Hxc is the Heaviside function being equal to one if x > xc, and zero otherwise, while
xc is the position of the discontinuity. The presented model assumes the position of
discontinuity to be in the middle of the beam. This is the case when each cohesive
link is cut in half by the two neighboring Voronoi cells.

The enhanced deformation fields, in terms of regular and singular parts, results
from (12) with

ε(x) = ε(x) + α(u)δxc

γ (x) = γ (x) + α(v)δxc ,
(13)

where ε and γ denote regular parts, and Dirac delta δxc is the singular part represen-
tation of the deformation field. The Dirac delta function δxc takes an infinite value at
x = xc and remains equal to zero everywhere else.

For this element, standard linear interpolation functions are used for regular dis-
placement approximation

N =
{

N1(x) = 1 − x

le
; N2(x) = x

le

}
, (14)

along with their derivatives

B =
{

B1(x) = − 1

le
; B2(x) = 1

le

}
. (15)
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Beside standard interpolations, the enhanced interpolation function M is derived in
the spirit of ED-FEM (see [6, 22, 23]) and can be used alongside standard inter-
polation functions to describe the heterogeneous displacement fields with activated
discontinuity jump producing embedded discontinuity inside the finite element. The
M(x) is defined as

M(x) =
{ − x

le
; x ∈ [0, xc〉

1 − x
le
; x ∈ 〈xc, le] , (16)

while G(x) represents the derivative of enhanced function M(x), with respect to
local coordinate direction x

G(x) = G + δxc

= − 1

le
+ δxc , x ∈ [0, le]. (17)

Enhanced functions M and G are shown in Fig. 5. This kind of formulation cancels
the contribution of incompatible mode parameter on the element boundary leading
to possibility of computing the discontinuity parameters locally, while the global
equations remain with the nodal displacements as primal unknowns.

Finally, the enhanced finite element displacement interpolations are written in
terms of embedded discontinuity

u(x) =
2∑

a=1

Na(x)ua + M(x)αu

v(x) =
2∑

a=1

Na(x)va + M(x)αv

θ(x) =
2∑

a=1

Na(x)θa .

(18)

The discrete approximation of deformation field can be obtained from the above
displacement field (18) resulting with

ε(x) =
2∑

a=1

Ba(x)ua + G(x)αu

γ (x) =
2∑

a=1

(Ba(x)va − Na(x)θa) + G(x)αv

κ(x) =
2∑

a=1

Ba(x)θa,

(19)
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The fluid flow is enabled by adding the pressure degree of freedom on top of
standard Timoshenko degrees of freedom leading to enhanced element, not only
in terms of added pressures, but also in localized discontinuity contributions. The
enhanced finite element with all degrees of freedom is shown in Fig. 5.

The pressure field is interpolatedwith the linear shape functions as well {N p
1 (x) =

1 − x
le
, N p

2 (x) = x
le
}. The corresponding derivatives are {B p

1 (x) = − 1
le
, B p

2 (x) =
1
le
}. However, the pressure interpolation functions are denoted with the superscript p

for clearer presentation. Since the fluid flow problem is transient, the time parameter
t is introduced and the discretization field for pressure follows

p(x, t) =
2∑

a=1

N p
a (x)pa(t). (20)

The discretization of the pressure gradient is

∂p

∂x
(x, t) =

2∑
a=1

B p
a (x)pa(t), (21)

while its time derivative

∂p

∂t
(x, t) =

2∑
a=1

N p
a (x) ṗa(t). (22)

The generalized nodal pressure field can be denoted with p = (p1, p2)
T .

2.2 The Enhanced Weak Form

The generalized virtual deformations are interpolated in the same way as the real
ones

δε = Bδd + Gδα, (23)

with δ standing for prefix indicating the corresponding virtual field or variation. Such
interpolated fields produce the internal force vector and the finite element residual
vector due to discontinuity

Fint =
∫ le

0
BT σdx,

h(e) =
∫ le

0
(G + δxc)σdx .

(24)
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From the condition of residual equation being equal to zero, the internal forces at the
discontinuity ought to be calculated

h(e) =
∫ le

0
(G + δxc)σdx

=
∫ le

0
Gσdx + t. (25)

Vector t represents the internal forces at discontinuity, which are in relation with the
forces from the bulk

t = −
∫ le

0
Gσdx, t = (tu, tv, 0)

T (26)

2.3 Constitutive Model

It has been observed that representative behaviour of rock material, including the
post-peak behaviour, can be separated into five different stages based upon stress-
strain characteristics. These stages can be defined as: crack closure, linear elastic
deformation, crack initiation and stable crack growth, critical energy release and
unstable crack growth, failure and post-peak behaviour. Figure6 shows typical stress-
strain curve of the brittle rock under the compression test and its failure stages.

Fig. 6 Stress-strain curve showing the elements of crack development
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Stage I is associated to microcrack closure and the initial flaws in the material
which continues with stage II, a linear elastic stage. The inelastic behaviour starts
at the beginning of stage III and until the end of stage, the hardening response
accompanied by fracture process zone with microcrack initiation, can be observed.
With an increase of a loading program, stage IV is activated. The stress value at the
beginning of this stage (point C) can vary between 50–90% of ultimate strength,
while the rest of the stage is characterized by the nonlinear behaviour and more rapid
increase of lateral deformation. At the point D, the ultimate strength of specimen is
reached and the larger macro-cracks start to propagate through the sample leading to
softening of the specimen. At this point, the volumetric strain starts to reverse from
a compressive to dilatation behaviour.

The constitutive relations need to be defined outside and at the discontinuity. The
constitutive models are constructed within the framework of thermodynamics for a
stress resultant beam formulation.

The beam longitudinal and transversal directions are enhanced with additional
kinematics, representing modes I and II with softening behaviour, while the rotations
keep their standard elastic form. The first two stages of rock failure (up to point B) are
kept elastic, with respect to stage I being finished soon after the loading is applied.
The linear elastic behaviour is finished when the point B is reached, continuing with
hardening. When stage III is activated, significant damage caused by micro-crack
propagation starts to occur in the specimen and increases until the highest peak
point (point D). The constitutive model for latter stages, which represents a fracture
process zone, is chosen as classical plasticity model with isotropic hardening. When
the critical point is reached, the complete failure of the specimen is enabled through
the exponential softening law. This invokes the enhanced kinematics activation and
occurrence of the displacement jumps. The carrying capacity of element reduces
with increase in the displacement jump.

In the following equations, the development for the failure of the beam in modes
I and II is presented. When the loading starts and softening has not formed yet,
the classical elasto-plastic model is considered. The total strains can be additively
decomposed into elastic and plastic components

ε = εe + ε p

γ = γ e + γ p.
(27)

Strain energy functions depend upon elastic strains and hardening variables, ξ u , ξ v:

ψu
(
ε, ε p, ξ u

) = 1

2
E A

(
ε − ε p

)2 + 1

2
ξ
2
u K u

ψv
(
γ, γ p, ξ v

) = 1

2
G A

(
γ − γ p

)2 + 1

2
ξ
2
v K v,

(28)
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where K u and K v denote isotropic hardening modulus for longitudinal and transver-
sal direction. The yield criterion is defined as

Φu
(
N , qu

) = N − (
Ny − qu

) ≤ 0

Φv
(
T, qv

) = |T | − (
Ty − qv

) ≤ 0,
(29)

where Ny and Ty represent the forces at yielding point. The state equations are

N = E A
(
ε − ε p

)
T = G A(γ − γ p).

(30)

and
qu = −K uξ u

qv = −K vξ v.
(31)

For the inelastic case, the principle of maximum dissipation is considered, the evo-
lution laws are obtained as

ε̇
p = λ̇u

∂Φu
∂ N = λ̇usign(N ); ξ̇ u = λ̇u

∂Φu
∂qu

= λ̇u

γ̇
p = λ̇v

∂Φv
∂T = λ̇vsign(T ); ξ̇ v = λ̇v

∂Φv
∂qv

= λ̇v,
(32)

where the plastic multiplier parameters λu and λv have been introduced to participate
in evolution equations obtained from Kuhn-Tucker optimality conditions [6]. The
constitutive equations for the elastoplastic case are

Ṅ =
{

E Aε̇; λ̇u = 0
E AK u

E A+K u
ε̇; λ̇u > 0

, Ṫ =
{

G Aγ̇ ; λ̇v = 0
G AK v

G A+K v
γ̇ ; λ̇v > 0.

(33)

Accompanying loading/unloading conditions and consistency condition obey λ̇Φ =
0, λ̇ ≥ 0, Φ ≤ 0, λ̇Φ̇ = 0.

Once the ultimate failure point is reached, enhanced kinematics needs to be acti-
vated.All further plastic deformationwill be accumulated at the discontinuity section,
that once passed the peak resistance. The corresponding strain fields containing reg-
ular and singular components are obtained:

ε = ε + ε = εe + ε p + ε

γ = γ + γ = γ e + γ p + γ .
(34)

The failure criteria for mode I and mode II failure are defined as

Φu
(
tu, qu

) = tu − (
Nu − qu

) ≤ 0

Φv
(
tv, qv

) = |tv| − (
Tu − qv

) ≤ 0,
(35)
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where Nu , Tu are the ultimate capacity forces and qu , qv are stress-like softening
variables which increase exponentially as

qu = Nu

(
1 − exp

(
−ξ u

Nu

G f,u

))

qv = Tu

(
1 − exp

(
−ξ v

Tu

G f,v

))
,

(36)

and tu , tv are traction forces at the discontinuity obtained from equilibrium equations
(26). The evolution of internal variables in softening states

α̇u = λ̇u
∂Φu
∂ N = λ̇usign(N ); ξ̇ u = λ̇u

∂Φu

∂qu
= λ̇u

α̇v = λ̇v
∂Φv
∂T = λ̇vsign(T ); ξ̇ v = λ̇v

∂Φv

∂qv
= λ̇v,

(37)

where λ is the plastic multiplier associated with the softening behaviour and α is an
equivalent to the accumulated plastic strain at the discontinuity.

2.4 The Finite Element Equations of a Coupled
Poroplastic Problem

In this section, the final finite element implementation aspects accounting for each
single element contribution, further denoted with subscript e, are presented.

The regular part of weak form (24/1) leads to the element residual equation

rd = Fext − Anel
e=1

∫ le

0
Bd,T σdx, (38)

where the total stress resultants σ are obtained in terms of effective stress resultants
σ ′ and pore pressures p in (8). The symbol Anel

e=1 denotes the finite element assembly
operator for all element contributions. The effective stress resultants σ ′ are calculated
in terms of regular parts of enhanced strain field (23). The enhanced strain parameters
α, in each element where localization occurs, are obtained by solving the local
equilibrium of the effective stresses

h(e) =
∫ le

0
Gσ ′dx + t′, (39)

where t′ represent the corresponding effective tractions acting at the discontinuity.
The local equilibrium equation in (39) offers the benefit of local computation of
the enhanced parameters. Subsequent static condensation of these parameters allows
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to keep standard matrix at the global level. The local computation algorithm and
numerical procedure are described in the next subsection.

Upon introducing the finite element interpolations, the coupled fluid equation (10)
results with the finite element residual form

rp = Qext − Anel
e=1

[ ∫ le

0
Np,T M−1Npdx ṗe−

−
∫ le

0
Np,T αBddx ḋe −

∫ le

0
Bp,T k f Bpdxpe

]
, (40)

where Qext represent the external applied fluxes and imposed pressures. The consis-
tent linearization of the Eqs. (38) and (40) leads to a set of linear algebraic equations

r(i)
d − Anel

e=1

[
KeΔde − LeΔαe − QeΔpe

]
= 0 (41)

and

r(i)
p − Anel

e=1

[
1

Δt
QT

e Δde +
(

He + 1

Δt
Se

)
Δpe

]
= 0 (42)

in the increments Δt = t (i+1)
n+1 − t (i)

n+1, where (i) denotes iteration counter within the
time interval [tn, tn+1]. The matrices are evaluated in the previous iteration (i) where
all values are known. The element stiffness matrix Ke is defined as

Ke =
∫ le

0
Bd,T DskBddx (43)

and the localized contribution matrix

Le =
∫ le

0
Bd,T DskGdx . (44)

The compressibility matrix Se, the permeability matrix He and the coupling matrix
Qe are given by

Se =
∫ le

0
Np,T M−1Npdx, (45)

He =
∫ le

0
Bp,T k f Bpdx, (46)

Qe =
∫ le

0
Bd,T bNpdx . (47)
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The linearization of local equilibrium equation in (39) results with

h(i)
e − LT

e Δde − FeΔαe = 0, (48)

where

Fe =
∫ le

0
G

T
DskG + Kdis . (49)

Matrix Kdis contains consistent tangent stiffness components for the discontinuity
obtained as a derivatives of the exponential softening laws from (36) with respect to
the corresponding displacement jumps.

The enhanced strain parameters Δα can be obtained by the local operator split
solution procedure and return mapping algorithm presented in the next section.
Finally, the static condensation strategy serves for local elimination of the enhanced
strain parameters which leads to the final statically condensed equation

r(i)
d − Anel

e=1

[(
Ke − LT

e F−1
e Le

)
Δde − QeΔpe

]
= 0. (50)

2.5 The Operator Split Algorithm

The operator split is an element-wise algorithm performed for each directional com-
ponent with its ultimate goal of computing the internal variables related to discon-
tinuity. After computing the internal variables locally, the global solution procedure
with Newton incremental/iterative procedure can be performed.

It is assumed that the best iterative value of displacements u(i)
n+1 and v(i)

n+1 for which
the trial values of the traction forces are obtained

t trial
∗,n+1 = −

∫ le

0
G

[
E A

(
2∑

a=1

Bd
a u(i)

a,n+1 + Gα∗,n

)]
(51)

where α∗,n represents the discontinuity parameters at previous time for softening
plastic deformation. The * denotes each directional component of the Timoshenko
beam. Later on, the trial value of failure functions ought to be calculated

Φ
tr ial

∗,n+1 = t trial
∗,n+1 − (

Nu − q∗,n

)
. (52)

If the trial values of the failure functions are negative or zero, the elastic trial step is
accepted for final, with no modification of the plastic strain from the previous time
step

α∗,n+1 = α∗,n; ξ ∗,n+1 = ξ ∗,n, (53)
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The plastic softening parameter will remain intact, while the traction force will be
changed due to displacement increment.

On the other hand, if the trial values of failure functions are positive, the current
step is in the softening plasticity and there is a need to modify the elastic strain and
internal variables α∗,n , in order to re-establish the plastic admissibility at discontinu-
ity. The internal softening plasticity variables ought to be updated by using evolution
equations

α∗,n+1 = α∗,n + λ∗,n+1sign
(
t trial
∗,n+1

)
(54)

and
ξ ∗,n+1 = ξ ∗,n + λ∗,n+1 (55)

where λ∗,n+1, λ∗,n+1 are softening plastic multipliers. The value of the plastic multi-

plier is determined from the conditionsΦ∗,n+1 ≤ tol and the solutions of a nonlinear
equations are obtained iteratively using the Newton-Raphson method

Φ∗,n+1 = Φ
tr ial

∗,n+1 + (
q∗,n+1 − q∗,n

) + E AGλ∗,n+1 ≤ tol (56)

In the plastic softening step, the traction forces are produced by a change of discon-
tinuity parameters α∗.

3 Numerical Simulations

In this section, the numerical simulations for several numerical tests are presented.
The uniaxial tension and compression tests are performed on heterogeneous 2D rock
specimens. The influence of heterogeneity with different distributions of phase I and
II (strong and weak phase) are studied. Fluid-saturated rock sample with localized
shear band formation development is presented as well. Presented numerical model
formulations are implemented into the research version of the computer code FEAP
[32].

3.1 Preparation of 2D Plain Strain Rock Specimens

2D plane strain rock specimens are constructed. The specimens are of dimensions
10× 10 cm (with unit thickness) and are meshed with triangles by means of Delau-
nay algorithm. The specimen has 253 nodes and 704 elements (Fig. 7). Timoshenko
beam elements are positioned on each edge of every triangle in the specimen. Their
geometric properties represent the corresponding part in specimen volume. Themain
hypothesis in constructing the lattice model is that the cells connected by cohesive
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(a) (b)

Fig. 7 A homogeneous 2D plain strain specimen is constructed. Uniaxial tension (a) and shear test
(b) are performed in linear elastic regime to validate the model

links (beams) correspond to the representative part of the specimen which have
homogeneous properties, while the heterogeneities are introduced through the cohe-
sive links. Thus, the Voronoi cells are derived from Delaunay triangulation and the
beam cross sections are computed from the length of the common size of the neigh-
bouring cells (Fig. 8). Thematerial parameters are taken the same as in the equivalent
standard continuum.

Inorder to validate the latticemodel parameters, the tension and shear tests are con-
ducted in the linear elastic regime on the proposed homogeneous specimen (shown
in Fig. 7) in two versions: lattice model and equivalent standard continuum model
with triangular solid elements. The material parameters are the same for each test
version: E = 1000kN/cm2, ν = 0.2. The results are presented in Fig. 9a, b.

The equivalent standard continuummodel (with triangles as finite elements) oper-
ate only in linear elastic regime and its response matches with linear elastic regime
of lattice models before the failure phase, showing that the proposed model is capa-
ble of reproducing classical linear elastic continuum with such computed lattice
parameters.

Fig. 8 Beam cross sections
are computed from the
length of the common size of
the neighbouring cells
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(a) (b)

Fig. 9 Response of homogeneous specimen in linear elastic regime for a tension test and b shear
test in two versions: solid model with triangles and lattice model

3.2 Influence of Heterogeneity in Tension and Compression
Tests

In this example, the influence of heterogeneity on a global response is studied. Three
different specimens with the same geometric properties (same specimen size), but
different levels of heterogeneity are subjected to uniaxial tension and compression
tests. Table1 summarizes the mechanical and geometric characteristics of the spec-
imen used for these experiments. The corresponding macroscopic results are shown
in Fig. 10a, b.

The specimens are given different initial properties, specifically with 40, 50 and
60% of phase II material. With an increase of phase II material, the global modulus
of elasticity decreases. This is the result of more elements of phase II representing
initial weaker material, which makes the global response of specimen more ductile
and also with a somewhat lower value of modulus of elasticity. However, it can
also be seen from global exponential curve that, when a ratio of phase II material
increases, the failure of the specimen becomes more ductile in fracture process zone
creation, but also more brittle in the softening response phase, for when the fracture

Table 1 Mechanical and
geometric characteristics of
the specimen

Phase I Phase II

E = 7000kN/cm2 E = 1000kN/cm2

ν = 0.2

ν = 0.2 σu = 2.2MPa, τu = 1.15MPa

Tension fr. energ.: G(u)
f = 10N/m,

G(v)
f = 1.5N/m

Comp. fr. energ.: G(u)
f = 350N/m,

G(v)
f = 10N/m

Dimensions: 0.1× 0.1× 0.01 m; 40, 50, 60% phase II
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Fig. 10 The computed macroscopic response with different levels of heterogeneity for: a uniaxial
tension test and b uniaxial compression test

(a) (b) (c)

Fig. 11 Final failure patterns created in tension test for specimens with: a 40% of phase II, b 50%
of phase II and c 60% of phase II (broken links are red coloured) (Color Online)

starts the complete failure happens faster. This is due to appearance of many more
potential macro-cracks, which drives more quickly the stress to zero.

The failure patterns of three different heterogeneous specimens are shown in
Figs. 11 and 12. Figure11 presents the final macro-cracks at the end of tension test
computations for the specimens with 40, 50 and 60% of phase II material. It is
observed that one dominant macro-crack is present in all of the specimens inducing
the final failure mechanism. However, in each specimen the macro-crack formed dif-
ferently depending on the initial heterogeneity which decides the crack path. Failure
due to mode I is more pronounced in tension test.

The ultimate shear strength is defined by the Mohr-Coulomb failure criterion

τ f = τu + σc · tan(φ), (57)

where τu represents cohesion-like value of ultimate shear force when compression
force is equal to zero, σc represents the compression force and φ is internal angle
of friction. Figure12 reveals the final cracks formed at the end of compression tests
where not only one macro-crack is enough to break the specimens. Contrary to
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(a) (b) (c)

Fig. 12 Final failure patterns created in compression test for specimens with: a 40% of phase II,
b 50% of phase II and c 60% of phase II (broken links are red coloured) (Color Online)

tension test crack patterns, in compression test much more macro-cracks are needed
to drive the specimens to failure and these are influencedmore bymode IImechanism,
compared to tension test, which forms the final crack patterns together with mode
I. It is important to note that red coloured links in Figs. 11 and 12 represent the
failed cohesive links. However, the actual cracks are localized inside elements and
enable the crack propagation between the Voronoi cells, which are dual to Dealunay
triangulation.

In either tension or compression, the difference in reduction of the peak stresses
in different specimens remains fairly mild. Having approximately the same peak
resistance is quite realistic to expect for the similar failure pattern is created once the
threshold is reached. However, the similar peak stresses in compression test leads
to conclusion that despite the variations in heterogeneity, crack propagation patterns
in each of the samples remain similar with similar failure mechanism present in
all of them, which can be observed in Fig. 12. Specifically, this means that more
defects were present in the specimens with more phase II material which made the
material softer, but at the same time these were not crucial for complete failure which
was caused by similar macro-cracks in all specimens. This leads to conclusion that
difference in heterogeneity, that was used here: 40, 50, 60% of phase II, is not as
significant to lead to drastically different values of ultimate stresses.

3.3 Drained Compression Test of the Poro-plastic Sample
with the Localized Failure

The fluid saturated rock sample under compression test is considered in this section.
The geometry of the sample and boundary conditions imposed on the displacement
and pore pressure fields are shown in Fig. 13. The external load is applied via constant
velocity v0 = 5 × 10−4 m/s imposed on the top base. With the aim of observing the
coupling effects aswell, the tests are then repeatedwith the imposed constant velocity
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Fig. 13 Geometry of the
poroplastic sample and
imposed boundary
conditions

v0 = 1.5 × 10−3 m/s. The chosen material parameters listed in Table2 correspond to
the limestone fully saturated with the water. The value of hydraulic permeability of
the sample obtained from the parameters in the Table2 is equal to Kh = ρwgK f =
1 × 10−8 m/s, where the procedure of computing lattice permeabilities is used. Such
procedure is performed to find equivalent permeabilities when the fluid flows across

Table 2 Material parameters considered in the numerical simulations of poro-plastic sample

Drained Young modulus Esk = 50GPa

Drained Poisson ratio νsk = 0.25

Tensile yield stress σy,t = 12MPa

Shear yield stress τy = 23MPa

Hardening modulus K = 5GPa

Tensile strength σu,t = 13MPa

Shear strength τu = 25MPa

Angle of friction φ = 35◦

Fracture energies G f,u = 300N/m; G f,v = 600N/m

Biot coefficient b = 0.8

Biot modulus M = 16.9GPa

Porosity n f = 0.1

Permeability K f = 1 × 10−9 m2/(kPa/s)

Fluid density ρw = 1000kg/m3
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the discrete lattice network. Associating K f with given permeability and k f with
lattice permeability, the following expression is obtained

k f = K f

c
, (58)

with c = h f / le being the coefficient of modification of permeability for given lattice.
Here, h f denotes the shortest distance between the two centroids of neighbouring
triangles and le is the length of given element. See [31] formore elaborate explanation
of this procedure.

The final goal is to investigate the influence of heterogeneity upon the localized
failure of the proposed sample. The presented discrete model formulation is capable
of considering the influence of heterogeneity. Here, the two-phase representation
is adopted, where the second phase takes the slightly weaker properties in terms
of material strengths (σu,t = 12MPa; τu = 24MPa). The two-phases are distributed
randomly throughout the sample and each phase participates with equal number of
elements. The differences in two samples are brought by the different distributions
of the phases when the random sampling is performed two times in a row. Figures14
and 15 show the displacements and pore pressures of the heterogeneous samples 1
and 2 plotted in the deformed mesh at the final time step of the simulation. These
results are obtained with the imposed constant velocity of v0 = 5 × 10−4 m/s. It can
be observed from the deformed meshes of both samples that the localized macro
cracks propagate differently in two cases only because of the slight difference in
initial heterogeneity distributions.Macro-cracks also formed the irregular geometries
that propagated through the weaker parts of the material. The main strength of the
presented discrete model is in simulating the heterogeneous materials where macro-
cracks propagate through the material’s weaker phases, avoid the stiffer ones and

(a) (b) (c)

Fig. 14 The state of the 1st heterogeneous sample after the compression test (imposed velocity
v0 = 5 × 10−4 m/s): a horizontal displacement b vertical displacement c pore pressure
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(a) (b) (c)

Fig. 15 The state of the 2nd heterogeneous sample after the compression test (imposed velocity
v0 = 5 × 10−4 m/s): a horizontal displacement b vertical displacement c pore pressure

exhibit the irregular geometries. When it comes to the pore pressures, previoussides
and reach their highest values near the localized zone.

To investigate the coupling effects, the two heterogeneous samples are put under
compression test with a different rate of imposed vertical displacement on the top
base v0 = 1.5 × 10−3 m/s. Themacroscopic curves including the cumulative vertical
reaction and pore pressure in the centre of the sample in the close neighboured of the
localized zone are presented in Fig. 16, for two heterogeneous samples and different
imposed velocities obtained within the compression tests.

The macroscopic vertical reactions indicate that higher rates of imposed displace-
ment cause the samples to be more resistant (larger ultimate stress) and more ductile
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Fig. 16 Macroscopic curves of the poro-plastic sample obtained within the compression test a
cumulative vertical reaction versus impose displacement b pore pressure at the sample centre versus
imposed displacement
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Fig. 17 a Crack length versus time b pore pressure at the sample centre versus time

(larger displacement is needed to drive the samples to the failure). This is due to an
increase of pore pressure which is brought by shorter time left for drainage at the
sample centre (Fig. 16b).

The pronounced coupling effects are more obvious when it comes to the non-
linear behaviour and formation of localization zone. In the beginning of the test, the
vertical reaction is less influenced by higher pore pressure.

No coupling effect is observed in the geometry of themacro-crack for each sample
when it comes to the localized zone formation. More precisely, the discontinuity still
propagated through the same elements for different imposed velocities.

The differences with respect to heterogeneities seem to increase in the nonlinear
zone with the higher imposed velocity. Namely, the increase of flow through cracks
in localization zone, together with the ‘faster’ loading, induces the higher rates of
pore pressures making the heterogeneities’ influence even more profound.

As can be seen from Fig. 17a, where time history of the crack length is presented,
cracks start to propagate at some point in time when the external load produces
significant stress triggering the crack. The cracks then propagate quickly through
the samples. The plots for samples with applied faster external load (v0 = 1.5 ×
10−3 m/s) show, that in these cases, cracks propagate more quickly and the tests are
completed in less time. Figure17b presents the time evolution of pore pressure in the
centre of the sample and in the close neighboured of the crack, showing the shorter
time needed for completion of test and faster rate of the pore pressure increase.

4 Conclusions

In this chapter the discrete element modelling suitable for describing the fracture
process with localized failure zones in heterogeneous non-saturated and fully fluid-
saturated poro-plastic medium is presented, where coupling between the fluid and
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solid obey the Biot theory of poroplasticity. The localized failure mechanisms are
incorporated through the enhanced kinematics of Timoshenko beams that act as
cohesive links between the grains of heterogeneous rock material. The embedded
discontinuities can represent the failure modes I and II, as well as their combination.
The fluid flow is governed by the Darcy law with assumed continuous pore pressure
field.

The model ingredients are incorporated into the framework of embedded discon-
tinuity finite element method, where the computation of the enhanced discontinuity
parameters requires only local element equilibrium. Further use of the static conden-
sation of the enhanced parameters at the element level, leads to the computationally
very efficient approach and numerical implementation that fits within the standard
finite element code architecture.

The main strength of the proposed discrete model lies in its ability to account
for material heterogeneities with localized macro-cracks propagating throughout the
weaker parts of the material and forming the irregular geometries. Such a phenom-
enon is presented by the numerical simulations of two samples with equal geometries
and material properties, but slightly different distribution of material heterogeneities
throughout samples, which present different behaviour in terms of localized macro-
crack propagation. The solid-fluid coupling plays important role here as well, bring-
ing the variations in macroscopic responses and compliance of the samples. It is
important to emphasise that heterogeneous effects become more pronounced with
the coupling effects and higher rates of the imposed velocities.
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Reliability Calculus on Crack Propagation
Problem with a Markov Renewal Process

Chrysanthi A. Papamichail, Salim Bouzebda and Nikolaos Limnios

Abstract This chapter concerns a stochastic differential system that describes the
evolution of a degradation mechanism, the fatigue crack propagation. A Markov
process will be considered as the perturbing process of the system that models the
crack evolution.With the help ofMarkov renewal theory, we study the reliability of a
structure and propose for it a new analytical solution. Themethodwe propose reduces
the complexity of the reliability calculus compared with the previous resolution
method. As numerical applications, we tested our method on a numerical example
and on an experimental data set, which gave results in good agreement with a Monte
Carlo estimation.

1 Introduction and Motivation

To begin with, we explain our interest in the mechanical problem of fatigue crack
growth and in reliability of stochastic models and give a basic bibliographic frame
of the approach we rely on. In everyday industrial life, mechanical structures with
variable life cycles are used and thus undergo the degradation process that leads
to fatigue aging. The crack-growth problem concerns many industrial fields, such
as aeronautics, nuclear and electrical power stations, etc. On the one hand, there
is the need to avoid failure of the structure, caused by crack propagation, and, on
the other hand, the wish of industry for maximum exploitation of the structure.
Consequently,models that quantify the degradation level are necessary and important
to be developed.
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Fatigue crack growth problematic is an issue of general engineering interest [1, 2].
Deterministicmodels (i.e., throughfinite-elements analysis) have beenprovided from
structural mechanics, but do not adequately describe the degradation mechanisms.
Admittedly, probabilistic modeling is required to describe such degradation process.
The theory of stochastic differential equations (e.g., [3]) is essential here. Stochastic
dynamical systems are found well adapted to the modelling of fatigue crack growth
[4, 5].

In present work, the dynamical evolution of the increasing stochastic process Zt ,
onR∗+, with initial condition Z0 = z0, ismodeled by afirst order stochastic dynamical
system of the following form

{
dZt
dt = C(Zt , Xt ),

Z0 = z0,
(1)

where (Zt , t ∈ R+) is the stochastic process that represents the crack length, (Xt , t ∈
R+) is a stochastic process of values in the finite state space E and serves as the
driving jump process that handles the randomness of the system, and, C is a function
from R

d+ × E to Rd+ with the appropriate existence and uniqueness properties. Con-
cerning perturbation problems, Krylov-Bogoliubov averaging method can be used to
approximate oscillatory processes in non-linear mechanics. The theorem known as
“Bogolyubov’s principle”, presented by [6], gives an asymptotic convergence of (1),
when a change of scale t → t/ε, with ε → 0 takes place. In this case, the process
Xt/ε has the impact on the system that it would have after a long time interval,
t/ε → ∞, and the process Z ε

t converges weakly to the solution of the deterministic
system.

In our study, Xt is assumed to be a jump Markov process and the coupled
process (Zt , Xt ) has theMarkov property (see e.g., [7] for Markov and semi-Markov
processes and [8] for Markov models).

Results on the stochastic approximation of dynamical systems, by weak conver-
gence techniques are encountered in [9]. General and particular schemes of proofs for
average, diffusion, and Poisson approximations of stochastic systems are presented,
allowing one to simplify complex systems and obtain numerically tractable models.
All these systems are switched by Markov and semi-Markov processes whose phase
space is considered in asymptotic split and merging schemes.

The process (Zt , Xt ) belongs to the class of stochastic models sometimes called
piecewise deterministic Markov processes (PDMP). The theory for PDMPs, which
are alternative to diffusion processes, underlies in present analysis and is introduced
in [10, 11] and further developed in [12], where it is based exclusively on the theory
of marked point processes. The class of PDMPs is considered and recognized as a
powerful modelling tool for complex systems. The main objective of [13] consists in
presenting mathematical tools recently developed by the authors on theoretical and
numerical aspects of simulation and optimization for PDMPs. This book is focused
on the computation of expectation of functionals of PDMPs with applications to the
evaluation of service times and on solving optimal control problems with applica-
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tions to maintenance optimization. Optimal control of PDMPs [14–16], and optimal
stopping have been studied, [17]. Results in the control theory for the long-run aver-
age continuous control problem of PDMPs are presented in [18] and stability and
ergodicity of PDMPs are studied in [19]. Azais [20], proposed and analyzed non-
parametric estimation methods for both the features governing the randomness of
PDMPs. Riedler [21], presented an almost sure convergence analysis for numerical
simulation algorithms for PDMPs. PDMPs form a general class of stochastic hybrid
models covering a large number of problems such as engineering systems, oper-
ation research, management science, biology, internet traffic, networks, reliability,
computer science, neuroscience (i.e., [21]), mobile robotics, finance and insurance
etc.

This PDMP in our case is associated to a Markov renewal process (MRP) (see
e.g., [7, 22] for Markov renewal processes, [23, 24] for Markov renewal theory). In
[25] the perturbing process is associated to a Markov process whereas in [26] to a
semi-Markov process, and the associated dynamical system is respectively described.

Here, we are particularly interested in reliability of the stochastic model (1).
Admittedly, any advance in stochastic processes is sooner or later applied in reliability
theory. Reliability, as a measure, quantifies the capability of a system or a service
to perform its expected job under the specified conditions of use over an intended
period of time. This capability can be used to compare the performance of different
types of systems and take decision of their suitability. Another advantage is that there
is no need to redefine or modify the quantification of reliability for different kinds of
engineering products or systems. Due to the immense interest and research progress
in reliability theory, it is impossible to provide any exhaustive literature on it. We
shall restrict ourselves to some authors we consider inspiring for our study, with the
risk, however, to have omitted others with remarkable, as well, contribution to the
field.

Barlow’s and Proschan’s books, [27, 28], have influenced the field of reliability
engineering and statistical reliability for many years. Among Barlow’s achievements
is his work on the theory and methodology of modeling the failure rate of systems
and components. Some of his work was closely related to engineering applications,
such as his work on accelerated degradationmodels and on fault tree analysis in order
to demonstrate the safety of nuclear plants. Another lasting contribution of his is the
reliability importance measure of the components in a system, referred to as Barlow
and Proschan’s Importance Measure, which is widely used in practice and always
used for comparison with new or alternative measures. The books of Gnedenko et
al. [29], and, Gnedenko and Ushakov [30], are of considerable influence, as well. In
[30], the authors developed advanced statistical methods for reliability analysis. The
book of [31] includes mathematical models associated with probabilistic methods
of reliability analysis. Also, it provides a detailed treatment of reliability indices,
the structure function, load-strength reliability models, distributions with monotone
intensity functions, repairable systems, the Markov models, analysis of performance
effectiveness, optimal technical diagnosis and heuristic methods in reliability. The
set-theoretic approach to reliability theory and the central concepts of set theory to the
phenomena are considered by [32]. The authors present methods of finding estimates
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for reliability parameters based on observations and methods of testing reliability
hypotheses, aswell as amethod that increases the reliability ofmanufactured articles-
redundancy.

Bedford offers an insight into mathematical modeling in reliability theory and its
applications [33]. Interesting topics in his book are the relations among aging and
stochastic dependence, as well as how competing risks arise in reliability and main-
tenance analysis through the ways in which data is censored. Nakagawa [34], gives
a basic treatment of stochastic processes, such as Markov renewal processes, with
related reliability studies and applications. Aven and Jensen [35], provide an up-to
date presentation of someof the classical areas of reliability based on amore advanced
probabilistic framework using the modern theory of stochastic processes. Also, they
adopt a (semi-) martingale approach for analyzing failure-prone systems. With the
aid of this general approach, they formulate a unifying theory of both nonrepairable
and repairable systems, with Markov processes as a special case, among others.
Birolini investigated renewal and alternating renewal processes, Markov processes
with a finite state space, semi-Markov processes, regenerative stochastic processes
and somekinds of non-regenerative stochastic processes used in themodelingof relia-
bility problems, along with the respective reliability models, [36]. He gave emphasis
to the theoretical and computational limitations involved in the various analytical
procedures for reliability resolution, as well as to the unification and extension of
the reliability models known in the literature. In [37], the state-of-the art of relia-
bility engineering is presented, based also on the author’s experience in industry.
In [38], the authors presented homogeneous and non-homogeneous semi-Markov
models with finitely many states for real life problems of risk management such as
reliability and proposed basic algorithms for the respective theoretical models.

More specifically, reliability ofmodels that are describedwith PDMPs also attracts
research attention. The semi-Markov processes generalize the renewal processes and
the Markov jump processes with applications in reliability, [39]. The importance of
hitting times to reliability is indicated in [40]. This paper systematically models
reliability for semi-Markov processes with a general state space, which generalizes
results from finite state spaces. Dynamic reliability in the frame of PDMP is studied
by [41]. Estimates for some functionals of PDMP, in view of a sensitivity analysis
in dynamic reliability, are computed by [42]. The theory of dynamic reliability and
how it models random loads, which is a common situation in structural reliability
problems, is considered in [43].

Cocozza-Thivent and Mercier studied dynamic reliability models. The authors
proposed a finite-volume scheme that approximates the probability measures that are
the solution to the probability of the state of the system, in [44] and they characterized
the marginal distribution of the PDMP, in [45].

The rest of this chapter is organized as follows. In Sect. 2, the stochastic model
is described in detail. As necessary, basic elements of Markov Renewal Theory
are included, along with the semi-Markov kernel and the transition function of the
Markov process. In Sect. 3, reliability calculation is presented, first, as it follows
from [46]. At this point we propose our method on reliability calculation which is the
main contribution of the present work. This method offers a deviation in calculation
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procedure compared to the previous one. Also, the procedure of its numerical imple-
mentation and the accompanying algorithms are provided. Next, Sect. 4 describes a
method for estimation of the reliability function, as presented and applied in [25]. Its
utility is to offer an estimator for reliability, as comparisonmeasure of the method we
proposed for reliability calculus. Sect. 5 includes our numerical results on reliability
as application of our calculation method presented in Sect. 3, in comparison with the
estimation method of Sect. 4. A few concluding remarks are given in Sect. 6.

2 The Model Settings and Elements of Markov Renewal
Theory

In this Section, the model (1) is thoroughly described and the essential theoretical
background is provided, as well. Particularly, the following points are to be exposed
here:

1. The Markov process Xt is defined, as well as its probability transition function
and infinitesimal generator. Also, it is necessary here to give the basic frame of
Markov renewal theory.

2. The coupled process (Zt , Xt ) is described along with the associated probability
transition function, infinitesimal generator and Markov Renewal Equation

3. The conditions of the function C are given.

In this section, the principal references are [7, 26, 46].

2.1 Basic Definitions

Assuming that the process Xt of the model is a jump Markov process it is necessary
to begin with the respective definitions. First, let us define a Markov process and its
transition probability function, in the following way:

Definition 1 Let (Ω,F ,P) a probability space and (Xt , t ∈ R+) a random process
with values in measurable state space E of σ -algebra E . We note asFt the σ -algebra
of events generated by (Xs, 0 ≤ s ≤ t) and (Ft )t∈R+ the associated filtration. The
process Xt is aMarkov process if for all B ∈ E and all s, t ∈ R+ , such that 0 ≤ s < t ,
it satisfies

P(Xt ∈ B|Fs) = P(Xt ∈ B|Xs), p.s.

Also, Xt is homogeneous with respect to time if for all s, t ∈ R+ and all x ∈ E

P(Xt ∈ B|X0 = x) = P(Xt+s ∈ B|Xs = x). (2)
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For aMarkov homogeneous process we denote as P(x, B, t) the probability (2). The
function defined as P : (x, B, t) → P(x, B, t) for x ∈ E, B ∈ E, t ∈ R+ is called
transition function of the process.

We are concerned only about homogeneous Markov processes. The essential
property of Markov processes is on Chapman-Kolmogorov equation:

Definition 2 The transition function of a homogeneous Markov process verifies the
equation:

P(x, B, t) =
∫

E
P(x, dy, s)P(y, B, t − s), 0 ≤ s ≤ t,

called Chapman-Kolmogorov equation.

It is indispensable for a Markov process that its infinitesimal generator is defined,
after the definition of the expectancy:

Definition 3 The expectancy with respect to the probability mesure P(x, ·, t) of a
real function f , measurable and bounded, is defined by

Ex f (Xt ) = E[ f (Xt )|X0 = x] =
∫

E
f (y)P(x, dy, t).

The expectation Ex [·] serves to interpret the transition function as an operator Pt

Pt f (x) = Ex f (Xt ).

The set {Pt , t ≥ 0} is called semi-group of transition functions. Now, the infini-
tesimal generator of the process can be defined.

Definition 4 The infinitesimal generator of a Markov process is an operator A
defined by the following limit

A f (x) = lim
t→0

Pt f (x) − f (x)

t
,

as long as it exists, for all x ∈ E . The set of functions f , measurable and bounded,
for which this limit exists, is called domain of A. The generator corresponds to the
derivative with respect to the time of expectancy calculated on 0+.

This, along with the initial law α(B) = P(X0 ∈ B), B ∈ E , characterizes com-
pletely the Xt .

Next, we pass to the definition of the jump Markov processes, Xt being one,
which are a particular set among Markov processes:

Definition 5 The jump Markov process is a Markov process with values in a count-
able set E , where the evolution is realized with jump from state to state and almost
all trajectories (i.e. with probability one) are constant except for isolated points cor-
responding to jumps.
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The letters i, j are used for countable or finite state spaces, which is the case of the
present study. We denote as P : (i, j, t) → Pi j (t) for i, j ∈ E, t ∈ R+ the transition
function associated to a Markov process with countable state space, i.e. with respect
to the general case, Pi j (t) = P(i, { j}, t). We set the function f : i → 1 j (i) with
i, j ∈ E where 1 j (i) defines the indicator function equal to 1 if i = j , 0 if not.
So, Pt f (i) = Pt1 j (i) = Pi j (t) and we can represent the generator with a matrix
A = (ai j )i, j∈E verifying the relation:

Definition 6 ThematrixA = (ai j )i, j∈E of generator of aMarkovprocesswith count-
able state space is given by

ai j = lim
t→0

Pi j (t) − δi j

t
, where δi j =

{
1, if i = j

0, if not.

For the jump Markov processes, we consider only generators stable and conser-
vative, i.e. verifying {

ai j ≥ 0, if ∀i 	= j

aii = −ai = −∑
l∈E,l 	=i ail .

(3)

Since the state space E is a countable part of N, the generator is represented by a
square matrix of dimensions s × s, where s is the cardinal of E .

2.2 Markov Renewal Process and Semi-Markov Kernel

At this point, the notion of a Markov Renewal Process should be introduced. Semi-
Markov processes are a natural generalization of Markov processes: the constraint
that all states sojourn times follow exponential distribution is relaxed. A Markov
Renewal Process of two components is associated to a semi-Markov process:

1. one that describes the states successively visited and
2. another for the instants of change of state for the process.

Let 0 = S0 ≤ S1 ≤ · · · ≤ Sn ≤ Sn+1 ≤ . . . be the sequence of random variables
that describe the successive instants of jump of Xt and Wn = Sn+1 − Sn , for n ∈ N,
the sojourn times of the states.

The sequence (Jn, n ∈ N), composed by the successively visited states taken up
by Xt is a Markov chain called embedded Markov chain (EMC). Note that S0
may also take positive values. Let N be the set of non-negative integers. Then, Xt is
connected to (Jn, Sn) through

Xt = Jn, if Sn ≤ t < Sn+1, t ≥ 0 and Jn = X Sn , n ∈ N.
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The embedded chain Jn corresponds to successive values of Xt on the intervals
[Sn, Sn+1). The process Xt can be written

Xt =
∑
n∈N

Jn1[Sn ,Sn+1)(t), (4)

where the indicator function 1A is defined as

1A(x) =
{
1, if x ∈ A,

0, if x /∈ A.

The embedded chain Jn has the same initial law as Xt and is completely characterized
by the properties:

1. If Xt is on state i on the interval [Sn, Sn+1), the law of sojourn time conditional
at state i is exponential of parameter ai

2. The lawof change of state for the embeddedMarkov chain Jn is given by transition
matrix P = (pi j )i, j∈E verifying

pi j =
{

ai j

ai
, if i 	= j and ai 	= 0,

0, if not.

We suppose that the process Xt is an homogeneous jump Markov process with
countable state space E , generator A and initial law (α(i))i∈E .

Definition 7 The stochastic process (Jn, Sn)n∈N is said to be a Markov renewal
process (MRP), with state space E , if it satisfies, a.s., the following equality

P(Jn+1 = j, Sn+1 − Sn ≤ t |J0, . . . , Jn; S1, . . . Sn)

= P(Jn+1 = j, Sn+1 − Sn ≤ t |Jn),

for all j ∈ E, all t ≥ 0 and all n ∈ N. In this case, Xt is called a semi-Markov process
(SMP).

Remark 1 We assume that the above probability is independent of n and Sn , and in
this case the MRP is called time homogeneous. Only time-homogeneous MRP are
considered in the sequel.

The MRP (Jn, Sn)n∈N is determined by

1. the initial distribution α, with αi = P(J0 = i), i ∈ E , and
2. by the transition kernel

Qi j (t) := P(Jn+1 = j, Sn+1 − Sn ≤ t |Jn = i),

called the semi-Markov kernel.
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TheEMC Jn has E as its state space and transition probabilities pi j := Qi j (∞) :=
limt→∞ Qi j (t). To denote here that Qii (t) ≡ 0, for all i ∈ E , but in general we can
consider semi-Markov kernels by dropping this hypothesis.

An important point is the following decomposition of the semi-Markov kernel

Qi j (t) := P(Jn+1 = j, Sn+1 − Sn ≤ t |Jn = i) = pi j Fi j (t), t ≥ 0, i, j ∈ E,

where Fi j (t) := P(Sn+1 − Sn ≤ t |Jn = i, Jn+1 = j) is the conditional distribution
function of the sojourn time in the state i given that the next visited state is j , i 	= j .

Let us also define the distribution function Hi (t) := ∑
j∈E Qi j (t) and its mean

value mi , which is the mean sojourn time of Xt in state i . In general, Qi j is a
subdistribution, i.e., Qi j (∞) ≤ 1, hence Hi is a distribution function, Hi (∞) = 1,
and Qi j (0−) = Hi (0−) = 0.

Markov process is a particular case of semi-Markov process and its semi-Markov
kernel is as follows.

Example 1 A Markov process with state space E = N and generating matrix A =
(ai j )i, j∈E is a special semi-Markov process with semi-Markov kernel

Qi j (t) = ai j

ai
(1 − e−ai t ), i 	= j, ai 	= 0,

whereai := −aii , i ∈ E, and Qi j (t) = 0, if i = j orai = 0. In this case the transition
function of the EMC is pi j = ai j/ai and we recover an exponential distribution for
the conditional distribution function of the sojourn time such as Fi (t) = 1 − e−ai t ,
with t ≥ 0.

We introduce the counting process (N (t), t ≥ 0) which counts the number of
jumps of Xt in the time interval (0, t], by N (t) := sup{n ≥ 0 : Sn ≤ t}. Also, define
Ni (t) to be the number of visits of Xt to state i ∈ E in the time interval (0, t]. That
is to say,

Ni (t) :=
N (t)∑
n=0

1{Jn=i} =
∞∑

n=0

1{Jn=i,Sn≤t}.

If we consider the renewal process (Si
n)n≥0 of successive times of visits to state

i , then Ni (t) is the counting process of renewals. Now a semi-Markov process Xt is
said to be regular if

Pi (N (t) < ∞) = 1,

for any t ≥ 0 and any i ∈ E . As usual, Pi (·) means P(·|J0 = i), and Ei is the corre-
sponding expectation. For regular semi-Markov processes we have Sn < Sn+1, for
any n ∈ N, and Sn → ∞. In the sequel, we are concerned with regular semi-Markov
processes, and in particular with regular Markov processes.
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2.3 Markov Renewal Equation

Next, we should refer toMarkov renewal equation (MRE), an essential tool in semi-
Markov theory which can be solved using the so-called Markov renewal function.
Necessary for the definition of this function is the convolution in the Stieljes-sense.
For φ(i, t), i ∈ E, t ≥ 0 a real-valued measurable function, the convolution of φ by
Q is defined by

Q ∗ φ(i, t) :=
∑
k∈E

∫ t

0
Qik(ds)φ(k, t − s).

Now, consider the n-fold convolution of Q by itself. For any i, j ∈ E,

Q(n)
i j (t) =

⎧⎪⎨
⎪⎩

∑
k∈E

∫ t
0 Qik(ds)Q(n−1)

k j (t − s), n ≥ 2,

Qi j (t), n = 1,

δi j1{t≥0}, n = 0,

(5)

where δi j is the Kronecker delta, that is to say, δi j = 1 if i = j, 0 otherwise. It is easy
to prove the following fundamental equality

Q(n)
i j (t) = Pi (Jn = j, Sn ≤ t).

The Markov renewal function ψi j , i, j ∈ E, t ≥ 0 is defined by

ψi j (t) := Ei [N j (t)] = Ei

∞∑
n=0

1{Jn= j,Sn≤t}

=
∞∑

n=0

Pi (Jn = j, Sn ≤ t)

=
∞∑

n=0

Q(n)
i j (t).

In matrix form, this is written as

ψ(t) = (I (t) − Q(t))(−1) =
∞∑

n=0

Q(n)(t),

or alternatively

ψ(t) = I (t) + Q ∗ ψ(t), (6)

where I (t) = I (the identity matrix), if t ≥ 0 and I (t) = 0, if t < 0.
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Equation (6) is a special case of what is called a Markov Renewal Equation
(MRE). A general MRE is one of the following form:

Θ(t) = L(t) + Q ∗ Θ(t), (7)

where Θ(t) = (Θi j (t))i, j∈E , L(t) = (Li j (t))i, j∈E are matrix-valued measurable
functions, with Θi j (t) = Li j (t) = 0 for t < 0. The function L(t) is known while
Θ(t) is the unknown. The (i, j) entry of the Eq. (7) is

Θi j (t) = Li j (t) +
∑
k∈E

∫ t

0
Qik(du)Θk j (t − u), (8)

If Θ(t) and L(t) are vector valued functions, the j th element is written

Θ j (t) = L j (t) +
∑
k∈E

∫ t

0
Q jk(du)Θk(t − u), (9)

Without any loss of generality, Eq. (9) can be considered in the place of Eq. (8).
LetMbe the spaceof all boundedvectorsΘ(t) such that ||Θ(t)|| = supi∈E |Θi (t)|

is bounded with respect to t on the bounded intervals of R+. The Markov Renewal
Theorem that follows gives results on the existence and unicity of a solution to a
MRE as Eq. (7).

Theorem 1 ([23]). Equation (7) has a solution Θ belonging toM, if and only if ψ ∗
L belongs to M. Any solution Θ can be represented in the form Θ(t) = ψ ∗ L(t) +
C(t), where C satisfies the equation C ∗ L(t) = C(t), C(t) ∈ M. A unique solution
of (7) of the form Θ(t) = ψ ∗ L(t) exists if one of the following five conditions are
fulfilled:

1. The state space E is finite.
2. The EMC is irreducible and positive recurrent.
3. supi∈E Hi (t) < 1 for some t > 0.
4. Li j (t) is uniformly bounded in i for every j and t ∈ R+, and for every i there exists

a c > 0 such that Hi (c) < 1 − ε. In this case, the unique solution is uniformly
bounded in i , for every j ∈ E and t > 0.

It can be shown that the semi-Markov transition function defined as

Pi j (t) := P(Xt = j |X0 = i), i, j ∈ E, t ≥ 0,

which is the conditional marginal law of the process, satisfies a particular MRE,
which will be an essential result in the sequel. We can find, e.g., in [7, 22, 23] the
following result.

Proposition 1 ([26]). The transition function P(t) = (Pi j (t)) satisfies the MRE:
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P(t) = I (t) − H(t) + Q ∗ P(t),

which has the unique solution

P(t) = ψ ∗ (I (t) − H(t)),

and, for any i, j ∈ E,

lim
t→∞ Pi j (t) = νi mi/m =: πi .

Here H(t) = diag(Hi (t)) is a diagonal matrix.

To note here that, ν is the stationary distribution of the embedded Markov chain
Jn and π is the stationary distribution of the Markov process, as defined:

Definition 8 Let Xt be an irreducible Markov process, with finite state space E and
generator A = (ai j )i, j∈E . The probability π , unique solution of the equation

∑
j∈E

π( j)ai j = 0, i ∈ E,

is called stationary law of process Xt .

The stationary law π has the properties, see, e.g., [9, 58]:

Property 1 ([47]). Let Xt be an ergodic Markov process, of transition function
Pi j (t) and of stationary law π . We have the following properties:

(a) For all i, j ∈ E, limt→∞ Pi j (t) = π( j).
(b) For all function f : E → R,

lim
T →∞

1

T

∫ T

0
f (Xt )dt =

∑
j∈E

π( j) f ( j) a.s.

2.4 Further Model Settings

Now, we turn back to the model (1), which was presented in [25], and consider the
process Zt and the properties of the function C .

Let (Zt , t ∈ R+) be an increasing stochastic process on R
∗+. Its initial condition

is Z0 = z0 with z ∈ R+ is a realisation of the random variable Z0 that admits a
probability law β defined as β(B) = P(Z0 ∈ B), with B ∈ B, where B is the σ -
algebra of Borel sets of R. Looking towards reliability analysis, we define for the
process Zt a set of working states U = [z0,Δ), with 0 < z0 < Δ, and a set of down
states D = [Δ,∞). Its time evolution is continuous, with positive values, thus Zt

necessarily passes through the point Δ while reaching the set of down states.
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Properties of degradation process Zt :

1. The degradation process Zt takes its values in Rd+.
2. The level of degradation evolves in monotone increasing way in time.
3. The degradation domain limits to a critical threshold not to be overpassed, noted

as Δ. The failure time τ is defined as the random variable that describes the time
that Zt enters failure domain defined by

τ = inf {t ≥ 0 : Zt ≥ Δ}.

4. The trajectories of degradation level are the only observable data. They are mea-
sured from an initial instant up to the instant that the degradation level reaches
the degradation threshold Δ.

For a function C we set the assumptions

Assumption 1 (a) The function C : R × E → R is measurable, of class C1 on
R × E . (b) There is a function h : E → R such that, for x, y ∈ R and i ∈ E ,

|C(x, i) − C(y, i)| ≤ h(i)|x − y|,

which is that C is Lipschitz with respect to its first component.

Assumption 2 The function C : (y, i) → C(y, i) is continuous on R for fixed i ∈
E , bounded and Lipschitz with respect to its first component.

For y ∈ R fixed, there is a mean function C0 defined as

lim
T →∞

1

T

∫ T

0
C(y, Xs)ds = C0(y), a.s.

Assumption 3 The function C : (z, i) → C(z, i) is positive for all z ∈ R+, i ∈ E ,
so, the trajectories of Zt are increasing.

Assumption 4 The support of the initial law β of Zt is a set D0 = [0, A], such that
A < Δ, where Δ is the threshold of system failure.

Under these assumptions, Eq. (1) admits a unique solution, using the standard
results of existence and uniqueness of a solution for the classic differential systems
[48, 49]. So, Markov character of process Xt is not necessary in order to construct a
solution for Zt but uniquely the fact that its trajectories are constant between isolated
jumps, which is true for any jump process. If we fix Xt to i , we obtain

{
dzt
dt = C(zt , i),

z0 = z,
(10)

with z ∈ R+ and i ∈ E . The Eq. (10) constitutes a classic Cauchy problem [50]which
under Assumption 1 has a solution
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zt = φz,i (t), t ≥ 0.

The jump process Xt is constant on the successive intervals [Sn, Sn+1), n ∈ N.
A unique process solution Zt is constructed by pieces, associated to Xt and to function
C , by solving successively the differential equation of type (10). In order to determine
Zt up to instant t we calculate the pieces of trajectory of (Zs, 0 ≤ s ≤ t)

Zs =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φz,J0(s), s ∈ [S0, S1),

φZS1 ,J1(s − S1), s ∈ [S1, S2),
...

φZSn ,Jn (s − Sn), s ∈ [Sn, t), t ∈ [Sn, Sn+1).

(11)

Proposition 2 Let the stochastic differential Eq. (1) with (Xt , t ∈ R+) a jump
process and let the Assumption 1 be verified for the function C. So there is a unique
process (Zt , t ∈ R+) solution of this system with continuous trajectories.

We suppose that the variables Z0 and X0 are independent so the initial law of the
couple (Zt , Xt ) is given by

μ(B, i) = P(Z0 ∈ B, X0 = i) = P(Z0 ∈ B)P(J0 = i) = α(i)β(B). (12)

Proposition 3 Since Z0 and X0 are independent, the couple (Zt , Xt ) is a Markov
process with values in the state space R+ × E.

Proof Let F̃t the σ -algebra of events produced by the couple process (Zs, Xs, 0 ≤
s ≤ t). By conditioning, we have for all s, t ∈ R+ such that,

P(Zt ∈ B, Xt = j |F̃s) = P(Xt = j |F̃s) × P(Zt ∈ B|F̃s, Xt = j),

where B ∈ Bd . The process Xt being Markov and for X0 independent of Z0, the first
term of the product becomes:

P(Xt = j |F̃s) = P(Xt = j |Xs).

The second term of the equation, since Zt is determined by (1) and by the process
(Zs, Xs, 0 ≤ s < t), becomes

P(Zt ∈ B|F̃s, Xt = j) = P(Zt ∈ B|Xs, Zs),

provided that X0, Z0 are independent. Finally

P(Zt ∈ B, Xt = j |F̃s) = P(Zt ∈ B, Xt = j |Xs, Zs).
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The Markov quality of the couple (Zt , Xt ) in addition to the piecewise construction
of Zt trajectories as presented in (11) justifies the name of piecewise deterministic
Markov processes attributed to (Zt , Xt ).

Now, the functions that characterize (Zt , Xt ) are

• the transition function, for which the entire following paragraph, Sect. 2.5, is
devoted and

• the infinitesimal generator of the couple.

One of the most important results for the PDMPs such as the couple (Zt , Xt )

concerns the infinitesimal generator B, which is given in an explicit form in the
following proposition:

Proposition 4 ([51]). The infinitesimal generator B of the couple (Zt , Xt ) refers to
the real functions f : (z, i) → f (z, i), for z ∈ R

d , i ∈ E bounded and differentiable
with respect to first argument:

B f (z, i) =
d∑

k=1

Ck(z, i)
∂

∂zk
f (z, i) +

∑
j∈E

ai j [ f (z, j) − f (z, i)],

where Ck corresponds to the kth component of C(z, i).

2.5 The Transition Probability Function of the PDMP
and Its Markov Renewal Equation

The transition probability function P defined by

Pi j (z, B, t) := Pz,i (Zt ∈ B, Xt = j), i, j ∈ E, B ∈ B, (13)

where B is a subset of B, the Borel σ field of R+ and

Pz,i (·) := P(·|Z0 = z, X0 = i).

AMarkovprocess is a specialMRP, thuswemayassociate to (Zt , Xt ) the extended
MRP (ζn, Jn, Sn, n ∈ N) such as

ζn = ZSn , Jn = X Sn , n ∈ N.

The process (Jn, Sn) is a standard MRP, while (ζn, Jn, Sn) is an extended one.
The associated semi-Markov kernel Q is defined, for t > 0, by

Qi j (z, B, t) := P(Zn+1 ∈ B, Jn+1 = j, Sn+1 − Sn ≤ t |Zn = z, Jn = i). (14)
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The Stieltjes-convolution is denoted by “∗”, hence, the successive n-fold convolu-
tions of the semi-Markov kernel Q are defined recursively. For n = 0, 1

Q(0)
i j (z, B, t) = 1{i= j}1B(z)1R+(t), Q(1)

i j (z, B, t) = Qi j (z, B, t),

where 1B(x) is the indicator function, i.e., 1B(x) = 1 if x ∈ B, 0 otherwise. For
n ≥ 2, the n-fold convolution turns to

Q(n)
i j (z, B, t) : = (Q ∗ Q(n−1))i j (z, B, t) (15)

=
∑
k∈E

∫
R+

∫ t

0
Qik(z, dy, ds)Q(n−1)

k j (y, B, t − s).

The Markov renewal function Ψ , which plays a central role, is defined by [7]

Ψi j (z, B, t) =
∑
n≥0

Q(n)
i j (z, B, t). (16)

In the case at hand, we have (ζn, Jn, Sn) a normal MRP, that is, Ψi j (z, B, t) < ∞
for any fixed t > 0, z > 0, B ∈ B and i, j ∈ E .

A MRE has the following form

Θi j (z, B, t) = gi j (z, B, t) + (Q ∗ Θ)i j (z, B, t), (17)

where g is a known function defined on R+ × E × R+ and Θ is the unknown func-
tion. The solution is given by

Θi j (z, B, t) = (Ψ ∗ g)i j (z, B, t). (18)

Applying the Markov renewal theory, a MRE for P is introduced. First, Q is to
calculate:

Lemma 1 The semi-Markov kernel Q of the MRP (ζn, Jn, Sn) verifies for i 	= j ,

Qi j (z, B, dt) = ai je
−ai tδφz,i (t)(B)dt,

where δx (B) is the Dirac distribution, equal to 1 if x ∈ B, 0 otherwise.

Proof Assuming that S0 = 0, and conditioning on Eq. (14), we get

Qi j (z, B, dt) = Pz,i (J1 = j, S1 ∈ dt)Pz,i (ζ1 ∈ B|J1 = j, S1 = t).

First, since S1 and J1 are independent, we have Pz,i (J1 = j, S1 ∈ dt) = ai j e−ai t dt
from the usual results of Markov theory. Second, Zt is fully characterized by φz,i (t)
before the first jump time S1, thus Pz,i (ζ1 ∈ B|J1 = j, S1 = t) = Pz,i (Zt ∈ B) =
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δφz,i (t)(B). Indeed the probability Pz,i (Zt ∈ B) is zero everywhere, except for the
time points where B is reached. We hence get the expected result.

Here follows the solution of aMarkov Renewal Equation (MRE) for the transition
function of the PDMP.

Proposition 5 ([25]). The transition function P of (Zt , Xt ) is governed by the MRE

Pi j (z, B, t) = gi j (z, B, t) + (Q ∗ P)i j (z, B, t),

whose solution is Pi j (z, B, t) = (Ψ ∗ g)i j (z, B, t) and where

gi j (z, B, t) = e−ai t 1{i= j}1B(φz,i (t)).

Proof It is convenient to make appear S1 in (13). Hence,

Pi j (z, B, t) = Pz,i (Zt ∈ B, Xt = j, S1 > t) + Pz,i (Zt ∈ B, Xt = j, S1 ≤ t),

where P1 and P2 denote the first and the second term, respectively, on the right part
of the equation.

Before the first jump of Xt , i = j and Zt evolves according to φz,i (t). Thus,

P1 = e−αi t 1B(φz,i (t))1{i= j}.

From the Total Probability Theorem, it holds for P2 that

P2 =
∑

k∈E,k 	=i

∫ t

0
Pz,i (Zt ∈ B, Xt = j |J1 = k, S1 = s)Pz,i (J1 = k, S1 ∈ ds).

As long as Pz,i (Y1 = k, S1 ∈ ds) = aikE−ai sds, and noticing that

Pz,i (Zt ∈ B, Xt = j |Y1 = k, S1 = s) = Pk j (φz,i (s), B, t − s),

then P2 is fully characterized. Finally,

Pi j (z, B, t) = e−ai t 1{i= j}1B(φz,i (t))

+
∑

k∈E,k 	=i

aik

∫ t

0
e−ai s Pk j (φz,i (s), B, t − s)ds,

which may be written, with Q given by Lemma 1 and g given by Proposition 5, as

Pi j (z, B, t) = gi j (z, B, t) +
∑
k∈E

∫
R+

∫ t

0
Qik(z, dy, ds)Pk j (y, B, t − s).

This last equation is of the general form (17) whose solution is given by (18).
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2.6 Practical Calculation of Semi-Markov Kernel

As already given in [47], the semi-Markov kernel Qi j (z, B, t) of the system can be
calculated with integration of Qi j (z, B, dt), Lemma 1.

First, in order to resolve this integral, let us give the definition of tz,i (y), the time
that Zt needed to reach y > z, without jump of Xt , with initial conditions Z0 = z,
X0 = i :

tz,i (y) = inf{t ≥ 0 : φz,i (t) ≥ y}, y ∈ R+. (19)

The function tz,i (y) is the generalized inverse of the function φz,i (t).
Applying Lemma 1, for all B of B+,

Qi j (z, B, t) =
∫ t

0
Qi j (z, B, dt) = ai j

∫ t

0
e−ai s 1B(φz,i (t))ds. (20)

What is useful in this problem frame, is to calculate the kernel, at time t , for the
subsets of the set B, which is the subset of the ‘up’ states U and the subset of the
‘down’ states D:

• For B := U the indicator function 1B(φz,i (t)) = 0, when the function φ is out of
the ‘up’ states subset, i.e. when φz,i (t) reaches the point Δ. By (19), this corre-
sponds to the instant tz,i (Δ) and the kernel is written as

Qi j (z, U, t) = ai j

∫ t

0
e−ai s 1U (φz,i (t))ds = ai j

∫ min(tz,i (Δ),t)

0
e−ai s ds

= pi j
(
1 − e−ai min(tz,i (Δ),t)

)
. (21)

• For B := D the indicator function 1D(φz,i (t)) = 0, when the function φ has not
reached the ‘down’ states, i.e. when φz,i (t) < Δ, so

Qi j (z, D, t) = ai j

∫ t

0
e−ai s 1D(φz,i (t))ds = ai j

∫ t

tz,i (Δ)

e−ai s ds (22)

= pi j (e
−ai tz,i (Δ) − e−ai t )1{t>tz,i (Δ)}. (23)

3 Reliability Calculus

As an application, let us now study reliability of the system. The reliability R(t) of a
system at time t ∈ R+, starting to operate at time t = 0, is defined as the probability
that the system has operated without failure in the interval [0, t], i.e.

R(t) = P((Zt , Xt ) ∈ U × E) =
∑

i, j∈E

μ(B, i)Pi j (z, U, t). (24)
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In the sequel, we briefly describe the previously proposed method for reliabil-
ity calculus and then we present our method along with details on its practical
implementation.

3.1 Previous Method on Reliability Calculus

In order to obtain a calculable form of R(t), a first approach, as already described in
[46] is to plug-in the solution of Pi j (z, B, t), Proposition 5, in Eq. (24):

R(t) =
∑

i, j∈E

μ(B, i) × (Ψ ∗ g)i j (z, B, t). (25)

In turn, the Eq. (25) requires to calculate:

1. the convolution between the functions Ψ and g: (Ψ ∗ g)i j (z, B, t),
which includes:

2. the Markov renewal function Ψ ,

Ψi j (z, B, t) =
∑
n≥0

Q(n)
i j (z, B, t)

which in turn requires:
3. the n-power of kernel convolution, Q(n)

i j , Eq. (15),
which requires:

4. the semi-Markov kernel, Qi j .

3.2 A New Method on Reliability Calculus

Here we present a second approach for the demanding calculation of reliability.
Its advantage is its lower calculation complexity, since the recursive calculation is
directly applied on reliability itself. To make the idea more comprehensible, we will
first refer to a case where the process of interest is (Xt )t≥0, and later pass to our case
of the coupled process.

The novelty to calculate reliability recursively with recurrence on itself exists
in [52], for semi-Markov processes. Following the notation of our problem setting,
let (Xt )t≥0 be the semi-Markov process that describes the evolution in time of the
studied system. Let us assume that the system starts to work at time t = 0 and the
event {Xt = i}, i ∈ E means that the system is in the operating mode i at time t .
The reliability of the system at time t is defined as the probability that the system
has been functioning without failure in the interval [0, t], that is
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R(t) = P(Xs ∈ E,∀s ∈ [0, t])

If the conditional reliability Ri (t), i ∈ E , at time t is defined as

Ri (t) = P(Xs ∈ E,∀s ∈ [0, t]|X0 = i), i ∈ E, (26)

then for any initial distribution α, it is R(t) = ∑
i∈E α(i)Ri (t). The conditional reli-

ability satisfies the following Markov Renewal Equation (MRE)

Ri (t) = 1 − Hi (t) +
∑
j∈U

∫ t

0
Qi j (ds)R j (t − s). (27)

Equation (27) can be approximated by

Ri (t) ≈ 1 − Hi (t) +
∑
j∈U

k∑
l=1

(Qi j (tl) − Qi j (tl−1))R j (t − tl), (28)

where 0 = t0 < t1 < . . . < tk = t , which can be used recursively in order to obtain
Ri (t), starting from an initial point Ri (0) = 1, [7]. Similar MRE for the conditional
reliability is encountered in [53].

Comparative results are encountered in [54], on the reliability function of an
object with the failure rate modeled by a semi-Markov process defined on an at most
countable state space. The solution of the conditional reliability function is proved to
be unique in the class of themeasurable and uniformly bounded failure rate functions.

Let {w(t) : t ≥ 0} denote a random load process defined on at most countable
state space W , with a nonnegative and right continuous trajectories. Suppose that the
failure rate of anobject, denotedby {λ(t) : t ≥ 0}depends on the random loadprocess
λ(t) = g(w(t)), where g : R+ → R+ is a monotonic and continuous function. It is
obvious that {λ(t) : t ≥ 0} is a random process described on at most countable state
space Λ = g(W ) with a nonnegative, right continuous trajectories. The reliability of
a component with random failure rate is defined as follows

R(t) = E[e− ∫ t
0 λ(x)dx ] (29)

and has all the properties of a classical reliability function.
Suppose that random load {w(t) : t ≥ 0} is a semi-Markov process defined on

a discrete set W = {w j : j ∈ E}, where E = {1, 2, . . .} or E = {1, 2, . . . , m} and
wi ∈ R, 0 ≤ w1 < w2 < . . . Assume that this process is defined by an initial
distribution

α = {
P(w(0) = wi ) : i ∈ E

}
(30)
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and a kernel

Q(t) = [Qi j (t) : i, j ∈ E],
Qi j (t) = P(Sn+1 − Sn ≤ t, w(Sn+1) = w j |w(Sn) = wi ). (31)

For the monotonic function g, {λ(t) = g(w(t)) : t ≥ 0} is the semi-Markov
process on Λ = g(W ) with the same kernel. Let g be an increasing function. Then
the state space Λ consist of the real numbers λ0, λ1, λ2, . . . such that 0 ≤ λ0 < λ1 <

λ2 < . . . Grabski [54] defined a conditional reliability function as

Ri (t) = E[e− ∫ t
0 λ(x)dx |λ(0) = λi ]. (32)

It is obvious, then, that

R(t) =
∑
j∈E

P{λ(0) = λi }Ri (t). (33)

The following theorem is an extension of the result proved by [55].

Theorem 2 ([54]). If the failure rate function {Λ(t) : t ≥ 0} is a regular semi-
Markov process on discrete state space with a kernel Q(t) = [Qi j : i, j ∈ E], then
the conditional reliability functions Ri (t), i ∈ E, satisfy the equation

Ri (t) = e−λi t (1 − Hi (t)) +
∫ t

0
e−λi x

∑
j∈E

R j (t − x)dQi j (x), i ∈ E . (34)

The solution is unique in the class of the measurable and uniformly bounded functions
space.

Theorem 1 of [55] introduced the reliability function assuming that the failure
rate of an element is a special semi-Markov process with a finite state space or a
piecewise Markov process with finite state space.

Turning back to the reliability of the coupled process now (Zt , Xt ) that we are
interested in, we should work equivalently to the previously cited authors, that is
applying the recursion on the conditional reliability. Thus, we start by defining con-
ditional reliability as:

Ri (z, U, t) := P((Zt , Xt ) ∈ U × E |Z0 = z, J0 = i).

This can be written with the following form

Ri (z, B, t) =
∑
j∈E

Pi j (z, B, t), (35)
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that we plug into (24), in order to obtain reliability:

R(t) =
∑
i∈E

μ(B, i)Ri (z, B, t). (36)

So, we focus on the calculation of conditional reliability:
Following the solution of Pi j (z, B, t) as given in Proposition 5, that is

Pi j (z, B, t) = gi j (z, B, t) +
∑
k∈E

∫
R+

∫ t

0
Qik(z, dy, ds)Pk j (y, B, t − s),

we apply the (35) on it, thus

Ri (z, B, t) =
∑
j∈E

gi j (z, B, t) +
∑
k∈E

∫
R+

∫ t

0
Qik(z, dy, ds)Rk(y, B, t − s), (37)

or

Ri (z, B, t) = (1 − Hi (t))1B(φz,i (t)) +
∑
k∈E

∫
R+

∫ t

0
Qik(z, dy, ds)Rk(y, B, t − s),

(38)
and if (Zt , Xt ) is in particular Markov process

Ri (z, B, t) = e−ai t 1B(φz,i (t)) +
∑

k∈E\{i}
aik

∫ t

0
e−ai s Rk(φz,i (s), B, t − s)ds. (39)

From Theorem 1, it becomes obvious that Ri (z, B, t) is the unique solution of the
above Markov Renewal equations, (38) and (39).

In Eqs. (38) and (39) it becomes evident that the conditional reliability Ri (z, B, t)
is calculated recursively by itself. In terms of economizing on calculation time com-
pared to previous method, we deviate steps 1–3, which demand convolution two
times (step 1 and step 3) and pass through Markov Renewal function. In essence,
from the previousmethod, we apply only step 4, that is we calculate the semi-Markov
kernel, Qi j and also we calculate recursively the conditional reliability function by
(38)/(39), so convolution appears only once. Last, reliability is calculated simply by
(36). A comparison between the two methods for reliability calculus can be seen
in Fig. 1. It is clear that the second diagram describes a shorter and less complex
algorithm. The complexity increases in both cases of algorithm as the size of state
space E increases, which makes the second calculus method even more preferable.
To note, that a possible drawback of the method we propose, as one may conclude
also from Fig. 1, is that it cannot serve for the calculation of the transition probability
function, Pi j , which was an intermediate outcome of the calculus method of [46].
However, when reliability is the outcome one wishes to obtain, which is admittedly
most often the case, the second method is recommended.
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Fig. 1 Comparative diagrams for the two methods of Reliability Calculus. Diagram 1 represents
the method of [46]. Diagram 2 represents the method proposed in present study, as described in
Sect. 3.2. Calculations are given in matrix form. Double ellipse is implemented for intermediate
calculations and plain ellipse for the terminal calculations.
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3.3 Practical Implementation

Numerically, we will discretize conditional reliability function in order to calculate
it. A discretized function shall have # as an exponent. The discretization will be
applied at the same time on the intervals B = [z0,Δ) and [0, t].These two numerical
partitions will be:

Iy = {z0 = y0 < y1 < · · · < yl < · · · < yL = Δ},
It = {0 = t0 < t1 < · · · < tm < · · · < tM = t}.

The steps of discretization of It and Iy are considered regular: for l = 0, . . . , L − 2,
m = 0, . . . , M − 2,

yl+1 − yl = yl+2 − yl+1 = Δy, tm+1 − tm = tm+2 − tm+1 = Δt.

Effectively, the variables L , M represent the number of discretization steps for
[z0,Δ), [0, t].

In order tomake the discretizationmethod used heremore perceivable, we give the
following graphical representation. It depicts the discretized conditional reliability
R#

i (yl , B, tm)with the numerical partitions of Iy and It on the vertical and horizontal
axis respectively. When R#

i (yl , B, tm) is about to be calculated, the algorithm has at
his disposal all values for conditional reliability, ∀k ∈ E, k 	= i , such that t < tm , ∀y
and for t = tm , for y < yl , as represented by the shadowed area, though not depicted
∀k ∈ E :

We provide the discretized form of conditional reliability function and its imple-
mentation algorithm for both the case when the coupled process is a Markov process
(Eq. (40), Algorithm I) and the case when it is a semi-Markov process (Eq. (41),
Algorithm II).
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So, when (Zt , Xt ) is in particular Markov process, the function (39) gets the form

R#
i (yl , B, tm) = e−ai tm 1B(φyl ,i (tm)) (40)

+
∑

s∈[t1,tm ]

∑
k∈E,k 	=i

pik R#
k (φz,i (s), B, tm − s)(e−ai (s−Δt) − e−ai s)

and the algorithm for its calculation is:

Algorithm I: Reliability Calculation for Markov Process

» Input: z, A,Δ, α, L , M
Iy := {z = y0 < y1 < · · · < yl < · · · < yL = Δ}
It := {0 = t0 < t1 < · · · < tm < · · · < tM = t}
» Calculation of conditional reliability
for tm ∈ It , yl ∈ Iy, i ∈ E do:
if φyl ,i (tm) < Δ do
R#

i (yl , B, tm) := e−ai tm

end if
for s ∈ [t1, tm]
if φyl ,i (s) < Δ do
for k ∈ E do:
if k 	= i do:

R#
i (yl , B, tm) := R#

i (yl , B, tm) + pik(e−ai (s−Δt) − e−ai s)R#
k (φyl ,i (s),

B, tm − s)
end if

end for
end if

end for
end for

» Calculation of reliability
for tm ∈ It do:

R(tm) := ∑
i∈E μ(B, i)R#

i (yl , B, tm)

end for

Respectively, when (Zt , Xt ) is a semi-Markov process, the discretized form of
function (38) will be:

R#
i (yl , B, tm) = (1 − Hi (tm))1B(φyl ,i (tm)) (41)

+
∑

s∈[t1,tm ]

∑
yn∈Iy

∑
k∈E

ΔQ#(yl, yn, s)R#
k (yn, B, tm − s)
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where the kernel difference is given by

ΔQ#
i j (yl , yn, s) = [Q#

i j (yl, yn, s) − Q#
i j (yl , yn−1, s)] (42)

− [Q#
i j (yl , yn, s − Δt) − Q#

i j (yl , yn−1, s − Δt)].

Here in particular, the semi-Markov kernel can be written as

Q#
i j (yl , yn, s) = pi j (1 − e−ai min(tyl ,i (yn),s)) (43)

And the algorithm for this calculation:

Algorithm II: Reliability Calculation for semi-Markov Process

» Input: z, A,Δ, α, L , M
Iy := {z = y0 < y1 < · · · < yl < · · · < yL = Δ}
It := {0 = t0 < t1 < · · · < tm < · · · < tM = t}
function for the kernel difference ΔQ#(yl , yn, s), Equation 42

» Calculation of conditional reliability
for tm ∈ It , yl ∈ Iy, i ∈ E do:
if φyl ,i (tm) < Δ do
R#

i (yl , B, tm) := 1 − Hi (tm)

end if
for s ∈ [t1, tm]
for yn ∈ Iy do

for k ∈ E do:
R#

i (yl , B, tm) := R#
i (yl , B, tm) + ΔQ#(yl , yn, s)R#

k (yn, B, tm − s)
end for

end for
end for

end for

» Calculation of reliability
for tm ∈ It do:

R(tm) := ∑
i∈E μ(B, i)R#

i (yl , B, tm)

end for

4 Estimation of Reliability

The aim is to obtain an estimation of reliability result in order to compare it with
this of reliability calculus. The empirical estimator of reliability presented in this
paragraph comes from the resolution of the Paris model function, which is



Reliability Calculus on Crack Propagation Problem … 369

{
dZt
dt = a0Zb

t × v(Xt ),

Z0 = z0.
(44)

The method we describe here and apply in the sequence is thoroughly presented in
[47].

If we denote as (ς k
t )k=1,...,N some N simulated trajectories of process Zt , the

reliability of the system, given as

R(t) = P(Zt < Δ),

can be estimated by the empirical estimator

R̂(t) = 1

N

N∑
k=1

1{ς k
t <Δ}. (45)

So as to simulate Zt trajectories, we distinguish two cases of solution for
Zt = φ(t), one solution when b = 1 and another when b 	= 1.

In the case when b = 1:

Zt = φ(t) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

φz,J0(t) = z ea0tv(J0), t ∈ [S0, S1),

φZS1 ,J1(t) = ZS1 e
a0(t−S1)v(J1), t ∈ [S1, S2),

· · ·
φZSn ,Jn (t) = ZSn e

a0(t−Sn)v(Jn), t ∈ [Sn, Sn+1).

(46)

In the case when b 	= 1:

Zt = φ(t) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

φz,J0 (t) = (z1−b + a0(1 − b)tv(J0))
1

(1−b) , t ∈ [S0, S1),

φZS1 ,J1(t) = (Z1−b
S1

+ a0(1 − b)(t − S1)v(J1))
1

(1−b) , t ∈ [S1, S2),

· · ·
φZSn ,Jn (t) = (Z1−b

Sn
+ a0(1 − b)(t − Sn)v(Jn))

1
(1−b) , t ∈ [Sn, Sn+1).

(47)

In order, however, to simulate the trajectories of Zt , as necessary for the empirical
estimator of reliability (45), the numerical cost of calculating the function φ in the
successive jump intervals is high. As an alternative, the following will be applied:

• With integration of (44), when the parameter b = 1, the result is

∫ t

0

dZs

Zs
= a0

∫ t

0
v(Xs)ds ⇔ ln

( Zt

z

)
= a0

∫ t

0
v(Xs)ds, (48)

so Zt = z0 ea0Vt , where Vt is the process of cost accumulation associated to the
jump Markov process
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Vt =
∫ t

0
v(Xs)ds. (49)

The process Vt is piecewise linear and easily calculable from the values of v(Xt )

that has constant values between the jumps. From the above, this equivalence
follows

{Zt < Δ} ⇔
{

Vt <
1

a0
ln

(Δ

z0

)}
. (50)

• Respectively, when b 	= 1, integration on (44) gives

∫ t

0

dZs

Zb
s

= a0

∫ t

0
v(Xs)ds = a0Vt , (51)

thus Zt = (z(1−b) + a0(1 − b)Vt )
1/(1−b). From the above, equivalent events for the

system function on the working “up” states will be

{Zt < Δ} ⇔
{

Vt <
Δ1−b − z1−b

0

a0(1 − b)

}
. (52)

This equivalence makes in practice possible to work with the process Vt instead of
the process Zt . The failure time can be determined accurately if we consider that
system failure takes place when the process Zt crosses the threshold Δ between the
instants Sn and Sn+1 or when Vt crosses its threshold in the same time interval. By
linear interpolation between the values of Vt at instants Sn and Sn+1, we obtain the
exact value of time failure τ .
So, for t ∈ [Sn, Sn+1), the process Vt is given by the linear function

Vt = VSn + VSn+1 − VSn

Sn+1 − Sn
(t − Sn).

At time τ , it is Vτ = 1
a0
ln (Δ/z0), if b = 1 and Vτ = Δ1−b−z1−b

0
a0(1−b)

, if b 	= 1, so the exact
value of failure time should be:

• if b = 1,

τ = Sn + Wn
(
1
a0
ln(Δ/z0) − VSn

)
VSn+1 − VSn

(53)

• if b 	= 1,

τ = Sn + Wn
(Δ1−b−z1−b

0
a0(1−b)

− VSn

)
VSn+1 − VSn

. (54)

It is concluded that for the estimation of reliability (45), instead of simulating N
trajectories of Zt , we gain important calculation time and precision if we calculate



Reliability Calculus on Crack Propagation Problem … 371

the failure time associated to each trajectory. This means that we need N values of
time failure, (τk)k=1,...,N . Thus, the reliability estimator transforms into

R̂(t) = 1

N

N∑
k=1

1{t<τk }. (55)

5 Simulation Results

This part includes two numerical applications that implement themethod for reliabil-
ity calculus we proposed and verify its performance by comparison with reliability
empirical estimator. The first application concerns a given example. This means that
we dispose all the parameters of the stochastic model, the reliability of which we
are interested in. The second application is conducted on an experimental data set,
which means that the model is not known and has to be estimated in advance.

5.1 Simulation Results on a Given Example

We provide here an illustration from numerical implementation of the methodology
proposed.We applied reliability calculus as inEq. (40) andAlgorithm I in comparison
with the estimated reliability from Sect. 4 and Eq. (55).

The numerical example studies the dynamical system (44), with parameters a0 =
0.01, b = 1, z0 = 1 and Δ = 10. The randomizing process Xt is a five-state Markov
process with E = {1, 2, 3, 4, 5}, a matrix generator given by

A =

⎛
⎜⎜⎜⎜⎝

−0.2 0.16 0 0.04 0
0.12 −0.2 0.08 0 0
0.14 0 −0.2 0 0.06
0 0.07 0 −0.1 0.03
0 0 0.05 0.05 −0.1

⎞
⎟⎟⎟⎟⎠ ,

and initial law
α = (

0.25 0.5 0.25 0 0
)
.

The function v is a one-to-one mapping of state space E ′ that associates to each
element of E an element of E ′. It serves as a “normalized” version of the process
Xt and has the same generator as Xt . For our example, it is v : {1, 2, 3, 4, 5} →
{0.5, 1, 1.5, 2, 4}, so E ′ = {0.5, 1, 1.5, 2, 4}.

The reliability of the system of our numerical example gets evaluated by imple-
menting Algorithm I, Sect. 3.3. The Markov Renewal Equation is resolved with the
foreseen discretization method, where M = L = 500 points of discretization. With
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Fig. 2 Reliability function: numerical resolution of MRE compared with Monte Carlo estimate

the same input data for the model, a Monte Carlo estimation of K = 5000 iterations
is conducted, according to Sect. 4. More precisely, K trajectories of (Zk

t )k=1,...,K or
alternatively K values of time failure (τk)k=1,...,K are simulated and used for the esti-
mation of R̂(t) = 1

N

∑N
k=1 1{t<τk }. The outcome of Monte Carlo estimation serves

as a comparison measure for the result of the MRE resolution. The result of the
simultaneous implementation of the two reliability methods is depicted on Fig. 2.
Evidently, the two reliability results appear very similar. We observe a slight dis-
crepancy, though, that can be attributed to the number of discretization points, that
is for larger M, L we expect a more precise curve, or to the number of Monte Carlo
iterations, that is for larger K , probably the estimation curve would be even closer to
the calculus curve. However, the proximity of the two curves is sufficiently close. To
note, here, that similar results are obtained in [47], following, however, a different
calculus procedure, Sect. 3.1. What is particular, though, in this study, is that we
achieved to reduce the complexity of this previous resolution procedure and propose
for the new calculus method an algorithm that is more time efficient.

5.2 Simulation Results on Experimental Data

At this point, we are interested in applying the methodology we proposed in Sect. 3.2
on a real data set. Before proceeding to the implementation, we shall initially refer
to this data set, which we used for this application.

To begin with, the data comes from crack propagation experiments and, in partic-
ular, from fatigue tests conducted at the Aerospatiale-Matra laboratory in Suresnes
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(France). This data set was utilized in [56] and gave remarkable results. In [57], the
interested reader can study a fatigue crack propagation analysis, by means of dual
boundary element method. Applying the Paris equation, a deterministic and a prob-
abilistic approach are provided, giving results in good agreement with those from
the experimental tests. Also, sufficient information on the experimental procedure
for the tests that produced this data is provided. Here, we refer to this procedure
briefly. The data originates from multiple site damage (MSD) phenomenon, that is
the simultaneous occurrence of fatigue cracks in the same structural element. In fact,
6 aluminum 2024T 3 specimens were exploited in the following way. Fatigue tests
on a plane with 14 free holes were achieved by applying the load on the transversal
direction of the plane. The tests are done under imposed load with a constant ampli-
tude of a ration R = 0.1 and with a maximum stress level of 100 MPa. The evolution
of the crack lengths with the number of loading cycles was measured using an optical
microscope.

We should underline that the experimental procedure of Aerospatiale-Matra lab-
oratory is not exactly our initial consideration of the cracking problem. We are more
concerned about mono-cracks, without any interaction among them on the contrary
to the multi-crack of MSD. In addition, our model seems rather conservative to con-
sider P(Z0 = z0), which is not the case of Aerospatiale-Matra data. In Fig. 3 we see
the trajectories of Zt , consisting the data set. This time the initial value of Zt , i.e., Z0,
is not a unique value for all trajectories, so we assume that it follows a distribution,
whose law is estimated with a machine learning method from experimental data.
Moreover, the failure point,Δ, is not a fixed value but varies, on the contrary. For the

Fig. 3 Aerospatiale-Matra data set
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numerical implementation, we considered the mean value of the various experimen-
tal Δ as the Δ that the two reliability methods implemented in the previous example
indispensably require.

As it becomes obvious from Fig. 3 that depicts the data set, only the degradation
process Zt is now observable. This means that in order to apply the model considered
here, the jump Markov process Xt , not being available, has to be estimated. The
procedure for the estimation of the jump process is described in detail in Chap. 4
of [47]. Here, we shall only mention the outline of how we obtain in the end an
estimation of the initial law α and the generator A of the process Xt , with Zt as
unique input data:

1. We estimate Żt = dZt
dt , that is

̂̇Zt

2. Applying the following hypothesis

Hypothesis 3 For the system (1), there is a function G such that we can write Xt

explicitly as a function of Żt and Zt , that is Xt = G(Żt , Zt ).

We obtain an estimation of the Xt trajectories, that is (X̃ k
t )k=1,...,K .

3. We reduce the state space Ẽ of X̃ k
t to Ê of X̂ k

t , by placing in the same state-group
the states that are sufficiently close with the appropriate classification algorithm.

4. With the maximum likelihood method, we estimate the initial law, α̂, and the
infinitesimal generator, Â. (In [47], strong convergence and asymptotic normality
results are given for Â.)

Disposing now the estimates of the initial law, α̂, and the infinitesimal generator,
Â, for the jump process Xt , the procedure described for the previous numerical appli-
cation is again followed. This means that, with the estimated model as input data
instead of a given one as previously, reliability is calculated as proposed in Sect. 3.3
and estimated with Monte Carlo method according to Sect. 4. What is new, though,
this time, is an empirical estimator for reliability that is derived directly from the
experimental data by Eq. (55). This estimator actually has no relation with the model
considered in the present study, since it just originates from the real data set. It serves,
thus, as a comparison measure for the result of the MRE resolution and the MC esti-
mator, both of which come from a model assumed to represent crack propagation
and for which crack propagation data is used in order to estimate. Figure4 gives
the three reliability curves in a common axis system, after simultaneous application
of the three, as mentioned here, reliability methods. And we notice good similarity
results among the three curves. First, this implementation confirms the good perfor-
mance of the reliability calculus method we proposed (Sect. 3.3), that, as expected
after the previous implementation, is in agreement with the MC estimation result.
We see that these two methods gave curves that are very close between them and this
time, as a second remark, are quite close to the empirical reliability estimator that
comes directly from the data. It becomes obvious, so, that this estimator validates
the stochastic model considered in this study on the problem of crack propagation.
In other words, the outcome of a model supposed to describe fatigue crack growth

http://dx.doi.org/10.1007/978-3-319-27996-1_4
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Fig. 4 Reliability function: numerical resolution of MRE compared with Monte Carlo estimate
(using the estimates of the initial law and the generator of the jump process), followingly compared
with reliability empirical estimator based on the experimental data

phenomenon ‘agrees’, indeed, with experimental data of this phenomenon. Interest-
ingly enough, it handle s a version of crack propagation phenomenon, MSD, that is
differentiated from our initial research pretext.

In an attempt to justify the discrepancy noticed between the data-originated curve
and the estimated-model-originated ones, we should refer to the small size of the data
set, that is only 20 trajectories were exploited in this application. Given that this data
set served as the input for the estimation of the model, we understand that the model
has not been precisely estimated. Besides, the fact that the distribution law of z0 had
to be estimated and thatΔ had to be replaced by its mean value estimator makes clear
some further loss of precision. As stated in step 3 of the procedure of estimation of
the jump process, the state space Ẽ gets reduced to Ê and this definitely entails some
approximation error. Taking all the above into consideration, the proximity result of
Fig. 4 is very satisfying.

6 Conclusions

In this chapter, reliability of a stochastic dynamical model that describes fatigue
crack propagation was studied, by means of the Markov Renewal theory. A previ-
ously proposed method for reliability calculation was considered. We relied on the
theoretical results of other authors, on the reliability of a single Markov or semi-
Markov process, in order to extend their approach to the case of a coupled Markov
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process. To remind, here, that the stochastic dynamical model we consider is charac-
terized by a coupled Markov. What consists also a principal accomplishment of the
present study, is that we proposed a new, more time-efficient, method for reliability
calculation, with a detailed description of its implementation algorithm. It would be
interesting a study of computational complexity in order to explicitly compare the
two calculus methods. This demands, however, some basic knowledge of theoretical
computer science, that is an interdisciplinary approach.

In the sequel, we validated our theoretical results via numerical simulations.Afirst
numerical applicationwas conducted on a given example of stochasticmodelwhen all
the model parameters were known. The implementation gave very satisfying results,
with the resulting curve of our reliability calculus method almost to coincide with the
curve a Monte Carlo reliability estimation gave. After this encouraging result, this
calculus method and the MC estimation method were applied on a experimental data
set. This time, however, the model was not given but had to be estimated from the
available data. Again the twomethods gave very good similarity results. An empirical
estimator for reliability, calculated only with the real data, was compared with the
results that the estimated model produced and was sufficiently close to them. This
application could motivate future research into multiple site damage, provoked by
fatigue crack growth, by appropriately adapting the stochastic model of this study.
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Multi-scale Simulation of Newtonian
and Non-Newtonian Multi-phase Flows

Juan Luis Prieto

Abstract This work is devoted to the multi-scale simulation of Newtonian and non-
Newtonian multi-phase flows using a level-set method to capture the fluid interface
along with Brownian Dynamics simulations to account for the viscoelastic effects of
the fluid. The Navier-Stokes equations are solved by a second order accurate semi-
Lagrangian scheme, evolving the level-set function along the characteristic curves
of the flow. Marker particles are added to correct the shape of the free surface,
using a Semi-Lagrangian Particle Level-Set method taking into account viscous and
surface tension effects. Non-Newtonian flows are modeled by means of a micro-
macro, multi-scale approach in which stochastic, partial differential equations are
solved using a variance-reduced technique on a number of ensembles of dumbbells
scattered over the domain, with the Finitely Extensible Non-linear Elastic (FENE)
kineticmodel. Several benchmarkproblems forNewtonian andnon-Newtonianfluids
are presented, ranging from imposed flows to complex, high density and viscosity
ratio flows featuring highly viscoelastic effects. The results highlight the versatility,
accuracy and robustness of the proposed technique.

1 Introduction

The field of interface capturing techniques is a-changing. Ever increasing demands
for the understanding of multi-phase flows in biological sensors, crystal propagation
phenomena, combustion processes, or virtual surgery, alongwith a rapid development
of computational resources have led to a rich framework of numerical methods, each
of them best suited to specific situations [8, 18, 37].

If we focus on purely Newtonian applications, several computational techniques
are available [19–21, 38]. Among them, Level-Set methods, a sort of front-capturing
technique, hold a privilege position: since the seminal work by Osher and Sethian
[24], much effort [23, 32, 35] has been devoted to the application and improvement
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of this elegant method, capable of dealing with topological changes in a natural
way, providing also, if required, geometrical magnitudes such as the normal and
curvature of the interface. One conspicuous example is the Hybrid Particle Level-Set
(HPLS)method [9] of Enright and collaborators, inwhichmarker (massless) particles
are added close to the interface to better preserve its shape and mass conservation
properties. Further analyses in this direction were carried out in [10, 27, 36] and
recently, by Bermejo and Prieto in [2].

Research on non-Newtonian , multi-phase flows has received much less attention,
especially, if a Finite Element discretization is considered jointly with a level-set
method: here, the work of Pillapakkam and Singh [28], Pillapakkam et al. [29] in
droplet deformation and rising bubble configurations stands out. Other front-tracking
and front-capturing techniques have successfully been applied to viscoelastic, multi-
phase flows: thus, Bonito et al. [4], Oishi et al. [22], Pasquali and Scriven [26],
Foteinopoulou and Laso [11], Adami et al. [1], or Zainali and co-workers [39], to
name a few. However, the number of studies making use of micro-macro techniques
such as the CONNFFESSIT (Calculation of Non-Newtonian Flow: Finite Elements
and Stochastic Simulation Technique) approach is smaller still: in this regard, we can
cite the works by Cormenzana et al. [7] or Grande and others [12] for free-surface,
viscoelastic flows.

The purpose of this paper is to offer an overview of the capabilities of a multi-
scale, micro-macro approach in which Finite Element, semi-Lagrangian, Particle-
Level Set methods are used in combination with Brownian Dynamics simulations
for the accurate and robust computation of Newtonian and non-Newtonian, multi-
phase flows. Thus, after this brief Introduction, we present in Sect. 2 themathematical
background required to follow the subsequent explanations; then, Sect. 3 is concerned
with the numerical procedures involved in themulti-scale approach,with an emphasis
on the efficient implementation of stochastic computations. Later, Sect. 4 tests the
method under several benchmark configurations of Newtonian and non-Newtonian
flows. Finally, some conclusions and future efforts are collected in Sect. 5.

2 Mathematical Background

The simulation ofmulti-phaseNewtonian andnon-Newtonianflowswith the level-set
method entails the solution of the Navier-Stokes equations along with the advection
of the auxiliary function that provides the location of the interface at each time
step, namely, the level-set function. If a non-Newtonian fluid is considered, then the
polymer stress should be estimated by a closed-form constitutive equation, directly
solving the Fokker-Planck equation in the configuration space, or integrating the
internal degrees of freedom of particles that convey the molecular information of the
polymer and are the stochastic equivalent to the Fokker-Planck equations. We use
here the latter approach to compute the stress tensor as a right-hand-side term in the
momentum equation, thus using a multi-scale approach in which the “micro” and
the “macro” scales interact.
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2.1 Macro-Scale Equations

Let us then consider the Navier-Stokes (NS) equations for a Newtonian, incompress-
ible fluid of constant density ρ and viscosityμ in a bounded domain D ⊂ R

2 and in a
time interval [0, T ]. Let Γ be the boundary of D, and let Γ s , Γ i and Γ o denote exist-
ing solid, inflow and outflow boundaries. Under these conditions, the NS equations
read: ⎧⎨

⎩
ρ

Dv
Dt

+ ∇ p = μΔv in D × (0, T ] ,

∇ · v = 0 in D × (0, T ] .
(1)

Additionally, one should impose initial

v (x, 0) = v0 (x) ∀x ∈ D, (2)

and boundary conditions to the flow

v (x, t) = 0 on Γ s ∀t,

−pn + μ
∂v
∂n

= b (x, t) on Γ o ∀t,

−n · v (x, t) = a (x, t) on Γ i ∀t.

(3)

where D
Dt ≡ ∂

∂t + v · ∇ represents the total derivative operator.

2.1.1 The Level-Set Approach

The idea is to represent the interface between two fluids as the zero level-set of the
implicit function

φ (x (t) , t) − C = 0, (4)

where x (t) denotes the coordinates of the points of the flow domain, and C is a
constant. Thus, φ (x, t) satisfies:

Dφ

Dt
= ∂φ

∂t
+ v · ∇φ = 0, (5)

when v = dx
dt . The level-set function φ is initially computed as the signed distance

function to the interface Γls ≡ (φ = 0), so that we choose φ < 0 as the interior fluid
(or phase), and φ > 0 as the outer fluid (or phase). The variation of both density and
viscosity across the interface Γls can now be represented in terms of φ as:

ρ (φ) = ρ2 + (ρ1 − ρ2) H (φ) ,

μ (φ) = μ2 + (μ1 − μ2) H (φ) ,
(6)
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Fig. 1 Level-set function φ

and interface Γ captured as
the zero-isocontour of φ

where sub-indexes 1, 2 represent the outer and inner fluids to the interfaceΓls ; and H
is theHeaviside function. Geometricmagnitudes such as normal vector and curvature
of the surface Γls may be computed in terms of φ as:

n = ∇φ

‖∇φ‖ ,

κ = −∇ · n,

(7)

which eases the addition of surface tension effects. Here, we model the surface
tension as a force defined along the interface Γls as in [2], resulting in the term
σκ (φ) δ (φ) ∇ (φ) which is to be added to the momentum equation, δ being the
Dirac function and σ the surface tension coefficient (Fig. 1).

Although initially a signed distance function, φ usually loses this property as the
numerical simulation progresses, so that ‖∇φ‖ �= 1 where ‖·‖ denotes the Euclidean
norm of a vector. Under such circumstances, the isocontours of the level-set function
cease to be equally spaced, geometric magnitudes are no more properly computed,
and shape irregularities may arise at the interface. Hence, some reinitialization pro-
cedure is required to ensure that φ be a signed distance function involving the
solution of a hyperbolic problem [2, 35]; or e.g. by means of a “direct” (geometric)
reinitialization of φ, both options being used in this work.
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Hence, the resulting NS equations for multi-phase incompressible Newtonian
flows can be rewritten as:

⎧⎨
⎩

D (ρ (φ) v)

Dt
+ ∇ p − ∇ · (μ (φ)∇v) = ρ (φ) g + σκ (φ) δ (φ) ∇φ,

∇ · v = 0,
(8)

in D × (0, T ]. System (8) along with the initial and boundary conditions Eqs. (2)
and (3) the evolution of the level-set function Eq. (5), and the dependence of density
and viscosity according to Eq. (6), represent the macroscopic equations to be solved
at each time step.

2.1.2 Particle Level-Set Method

Proposed by Enright et al. [9] as a mixed Eulerian level-set approach making use
of Lagrangian marker particles, the Hybrid Particle Level-Set (HPLS) method, has
proved successful at improving mass and shape preservation in a number of bench-
mark problems [10, 15]. The idea is to use massless particles (marker particles) that
following the flow, assist and correct the level-set function in under-resolved regions.

A common implementation of the HPLS method consists of three stages: iden-
tification of error, quantification of error, and correction of the level-set function;
optionally, a reseeding strategymaybe devised andperformed after those steps.Here,
we are using the Quasi-Monotone Semi-Lagrangian Particle Level-Set (QMSL-PLS)
method of Bermejo and Prieto [2] for all interface-capturing computations (Fig. 2).

Fig. 2 Adaptive radii of
marker particles for the error
quantification stage of the
QMSL-PLS method [2] in
the slotted-cylinder problem

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

0.55

0.6

0.65

0.7

0.75

0.8

0.85



384 J.L. Prieto

2.1.3 Dimensionless Form of the Macroscopic Equations

The dimensionless form of the macroscopic equations, choosing appropriate char-
acteristic magnitudes, can be written as follows:

⎧⎨
⎩

Reρ∗ Dv∗
Dt

+ ∇ p∗ − ∇ · (
μ∗ (φ)∇v∗) = Re

Fr2
ρ∗ (φ)

(−ey
) + Re

W e
κ∗ (φ) δ (φ)∇φ,

∇ · v∗ = 0,
(9)

in D∗ × (0, T ∗], along with the following initial and boundary conditions

v∗ (
x∗, 0

) = v0
∗ (x) ∀x∗ ∈ D∗. (10)

v∗ (
x∗, t∗) = 0 on Γ s∗ ∀t∗,

−p∗n∗ + ∂v∗

∂n∗ = bT (x, t)

μ1
≡ b∗ on Γ o∗ ∀t∗,

−n∗ · v∗ (
x∗, t

) = aT (x, t)

L
≡ a∗ on Γ i∗ ∀t∗.

(11)

In Eq. (9), ey represents the unitary vector in the vertical direction. The Reynolds
Re, Webber W e and Froude Fr dimensionless numbers are defined as:

Re = ρ1U L

μ1
; W e = ρ1LU 2

σ
; Fr = U 2

gL
; (12)

with g the gravitational constant. Another relevant parameter for this work is the
Capillary number Ca, which may be defined as Ca = W e/Re.

2.2 Micro-Scale Equations

The idea behind the CONNFFESSIT approach and its Brownian Dynamics simula-
tion technique is to envision the polymer as a Newtonian solvent in which certain
entropic effects are taking place, such effects being modeled by non-interacting,
massless particles (e.g. Hookean or FENE bead-spring dumbbells) that orienting
themselves according to stochastic laws (equivalent to the Fokker-Planck equations
in the configuration space), are influenced and do influence the macroscopic flow.
Whatever the model, the dumbbells are to be evolved freely by the flow, and the
position of their centers of mass X(t) located at any time instant; it is thus their
internal degrees of freedom that further define each kinetic model.

2.2.1 Kinetic Dumbbell Model

The dumbbell version of the Rouse model with arbitrary spring elongation, i.e.
the Hooke dumbbell model, is equivalent to the Oldroyd-B model of continuum
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mechanics, and can be represented as a number of buoyant massless dumbbells char-
acterized by the position of their centers of mass X (t) and by their internal degrees
of freedom Q, the latter being defined as the vector pointing from one bead of the
dumbbell to the other. As an improvement over such a model, the finite elongation
introduced by the ‘Finitely Extensible Non-linear Elastic’ (FENE) model allows to
perform more realistic computations of polymeric fluids which are known to deviate
from a Gaussian behavior when stretched to their maximum. In this case, there is an
elastic force for the spring connecting the dumbbells, given by

F(Q) = HQ
1 − ‖Q‖2/‖Q0‖2 ,

where ‖Q0‖2 denotes the maximal extensibility of the spring, and H is the spring
constant. The stochastic, partial differential equation governing the internal degrees
of freedom is (see Öttinger [25]):

dQ =
(

κ · Q − 1

2λ

Q
1 − ‖Q‖2/b

)
dt +

√
1

λ
dW, (13)

with λ the relaxation time of the polymer, κ = (∇v)T the transpose of the velocity
gradient,W is a three-dimensionalWiener process, and b the parameter of maximum
extensibility for the FENE model defined so that bkBΘ = H‖Q0‖2; here, kB is the
Boltzmann constant andΘ denotes the absolute temperature. Choosing characteristic
scales for length and time, the dimensionless form of Eq. (13) can be written as:

dQ =
(

κ · Q − 1

2De

Q
1 − ‖Q‖2/b

)
dt + 1√

De
dW, (14)

with De = λ/tc the Deborah number, and tc a characteristic time of the process.
The initial conditions for Q in (14) are obtained from an appropriate probability
density function for the FENE model [25, 30]; as for the spatial distribution, the
FENE dumbbells are initially scattered over the domain in a uniform, random fashion
as in [30].

2.2.2 Micro-Macro Coupling

The effect of the polymer, represented by its stress tensor τp, is included in the
momentum equation in terms of the divergence of the polymer stress tensor which
acts as an external force over the fluid, and is computed according to Kramers’
expression [3]:

τp = −nkBΘI + n 〈F(Q) ⊗ Q〉 , (15)
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with n the number density of dumbbells, I the identity tensor, and 〈·〉 the average
over the configurations. Choosing the same characteristic macroscopic magnitudes
as in Sects. 2.1.3 and 2.2.1, the following dimensionless momentum equation arises:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Reρ∗ Dv∗

Dt
+ ∇ p∗ − ∇ · (

μ∗ (φ)∇v∗) = c

De
∇ · τp + Re

Fr2
ρ∗ (φ)

(−ey
)

+ Re

W e
κ∗ (φ) δ (φ) ∇φ.

∇ · v∗ = 0.

(16)

3 Numerical Methods

The mathematical layout offered in Sect. 2 is followed now by a succinct description
of the numerical methods used to accomplish the spatial and temporal discretization
of themacro-scale andmicro-scalemodels, focusingonnovel techniques and efficient
implementations. The interested reader is referred to [2, 5, 6, 30, 31] for a more
detailed discussion on the semi-Lagrangian approach, the QMSL-PLS method, and
their application to non-Newtonian fluids.

3.1 Macro-Scale Discretization

We use the method of the characteristics [2, 5] to deal with the advection terms
appearing in the momentum equation (16) and in the evolution of the level-set func-
tion Eq. (5).

3.1.1 Time Discretization

Let us consider a time interval I = (0, T ] and N equal subdivisions of width Δt of
that interval, so that In = (tn, tn+1

]
, with 0 ≤ n ≤ N − 1. The characteristic curves

X (x, t;ϑ) represent the spatial evolution of X with time ϑ , reaching a certain point
x at instant t . We can make evident the dependence between the characteristics and
the velocity field by

Dv (x, t)

Dt
= ∂v (X (x, t;ϑ) , ϑ) |ϑ=t

∂ϑ
(17)

for all (x, t) in D × (0, T ). Thus, we can further express the characteristic curves as
solution of the following system of equations:
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⎧⎨
⎩

dX (x, t;ϑ)

dϑ
= v (X (x, t;ϑ) , ϑ) ,

X (x, t; t) = x.

(18)

Now, we shall use a second order Backward Difference Formula (BDF2) to re-write
Eq. (17) at time tn+1 in terms of the characteristics X:

Dv(x, t)

Dt
|t=tn+1=

3vn+1 − 4vn (
X(x, tn+1; tn)

)
2Δt

+ vn−1 (
X(x, tn+1; tn−1)

)
2Δt

+ O
(
Δt2

)
,

(19)

with X (x, tn+1; tn) and X (x, tn+1; tn−1) being the so-called feet of the characteristic
curves (or departure points), which represent the spatial location at time tn and tn−1

respectively, of a particle that reaches position x at time tn+1. Their computation is
carried out by a second order scheme [30] which makes use of a mid-point rule,
a fixed point iterative scheme and a time-adaptive procedure, while employing a
new search-and-locate algorithm to accurately track the positions of the feet of the
characteristics over the mesh. The evaluation of the velocity field at the feet of the
characteristic curves may be carried out by interpolation or projection.

Generalized Stokes problem The system of Eq. (9) adopts the following temporal
discretization::

3Re

2Δt
ρn+1vn+1 − ∇ ·

(
μn+1∇vn+1

)
+ ∇ pn+1 = Re

Fr2
ρn+1 (−ey

) + Re

W e
κn+1δ

(
φn+1

)
∇

(
φn+1

)

+ c

Pe
∇ · ϑn+1

p + 2Re

Δt
ρn+1v̄n − Re

2Δt
ρn+1v̄n−1,

∇ · vn+1 = 0
(20)

where {ρ,μ, κ}n+1 denote the magnitudes dependent upon the level-set function at
that time instant, {ρ,μ, κ} (

φn+1
)
. The boundary conditions given by Eq. (11), may

be rewritten now as:

vn+1 = 0 on Γ s∗ ∀t∗,

−pn+1n + ∂vn+1

∂n
= bn+1 on Γ o∗ ∀t∗,

−n · vn+1
(
x∗, t

) = an+1 on Γ i∗ ∀t∗.

(21)

Level-set function Integrating Eq. (5) between instants tn and tn+1 we get:

∫ tn+1

tn

D
[
φ (X (x, tn+1; t) , t)

]
Dt

dt = 0 ⇒ φ (x, tn+1) = φ
(
Xn

)
, (22)

where x = X (x, tn+1; tn+1) and Xn ≡ X (x, tn+1; tn). Thus, we advance φ in time by
evaluating the level-set function at the feet of the characteristic curves, making use
of an identical procedure to that applied to the velocity field.
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3.1.2 Finite Element Discretization

We employ P2 − P1 quadratic-linear polynomial approximations for velocity and
pressure, and P1 for the polymer stress tensor as in [30, 31]; a P1−isoP2 approx-
imation is used for the level-set function as was done in [2]. We then divide the
computational domain D with boundary Γ into a uniformly regular partition DH

composed of triangular elements Tj , 1 ≤ j ≤ N E1, so that DH ∪ Γ = ∪1≤ j≤N E1Tj .
If we apply a red-green refinement to that partition, we get Dh , with number of ele-
ments N E2 = 4N E1. We then associate finite element spaces Vh and VH with both
partitions Dh, DH , respectively, according to:

Vh ≡ {
vh ∈ C0

(
D̄

) : vh

∣∣
Tj ∈ P1

(
Tj

)
, 1 ≤ j ≤ N E2

}
,

VH ≡ {
wH ∈ C0 (

D̄
) : wH

∣∣
Tk ∈ P2 (Tk) , 1 ≤ k ≤ N E1

}
,

(23)

where Pm (T ) denotes the set of polynomials of degree ≤ m defined on the triangle
T . Thus, any function vh ∈ Vh or wH ∈ VH can be expressed by:

vh (x) =
N N∑
i=1

Viψi (x) , wH (x) =
N N∑
i=1

Wi ψ̄i (x) , (24)

where N N denotes the number of nodes of the partition, and {ψi (x)} ,
{
ψ̄i (x)

}
are

the set of global basis functions in the spacesVh, VH , respectively.Note thatψi (x) are
piecewise linear polynomials, and ψ̄i (x) are piecewise quadratic polynomials. Thus,
the velocity is to be computed as a quadratic polynomial in Vh , whereas the pressure,
and the polymer stress tensor belong to VH ; the level-set function φ is defined in a
P1−isoP2 space, that is, defined in partition Vh with linear approximation at each
element Tj ∈ Dh , see Fig. 3.

Fig. 3 Basis functions ψl ,
partition Dh and band ΣΓh

for the level-set function φ

D h

Γ h 0(τ
h)

ψl (x)

Σ Γ h 0(
τ h)

x l
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3.2 Micro-Scale Discretization

We make use the Predictor-Corrector technique of [25] for the integration of the
configurations of the kinetic model, as in [30, 31]; we also offer some comments
about the Finite Element discretization and the variance-reduced approach.

3.2.1 Numerical Scheme for the FENE Dumbbell Model

We first apply an explicit Euler to Eq. (13) and use it as a predictor stage:

Q̃n+1 = Qn +
(

κn · Qn − 1

2λ

Qn

1 − ‖Qn‖2/b

)
Δt +

√
1

λ
ΔWn,n+1. (25)

In the second stage, we use a Crank-Nicholson scheme along with Eq. (25) to correct
the numerical scheme and achieve (weak) second order accuracy:

Qn+1χ = Qn + 1

2

(
κn+1 · Q̃n+1 + κn · Qn − 1

2λ

Qn

1 − ‖Qn‖2/b

)
Δt +

√
1

λ
ΔWn,n+1,

(26)
with χ ≡ 1 + Δt/[4λ (

1 − ‖Qn+1‖2/b
)].

3.2.2 Finite Element Considerations

The polymer stress tensor τp,h ∈ Rh responsible for the “micro-macro” coupling
belongs to a P1 space of linear polynomials (see [30, 31] for details), so that it can
be expressed in terms of linear basis functions Ψk, 1 ≤ k ≤ M P as:

τp,h =
M P∑
k=1

τp,kΨk, (27)

where τp,k are the nodal values of the polymer stress tensor, and M P the number of
nodes in the partition DH .

In this work, we make use of a variance-reduced approach to the computa-
tion of the internal degrees of freedom of the dumbbells. As in the Brownian
Configuration Fields (BCF) method [16] and the Lagrangian Particle Method
(LPM) [13], the configurations are computed not individually for each dumb-
bell, but for ensembles of dumbbells which can be spatially correlated or not.
Here, we shall use Nd dumbbells contained in each of the Nens ensembles scat-
tered over the domain, with spatially correlated Brownian processes, so that
the “random-kicks” are the same for each i-th dumbbell of all the ensembles.
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3.3 Efficient Solution to the Cubic Equation
in the FENE Model

We next discuss how to efficiently compute the roots of the cubic equation arising
in the FENE model. As we saw earlier, the use of the Predictor-Corrector scheme
(25)–(26) proposed in [25] to integrate the configurations of a FENE fluid entails the
solution of a cubic equation of the form:

f (x) = x3 + Ax2 + Bx + C = 0, (28)

with A = −L , B = −b
(
1 + Δt

4De

)
, C = bL , and L = ‖Qχ‖, see (26), to ensure that

the length of the chain L remains bounded below amaximum value b. Given the large
number of particles used in a typical Brownian dynamics simulation (ensembles of
dumbbells in this work), alongwith the fact that micro-scale calculations dominate to
a great extent the computational effort per iteration, this step is of utmost importance
for the efficiency of the numerical scheme as a whole.

As a result, several alternatives are proposed to obtain the solution of the cubic
equation: analytical solution based on trigonometric functions; iterative methods for
non-linear equations; and Lookup Tables (LUTs). Presently we explore the three
options, measuring the CPU time spent by each method during the computation of
the configurations of a “sample run” consisting of Nens = 2.5 × 105 ensembles with
Nd = 5 × 103 dumbbells per ensemble and b = {20, 50, 100},

3.3.1 Trigonometric Functions

The solution of the cubic equation by analytical means involve two calls to the cos
function and another two to the acos function, as well as three more calls to the
square-root sqrt. In particular, the three (real) roots of the cubic equation (28), only
one of which lies in [0,√b], are given by:

x1 = ξ
√

p − A

3

x2 = −ξ̃
√

p − A

3
x3 = −x1 − x2 − A

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(29)

with ξ ≡ 2 cos
[
arccos( t

2 )
3

]
; ξ̃ ≡ 2 cos

[
arccos(− t

2 )
3

]
; t = q

p3/2 ; q = −
(
2A3−9AB+27C

27

)
;

p = A2−3B
9 . Though the number of CPUcycles required for each instruction is depen-

dent on the CPU, its architecture, the memory cache, and the actual implementation
of these functions in the mathematical library used in the code, the more expen-
sive character of the trigonometric functions when compared to non-transcendental
functions is in all cases observed; as it happens, for an X86 architecture, the cost of
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trigonometric functions can be fifty-fold that of additions or subtractions. For all the
simulations performed in this paper, we have used the math library present in the
GNU Compiler Collection (GCC) version 4.7.3.

For the “sample run” mentioned above, the time elapsed during the calcula-
tion of the configurations using the analytical approach for the cubic equation was
{33.69 s, 32.46 s, 32.16 s}.

3.3.2 Iterative Methods

Next, we investigate the benefits of using an iterative scheme to retrieve the one
root of the cubic equation for the FENE model lying in the interval [0,√b] up to
machine accuracy (tolerance 10−15). To that end, we explore a number of numerical
schemes for non-linear equations and measure the time elapsed when computing the
configurations of the “sample run” aforementioned. In all cases, the understanding
is that only those methods classified as “bracketing” ensure that the solution belongs
to the desired interval. In view of the results collected in Table1, the influence of
the maximum extensibility parameter b is striking in the non-bracketed algorithms;
accordingly, a bracketingmethod such as bisection, in combinationwith a “polishing”
algorithm such as Newton-Raphson’s or Halley’s that uses L as initial guess, proves
to be the superior option.

3.3.3 Lookup Tables

The use of Lookup Tables (LUTs) as a means to reduce the computational time spent
in costly operations, such as trigonometric functions, has been widely accepted in the
scientific community for decades (see e.g. [33] for a recent application of LUTs in
Monte Carlo simulations). In this paper, we explore that possibility for the solution
of Eq. (28), trying to build a LUT which, while offering a clear advantage time-wise,
does not forgo the high-accuracy of the methods previously discussed. In Table1 we
collect the computational times of the “sample run” for different LUT sizes, in double
precision. As pointed out in [34], the almost linear dependency of Eq. (28) with L
makes it suitable for linear interpolation between two adjacent values, producing L2-
norm errors ofO(10−14)when the size of the LUTgoes beyond 7.5 × 105 (contrarily,
the error was O(10−10) for an LUT size of 104).

Two strategies are key to the efficient implementation of an LUT in this context:
memory-caching and index-mapping.

• Cache misses have a heavy impact on performance, since in that case the data
must be searched in the higher-latency, main memory (RAM); hence, we propose
an LUT size that fits the L3-cache of the i7-3770K CPU used in the simulation,
lest the random lookups to the table (due to the underlying Brownian dynamics)
further deteriorate the performance at subsequent time steps. This behavior can
be observed in Table1 for an LUT size of 107 doubles that do not fit the 8MB
L3-cache available in the CPU.
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Table 1 Times in seconds to solve the cubic equation of a FENE fluid, b = {20, 50, 100}, with
Nens = 2.5 × 105 and Nd = 5 × 103, using analytical, iterative and LUTs techniques

Scheme b = 20 b = 50 b = 100

Analytical 33.69 32.46 32.16

Newton, 2nd-order 24.73 14.20 13.76

Schröder, 3rd-order 27.49 18.09 18.08

Halley, 3rd-order 21.41 16.46 16.48

Newton modified, 4th-order 24.20 16.08 16.13

Newton modified, 5th-order 29.84 20.52 20.51

Brent, 2nd-order 50.23 49.20 48.20

Secant, 3/2-order 23.39 21.60 21.61

Newton 2nd-order+Bisection 19.58 18.41 18.09

Halley 3rd-order+Bisection 19.71 19.72 19.76

LUT size = 104 components 8.94 8.91 8.90

LUT size = 105 components 9.22 9.12 9.09

LUT size = 5 × 105 components 9.73 9.64 9.53

LUT size = 7.5 × 105 components 9.81 9.71 9.65

LUT size = 8.5 × 105 components 9.79 9.81 9.93

LUT size = 106 components 9.80 9.79 9.71

LUT size = 107components∗ 10.45 10.33 10.26
∗ This LUT size does not fit the L3-cache of the CPU. The value shown in the table corresponds to
the first time step; however, after 125 time steps, the same computation takes 16.87 s (b = 20)

• Index-mapping avoids another possible bottleneck, namely, the search for the
correct index in the table; thus, we identify, in a one-to-one fashion, each i-th
entry f (xi ) of theLUTwith the corresponding value xi of the independent variable,
i.e. xi = Li = (i + 1) xmax

imax
, where xmax is the maximum value considered for the

independent variable, and imax the size of the LUT table. As a consequence, the
LUT behaves effectively as a “hash table”, so that a searching algorithm, even an
efficient one such as a binary search is no longer needed; further, the LUT size
does not affect the performance of the procedure (within the L3 cache limits).

To validate this approach, we carried out additional tests with the purely exten-
sional and purely shear flows of [14], for b = {20, 50, 100}. All results with the LUT
approach overlap (within error bars of the simulation) those provided by the analyt-
ical or iterative methods. As a result, we choose an LUT size if 8.5 × 105 elements
for the complex flow simulations performed in this paper, attaining an speed-up of
roughly ≈3.4 compared with the analytical approach.

4 Results for Imposed and Complex Flows

In this section, we explore the capabilities of themethod under some benchmark con-
figurations, considering multi-phase flows of Newtonian and non-Newtonian fluids.
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Fig. 4 Zalesak’s slotted cylinder after one revolution in mesh M1 with N mk = 1.5 × 104 marker
particles andΔt = 10−2 (dashed-dotted),Δt = 2.5 × 10−3 (dashed), andΔt = 6.25 × 10−3 (dot-
ted). Initial solution is in solid black

4.1 Newtonian Fluids

The QMSL-PLS approach of [2] is used to tackle the multi-phase problems when
Newtonian fluids are considered.

4.1.1 Imposed Flows

First, we ensure the correct behavior of the method under imposed, Newtonian flows.
For this purpose, we consider two thoroughly revisited tests: the Zalesak’s slotted
cylinder and the single-vortex flow.The former is used formeasuring diffusion effects
in our front-capturing technique; whereas the latter is a high-vorticity flow originally
proposed to test the ability of a method to deal with thin filaments of the order of the
mesh resolution.

We start with Zalesak’s problem. Three unstructured meshes were considered in
the experiments (Table2), though the first mesh M1 provided enough accuracy when
using our particle level-set method with a decreasing time step (Fig. 4); the influence
of the number of marker particles proved rather negligible in this case, obtaining
quite the same results with N mk = 1.5 × 103−1.5 × 105.

Table 2 Number of elements T , pressure nodes M P and velocity nodes MV for mesh M1, M2, M3
considered in the Zalesak and single vortex problems

Mesh NE MP MV

M1 5248 2705 10,657

M2 20,992 10,657 42,305

M3 34,030 14,216 68,461
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The performance of the method in stretching filaments can be observed in Fig. 5,
where we show the evolution of the single vortex problem at times T = 1, 3, 5 using
mesh M2 along with the velocity field given by:

u = − sin2 (πx) sin (2πy) ,

v = sin2 (πy)2 sin (2πx) ,
(30)

where the periodicity usually considered in this kind of flow has been removed so as
to observe maximum stretching. We find the comparison with the literature [9, 10,
15, 27] quite satisfactory.

Fig. 5 Evolution of single vortex at times T = 1, 3, 5 using mesh M2, with Δt = 5 × 10−3, and
N mk = 1.5 × 106

4.1.2 Complex Flows

A further step is to show the ability of the code under complex flows. To that effect,
we follow the rising bubble case proposed by Hysing et al. [17] in a joint effort to
quantitatively define the solution of Newtonian rising bubbles. In Fig. 6 we plot the
evolution of the relevant variables for the mesh M2 with N mk = 5 × 105, density
ratio ρ2/ρ1 = 10−3, and viscosity ratio μ2/μ1 = 10−2, when Re = 35, Fr = 1 and
We = 125. The evolution of the shape at time instants t = {1, 2, 2.5, 3} is represented
in Fig. 7.

4.2 Non-Newtonian Fluids

In this section, we present results for a Newtonian droplet rising in a FENE fluid with
maximum extensibility parameter b = 75, using the variance-reduction approach
pointed out in Sect. 3.2.2, alongwith theQMSL-PLSmethod of [2] and the numerical
technique outlined in Sect. 3.3 for the efficient solution of the FENE cubic equation.
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Fig. 6 From left to right, circularity, velocity vcdg , and center of gravity ycdg in the evolution of a
rising bubble with Re = 35, W e = 125 and high density and viscosity ratios

Fig. 7 From left to right, rising bubble at times T = 1.0, 2.0, 2.5, 3.0 with Re = 35, W e = 125
and high density and viscosity ratios

Fig. 8 From left to right, circularity, velocity vcdg , and center of gravity ycdg in the evolution of
a rising bubble with Re = 35, W e = 125, low density and viscosity ratios (10−1) and increasing
viscoelastic effects

We study the case of a multi-phase flow ruled by the dimensionless parameters
Re = 35, W e = 125, Fr = 1, ρ2/ρ1 = 10−1 = μ2/μ1, and consider a viscoelas-
tic, ambient fluid further defined by the following numbers: c = 0 (Newtonian);
c = 2, De = 1; c = 4, De = 2; and c = 6, De = 3. The results for circularity, ver-
tical component of the center of mass velocity, and position of the center of mass,
are depicted in Fig. 8, for all four cases.

In addition, Fig. 9 collects the streamline pattern observed for these different con-
figurations at time t = 4, observing typical viscoelastic effects such as the “negative-
wake” and a cusped tail when the dimensionless polymer concentration andDeborah
numbers are high enough.
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Fig. 9 From left to right, streamlines at time t = 4 for a Newtonian bubble rising in a FENE fluid
with b = 75, when c = 0 (Newtonian); c = 2, De = 1; c = 4, De = 2; and c = 6, De = 3

5 Conclusions

In this work, we have tried to highlight the potential of a multi-scale, micro-macro
approach to solve complex, multi-phase flows of Newtonian and non-Newtonian flu-
ids via a Semi-Lagrangian, Particle Level-Set method. To this end, the macroscopic
and microscopic equations have been presented and solved in a Finite Element con-
text, and a set of numerical techniques such as variance-reduced, BrownianDynamics
simulations and the efficient computation of the cubic roots for the FENE fluid have
been introduced.

Results for Newtonian and non-Newtonian flows using the FENE kinetic model
under several configurations, ranging from imposed flows, to complex, multi-phase,
viscous(elastic) flows have been included to highlight the versatility, robustness
and accuracy of the method. Notwithstanding the limitations of the current imple-
mentation, its ability to deal with high density and viscosity ratios, or to repli-
cate experimentally-observed viscoelastic effects are features that make us strongly
believe in the promising future of such a multi-scale approach. Additional efforts to
palliate some of its present drawbacks are on the way.

Acknowledgments Financial support from project MAT2011-24,834 from Ministerio de Ciencia
e Innovación is gratefully acknowledged.
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Numerical Modeling of Flow-Driven
Piezoelectric Energy Harvesting Devices

S. Ravi and A. Zilian

Abstract The present work proposes uniform and simultaneous computational
analysis of smart, low power energy harvesting devices targeting flow-induced vibra-
tions in order to enable reliable sensitivity, robustness and efficiency studies of the
associated nonlinear system involving fluid, structure, piezo-ceramics and electric
circuit. The article introduces amonolithic approach that provides simultaneousmod-
eling and analysis of the coupled energy harvester, which involves surface-coupled
fluid-structure interaction, volume-coupled piezoelectricmechanics and a controlling
energy harvesting circuit for applications in energy harvesting. A space-time finite
element approximation is used for the numerical solution of the governing equa-
tions of the flow-driven piezoelectric energy harvesting device. This method enables
modeling of different types of structures (plate, shells) with varying cross sections
and material compositions, and different types of simple and advanced harvesting
circuits.

1 Introduction

Energy harvesting is the process of generating usable electrical energy acquired
from various ambient energy sources such as solar, thermal, fluid and mechani-
cal vibrations that surround a system. A steady increase in the growth of wireless
and portable electronic devices has led to the development of sophisticated low-
power micro-electromechanical devices (MEMS) such as sensors and actuators. The
portable nature of these devices necessitates their ability to carry their own power
supply. The aim of energy harvesting is to scavenge energy from the environment to
power these electronic devices. Such harvesting methods provide significant incen-
tives to replace batteries as power source for providing electrical energy because
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of the limited lifespans of batteries, and persistent stagnation in the technological
development of batteries over the years. Many applications related to wireless sensor
networks and low power miniature sensors require them to be fully embedded in the
structure and placed in remote locations. Conventional power sources like batteries
are not an option for applications where the devices need to have their own power
supply for an indefinite period of time and are only periodically maintained.

There are many methods to obtain useful electrical energy from the ambient
vibration energy that usually goes untapped. Research interest towards developing
energy-harvesting devices (EHDs) has grown rapidly over the past few years, and
many methods have been proposed to make use of the ambient source to generate
electrical power. Someof thesemethods include electrostatic generation, electromag-
netic induction, dielectric elastomers, and piezoelectric materials. Energy harvesting
from piezoelectric materials have gained significant attention, as is evident from the
number of literature published every year in this field, due to their ability to convert
mechanical energy from cyclic straining directly into useful electrical energy. For
reviews on various forms of piezoelectric energy harvesting refer to [1, 2].

The present work proposes uniform and simultaneous computational analysis of
smart, low power energy harvesting devices targeting flow-induced vibrations in
order to enable reliable sensitivity, robustness and efficiency studies of the associ-
ated nonlinear system involving fluid, structure, piezo-ceramics and electric circuit.
The article introduces a monolithic approach that provides simultaneous model-
ing and analysis of the coupled energy harvester, which involves surface-coupled
fluid-structure interaction, volume-coupled piezoelectric mechanics and a control-
ling energy harvesting circuit for applications in energy harvesting. A Space-time
finite element approximation is used for the numerical solution of the governing equa-
tions of the flow-driven piezoelectric energy harvesting device. This method enables
modeling of different types of structures (plate, shells) with varying cross sections
and material compositions, and different types of simple and advanced harvesting
circuits. It should be noted that it is a common practice in modeling of piezoelectric
energy harvesters to consider a simple resistor element as a harvesting circuit.

The outline of this article is as follows. The remainder of Sect. 1 introduces the
concept of piezoelectric energyharvesters andprovides a brief reviewof various types
of modeling approaches to the problem of piezoelectric energy harvesting from base
excitations. Section2 gives a brief overview of modeling approaches for flow-driven
piezoelectric energy harvesters. Section3 starts with themodeling assumptions of the
present study and proceeds to establish in the detail the strong form of the governing
equations of the multi-physics problem. The coupling conditions are also explained
in Sect. 3. In Sect. 4, the weak form of the governing equations are derived and Sect. 5
explains the nature of space-time interpolation with an illustration. The theoretical
concepts established are then applied to the problem of piezoelectric energy harvest-
ing from a piezoelectric bimorph subjected to base excitations and presented as a
case study in Sect. 6.
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1.1 Harvesting Mechanical Vibrations

The prevalence of mechanical vibrations has attracted significant research interest in
vibration-based energy harvestingmethods. Power generation fromambientmechan-
ical vibrations usually constitutes the conversion of ambient mechanical vibration
into useful electrical energywith the help of an EHD, to power other devices with low
power requirements. Piezoelectric transduction offers many advantages over other
power generating methods due to it’s low form factor, high energy density, ease of
integration into other systems, and its unique ability to convert cyclic straining of the
material into electrical energy.

Piezoelectric materials exhibit accumulation of electric charges in response to
mechanical strains which is known as direct piezoelectric effect. The piezoelectric
effect is a reversible process, where the materials exhibit change in their shape on
application of an electric field known as inverse piezoelectric effect. Prototypical
piezoelectric EHDs are cantilevers with a seismic mass and are attached to another
substrate layer. They can be employed in variousmodes based on the electric field ori-
entation and the polarization direction. Utilization of a proper coupling mode is one
of the ways to increase the amount of energy harvested from the piezoelectric mate-
rial. Two coupling mode exist viz., the −31 mode and the −33 mode respectively.
The former is characterized by the straining of the material in the direction perpen-
dicular to the poling direction and the latter by the straining in the same direction
as the poling direction. The cantilever with a seismic mass configuration facilitates
a lower resonant frequency in the first bending mode, making it easy to match the
resonant frequency of the structure to the ambient vibrations to obtain maximum
power output. Such systems are capable of producing power output ranging from a
few μW to a few mW.

The performance of these piezoelectric devices depends on various factors like the
type of piezoelectric material used, size of the harvesting device, mass distribution,
shape of the structure, and vibration modes to name a few. The impact of different
geometries on the power density of vibration energy harvesters was studied in [3].
Coupling coefficients, strain distribution, and vibration frequency were perceived as
the three limiting factors in the field of piezoelectric power scavenging, and alter-
native geometries were proposed to address each of these limiting factors. The real
world application space was deemed too limited for testing the design considera-
tions to improve coupling co-efficients. The strain distribution in the geometry is
improved by varying the width of a beam type structure for the full utilization of
straining along the length. Experimentally a 30% increase in power was observed
for trapezoidal beam compared to cantilever beams. An experimental comparison of
several types of active composite actuators for power generation was carried out in
[4]. The study compares a type ofmacro-fiber composite calledMFCsmade of piezo-
electric fiber composites (PFCs) and interdigitated electrodes to two other actuators
called Quick Pack consisting of a monolithic piezo-layer with standard electrodes
and another actuator calledQuick Pack IDEwith interdigitated electrodes. Theywere
all attached to the same beams and excited at their first twelve natural frequencies.
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The results showed that the conventional Quick Pack with standard electrodes was
able to harvest significant energy generating 137μW at 64Hz while the Quick Pack
IDE andMFC produced 29 and 12μW respectively. It was concluded from the study
that although the MFCs’ fibrous structure itself was not detrimental to the harvesting
capacity, it is the low capacitance due the interdigitated electrodes that deteriorates
the power output. Hence the MFCs were found impractical to real-world applica-
tions even though they had higher coupling coefficients. It is evident that all design
considerations are towards the maximization of the power output from the harvester
as the scope of application widens with increase in power generation.

1.2 Models of Piezoelectric Energy Harvesting Devices

Over the years many mathematical models have been proposed for the modeling of
piezoelectric energy harvesters ranging from simple SDOF (single degree of free-
dom) models with closed form solutions for the voltage output and vibration charac-
teristics to more sophisticated analytical and numerical methods to address various
aspects of modeling. Many of the early works employed simple SDOF models to
predict the voltage response of piezoelectric energy harvesting devices driven by
harmonic base excitations. Piezoelectric energy harvesters are usually attached to
an external circuit that transforms the harvested energy into usable form. In [5], an
equivalent circuit model was proposed to account for the harvesting circuit along
with the modeling of the energy harvester. The method discussed the representation
of the energy harvester electrically, and then combined with the electrical repre-
sentation of the harvesting circuit and modeled together in SPICE simulator. This
method facilitated the representation of non-linear circuit components but suffered
the drawback of simplification necessary for the harvester to be represented elec-
trically. This prevented accounting for any change in harvester’s properties during
operating conditions. In another model developed in [6], a coupled FEM-circuit
method was presented to account for the modeling of electrical circuits where the
energy harvester was modeled using finite elements and the coupled to the electrical
part modeled using a SPICE simulator. This method had comparable advantages to
the model in [5] but is computationally expensive and does not provide a realistic
representation of the strongly-coupled physics.

One of the frequently addressed issues in the modeling of piezoelectric energy
harvesters is capturing the effect of an attached harvesting circuit. This investigation
has led to piezoelectric materials being used in passive shunt damping applications
as well. Earlier studies modeled this impact as a viscous damping on the harvester
whichwas a reasonable approximation only in the case of electromagnetic generators
as pointed out in [7]. The physics of the piezoelectric system is much more complex,
and the impact of a harvesting circuit seems too complex to be modeled as viscous
damping. Since it is common understanding that maximum power is harvested at
resonance, incorrect modeling of damping will lead to inaccurate result in predicting
the frequency of the system. It was shown that the load-resistance dependent variation
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of the resonance frequency and amplification of the motion at open-circuit frequency
are indicators for the need for better representation of the effect of harvesting circuits.
In one of the most important works in the field, [7, 8] presents a mathematical
model with distributed parameter solution based on Euler-Bernoulli assumptions,
and comparisons with several SDOF models are made to point out the inaccuracies
in popular SDOFmodels. Several flaws in SDOFmodels, ranging from the neglect of
base rotarymotion up to the simplifiedmodeling of damping induced by piezoelectric
coupling, are addressed in this work and correction factors are introduced, where
necessary, to the SDOF models. In their work, the harmonic base excitation case
is considered a particular solution of the general base excitation which includes
superimposed rotary motion of the base as well. The study points out that the inertia
due to rigid body motion was neglected in most of the SDOF models and hence
a correction factor to this effect is proposed. The relative motion transmissibility
function derived from the ratio of tip deflection to base deflection is used to form
a non-dimensional basis for comparison of the model to SDOF models. It is shown
that the error percentage as a function of dimensionless frequency was as high as
35% in SDOF model.

Only few piezoelectric energy harvesting applications, where the geometry of
the energy harvesting device is simple, lend themselves to analytical solutions [9].
Most of the piezoelectric energy harvesting applications are complex, and numeri-
cal methods are needed to obtain the electromechanical response of such systems.
A pioneering work on the finite element modeling of piezoelectric materials was pre-
sented by [10], where mechanical displacements and electrical potential were used
as unknowns and both direct and inverse piezoelectric effect were included in the
formulation. Since then numerous piezoelectric finite elements have been developed
including beam, plate, shell and solid elements. Readers are encouraged to refer to
[11] for a detailed review of different finite element models used to model vibra-
tion based piezoelectric energy harvesters. Many of the reviewed finite elements use
displacements and electric potential as unknowns as suggested by [10] with a linear
approximation of the electric potential through the thickness of the element. How-
ever it was shown in [12] that the electric potential has a second order component in
bending.

Mixed and hybrid finite element formulations are presented in [13–16]. These
formulations contain additional unknown fields besides mechanical displacements
and electrical potential which reduces locking phenomena and makes the elements
less susceptible to mesh distortion. The most general formulation is presented by
[13] and contains six independent unknown fields which are displacements, strains
and stresses for the mechanical part and electric potential, electric field and dielectric
displacements for the electric part. Further mixed formulations with three and four
unknown fields are derived from the six field formulation. A six field formulation
is used by [15, 16] with additional enhancements for strain and electric field which
further reduce locking.
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2 Flow Driven Piezoelectric Energy Harvesters

A glance at recent surveys [1, 2] on piezoelectric energy harvesting indicates that
much of the research work in this field is focused on harvesting energy from vibra-
tions due to base excitations or the excitations of the structure to which the harvester
is attached. This focus may be attributed to various sources of ambient energy in
an urban environment, but alternative sources have to be identified in case of EHD
devices placed in remote locations. One potential energy source in such locations is
the kinetic energy of fluids, i.e. wind or water, which cater to those requirements.
In order to extract energy from fluid flows, the kinetic energy of the fluid must first
be transformed into straining energy of the harvester, which is then converted into
electrical energy and utilizedwith appropriate harvesting circuits. A key idea in fluid-
driven piezoelectric energy harvesting is to utilize the flow energy through controlled
aero- or hydro-elasticity phenomena. Traditionally, the idea is to avoid dangerous
fluid-structure interactions. In flow-driven piezoelectric energy harvesting, poten-
tially harmful fluctuations are harnessed to provide power supply to small-scale
energy harvesting devices. However, the research on piezoelectric energy harvesters
placed directly in the fluid flow is fairly limited. There are different mechanisms to
convert the flow-energy into cyclic straining of the energy harvester.

One of the ways of harvesting energy from fluid flow is instability induced exci-
tation caused by fluid-intrinsic physical properties. The self-exciting flow instability
produces oscillating forces even if the structure is stationary (e.g. Kármán vortex
street). A further amplification of the exciting force is possible for fluid-structure
feedback. The concept of energy harvesting eel, where the cyclic straining of the
harvester was achieved by water flow utilizing Kármán vortex sheets was introduced
in [17]. This is one of the first works to study energy harvesting from fluid flow. The
fluctuations of “eel” shaped polymer beams placed in the wake of a bluff body was
investigated in this research. Tests were conducted on different membranes ranging
from 0.1 to 0.7mm placed in water channel running at speeds ranging between 0.05
and 0.8ms−1. Two different widths of the bluff bodies viz., 5.08 and 3.81cm were
used to create the vortex sheets. It was shown that the membranes exhibited lock-in
behavior to he shedding of the bluff bodywhen they oscillatewith the same frequency
as the undisturbed wake behind the body.The relationship indicating conditions for
locking were derived from Euler-Bernoulli beam theory. It was suggested that the
eels should have small stiffness so as not to dampen the oscillations. Though the
literature provides PIV (particle image velocimetry) images to support their predic-
tions, it fails to provide any insights into the electrical output and the type of coupling
existing between the multi-physics domains. A similar study on energy harvesting
eels placed in the wake of a bluff body was carried out in [18].

In addition to vibrations produced by Kármán vortex sheets, movement-induced
excitation—causedbyfluctuatingflowforces resulting frommovements of the vibrat-
ing structural part—also provides a way to utilize flow energy for EHDs. Small
deviations from the equilibrium position of the structure induce a redistribution of
impacting fluid forces, which further increases initial disturbances. This gives rise
to ongoing transfer of flow energy to the structural oscillator and is called dynamic
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instability. Flutter response of a piezoelectrically damped cantilever pipe utilizing
such flow instabilities was studied by [6]. Energy harvesting from fluid flows with
attached electrical circuit was studied with a more comprehensive model by [19].
The study considered the case of harvesting energy in the wake of a circular cylin-
der at high Reynold’s number. This study involved a combination of experimental
and analytical model. This model also considered the three-way interactions of the
fluid-flow, structure and the harvesting circuit at the same time in contrast to the most
previous studies with loosely-coupled approach for emulating the real-life scenario.
SDOF analytical model was chosen to represent the piezoelectric structure, and the
coupling between the circuit and the harvester was considered only under the open-
circuit condition which makes the model ineligible in predicting energy output for a
finite circuit resistance.

3 Model of a Flow-Driven Piezoelectric EHD

This section introduces the strong form of the equations that govern the fluid flow,
the mechanical state and the electrical state of the flow-driven piezoelectric energy
harvester. The coupled systemconsists of a piezoelectric structure placed influidflow,
potentially in the wake of an arbitrarily shaped body, and connected to an electric
circuit as shown in Fig. 1. The solid consists of a substrate structure sandwiched
between piezoelectric patches. The individual piezoelectric patches are assumed
to be covered with continuous electrodes with one voltage output per patch. The
electrodes are connected to a harvesting circuit. The harvesting circuit is assumed to
consist of a simple resistance across the electrodes covering the patches, which, as
mentioned earlier, is a common practice in modeling piezoelectric energy harvesting
devices.

Fig. 1 An illustration of the multi-physics flow-driven piezoelectric EHD based on a cantilever
setup
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The choice of the solution strategy to a physical problem usually drives the mod-
eling assumptions. The article proposes a monolithic solution strategy to the cou-
pled problem of flow-driven energy harvesting which is a strongly-coupled modeling
approach. To this extent, a native coupling between the fluid and the structural domain
is achieved by 3D modeling of the piezoelectric thin structure formulated in terms of
the structural velocity. This modeling approach also enables a straightforward appli-
cation of constitutive models to piezoelectric coupling. In the present study, the flow
is modeled as incompressible and viscous. Turbulence effects are not considered.
Both the substrate structure and the piezoelectric material obey linear material laws.

The fluid flow is modeled with the incompressible Navier-Stokes equations,
consisting of momentum and mass conservation equations, and is described using
an Eulerian framework in the current configuration where the space-time domain
Q = � × I within the time interval I = (ta, tb). The equations of the fluid domain
are time-dependent and accommodates moving boundaries resulting from structural
deformations. The behavior of the piezoelectric structure, and the circuit, within the
time interval I = (ta, tb) and occupying the space-time domain Q0 = �0 × I , is
described using a Lagrangian description in reference configuration. The subscript
“0” refers to the reference configuration.

3.1 Fluid

The incompressible Navier-Stokes equations describing the fluid flow are

ρ(v̇ + v · ∇v) − ∇ · T − f = 0 in Q (1)

and

∇ · v = 0 in Q, (2)

where v is the velocity of the fluid, f is the external body force, and ρ is the density
of the fluid. The Cauchy stress tensor T is given by

T + pI − 2μD(v) = 0 in Q, (3)

where μ is the kinematic viscosity, p is the hydrostatic pressure. The Cauchy stress
tensor depends linearly on the strain rate tensor D given by

D(v) − 1

2

(∇v + (∇v)�
) = 0 in Q (4)

with the boundary conditions being,
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v − v̄ = 0 on Pv and (5a)

t − t̄ = 0 on P t, (5b)

where Pv in (5a) is the boundary on which velocity v̄ is imposed as a Dirichlet
boundary condition, and P t in (5b) is the boundary on which traction t̄ is imposed
as a Neumann boundary conditions. The initial condition specifies a divergence free
velocity field at time t = 0

v(t = 0) = vi with ∇ · vi = 0 on Ω. (6)

3.2 Piezoelectric Structure

The elastodynamic behavior of the piezoelectric structure is modeled based on the
assumptions that the deformations are large and the material behavior is linear. The
governing equations of the mechanical part of the electro-mechanically coupled
piezoelectric structure are as follows

ρ0v̇ − ∇0 · (FS) − f0 = 0 in Q0, (7)

Ė − 1

2

(∇0v + (∇0v)� + (∇0u)�∇0v + (∇0v)�∇0u
) = 0 in Q0, (8)

Ė −
[
sD̃

]
Ṡ − [g]� ˙̃D0 = 0 in Q0, (9)

where (7) is the momentum balance equation, (8) gives the non-linear kinematic
relation, and (9) depicts the coupled constitutive relation in rate form for the direct
piezoelectric effect. S is the second Piola-Kirchoff tensor, Ė is the strain rate tensor,[
sD̃

]
is the compliance matrix measured at constant electric displacement, [g] is the

piezoelectric coefficient, and D̃ is the dielectric displacement of the piezoelectric
structure.

Velocity v̄ is imposed as a Dirichlet boundary condition on Pv
0 as

v − v̄ = 0 on Pv
0 , (10)

whereas traction t̄ is imposed as a Neumann boundary condition on P t
0

t − t̄ = 0 on Pt
0 . (11)
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The electromechanical behavior of the piezoelectric structure is described by
Gauss’ law which relates the distribution of electric charge to the electric field. A
quasi-electrostatic approach is deemed adequate because the phase velocities of the
acoustic waves are orders of magnitude less than the velocities of electromagnetic
waves. The Gauss’ law is given by

∇0 · D̃0 = 0 in Q0. (12)

The electrical field rate ˙̃E, is related to the electrical potential rate ψ , by the
relation

˙̃E0 + ∇0ψ = 0 in Q0. (13)

and the inverse piezoelectric constitutive equation in rate form is given by

˙̃E + [g] Ṡ − [
εS]−1 ˙̃D0 = 0 in Q0, (14)

where the permittivity matrix,
[
εS

]−1
, is measured at constant stress.

It is common in actuation and sensing applications of piezoelectric materials to
impose electric potential and charge as Dirichlet and Neumann boundary conditions
respectively. In the case of energy harvesting applications, however, both the electric
potential and the electric charge are considered as unknowns. Most piezoelectric
materials are manufactured with electrodes completely covering their top and bot-
tom surfaces. Thus, a single potential output and charge output can be defined for
individual piezoelectric patches. To this effect, appropriate Dirichlet and Neumann
boundaries can be defined and a single potential and charge output can be assigned
to them.

Electric potential rate ψ̄ is given as a Dirichlet boundary condition on Pψ

0 as

ψ − ψ̄ = 0 on Pψ

0 , (15)

and electric charge q̄ is given as a Neumann boundary condition on Pq
0 as

q − q̄ = 0 on Pq
0 . (16)

The electric potential rate ψ̄ , representing one of the two electrical variables
defining individual piezoelectric patches, is further expressed as a single electrical
potential output Φp(t) of each piezoelectric patch.

It is pertinent to mention at this point, that the electrical field variables can be
considered as analogous to the mechanical field variables. The electrical field vari-
ables charge and potential rate can be included in our intellection of generalized
force and generalized structural velocity respectively. In the case of mixed hybrid
model followed in this article, the analogy between electrical and mechanical field
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variables can be further extended to include electric field and electric displacement in
our intellection of mechanical strain and mechanical stress respectively. This intel-
lection provides for a clear comprehension of these quantities in a finite element
framework.

3.3 Circuit

As mentioned earlier, individual piezoelectric patches are assumed to be covered
with continuous electrodes. Free charges are localized on the electrode surface, and
each electrode surface gives rise to a single voltage output. A harvesting circuit is
attached to the electrodes, and the governing equations of the circuit are

I − Q̇ = 0 in I (17)

and

ΔΦ − R · I = 0 in I (18)

where (17) is the charge conservation law. I is the current flowing through the circuit,
and Q is the electrical charge flowing though the circuit. Equation (18) is the Ohm’s
law relating potential difference,ΔΦ and the current flowing through the circuit. R is
the resistor element. ΔΦ is the potential difference existing across the piezoelectric
patches covering the substructure, and its value varies depending on the connection
(series or parallel) between the patches.

3.4 Coupling Conditions

Interface conditions determine how the different domains of themulti-physics system
are coupled with each other, and depending on the interface conditions the modeling
of the coupled domains can be either loosely coupled or strongly coupled. Since
the research aims to have a strongly-coupled model of the flow-driven piezoelectric
energy harvester, suitable interface conditions must be provided to represent the
coupling between the fluid domain and the piezoelectric structural domain, and also
the coupling between the electrical circuit and the harvester.

3.4.1 Fluid-Structure Interface

To complete the governing equations for the fluid-structure coupling consisting of
a moving fluid-domain and vibrating elastic piezoelectric structure, coupling condi-
tions have to be imposed on the interface PC = PS

0 ∩ PF where the superscripts S
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and F denotes solid interface and fluid interface respectively. Geometrical continuity
(or mass conservation) at the interface is achieved with the condition

vF − vS = 0 on PC
0 . (19)

This leads to the momentum conservation enforced on the interface using the con-
dition given by

t0 + d	t

d	0
tF = 0 on PC

0 . (20)

The above relation demands equal tractions along the deforming fluid-structure inter-
face [20].

3.4.2 Circuit-Structure Interface

It is frequently assumed in many literature that the vibration characteristics of the
energy harvesting device is independent of the electric circuit. However, as described
in length in the previous sections, this assumption can lead to incorrect prediction of
the harvester output. Piezoelectric sensors not connected to any circuit are usually
modeled as current source in parallel with the capacitance of the piezoelectric mate-
rial or a voltage source in series with the piezoelectric capacitance where, for the
calculation of current source, the electric field Ẽ is assumed as zero for short-circuit
conditions, and the dielectric displacement D̃ is assumed zero for open-circuit cal-
culations. But this condition is no more true in the case of an electric circuit attached
directly to the piezoelectric structure. The circuit imposes a relation between the
current flowing through the circuit and the voltage developed in the harvester due to
the vibrations. This is given by the relation

Φp(t) = ΦR(t), (21)

where the voltage generated by the harvester Φp(t) is assumed, a priori, equal to
the voltage across the resistor element ΦR(t). The relation between this potential,
and the current flowing through the resistor is given by Eq. (18). This relation is
indicative of the strong-coupling between the circuitry and the structural domain,
and provides a way to understand how an external circuit might impact the power
generation capability of a harvesting device.

4 Weak Form of the Governing Equations

In contrast to traditional finite elementmethods for elastodynamicswhere the solution
is discretized in space, and solved in time domain using finite difference methods for
ODE’s leading a to semi-discrete formulation, the space-time finite element method
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Fig. 2 Discretization of a domain with space-time finite elements using time slabs Qn, see [21]

facilitates consistent discretization of both the space and the time domain leading
to a uniform discretization of the governing equations in their weighted residual
form. The underlying concept of the space-time finite element method is to include
the temporal axis where a space-time domain Q is divided into N time slabs as
Qn = Ωn × [tn, tn+1] as shown in Fig. 2.

The time integration is performed using a time-discontinuous Galerkin method.
The information flow, as in conventional finite difference methods, is in the direction
of positive time, and the discontinuous Galerkin method (DG method) leads to a
system in which the solution to a time-slab Qn = Ωn × [tn,tn+1] depends on the
solution of the previous time at slab t−

n [22]. Hence the discontinuous approximation
of the unknown fields in time leads to additional jump terms in the weak form which
are derived in this section. The time integration scheme is implicit, A-Stable and third
order accurate for linear interpolation in time [22]. For more detailed information on
space-time finite elements readers are referred to [22–24].

4.1 Fluid

The Galerkin weighted residual form of the governing equations from (1) to (5b)
describing the fluid flow are given as follows

∫
Qn

δv · ρ (v̇ + v · ∇v) dQ + 2μ
∫
Qn

D(δv) : D(v)dQ (22a)

−
∫
Qn

(∇ · δv) pdQ −
∫
Qn

δv · fdQ (22b)

+
∫
Qn

δp (∇ · v) dQ (22c)

+
∫

�n

δv
(
t+
n

) · ρ
(
v

(
t+
n

) − v
(
t−
n

))
dΩt (22d)

−
∫
Pt
n

δv · t̄dP = 0 ∀δv, δp (22e)
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where (22a) represents the weighted form of the momentum conservation (1). Equa-
tion (3) describing the fluid constitutive equation, and Eq. (4) describing the fluid
kinematics are satisfied exactly in Eq. (22a). Equation (22c) is the integral form
of the mass conservation Eq. (2), weighted with the fluid pressure. The Neumann
boundary condition (5b) is considered in a weak sense in Eq. (22e), while the
Dirichlet condition is applied exactly a priori. Equation (22d) contains the jump
terms required due to the time differentiation of the velocity using discontinuous
Galerkin method, ensuring the transfer of kinetic energy from the end of previous
time slab t−

n to the beginning of the current time slab at t+
n at time tn.

4.2 Structure

Unlike traditional displacement finite elements, velocity based mixed-hybrid finite
elements for the structure allows for the native coupling at the fluid structure interface
without having to resort to enforcement of continuity using Lagrange multipliers.
This coupling strategy is followed in the model presented by this article, and hence
the structural discretization is done using velocity based finite element method. The
weighted residual form of the governing equations from (7) to (11) of the elastody-
namics problem, butwithout piezoelectric coupling terms, and depicting the behavior
of the elastic structure is given as,

∫
Q0,n

δvρ0v̇dQ0 +
∫
Q0,n

Ė (δv, u) : SdQ0 (23a)

−
∫
Q0,n

δv · f0dQ0 (23b)

+
∫
Q0,n

δS :
(

[s]Ṡ − Ė(v, u)

)
dQ0 (23c)

+
∫

�0

δv ·
(

ρ0
(
v

(
t+
n

) − v
(
t−
n

)))
dΩ0 (23d)

+
∫

�0

δS :
(

[s](S (
t+
n

) − S
(
t−
n

)))
dΩ0 (23e)

−
∫
Pt
0

δv · t̄0dP0 = 0 ∀δv, δS (23f)

where (23a) and (23b) are the integral forms of (7), weighted with velocity. The
constitutive law given by (9), but without the coupling term, is solved in a weak
sense on the element level leading to amixed hybridmethod. The jump terms in (23d)
and (23e) allow for the consistent transfer of kinetic energy and internal mechanical
energy between the time slabs t−

n and t+
n . The boundary tractions are considered in

(23f). The displacement state u can be computed by the integration of the structural
velocity v.
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4.3 Piezoelectric Material

The integral form of (7)–(11) including the piezoelectric coupling terms is given as

∫
Q0,n

δv · ρ0v̇dQ0 +
∫
Q0,n

Ė (δv, u) : SdQ0 (24a)

−
∫
Q0,n

δv · f0dQ0 (24b)

−
∫
Q0,n

˙̃E0(δψ) · D̃0dQ0 (24c)

+
∫
Q0,n

δS :
([

sD̃
]

Ṡ + [g]� ˙̃D0 − Ė(v, u)

)
dQ0 (24d)

+
∫
Q0,n

δD̃0 ·
(

−[g]�Ṡ + [
εS]−1 ˙̃D0 − ˙̃E0(ψ)

)
dQ0 (24e)

+
∫

�0

δv ·
(

ρ0
(
v

(
t+
n

) − v
(
t−
n

)))
dΩ0 (24f)

+
∫

�0

δS :
([

sD̃
] (

S(t+
n ) − S(t−

n )
))

dΩ0 (24g)

+
∫

�0

δS :
(

[g]�(
D̃0(t

+
n ) − D̃0(t

−
n )

))
dΩ0 (24h)

+
∫

�0

δD̃0 ·
(

−[g](S(t+
n ) − S(t−

n )
))

dΩ0 (24i)

+
∫

�0

δD̃0 ·
([

εS]−1 (
D̃0(t

+
n ) − D̃0(t

−
n )

))
dΩ0 (24j)

−
∫
Pt
0

δv · t̄0dP0 −
∫

Pψ

0

δqψ̄d P0 = 0. ∀δv, δψ, δS, δD̃0

(24k)

As seen in the case of the purely elastic problem, the constitutive Eqs. (9) and
(14) are solved in a weak sense in (24c) and (24d) on element level leading to
a mixed hybrid form with mechanical stress and electric displacement as element
level unknowns.They are spatially discontinuous at element edges and can be con-
densed on the element level. Potential rate, ψ is the additional global unknown field
analogous to the velocity field.

4.4 Circuit

The integral form of the electrodes that cover the piezoelectric patches, and the
harvester circuit attached to the electrodes are given as
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−
∫
PE
0

δqψdP0 −
∫
PE
0

δψqdP0 +
∫
PE
0

δqΦ̇pdP0 ∀δψ, δq (25a)

−
∫
I
δΦp

(Φ

R
−

∫
PE
0

q̇dP
)
dt = 0 ∀δΦp (25b)

where (25a) takes into account the charges localized on the continuous electrodes
covering the patch, and the relation between the boundary charges and the single
potential output of a piezoelectric patch is given in (25b). These terms together
naturally enforce the equipotential condition of the electrodes explained in Sect. 3.2
and (21).

5 Discretization with Space-Time Finite Elements

This subsection details the procedure involved in discretization of the domains con-
stituting the problem setup using different types of finite elements. As a first step, an
illustration of the different domains constituting the coupled system and the corre-
sponding unknown fields is shown in Fig. 3.

5.1 Elements and Space-Time Interpolation

An eight node hexahedral element as depicted in Fig. 4 is chosen to discretize the
fluid, structural and the piezoelectric weak forms spatially. Several works [20, 21,
24, 25] detail the application of the space-time finite element method for fluid-
structure interaction. Since the electric charges are collected only on the surface of
the electrodes, a four node quadrilateral element as shown in Fig. 5 is chosen to

Fig. 3 An illustration of the coupled multi-physics domains with the associated unknown fields



Numerical Modeling of Flow-Driven Piezoelectric Energy Harvesting Devices 415

Fig. 4 An eight-node
hexahedral element and its
node numbering sequence

Fig. 5 A four-node
quadrilateral space-time
element

discretize the electrodes covering the piezoelectric patch. The quadrilateral element
contains the electric charge (q) and the potential rate (ψ) as its degrees if freedom
(dof). The electrode cover over the piezoelectric patch is assumed to be continuous.
Thus eachpiezoelectric patch gives rise to a single potential output. This equipotential
condition is enforced naturally in the formulation by coupling the nodal electrical
potential rate d.o.f.s of the quadrilateral element to the virtual node containing the
electrical potential degree of freedom (Φ). The potential output of the harvester
is also the potential across the resistive element constituting the harvester circuit.
This is explained in detail later in this section. The hexahedral element allows for a
straightforward coupling of different domains (fluid, structure, and the piezoelectric
material) without resorting to simplification of the problem under consideration.
This approach also enables a strongly-coupled representation of the multi-physics
problem. Locking phenomenon, which is encountered in modeling of thin structures
using three dimensional elements is mitigated by adopting a mixed formulation. The
thickness of the electrode is sufficiently smaller than the thickness of the piezoelectric
patch, that the electrode layer is discretized using a four-node quadrilateral element.
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The various assumed field variables within a generic finite element are discretized
as

v = Nα
vvm (26a)

ψ = Nα
ψψe (26b)

S = Nα
SSm (26c)

D̃ = Nα

D̃
D̃e (26d)

q = Nα
qqe (26e)

Φ = Nα
Φ�e (26f)

where Nα
v in (26a) is the velocity interpolation matrix, and vm is the vector of nodal

velocity d.o.f.s.Nα
ψ in (26b) is the electric potential rate interpolationmatrix, andψ e is

vector of nodal electric potential rate dofs. Nα
S in (26c) is the mechanical stress shape

functionmatrix, andSm is the vector of stress co-efficients.Nα

D̃
in (26d) is the electric

displacement shape function matrix, and D̃e is the vector of electric displacement
coefficients. Nα

q in (26e) is the charge interpolation matrix, and qe is the vector of
nodal charge d.o.f.s. Nα

Φ in (26f) is the electric potential interpolation matrix, and
�e is the vector of nodal electric potential d.o.f.s. The subscripts “e” and “m” refer
to mechanical and electrical quantities respectively. The superscript “α” refers to
the fact that the fields are interpolated in space and time. The velocity and electric
potential rate satisfy the continuity requirements. The assumed mechanical stress
and dielectric displacement are not expressed in terms of nodal values, but through
unique shape functions and can be independent of the ones in other elements.

It is pertinent at this point to explain the nature of space-time interpolation. For
the sake of clarity and brevity, the four-node space-time quadrilateral element shown
in Fig. 5 is taken as an example to briefly explain the derivation of space-time inter-
polation functions. For a more extensive study, readers are referred to [22, 24]. The
extensionof the concept to an eight-nodehexahedral element is fairly straightforward.
Typical shape functions used in spatial finite elements have an additional temporal
component in space-time finite elements. For the four-node quadrilateral element,
the spatial and temporal components of the typical space-time shape functions are
given by

N α
i = NiT

α = Ni(ξ, η)T α(θ), (27)

where “i = 1, 2, . . . nnodes” refers to the number of nodes and “α = 1, 2, . . .” refers
to the temporal division of the time slab. ξ, η ∈ [−1,+1] are the natural spatial
co-ordinates, and θ ∈ [−1,+1] is the natural temporal co-ordinate.

Temporal shape function can be explicitly defined as opposed to the spatial shape
functions which usually depends on the spatial dimensions. The temporal shape
function is expressed as

T 1(θ) = 1

2
(1 − θ), T 2(θ) = 1

2
(1 + θ). (28)
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Time derivative of any unknown field can be readily obtained by taking the deriv-
ative of (28) and is expressed as

T 1
,θ = −1

2
, T 2

,θ = +1

2
. (29)

The spatial co-ordinates x and y can be interpolated in space and time as given
by the following equations assuming linear interpolation in time

x =
α=2∑
α=1

i=n∑
i=1

N α
i xα

i =
α=2∑
α=1

i=n∑
i=1

NiT
αxα

i (30a)

=
i=n∑
i=1

Ni(T
1x1

i + T 2x2
i ) =

i=n∑
i=1

Nixi(θ) (30b)

=
i=n∑
i=1

Nixi (30c)

and

y =
α=2∑
α=1

i=n∑
i=1

N α
i yα

i =
α=2∑
α=1

i=n∑
i=1

NiT
αyα

i (31a)

=
i=n∑
i=1

Ni(T
1y1i + T 2y2i ) =

i=n∑
i=1

Niyi(θ) (31b)

=
i=n∑
i=1

Niyi. (31c)

Similarly, we can interpolate the temporal co-ordinate t , where tα
i = tα for “i =

1, 2, 3, . . . n” as

t =
α=2∑
α=1

i=n∑
i=1

N α
i T α

i =
α=2∑
α=1

i=n∑
i=1

NiT
αtα (32a)

=
( i=n∑

i=1

Ni

) α=2∑
α=1

T αtα = T 1t1 + T 2t2 (32b)

The derivative of the shape functions with respect to the global axis is given by
the following equations
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⎡
⎣N α

a,x
N α
a,y

N α
a,t

⎤
⎦ =

⎡
⎣ξ,x η,x θ,x

ξ,y η,y θ,y

ξ,t η,t θ,t

⎤
⎦

⎡
⎣N α

a,ξ
N α
a,η

N α
a,θ

⎤
⎦ (33a)

=
⎡
⎣x,ξ y,ξ t,ξ

x,η y,η t,η
x,θ y,θ t,θ

⎤
⎦

−1 ⎡
⎣N α

a,ξ
N α
a,η

N α
a,θ

⎤
⎦ , (33b)

where in (33b) the derivative of global time axis with respect to the local spatial
axes is zero t,ξ , t,η = 0. Also, the structure is modeled in Lagrangian framework
and hence the derivative of global axes with respect to the local time axes is zero
x,θ , y,θ = 0 and t,θ = Δt

2 .
With this brief introduction in place, for the eight-node hexahedral element shown

in Fig. 4, the space-time interpolation function for the i th node can expressed as

N α
i = NiT

α = Ni(ξ, η, ζ )T α(θ), (34)

where Ni, i = 1, . . . , nnodes , as seen earlier, is the spatial interpolation function and
is given by

Ni = 1

8
(1 + ξiξ)(1 + ηiη)(1 + ζiζ ) (35)

in which ξ, η and ζ ∈ [−1,+1] are the natural spatial co-ordinates.
The assumed field variables potential rate and velocity can be interpolated as

ψ = [T 1[N1, . . . , N8] T 2[N1, . . . , N8]]{ψ1, . . . ψ16}� (36a)

= Nα
ψψe (36b)

v = [T 1[N1I3, . . . , N8I3] T 2[N1I3, . . . , N8I3]]{v1, . . . v48}� (36c)

= Nα
vvm (36d)

where in (36a) and (36c), it can be seen that the are 16 potential rate dofs, and 48
velocity dofs. respectively. This is because the interpolation is performed in space
and time. This is true in case of all the field variables. In (36c), Ii is the i th order
identity matrix.

The mechanical stress and electric displacement are approximated using unique
shape functions. For themechanical stress, the stress shape function used in the Pian’s
hybrid element [26–28] is used. Pian’s hybrid element contains 18 stress modes.
For the electric displacement, the shape function employed in [13] is used. Sze’s
element contains 7 assumed electric displacement modes. In a space-time setting,
the mechanical stress and electric displacement will have 36 and 14 assumed modes
respectively. The number of assumed mechanical stress and electric displacement
modes are chosen so to secure proper element rank.
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The interpolation of the mechanical stress can be expressed as

S = [T 1[I6 TmNS] T 2[I6 TmNS]]{S1, . . . , S36}� (37a)

= Nα
SSm (37b)

whereTm is the transformationmatrix evaluated at the element origin, I is the identity
matrix, and NS is the stress shape function matrix and given as

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 η 0 0 ζ 0 0 ηζ 0 0
ξ 0 0 0 0 0 0 ζ 0 0 ζ ξ 0
0 ξ 0 0 η 0 0 0 0 0 0 ξη

0 0 0 0 0 0 0 0 ζ 0 0 0
0 0 ξ 0 0 0 0 0 0 0 0 0
0 0 0 0 0 η 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (38)

The electrical displacement shape function as given in [13], in a space-time setting,
can be expressed as

D̃ = [
T 1[I3 TeND̃] T 2[I3 TeND̃]] {D1, . . . , D14}�, (39)

where in (39), Te is the Jacobian matrix evaluated at the origin of the natural co-
ordinates, and ND̃ is the electric displacement shape function as given by

ND̃ =
⎡
⎣η 0 ζ ηζ

ξ ζ 0 ζ ξ

0 η ξ ξη

⎤
⎦ . (40)

As mentioned earlier, the four-node quadrilateral space-time element shown in
Fig. 5 is employed as a boundary element to discretize the charges localized on the
electrode surface. For this element, the space-time interpolation function for the i th
node is given in (27), where

Ni = 1

4
(1 + ξiξ)(1 + ηiη). (41)

The electric charge can be interpolated as,

q = [
T 1[N1, . . . , N4] T 2[N1, . . . N4]

] {q1, . . . , q8}� (42a)

= Nα
qqe. (42b)

The electric potential is discretized only in time domain to meet the equipotential
condition. It is represented by a single virtual node in space, and thus has a unit
shape function in space. The space-time interpolation of the electric potential is
given expressed as
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Φ = [
T 1[N1] T 2[N1]

] {Φ1, Φ2}� (43a)

= Nα
Φ�e (43b)

where N1 in (43a) is 1.

The expressions for mechanical strain rate (Ė) in (8) and electric field rate ( ˙̃E) in
(13) can be obtained by differentiating (36d) and (36b) respectively, and expressed as

Ė = Bα
vvm (44a)

˙̃E = Bα
ψψe. (44b)

As mentioned earlier, time derivative of any unknown field can easily be obtained
by taking the derivative of time interpolation function as given in (29) andmultiplying
the spatial interpolation function. As an example, time derivative of velocity can be
expressed as follows:

v̇ = [T 1
,θ [Nv] T 2

,θ [Nv]]{v1, . . . , v48}� (45a)

= Ṅα
vvm. (45b)

Time derivative of other unknown fields can be obtained in the sameway as shown
above.

5.2 Monolithic Solution Strategy

At the element level, the space-time discretization of a specific time slab Qn applied
to the weak form of the coupled system (22a)–(25b), leads to a system of coupled
algebraic equations:

Klin(vi, ψi, qi, Φi, S, D̃)Δx = r, (46)

where Klin is the element level coefficient matrix, Δx is the vector of unknowns,
and r is the residual vector. The mechanical stress and the electric displacement are
discontinuous across the elements, they can be statically condensed on the element
level. The resulting element-level matrices are assembled in the usual way by nodal
addition of elemental contributions and can be expressed as

K∗
lin(vi, ψi, qi, Φi)Δx∗ = r∗ (47)

where K∗
lin is the global coefficient matrix, Δx∗ is the vector of global unknowns,

and r∗ is the global residual vector.
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Fig. 6 Structure of the monolithic algebraic system including mesh-deformation d.o.f.s

Equation (47) is a monolithic algebraic representation of the discretized coupled
multi-physics problem, and the solution to the unknown fields as shown in Fig. 6 is
obtained using the Newton-Raphson iterative scheme.

6 Numerical Example

This section is devoted to the application of theoretical concepts explained in the
preceding sections to the problem of piezoelectric energy harvesting from base
excitations.

6.1 Problem Setup

The bimorph cantilever beam considered in this numerical example is also discussed
in [8], and the basic setup is shown in Fig. 7 The substructure is sandwiched between
two identical piezo patches which are fully covered with conductive electrodes.
The piezo patches are polarized in the same direction thus constituting a parallel
connection between the electrodes. A harvesting circuit constituting a resistor R is
also attached to the electrodes. The base excitation causes longitudinal strains (x
direction) in the beam which are coupled to the electric field in transverse direction
(y direction) leading to a −31 coupling of the piezoelectric elements. The geometric
and material properties of the piezoceramic and substrate layers are given in Table1.
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Fig. 7 Parallel configuration
of piezoelectric bimorph [29]

Table 1 Geometric and material properties of the energy harvester

Quantity Dimension Value

Length of the beam L (mm) 50.8

Width of the beam b (mm) 31.8

Thickness of the piezo. patch (PZT-5A) hp (mm) 0.26 (each)

Thickness of the substructure hs (mm) 0.14

Young’s modulus of the substructure (brass) Ys (GPa) 105

Young’s modulus of PZT-5A Yp (GPa) 66

Mass density of the substructure (brass) ρs
(
Kgm−3

)
9000

Mass density of PZT-5A ρp
(
Kgm−3

)
7800

Piezoelectric displacement coefficient d31
(
pmV−1

) −190

Permittivity εE
33

(
Fm−1

)
1500 ε0

In Table1, the permittivity εE
33 (ε0 = 8.854 pFm−1) is the measure at constant strain

and piezoelectric voltage coefficient d31 is the measure used in strain-charge form
of the piezoelectric constitutive equation. However, the constitutive relation given in

Eqs. (9) and (14) is expressed in terms of Ė and ˙̃E as a function of S and D̃.
The following relations are used to transform the values in the table to fit the

formulation given in (9) and (14).

[εS] = [
εE] + [d]

[
cẼ

]
[d]� (48a)

[εS]−1 =
([

εE] + [d]
[
cẼ

]
[d]�

)−1
, (48b)

where
[
cẼ

]
is the Young’s modulus Yp of the piezoelectric material measured at

constant electric field as given in table.
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The compliance matrix at constant dielectric displacement is obtained from the
table values as follows

[
sD̃

]
=

[
cẼ

]−1 − ([d]�[εS]−1[d]) . (49)

The piezoelectric voltage coefficient derived from displacement coefficient is
given by

[g] = [
εS]−1 [d]. (50)

The substructure is discretized using a three dimensionalmixed-hybrid space-time
structural element, and the piezoelectric material is discretized using a three dimen-
sional mixed-hybrid space-time piezoelectric element. The electrodes on the top and
the bottom surfaces of the bimorph are discretized using a spatially two-dimensional
space-time face element, and the harvester circuit is attached to the electrode ele-
ments by coupling them with a common virtual node. The length dimension of the
bimorph is discretized using 15 elements, the width dimension with 2 elements. The
substructure is discretized using 2 elements in the height dimension and the piezo-
electric material with 3 elements. Since the substructure is sandwiched between two
piezoelectric patches, the total number of elements in the height dimension of the
bimorph is 8.

The parallel connection of the conductive electrodes is facilitated by having the
same polarization direction for the top and bottom piezo elements. Physically this
means that both the top and bottom surfaces of the bimorph constitute one terminal
and the electrode layers present in the upper piezo-substructure interface and lower
piezo-substructure interface constitute the other terminal. The interface terminal is
grounded by setting the nodes of the piezoelectric element to zero. The potential on
the top surface is equal to the potential of the bottom surface, and this potential drives
the harvesting circuit represented by a resistor element.

In harvesting energy from base excitations, many studies focus on the excitation
of the harvester at it’s fundamental resonance frequency to investigate power output
characteristics of the harvester. Thefirst fundamental short circuit (R = 0) frequency
of the piezoelectric bimorph considered in this study is 118.5Hz. The bimorph is
excited at this frequency to observe the power output and vibration characteristics.

Figure8 presents the evolution of electrical power and electrical potential with
time at two different resistances. Since it is impractical to have exactly zero resistance
under experimental conditions, a resistance of 1k� is chosen to represent short
circuit condition. The harvester reaches a steady state voltage of 4V at short circuit
condition compared to its steady stage voltage output of 6V at R = 10 k�. This
behavior is expected as potential builds up in the electrodes when there is infinite
resistance present between the terminals, and the electrical potential drops to zero
when there is zero resistance present between the terminals. Moreover, the steady
state power output of 4mW is reasonable for the given base excitation. Figure9
presents the evolution of relative tip displacement and base excitation with time.
The results suggests that when a finite resistance is present between the terminals,
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Fig. 8 Solution for electrical power (top) and electrical potential (bottom) with time

Fig. 9 Solution for tip velocity (top) and relative end displacement (bottom) with time

the displacement amplitudes are suppressed. This is due to the fact that the attached
circuit has an impact on the vibration characteristics of the harvester, and this impact
can be captured effectively in a strongly-coupled modeling approach as presented in
this study.
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Abstract This paper investigates the Bayesian process of identifying unknown
model parameters given prior information and a set of noisy measurement data.
There are two approaches being adopted in this research: one that uses the classical
formula for measures and probability densities and one that leaves the underlying
measure unchanged and updates the relevant random variable. The former is numer-
ically tackled by a Markov chain Monte Carlo procedure based on the Metropolis-
Hastings algorithm, whereas the latter is implemented via the ensemble/square root
ensemble Kalman filters, as well as the functional approximation approaches in the
form of the polynomial chaos based linear Bayesian filter and its corresponding
square root algorithm. The study attempts to show the principal differences between
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1 Introduction

In many applications one would like to predict the behaviour of a physical system
with the help of a mathematical model whose parameters are not directly observ-
able. In order to obtain the desired information about the system state or to allow
for a prediction of a system response beyond observed localities, the model para-
meters are estimated from noisy data gathered by measuring some of the observable
system responses. Most of the existing studies have tackled the issue by tuning
the model parameters such that the distance between the observed and predicted
system responses is minimised in a certain norm (e.g. [9, 31]). However, the result-
ing optimisation problem is often ill-posed—the minimised function is multimodal,
non-smooth or non-differentiable—andhence a regularisation procedure [6] or a soft-
computing-basedmethod [13] is required.Yet, such afitting-based approach provides
only a one point estimate and hence omits the related uncertainties in measurements,
imperfections of the numerical model as well as the preliminary knowledge about the
material parameters arising from their physical occurrence. Unlike point-estimation
techniques, the probabilistic concept transforms the prior expert-based probability
description to a posterior via the incorporation of observations. FromaBayesian point
of view this further means that the unknown parameters are taken to be uncertain
and are modelled with the help of random variables (RVs)/fields (RFs), whose prob-
ability descriptions are coming from expert knowledge and the maximum entropy
law [27]. This prior knowledge is then updated to a posterior distribution via Bayes’s
rule given in terms of conditional probabilities. In this regard, the process of assim-
ilating more information obtained via experiments becomes well-posed. As a final
outcome, the posterior distribution summarizes all available information about the
model parameters such as the mean value, variance, probability of occurrence etc.

The primary computational challenge in Bayesian inference consist in extracting
information from the posterior by evolving the probability measure. The Markov
chain Monte Carlo (MCMC) method [10] is one of the most commonly used tech-
niques for this kind of parameter estimation. In MCMC methods, the Markov chain
is constructed such that the asymptotic distribution of the chain is the Bayesian pos-
terior distribution. The posterior is sampled by letting the Markov chain run for a
sufficiently long time. With the intention of accelerating the MCMC method some
authors (e.g. [14–16, 29]) have introduced stochastic spectral methods into the com-
putation. Expanding the prior random process into a polynomial chaos (PCE) or a
Karhunen-Loève expansion (KLE), the inverse problem becomes an inference on
the weights of the KLE or PCE coefficients. Another solution is to combine poly-
nomial chaos theory with the maximum likelihood estimation and to calculate the
parameter estimates in a recursive manner (see [20]), or to apply a local linearisation
of the forward model to improve the acceptance probability of proposed moves [5].
However, the previously mentioned methods are all based on pure sampling proce-
dures, or a combination of spectral approximations and MCMC. Therefore, they are
slowly convergent and often computationally infeasible especially when one deals
with large-scale problems.
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To mitigate this issue, the authors of [18, 19, 21, 22] constructed a more efficient
approach based on conditional expectation, which is an equivalent way to formulate
the Bayesian update. The conditional expectation can be approximated by linear or
higher order maps, which have to be found during the updating. In this way the
Bayesian update (BU) is an algebraic formula, which can be computed in a purely
analytical way as indicated in [18, 19, 21, 22]. In a simpler version, this idea appeared
independently in [2], whereas in [23] it appears as a variant of the Kalman filter [12].

The aim of this study is to investigate the differences between full and linear
Bayesian updates on a simple linear diffusion model with one uncertain parameter.
For this purpose two scenarios are considered: one that features a direct—classical
Bayesian update—and a second one that introduces a transformed measurement
operator—a transformed Bayesian update. The transformation is studied from the
mathematical and numerical point of view in order to better understand the linear
Bayesian update. In addition, the paper proposes the use of the proxy modelling in
the assimilation process in order to reduce the required computational time.

The paper is organised in the following way: Sect. 2 gives a short introduction
into the model problem for which the Bayesian inference is presented in Sect. 3.
Section4 gives a brief overview of the available methods for the computation of a
Bayesian update. The methods are analysed and compared in Sect. 5. Finally, the
paper is concluded in Sect. 6.

2 Model Problem

The problem considered in this paper is a steady state heat transfer expressed by an
energy balance equation

− div(κ∇u(x)) = f (x), ∀x ∈ G ⊂ dR2, (1)

in which the scalar conductivity coefficient κ ∈ K together with the loading f (x)

and initial conditions u0 determine the system response u. In computational practice
u is very often evaluated assuming that the conductivity parameter κ is known. This
process is called the prediction of the system response, or the forward problem. How-
ever, the aim of this paper is to not to determine u but κ given the set of observation
data z—the measurements of the system response in a few points of the physical
domain of consideration.

Usually, the measurement set is mathematically formalised by an observation
operator H , which relates the complete model response u ∈ U to an observation y
in some vector space Y [21, 22]:

H : (κ, u(x)) �→ y(x) = H(κ; u(x)) ∈ Y . (2)

Since the modelled values y differ from the real data set z, the previous equation
transforms to



430 B. Rosić et al.

y = z − ε = H(κ; u(x)), (3)

in which the variable ε subsumes both model imperfections and the measurement
error. A key aspect of this is that one may try to compute the non-observable thermal
conductivity κ given z from Eq. (3). This further agrees with the inversion of the
operator H , which in general may not be invertible or has a non-continuous inverse—
the ill-posed problem. To ensure the existence and uniqueness of the solution, the
previous issue can be resolved by, for example, taking the additional information
into consideration. In a Bayesian point of view this corresponds to the prescription
of a prior distribution on the model parameter κ .

3 Identification via Bayesian Regularisation

The Bayesian inference treats the problem in Eq. (3) by acquiring additional knowl-
edge on the parameter set next to the observation data. Such a description has two
ingredients, the measurable function or random variable, and the probability mea-
sure. One group of methods updates the measure—the classical Bayesian updating
[10], the other group changes the function—the linear Bayesian updating [22]. In
this section we show connection between these methods as well as give their short
description.

The prior information on κ comes from expert knowledge about its realistic values
and can be modelled in a form of a prior probability density function p(κ) with the
help of the maximum entropy approach [27]. In this manner, κ in Eq. (3) can be
described by the finite-variance K -valued RV/ RF

κ(ω) : � → K (4)

on a probability space S := L2(�,A,P). Here, � denotes the space of elementary
events ω, A is the σ -algebra and P stands for the probability measure.

Once the prior is chosen, the posterior density can be obtained with the help of
classical Bayes’s rule:

πa(κ) := p(κ|z) = p(z|κ)

p(z)
p(κ) ∝ L(κ)p(κ) (5)

given in terms of the conditional probability density functions. Here, πa(κ) and p(κ)

stand for the posterior and prior density functions of κ , and L(κ) is the likelihood
giving a measure of how good the model is explaining the data z.

The law described in Eq. (5) is not the one used further. Namely, the random
variable κ is restricted to the positive cone in the vector space, and hence requires a
transformation, see [22]. By defining the bijective differentiable mapping

Tq : K → Q (6)
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from themodelK to the assimilationQ space, κ is transformed to a random variable

q = Tq(κ) (7)

which lives in a vector space. As a consequence, Bayes’s rule in Eq. (5) obtains the
form

πq(q) = p(z|q)

p(z)
pq(q), (8)

where pq(q) and πq(q) are the prior and posterior density of q, respectively. Once
the assimilation is performed, the back-transformation to the model space is applied
such that

πa(κ) = πq(q)
dTq(κ)

dκ
(9)

holds, where dTq(κ)/dκ denotes the Radon-Nikodým derivative of the assimila-
tion measure with respect to the original measure. In this manner the process of
computing πa(κ) is equivalent to the problem of evaluating the likelihood function
L(q) = p(z|q). The likelihood is incorporating the information from the data into
the updating process, and hence, it is shaped by the measurement density [28]. By
assuming normally distributed measurements, the likelihood takes the form

L(q) = exp

(
−1

2
(d)TC−1

ε (d)

)
, (10)

in which d denotes the difference

d = z − y (11)

between the forecast y = Y (q, u) and the measurement z, whereas Cε stands for the
measurement covariance.

Following this, the evaluation of Eq. (8) corresponds to the simulation of the
forward problem

− div(Tq(q)∇u(x)) = f (x), (12)

and the response forecast

y(x, ω) = Y (q(ω); u(x, ω)). (13)

Here, Y denotes the observation operator with respect to the transformed parameter
q such that

z = H(κ) = Y (q), Y = H ◦ T −1
q (14)

holds.
Note that in a special case when the random variable κ follows a lognormal

distribution the transformation in Eq. (7) coincides with the Gaussian anamorphosis
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[24, 25]. Indeed, by defining q as log(κ), the non-Guassian RV κ transforms to the
Gaussian RV q.

The transformations previously mentioned are especially important when the sec-
ond version of Bayes’s rule is applied—the one that updates themeasurable function.
This alternative formulation of Bayes’s rule can be achieved by expressing the con-
ditional probabilities in Eq. (8) in terms of conditional expectation. Following the
mathematical derivation in [21, 22], this approach boils down to a quadratic minimi-
sation problem:

qa(ω) = PQsn q = arg min
η∈Qsn

‖q − η‖2L2
, (15)

in which PQsn is the orthogonal projection operator of q onto the space of the new
information Qsn := Q ⊗ Sn . This space of Q-valued random variables with finite
variance is defined by the triplet Sn := L2(Ω,S,P), whereS := σ(Y ) denotes the
sub-σ -algebra generated by Y . According to the Doob-Dynkin lemma [3], one may
state that η := φ ◦ Y ◦ q, in which φ belongs to the space L0(Y ,Q) of measur-
able maps. Constraining the vector space L0(Y ,Q) to the subspace of linear maps
L (Y ,Q), the minimisation problem in Eq. (15) leads to a unique solution K . This
gives an affine approximation of Eq. (15)

qa(ω) = q f (ω) + K (z(ω) − y f (ω)), (16)

also known as a linear Bayesian posterior estimate. Here, q f represents the prior ran-
dom variable, qa is the posterior, y f is the forecasted measurement and K represents
the very well-known Kalman gain

K := Cq f y f

(
Cy f + Cε

)−1
(17)

which can be easily evaluated if the appropriate covariance matrices Cq f y f , Cy f and
Cε are known. We would like to emphasise that the Hilbert-space setting of Q and
Y has made the formulation in Eq. (16) possible [12]. Therefore, the transformation
in Eq. (7) was necessary.

It is interesting to note that the projection in Eq. (16) is performed over a smaller
space thanQsn . An implication of this is that available information is not completely
used in the process of updating. It is therefore likely that the minimisation error
remains larger.However, the computation of the projection becomes simpler.Another
advantage of Eq. (16) compared to Eq. (8) is that the inference in Eq. (16) is given
in terms of RVs instead of conditional densities. Namely, qa(ω), q f (ω), z(ω) and
y f (ω) denote the RVs used to model the posterior, prior, observation and forecasted
observation, respectively.

Having in mind that Y is in general nonlinear, one may alter the estimation in
Eq. (16) by transforming the measurement to the linear one. In other words, one may
apply the nonlinear transformation

zt = Tz(z) = (Tz ◦ H ◦ T −1
q )(q) = G(q) (18)
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such that the transformed measurement zt is linear in q. In our example in Eq. (1)
one has that

κ ∼ 1/z. (19)

Furthermore, if κ follows lognormal distribution

κ ∼ exp(q), (20)

the transformation in Eq. (18) reads

zt = −log(z) ∼ q. (21)

The last relation coincideswith theGaussian anamorphosis because the non-Gaussian
z is transformed to a standard Gaussian zt . In this example the transformation is easy
to achieve as it is purely algebraic. When an algebraic transformation is not possible,
one may apply empirical anamorphosis function as shown in [24]. Note that for the
multivariate case, the transformation has to be applied to each of random variables
individually (locally).

After the measurement transformation, Bayes’s rule assimilates the measurement
data zt with the prior information q by means of the following formula:

p(q|zt ) = p(zt |q)

p(zt )
p(q). (22)

For a Gaussian measurement error, this means evaluation of the likelihood function

L(q) = exp

(
−1

2
(Tz(z) − Tz(y))TC−1

εt
(Tz(z) − Tz(y))

)
, (23)

in which the distance d between themeasurement z and the forecast y is transformed,
as well as the covariance function from Cε to Cεt . Hence, by transforming obser-
vations, the measurement errors also transform. Such a transformation can lead to
an overestimation of the measurement error with respect to the transformed fore-
cast error as observed in [25]. Therefore, one often advises to compute the variance
of the measurement error in the assimilation space directly from the transformed
measurements.

The linear Bayes’s rule corresponding to Eq. (22) is characterised by a solution
belonging to Q ⊗ Sn , in which Sn := L2(Ω,S,P), where S := σ(G) denotes the
sub-σ -algebra generated by G. In our case G describes the linear relation between q
and zt , and hence the linear Bayes’s rule in Eq. (16) becomes optimal. However, note
that the transformations introduce additional errors into the computation process.
This is especially the case for the measurement errors, as already explained.
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Fig. 1 Schematic
representation of Bayesian
approach to identification Model
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The schematic representation of the Bayesian inference is shown in Fig. 1. The
schemedescribes the closed loop of oneBayesian update. The loop starts by assuming
the prior distribution q f (ω), which is then propagated through themodel S( f ; q) and
the measurement operator Y to the forecasted (predicted) measurement y(ω) read by
sensor S. The prediction is then subtracted from noisy data z(ω) coming from real
experiments, and the resulting difference is forwarded to the Bayesian filter, which
further produces the posterior distribution qa(ω), i.e. the updated value of q f (ω).

4 Computational Approaches

In recent years there has been an increasing amount of literature on computational
approaches related to Bayesian inference. However, this paper reviews only the
research conducted on MCMC [10, 15] and linear Bayesian filters [2, 19, 21]. The
main aim of this work is to contrast the linear Bayesian methods to a full MCMC
approach on a numerical example.

4.1 Markov Chain Monte Carlo

Markov chain Monte Carlo is a sampling procedure used for the estimation of the
posterior probability density function via Eq. (5) or Eq. (8), respectively. The method
is very general as it does not require any model approximations in contrast to those
further described. Instead, MCMC constructs a Markov chain with the posterior as
an equilibrium distribution. The two most often used types of this algorithm are: the
Gibbs sampling technique [26] and the Metropolis-Hastings algorithm [4], the one
used in this paper.
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1: procedure MHA(p(q), gk , L(q), N )
2: draw initial value q(0) from prior p(q)

3: for each i = 1 → N do
4: draw q(∗) from proposal distribution
5: gk(q(∗)|q(i−1))

6: evaluate the probability of acceptance

7: r = min{1, πa (q(∗))gk (q(i−1)|q(∗))

πa (q(i−1))gk (q(∗)|q(i−1))
}

8: accept the next state with probability r
9: q(i) = q(∗)

10: or reject with probability 1 − r
11: q(i) = q(i−1)

end
12: end procedure

Algorithm 1: Metropolis-Hastings procedure

As shown in Algorithm 1, theMetropolis scheme generates a sequence of samples
(states) q(i) whose values solely depend on the previous sample in the chain. The
value of the new state q(i) is generated with the help of the proposal distribution
gk(q|q(i−1)), also known as the transition kernel. In practice the transition kernel is
very often chosen to be symmetric such that gk(q(∗)|q(i)) = gk(q(i)|q(∗)). A typical
example of such a kernel is the normal distribution centered at the previous state—
the random walk chain. However, other types of kernels can be used in a similar
manner, e.g. independence chains, rejection sampling chains, auto-regressive chains
or grid-based chains, see [30]. Once the new sample is drawn it is either accepted
with the probability r or rejected with probability 1 − r .

The advantage of the previous algorithm is that it does not need target probabil-
ities but only ratios of target probabilities to work. In this manner the computation
of the normalisation constant in Eq. (8) is avoided. However, the samples are not
independent any more as they are drawn from the proposal distribution with the
probability r . Even though this is the case, the obtained samples can still be used
for the evaluation of integrals in a Monte Carlo fashion. However, this works only
if the Markov chain is aperiodic, irreducible, and positive recurrent [32]. Under the
previously mentioned regularity conditions the sampling sequence q(i) converges in
distribution to our target posterior distribution (Theorem 3 in [30]) regardless of the
starting point. However, the speed of the convergence greatly depends on the initial
choice. Due to this, a few starting samples have to be excluded from the chain — a
so-called “burn in period”.

Computationally, the Markov chain Monte Carlo algorithm is a very demanding
procedure because one has to evaluate the system response for each new proposed
sample, see Fig. 2. The evaluation starts with samples that are used as input in the
deterministic model S( f, q), which closely describes the system response u as a
function of the external loading f and the input parameters q. Once the response is
computed, the measurement operator Y is applied and the value of the observable
quantity y is diagnosed by a sensor. The predicted measurements are then compared
to the real data, which further results in the distancemeasure d entering the likelihood
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Fig. 2 The algorithmic
scheme of an inverse
problem solved by MCMC
filtering

function, see Eq. (10). In this manner a posterior sample is obtained, and the process
is repeated all over again for the next sample.

4.2 Proxy Modelling

To speed up the assimilation process one may introduce a proxy model for the
forecasted measurement. Usually, the proxy model is made with the help of a func-
tional approximation of random variables/fields entering the process, and a stochas-
tic Galerkin procedure [22]. To this end, both the predicted system response u f and
observation y f can be represented in a polynomial chaos expansion form [11, 17,
33, 35]

û f (ω) =
∑
J

u(α)
f Hα(ω),

ŷ f (ω) =
∑
J

y(α)
f Hα(ω), (24)

in which Hα(ω) represent the generalised orthogonal polynomials andJ stands for
the set of all finite non-negative integer sequences, i.e. multi-indices α such that

J : = {α = (α1, ..., α j , ...) | α j ∈ N0, |α| :=
∞∑

k=1

α j < ∞} (25)

holds. Due to computational reasons, only a finite subset of J is taken, i.e. the
expansion in Eq. (24) is truncated to a finite number of terms. This results in another
type of error which has to be added to the modelling error mentioned above.

To increase its efficiency, the MCMC cycle can be modified such that the forward
model is substituted with a less accurate but computationally cheaper proxy model
(see Fig. 3), as already reported in [14]. In this manner the forward model is not



Comparison of Numerical Approaches to Bayesian Updating 437

Fig. 3 The algorithmic
scheme of an inverse
problem solved by proxy
MCMC filtering
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individually solved for each MCMC sample, but apriori, see Fig. 3. After evaluating
the functional approximation of themeasurement, the sampling occurs and the update
loop proceeds in the same manner as described previously, see Figs. 2 and 3.

4.3 Linear Bayesian Inference

The advantage of themethods described in the previous section is that they aremodel-
independent. However, their main drawback is the slow convergence. The issue of
high computational cost can be improved via recently developed Bayesian linear
methods [18, 19, 21, 22] as shown in Eq. (16). Recalling that the RV qa(ω) can be
numerically represented by either sampling qa(ωi ) or the functional approximation
such as polynomial chaos expansion, one may distinguish at least two numerical
approaches to the problem given in Eq. (16): the ensemble Kalman filter [7] and the
polynomial chaos based update [21, 22].

4.3.1 Ensemble Kalman Filter

The simplest way to numerically estimate qa is to sample Eq. (16) in a Monte Carlo
fashion. Such a procedure starts by building ensembles of prior samples Q f :=
[q f (ω1), . . . , q f (ωZ )], forecasts Y f := [y f (ω1), . . . , y f (ωZ )] and measurements
Zm , such that Eq. (16) can be formulated in a matrix notation as

Qa = Q f + K (Zm − Y f ), (26)

in which K takes the form as in Eq. (16). Note that its corresponding covariances
may be estimated from the ensemble, i.e.

Cq f ,y f ≈ 1

Z − 1
Q̃ f Ỹ

T
f and C y f ≈ 1

Z − 1
Ỹ f Ỹ

T
f . (27)
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Fig. 4 The algorithmic
scheme of an inverse
problem solved by the
ensemble Kalman filter
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Here, Q̃ f = Q f − q̄ f 1T
Z and Ỹ f = Y f − ȳ f 1T

Z represent the fluctuation parts of

corresponding RVs, in which q̄ f = 1
Z

∑Z
z=1 q f (ωz) and ȳ f = 1

Z

∑Z
z=1 y f (ωz) are

the estimated means and 1Z is a vector of ones of size Z .
This method is a Monte Carlo method, hence it also suffers from the slow con-

vergence with increasing Z . On the other hand, it is fairly simple to implement: all it
needs are random samples, see Fig. 4. In practice the number of samples is often low,
and then special care is neededwhen computing the covariances and the Kalman gain
K , see [8]. To reduce the computation time one may use the proxy model instead of
a forward simulator in a similar way as it is done in the MCMC procedure. In this
manner only the update formula in Eq. (16) is sampled.

4.3.2 Polynomial Chaos Based Linear Bayesian Update

To avoid the sampling procedure presented previously in a form of the ensemble
Kalman filter (EnKF) algorithm, onemay use the opportunity to functionally approx-
imate the random variables (fields) in Eq. (16). In this light the linear Bayesian pro-
cedure can be reduced to a simple algebraic method. Starting from the functional
representation of the prior

q̂ f =
∑

α

q(α)
f Hα(ω) (28)

and the proxy in Eq. (24), one may discretise Eq. (16) as:

q̂a = q̂ f + K
(
ẑ − ŷ f

)
, (29)

where ẑ ∈ R
L×Z is the PCE of the measurement. Here, K in Eq. (29) is the Kalman

gain evaluated in an algebraic way knowing that

Cq f ,y f =
∑
α>0

α! q(α)
f ( y(α)

f )T . (30)
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Fig. 5 The polynomial
chaos based linear Bayesian
scheme Proxy
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Note that in the numerical computation q̂a ∈ R
Z , q̂ f ∈ R

Z , ŷ f ∈ R
L×Z and ẑ ∈

R
L×Z are PCEs with cardinality Z determined by (L + 1) RVs and polynomial

order p. Here, the number (L + 1) subsumes all the RVs describing the prior and
the RVs {θi }L

i=1 used to model the measurement error ε.
The previous algorithm is shown in Fig. 5 where the whole update process can be

represented by only one loop.

4.3.3 Square Root Polynomial Chaos Based Linear Bayesian Update

The idea of linear Bayesian inference is allowing the computation of the posterior
in a quite efficient way, however the update requires the introduction of additional
RVs—corresponding to ε—into the update process. This essentially may enlarge
the dimension of the stochastic space one is working with, especially in case of
sequential updating (for an illustration see [18, 22]). To avoid the presence of the
observation RVs and corresponding PCE in Eq. (16), one may follow the idea of a
square root filter [1], as the authors already addressed in [19]. In such an algorithm
the evaluation of the posterior consists of two phases:

1. the estimation of the posterior mean via

E(q̂a) = E(q̂ f ) + K (E( ẑ) − E( y f )), (31)

2. the prediction of the varying part q̃a := q̂a − E(q̂a) via

q̃a = Sqa√
Δ

. (32)

Here,
√

Δ = diag (
√

α!) stands for the square root of theGrammatrixΔ=E(Hα Hβ),
while Sqa denotes the matrix square root of the posterior covariance Cqa = Sqa ST

qa
.

The latter one represents a linear transformation of the prior matrix square root
Sq f , i.e.

Sqa = Sq f V
√

I − ΣT ΣV T . (33)
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The transformation essentially comes from the definition of the covariance structure
(Cy f + Cε) and its decomposition

(
Cy f + Cε

) = BΛBT , (34)

where BT rotates the simulatedmeasurements into directions alignedwith the covari-
ance structure (Cy f + Cε),whileΛ− 1

2 weights themaccordingly. In this lightmatrices
V and Σ are obtained by the singular value decomposition of

W = Λ− 1
2 BT H Sq f , (35)

for more details on mathematical derivation please see [19].
Equation (34) is exactly the place where the additional information (in the form of

Cε) enters the update—Cε specifies directions andmagnitude of the uncertainty (vari-
ance) reduction induced by the observation. Thus, no additional random variables
have to be included into the update. However, note that the square-root formulation
is only equivalent to the standard linear filter form in case of Gaussianity. In addition,
if the random variable is represented by an ensemble, the previous algorithm is of
the ensemble square root type.

5 Numerical Results

To test the numerical procedures described previously, two benchmark problems are
introduced: a two point boundary value problem in one spatial dimension and a heat
conduction problem for a rectangular plate.

5.1 One Dimensional Heat Problem

The thin metal rod of unit length is exposed to the deterministic heat source f (x) =
5(1 − x) linearly dependent on the spatial coordinate x . The heat transfer in the rod
is assumed to be steady, i.e. described by the one-dimensional heat equation:

− div κ(ω)u(x, ω) = f (x, ω), (36)

with zero Dirichlet boundary conditions. Here, κ(x, ω) denotes the conductivity
coefficient one is uncertain about and u(x, ω) is the temperature response.

The true value of the thermal conductivity κt is taken to be one realisation of a
lognormal random variable described independently from the a priori distribution—
so called truth. The corresponding data set-observations are then obtained with the
help of the deterministic finite-difference (FD) approach. The temperature is esti-
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Fig. 6 The virtual
measurement: the
temperature dependence on
the point position x . The red
crosses represent the sensor
placements

mated on a uniformmesh of 41 points, fromwhich L = 7 randomly chosen nodes are
used to place the measurement sensors, see Fig. 6. Each measurement is subjected
to Gaussian noise with zero mean and covariance Cε = σ 2

ε I (I is the identity matrix
of size L).

For the purpose of measurement prediction, the prior conductivity κ f (ω) is
assumed to be a lognormally distributed RV with mean 2.3 and standard devia-
tion 0.3. Once the prior is chosen, the predicted measurement is evaluated on the
uniform mesh of 21 spatial points with the help of the stochastic Galerkin approach,
see Eq. (36). Note that the spatial mesh is taken to be different than the one chosen
for the computation of the “virtual truth”. This is done in order to avoid the “inverse
crime” problem [34].

As depicted in Fig. 7a, the “virtual truth” is taken to lie in

• C1: high probability (κt = 2),
• C2: 2σ ( κt = 1.7),
• and C3: low probability (κt = 1.4)

regions of the prior. While the first case scenario (i.e. when κt = 2) represents a
reliable assumption of the prior, the other two case scenarios are describing situations
in which one cannot have precise expert knowledge on the value of the parameter κ .

Following this, Fig. 7b compares the predicted measurement and the observation
including the measurement noise for each of the previously mentioned scenarios.
These results argue how much of an impact the prior distribution has on the distance
between the measured and observed data sets. Namely, if the prior is such that the
truth lies in the high probability region then the distance is small, and vice versa.

5.1.1 Nonlinear Measurement

The experimental set up as described previously introduces the temperature observa-
tions into the identification process. However, onemay note that this kind ofmeasure-
ment is inconsistent with the statement made in Sect. 3 where the linear dependence
between the measurement and the parameter has been assumed. According to Fig. 8,
this hypothesis does not hold. Even though this is the case, the objectives of the
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(a) (b)

Fig. 7 a Three case scenarios for the true value of the conductivity coefficient κ , b the predicted
versus the virtual measurement: 99% probability regions of the predicted temperature T f and 99%
probability regions of the measurement Tm

following numerical computations are to determine whether and up to which degree
the truth can be identified from the nonlinear measurement data.

The six identification procedures—one random variable based (reduced) linear
Bayesian update (RLBU),1 full linear Bayesian update (FLBU), the square root
update (SQRT), ensemble Kalman filter (EnKF) with 1000 samples, square root
ensemble Kalman filter (EnKFS) with 1000 samples, and the full Bayesian MCMC
update with 105 samples—are used to estimate the value of the parameter κ given
seven temperature observations. The update process is performed only once using
the complete measurement data. The results obtained, as shown in Tables1 and 2,
indicate that the MCMC procedure is the only one which can identify the truth in all

1Random variables describing the measurement error are not taken into consideration—they are
projected out during the update process.
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Fig. 8 The dependence of temperature on the parameter set κ (left figure) and its transformation q
(right figure)

Table 1 Comparison of modes and standard deviations for the posterior κ obtained by different
update procedures

Parameter method Mode Std

Case: C1 C2 C3 C1 C2 C3

κ Truth 2 1.7 1.4 0 0 0

MCMC 1.9979 1.6952 1.4102 0.0131 0.0123 0.0163

RLBU 1.9934 1.6338 1.2294 0.0117 0.0096 0.0072

FLBU 1.9976 1.6373 1.2314 0.0184 0.0151 0.0113

SQRT 1.9814 1.6236 1.2224 0.0274 0.0225 0.0169

EnKF 1.9994 1.6328 1.2341 0.0262 0.0202 0.0158

EnKFS 1.9859 1.6237 1.2311 0.0262 0.0207 0.0160

Table 2 Comparison of modes and standard deviations for the posterior q obtained by different
update procedures

Parameter method Mode Std

Case: C1 C2 C3 C1 C2 C3

q Truth 0.6931 0.5306 0.3365 0 0 0

MCMC 0.6921 0.5278 0.3437 0.0066 0.0069 0.0098

RLBU 0.6899 0.4909 0.2065 0.0058 0.0058 0.0058

FLBU 0.6928 0.4935 0.2095 0.0092 0.0092 0.0092

SQRT 0.6839 0.4849 0.2004 0.0134 0.0134 0.0134

EnKF 0.6910 0.4928 0.2064 0.0119 0.0126 0.0124

EnKFS 0.6858 0.4892 0.2010 0.0121 0.0126 0.0120

three case scenarios. In contrast to this, the linear approximants are able to estimate
the truth only in the first case scenario although with an overestimated standard devi-
ation. The overestimation appears to be stronger in case of the square root posterior,
as well as posteriors obtained from the ensemble data (EnKF-kind of procedures).
Since the square root estimation is not equivalent to the linear Bayesian; and since
the ensemble Kalman filter estimates strongly depend on the chosen seed (here 1000
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(a)

(b)

(c)

Fig. 9 Comparison of posterior probability density functions describing κ . a The truth lies in the
one sigma region of the prior, b the truth lies in the two sigma region of the prior, c the truth lies in
the three sigma region of the prior

samples), this finding was expected. Contrary to the expectations, the one random
variable linear Bayesian update is underestimating the posterior variance. It seems
that the underestimation happens due to constraints put on the basis onwhich the pos-
terior is projected. Namely, one random variable linear Bayesian update is neglecting
(projecting out) the additional random variables coming from the measurement data
in the process of updating.

These findings are consistent with the plots of posterior probability density func-
tions given in Figs. 9 and 10, where onemay clearly notice that theMCMCprocedure
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(a)

(b)

(c)

Fig. 10 Comparison of posterior probability density functions describing q. a The truth lies in the
one sigma region of the prior, b the truth lies in the two sigma region of the prior, c the truth lies in
the three sigma region of the prior

outperforms other numerical techniques. Moreover, the linear Bayesian methods
“overshoot” when the truth is assumed to be κt = 1.7 or κt = 1.4. This issue can be
explained in part by a nonlinearity of the measurement operator. However, there are
other possible explanations, such as the prior which is “wrongly” assumed.

To determine the similarity between the MCMC (π1) and other posterior distrib-
utions (πi ), the Jensen-Shannon divergence (JSD):
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Fig. 11 The JSD area
measuring the distance of the
FLBU and MCMC
posteriors describing κ

JSD(πi‖π1) = 1

2
D(πi ‖ 1

2
(πi + π1))

+ 1

2
D(π1 ‖ 1

2
(πi + π1)) (37)

is estimated. Thismetric is a smooth and symmetrised version of theKullback-Leibler
divergence D(πi‖π1) defined as

D(πi‖π1) =
∫ ∞

−∞
ln

(
ρi (x)

ρ1(x)

)
ρi (x) dx, (38)

whereρi andρ1 represent the densities of the quantity obtained by one of theBayesian
linear approximation methods and MCMC methods, respectively. In the first case
scenario of the truth, the JSD value between the MCMC and FLBU probability
distributions is equal to the total area under a curve in Fig. 11. This value corresponds
to the error obtained by accumulation of sampling errors and the error caused by a
nonlinearity of the measurement operator.

5.1.2 Linear Measurement

To get an adequate understanding of the conclusions drawn in the previous section,
one has to consider the experiments in which the measurement operator is linear.
Since the relationship between the parameter and the observation is explicitly known

κ ∼ exp(q) ∼ 1/z, (39)

one may linearise the measurement operator via the following transformation

logκ ∼ q ∼ log(1/z). (40)

In such a case the estimation parameter q linearly depends on log(1/z). Following
this, the numerical analysis is repeated as in the previous section, only this time
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Table 3 Comparison of modes and standard deviations for the posterior κ obtained by different
update procedures

Parameter method Mode Std

C1 C2 C3 C1 C2 C3

κ Truth 2 1.7 1.4 0 0 0

MCMC 1.9982 1.7109 1.4878 0.0342 0.0269 0.0209

RLBU 2.0020 1.7044 1.4062 0.0054 0.0039 0.0034

FLBU 2.0023 1.7046 1.4064 0.0332 0.0281 0.0232

SQRT 2.0023 1.7046 1.4064 0.0339 0.0288 0.0241

EnKF 2.0024 1.7038 1.4046 0.0340 0.0294 0.0237

EnKFS 2.0022 1.7043 1.4054 0.0339 0.0290 0.0245

Table 4 Comparison of modes and standard deviations for the posterior κ obtained by different
update procedures

Parameter method Mode Std

C1 C2 C3 C1 C2 C3

q Truth 0.6931 0.5306 0.3365 0 0 0

MCMC 0.6921 0.5369 0.3972 0.0171 0.0155 0.0209

RLBU 0.6942 0.5341 0.3407 0.0023 0.0027 0.0022

FLBU 0.6942 0.5341 0.3407 0.0165 0.0165 0.0165

SQRT 0.6942 0.5341 0.3407 0.0167 0.0174 0.0168

EnKF 0.6948 0.5339 0.3410 0.0167 0.0175 0.0170

EnKFS 0.6940 0.5346 0.3410 0.0166 0.0173 0.0167

with the new version of the measurement. Note that the nonlinear transformation is
applied on the measurement data solely without the measurement error.

This study produced results which confirm the findings of a great deal of previous
works in this field, see [18, 19, 21, 22]. Namely, as results in Tables3 and 4 show,
the methods based on the linear Bayesian formula are able to identify the truth in
all three case scenarios without strong overestimations of variance. However, this is
not the case for the one random variable based linear Bayesian update. This method
underestimates the posterior variance similarly to the case study already discussed
in the previous section. Therefore, the use of the one random variable based linear
Bayesian update is not advised in practice. Furthermore, theMCMCprocedure shows
a slightly different behaviour than in the nonlinear case. The nonlinear transformation
of the predicted measurement and observation data in a polynomial chaos form have
resulted in a poor posterior estimation in the worst case scenario, for which the truth
takes the value in the low probability region of the prior. The problem appears due
to large numerical errors caused by both sampling and transformation. The previous
findings are in agreement with the probability density plots shown in Figs. 12 and 13,
where one may clearly observe the described behaviour of the linear procedures. The
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(a)

(b)

(c)

Fig. 12 Comparison of posterior probability density functions describing κ . a The truth lies in the
one sigma region of the prior, b the truth lies in the two sigma region of the prior, c the truth lies in
the three sigma region of the prior

difference in the posterior estimates of the linear Bayesian update and full MCMC
procedure for the first case scenario can be seen in Fig. 14, where the JSD area is
plotted.

By having run several MCMC computations for the worst case scenario, we came
to the conclusion that the posterior distribution converges to the linear Bayes’s pos-
terior with the increase of the polynomial order of the proxy model. Increasing the
polynomial order from four to six, the MCMC posterior distribution approaches the
one obtained by the full linear Bayesian update of fourth order, as shown in Fig. 15.
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(a)

(b)

(c)

Fig. 13 Comparison of posterior probability density functions describing q. a The truth lies in the
one sigma region of the prior, b the truth lies in the two sigma region of the prior, c the truth lies in
the three sigma region of the prior

Fig. 14 The JSD area
measuring the distance of the
FLBU and MCMC posterior
describing κ
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Fig. 15 The improvement of posterior distribution obtained by the MCMC procedure with the
increase of the polynomial order from 4 (MCMC4) to 6 (MCMC6). The reference is the full linear
Bayesian update of polynomial order 4 (FLBU)

(a) (b)

Fig. 16 Comparison of the upper 99% bounds of posterior and prior of the parameter κ for: a
nonlinear measurement: b linear measurement

This further means that the modelling error can have a huge influence on the MCMC
result in the low probability regions of the prior.

Having the previous results in mind, the update procedure is repeated for all
possible “truth scenarios”—for the values of κt between one and five—and the prior
as described in the beginning of this section. As shown in Fig. 16, the truth is inside
the 99% region of the posterior (red area) in case of linear measurement. However,
the same line crosses the 99% region of the posterior (red area) in case of nonlinear
measurement. For the former scenario, the posterior contains the truth only in a
small region around the 2.3 value (prior mean), where the truth line appears to be the
tangent. On the other hand, in the linear case the posterior better estimates the truth
although the variance can be over- or underestimated. This leads to the conclusion
that only the measurement operators with slight nonlinearities can be handled with
the linear Bayes procedure.
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Fig. 17 Experimental setup

Fig. 18 The prior
distribution and three case
scenarios for the truth C1–C3

5.2 Two Dimensional Heat Problem

In order to improve the previous qualitative analysis, the steady diffusion problem is
also examined on a two-dimensional rectangular domain, see Fig. 17. The boundary
conditions consist of a heat flux q = 100Wm−2 prescribed on the left boundary and
a constant temperature of 20 ◦C imposed on the right boundary. The computational
domain is discretised with the help of 204 irregular finite elements and N = 124
nodes.

For the virtual truth, the thermal conductivity κt is taken to be one realisation of
a lognormal random variable described independently from the a priori distribution.
The temperature is evaluated with the help of a deterministic finite element (FE)
method, but only the values in 7 randomly chosen points (FE nodes highlighted by
red dots in Fig. 17) are taken into consideration. For reasons of simplicity, these points
(sensors) are not optimally placed, even though this can be achieved with the help of
the optimisation theory. The measured data are additionally disturbed by Gaussian
noise with zero mean and covariance Cε = σ 2

ε I in order to simulate realistic data.
For this study, the prior thermal conductivity κ f is designed with the help of

the maximum entropy approach which takes all available information about the
conductivity parameter in the process of model selection. Thanks to the positive
definiteness of κ , the prior is taken to be a lognormal random variable with the mean
κ̄ f = 2.3 and standard deviation σ f = 0.3. In a similar manner as before, the value
of κt is adopted such that the truth places in the one, two or three sigma region of the
prior, see Fig. 18. The reasons for this are the same as described before in Sect. 5.1.
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5.3 Forward Problem

For prediction purposes the stochastic diffusion problem described by uncertain
conductivity coefficient is solved with the help of the stochastic Galerkin method
[22]. These results are verified with the help of a pure Monte Carlo approach with
onemillion samples, see Fig. 19 for its convergence inmean and variance. For further
investigation only one surrogate model is selected through a validation process:
that is the polynomial chaos expansion of order 4. Compared to the MC reference
solution this approximation results in 0.3029e-4 for the relative error in the mean,
and 0.0011 for the relative error in variance. The mean value and variance of such
an approximated solution are shown in Fig. 20. As expected, the mean is a linear and
the variance is a nonlinear function of the coordinates.

5.4 Identification

As in the previous example, the experimental analysis is run by measuring the tem-
perature, i.e. the nonlinear function of the conductivity parameter. For comparison
purposes, several computational strategies as described in Sect. 5.1 are implemented
and tested: the one random variable based linear Bayesian update (RLBU), full linear
Bayesian update (FLBU), the square root update (SQRT), ensemble Kalman filter
(EnKF) with 1000 samples, square root ensemble Kalman filter (EnKFS) with 1000
samples and the full Bayesian MCMC update with 105 samples. The last procedure
is declared as the reference solution. Its convergence with respect to the number of
samples can be seen in Fig. 21, where the relative errors of the mean and variance

εm = ‖κ̄ N
a − κ̄ R

a ‖
‖κ̄ R

a ‖ , εv = ‖var κ N
a − var κ R

a ‖
‖var κ R

a ‖ , (41)

are plotted, respectively. Here, κ̄ N
a , var κ N

a stand for themean and variance of the pos-
terior distribution obtainedwith N samples, whereas κ̄ R

a , var κ R
a denote themean and

variance of the posterior distribution as a result of 105 runs. According to these plots
the relative errors are slowly converging with the number of samples, as expected.
This results in an accuracy of ca. 1e-12 for the mean conductivity and 1e-8 for the
conductivity variance.

A comparison of identification results in Fig. 22 reveals that theMCMCprocedure
is the only one able to identify the truth in all three assumed cases. The methods
based on the linear approximation behave well in cases when the truth lies in the
high probability region, otherwise an “overshooting” occurs. This lends weight to the
previously given argument that the error of the linear approximant strongly depends
on the nonlinearity of the measurement operator, as well as on the prior assumption.

The previous results are also supported by the plots of posterior 99% confidence
intervals in Fig. 23. Initially, before the measurements are carried out, the 99% con-
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(a) (b)

Fig. 19 Convergence of the a mean and b variance of the Monte Carlo method with 106 samples

Fig. 20 The second order
statistics obtained with the
help of the stochastic
Galerkin method. a The
mean value of temperature, b
the temperature variance
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(a) (b)

Fig. 21 TheMarkov chainMonte Carlo convergence of posterior κa for the Gaussian measurement
error described by a standard deviation 0.3. a Mean convergence, b convergence in variance

fidence interval is assumed to be broad in order to “catch” the truth. With every new
successive measurement the probability region narrows down such that the interval
becomes almost deterministic after seven performed measurements. Even though
the truth is assumed to be deterministic, the posterior 99% confidence interval does
not disappear due to the measurement and model errors, as well as the error due to
the nonlinearity of the measurement operator. Additionally, the results, as seen in
Fig. 23, indicate that the full linear Bayesian update (FLBU), as well as the EnKF
almost match the MCMC results in the first scenario, whereas the one random vari-
able linear Bayesian update (RLBU) underestimates the posterior variance. On the
other hand, the square root filter and EnKF square root filter deliver similar results
with slightly shifted median.

The issues previously described can be resolved at the expense of improving the
prior description. This can be done by moving the mean of the prior distribution
towards the truth. Similar to the Kalman way of updating, we may obtain more
information about the prior mean using the existing measurement data. Once this
has been done, one may alternate the old prior with the newly obtained mean value
and continue the estimation as described previously. Even though the method just
described represents an oversimplification (especially in case of nonlinear functions),
it does work for slightly nonlinear functions (measurement operators). Such a case
is depicted in Fig. 24, where the process of identifying the truth in 2σ region is
illustrated. Here, the red line denotes the prior distribution, while the dashed black
line is the newly adopted prior (same statistics besides mean). From the resulting
plots of the posterior one may see that this time all procedures return similar results.
This point emphasizes the importance of the prior assumption. Also, one may note
in Fig. 25 that linear Bayesian updates are better than the MCMC update when the
number of measurement points is small.

As mentioned earlier, the estimation of the conductivity coefficient greatly
depends on the number of the measurement points, as well as on the measurement
(model) errors. The analysis and simulation of the updating procedures for different
levels of the measurement errors are shown in Fig. 26. From these figures, it is appar-
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(a)

(b)

(c)

Fig. 22 Comparison of posterior probability density functions describing κ . a The truth lies in the
one sigma region of the prior, b the truth lies in the two sigma region of the prior, c the truth lies in
the three sigma region of the prior

ent that the posterior estimate better complies the truth for smaller values of error.
The same is valid for second two case scenarios, see Fig. 27. However, these plots
also reveal that the bigger measurement error can regularise the estimation process
such that the 99% confidence interval of posterior includes the truth value.
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(a)

(b)

(c)

Fig. 23 Comparison of posterior probability density functions describing κ for different number
of measurement points. a The truth lies in the one sigma region of the prior, b the truth lies in the
two sigma region of the prior, c the truth lies in the three sigma region of the prior

6 Conclusions

This contribution aimed to present and compare different numerical approaches to
Bayesian estimations of non-observable model parameters from noisy measurement
data. The model parameter stands for the thermal conductivity and is represented by
a random variable with a non-Gaussian prior distribution. The numerical findings
suggest that Markov chain Monte Carlo sampling of the posterior distribution is a
reliable way of computing the Bayesian update. However, the model simulation—
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Fig. 24 The process of updating by first moving the prior mean

(a) (b)

(c) (d)

Fig. 25 Comparison of probability density functions of the posterior of κ for different numbers
of measurement points after moving the prior. a Two measurements, b seven measurements, c two
measurements, d seven measurements

often time-consuming—has to be evaluated for each sample in the chain, which
makes the whole procedure computationally expensive. To overcome this problem,
the stochastic Galerkin method is employed in order to construct a polynomial chaos
based approximation of the model response. This is then used within the sampling
procedure, instead of full model simulations. From these numerical findings it is
evident that the proxymodelmay jeopardize the accuracy of theMarkov chainMonte
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(a)

(b)

(c)

Fig. 26 The influence of the measurement error on the posterior quantiles: left is the truth in C1
scenario and right in C2 scenario. a σε = 1, b σε = 0.3, c σε = 0.1

Carlo procedure due to a combination of both approximation and sampling errors.
For reasons of efficiency the updating procedure is recasted into an alternative linear
Bayesian form thereby enabling a direct algebraic way of computing the posterior
distribution.While the sampling version of the linear filter—also known as ensemble
Kalman filter—needs a considerably smaller number of samples than the MCMC
procedure, this approach is severely underestimating or overestimating the residual
uncertainty. On the other hand, the polynomial chaos linear Bayesian methods do not
seem to suffer from any of previously mentioned issues. They deliver more reliable
results than EnKF procedures and are better than proxy MCMC in case of linear
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Fig. 27 The influence of the
measurement error on the
posterior quantiles for case
scenario C3. a σε = 1, b
σε = 0.3, c σε = 0.1

(a)

(b)

(c)

measurements. However, LBU may suffer from larger residual errors when applied
in nonlinear cases.

While the initial findings are promising, further research is necessary. Therefore,
future analysis will be needed to validate the mentioned numerical behaviour of the
presented computational procedures for the more complex diffusion problem when
the conductivity parameter is modelled in a form of random field. In addition, the
adaption of the polynomial chaos based linear Bayes filter has to be made in order
to handle the assimilation from the noisy nonlinear measurements.
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13. A. Kučerová. Identification of nonlinear mechanical model parameters based on softcomputing

methods. PhD thesis, Ecole Normale Supérieure de Cachan, Laboratoire de Mécanique et
Technologie, 2007.
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Two Models for Hydraulic Cylinders
in Flexible Multibody Simulations

Antti Ylinen, Jari Mäkinen and Reijo Kouhia

Abstract In modelling hydraulic cylinders interaction between the structural
response and the hydraulic system needs to be taken into account. In this chapter two
approaches for modelling flexible multibody systems coupled with hydraulic actua-
tors i.e. cylinders are presented and compared. These models are the truss-element-
like cylinder and bending flexible cylinder models. The bending flexible cylinder
element is a super-element combining the geometrically exact Reissner-beam ele-
ment, the C1-continuous slide-spring element needed for the telescopc movement
and the hydraulic fluid field. Both models are embeded with a friction model based
on a bristle approach. The models are implemented in a finite element enviroment.
In time the coupled stiff differential equation system is integrated using the L-stable
Rosenbrock method.

1 Introduction

The range of applications for hydraulic driven working machines is vast compassing
very robust excavators and precise robots such as used in the maintenance of the
ITER fusion reactor. In hydraulic systems, the energy is transferred via pressurized
fluid instead of using mechanical components such as gears and levers, which allows
for a more flexible layout for the components since the fluid flows through pipes or
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flexible hoses. The hydraulic energy is then converted to mechanical energy using
actuators.

The hydraulic pump producing the flow rate to the system, is typically run by
an electric motor or a diesel engine. The flow rate is then impelled through the
hydraulic control system to an actuator, where the hydraulic energy is transferred
back into mechanical energy. Thus, three major subsystems in hydraulically driven
systems can be identified: (i) the hydraulic control system, (ii) the hydraulic actuator,
and (iii) the mechanical system. These systems are coupled, since the state of the
mechanical system is dependent on the state of the hydraulic actuator and hydraulic
control system, and vice versa.

In mobile working machines, such as excavators or personnel lifting gear, the
boom movements are typically driven by hydraulic cylinders. Hydraulic cylinders
are linear actuators, where the movement is in the direction of the cylinder itself,
and they can extend or contract in length. The other type of hydraulic actuator is a
hydraulic motor, which produces a rotary movement. The movement in both of these
actuators is achieved by pumping pressurized fluid into the actuator, which creates a
reactive force that accelerates the actuator and, finally, the mechanical system.

In this chapter some modeling features of the linear actuator, i.e. the hydraulic
cylinder, are addressed. In addition, the hydraulic cylinder elements are constructed
to be used in multibody similations compatible with a framework of finite elements.

Traditionally, linear movement can be expressed using constraint equations.
However, such equations only provide for a rigid connection between two points,
whereas hydraulic cylinder elements also include the flexibility of the hydraulic oil.
Moreover, the hydraulic cylinder elements can be used to study the chamber pres-
sures and the flow rates in and out of the cylinder chambers and the hydraulic cylinder
element provides an interface for incorporating the hydraulic control system into the
simulations.

In this paper the effect of bending flexibility of the hydraulic cylinder is studied.
Hydraulic cylinders have to be designed to resist buckling under maximum operating
pressures. The maximum operating pressure thus defines the maximum axial load
which the cylinder has to carry without buckling. In normal operating conditions,
the cylinder should only carry a load through axial compression, whereas in accident
conditions the cylinder can also be exposed to bending. In addition, if the cylinder
is not mounted in a vertical position, the gravitational forces always place bending
stresses on the cylinder. This effect has been studied in [19].

Since hydraulic cylinders are operated with hydraulic fluid, the cylinder has to
be sealed. The seal then introduces friction forces opposing the cylinder movement.
Therefore, a novel friction model into the cylinder element formulations is included,
and the effects of the apparent friction force on the response of the multibody system
are studied Ascertaining the correct stresses in the system can have an impact on
any fatigue assessment of the system, for instance. One objective of this study is to
define the features to be modeled when dealing with multibody simulations. Since
dynamic simulations are involved, it is useful to have as few degrees of freedom in
the system as possible, which means that it is not particularly useful to account for
all the properties in the simulation models.
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2 Equations of Motion

The equations of motion can be derived by utilizing the principle of virtual work,
which can be written as, see [7]

δW =
∫

B

δu · b dv +
∫

∂B

δu · tσ daσ −
∫

B

δε : σ dv −
∫

B

δu · ρü dv = 0, (1)

where the first term is related to the body forces, with the body force and displacement
vectors denoted as b and u, respectively. The second term relates to the tractions tσ
acting on the surfaces of the bodyB. The third term is due to the internal forces with
Cauchy stress σ and the work conjugate strain measure ε, called the Almansi strain,
and finally the last term is due to the virtual work of the acceleration forces written
with the aid of D’Alembert’s principle. The density of the body B is given as ρ.

In the finite element method the displacement field is interpolated as u = Nq,
where the matrix N contains the interpolation functions and the q the unknown para-
meters, the generalized coordinates. In the Galerkin approach the same interpolation
is also used for the virtual displacements δu = Nδq, the virtual work equation can
be written as

δW = δq · (fext − fint − facc) = 0. (2)

Since the equation above has to hold for all virtual displacements δq, and by noting
that the last term in the equation, facc, corresponds to facc = Mq̈, it can be written

Mq̈ = fext − fint (3)

where M is the mass matrix of the system. The mass matrix is the product of the
integration of the last term in (1) when the discretization is performed using the
interpolation functions. The external forces, fext, and the internal forces, fint, can
depend on the current state and velocities of the system. In the following section the
equations of motion for the coupled system are given.

3 Coupled Multibody System

In the previous section the equation of motion for the mechanical system was pre-
sented. Here, the coupled multibody system is introduced, consisting of three major
components: the mechanical system, the hydraulic cylinder and the control system,
see Fig. 1 for an illustration of a lifting boom. The generalized coordinates of the
mechanical system is denoted with q, the hydraulic cylinder state variables with z
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Fig. 1 General coupled
multibody system with three
major parts: Mechanical
system (the boom), hydraulic
cylinder and hydraulic
control system
(4/3-directional valve)

and the control system variables with c. The complete equations of motion for the
three systems, where the constraint equations are excluded, can be written as

⎧⎨
⎩

Mq̈ = g(q, q̇, z, t)
ż = fcyl(z, q, q̇, c, t)
ċ = fhyd(c, z, t),

(4)

where the first equation of motion is for the mechanical system, the second for the
hydraulic cylinder and the third for the hydraulic control system. For the mechanical
system, M is the mass matrix and function g is the sum of the external, internal and
complementary inertial forces, see [5] and (3). The complementary inertial forces are
related to the beam element formulations and include gyroscopic forces, see [5, 10].

The evolution laws for the hydraulic cylinder and for the hydraulic control system
are denoted as fcyl and fhyd respectively. Descriptions for these evolution laws are
given in detail in Sect. 4.1.1. Coupling between the control system and themechanical
system is through the hydraulic cylinder, which is visible on the right hand sides of
(4) where the state of the hydraulic cylinder variables depends on the state of the
control system variables c and the mechanical system variables q and q̇.

For the solution of the coupled system the linearization of the equations of motion
(4) is needed. Using the following subscripts m, c and h for the mechanical sys-
tem, hydraulic cylinder and control system respectively, the linearization can be
written as

⎡
⎣M 0 0

0 0 0
0 0 0

⎤
⎦

⎡
⎣Δq̈

Δz̈
Δc̈

⎤
⎦ +

⎡
⎣Cmm 0 0

Ccm I 0
0 0 I

⎤
⎦

⎡
⎣Δq̇

Δż
Δċ

⎤
⎦

+
⎡
⎣Kmm Jmc 0

Jcm Jcc Jch
0 Jhc Jhh

⎤
⎦

⎡
⎣Δq

Δz
Δc

⎤
⎦ =

⎡
⎣r∗

s∗
t∗

⎤
⎦ , (5)

where the right hand sides are the residual vectors defined as

r∗ = g(q, q̇, z, t) − Mq̈ (6)

s∗ = −ż + fcyl(z, q, q̇, t) (7)

t∗ = −ċ + fhyd(c, z, t) (8)

for the mechanical system, hydraulic cylinder and the hydraulic control system.



Two Models for Hydraulic Cylinders in Flexible Multibody Simulations 467

The mass matrix for the system in (5), M, is due to the last term in (1) when the
discretization is performed. For the mechanical system the damping matrix is Cmm

and the stiffness matrix Kmm. The damping matrix and the stiffness matrix appear in
the differentiation of the vector r∗ in (6) with respect to q and q̇. The stiffness matrix
is then

Kmm = − ∂g
∂q

+ ∂(Mq̈)

∂q
, (9)

where the latter term arises from the derivation of the inertial forces. This gyroscopic
term appears when the mass matrix is configuration (or displacement) dependent.
The damping matrix is then defined as

Cmm = − ∂g
∂q̇

. (10)

The Jacobianmatrices for the hydraulic cylinder and the control system arewritten
by differentiating the residual vectors given in (7)–(8) as follows

Jcc = −∂fcyl
∂z

, Jhh = −∂fhyd
∂c

. (11)

The off-diagonal terms in the linearized equation of motion (5) are due to the
coupling of the three systems. Explicit forms of the coupling matrices are given in
Sect. 4.

As stated earlier, the coupling between the mechanical system and the hydraulic
control system is through the hydraulic cylinder. Two coupling pairs can be identified:
the mechanical system and hydraulic cylinder, and the hydraulic cylinder and control
system. The first of the couplings is handled with three matrices defined as

Ccm = −∂fcyl
∂q̇

, Jcm = −∂fcyl
∂q

, Jmc = −∂g
∂z

. (12)

When the hydraulic control system is excluded from the simulation model only these
coupling terms are active. In addition the control system Jacobian in (11)2 is also
excluded because in the linearized equations of motion in (5) only the first two
equations are utilized.

If the hydraulic control system is included, two more coupling matrices are
included into the system through the last equation in (5). These coupling terms
are then written as

Jch = −∂fcyl
∂c

, Jhc = −∂fhyd
∂z

. (13)

The main interest for the hydraulic cylinder modeling is in defining the evolution
law fcyl(z, q, q̇, t) and finding the appropriate coupling matrices with the mechanical
system.
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4 Finite Element Formulations

In this section the finite elements used in modeling the hydraulic cylinder are
described. The basic element is the geometrically exact beam with total Lagrangian
formulation described in [10]. In addition to the conventional beammodelling, a spe-
cial spring element is developed in [13]. These two elements are then incorporated
to create the C1-continuous slide-spring element to model sliding joints.

This section describes derivation of two different type of hydraulic cylinder ele-
ments, namely the truss element cylinder (TC) and the bending flexible cylinder
(BF). The truss element cylinder is, as the name suggests, rigid in bend, whereas the
bending flexible cylinder can capture the bending flexibility of the hydraulic cylinder.

In deriving the hydraulic cylinder elements, two different descriptions for each
cylinder model, one for a dynamic simulation and the other for a quasi-static analysis
is given in [19]. In the literature regardinghydraulic cylinders, typically, only dynamic
simulations are considered, see, for instance, [2, 3]. Application of the quasi-static
analysis allows the initial state to be computed without a dynamic analysis, thus
reducing the computational requirements. For further details see [19].

4.1 Truss-Element Cylinder

The truss-element-like cylinder (TC)model is closely related to the length-controlled
rod element introduced in [11, 12]. However, the length-controlled rod element is a
purelymechanical element, whereas the truss-element cylinder couples the hydraulic
and mechanical systems. A similar hydraulic cylinder model was first introduced by
Cardona and Géradin [3] where a truss element cylinder with a friction model was
derived. A similar approach has been adopted by Bauchau and Liu [2], where models
for the hydraulic components are given along with a model for a hydraulic cylinder
with no friction and without explicit formulas for the tangent operators. The basic
concept of modeling a hydraulic cylinder has also been given by Viersma [17], where
the model is the same as in the more recent approaches. In this section an element
with an improved friction model is described. In addition, the tangent operators and
are presented in detail. For more datails and expressions for the mass matrix see
[19, 20].

The truss cylinder has two nodes with only the translational degrees of freedom in
each node, see Fig. 2. As can be seen from the figure a new variable xc is introduced
for the position of the cylinder piston. The piston position is related to the initial
length L0, and the current length of the cylinder Ln,

xc = Ln − L0. (14)
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Fig. 2 The hydraulic
cylinder with main
dimensions and variables

The current length of the cylinder is expressed as Ln = √
xTAx. The piston position

xc is a relative displacement, so in the initial state xc = 0, and the current nodal
coordinates can be gathered into vector x as

x = [
x1 y1 z1 x2 y2 z2

]T
(15)

and the symmetric matrix A consisting of the 3× 3 identity matrices as follows

A =
[

I −I
−I I

]
. (16)

See also Fig. 3 for the definition of the displacements. The current and initial coor-
dinates are related as x = X + u where u contains the 6 nodal displacements. Thus
for the variation it can be written δx = δu since the initial state remains constant.

To define the internal force vector for the cylinder element, the equilibrium
of the cylinder piston using the chamber pressures can be written as follows, see
[17, 19, 20] and Fig. 4

Fc = pA AA − pBAB − Fμ (17)

where pA and pB are the chamber pressures in chambers A and B, respectively. The
corresponding piston areas are denoted AA and AB.



470 A. Ylinen et al.

Fig. 3 Cylinder element
with nodal displacements. Lc
is the current length of the
element

Fig. 4 Free body diagram of
the truss element cylinder
piston where the pressure
forces are acting on the
piston along with the friction
force. It is assumed that the
piston is moving to the right
and therefore the friction
force points to the left

The last term arises from the friction model. In this work the LuGre model is used
[18], and the friction force is given as

Fμ = k0z + k1 ż + Fvvt, (18)

where k0, k1 are the stiffness coefficient and the damping coefficient related to the
model. The average bristle deflection is denoted as z, whose evolution equation is
given in the form

ż = vt − |vt|
g(vt)

z, (19)

where vt is the sliding velocity [18]. With the last term in (18), the viscous friction
can be captured. The parametrization of function g then defines the LuGre model as

g(vt) = 1

k0

(
FC + (Fst − FC) exp

(
− v2t

v2Str

))
, (20)
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where FC and Fst are the Coulomb friction and static friction respectively. The
Stribeck velocity is denoted as vStr.

The magnitude of the internal force is given in (17). To define the force direction,
the unit vector in the direction of the cylinder is given as

nc = xB − xA
‖xB − xA‖ . (21)

Using the matrix A and the denominator in (21) as the length of the cylinder element,
the internal force vector can be written in the form

fint = Fc

[
nc

−nc

]
= − Fc

Ln
Ax. (22)

The internal force of the truss-element cylinder is in the direction of the element, and
cannot capture the bending effects.

4.1.1 Cylinder Variables

In this section the differential equation, or the evolution law for the cylinder state
variables is described.

First the cylinder variables is chosen. The technique presented in [17] is used
to derive the diffrential equation for the hydraulic system. Since the LuGre friction
model is chosen, the bristle deflection z is used as a state variable. In the case of
hydraulic cylinder the bristle can be treated as the sealing ring deformation, see
Fig. 5.

Now, the state equation for this cylinder model is written as

ż =
⎡
⎣ ṗA

ṗB

ż

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

B
QA − ẋcAA

VA + xcAA

B
−QB + ẋcAB

VB − xcAB

ẋc − |ẋc|
g(ẋc)

z

⎤
⎥⎥⎥⎥⎥⎥⎦

(23)

Fig. 5 The bristle deflection
in cylinder application. The
bristle can be treated as the
piston sealing ring
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So, the above equation explicitly defines the second equation in (4). The flow rates
into theA andB chambers are denoted as QA and QB, and the positive flowdirections
are show in Fig. 2. The volumes VA and VB correspond to the volumes of the cylinder
chambers when xc = 0.1 The bulk modulus B is assumed to be constant, and ẋc is
the piston velocity.

4.1.2 Dynamic Simulation

In this section derivation of the tangent matrices for the dynamic simulation model
of the truss element cylinder is given. Only the two first equations in the set given in
(4) is treated, thus the coupling with the hydraulic control system is not considered
here.

Variations of the Internal Force

To shorten the equations, the variation of the internal force is written in two parts as
follows

δfint = ∂fint
∂x

δx + ∂fint
∂ ẋ

δẊ
︸ ︷︷ ︸

Part 1

+ ∂fint
∂z

δz
︸ ︷︷ ︸
Part 2

(24)

where the first part yields tomatrices given implicitly in (9)–(10), whereas the second
term leads to a coupling matrix, see (13). The off-diagonal terms of the linearized
equations of motion are referred as coupling matrices. The stiffness matrix related
to the acceleration forces will be derived later.

Part 1: Taking the variation of (22) with the first term in (24) gives

δfint = − Fc

Ln
Aδx − FcAxδ

(
1

Ln

)
− 1

Ln
AxδFc. (25)

The variation for the current length of the rod is given by δ(L2
n) = 2xT Aδx, and the

variation for the inverse can be written as

δ

(
1

Ln

)
= − 1

L2
n

δLn = − 1

L3
n

xTAδx. (26)

Finally, the variation of the cylinder force δFc with respect to the mechanical
variables is needed. From (17) to (18) it is noticed that the only variable dependent
on the mechanical system is the friction force Fμ, resulting in

1Since the piston position xc is a relative quantity, the initial volume includes the dead volume as
well as the volume of the piston displacement resulting from the initial stroke. The initial volumes
are as given in Fig. 2.
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δFc = −δFμ. (27)

The variation of the friction force Fμ is taken from the (18)

δFμ = (Fv + k1H(z, ẋc)) δ ẋc
= cμδ ẋc, (28)

where the function H(z, ẋc) has the form

H(z, ẋc) = 1 − z

g(ẋc)
sign(ẋc) + g′(ẋc)

g2(ẋc)
|ẋc|z (29)

g′(ẋc) = − 2ẋc
k0v2Str

(Fst − FC) exp

(
− ẋ2

c

v2Str

)
. (30)

To write the variation for the cylinder piston velocity, time derivative of the cylin-
der piston position xc is

ẋc = 1

Ln
xTAẋ, (31)

resulting in

δ ẋc =
(

1

Ln
ẋTA − 1

L3
n

xTAẋxTA
)

δx + 1

Ln
xTAδẋ

= Bcδx + 1

Ln
xTAδẋ. (32)

Now it is possible to write the variation of the internal force for the cylinder
element which includes the stiffness matrix and the damping matrix by collecting
the equations above and substituting them to (25)

δfint =
(

− Fc

Ln
A + Fc

Ln
AxxTA − cμ

Ln
AxBc

)
δx +

(
− cμ

L2
n

AxxTA
)

δẋ

= (k1 + k2 + k3) δx + Cmmδẋ

= Kmmδx + Cmmδẋ. (33)

It is worth noticing that the dampingmatrixCmm and the geometric stiffness matrices
k1 and k2 are symmetric, whereas the material stiffness matrix k3 is not symmetrical,
see [19, 20]. The asymmetry arises from the variation of the piston velocity in (32).
If the velocity of the cylinder nodes ẋ is in the direction of x, the matrix k3 is also
symmetric.
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Part 2: Considering the part 2 in (24) the variation of the internal force with
respect to the cylinder variables gives2

δFc =
[

AA −AB

(
k0 − k1

|ẋc|
g(ẋc)

)]
δz

= bmcδz. (34)

The second part of the variation in (24) can be expressed explicitly as

δfint = − 1

Ln
Axbmcδz = Jmcδz. (35)

Variations of the Cylinder State Equation

In a similar way the variationof the cylinder state equation is splitted into two parts

δfcyl = ∂fcyl
∂x

δx + ∂fcyl
∂ ẋ

δẋ
︸ ︷︷ ︸

Part 1

+ ∂fcyl
∂z

δz
︸ ︷︷ ︸
Part 2

, (36)

where the first part yields the coupling terms Jcm and Ccm, whereas the second part
is the cylinder Jacobian denoted as Jcc, see (12).

Part 1: Variation of the cylinder state Eq. (23) with respect to the mechanical
variables xc and ẋc is

δfcyl =

⎡
⎢⎢⎢⎢⎣

−B AA
QA − ẋcAA

(VA + xcAA)2

B AB
−QB + ẋcAB

(VB − xcAB)2

0

⎤
⎥⎥⎥⎥⎦ δxc +

⎡
⎢⎢⎢⎢⎣

−B
AA

(VA + xcAA)

B
AB

(VB − xcAB)

H

⎤
⎥⎥⎥⎥⎦ δ ẋc

= bcmδxc + ccmδ ẋc. (37)

By using Eqs. (26)–(32) results in

δfcyl =
(

ccmBc + 1

Ln
bcmxTA

)
δx + 1

Ln
ccmxTAδẋ

= Jcmδx + Ccmδẋ. (38)

2Note that only Fc dependends on the cylinder variables.
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Part 2: Variation of the second part in (36) is simply

δfcyl =

⎡
⎢⎢⎣
0 0 0
0 0 0

0 0 − |ẋc|
g(ẋc)

⎤
⎥⎥⎦ δz = Jccδz. (39)

4.2 Bending Flexible Hydraulic Cylinders

In real life, hydraulic cylinders can bent therefore a bending flexible cylinder (BF)
model is developed. In addition, the rod arm slides inside the cylinder lining so
a telescopic movement has to be modeled. The starting points in developing this
element are to capture the bending flexibility and then modify the coupling between
themechanical variables and the cylinder variables accordingly.Moreover, the sliding
between the cylinder members has to be accounted for.

The bending flexibility can be modeled if the members are treated as beam
elements [10], and the sliding between the members can be captured by the C1-
continuous slide-spring element introduced in [13]. The beammodel of the hydraulic
cylinder is shown in Fig. 6, where 4 beams are used to model the cylinder lining and 4
beams to model the cylinder arm. The element mesh can be given separately for each
member of the cylinder element. This super element is connected to the mechanical
system via the attachment points located at the farthest end-nodes, marked as N1
and N2. In simulations, as in reality, the members are on top of each other, but for
the sake of clarity they are shown in Fig. 6 as separated. In Fig. 6, the lower beam
column is the lining and the upper one is the cylinder rod.

Unlike in the truss element cylinder, where the fluid volume was computed using
the relative piston displacement xc, the bending flexible cylinder element introduces
the piston displacement as an absolute quantity. The fluid volume of the A chamber
is between nodes 1 and 2, whereas that of the B chamber is between nodes 2 and 3.
Thus the node 2 in Fig. 6 is identified as the cylinder piston, node 3 as the rod guide
and node 1 is the bottom of the cylinder. The pressure evolution laws are written for
the two chambers separately, and the pressure-induced forces are regarded as external

Fig. 6 A bending flexible hydraulic cylinder where the members are modeled as Reissner’s geo-
metrically exact beam elements. The element is attached to the mechanical system using nodes N1
and N2
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loads to the cylinder element, indicating there is no need to write the equilibrium
equation for the cylinder piston.

The sliding between the members is then accounted for using the C1-continuous
slide-spring elements. The hydraulic cylinder has two sliding surfaces and therefore
two slide-spring elements are used. Slide 1 corresponds to the cylinder piston sliding
inside the lining, and Slide 2 to the arm sliding through the rod guide.

The slide-spring element is utilized in the bending flexible hydraulic cylinder.
Since the spring is constrained between two nodes of a beam element, a special
method has to be developed when the slide-spring changes from one beam to another.
This procedure requires study of the slide degree of freedom, which is restricted to
s ∈ [0, 1]. Therefore, whenever this requirement is violated the cylinder element
needs to be re-meshed so that the requirement is still met.

Since the cylinder members are modeled as beam elements, the nodal degrees of
freedomare translations and rotations. Therefore, it is possible to take the curvature of
the cylinder into account when the pressure forces are computed. The pressure forces
are always perpendicular to the surface, see [1]. The pressure forces are therefore
follower forces, and they are dependent on the current configuration of the cylinder.

4.2.1 Cylinder Variables

First, the frictionless cylinder element is described, and thus only the pressure vari-
ables are included. Thus the state equation for the cylinder variables is simply

ż =
[

ṗA

ṗB

]
=

⎡
⎢⎢⎣

B
QA − ẋcAA

VA0 + xcAA

B
− QB + ẋcAB

VB0 − xcAB

⎤
⎥⎥⎦ . (40)

The cylinder piston position xc is defined as an absolute distance from Node 1 in
Fig. 6, unlike in the truss element cylinder. Therefore, the definition of the volumes for
theA andB chambers, VA0 and VB0 respectively, also have to be changed accordingly.
The dead volumes are then the actual ones at xc = 0 and xc = xc_max, respectively.
Otherwise the ż is similar to the one for the truss element cylinder.

The cylinder piston position xc is now computed from the distance betweenNodes
1 and 2

xc =
√

xT
c Axc, (41)

where the vector xc collects the current nodal coordinates of Nodes 1 and 2, see Fig. 6.
This length is then used to define the fluid volume in the cylinder chambers. It should
be noted that rotations are not included in the vector xc. Defining the displacement
vector u as

u = [
u1 ���1 u2 ���2

]T
, (42)
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where the subscripts still refer to Fig. 6. Since these two nodes belong to beam
elements, it is possible tofind the translational freedoms separately from the rotational
freedoms. Since vector xc contains only translations, themapping between this vector
and the vector u is defined as

xc = Lu (43)

where the linear mapping matrix L has the form

L =
[

I 0 0 0
0 0 I 0

]
. (44)

Using this mapping the variation for the displacement vector xc as δxc = Lδu can
be found.

In (41) it is assumed that the fluid volume remains straight although this is not
actually the case. However, the effect is negligible, as it is shown in [19].

4.2.2 Dynamic Simulation

Derivation of the bending flexible cylinder element is based on the geometrically
exact beammodel described in detail in [10]. Therefore, the appropriate equations for
the fluid fields in the cylinder chambers are derived here. To shorten the presentation,
derivations of the Jacobian matrices for the A chamber are given, since the pressure
forces can be treated separately for both chambers. Similar derivations can then be
performed for the B chamber.

To start with, the pressure force vector acting on Nodes 1 and 2 in Fig. 6 is
written as

fint = [
f1 0 f2 0

]T
, (45)

where the force vectors f1 and f2 are

f1 = −pA AAR1Ec (46)

f2 = pA AAR2Ec. (47)

In the above equation the cylinder unit vector in the initial state is denoted with Ec,
and the rotation matrices corresponding to the nodal rotation vectors with R1 and R2

for Nodes 1 and 2, respectively. The rotation matrix is computed from the rotation
vector using the well known Rodrigues’ formula. The zero terms in the internal
force vector correspond to the rotations but since no moments arise from the fluid
pressure, the terms are set to zero. To obtain the tangent operators, the variations with
respect to the nodal translations and rotations according to (42) are taken. Then, the
Jacobian matrices arising from the derivation are added to the corresponding degrees
of freedom.
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Variations of the Internal Force

The stiffness matrix and the coupling terms are now derived from the internal force
vector. Writing the implicit variation with respect to the beam element nodal dis-
placement vector as

δfint = ∂fint
∂u

δu + ∂fint
∂u̇

δu̇
︸ ︷︷ ︸

Part 1

+ ∂fint
∂z

δz
︸ ︷︷ ︸
Part 2

, (48)

from which can be noted that Part 1 yields to a stiffness and damping matrix, and
Part 2 to a coupling term. Since the internal force vector is not dependent on the
velocities, there is no damping matrix.

Part 1: The first part of the variation leads to the stiffness matrix, and it is simply
computed using the variations presented in [10], thus giving,

δfint =

⎡
⎢⎢⎣

pA AAR1ẼcT1δ���1

0
−pA AAR2ẼcT2δ���2

0

⎤
⎥⎥⎦ = Kmmδu. (49)

This stiffness is added to the translation freedomsofNodes 1 and2.A similar equation
for the B chamber can also be written, where different rotation vectors are used, as
well as the pressure of the B chamber and the corresponding area. The stiffness
matrix in the component form is rather peculiar because no diagonal terms arise. The
stiffness matrix is

Kmm = pA AA

⎡
⎢⎢⎣

0 R1ẼcT1 0 0
0 0 0 0
0 0 0 −R2ẼcT2

0 0 0 0

⎤
⎥⎥⎦ . (50)

Part 2: The second part of the variation, where the internal force vector is varied
with respect to the chamber pressures is simply

δfint = δfint = AA
[−R1Ec 0 R2Ec 0

]T
δpA = JmcδpA. (51)

Similar derivations are then performed for the B chamber to obtain the corresponding
Jacobian matrices.

Variations of the Cylinder State Equation

To derive the cylinder Jacobian and the other coupling matrix, the variation of fcyl
has the form
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δfcyl = ∂fcyl
∂u

δu + ∂fcyl
∂u̇

δu̇
︸ ︷︷ ︸

Part 1

+ ∂fcyl
∂z

δz
︸ ︷︷ ︸
Part 2

, (52)

from which the first part yields a coupling matrix, whereas the second part is the
cylinder Jacobian Jcc.

Part 1: The variation of the first part yields two coupling terms because the
cylinder state is dependent on both the displacement xc and the velocity ẋc. Therefore
it is required to derive the variations for both. The variation for xc is taken from
(41). This variation has been given in (26). The variation for ẋc is given in (32) by
substituting Ln with xc.

δfcyl =

⎡
⎢⎢⎢⎣

−B AA
(QA − AA ẋc)

(VA0 + AAxc)2

B AB
(−QB + AB ẋc)

(VB0 + AB(Lp − Lap − xc))2

⎤
⎥⎥⎥⎦ δxc

+

⎡
⎢⎢⎢⎣

− AAB

VA0 + AAxc
ABB

VB0 + AB(Lp − Lap − xc)

⎤
⎥⎥⎥⎦ δ ẋc

= bcmδxc + ccmδ ẋc. (53)

By substituting the variations of xc and ẋc the coupling matrices are obtained

δfcyl =
(
1

xc
bcmxT

c A + ccmBc

)
δxc + 1

xc
ccmxT

c Aδẋc

=
(
1

xc
bcmxT

c A + ccmBc

)
Lδu + 1

xc
ccmxT

c ALδu̇

= Jcmδu + Ccmδu̇, (54)

where the relation between xc and u has been used.
Part 2: The second part of the differentiation is also zero since the pressure

evolutions are not dependent on the chamber pressures themselves, thus Jcc = 0.
The Jacobianmatrices related to displacements and velocities have been presented

above. Expressions for the matrices are simpler than they were with the truss element
cylinder. This is because there is no need to write the equilibrium equation of the
cylinder piston. In addition the equations can be derived separately for the A and B
chambers.
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4.3 Bending Flexible Hydraulic Cylinder with Friction

The bending flexible hydraulic cylinder (BF) model derived above did not have
the friction model used with the truss element cylinder. Consequently, the LuGre
model was also implemented into the C1-continuous slide-spring element, so that
it is possible to model frictional slides. The friction model is implemented into the
slide-spring element,which is presented in its original form in [13]. The frictionalC1-
continuous slide spring element is then applied to modeling the hydraulic cylinder,
as presented in the previous section.

Here it is emphasized that, apart from the friction model, the formulation for this
frictional bending flexible cylinder element is the same as for the frictionless one
introduced in the previous section. The difference is in the cylinder state equation,
where the bristle deflection is included as a separate variable. The state equations
concerning the cylinder chamber pressures need not to be modified in any way.
Therefore it is only required to derive the Jacobian matrices of the friction model
and use them alongside the ones from the frictionless formulation.

4.3.1 Cylinder Variables

First, the cylinder variables for the frictional cylinder are defined. This task is merely
combination of (23)–(40), with two friction variables. Thus, the cylinder variables
now consist of the rates of chamber pressures and of the time rates of the bristle
deflections as

ż =

⎡
⎢⎢⎣

ṗA

ṗB

ż1
ż2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B
QA − ẋcAA

VA0 + xcAA

B
−QB + ẋcAB

VB0 − xcAB

v1 − |v1|
g(v1)

z

v2 − |v2|
g(v2)

z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (55)

where the actual slide velocities for the friction forces are denoted with vi and the
subscript i indicates the slide number; see also Fig. 6. The actual sliding velocity is
computed as

vi = Leleṡi , (56)

where ṡi is the material time derivative of the sliding degree of freedom and Lele is
the current length of element.
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4.3.2 Cylinder Formulation with LuGre Friction

The degrees of freedom for the C1-continuous slide-spring element are uc1 =
[u1 ���1 u2 ���2 u3 ���3 s]T. Here, only interest is only given to the last term, which
is the slide’s position on the beam. The values of s are restricted between s ∈ [0, 1].

In Sect. 4.2 equations for the frictionless bending flexible cylinder are derived. As
it can be seen from (55), the friction variables are added to the cylinder state equation
as separate variables. Therefore, only the modifications required in order to utilize
the friction model are presented. The hydraulic coupling is precisely the same as in
the previous cylinder model. The Jacobians of the friction law and the model for a
general slide are derived. These equations can then be utilized in the systems with n
slides.

Variations of the Friction Force

The scalar friction force is treated as an external force into the slide and for the LuGre
model has the expression

Fμi = (k0zi + k1 żi + Fvvi ) , (57)

where the same friction model coefficients for both slides are assumed. The index i
denotes the slide number. In sequel, the subscript is dropped and the equations are
derived only for the first slide. The Jacobian matrix for the friction force follows
from the first variation

δFμ = (Fv + k1H) δv +
(

k0 − k1
|v|

g(v)

)
δz = cμδv + czδz. (58)

Now, the Jacobian matrices are only scalars. However, for notational reasons it is
denoted: Cmm = cμ and Jmc = cz.

Variations of the Cylinder State Equation

Since there is no coupling between the pressures and the friction variables in (55),
the variation is simply

δż = δv − |v|
g(v)

δz − zδ

( |v|
g(v)

)
= H(z, v)δv − |v|

g(v)
δz, (59)

where the function H(z, v) is taken from (29) and is the derivative of the function
g with respect to the velocity. The Jacobian terms are Ccm = H(z, v) and Jcc =
−|v|/g(v).
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The initial state of this frictional bending flexible cylinder model can be computed
similarly as for the truss element cylinder, see [19, Sect. 4.2.3]. The only difference
is that the actual displacement of the slide is used as the argument for the friction
function. The pressure scaling factor has also been included in the static friction
model.

5 Integration of the Coupled Two-Field Problem

Time integration of a coupled mechanical and hydraulic system has been discussed
by [3], where a multi-rate integration scheme is developed. In the multi-rate scheme
the hydraulic state equation is integrated with a different time step and a different
integrator than the mechanical system. The idea of multi-rate integration has been
discussed in a conceptual sense in [1]. In the multi-rate integration, shorter time steps
are used for the hydraulic state equation than used for the mechanical system. For a
different strategy of the multi-rate integration see [14].

The coupled mechanical-hydraulic system is stiff and highly damped, therefore
the standard Crank-Nicolson rule is not an ideal integrator, see [8, 9]. Therefore the
L-stable Rosenbrock method is chosen in the present study and it is described briefly
in the next section.

5.1 The Rosenbrock Method

Semi-implicit methods have been shown to work well for stiff differential equations
[6]. The Rosenbrock method is based on an implicit form, however, instead of using
an iterative solution for the linearized equations, only one iteration is performed with
the Runge-Kutta type time-stepping, see [15].

In order to utilize the Rosenbrock method, the equations of motion is written as
a system of two first order differential equation systems

H

⎡
⎣ż

q̇
v̇

⎤
⎦ =

⎡
⎣fcyl(z, q, q̇, t)

v
g(q, q̇, z, t)

⎤
⎦ , (60)

where v = q̇ and the matrix H is H = diag (I, I, M). The system (60) is briefly
written as

Hẋ = r(t, x). (61)
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The Rosenbrock scheme is a diagonally implicit Runge-Kutta method (DIRK),
where advancing in time for an autonomous problem is performed as

xn+1 = xn +
s∑

i=1

bi ki . (62)

where

ki = Δt r

⎛
⎝xn +

i−1∑
j=1

αi j k j + αi i ki

⎞
⎠ i = 1, . . . , s, (63)

where s is the number of stages. However, this form is implicit. For the Rosenbrock
method this equation is linearized and only one iteration is performed for solving the
vectors ki , for details see [6, 15]. In contrast to purely explicit methods, the Jacobian
matrix need to be computed only at the beginning of the time step x = xn . Therefore
only one solution of the system (61) is necessary within a time step.

For non-autonomous systems, an additional term is added to the basic form in
(63) to account for the time dependency, see [6]. After linearization, the form for
solving vectors ki is written

(H − γΔtJ) ki = Δtr

⎛
⎝tn + αiΔt, xn + Δt

i−1∑
j=1

αi j k j

⎞
⎠

+ γiΔt2
∂r(tn, xn)

∂t
+ ΔtJ

i−1∑
j=1

γi j k j , (64)

where J is the full Jacobian having the following block structure

J =
⎡
⎣ Jcc Jcm Ccm

0 0 I
−Jmc −Kmm −Cmm

⎤
⎦ . (65)

It is possible to utilize the symmetry of the matrices by using the block factorization
scheme, see [12]. For a two-stage Rosenbrock scheme the coefficients αi j and γi j are

γi j =
[

γ 0
−γ γ

]
αi j =

[
0 0
1/2 0

]
(66)

with γ = 1 − 1/
√
2, see [16]. In addition the nonzero coefficients of bi αi

are α2 = 1/2, b1 = 1/4, b2 = 3/4.
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Since the Rosenbrock method does not require corrector iterations, it is computa-
tionally efficient. However, the L-stability is only guaranteed if the Jacobianmatrices
are correct which is important in eliminating the erroneous high frequency vibrations
from the system [6, 15].

6 Numerical Examples

In this section behaviour of the two formulations; the truss element and the bending
flexible cylinder are compared. Two test cases for a boom movement are given and
the initial values used for both examples are presented in Table1.

6.1 Influence of the Stribeck Effect

The boom is initially in a horizontal position. A mass of 400kg is then placed at
the boom’s tip. The hydraulic cylinder element is positioned between nodes D and
B, see Fig. 7. After the initial state is solved by the Newton’s scheme, the dynamic
simulation is started with the Rosenbrock scheme using a constant time-step of
0.001s. Procedure for the initial state computation is described in [20].

The flow rate for the hydraulic cylinder is defined under the premise that the fluid
is incompressible giving the inbound flow rate of Qin = ve AA = 15.6 l/min. The
outbound flow rate is computed according to the model presented in [4].

In the following example the influence of the Stribeck effect to the behaviour
of the system response is investigated in a lifting motion of a boom. The Stribeck
velocity is given in Table2 and the Coulomb friction is now set to 70% of the static
friction.

In Fig. 8 comparison of the boom stresses for both the truss-element cylinder,
TC, and the bending flexible cylinder, BF, are shown. The “S” denotes the model
where the Stribeck effect is included. At first glance, the peak stress in the boom
does not appear to be affected by the Stribeck effect. However, when comparing
the frictional cylinder models with the ones where the Stribeck effect is included,
more oscillation can be noticed. Although the peak stress value remains the same,
the increased oscillation could be a factor in any fatigue assessment of the structure,
so it is useful to capture the effects of the changing friction force.

The friction forces and the friction parameters in Fig. 9 are plotted separately for
both cylinder models, once again, both with and without friction and the Stribeck
effect. The oscillation with a low frequency is due to the mass displacement, whereas
the higher frequency oscillation is due to the stresses in the boom system. Because
a corresponding high amplitude oscillation in the friction forces cannot be detected,
a similar high-amplitude oscillation in the boom stresses is naturally absent.
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Table 1 The initial values for the lifting boom example

Dimension Symbol Value Unit

Steel density ρs 7850 kg/m3

Steel Young’s modulus Es 200 GPa

Beam height hb 0.12 m

Beam width wb 0.08 m

Wall thickness tb 0.005 m

Beam linear density ρb 14.92 kg/m3

Point mass a the boom
end

m 400 kg

Lining length Lp 0.85 m

Rod length L r 0.85 m

Attachment element
length

Lap 0.1 m

Cylinder attachment
point

h0 1.0 m

Outer diameter of
lining

Du 0.08 m

Inner diameter of
lining

Ds 0.07 m

Dead volume of
A chamber

VA 0.0029 m3

Bulk modulus Boil 2000 MPa

Rod diameter Dr 0.042 m

Spring stiffness
coefficient

kx 1 × 108 N/m

Spring stiffness
coefficient

ky, kz 9 × 107 N/m

Spring stiffness
coefficient

krx, kry, krz 0 N/m

Fig. 7 Boom system with an
external load at the tip of the
boom

6.2 Discussion

In comparing the truss-element cylinder (TC) and the bending flexible cylinder (BF),
in this example the bending flexibility does not seem to to have significant effect to
the results. The axial deformations of the bending flexible cylinder model create
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Table 2 Parameters for the friction model

Quantity Symbol Value Unit

Static friction Fst 3 kN

Coulomb friction FC 2.1 kN

Viscous friction Fv 0 Ns/m

Stiffness coefficient k0 746.5 kN/m

Damping coefficient k1 864 Ns/m

Stribeck velocity vStr 0.1 m/s

Values are the same as given in [18]
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Fig. 8 Comparison of boom stresses with the truss element cylinder (TC) and the bending flexible
cylinder (BF). Inclusion of friction and the Stribeck effect is labeled as F and S, respectively
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Fig. 9 a Comparison of friction parameters and b forces with the TC and BF cylinders with and
without friction and with the Stribeck effect included

slightly higher initial deformations and the lowest natural frequency is slightly lower
due to the increased flexibility. However, these factors can be compensated for by
reducing the bulk modulus of the hydraulic oil in the truss-element cylinder.

TheStribeck effectwas not as evident in this numerical example. The slide velocity
is not as easily defined, and the variations are smaller but faster, thus leading to smaller
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variations in the friction force. The effects are more local, and related to the slides
rather than to the response of the complete boom system.

For this first example, it can be concluded by saying thatwhen the bending flexibil-
ity of the cylinder is minor, it is more advantageous to use the truss-element cylinder.
The truss-element cylinder has 6 degrees of freedom for the mechanical system, and
it has 3 cylinder variables if friction is taken into account. In our numerical example,
4 beam elements were used for both the lining and rod in the meshing of the bending
flexible hydraulic cylinder. This resulted in 62 mechanical degrees of freedom, and
when friction is included, 4 cylinder variables. Therefore, the truss-element cylinder
is computationally more efficient.

6.3 Sudden Stop of a Boom

For the second example, the same boom is used, but instead of analyzing the lifting
motion the boom’s initial angle is set to 70◦ and an accident situation in which the
boom is allowed to free-fall for 0.5 s is analysed. The point D in Fig. 7 is moved so
that the cylinder angle is βcyl = 83◦ when the boom angle is 70◦. The initial length
for the cylinder is 2 m, and the cylinder lining and cylinder rod is elongated to 1.2
m. In addition, the mass at the end of the boom is increased to 600 kg.

After defining the initial state the boom is put into a free fall. The flow rate out
of chamber A is computed using the modified orifice model, see [4, 19], and the
pressure outside the cylinder chamber is 1 bar. For the B chamber, t the pressure
is set to zero whenever the pressures fall below 0 bars. The free fall lasts for 0.5 s.
Then, all flow rates are stopped in and out of both cylinder chambers and scrutinize
the sudden stop. The truss-element cylinder and the bending flexible cylinder are
compared through the boom stresses, the displacements at point B, and the mass
point.

6.3.1 System Responses with minuscule: Without Friction

The mass and point B displacements are shown in Fig. 10. In the initial state at time
t = 0 s, both the mass displacement and the point B displacement are higher with
the bending flexible cylinder. This is due to the increased flexibility of this cylinder
formulation, which was also noted in the previous example.

The displacements for point B and the mass are similar in both the cylinder
formulationswhen theboom is in free fall, but the differences start to becomeapparent
when the flow rates in and out of the cylinder are set to zero. Then, it is observed
that with the bending flexible cylinder, point B deflects more in a vertical direction.
The truss-element cylinder only transmits energy to the pressurized fluid, since only
the fluid is considered incompressible and only axial effects are included in this
element. The bending flexible cylinder element, however, is allowed to bend, thus
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Fig. 10 Vertical displacements of point B and the mass when the sudden stop occurs. The boom is
in free fall for 0.5 s and after that all flow rates are set to zero

Fig. 11 Boom stresses at
point B when sudden stop is
observed with the truss
element cylinder and
bending flexible cylinder
without friction
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allowing point B to travel more vertically than it does in the truss-element cylinder.
This bending effect is clearly visible when t = 0.95 s.

It can be seen from Fig. 10b that the vertical displacement of the mass point is
also higher when the simulation is carried out using the bending flexible cylinder,
for the same reasons. The bending flexibility allows the mass to slow down over a
longer distance, and this should also have an effect on the boom stresses.

The bending stresses of the top edge of point B for both cylinders are shown in
Fig. 11. The stresses in the initial state are almost identical, although they are slightly
higher with the bending flexible cylinder, due to its increased flexibility (Fig. 13).

During the free fall, both cylinder models showed similar stresses at point B,
although the stress oscillated slightly more with the bending flexible model. As far
as stress is concerned, the responses were almost identical until 0.85 s had elapsed,
after which the bending flexible cylinder results in lower boom stresses. As already
mentioned, pointB is allowed to translate in amore vertical directionwith the bending
flexible cylinder. This gives the boommore room in which to stop, which is reflected
in the reduction in the boom stresses.

The maximum cylinder chamber pressures for the two cylinders are given as 520
bars for the truss-element cylinder and 500 bars for the bending flexible cylinder.
Because the cylinder bends, instead of the piston merely sliding within the lining,
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Fig. 12 Element numbering of the bending flexible hydraulic cylinder. The slides are positioned
such that they appear during the highest stresses
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Fig. 13 Stresses of the beam elements along the hydraulic cylinder. Here L denotes elements of
the lining and R elements of the rod according to Fig. 12. Stresses are maximum tensile stresses

the pressures are reduced. The A chamber pressures follow the curve given for the
stresses in Fig. 11.

Figure12 shows the element numbering and Fig. 13 the results of all the elements
along the cylinder lining and the rod. From this figure it can be seen that the bending
flexible cylinder has stresses all along the cylinder, with the maximum stress occur-
ring at the cylinder rod. The bending of the cylinder element can be clearly seen at
t = 0.8 s, where there is a sudden increase in the stresses. This is exactly at the point
where it can be seen a drop in the boom stresses in Fig. 11. The highest stresses occur
in the first two elements of the cylinder rod, and as they happen to be the slide-spring
element and the following element, this implies that they experience bending. After
the first stress peak, however, lower stresses along the beams can be noticed of the
cylinder element because the boom stresses also start to oscillate.

6.4 System Responses with Friction

In the previous section the sudden stop of a boomwithout friction is analyzed. In this
section friction is included in the simulations. The friction parameters are as given
in Table2 therefore the Stribeck effect is not included in this simulation.

When the friction force is included, it can be assumed that the boom stresses
will be lower during the stop since the friction force lowers the acceleration of
the mass during a free fall. Studying Fig. 14 shows the displacements at point B
for both cylinder models separately, both with and without friction. With friction
included, the initial state displacement is lower for both cylinder models, as was
also seen in the previous examples. Notice also that the velocity of point B is indeed
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Fig. 14 Point B displacements: a for the truss-element cylinder (TC) and b for the bending flexible
cylinder (BF) with (xxF) and without friction
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Fig. 15 Displacements of the mass with and without friction: a for the TC cylinder and b for the
BF cylinder

lower in the frictional analysis for both cylinder models, since the gap between the
curves representing the frictionless and frictional analysis increases as the simulation
progresses.

When the cylinder orifices are closed, and the boom comes to a sudden stop after
t = 0.5 s, similar results as with the frictionless cylinder are obtained. However, the
displacements are now reduced since the friction force reduces the velocity of the
mass, and thus the kinetic energy of the whole system. The bending flexible cylinder
also bends, thus allowing point B to travel a greater distance than it did with the TC
model. In Fig. 15, the mass displacement, shows a similar response.

Since smaller displacements for both point B and the mass are obtained, it may
be assumed that also find lower boom stresses due to the reduced kinetic energy will
be obtained. The boom stresses are given for both cylinder formulations, with and
without friction in Fig. 16, and these confirm the assumption about reduced boom
stresses. Although the reduction is 4% for the truss element cylinder and 3.3% for
the bending flexible cylinder model, the boom stress responses are similar for both
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Fig. 16 Boom bending stresses at the top edge of point B with the two cylinder formulations with
and without friction

Fig. 17 Stresses of the
beam elements along the
hydraulic cylinder. Here L
denotes elements of the
lining and R elements of the
rod according to Fig. 12
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the truss-element cylinder and the bending flexible cylinder, both with and without
friction.

As with the previous example, the cylinder stresses are shown in Fig. 17. The
lower kinetic energy is reflected in the stresses along the cylinder element, where
there is a reduction of 23% in the highest stress value. Nevertheless, the element with
highest stress is the same. The chamber pressures in the frictional setting read 500
bars for the truss-element cylinder and 490 bars for the bending flexible cylinder.

7 Concluding Remarks

The literature does not cover the modeling of hydraulic cylinders for multibody
simulations extensively. In this chapter, the two hydraulic cylinder models developed
in [19] are presented. The elements are derived to be compatible with finite elements,
and the initial state can be computed using the Newton scheme since the cylinder
variables are embedded in the mechanical variables. On the other hand, the cylinder
models to be used in dynamic simulations introduce new variables.
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When the hydraulic cylinder is modeled using either the TC or BF models, the
hydraulic cylinder model works as an interface between the hydraulic control system
and the mechanical system. Therefore, the input for the mechanical system from the
state of the hydraulic control system can be obtained.

So far any conclusive remarks about a suitable time integration scheme from this
study cannot be made. The coupled system is stiff and highly dissipative, which
is why an efficient time integration scheme is required for the time-stepping. The
concept of multi-rate integration could prove to be a good approach.

The bending flexible cylinder model could be improved by using a mixed formu-
lation approach to also account for the pressure forces on the cylinder lining. In this
study, these forces are neglected completely. The pressure inside the cylinder cham-
ber tends to swell the cylinder thus increasing the lining stresses, but it also affects
the friction by reducing the pre-stressing of the seals. Accounting for the clearance
is also a factor to be included when computing a reliable critical load for buckling.
In particular, these factors should be included when cylinders are being designed.

This study shows that by modeling the hydraulic cylinder with a specialized
element can have an impact on the system response. The proposed cylinder elements
proposed here work within the framework of finite elements, and the results are very
promising.
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