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Abstract. Monte-Carlo Tree Search (MCTS) is the state of the art
algorithm for General Game Playing (GGP). We propose to learn a play-
out policy online so as to improve MCTS for GGP. We test the result-
ing algorithm named Playout Policy Adaptation (PPA) on Atarigo,
Breakthrough, Misere Breakthrough, Domineering, Misere
Dominee-ring, Go, Knightthrough, Misere Knightthrough,
Nogo and Misere Nogo. For most of these games, PPA is better than
UCT with a uniform random playout policy, with the notable exceptions
of Go and Nogo.

1 Introduction

Monte-Carlo Tree Search (MCTS) has been successfully applied to many games
and problems [2]. The most popular MCTS algorithm is Upper Confidence
bounds for Trees (UCT) [17]. MCTS is particularly successful in the game of
Go [7]. It is also the state of the art in Hex [15] and General Game Playing
(GGP) [10,20]. GGP can be traced back to the seminal work of Jacques Pitrat
[21]. Since 2005 an annual GGP competition is organized by Stanford at AAAI
[14]. Since 2007 all the winners of the competition use MCTS.

Offline learning of playout policies has given good results in Go [8,16] and
Hex [15], learning fixed pattern weights so as to bias the playouts.

The RAVE algorithm [13] performs online learning of moves values in order to
bias the choice of moves in the UCT tree. RAVE has been very successful in Go
and Hex. A development of RAVE is to use the RAVE values to choose moves
in the playouts using Pool RAVE [23]. Pool RAVE improves slightly on random
playouts in Havannah and reaches 62.7 % against random playouts in Go.

Move-Average Sampling Technique (MAST) is a technique used in the GGP
program Cadia Player so as to bias the playouts with statistics on moves
[10,11]. It consists of choosing a move in the playout proportionally to the expo-
nential of its mean. MAST keeps the average result of each action over all sim-
ulations. Moves found to be good on average, independent of a game state, will
get higher values. In the playout step, the action selections are biased towards
selecting such moves. This is done using the Gibbs (or Boltzmann) distribution.
Playout Policy Adaptation (PPA) also uses Gibbs sampling. However, the evalu-
ation of an action for PPA is not its mean over all simulations such as in MAST.
Instead the value of an action is learned comparing it to the other available
actions for the states where it has been played.
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Later improvements of Cadia Player are N-Grams and the last good reply
policy [27]. They have been applied to GGP so as to improve playouts by learn-
ing move sequences. A recent development in GGP is to have multiple playout
strategies and to choose the one which is the most adapted to the problem at
hand [26].

A related domain is the learning of playout policies in single-player prob-
lems. Nested Monte-Carlo Search (NMCS) [3] is an algorithm that works well
for puzzles. It biases its playouts using lower level playouts. At level zero NMCS
adopts a uniform random playout policy. Online learning of playout strategies
combined with NMCS has given good results on optimization problems [22].
Online learning of a playout policy in the context of nested searches has been
further developed for puzzles and optimization with Nested Rollout Policy Adap-
tation (NRPA) [24]. NRPA has found new world records in Morpion Solitaire
and crosswords puzzles. The principle is to adapt the playout policy so as to
learn the best sequence of moves found so far at each level. PPA is inspired by
NRPA since it learns a playout policy in a related fashion and adopts a similar
playout policy. However, PPA is different from NRPA in multiple ways. NRPA
is not suited for two-player games since it memorizes the best playout and learns
all the moves of the best playout. The best playout is ill-defined for two-player
games since the result of a playout is either won or lost. Moreover a playout
which is good for one player is bad for the other player so learning all the moves
of a playout does not make much sense. To overcome these difficulties PPA does
not memorize a best playout and does not use nested levels of search. Instead of
learning the best playout it learns the moves of every playout but only for the
winner of the playout.

NMCS has been previously successfully adapted to two-player games in a
recent work [5]. PPA is a follow-up to this paper since it is the adaptation of
NRPA to two-player games.

In the context of GGP we look for general enhancements of UCT that work
for many games without game-specific tweakings. This is the case for PPA. In
our experiments we use the exact same algorithm for all the games. It is usually
more difficult to find a general enhancement than a game specific one. PPA is
an online learning algorithm, it starts from scratch for every position and learns
a position specific playout policy each time.

We now give the outline of the paper. The next section details the PPA
algorithm and particularly the playout strategy and the adaptation of the policy.
The third section gives experimental results for various games, various board
sizes and various numbers of playouts. The last section concludes.

2 Online Policy Learning

PPA is UCT with an adaptive playout policy. It means that it develops a tree
exactly as UCT does. The difference with UCT is that in the playouts PPA has
a weight for each possible move and chooses randomly between possible moves
proportionally to the exponential of the weight.
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In the beginning PPA starts with a uniform playout policy. All the weights
are set to zero. Then, after each playout, it adapts the policy of the winner of
the playout. The principle is the same as the adaptation of NRPA except that
it only adapts the policy of the winner of the playout with the moves of the
winner.

The PPA-playout algorithm is given in Algorithm 1. It takes as parameters
the board, the next player, and the playout policy. The playout policy is an
array of real numbers that contains a number for each possible move. The only
difference with a random playout is that it uses the policy to choose a move.
Each move is associated to the exponential of its policy number and the move
to play is chosen with a probability proportional to this value.

The PPA-adaptation algorithm is given in Algorithm 2. It is related to the
adaptation algorithm of NRPA. The main difference is that it is adapted to
games and only learns the moves of the winner of the playout. It does not use
a best sequence to learn as in NRPA but learns a different playout every time.
It takes as parameter the winner of the playout, the board as it was before the
playout, the player to move on this board, the playout to learn and the current
playout policy. It is parameterized by α which is the number to add to the
weight of the move in the policy. The adapt algorithm plays the playout again
and for each move of the winner it biases the policy towards playing this move.
It increases the weight of the move and decreases the weight of the other possible
moves on the current board.

The PPA algorithm is given in Algorithm 3. It starts with initializing the
policy to a uniform policy containing only zeros for every move. Then it runs
UCT for the given number of playouts. UCT uses the PPA-playout algorithm
for its playouts. They are biased with the policy. The result of a call to the UCT
function is one descent of the tree plus one PPA playout that gives the winner
of this single playout. The playout and its winner are then used to adapt the
policy using the PPA-adapt function. When all playouts have been played the
PPA function returns the move that has the most playouts at the root as in
usual UCT.

The UCT algorithm called by the PPA algorithm is given in Algorithm 4.

3 Experimental Results

We played PPA against UCT with random playouts. Both algorithms use the
same number of playouts. The UCT constant is set to 0.4 for both algorithms
as is usual in GGP. α is set to 1.0 for PPA. For each game we test two board
sizes: 5 × 5 and 8 × 8, and two numbers of playouts: 1,000 and 10,000.

The games we have experimented with are:

– Atarigo: the rules are the same as for Go except that the first player to
capture a string has won. Atarigo has been solved up to size 6 × 6 [1].

– Breakthrough: The game starts with two rows of pawns on each side of the
board. Pawns can capture diagonally and go forward either vertically or diag-
onally. The first player to reach the opposite row has won. Breakthrough



Playout Policy Adaptation for Games 23

Algorithm 1. The PPA-playout algorithm
playout (board, player, policy)
while true do

if board is terminal then
return winner (board)

end if
z ← 0.0
for m in possible moves on board do

z ← z + exp (policy [m])
end for
choose a move for player with probability proportional to exp(policy[move])

z

play (board, move)
player ← opponent (player)

end while

Algorithm 2. The PPA-adaptation algorithm
adapt (winner, board, player, playout, policy)
polp ← policy
for move in playout do

if winner = player then
polp [move] ← polp [move] + α
z ← 0.0
for m in possible moves on board do

z ← z + exp (policy [m])
end for
for m in possible moves on board do

polp [m] ← polp [m] - α ∗ exp(policy[m])
z

end for
end if
play (board, move)
player ← opponent (player)

end for
policy ← polp

Algorithm 3. The PPA algorithm
PPA (board, player)
for i in 0, maximum index of a move do

policy[i] ← 0.0
end for
for i in 0, number of playouts do

b ← board
winner ← UCT (b, player, policy)
b1 ← board
adapt (winner, b1, player, b.playout, policy)

end for
return the move with the most playouts
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Algorithm 4. The UCT algorithm
UCT (board, player, policy)
moves ← possible moves on board
if board is terminal then

return winner (board)
end if
t ← entry of board in the transposition table
if t exists then

bestV alue ← −∞
for m in moves do

t ← t.totalP layouts
w ← t.wins[m]
p ← t.playouts[m]

value ← w
p

+ c ×
√

log(t)
p

if value > bestV alue then
bestV alue ← value
bestMove ← m

end if
end for
play (board, bestMove)
player ← opponent (player)
res ← UCT (board, player, policy)
update t with res

else
t ← new entry of board in the transposition table
res ← playout (board, player, policy)
update t with res

end if
return res

has been solved up to size 6 × 5 using Job Level Proof Number Search [25].
The best program for Breakthrough 8 × 8 uses MCTS combined with an
evaluation function after a short playout [19].

– Misere Breakthrough: The rules are the same as for Breakthrough
except that the first player to reach the opposite row has lost.

– Domineering: The game starts with an empty board. One player places
dominoes vertically on the board and the other player places dominoes hori-
zontally. The first player that cannot play has lost. Domineering was invented
by Göran Andersson [12]. Jos Uiterwijk recently proposed a knowledge based
method that can solve large rectangular boards without any search [28].

– Misere Domineering: The rules are the same as for Domineering except
that the first player that cannot play has won.

– Go: The game starts with an empty grid. Players alternatively place black and
white stones on the intersections. A completely surrounded string of stones
is removed from the board. The score of a player at the end of a game with
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Table 1. Win rate against UCT with the same number of playouts as PPA for various
games of various board sizes using either 1,000 or 10,000 playouts per move.

Size Playouts

1,000 10,000

Atarigo 5 × 5 81.2 90.6

Atarigo 8 × 8 72.2 94.4

Breakthrough 5 × 5 60.0 56.2

Breakthrough 8 × 8 55.2 54.4

Misere Breakthrough 5 × 5 95.0 99.6

Misere Breakthrough 8 × 8 99.2 97.8

Domineering 5 × 5 62.6 50.0

Domineering 8 × 8 48.4 58.0

Misere Domineering 5 × 5 63.4 62.2

Misere Domineering 8 × 8 76.4 83.4

Go 5 × 5 21.2 23.6

Go 8 × 8 23.0 1.2

Knightthrough 5 × 5 42.4 30.2

Knightthrough 8 × 8 64.2 64.6

Misere Knightthrough 5 × 5 95.8 99.8

Misere Knightthrough 8 × 8 99.8 100.0

Nogo 5 × 5 61.8 71.0

Nogo 8 × 8 64.8 46.4

Misere Nogo 5 × 5 66.4 67.8

Misere Nogo 8 × 8 80.6 89.4

chinese rules is the number of her1 stones on the board plus the number of
her eyes. The player with the greatest score has won. We use a komi of 7.5
for white. Go was the first tremendously successful application of MCTS to
games [7–9,18]. All the best current Go programs use MCTS.

– Knightthrough: The rules are similar to Breakthrough except that the
pawns are replaced by knights that can only go forward.

– Misere Knightthrough: The rules are the same as for Knightthrough
except that the first player to reach the opposite row has lost.

– Nogo: The rules are the same as Go except that it is forbidden to capture
and to commit suicide. The first player that cannot move has lost. There exist
computer Nogo competitions and the best players use MCTS [4,6,9].

– Misere Nogo: The rules are the same as for Nogo except that first player
that cannot move has won.

1 For brevity, we use ‘he’ and ‘his’, whenever ‘he or she’ and ‘his or her’ are meant.
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We do not give results for single-player games since PPA is tailored to multi-
player games. Also we do not compare with NMCS and NRPA since these algo-
rithms are tailored to single-player games and perform poorly when applied
directly to two-player games. We give results of 1,000 and 10,000 playouts per
move.

Results are given in Table 1. Each result is the outcome of a 500 games match,
250 playing first and 250 playing second.

PPA has worse results than UCT in three games: Go, Knightthrough 5×5
and Nogo 8×8. For the other 17 games it improves over UCT. It is particularly
good at misere games, a possible explanation is that it learns to avoid losing
moves in the playouts and that it may be important for misere games that are
waiting games.

We observe that PPA scales well in Atarigo, Misere Breakthrough,
Misere Domineering, Knightthrough, Misere Knightthrough and
Misere Nogo: it is equally good or even better when the size of the board
or the number of playouts is increased. On the contrary it does not scale for Go
and Nogo.

A possible explanation of the bad behaviour in Go could be that moves in
Go can be either good or bad depending on the context and that learning an
overall evaluation of a move can be misleading.

In the context of GGP, the time used by GGP programs is dominated by
the generation of the possible moves and by the calculation of the next state. So
biasing the playout policy is relatively unexpensive compared to the time used
for the interpretation of the rules of the game.

4 Conclusion

In the context of GGP we presented PPA, an algorithm that learns a playout
policy online. It was tested on ten different games for increasing board sizes and
increasing numbers of playouts. On many games it scales well with board size and
number of playouts and it is better than UCT for 33 out of the 40 experiments
we performed. It is particularly good at misere games, scoring as high as 100 %
against UCT at Misere Knightthrough 8 × 8 with 10,000 playouts.

PPA is tightly connected to the NRPA algorithm for single-player games. The
main differences with NRPA are that it does not use nested levels nor a best
sequence to learn. Instead it learns the moves of each playout for the winner of
the playout.

Future work include combining PPA with the numerous enhancements of
UCT. Some of them may be redundant but others will probably be cumulative.
For example combining PPA with RAVE could yield substantial benefits in some
games.

A second line of research is understanding why PPA is good at many games
and bad at other games such as Go. It would be interesting being able to tell
the features of a game that make PPA useful.
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