
Aske Plaat · Jaap van den Herik
Walter Kosters (Eds.)

 123

LN
CS

 9
52

5

14th International Conference, ACG 2015
Leiden, The Netherlands, July 1–3, 2015
Revised Selected Papers

Advances in
Computer Games

Lecture Notes in Computer Science 9525

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Aske Plaat • Jaap van den Herik
Walter Kosters (Eds.)

Advances in
Computer Games
14th International Conference, ACG 2015
Leiden, The Netherlands, July 1–3, 2015
Revised Selected Papers

123

Editors
Aske Plaat
Leiden University
Leiden, Zuid-Holland
The Netherlands

Jaap van den Herik
Leiden University
Leiden, Zuid-Holland
The Netherlands

Walter Kosters
Leiden University
Leiden, Zuid-Holland
The Netherlands

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-27991-6 ISBN 978-3-319-27992-3 (eBook)
DOI 10.1007/978-3-319-27992-3

Library of Congress Control Number: 2015958336

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by SpringerNature
The registered company is Springer International Publishing AG Switzerland

Preface

This book contains the papers of the 14th Advances in Computer Games Conference
(ACG 2015) held in Leiden, The Netherlands. The conference took place during July
1–3, 2015, in conjunction with the 18th Computer Olympiad and the 21st World
Computer-Chess Championship.

The Advances in Computer Games conference series is a major international forum
for researchers and developers interested in all aspects of artificial intelligence and
computer game playing. As with many of the recent conferences, this conference saw a
large number of papers with progress in Monte Carlo tree search. However, the Leiden
conference also showed diversity in the topics of papers, e.g., by including papers on
thorough investigations on search, theory, complexity, games (performance and pre-
filing), and machine learning. Earlier conferences took place in London (1975),
Edinburgh (1978), London (1981, 1984), Noordwijkerhout (1987), London (1990),
Maastricht (1993, 1996), Paderborn (1999), Graz (2003), Taipei (2005), Pamplona
(2009), and Tilburg (2011).

The Program Committee (PC) was pleased to see that so much progress was made in
new games and that new techniques were added to the recorded achievements. In this
conference, 36 authors submitted a paper. Each paper was sent to at least three
reviewers. If conflicting views on a paper were reported, the reviewers themselves
arrived at a final decision. With the help of external reviewers (see after the preface),
the PC accepted 22 papers for presentation at the conference and publication in these
proceedings. As usual we informed the authors that they submitted their contribution to
a post-conference editing process. The two-step process is meant (a) to give authors the
opportunity to include the results of the fruitful discussion after the lecture in their
paper, and (b) to maintain the high-quality threshold of the ACG series. The authors
enjoyed this procedure.

The aforementioned set of 22 papers covers a wide range of computer games and
many different research topics. We grouped the topics into the following five classes
according to the order of publication: Monte Carlo tree search (MCTS) and its
enhancements (six papers), theoretical aspects and complexity (five papers), analysis of
game characteristics (five papers), search algorithms (three papers), and machine
learning (three papers).

We hope that the readers will enjoy the research efforts presented by the authors.
Here, we reproduce brief characterizations of the 22 contributions largely relying on the
text as submitted by the authors. The idea is to show a connection between the con-
tributions and insights into the research progress.

Monte Carlo Tree Search

The authors of the first publication “Adaptive Playouts in Monte Carlo Tree Search
with Policy Gradient Reinforcement Learning” received the ACG 2015 Best Paper
Award. The paper is written by Tobias Graf and Marco Platzner. As the title suggests,
the paper introduces an improvement in the playout phase of MCTS. If the playout
policy evaluates a position wrongly then cases may occur where the tree search faces
severe difficulties to find the correct move; a large search space may be entered
unintentionally. The paper explores adaptive playout policies. The intention is to
improve the playout policy during the tree search. With the help of policy-gradient
reinforcement learning techniques the program optimizes the playout policy to arrive at
better evaluations. The authors provide tests for computer Go and show an increase in
playing strength of more than 100 ELO points.

“Early Playout Termination in MCTS,” authored by Richard Lorentz, also deals with
the playout phase of MCTS. Nowadays minimax-based and MCTS-based searches are
seen as competitive and incompatible approaches. For example, it is generally agreed
that chess and checkers require a minimax approach while Go and Havannah are better
off by MCTS. However, a hybrid technique is also possible. It works by stopping the
random MCTS playouts early and using an evaluation function to determine the winner
of the playout. This algorithm is called MCTS-EPT (MCTS with early playout ter-
mination), and is studied in this paper by using MCTS-EPT programs written for
Amazons, Havannah, and Breakthrough.

“Playout Policy Adaptation for Games,” a contribution by Tristan Cazenave, is the
third paper on playouts in MCTS. For general game playing, MCTS is the algorithm of
choice. The paper proposes to learn a playout policy online in order to improve MCTS
for general game playing. The resulting algorithm is named Playout Policy Adaptation,
and was tested on Atarigo, Breakthrough, Misere Breakthrough, Domineering, Misere
Domineering, Go, Knightthrough, Misere Knightthrough, Nogo, and Misere Nogo. For
most of these games, Playout Policy Adaptation is better than UCT for MCTS with a
uniform random playout policy, with the notable exceptions of Go and Nogo.

“Strength Improvement and Analysis for an MCTS-Based Chinese Dark Chess
Program” is authored by Chu-Hsuan Hsueh, I-Chen Wu, Wen-Jie Tseng, Shi-Jim Yen,
and Jr-Chang Chen. The paper describes MCTS and its application in the game of
Chinese Dark Chess (CDC), with emphasis on playouts. The authors study how to
improve and analyze the playing strength of an MCTS-based CDC program, named
DARKKNIGHT, which won the CDC tournament in the 17th Computer Olympiad. They
incorporated three recent techniques, early playout terminations, implicit minimax
backups, and quality-based rewards. For early playout terminations, playouts end when
reaching states with likely outcomes. Implicit minimax backups use heuristic evalua-
tions to help guide selections of MCTS. Quality-based rewards adjust rewards based on
online collected information. Experiments show that the win rates against the original
DARKKNIGHT are 60 %, 70 %, and 59 %, respectively, when incorporating the three
techniques. By incorporating all three together, the authors obtain a win rate of 77 %.

VI Preface

“LinUCB Applied to Monte Carlo Tree Search” is written by Yusaku Mandai and
Tomoyuki Kaneko. This paper deals with the selection function of MCTS; as is well
known, UCT is a standard selection method for MCTS algorithms. The study proposes
a family of LinUCT algorithms (linear UCT algorithm) that incorporate LinUCB into
MCTS algorithms. LinUCB is a recently developed method. It generalizes past epi-
sodes by ridge regression with feature vectors and rewards. LinUCB outperforms
UCB1 in contextual multi-armed bandit problems. The authors introduce a straight-
forward application of LinUCB, called LinUCTPLAIN . They show that it does not work
well owing to the minimax structure of game trees. Subsequently, they present
LinUCTRAVE and LinUCTFP by further incorporating two existing techniques, rapid
action value estimation (RAVE) and feature propagation (FP). Experiments were
conducted by a synthetic model. The experimental results indicate that LinUCTRAVE,
LinUCTFP, and their combination LinUCTRAVE�FP all outperform UCT, especially
when the branching factor is relatively large.

“Adapting Improved Upper Confidence Bounds for Monte-Carlo Tree Search” is
authored by Yun-Ching Liu and Yoshimasa Tsuruoka. The paper asserts that the UCT
algorithm, which is based on the UCB algorithm, is currently the most widely used
variant of MCTS. Recently, a number of investigations into applying other bandit
algorithms to MCTS have produced interesting results. In their paper, the authors
investigate the possibility of combining the improved UCB algorithm, proposed by
Auer et al., with MCTS. The paper describes the Mi-UCT algorithm, which applies the
modified UCB algorithm to trees. The performance of Mi-UCT is demonstrated on the
games of 9� 9 Go and 9� 9 NoGo. It was shown to outperform the plain UCT
algorithm when only a small number of playouts are given, while performing roughly
on the same level when more playouts are available.

Theory and Complexity

“On Some Random Walk Games with Diffusion Control” is written by Ingo Althöfer,
Matthias Beckmann, and Friedrich Salzer. This paper is not directly about MCTS, but
contains a theoretical study of an element related to MCTS: the effect of random
movements. The paper remarks that random walks with discrete time steps and discrete
state spaces have widely been studied for several decades. The authors investigate such
walks as games with “diffusion control”: a player (controller) with certain intentions
influences the random movements of a particle. In their models the controller decides
only about the step size for a single particle. It turns out that this small amount of
control is sufficient to cause the particle to stay in “premium regions” of the state space
with surprisingly high probabilities.

“On Some Evacuation Games with Random Walks” is a contribution by Matthias
Beckmann. The paper contains a theoretical study of a game with randomness. A single
player game is considered; a particle on a board has to be steered toward evacuation
cells. The actor has no direct control over this particle but may indirectly influence the
movement of the particle by blockades. Optimal blocking strategies and the recurrence

Preface VII

property are examined experimentally. It is concluded that the random walk of the
game is recurrent. Furthermore, the author describes the average time in which an
evacuation cell is reached.

“Go Complexities” is authored by Abdallah Saffidine, Olivier Teytaud, and Shi-Jim
Yen. The paper presents a theoretical study about the complexity of Go. The game of
Go is often said to be EXPTIME-complete. This result refers to classic Go under
Japanese rules, but many variants of the problem exist and affect the complexity. The
authors survey what is known about the computational complexity of Go and highlight
challenging open problems. They also propose new results. In particular, the authors
show that Atari-Go is PSPACE-complete and that hardness results for classic Go carry
over to their partially observable variant.

“Crystallization of Domineering Snowflakes” is written by Jos W.H.M. Uiterwijk.
The paper contains a theoretical analysis of the game of Domineering. The author
presents a combinatorial game-theoretic analysis of special Domineering positions. He
investigates complex positions that are aggregates of simpler components and linked
via bridging squares. Two theorems are introduced. They state that an aggregate of two
components has as its game-theoretic value the sum of the values of the components.
These theorems are then extended to deal with the case of multiple-connected networks
of components. As an application, an interesting Domineering position is introduced,
consisting of a �2 subgame (star-two subgame) with four � components attached: the
so-called Snowflake position. The author then shows how from this Snowflake, larger
chains of Snowflakes can be built with known values, including flat networks of
Snowflakes (a kind of crystallization).

“First Player’s Cannot-Lose Strategies for Cylinder-Infinite-Connect-Four with
Widths 2 and 6” is a contribution by Yoshiaki Yamaguchi and Todd Neller. The paper
introduces a theoretical result on a variant of Connect-Four. Cylinder-Infinite-
Connect-Four is Connect-Four played on a cylindrical square grid board with infinite
row height and columns that cycle about its width. In previous work by the same
authors, the first player’s cannot-lose strategies were discovered for all widths except 2
and 6, and the second player’s cannot-lose strategies have been discovered for all
widths except 6 and 11. In this paper, the authors show the first player’s cannot-lose
strategies for widths 2 and 6.

Analysis of Game Characteristics

“Development of a Program for Playing Progressive Chess” is written by Vito Janko
and Matej Guid. They present the design of a computer program for playing Pro-
gressive Chess. In this game, rather than just making one move per turn, players play
progressively longer series of moves. The program follows the generally recommended
strategy for this game, which consists of three phases: (1) looking for possibilities to
checkmate the opponent, (2) playing generally good moves when no checkmate can be
found, and (3) preventing checkmates from the opponent. In their paper, the authors
focus on efficiently searching for checkmates, putting to test various heuristics for

VIII Preface

guiding the search. They also present the findings of self-play experiments between
different versions of the program.

“A Comparative Review of Skill Assessment: Performance, Prediction, and Profiling”
is a contribution by Guy Haworth, Tamal Biswas, and Ken Regan. The paper presents
results on the skill assessment of chess players. The authors argue that the assessment
of chess players is both an increasingly attractive opportunity and an unfortunate
necessity. Skill assessment is important for the chess community to limit potential
reputational damage by inhibiting cheating and unjustified accusations of cheating. The
paper argues that there has been a recent rise in both. A number of counter-intuitive
discoveries have been made by benchmarking the intrinsic merit of players’ moves.
The intrinsic merits call for further investigation. Is Capablanca actually, objectively
the most accurate world champion? Has ELO-rating inflation not taken place? Stim-
ulated by FIDE/ACP, the authors revisit the fundamentals of the subject. They aim at a
framework suitable for improved standards of computational experiments and more
precise results. The research is exemplary for other games and domains. They look at
chess as a demonstrator of good practice, including (1) the rating of professionals who
make high-value decisions under pressure, (2) personnel evaluation by multichoice
assessment, and (3) the organization of crowd-sourcing in citizen science projects. The
“3P” themes of performance, prediction, and profiling pervade all these domains.

“Boundary Matching for Interactive Sprouts” is written by Cameron Browne. The
paper introduces results for the game of Sprouts. The author states that the simplicity
of the pen-and-paper game Sprouts hides a surprising combinatorial complexity. He
then describes an optimization called boundary matching that accommodates this
complexity. It allows move generation for Sprouts games of arbitrary size at interactive
speeds. The representation of Sprouts positions plays an important role. “Draws,
Zugzwangs, and PSPACE-Completeness in the Slither Connection Game” is written by
Édouard Bonnet, Florian Jamain, and Abdallah Saffidine. The paper deals with a
connection game: Slither. Two features set Slither apart from other connection games:
(1) previously played stones can be displaced and (2) some stone configurations are
forbidden. The standard goal is still connecting opposite edges of a board. The authors
show that the interplay of the peculiar mechanics results in a game with a few prop-
erties unexpected among connection games; for instance, the existence of mutual
Zugzwangs. The authors establish that (1) there are positions where one player has no
legal move, and (2) there is no position where both players lack a legal move. The latter
implies that the game cannot end in a draw. From the viewpoint of computational
complexity, it is shown that the game is PSPACE-complete. The displacement rule can
indeed be tamed so as to simulate a Hex game on a Slither board.

“Constructing Pin Endgame Databases for the Backgammon Variant Plakoto” is
authored by Nikolaos Papahristou and Ioannis Refanidis. The paper deals with the
game of Plakoto, a variant of backgammon that is popular in Greece. It describes the
ongoing project PALAMEDES, which builds expert bots that can play backgammon
variants. So far, the position evaluation relied only on self-trained neural networks. The
authors report their first attempt to augment PALAMEDES with databases for certain
endgame positions for the backgammon variant Plakoto. They mention five databases

Preface IX

containing 12,480,720 records in total that can calculate accurately the best move for
roughly 3:4 � 1015 positions.

Search Algorithms

“Reducing the Seesaw Effect with Deep Proof-Number Search” is a contribution by
Taichi Ishitobi, Aske Plaat, Hiroyuki Iida, and Jaap van den Herik. The paper studies
the search algorithm Proof-Number (PN) search. In the paper, DeepPN is introduced.
DeepPN is a modified version of PN search, providing a procedure to handle the
seesaw effect. DeepPN employs two values associated with each node: the usual proof
number and a deep value. The deep value of a node is defined as the depth to which
each child node has been searched. By mixing the proof numbers and the deep value,
DeepPN works with two characteristics: the best-first manner of search (equal to the
original PN search) and the depth-first manner. By adjusting a parameter (called R in
this paper) one can choose between best-first or depth-first behavior. In their experi-
ments, the authors try to find a balance between both manners of searching. As it turns
out, best results are obtained at an R value in between the two extremes of best-first
search (original PN search) and depth-first search.

“Feature Strength and Parallelization of Sibling Conspiracy Number Search” is written
by Jakub Pawlewicz and Ryan Hayward. The paper studies a variant of Conspiracy
Number Search, a predecessors of Proof-Number search, with different goals. Recently
the authors introduced Sibling Conspiracy Number Search (SCNS). This algorithm is
not based on evaluation of the leaf nodes of the search tree but, it handles for each
node, the relative evaluation scores of all children of that node. The authors imple-
mented an SCNS Hex bot. It showed the strength of SCNS features: most critical is the
initialization of the leaves via a multi-step process. The authors also investigated a
simple parallel version of SCNS: it scales well for two threads but was less efficient for
four or eight threads.

“Parameter-Free Tree Style Pipeline in Asynchronous Parallel Game-Tree Search”
is authored by Shu Yokoyama, Tomoyuki Kaneko, and Tetsuro Tanaka. This paper
describes results in parameter-free parallel search algorithms. The paper states that
asynchronous parallel game-tree search methods are effective in improving playing
strength by using many computers connected through relatively slow networks. In
game-position parallelization, a master program manages the game tree and distributes
positions in the tree to workers. Then, each worker asynchronously searches for the
best move and evaluation in the assigned position. The authors present a new method
for constructing an appropriate master tree that provides more important moves with
more workers on their subtrees to improve playing strength. Their contribution goes
along with two advantages: (1) it is parameter free in that users do not need to tune
parameters through trial and error, and (2) the efficiency is suitable even for short-time
matches, such as one second per move. The method was implemented in a top-level
chess program (STOCKFISH). Playing strength was evaluated through self-plays. The
results show that playing strength improves up to 60 workers.

X Preface

Machine Learning

“Transfer Learning by Inductive Logic Programming” is a contribution by Yuichiro
Sato, Hiroyuki Iida, and Jaap van den Herik. The paper studies Transfer Learning
between different types of games. In the paper, the authors propose a Transfer Learning
method by Inductive Logic Programming for games. The method generates general
knowledge from a game, and specifies the knowledge in the form of heuristic functions,
so that it is applicable in another game. This is the essence of Transfer Learning. The
authors illustrate the working of Transfer Learning by taking knowledge from
Tic-tac-toe and transferring it to Connect-Four and Connect-Five.

“Developing Computer Hex Using Global and Local Evaluation Based on Board
Network Characteristics” is written by Kei Takada, Masaya Honjo, Hiroyuki Iizuka
and Masahito Yamamoto. The paper describes a learning method for evaluation
functions. The authors remark that one of the main approaches to develop a computer
Hex program (in the early days) was to use an evaluation function of the electric circuit
model. However, such a function evaluates the board states from one perspective only.
Moreover this method has recently been defeated by MCTS approaches. In the paper,
the authors propose a novel evaluation function that uses network characteristics to
capture features of the board states from two perspectives. The proposed evaluation
function separately evaluates (1) the board network and (2) the shortest path network
using betweenness centrality. Then the results of these evaluations are combined.
Furthermore, the proposed method involves changing the ratio between global and
local evaluations through a Support Vector Machine (SVM). The new method yields an
improved strategy for Hex. The resultant program, called EZO, is tested against the
world-champion Hex program called MOHEX, and the results show that the method is
superior to the 2011 version of MOHEX on an 11� 11 board.

“Machine-Learning of Shape Names for the Game of Go” is authored by Kokolo Ikeda,
Takanari Shishido, and Simon Viennot. The paper discusses the learning of shape
names in Go. It starts stating that Computer Go programs with only a 4-stone handicap
have recently defeated professional humans. The authors argue that by this perfor-
mance the strength of Go programs is sufficiently close to that of humans, so that a new
target in artificial intelligence is at stake, namely, developing programs able to provide
commentary on Go games. A fundamental difficulty in achieving the new target is
learning the terminology of Go, which is often not well defined. An example is the
problem of naming shapes such as Atari, Attachment, or Hane. In their research, the
goal is to allow a program to label relevant moves with an associated shape name. The
authors use machine learning to deduce these names based on local patterns of stones.
First, strong amateur players recorded for each game move the associated shape name,
using a pre-selected list of 71 terms. Next, these records were used to train a supervised
machine learning algorithm. The result was a program able to output the shape name
from the local patterns of stones. Humans agree on a shape name with a performance
rate of about 82 %. The algorithm achieved a similar performance, picking the name
most preferred by humans with a rate of also about 82 %. The authors state that this is a

Preface XI

first step toward a program that is able to communicate with human players in a game
review or match.

This book would not have been produced without the help of many persons. In
particular, we would like to mention the authors and the reviewers for their
help. Moreover, the organizers of the three events in Leiden (see the beginning of this
preface) have contributed substantially by bringing the researchers together. Without
much emphasis, we recognize the work by the committees of the ACG 2015 as
essential for this publication. One exception is made for Joke Hellemons, who is
gratefully thanked for all services to our games community. Finally, the editors happily
recognize the generous sponsors AEGON, NWO, the Museum Boerhaave, SurfSARA,
the Municipality of Leiden, the Leiden Institute of Advanced Computer Science, the
Leiden Centre of Data Science, ICGA, and Digital Games Technology.

September 2015 Aske Plaat
Jaap van den Herik

Walter Kosters

XII Preface

Organization

Executive Committee

Editors

Aske Plaat
Jaap van den Herik
Walter Kosters

Program Co-chairs

Aske Plaat
Jaap van den Herik
Walter Kosters

Organizing Committee

Johanna Hellemons
Mirthe van Gaalen
Aske Plaat
Jaap van den Herik
Eefje Kruis Voorberge
Marloes van der Nat
Jan van Rijn
Jonathan Vis

List of Sponsors

AEGON
NWO (Netherlands Organization of Scientific Research)
Museum Boerhaave
SurfSARA
Leiden Institute of Advanced Computer Science
Leiden Centre of Data Science
Leiden Faculty of Science
ISSC
ICGA
Digital Games Technology
The Municipality of Leiden

Program Committee

Ingo Althöfer
Petr Baudis
Yngvi Björnsson
Bruno Bouzy
Ivan Bratko
Cameron Browne
Tristan Cazenave
Bo-Nian Chen
Jr-Chang Chen
Paolo Ciancarini
David Fotland
Johannes Fürnkranz
Michael Greenspan
Reijer Grimbergen
Matej Guid
Dap Hartmann
Tsuyoshi Hashimoto
Guy Haworth
Ryan Hayward

Jaap van den Herik
Hendrik Jan Hoogeboom
Shun-chin Hsu
Tsan-Sheng Hsu
Hiroyuki Iida
Tomoyuki Kaneko
Graham Kendall
Akihiro Kishimoto
Walter Kosters
Yoshiyuki Kotani
Richard Lorentz
Ulf Lorenz
John-Jules Meyer
Martin Müller
Todd Neller
Pim Nijssen
Jakub Pawlewicz
Aske Plaat
Christian Posthoff

Ben Ruijl
Alexander Sadikov
Jahn Saito
Maarten Schadd
Richard Segal
David Silver
Pieter Spronck
Nathan Sturtevant
Olivier Teytaud
Yoshimasa Tsuruoka
Jos Uiterwijk
Peter van Emde Boas
Jan van Zanten
Jonathan Vis
Mark Winands
Thomas Wolf
I-Chen Wu
Shi-Jim Yen

The Advances in Computer Chess/Games Books

The series of Advances in Computer Chess (ACC) Conferences started in 1975 as a
complement to the World Computer-Chess Championships, for the first time held in
Stockholm in 1974. In 1999, the title of the conference changed from ACC to ACG
(Advances in Computer Games). Since 1975, 14 ACC/ACG conferences have been
held. Below we list the conference places and dates together with the publication; the
Springer publication is supplied with an LNCS series number.

London, United Kingdom (1975, March)
Proceedings of the 1st Advances in Computer Chess Conference (ACC1)
Ed. M.R.B. Clarke
Edinburgh University Press, 118 pages.

Edinburgh, United Kingdom (1978, April)
Proceedings of the 2nd Advances in Computer Chess Conference (ACC2)
Ed. M.R.B. Clarke
Edinburgh University Press, 142 pages.

London, United Kingdom (1981, April)
Proceedings of the 3rd Advances in Computer Chess Conference (ACC3)
Ed. M.R.B. Clarke
Pergamon Press, Oxford, UK, 182 pages.

XIV Organization

London, United Kingdom (1984, April)
Proceedings of the 4th Advances in Computer Chess Conference (ACC4)
Ed. D.F. Beal
Pergamon Press, Oxford, UK, 197 pages.

Noordwijkerhout, The Netherlands (1987, April)
Proceedings of the 5th Advances in Computer Chess Conference (ACC5)
Ed. D.F. Beal
North Holland Publishing Comp., Amsterdam, The Netherlands, 321 pages.

London, United Kingdom (1990, August)
Proceedings of the 6th Advances in Computer Chess Conference (ACC6)
Ed. D.F. Beal
Ellis Horwood, London, UK, 191 pages.

Maastricht, The Netherlands (1993, July)
Proceedings of the 7th Advances in Computer Chess Conference (ACC7)
Eds. H.J. van den Herik, I.S. Herschberg, and J.W.H.M. Uiterwijk
Drukkerij Van Spijk B.V., Venlo, The Netherlands, 316 pages.

Maastricht, The Netherlands (1996, June)
Proceedings of the 8th Advances in Computer Chess Conference (ACC8)
Eds. H.J. van den Herik and J.W.H.M. Uiterwijk
Drukkerij Van Spijk B.V., Venlo, The Netherlands, 332 pages.

Paderborn, Germany (1999, June)
Proceedings of the 9th Advances in Computer Games Conference (ACG9)
Eds. H.J. van den Herik and B. Monien
Van Spijk Grafisch Bedrijf, Venlo, The Netherlands, 347 pages.

Graz, Austria (2003, November)
Proceedings of the 10th Advances in Computer Games Conference (ACG10)
Eds. H.J. van den Herik, H. Iida, and E.A. Heinz
Kluwer Academic Publishers, Boston/Dordrecht/London, 382 pages.

Taipei, Taiwan (2005, September)
Proceedings of the 11th Advances in Computer Games Conference (ACG11)
Eds. H.J. van den Herik, S-C. Hsu, T-S. Hsu, and H.H.L.M. Donkers
Springer Verlag, Berlin/Heidelberg, LNCS 4250, 372 pages.

Pamplona, Spain (2009, May)
Proceedings of the 12th Advances in Computer Games Conference (ACG12)
Eds. H.J. van den Herik and P. Spronck
Springer Verlag, Berlin/Heidelberg, LNCS 6048, 231 pages.

Organization XV

Tilburg, The Netherlands (2011, November)
Proceedings of the 13th Advances in Computer Games Conference (ACG13)
Eds. H.J. van den Herik and A. Plaat
Springer Verlag, Berlin/Heidelberg, LNCS 7168, 356 pages.

Leiden, The Netherlands (2015, July)
Proceedings of the 14th Advances in Computer Games Conference (ACG14)
Eds. A. Plaat, H.J. van den Herik, and W. Kosters
Springer, Heidelberg, LNCS 9525, 260 pages.

The Computers and Games Books

The series of Computers and Games (CG) Conferences started in 1998 as a
complement to the well-known series of conferences in Advances in Computer Chess
(ACC). Since 1998, eight CG conferences have been held. Below we list the
conference places and dates together with the Springer publication (LNCS series no.)

Tsukuba, Japan (1998, November)
Proceedings of the First Computers and Games Conference (CG98)
Eds. H.J. van den Herik and H. Iida
Springer Verlag, Berlin/Heidelberg, LNCS 1558, 335 pages.

Hamamatsu, Japan (2000, October)
Proceedings of the Second Computers and Games Conference (CG2000)
Eds. T.A. Marsland and I. Frank
Springer Verlag, Berlin/Heidelberg, LNCS 2063, 442 pages.

Edmonton, Canada (2002, July)
Proceedings of the Third Computers and Games Conference (CG2002)
Eds. J. Schaeffer, M. Müller, and Y. Björnsson
Springer Verlag, Berlin/Heidelberg, LNCS 2883, 431 pages.

Ramat-Gan, Israel (2004, July)
Proceedings of the 4th Computers and Games Conference (CG2004)
Eds. H.J. van den Herik, Y. Björnsson, and N.S. Netanyahu
Springer Verlag, Berlin/Heidelberg, LNCS 3846, 404 pages.

Turin, Italy (2006, May)
Proceedings of the 5th Computers and Games Conference (CG2006)
Eds. H.J. van den Herik, P. Ciancarini, and H.H.L.M. Donkers
Springer Verlag, Berlin/Heidelberg, LNCS 4630, 283 pages.

Beijing, China (2008, September)
Proceedings of the 6th Computers and Games Conference (CG2008)
Eds. H.J. van den Herik, X. Xu, Z. Ma, and M.H.M. Winands
Springer Verlag, Berlin/Heidelberg, LNCS 5131, 275 pages.

XVI Organization

Kanazawa, Japan (2010, September)
Proceedings of the 7th Computers and Games Conference (CG2010)
Eds. H.J. van den Herik, H. Iida, and A. Plaat
Springer Verlag, Berlin/Heidelberg, LNCS 6515, 275 pages.

Yokohama, Japan (2013, August)
Proceedings of the 8th Computers and Games Conference (CG2013)
Eds. H.J. van den Herik, H. Iida, and A. Plaat
Springer, Heidelberg, LNCS 8427, 260 pages.

Organization XVII

Contents

Adaptive Playouts in Monte-Carlo Tree Search with Policy-Gradient
Reinforcement Learning . 1

Tobias Graf and Marco Platzner

Early Playout Termination in MCTS . 12
Richard Lorentz

Playout Policy Adaptation for Games . 20
Tristan Cazenave

Strength Improvement and Analysis for an MCTS-Based Chinese Dark
Chess Program . 29

Chu-Hsuan Hsueh, I-Chen Wu, Wen-Jie Tseng, Shi-Jim Yen,
and Jr-Chang Chen

LinUCB Applied to Monte-Carlo Tree Search . 41
Yusaku Mandai and Tomoyuki Kaneko

Adapting Improved Upper Confidence Bounds for Monte-Carlo Tree
Search . 53

Yun-Ching Liu and Yoshimasa Tsuruoka

On Some Random Walk Games with Diffusion Control. 65
Ingo Althöfer, Matthias Beckmann, and Friedrich Salzer

Go Complexities . 76
Abdallah Saffidine, Olivier Teytaud, and Shi-Jim Yen

On Some Evacuation Games with Random Walks. 89
Matthias Beckmann

Crystallization of Domineering Snowflakes . 100
Jos W.H.M. Uiterwijk

First Player’s Cannot-Lose Strategies for Cylinder-Infinite-Connect-Four
with Widths 2 and 6 . 113

Yoshiaki Yamaguchi and Todd W. Neller

Development of a Program for Playing Progressive Chess 122
Vito Janko and Matej Guid

http://dx.doi.org/10.1007/978-3-319-27992-3_1
http://dx.doi.org/10.1007/978-3-319-27992-3_1
http://dx.doi.org/10.1007/978-3-319-27992-3_2
http://dx.doi.org/10.1007/978-3-319-27992-3_3
http://dx.doi.org/10.1007/978-3-319-27992-3_4
http://dx.doi.org/10.1007/978-3-319-27992-3_4
http://dx.doi.org/10.1007/978-3-319-27992-3_5
http://dx.doi.org/10.1007/978-3-319-27992-3_6
http://dx.doi.org/10.1007/978-3-319-27992-3_6
http://dx.doi.org/10.1007/978-3-319-27992-3_7
http://dx.doi.org/10.1007/978-3-319-27992-3_8
http://dx.doi.org/10.1007/978-3-319-27992-3_9
http://dx.doi.org/10.1007/978-3-319-27992-3_10
http://dx.doi.org/10.1007/978-3-319-27992-3_11
http://dx.doi.org/10.1007/978-3-319-27992-3_11
http://dx.doi.org/10.1007/978-3-319-27992-3_12

A Comparative Review of Skill Assessment: Performance, Prediction
and Profiling . 135

Guy Haworth, Tamal Biswas, and Ken Regan

Boundary Matching for Interactive Sprouts. 147
Cameron Browne

Draws, Zugzwangs, and PSPACE-Completeness in the Slither Connection
Game . 160

Édouard Bonnet, Florian Jamain, and Abdallah Saffidine

Constructing Pin Endgame Databases for the Backgammon Variant Plakoto . . . 177
Nikolaos Papahristou and Ioannis Refanidis

Reducing the Seesaw Effect with Deep Proof-Number Search. 185
Taichi Ishitobi, Aske Plaat, Hiroyuki Iida, and Jaap van den Herik

Feature Strength and Parallelization of Sibling Conspiracy Number Search. . . 198
Jakub Pawlewicz and Ryan B. Hayward

Parameter-Free Tree Style Pipeline in Asynchronous Parallel Game-Tree
Search . 210

Shu Yokoyama, Tomoyuki Kaneko, and Tetsuro Tanaka

Transfer Learning by Inductive Logic Programming 223
Yuichiro Sato, Hiroyuki Iida, and H.J. van den Herik

Developing Computer Hex Using Global and Local Evaluation Based
on Board Network Characteristics . 235

Kei Takada, Masaya Honjo, Hiroyuki Iizuka, and Masahito Yamamoto

Machine-Learning of Shape Names for the Game of Go 247
Kokolo Ikeda, Takanari Shishido, and Simon Viennot

Author Index . 261

XX Contents

http://dx.doi.org/10.1007/978-3-319-27992-3_13
http://dx.doi.org/10.1007/978-3-319-27992-3_13
http://dx.doi.org/10.1007/978-3-319-27992-3_14
http://dx.doi.org/10.1007/978-3-319-27992-3_15
http://dx.doi.org/10.1007/978-3-319-27992-3_15
http://dx.doi.org/10.1007/978-3-319-27992-3_16
http://dx.doi.org/10.1007/978-3-319-27992-3_17
http://dx.doi.org/10.1007/978-3-319-27992-3_18
http://dx.doi.org/10.1007/978-3-319-27992-3_19
http://dx.doi.org/10.1007/978-3-319-27992-3_19
http://dx.doi.org/10.1007/978-3-319-27992-3_20
http://dx.doi.org/10.1007/978-3-319-27992-3_21
http://dx.doi.org/10.1007/978-3-319-27992-3_21
http://dx.doi.org/10.1007/978-3-319-27992-3_22

Adaptive Playouts in Monte-Carlo Tree Search
with Policy-Gradient Reinforcement Learning

Tobias Graf(B) and Marco Platzner

University of Paderborn, Paderborn, Germany
tobiasg@mail.upb.de, platzner@upb.de

Abstract. Monte-Carlo Tree Search evaluates positions with the help
of a playout policy. If the playout policy evaluates a position wrong then
there are cases where the tree-search has difficulties to find the correct
move due to the large search-space. This paper explores adaptive playout-
policies which improve the playout-policy during a tree-search. With the
help of policy-gradient reinforcement learning techniques we optimize
the playout-policy to give better evaluations. We tested the algorithm in
Computer Go and measured an increase in playing strength of more than
100 ELO. The resulting program was able to deal with difficult test-cases
which are known to pose a problem for Monte-Carlo-Tree-Search.

1 Introduction

Monte-Carlo Tree Search (MCTS) [6] evaluates positions in a search tree by
averaging the results of several random playouts. The playouts follow a fixed
policy to choose moves until they reach a terminal position where the result
follows from the rules of the game. The expected outcome of a playout therefore
determines the quality of evaluation used in the tree search.

In MCTS we can classify positions into several types [11]: Those which are
well suited to MCTS (good evaluation quality of the playouts), those which
can only be solved by search (search-bound, the evaluation given by playouts
is wrong but the search can resolve the problems in the position) and those
which can only be solved by simulations (simulation-bound, the evaluation of
the playouts is wrong and the search cannot resolve the problems, e.g., if there
are several independent fights in Computer Go). The last type of position usually
is difficult for MCTS because the playout policy is specified before the search
and so knowledge of the policy determines if the position can be solved or not.

To reduce the impact of a fixed playout-policy, this paper describes a way to
adapt the playout policy during a tree search by policy-gradient reinforcement
learning [17]. This effectively improves the playout policy leading to better eval-
uations in the tree search. Positions which are simulation bound can be treated
by adapting the policy so as to handle these positions correctly.

The contributions of our paper are as follows.

– We show a way to adapt playout policies inside MCTS by policy-gradient
reinforcement learning.

c© Springer International Publishing Switzerland 2015
A. Plaat et al. (Eds.): ACG 2015, LNCS 9525, pp. 1–11, 2015.
DOI: 10.1007/978-3-319-27992-3 1

2 T. Graf and M. Platzner

– We show how to apply our approach to Computer Go.
– We conduct several experiments in Computer Go to evaluate the effect of our

approach on the playing strength and the ability to solve simulation-bound
positions.

The remainder of this paper is structured as follows.
In Sect. 2 we provide background information on policy-gradient reinforce-

ment learning. In Sect. 3 we outline our approach to adapt playout polices in
MCTS by policy-gradient reinforcement learning. In Sect. 4 we apply this algo-
rithm to Computer Go and show the results of several experiments on playing
strength and simulation-bound positions. In Sect. 5 we present related work.
Finally, in Sect. 6 we draw our conclusion and point to future directions.

2 Background

In Sect. 3 we will use a policy gradient algorithm to optimize the strength of a
policy inside MCTS. This section shortly derives the basics of the REINFORCE
[18] algorithm. We use the softmax policy to generate playouts:

πθ(s, a) =
eφ(s,a)T θ

∑
b eφ(s,b)T θ

. (1)

The policy πθ(s, a) specifies the probability of playing the move a in position s.
It is calculated from the feature vector φ(s, a) ∈ R

n and the vector θ ∈ R
n of

feature weights. For policy gradient algorithms we use the gradient of the log of
the policy:

∇θ log πθ(s, a) = φ(s, a) −
∑

b

πθ(s, b)φ(s, b). (2)

If a game is defined as a sequence of states and actions g = (s1, a1, ..., sn, an)
and a result of the game r(g) is 0 for a loss and 1 for a win, then the strength
J of a policy πθ is

J(πθ) =
∑

g

pπθ
(g)r(g), (3)

with the sum going over all possible games weighted by pπθ
(g), the probability

of their occurrence under policy πθ. To optimize the strength of a policy the
gradient of J(πθ) can be calculated as follows.

∇θJ(πθ) =
∑

g

∇θpπθ
(g)r(g)

=
∑

g

∇θ

(∏

i

πθ(si, ai)
)
r(g)

=
∑

g

⎛

⎝
∏

i

πθ(si, ai)
∑

j

∇πθ(sj , aj)
πθ(sj , aj)

⎞

⎠ r(g)

Adaptive Playouts in Monte-Carlo Tree Search 3

=
∑

g

⎡

⎣pπθ
(g)r(g)

∑

j

∇πθ(sj , aj)
πθ(sj , aj)

⎤

⎦

=
∑

g

⎡

⎣pπθ
(g)r(g)

∑

j

∇ log πθ(sj , aj)

⎤

⎦

= E

⎡

⎣r(g)
∑

j

∇ log πθ(sj , aj)

⎤

⎦ (4)

The last step is the expectation when games (the sequence of states/actions
and the final result) are generated by the policy πθ. We can approximate this
gradient by sampling a finite number of games from the policy πθ and then use
this gradient to update the feature weights with stochastic gradient ascent. The
resulting algorithm is called REINFORCE [18].

3 Adaptive Playouts

In MCTS we have a playout-policy π(s, a) which specifies the probability distri-
bution to be followed in the playouts. The policy is learned from expert games
resulting in a fixed set of weights which is used during the tree search (offline
learning). Here we assume that the playout policy is a softmax policy as defined
in Eq. 1. To allow the playout policy to change during the tree search (online
learning) we add additional features and weights to the policy:

πθ(s, a) =
eφ̄(s,a)T θ̄+φ̂(s,a)T θ̂

∑
b eφ̄(s,b)T θ̄+φ̂(s,b)T θ̂

, (5)

with φ̄(s, a) and θ̄ the features and weights used during offline learning and
φ̂(s, a) and θ̂ for online learning. This difference between offline features which
describe general knowledge and online features which can learn specific rules
during a tree search is adapted from the Dyna-2 architecture which is used
in reinforcement learning with value functions [16]. Offline feature weights are
learned before the tree search and are kept fixed during the whole search. Online
feature weights are used in addition to the offline feature weights and are set to
zero before the search but can adapt during the search.

To leave the notation uncluttered, in the following we will only use the form
of Eq. 1 instead of 5 whenever we talk about the policy in general and the
distinction between online/offline features is clear from the context.

The overall change in MCTS is shown in Algorithm1. During the search, for
every playout a gradient has to be computed (line 11). After the playout has
finished the policy parameters are changed with a stochastic gradient descent
update (line 12) according to Eq. 8 which will be deduced in the following.

The policy-gradient update in line 12 performs the REINFORCE algorithm
of the previous section. The overall aim of the policy-gradient algorithm is to

4 T. Graf and M. Platzner

optimize the strength of the policy. To avoid the policy to drift too much away
from the offline policy we use a L2-regularization of the online-weights of the
policy which keeps them close to zero. So, instead of maximizing the strength of
the policy J(πθ) we maximize:

Algorithm 1. MCTS with Adaptive Playouts
1: function MCTS(s, b)
2: if s /∈ tree then
3: expand(s)
4: end if
5: if totalCount(s) > 32 then
6: b ← winrate(s)
7: end if
8: a ← select(s)
9: s′ ← playMove(s, a)

10: if expanded then
11: (r, g) ← playout(s′)
12: policyGradientUpdate(g, b)
13: else
14: r ← MCTS(s′, b)
15: end if
16: update(s, a, r)
17: return r
18: end function

J(πθ) − λ

2
‖θ̂‖2. (6)

Moreover, to stabilize the learning during the tree search we use a baseline b
in the REINFORCE gradient [18]. This reduces the variance of the gradient but
does not introduce bias:

(r − b)
∑

j

∇ log πθ(sj , aj). (7)

When traversing the tree down to a leaf in the selection part of MCTS, we
set the baseline for the next playout to the winrate stored in the last tree node
that occurred during this selection (line 6 in Algorithm1). To ensure a stable
estimate of the winrate only tree-nodes with at least 32 playouts are considered.

Summarizing, after a playout with a sequence of states and actions (s1, a1, ...,
sn, an) in the MCTS with result r and the baseline b the policy is changed by a
stochastic gradient-ascent step by

θ̂ ← θ̂ + α

⎡

⎣

⎛

⎝(r − b)
∑

j

∇ log πθ(sj , aj)

⎞

⎠ − λθ̂

⎤

⎦ . (8)

In case of a two-player game we are adapting two policies (one for each player)
simultaneously.

Adaptive Playouts in Monte-Carlo Tree Search 5

4 Experiments in Computer Go

In this section we outline how we applied adaptive playouts to 9× 9 and 19× 19
Computer Go. We first give an overview of the offline and online features used in
the playouts. Then we conduct experiments on the playing strength of adaptive
playouts and their impact on the speed of the playouts. Finally, we measured
the effect of adaptive playouts on some difficult problems for MCTS programs
in the so called “two-safe-groups” test set proposed in [11]. This test-set consists
of simulation-bound positions, i.e., positions which are difficult for MCTS and
can only be solved by a good playout policy in reasonable time.

4.1 Implementation

The core MCTS program used for the experiments makes use of state-of-the-art
technologies like RAVE [8], progressive widening [12], progressive bias [7] and a
large amount of knowledge (shape and common fate graph patterns [9]) in the
tree search part. On the internet server KGS, where computer programs can
play against humans, with the inclusion of adaptive playouts it has reached a
rank of 3 dan under the name Abakus.

For the policy-gradient update of Eq. 8 we choose the L2-regularization para-
meter λ = 0.001 and learning-rate schedule of αt = α0

1+α0λt as recommended in
[5] with t the number of iterations already done in a Monte-Carlo Tree Search
and α0 = 0.01. Adaptive weights are set to zero on each new game but are
carried over to successive tree searches in the same game.

4.2 Features

Features of Abakus are similar to those mentioned in [10]. The playout policy
π(s, a) is based on 3 × 3 patterns around the move a and local features based
on the last move played. The 3× 3 patterns are extended with atari information
(1 liberty or > 1 liberty) of the 4 direct neighbours and are position independent.
All local features are related to the last move.

1. Contiguous to the last move.
2. Save new atari-string by capturing.
3. Save new atari-string by capturing but resulting in self-atari.
4. Save new atari-string by extending.
5. Save new atari-string by extending but resulting in self-atari.
6. Solve ko by capturing.
7. 2-point semeai: if the last move reduces a string to two liberties any move

which kills a neighboring string with 2 liberties has this feature.
8. 3-4-5-point semeai heuristic: if the last move reduces a string to 3,4 or 5

liberties and this string cannot increase its liberties (by a move on its own
liberties) then any move on a liberty of a neighboring string of the opponent
which also cannot increase its liberties, has this feature.

6 T. Graf and M. Platzner

9. Nakade capture: if the last move captured a group with a nakade shape the
killing move has this feature.

These features represent the offline features φ̄ and their corresponding weights
are learned before any tree search from expert games. To incorporate online
features φ̂ into the playout policy the same features are used in a position-
dependent way, i.e., for each intersection on the Go board we have features for
every 3 × 3 pattern and every local feature. To decrease the number of features
the 3 × 3 patterns are hashed to 32 different values. This does produce a large
number of hashing conflicts but in practice this can be neglected as in a concrete
position usually only a few patterns occur. The advantage is a large increase in
performance as the weight vector is smaller. For the contiguous feature we also
add the information of where the last move was.

4.3 Speed

We measured the speed of MCTS with and without adaptive playouts on a dual-
socket Intel Xeon E5-2670 (total 16 cores), 2.6 GHz and 64 GByte main memory.
On an empty board we can run 1337 playouts/s with static playouts and 1126
playouts/s with adaptive playouts per thread. Therefore, using adaptive playouts
reduces the overall speed of the program to about 84 %.

In parallel MCTS we share the adaptive weights between all threads and
synchronize writes with a lock. This has the advantage that all threads adapt
the same weights and thus can learn faster. On the other hand this imposes a
lock-penalty on the program when synchronizing. This penalty can be seen in
Fig. 1 where we measure the number of playouts per second depending on the
number of parallel threads. While the performance ratio of adaptive to static
playouts is 84 % for a single thread it decreases to 68 % for 16 threads.

4.4 Playing Strength

To measure the improvement in playing strength by using adaptive playouts we
played several tournaments by Abakus against the open source program Pachi
[4] on the 19×19 board with 7.5 komi. Each tournament consisted of 1024 games

Fig. 1. Performance of parallel MCTS

Adaptive Playouts in Monte-Carlo Tree Search 7

Table 1. Playing strength of Abakus against Pachi, 1024 games played for each entry,
95 % confidence intervals

Thinking time
(Abakus/Pachi)

Winrate static ELO static Winrate adaptive ELO
adaptive

8,000/32,000 playouts 48.4 % ± 3.1 –11 66.0 % ± 2.9 +115

16,000/32,000 playouts 63.4 % ± 3.0 +95 75.3 % ± 2.6 +193

32,000/32,000 playouts 72.9 % ± 2.7 +171 86.1 % ± 2.1 +317

One second both 62.0 % ± 3.0 +85 69.9 % ± 2.8 +146

Two seconds both 53.6 % ± 3.1 +25 68.9 % ± 2.8 +138

Four seconds both 48.7 % ± 3.1 –9 68.8 % ± 2.8 +137

with each program running on a 16 core Xeon E5-2670 with 2.6 GHz. Pondering
was turned off for both programs.

The results are shown in Table 1. Pachi was set to a fixed number of 32,000
playouts/move while Abakus with static and adaptive playouts used 8,000,
16,000 and 32,000 playouts/move. The table shows a large improvement of adap-
tive playouts against static playouts of roughly 15 %. In this setting Abakus
with 8,000 playouts/move is about as strong as Pachi with 32,000 playouts,
with equal playouts/move Abakus beats Pachi in 86 % of the games.

As Abakus in general is slower than Pachi (mainly due to more knowledge
in the tree and a different type of playout policy) and as shown in the previous
section the adaptive playouts decrease the speed of playouts considerable, we
also conducted experiments with equal time for both programs. In Table 1 you
see the results for one, two and four seconds thinking time for both programs.
In this setting Pachi runs about 27,000 playouts per second on an empty board,
Abakus with static playouts 20,000 and with adaptive playouts 13,000. Despite
the slowdown with adaptive playouts we see an increase in playing strength of
about 130 ELO beating Pachi in 68 % of the games. Moreover, adaptive playouts
show a much better scaling than static playouts. The adaptive playouts keep a
winrate of about 68 % for all time settings. In contrast, the static playouts start
with a winrate of 62 % with one second thinking time but decrease towards 48 %
when the thinking time is increased to four seconds.

4.5 Two Safe Groups

The two-safe-groups test set was created in [11] to show the limits of MCTS. In all
15 positions white is winning with two groups on the board which are alive. The
problem for MCTS is that both groups can easily die in the playouts leading to
a wrong winrate estimation of the playouts (simulation-bound positions). As all
positions are won by white the winrate at the root position of the MCTS should
be close to zero. In the figures there is a target reference line of 30 % winrate (for
black) and all test-cases should converge below this line. One example position
of the testcases can be seen in Fig. 2.

8 T. Graf and M. Platzner

Fig. 2. Test case two

Fig. 3. Results of the two-safe-groups test cases

In Fig. 3(a) and (b) we see the results of MCTS with static playouts. If
the evaluation at the beginning is wrong (high winrate for black) MCTS has
difficulties to converge to the correct evaluation staying above the 30 % line.
While in theory MCTS converges to the correct evaluation the test positions
contain too deep fights to be resolved by plain MCTS in reasonable time.

Figure 3(c) shows a subset of all test cases with adaptive playouts where the
playouts can fully adapt to the given positions. The positions are still evaluated
wrong at the beginning but once the playouts have adapted to them MCTS

Adaptive Playouts in Monte-Carlo Tree Search 9

behaves normal and slowly converges to the correct solution. Figure 3(d) shows
the result for adaptive playouts and the test-cases where the playout policy could
not adapt to the positions optimally. In all of them one of the groups cannot be
resolved by the playouts (due to missing features). Still the program can find
the correct solution but it takes a large amount of time for the winning rate to
converge towards zero.

The strength of MCTS in combination with adaptive playouts can be seen
in test case two (Fig. 2). While this position was created to be a win for white
instead it is a win for black (black can attack the bottom white group by j4 as
confirmed by Shih-Chieh Huang, the author of these test-cases; an example line
is black j4-j3-j2-j5-j6 and black wins the resulting ko-fight). To play the correct
moves a program first has to understand that both groups are alive by normal
play which can be seen in Fig. 3(c). In test-case two the winrate drops until 217

playouts. Up to there the program has adapted the playout policy to understand
that both groups are alive. Only then the search can spot the correct solution
by attacking the bottom white group with j4 and the winrate starts to increase
to over 80 %.

5 Related Work

Much of our work is inspired by David Silver’s work. In his RLGO [15] a value
function is learned by temporal difference learning for every position in the
search. This value function is then used by an ε-greedy policy. In this way the
policy adapts to the positions encountered in the search. He later combined this
TD-Search with the conventional tree-search algorithms alpha-beta and MCTS.
He first executed a TD-Search to learn the value function and the used this
knowledge in the tree-search algorithms. While this improved alpha-beta, in
MCTS only knowledge learned from offline games improved the search. The
knowledge gained through the TD-Search could not improve MCTS.

In our work we use the same difference of offline and online knowledge but
instead of learning a value function we learn the playout policy directly with
policy-gradient reinforcement learning. Moreover, we incorporate the learning
directly into the MCTS (without a two-phase distinction) so that the policy
adapts to the same positions we encounter in the search.

Hendrik Baier introduced adaptive playouts based on the Last-Good-Reply
(LGR) policy [1]. Whenever a playout is won by, e.g., black, for every move
from white the response of black is stored in a table. In later playouts black can
then replay successful responses according to the table. In an extension called
LGRF, Baier and Drake implemented that if a playout is lost all move-answers
of the playout are removed from the table [2]. If there are no moves in the move-
answer-table then a default policy is followed. The LGRF policy improved the
Go program Orego considerably but discussions on the computer go mailing
list [3] showed that it had no positive effect on other programs like Pachi or
Oakfoam.

Evolutionary adaptation of the playout policy was used in [13] and later suc-
cessfully applied to general video game playing [14]. They adapted the playout

10 T. Graf and M. Platzner

policy inside MCTS with the help of an evolutionary algorithm. The main dif-
ference to our work is the type of optimization algorithm to improve the playout
policy. While in [13,14] an evolutionary algorithm was used, in our approach we
use policy-gradient reinforcement learning.

6 Conclusions and Future Work

This paper shows a way how to adapt playout policies in Monte-Carlo Tree
Search. To achieve this we use policy-gradient reinforcement learning which
directly optimizes the strength of the policy. We outlined how to adapt policies
in general and applied it to the concrete case of Computer Go. The experiments
indicate that the adaptation of policies results in a large increase of playing
strength but also a decrease in speed. As a net result the program Abakus still
achieved an increase of about 130 ELO in playing strength. Moreover, Abakus
was able to solve several instances of the “two-safe-groups” test set which is
known to be very difficult for MCTS programs.

Future work includes optimizing the performance of adaptive playouts. The
experiments showed that parallel MCTS is harmed by a global lock on the adap-
tive weights. Removing this bottleneck will lead to a direct increase in playing
strength and allows scaling to more than 16 threads.

Additionally, the playout policies need informative features to learn useful
moves. The experiments showed that simple and fast features can adapt to quite
complex cases. Nevertheless, it is an open question which features are best suited
to improve adaptive playouts. In contrast to hand-made features, non-parametric
features which are built during the learning process or even neural networks could
be a promising direction.

Finally, there is a huge amount of choice in reinforcement-learning algorithms.
In this paper we explored the use of a simple policy-gradient algorithm. More
complex Actor-Critic algorithms could improve adaptive playouts further.

References

1. Baier, H.: Adaptive playout policies for Monte Carlo go. Master’s thesis,
Osnabrueck University, Germany (2010)

2. Baier, H., Drake, P.: The power of forgetting: improving the last-good-reply policy
in Monte Carlo go. IEEE Trans. Comput. Intell. AI Games 2(4), 303–309 (2010)

3. Baudis, P.: Effect of LGRF on the playing strength agains gnugo. Website 15
June 2012. http://www.mail-archive.com/computer-go@dvandva.org/msg05060.
html. Accessed 09 March 2015

4. Baudǐs, P., Gailly, J.: PACHI: state of the art open source go program. In: van
den Herik, H.J., Plaat, A. (eds.) ACG 2011. LNCS, vol. 7168, pp. 24–38. Springer,
Heidelberg (2012)

5. Bottou, L.: Stochastic gradient tricks. In: Montavon, G., Orr, G.B., Müller, K.-R.
(eds.) Neural Networks, Tricks of the Trade, Reloaded. Lecture Notes in Computer
Science, vol. 7700, pp. 430–445. Springer, Heidelberg (2012)

http://www.mail-archive.com/computer-go@dvandva.org/msg05060.html
http://www.mail-archive.com/computer-go@dvandva.org/msg05060.html

Adaptive Playouts in Monte-Carlo Tree Search 11

6. Browne, C., Powley, E., Whitehouse, D., Lucas, S., Cowling, P., Rohlfshagen, P.,
Tavener, S., Perez, D., Samothrakis, S., Colton, S.: A survey of Monte Carlo tree
search methods. IEEE Trans. Comput. Intell. AI Games 4(1), 1–43 (2012)

7. Chaslot, G., Winands, M., Uiterwijk, J., van den Herik, H., Bouzy, B.: Progressive
strategies for Monte-Carlo tree search. New Math. Nat. Comput. 4(3), 343–357
(2008)

8. Gelly, S., Silver, D.: Combining online and offline knowledge in UCT. In: Proceed-
ings of the 24th International Conference on Machine Learning, ICML 2007, pp.
273–280, New York (2007)

9. Graf, T., Platzner, M.: Common fate graph patterns in Monte Carlo tree search for
computer go. In: 2014 IEEE Conference on Computational Intelligence and Games
(CIG), pp. 1–8, August 2014

10. Huang, S.-C., Coulom, R., Lin, S.-S.: Monte-carlo simulation balancing in practice.
In: van den Herik, H.J., Iida, H., Plaat, A. (eds.) CG 2010. LNCS, vol. 6515, pp.
81–92. Springer, Heidelberg (2011)

11. Huang, S.-C., Müller, M.: Investigating the limits of Monte-Carlo tree search meth-
ods in computer go. In: Herik, H.J., Iida, H., Plaat, A. (eds.) CG 2013. LNCS, vol.
8427, pp. 39–48. Springer, Heidelberg (2014)

12. Ikeda, K., Viennot, S.: Efficiency of static knowledge bias in Monte-Carlo tree
search. In: Herik, H.J., Iida, H., Plaat, A. (eds.) CG 2013. LNCS, vol. 8427, pp.
26–38. Springer, Heidelberg (2014)

13. Lucas, S.M., Samothrakis, S., Pérez, D.: Fast evolutionary adaptationfor Monte
Carlo tree search. In: Esparcia-Alcázar, A.I., Mora, A.M. (eds.) EvoApplications
2014. LNCS, vol. 8602, pp. 349–360. Springer, Heidelberg (2014)

14. Perez, D., Samothrakis, S., Lucas, S.: Knowledge-based fast evolutionary MCTS
for general video game playing. In: 2014 IEEE Conference on Computational Intel-
ligence and Games (CIG), pp. 1–8, August 2014

15. Silver, D.: Reinforcement learning and simulation-based search in computer go.
Ph.D. thesis, University of Alberta (2009)

16. Silver, D., Sutton, R.S., Müller, M.: Sample-based learning and search with perma-
nent and transient memories. In: Proceedings of the 25th International Conference
on Machine Learning, ICML 2008, pp. 968–975 (2008)

17. Szepesvari, C.: Algorithms for Reinforcment Learning. Morgan and Claypool, USA
(2010)

18. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Mach. Learn. 8, 229–256 (1992)

Early Playout Termination in MCTS

Richard Lorentz(B)

Department of Computer Science, California State University,
Northridge, CA 91330-8281, USA

lorentz@csun.edu

Abstract. Many researchers view mini-max and MCTS-based searches
as competing and incompatible approaches. For example, it is generally
agreed that chess and checkers require a mini-max approach while Go
and Havannah require MCTS. However, a hybrid technique is possible
that has features of both mini-max and MCTS. It works by stopping
the random MCTS playouts early and using an evaluation function to
determine the winner of the playout. We call this algorithm MCTS-EPT
(MCTS with early playout termination) and study it using MCTS-EPT
programs we have written for Amazons, Havannah, and Breakthrough.

1 Introduction

Monte-Carlo Tree Search (MCTS) differs from “classical” mini-max game-tree
search in two major ways. First, no evaluation function is needed in MCTS.
Instead, the random playouts in the MCTS act as a kind of sampling of the
possible outcomes from various board positions, which in turn can be used to
rate (evaluate) these different positions. Also, MCTS builds the search tree so
that more promising lines of play are more thoroughly explored in the tree than
less promising ones. As a result, we have learned that MCTS can drastically
outperform mini-max based search engines in games where evaluation functions
are difficult to obtain, and especially in games with large branching factors [1,2].

A hybrid approach to MCTS is possible, however. Instead of allowing the
random playout to run until the end of the game we can instead terminate the
playout early and then apply an evaluation function to the position to determine
which side is likely to win. We call this approach MCTS with early playout
termination (MCTS-EPT, or simply EPT). A number of successful programs
have been written using EPT. See, for example, [5–7,9].

We have written EPT programs that play the games of Amazons, Break-
through, and Havannah and we will refer to them as Amabot, Breakbot,
and Havbot. Amabot was originally written using mini-max techniques and,
playing under the name Invader, was one of the top Amazons programs at
the Computer Olympiads from 2001–2005 [11], but never finished in first place.
After converting from mini-max to EPT, Amabot has won each of the last five
Computer Olympiads it has entered.

Breakbot is a more recent program. In contrast to Amabot, it was origi-
nally written as an MCTS program and then was migrated over to the MCTS-
EPT approach. The pure MCTS version played a fairly average game, whereas
c© Springer International Publishing Switzerland 2015
A. Plaat et al. (Eds.): ACG 2015, LNCS 9525, pp. 12–19, 2015.
DOI: 10.1007/978-3-319-27992-3 2

Early Playout Termination in MCTS 13

the EPT incarnation is very strong, being one of the top 3 players on the Little
Golem game-playing Web site [10], where it plays under the name Wanderer.

Havbot was also originally pure MCTS [8] that has recently been converted
to EPT. Havbot was also a moderately strong MCTS program, but is only
slightly stronger using EPT. Like Breakbot, Havbot also plays under the
name Wanderer. It has played in a number of Computer Olympiads and also
plays on the Little Golem Web site.

Though creating an EPT program is straightforward, we will explain in detail
(1) the requirements and difficulties of producing a strong EPT program from the
perspective of our success with Amabot and Breakbot and (2) our difficulties
with Havbot.

2 History

We begin with a brief history of our research into MCTS-EPT. By 2007 Amabot
had performed well in a number of Computer Olympiads, but had never managed
to win one. Johan de Koning’s program, 8qp, was the five-time winner of the
event and we could not seem to reach its level of play. Also in 2007 the MCTS
revolution was in full swing, so we wondered what MCTS could offer us beyond
what our mini-max program was providing. The mini-max program was using
a sophisticated evaluation function so we had little hope that MCTS would be
able to achieve the same level of play without using all the knowledge that was
available to the evaluation function. Unknown to us at the time, Julien Kloetzer
was doing the same research under the guidance of Hiroyuki Iida [5]. As it turns
out we independently came to the same conclusion, namely, random playouts
were insufficient. We needed to use the large amount of knowledge that was
coded in the evaluation function. We also both discovered that the evaluation
function can best be used as EPT rather than, say, to help guide the random
playouts. In the case of Amabot, we were ultimately able to achieve a win rate of
80 % using EPT over the mini-max based program. We then went on to win the
next five Computer Olympiads using EPT. We believe Kloetzer’s program had
the potential for similar results, but he did not have the luxury of a pre-existing,
strong evaluation function, leaving him at a disadvantage.

In 2009, motivated in part by the “Havannah Challenge” [12], a number of
projects began to develop an Havannah playing program, including our Havbot
project. Havannah seemed to be a perfect candidate for MCTS because of its
high move branching factor, its very large state space, and the fact that a good
evaluation function seems very hard to find. With but one exception, all known
Havannah playing programs use MCTS. The one exception is a mini-max based
program written by the talented game programmer Johan de Koning. The one
time he entered it in the Computer Olympiad it lost every game it played against
the other two programs, providing strong evidence that MCTS is the approach
of choice.

However, progress in Havannah programming has not progressed as we might
have hoped. Though the top programs do play at a reasonable level, about the

14 R. Lorentz

level of somebody who has played the game for 6 months or a year, they still
play with a very unnatural style, and often win their games by virtue of tactical
shots missed by the human opponent. Our feeling is that Havannah programs
cannot be expected to play at an elite level until they learn to play a more
natural, human-like game. Towards this end, we have retooled Havbot to use
EPT. Evidence is still inconclusive, and more details will be provided below,
but we feel that its current style of play is more natural and has the potential
to improve to noticeably higher levels of play. It currently beats the mini-max
version of Havbot about 60 % of the time.

Breakbot, like Havbot, was written initially using MCTS but we fully
expected to transition to EPT. As was the case with the MCTS version of
Amabot, without an evaluation function it’s level of play languished in the low
intermediate range. With the introduction of EPT it’s level rose considerably
and quickly, where after quite a bit of work, it is, at the time of this writing,
the third highest rated player on Little Golem, and the second highest rated
active player. The evidence that Breakbot with EPT outperforms MCTS is
convincing. What is not quite so obvious is if it is better than mini-max based
programs. The evidence we have to support this viewpoint is that there are two
other programs playing on Little Golem, both of them are mini-max based, and
Breakbot has won the majority of the encounters, though against the stronger
of the two, Luffybot, all of the games have been very close. We may conclude
that EPT stands up well against mini-max and even though many of the games
have been close, Breakbot ultimately outperforms the mini-max based ones.

3 Details

We now consider implementation details for MCTS-EPT. Our conclusions con-
cerning these details are drawn from many years of experimenting (beginning in
2007) with the three different programs across two different playing situations
(real time as played in the Computer Olympiads and very slow as played on the
turn-based Web site Little Golem). As such some features seem to span most
EPT situations while others apply to more specific settings.

3.1 Blending Mini-Max and EPT

It would seem natural that certain phases of a game would lend themselves to
mini-max analysis while others to EPT. In fact, for many years Amabot was
written so that EPT was used throughout the majority of the game, and then
switched over to mini-max near the end. Evidence seemed to indicate that the
breadth-first nature of mini-max was superior near the end of the game because
it would be less likely to miss a tactical shot that EPT (and MCTS in general)
might miss because EPT had gotten stuck on a “good” line of play and did not
have the time to find a better move. This, of course, is a general problem with
MCTS, and can be fatal near the end game when a missed winning line or a
failed proper defence can quickly and permanently turn a game around.

Early Playout Termination in MCTS 15

We now believe this is not true for two reasons. First, it is easy to incorporate
solvers into MCTS, and therefore EPT, by propagating wins and losses up the
MCTS tree in the usual and/or fashion. The advantage of being able to prove
nodes outweighs anything lost by the tendency of MCTS to get stuck on a
suboptimal line of play. Further, the solver can accelerate the exit from a bad
line of play because winning and losing positions propagate immediately up the
tree rather than requiring many simulations to reach the same conclusion.

Secondly, it is simply the case that the strengths of MCTS extend well to all
aspects of the game. A good example is seen when dealing with defective territory
in Amazons, a problem that turns up near the end of the game. This has always
been a bit of a sticky issue with programs because the overhead necessary to deal
with defects, typically done either by using patterns or other computationally
expensive procedures in the evaluation function, does not seem to be worth
the cost. In the case of EPT, however, defective territory is easily detected. In
the presence of defective territory the MCTS tree accurately assesses the defect
because the random playouts show that the territory cannot be properly filled.
As a result, Amabot has not used any mini-max and has been exclusively an
EPT program for the last 5 years.

3.2 Progressive Widening

It is usually necessary to assist EPT by focusing on promising moves above
and beyond what the MCTS rules suggest. In nodes with very few visits it can
be difficult to distinguish among the many children. Two apparently different
techniques have been developed that accomplish essentially the same thing. Pro-
gressive widening restricts access to nodes with low evaluation values and low
visit counts and gradually phases them in as the parent node gets more visits
[4]. Alternatively, node initialization (sometimes referred to as priors [3]) ini-
tializes the win and visit counts of nodes at the time of their creation with win
values that reflect the strength of the node, again determined by the evaluation
function.

In all three of our programs we have seen that it is necessary to use one of
these techniques. In the case of Amabot, progressive widening is used. In fact,
since Amabot possesses such a mature and accurate evaluation function and
since Amazons allows so many legal moves, especially in the early parts of the
game, we push progressive widening a bit further and do some forward pruning.
Amazons positions can have more than 2000 legal moves. When building the
EPT tree, we evaluate all possible children of a node and only put the top 750
in the tree and then from these we proceed with the usual progressive widening.

With Havbot and Breakbot we use the evaluation function to initialize
win values in new nodes. Considerable tuning is necessary to find good initial
values because, as is so common with MCTS related algorithms, we must find the
proper balance so that the tree grows without inappropriate bias. In all three
cases the winning advantage when using these techniques is significant, being
over 75 %.

16 R. Lorentz

3.3 When to Terminate

Certainly a fundamental question is: when should the playout be terminated.
The longer we delay the termination the more the behavior is like pure MCTS
while sooner terminations put added emphasis on the evaluation function. We
were surprised to find that in all three of our programs the optimal termination
point was quite early and nearly at the same point in all three cases, namely,
after around five moves. When the evaluation function is known to be quite
reliable, as is the case with Amabot, and to a lesser extent Breakbot, it is not
too surprising that an earlier termination should be preferred since additional
random playouts before evaluating will only dilute the effect of the evaluation.
However, in the case of Havbot, where the evaluation is still very much a work
in progress and can be quite undependable, the optimal termination point is still
about the same and later termination points degrade its behavior at a rate quite
similar to what is observed in Amabot. In essence, it appears that even a weak
evaluation function can compare favorably with a long random playout.

But what about termination points that are shorter than the optimal value?
Since all three programs show similar results, let us focus on Breakbot. Though
it stands to reason that shorter termination points might outperform longer ones
when these termination points are reasonably large, it is not immediately obvious
why the optimal value is not 1 or 0.

Consider Fig. 1 where we show the results of Breakbot playing as white
against 4 other versions that were modified to have different termination points.
Terminating after four random moves is optimal. Delaying the termination point
beyond the optimal quickly degrades the performance and it is a bit surprising
just how quickly it degrades.

Termination Winning result
1 33%
4 43%
6 27%
12 10%

Fig. 1. Playout termination points in Breakbot.

But of particular interest is the first row that clearly shows that only 1
random move is not as good as 4. The values for 2 and 3 random moves degraded
roughly uniformly. Why is it the case that a few random moves actually improve
performance?

To help us understand this phenomenon we ran hundreds of games where
at every position a move was generated by two versions of Breakbot, with
termination points of 4 and 1. We found that on average the different versions
disagreed on the best move about 12 times per game, where the average length
of a game is 55 moves. It is important to point out, however, that a similar test
performed on two copies of the same version of Breakbot (with termination

Early Playout Termination in MCTS 17

point 4) still disagreed an average of 7 times per game, simply because of the
random nature of EPT. In general, this suggests that about 5 times a game,
or roughly 10 % of the time, the termination-1 version selects a move that the
termination-4 version probably would not, and presumably more often than not
this is a weaker move. Visual examination of these moves, however, generally
does not reveal major blunders. Rather, when differences are detectable at all,
they are small and subtle. Of course, five minor mistakes a game is certainly
sufficient to cause the observed drop in winning percentage.

But it is difficult to provide a definitive explanation as to exactly what causes
these roughly five aberrations per game. Why would fewer random moves in a
playout hinder performance? Observational evidence suggests it boils down to
a trade off between the advantages of a deep evaluation and disadvantages of
losing information from the randomness of a playout. In general, an evaluation
near the end of the game is more reliable than one earlier on but after too many
random moves a position may lose the essence of the starting position. We search
for a happy medium where a few random moves take us closer to the end of the
game, without having the random moves degrade the information too much. For
all three games we are studying this cutoff seems to be around 4 or 5.

Related to this, we should mention the concept of improving the random
playouts. This, of course, is an important technique for an MCTS program and
is certainly one of the major reasons MCTS programs are so successful. In the
case of EPT it appears to be of little or no help. On the one hand it is not too
surprising given that the random playouts are only 4 or 5 moves deep, but on
the other hand given how important it is for MCTS, we thought we could get
some improvement in our programs by improving the playouts. Despite consid-
erable effort on all three programs, we have never been able to demonstrate any
advantage by introducing smart playouts.

Finally, we point out that in a game like Amazons the evaluation function
can vary wildly depending on whose move it is. This is sometimes referred to
as the parity effect. The evaluation function tends to heavily favor the player
to move. To help stabilize EPT we can modify the random playouts so that
they always terminate with the same player to move. In the case of Amazons
we terminate the playout after either 5 or 4 moves, accordingly. This produces
some small advantage in the case of Amabot, but in the cases of Havabot and
Breakbot, where the evaluations do not display such a strong parity effect,
adjusting the playouts this way does not seem to have any effect.

3.4 Miscellaneous

In this section we summarize a few other observations and techniques that we
consider important.

It is generally the case that MCTS programs prefer to record wins and losses
at the end of their playouts, rather than trying to somehow keep track of the
margin of victory. We find the same is true with EPT. Rather than somehow use
the value of the evaluation function, we have always obtained the best results

18 R. Lorentz

by simply treating the evaluation as a boolean function, reporting either a win
or a loss.

In Sect. 3.1 mention was made of the fact that EPT, as well as MCTS, can get
stuck on a bad move simply because there is not enough time for the refutation
of this weak move to achieve sufficient visits. Even though this seems like a
problem mainly for real-time play, we find the problem carries over even for
turn-based play where we sometimes allow as much as 15 min of thinking time.
This problem can occur anywhere in the tree, but we have found that if we
deal with it specifically at the root, we can get better results. What we do is
we increase the exploitation constant only at the root so that exploration is
encouraged, allowing more moves to be considered. Specifically, since all of our
EPT programs are UCT based, we simply increase the UCT constant, typically
by a factor of around 6. It does not make sense to uniformly change the UCT
constant by this amount because the constant has already been optimized. But
changing it only at the root has the very real effect of possibly allowing a move
to be considered that might otherwise have been ignored. We have not been
able to prove an advantage quantitatively, but we have seen quite a few cases of
games on Little Golem where moves were found that were clearly better than
those found without the adjustment while the reverse has yet to be observed.
This technique, as well as the next, would probably apply to MCTS programs
as well.

In the case of Breakbot we had to deal with the situation that early cap-
tures are almost always bad. We found no satisfactory way to deal with this in
the evaluation because a capture by the first player usually requires a recapture
by its opponent, so it balances out in the evaluation. Attempts to recognize the
bad exchange after the fact in the evaluation had too many undesirable side
effects. Our solution was to deal with this in the move selection process of the
MCTS part of the search. Whenever a move was being selected for traversal or
expansion in the MCTS tree, if it was a capture we hand tuned a penalty value
for its winning percentage. This penalty is a function of (1) the stage of the game
(early, middle, or late) and (2) the depth in the tree in which the move is being
considered. This proved to be a successful way to deal with a problem that we
were unable to deal with in the evaluation.

4 Conclusions

We have had considerable success with MCTS-EPT in games with a variety
of features. Amazons is a game with a fairly large branching factor but it does
allow for very precise and sophisticated evaluation functions. Still, EPT Amabot
outperforms all mini-max based programs. Not only does Amabot do well in
real-time play but it has played a number of games against some of the strongest
players on turn based Little Golem and has never lost.

Breakthrough has a smaller branching factor but evaluation functions tend
to be rather primitive. Not many programs exist that play Breakthrough, but
of the two we are aware of (both play on the Little Golem site), we know that
both are mini-max based, and both have losing records to Breakbot.

Early Playout Termination in MCTS 19

Havannah is a game, like Go, that has no strong mini-max based programs
and not until the MCTS revolution did any reasonable programs exist. The
three strongest Havannah playing programs all play on Little Golem and, though
maybe slightly weaker than the other two, the MCTS version of Havbot plays
a very similar game to the other two. Even though the evaluation function for
Havbot is still quite primitive the program is making some promising looking
moves and is outperforming its MCTS counterpart. As the evaluation continues
to improve we feel there is great potential for this program.

As a side note, Amabot and Breakbot are now so strong that progress
comes very slowly. When deciding if a modification is an improvement sometimes
simply running test games is not sufficient. If the tests are inconclusive, we must
be ready to allow human intervention. How do the moves look to us? Do they
seem to improve on the older version moves? How often do the moves look
worse? We must be willing to make decisions based on answers to these kinds of
questions, especially in the setting of turn based play, where results come at an
agonizingly slow pace.

References

1. Browne, C., Powley, D., Whitehouse, D., Lucas, S., Cowling, P., Rohlfshagen, P.,
Tavener, S., Perez, D., Samothrakis, S., Colton, C.: A survey of monte carlo tree
search methods. IEEE Trans. Comput. Intell. AI Games 4(1), 1–49 (2012)

2. Coulom, R.: Efficient selectivity and backup operators in monte-carlo tree search.
In: 5th International Conference on Computers and Games, CG 2006, Turin, Italy,
pp. 72–84 (2006)

3. Gelly, S., Silver, D.: Combining online and offline knowledge in UCT. In:
Ghahramani, Z. (ed.) Proceedings of the 24th International Conference on Machine
Learning (ICML 2007), pp. 273–280. ACM, New York (2007)

4. Chaslot, G.M.J.-B., Winands, M.H.M., van den Herik, H.J., Uiterwijk, J.W.H.M.,
Bouzy, B.: Progressive strategies for monte-carlo tree search. New Math. Nat. Com-
put. 4(3), 343–357 (2008)

5. Kloetzer, J., Iida, H., Bouzy, B.: The monte-carlo approach in amazons. In: Com-
puter Games Workshop, Amsterdam, The Netherlands, pp. 113–124 (2007)

6. Lorentz, R.J.: Amazons discover monte-carlo. In: van den Herik, H.J., Xu, X.,
Ma, Z., Winands, M.H.M. (eds.) CG 2008. LNCS, vol. 5131, pp. 13–24. Springer,
Heidelberg (2008)

7. Lorentz, R., Horey, T.: Programming breakthrough. In: van den Herik, H.J., Iida,
H., Plaat, A. (eds.) CG 2013. LNCS, vol. 8427, pp. 49–59. Springer, Heidelberg
(2013)

8. Lorentz, R.: Experiments with monte-carlo tree search in the game of havannah.
ICGA J. 34(3), 140–150 (2011)

9. Winands, M.H.M., Björnsson, Y.: Evaluation function based monte-carlo LOA. In:
van den Herik, H.J., Spronck, P. (eds.) ACG 2009. LNCS, vol. 6048, pp. 33–44.
Springer, Heidelberg (2010)

10. http://www.littlegolem.net/jsp/index.jsp
11. http://www.grappa.univ-lille3.fr/icga/program.php?id=249
12. Havannah#The Havannah Challenge. https://chessprogramming.wikispaces.com/

http://www.littlegolem.net/jsp/index.jsp
http://www.grappa.univ-lille3.fr/icga/program.php?id=249
https://chessprogramming.wikispaces.com/

Playout Policy Adaptation for Games

Tristan Cazenave(B)

LAMSADE, Université Paris-Dauphine, Paris, France
cazenave@lamsade.dauphine.fr

Abstract. Monte-Carlo Tree Search (MCTS) is the state of the art
algorithm for General Game Playing (GGP). We propose to learn a play-
out policy online so as to improve MCTS for GGP. We test the result-
ing algorithm named Playout Policy Adaptation (PPA) on Atarigo,
Breakthrough, Misere Breakthrough, Domineering, Misere
Dominee-ring, Go, Knightthrough, Misere Knightthrough,
Nogo and Misere Nogo. For most of these games, PPA is better than
UCT with a uniform random playout policy, with the notable exceptions
of Go and Nogo.

1 Introduction

Monte-Carlo Tree Search (MCTS) has been successfully applied to many games
and problems [2]. The most popular MCTS algorithm is Upper Confidence
bounds for Trees (UCT) [17]. MCTS is particularly successful in the game of
Go [7]. It is also the state of the art in Hex [15] and General Game Playing
(GGP) [10,20]. GGP can be traced back to the seminal work of Jacques Pitrat
[21]. Since 2005 an annual GGP competition is organized by Stanford at AAAI
[14]. Since 2007 all the winners of the competition use MCTS.

Offline learning of playout policies has given good results in Go [8,16] and
Hex [15], learning fixed pattern weights so as to bias the playouts.

The RAVE algorithm [13] performs online learning of moves values in order to
bias the choice of moves in the UCT tree. RAVE has been very successful in Go
and Hex. A development of RAVE is to use the RAVE values to choose moves
in the playouts using Pool RAVE [23]. Pool RAVE improves slightly on random
playouts in Havannah and reaches 62.7 % against random playouts in Go.

Move-Average Sampling Technique (MAST) is a technique used in the GGP
program Cadia Player so as to bias the playouts with statistics on moves
[10,11]. It consists of choosing a move in the playout proportionally to the expo-
nential of its mean. MAST keeps the average result of each action over all sim-
ulations. Moves found to be good on average, independent of a game state, will
get higher values. In the playout step, the action selections are biased towards
selecting such moves. This is done using the Gibbs (or Boltzmann) distribution.
Playout Policy Adaptation (PPA) also uses Gibbs sampling. However, the evalu-
ation of an action for PPA is not its mean over all simulations such as in MAST.
Instead the value of an action is learned comparing it to the other available
actions for the states where it has been played.
c© Springer International Publishing Switzerland 2015
A. Plaat et al. (Eds.): ACG 2015, LNCS 9525, pp. 20–28, 2015.
DOI: 10.1007/978-3-319-27992-3 3

Playout Policy Adaptation for Games 21

Later improvements of Cadia Player are N-Grams and the last good reply
policy [27]. They have been applied to GGP so as to improve playouts by learn-
ing move sequences. A recent development in GGP is to have multiple playout
strategies and to choose the one which is the most adapted to the problem at
hand [26].

A related domain is the learning of playout policies in single-player prob-
lems. Nested Monte-Carlo Search (NMCS) [3] is an algorithm that works well
for puzzles. It biases its playouts using lower level playouts. At level zero NMCS
adopts a uniform random playout policy. Online learning of playout strategies
combined with NMCS has given good results on optimization problems [22].
Online learning of a playout policy in the context of nested searches has been
further developed for puzzles and optimization with Nested Rollout Policy Adap-
tation (NRPA) [24]. NRPA has found new world records in Morpion Solitaire
and crosswords puzzles. The principle is to adapt the playout policy so as to
learn the best sequence of moves found so far at each level. PPA is inspired by
NRPA since it learns a playout policy in a related fashion and adopts a similar
playout policy. However, PPA is different from NRPA in multiple ways. NRPA
is not suited for two-player games since it memorizes the best playout and learns
all the moves of the best playout. The best playout is ill-defined for two-player
games since the result of a playout is either won or lost. Moreover a playout
which is good for one player is bad for the other player so learning all the moves
of a playout does not make much sense. To overcome these difficulties PPA does
not memorize a best playout and does not use nested levels of search. Instead of
learning the best playout it learns the moves of every playout but only for the
winner of the playout.

NMCS has been previously successfully adapted to two-player games in a
recent work [5]. PPA is a follow-up to this paper since it is the adaptation of
NRPA to two-player games.

In the context of GGP we look for general enhancements of UCT that work
for many games without game-specific tweakings. This is the case for PPA. In
our experiments we use the exact same algorithm for all the games. It is usually
more difficult to find a general enhancement than a game specific one. PPA is
an online learning algorithm, it starts from scratch for every position and learns
a position specific playout policy each time.

We now give the outline of the paper. The next section details the PPA
algorithm and particularly the playout strategy and the adaptation of the policy.
The third section gives experimental results for various games, various board
sizes and various numbers of playouts. The last section concludes.

2 Online Policy Learning

PPA is UCT with an adaptive playout policy. It means that it develops a tree
exactly as UCT does. The difference with UCT is that in the playouts PPA has
a weight for each possible move and chooses randomly between possible moves
proportionally to the exponential of the weight.

22 T. Cazenave

In the beginning PPA starts with a uniform playout policy. All the weights
are set to zero. Then, after each playout, it adapts the policy of the winner of
the playout. The principle is the same as the adaptation of NRPA except that
it only adapts the policy of the winner of the playout with the moves of the
winner.

The PPA-playout algorithm is given in Algorithm 1. It takes as parameters
the board, the next player, and the playout policy. The playout policy is an
array of real numbers that contains a number for each possible move. The only
difference with a random playout is that it uses the policy to choose a move.
Each move is associated to the exponential of its policy number and the move
to play is chosen with a probability proportional to this value.

The PPA-adaptation algorithm is given in Algorithm 2. It is related to the
adaptation algorithm of NRPA. The main difference is that it is adapted to
games and only learns the moves of the winner of the playout. It does not use
a best sequence to learn as in NRPA but learns a different playout every time.
It takes as parameter the winner of the playout, the board as it was before the
playout, the player to move on this board, the playout to learn and the current
playout policy. It is parameterized by α which is the number to add to the
weight of the move in the policy. The adapt algorithm plays the playout again
and for each move of the winner it biases the policy towards playing this move.
It increases the weight of the move and decreases the weight of the other possible
moves on the current board.

The PPA algorithm is given in Algorithm 3. It starts with initializing the
policy to a uniform policy containing only zeros for every move. Then it runs
UCT for the given number of playouts. UCT uses the PPA-playout algorithm
for its playouts. They are biased with the policy. The result of a call to the UCT
function is one descent of the tree plus one PPA playout that gives the winner
of this single playout. The playout and its winner are then used to adapt the
policy using the PPA-adapt function. When all playouts have been played the
PPA function returns the move that has the most playouts at the root as in
usual UCT.

The UCT algorithm called by the PPA algorithm is given in Algorithm 4.

3 Experimental Results

We played PPA against UCT with random playouts. Both algorithms use the
same number of playouts. The UCT constant is set to 0.4 for both algorithms
as is usual in GGP. α is set to 1.0 for PPA. For each game we test two board
sizes: 5 × 5 and 8 × 8, and two numbers of playouts: 1,000 and 10,000.

The games we have experimented with are:

– Atarigo: the rules are the same as for Go except that the first player to
capture a string has won. Atarigo has been solved up to size 6 × 6 [1].

– Breakthrough: The game starts with two rows of pawns on each side of the
board. Pawns can capture diagonally and go forward either vertically or diag-
onally. The first player to reach the opposite row has won. Breakthrough

Playout Policy Adaptation for Games 23

Algorithm 1. The PPA-playout algorithm
playout (board, player, policy)
while true do

if board is terminal then
return winner (board)

end if
z ← 0.0
for m in possible moves on board do

z ← z + exp (policy [m])
end for
choose a move for player with probability proportional to exp(policy[move])

z

play (board, move)
player ← opponent (player)

end while

Algorithm 2. The PPA-adaptation algorithm
adapt (winner, board, player, playout, policy)
polp ← policy
for move in playout do

if winner = player then
polp [move] ← polp [move] + α
z ← 0.0
for m in possible moves on board do

z ← z + exp (policy [m])
end for
for m in possible moves on board do

polp [m] ← polp [m] - α ∗ exp(policy[m])
z

end for
end if
play (board, move)
player ← opponent (player)

end for
policy ← polp

Algorithm 3. The PPA algorithm
PPA (board, player)
for i in 0, maximum index of a move do

policy[i] ← 0.0
end for
for i in 0, number of playouts do

b ← board
winner ← UCT (b, player, policy)
b1 ← board
adapt (winner, b1, player, b.playout, policy)

end for
return the move with the most playouts

24 T. Cazenave

Algorithm 4. The UCT algorithm
UCT (board, player, policy)
moves ← possible moves on board
if board is terminal then

return winner (board)
end if
t ← entry of board in the transposition table
if t exists then

bestV alue ← −∞
for m in moves do

t ← t.totalP layouts
w ← t.wins[m]
p ← t.playouts[m]

value ← w
p

+ c ×
√

log(t)
p

if value > bestV alue then
bestV alue ← value
bestMove ← m

end if
end for
play (board, bestMove)
player ← opponent (player)
res ← UCT (board, player, policy)
update t with res

else
t ← new entry of board in the transposition table
res ← playout (board, player, policy)
update t with res

end if
return res

has been solved up to size 6 × 5 using Job Level Proof Number Search [25].
The best program for Breakthrough 8 × 8 uses MCTS combined with an
evaluation function after a short playout [19].

– Misere Breakthrough: The rules are the same as for Breakthrough
except that the first player to reach the opposite row has lost.

– Domineering: The game starts with an empty board. One player places
dominoes vertically on the board and the other player places dominoes hori-
zontally. The first player that cannot play has lost. Domineering was invented
by Göran Andersson [12]. Jos Uiterwijk recently proposed a knowledge based
method that can solve large rectangular boards without any search [28].

– Misere Domineering: The rules are the same as for Domineering except
that the first player that cannot play has won.

– Go: The game starts with an empty grid. Players alternatively place black and
white stones on the intersections. A completely surrounded string of stones
is removed from the board. The score of a player at the end of a game with

Playout Policy Adaptation for Games 25

Table 1. Win rate against UCT with the same number of playouts as PPA for various
games of various board sizes using either 1,000 or 10,000 playouts per move.

Size Playouts

1,000 10,000

Atarigo 5 × 5 81.2 90.6

Atarigo 8 × 8 72.2 94.4

Breakthrough 5 × 5 60.0 56.2

Breakthrough 8 × 8 55.2 54.4

Misere Breakthrough 5 × 5 95.0 99.6

Misere Breakthrough 8 × 8 99.2 97.8

Domineering 5 × 5 62.6 50.0

Domineering 8 × 8 48.4 58.0

Misere Domineering 5 × 5 63.4 62.2

Misere Domineering 8 × 8 76.4 83.4

Go 5 × 5 21.2 23.6

Go 8 × 8 23.0 1.2

Knightthrough 5 × 5 42.4 30.2

Knightthrough 8 × 8 64.2 64.6

Misere Knightthrough 5 × 5 95.8 99.8

Misere Knightthrough 8 × 8 99.8 100.0

Nogo 5 × 5 61.8 71.0

Nogo 8 × 8 64.8 46.4

Misere Nogo 5 × 5 66.4 67.8

Misere Nogo 8 × 8 80.6 89.4

chinese rules is the number of her1 stones on the board plus the number of
her eyes. The player with the greatest score has won. We use a komi of 7.5
for white. Go was the first tremendously successful application of MCTS to
games [7–9,18]. All the best current Go programs use MCTS.

– Knightthrough: The rules are similar to Breakthrough except that the
pawns are replaced by knights that can only go forward.

– Misere Knightthrough: The rules are the same as for Knightthrough
except that the first player to reach the opposite row has lost.

– Nogo: The rules are the same as Go except that it is forbidden to capture
and to commit suicide. The first player that cannot move has lost. There exist
computer Nogo competitions and the best players use MCTS [4,6,9].

– Misere Nogo: The rules are the same as for Nogo except that first player
that cannot move has won.

1 For brevity, we use ‘he’ and ‘his’, whenever ‘he or she’ and ‘his or her’ are meant.

26 T. Cazenave

We do not give results for single-player games since PPA is tailored to multi-
player games. Also we do not compare with NMCS and NRPA since these algo-
rithms are tailored to single-player games and perform poorly when applied
directly to two-player games. We give results of 1,000 and 10,000 playouts per
move.

Results are given in Table 1. Each result is the outcome of a 500 games match,
250 playing first and 250 playing second.

PPA has worse results than UCT in three games: Go, Knightthrough 5×5
and Nogo 8×8. For the other 17 games it improves over UCT. It is particularly
good at misere games, a possible explanation is that it learns to avoid losing
moves in the playouts and that it may be important for misere games that are
waiting games.

We observe that PPA scales well in Atarigo, Misere Breakthrough,
Misere Domineering, Knightthrough, Misere Knightthrough and
Misere Nogo: it is equally good or even better when the size of the board
or the number of playouts is increased. On the contrary it does not scale for Go
and Nogo.

A possible explanation of the bad behaviour in Go could be that moves in
Go can be either good or bad depending on the context and that learning an
overall evaluation of a move can be misleading.

In the context of GGP, the time used by GGP programs is dominated by
the generation of the possible moves and by the calculation of the next state. So
biasing the playout policy is relatively unexpensive compared to the time used
for the interpretation of the rules of the game.

4 Conclusion

In the context of GGP we presented PPA, an algorithm that learns a playout
policy online. It was tested on ten different games for increasing board sizes and
increasing numbers of playouts. On many games it scales well with board size and
number of playouts and it is better than UCT for 33 out of the 40 experiments
we performed. It is particularly good at misere games, scoring as high as 100 %
against UCT at Misere Knightthrough 8 × 8 with 10,000 playouts.

PPA is tightly connected to the NRPA algorithm for single-player games. The
main differences with NRPA are that it does not use nested levels nor a best
sequence to learn. Instead it learns the moves of each playout for the winner of
the playout.

Future work include combining PPA with the numerous enhancements of
UCT. Some of them may be redundant but others will probably be cumulative.
For example combining PPA with RAVE could yield substantial benefits in some
games.

A second line of research is understanding why PPA is good at many games
and bad at other games such as Go. It would be interesting being able to tell
the features of a game that make PPA useful.

Playout Policy Adaptation for Games 27

References

1. Boissac, F., Cazenave, T.: De nouvelles heuristiques de recherche appliquées à
la résolution d’Atarigo. In: Intelligence artificielle et jeux, pp. 127–141. Hermes
Science (2006)

2. Browne, C., Powley, E., Whitehouse, D., Lucas, S., Cowling, P., Rohlfshagen, P.,
Tavener, S., Perez, D., Samothrakis, S., Colton, S.: A survey of Monte Carlo tree
search methods. IEEE Trans. Comput. Intell. AI Games 4(1), 1–43 (2012)

3. Cazenave, T.: Nested Monte-Carlo search. In: Boutilier, C. (ed.) IJCAI, pp. 456–
461 (2009)

4. Cazenave, T.: Sequential halving applied to trees. IEEE Trans. Comput. Intell. AI
Games 7(1), 102–105 (2015)

5. Cazenave, T., Saffidine, A., Schofield, M., Thielscher, M.: Discounting and pruning
for nested playouts in general game playing. GIGA at IJCAI (2015)

6. Chou, C.-W., Teytaud, O., Yen, S.-J.: Revisiting Monte-Carlo tree search on a
normal form game: NoGo. In: Di Chio, C., et al. (eds.) EvoApplications 2011, Part
I. LNCS, vol. 6624, pp. 73–82. Springer, Heidelberg (2011)

7. Coulom, R.: Efficient selectivity and backup operators in Monte-Carlo tree search.
In: van den Herik, H.J., Ciancarini, P., Donkers, H.H.L.M.J. (eds.) CG 2006. LNCS,
vol. 4630, pp. 72–83. Springer, Heidelberg (2007)

8. Coulom, R.: Computing elo ratings of move patterns in the game of go. ICGA J.
30(4), 198–208 (2007)

9. Enzenberger, M., Muller, M., Arneson, B., Segal, R.: Fuego - an open-source frame-
work for board games and go engine based on Monte Carlo tree search. IEEE Trans.
Comput. Intell. AI Games 2(4), 259–270 (2010)

10. Finnsson, H., Björnsson, Y.: Simulation-based approach to general game playing.
In: AAAI, pp. 259–264 (2008)

11. Finnsson, H., Björnsson, Y.: Learning simulation control in general game-playing
agents. In: AAAI (2010)

12. Gardner, M.: Mathematical games. Sci. Am. 230, 106–108 (1974)
13. Gelly, S., Silver, D.: Monte-Carlo tree search and rapid action value estimation in

computer go. Artif. Intell. 175(11), 1856–1875 (2011)
14. Genesereth, M.R., Love, N., Pell, B.: General game playing: overview of the AAAI

competition. AI Mag. 26(2), 62–72 (2005)
15. Huang, S., Arneson, B., Hayward, R.B., Müller, M., Pawlewicz, J.: Mohex 2.0: a

pattern-based MCTS hex player. In: Computers and Games - 8th International
Conference, CG 2013, Yokohama, Japan, 13–15 August 2013, Revised Selected
Papers, pp. 60–71 (2013)

16. Huang, S.-C., Coulom, R., Lin, S.-S.: Monte-Carlo simulation balancing in practice.
In: van den Herik, H.J., Iida, H., Plaat, A. (eds.) CG 2010. LNCS, vol. 6515, pp.
81–92. Springer, Heidelberg (2011)

17. Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: Fürnkranz, J.,
Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp.
282–293. Springer, Heidelberg (2006)

18. Lee, C., Wang, M., Chaslot, G., Hoock, J., Rimmel, A., Teytaud, O., Tsai, S.,
Hsu, S., Hong, T.: The computational intelligence of MoGo revealed in taiwan’s
computer go tournaments. IEEE Trans. Comput. Intell. AI Games 1(1), 73–89
(2009)

19. Lorentz, R., Horey, T.: Programming breakthrough. In: van den Herik, H.J., Iida,
H., Plaat, A. (eds.) CG 2013. LNCS, vol. 8427, pp. 49–59. Springer, Heidelberg
(2014)

28 T. Cazenave

20. Méhat, J., Cazenave, T.: A parallel general game player. KI 25(1), 43–47 (2011)
21. Pitrat, J.: Realization of a general game-playing program. IFIP Congr. 2, 1570–

1574 (1968)
22. Rimmel, A., Teytaud, F., Cazenave, T.: Optimization of the nested Monte-Carlo

algorithm on the traveling salesman problem with time windows. In: Di Chio, C.,
et al. (eds.) EvoApplications 2011, Part II. LNCS, vol. 6625, pp. 501–510. Springer,
Heidelberg (2011)

23. Rimmel, A., Teytaud, F., Teytaud, O.: Biasing Monte-Carlo simulations through
RAVE values. In: van den Herik, H.J., Iida, H., Plaat, A. (eds.) CG 2010. LNCS,
vol. 6515, pp. 59–68. Springer, Heidelberg (2011)

24. Rosin, C.D.: Nested rollout policy adaptation for Monte Carlo tree search. In:
IJCAI, pp. 649–654 (2011)

25. Saffidine, A., Jouandeau, N., Cazenave, T.: Solving breakthrough with race
patterns and job-level proof number search. In: van den Herik, H.J., Plaat, A.
(eds.) ACG 2011. LNCS, vol. 7168, pp. 196–207. Springer, Heidelberg (2012)

26. Swiechowski, M., Mandziuk, J.: Self-adaptation of playing strategies in general
game playing. IEEE Trans. Comput. Intell. AI Games 6(4), 367–381 (2014)

27. Tak, M.J.W., Winands, M.H.M., Björnsson, Y.: N-grams and the last-good-reply
policy applied in general game playing. IEEE Trans. Comput. Intell. AI Games
4(2), 73–83 (2012)

28. Uiterwijk, J.W.H.M.: Perfectly solving domineering boards. In: Cazenave, T.,
Winands, M.H.M., Lida, H. (eds.) CGW 2013. Communications in Computer and
Information Science, vol. 408, pp. 97–121. Springer, Switzerland (2013)

Strength Improvement and Analysis for an MCTS-Based
Chinese Dark Chess Program

Chu-Hsuan Hsueh1, I-Chen Wu1(✉), Wen-Jie Tseng1, Shi-Jim Yen2, and Jr-Chang Chen3

1 Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan
{hsuehch,icwu,wenjie}@aigames.nctu.edu.tw

2 Department of Computer Science and Information Engineering, National Dong Hwa University,
Hualien, Taiwan

sjyen@mail.ndhu.edu.tw
3 Department of Applied Mathematics, Chung Yuan Christian University, Taoyuan, Taiwan

jcchen@cycu.edu.tw

Abstract. Monte-Carlo tree search (MCTS) has been successfully applied to
Chinese dark chess (CDC). In this paper, we study how to improve and analyze
the playing strength of an MCTS-based CDC program, named DARKKNIGHT,
which won the CDC tournament in the 17th Computer Olympiad. We incorporate
the three recent techniques, early playout terminations, implicit minimax
backups, and quality-based rewards, into the program. For early playout termi‐
nations, playouts end when reaching states with likely outcomes. Implicit
minimax backups use heuristic evaluations to help guide selections of MCTS.
Quality-based rewards adjust rewards based on online collected information. Our
experiments showed that the win rates against the original DARKKNIGHT were
60.75 %, 70.90 % and 59.00 %, respectively for incorporating the three techniques.
By incorporating all together, we obtained a win rate of 76.70 %.

1 Introduction

Chinese dark chess (CDC), widely played in Chinese community, is a two-player game
and also a partially observable (PO) game with symmetric hidden information. The set
of pieces in CDC is the same as those in Chinese chess; however, the pieces are faced
down initially so both players do not know what the pieces are, until they are flipped.

In [8], the state space complexity of the game was estimated to be 1037 between those
of Draughts and chess, while the game-tree complexity was estimated to be 10135 between
those of chess and Chinese chess without considering chance nodes. In [33], Yen et al.
estimated the game-tree complexity with chance nodes to be 10207 between those of
Chinese chess and Shogi.

In the past, many CDC game-playing programs were developed. In the early stage,
most CDC programs [8, 27] were developed using alpha-beta search. Recently, Yen
et al. [33] incorporated Monte-Carlo tree search (MCTS) into a CDC program, named
DIABLO, which won the following four tournaments [20, 26, 32, 35]. Ones of the authors
of this paper also implemented an MCTS-based CDC program, named DARKKNIGHT,
which won two CDC tournaments [28, 34], including that in the 17th Computer Olympiad.

© Springer International Publishing Switzerland 2015
A. Plaat et al. (Eds.): ACG 2015, LNCS 9525, pp. 29–40, 2015.
DOI: 10.1007/978-3-319-27992-3_4

This paper incorporates three recent techniques into DARKKNIGHT and analyzes how
well these techniques improve the game-playing strength. These techniques are as
follows.

1. Early playout terminations [2, 12, 19, 21–23, 30, 31]: Terminate a playout much
earlier when it is very likely to win, lose, or draw.

2. Implicit minimax backups [19]: Guide MCTS selections by using heuristic evalua‐
tions of tree nodes together with the original simulated win rates.

3. Quality-based rewards [24]: Use simulation length and terminal state quality to
adjust the rewards returning from simulations.

Our experiments showed that implicit minimax backups improved the most, which
reached a win rate of 70.90 % against the original DARKKNIGHT, serving as the baseline
program. The improvements reached a win rate of 60.75 % for early playout termina‐
tions, and 57.50 % and 59.00 % respectively when using simulation length and terminal
state quality for quality-based rewards. By incorporating all together, we successfully
improved DARKKNIGHT with a win rate of 76.70 %.

This paper is organized as follows. Section 2 reviews the game CDC and the previous
work for CDC game-playing programs, and briefly introduces the MCTS algorithm.
Section 3 presents the above three techniques, including the reviews of these techniques
and the incorporations into DARKKNIGHT. Section 4 shows the experimental results.
Finally, Sect. 5 makes concluding remarks.

2 Background

2.1 CDC

CDC [8, 33] is a two-player zero-sum non-deterministic game played on a 4 × 8 square
board as illustrated in Fig. 1(a) and (b). The two players, Red and Black, respectively
own identical sets of sixteen pieces with different colors. The piece types are shown in
Fig. 1(c). Each piece has two faces, one showing the piece type and the other showing
the piece cover which is identical for all pieces. When the piece type faces up, the type
is revealed and known by both players. When it faces down, it is unrevealed and
unknown.

Two kinds of actions are allowed in CDC: flipping and moving. Each flipping action
flips a piece, namely making the piece type revealed. Each moving action is to move a
revealed piece by the player owning the piece. All pieces can be moved to empty neigh‐
boring squares (with one square up, down, left or right). Pieces except cannons can be
moved to neighboring squares with capturing the opponent’s pieces that have equal or
lower ranks shown in Fig. 1(c) with the following exceptions: Pawns can capture the
opponent’s king, but not the other way around. Cannons have a different capturing rule
called one-step-jump in which any opponent’s pieces can be captured as described in
more details in [8, 33].

Initially, all 32 pieces are unrevealed and placed randomly, as in Fig. 1(a). So, the
probability distributions of unrevealed pieces are all equal. The first player flips one of
the 32 pieces and then owns the set of pieces of the revealed color, while the second

30 C.-H. Hsueh et al.

player owns the other set. A player wins by capturing all of the opponent’s pieces or
making the opponent have no legal moves. The game also ends with a draw when both
players play without any capturing and flipping within 40 plies, or when the same posi‐
tion appears three times.

2.2 Previous Work for CDC Game-Playing Programs

In the early stage, most CDC programs [8, 27] were developed using alpha-beta search.
Chen et al. published a paper [8] about alpha-beta search in their CDC program, FLIPPER.
Some more research work for CDC includes opening books [7], endgame databases [9,
10, 25], solving smaller CDC [6] and game variations [15].

Recently, MCTS has been incorporated into CDC game-playing programs [16, 17,
33]. MCTS [5] is a best-first search algorithm on top of a search tree, named UCT [18],
using Monte-Carlo simulations as state evaluations. It has been successfully applied to
several games, such as Go [11, 13, 14], General Game Playing (GGP) [3], Backgammon
[29] and Phantom-Go [4]. There are four phases in MCTS:

1. Selection. A path is traversed from the root to one of the leaves following a
selection policy. A popular selection policy is based on an upper confidence
bounds function [1]:

(1)

where is an estimator for the value of node , the visit count of node , the
visit count of the parent of node and a constant representing the weight of
exploration. Commonly, is a win rate, , or a mean value for rewards,
where is the win count of node .

2. Expansion. One or more children are expanded from the selected leaf.
3. Playout. Following a playout policy, the game is played from the selected leaf to

some terminal state.

(a) (b) (c)

Fig. 1. (a) Initial board, (b) a board example and (c) piece information

MCTS-Based Chinese Dark Chess Program 31

4. Backpropagation. The result of the playout, also called reward, is updated from
terminal state back to all its ancestors in the selected path during selection.

Recently, several researchers applied MCTS to CDC. This paper briefly reviews the
work in [33, 34]. In [33], their program DIABLO used non-deterministic nodes, so-called
in their article, to contain all inner nodes for all the possible outcomes of the flipping
actions. In the rest of this paper, non-deterministic nodes are called chance nodes, since
they are conceptually similar. Thus, inner nodes are simply children of chance nodes.
The win counts and visit counts of chance nodes were the sums from all their children.
In the selection phase, roulette wheel selection was applied to chance nodes to select
one of children according to the probability distribution of unrevealed pieces.

In the playout phase, they [33] used piece weights, as listed in Table 1, in their
program DIABLO when capturing pieces. The program DARKKNIGHT [34] was developed
independently, but it used almost the same weights as in [33], except for reducing them
by a factor of 100. The program DARKKNIGHT serves as the baseline program in this
paper.

Table 1. The piece weights

Piece type K/k G/g M/m R/r N/n C/c P/p

Weights in [33] 5500 5000 2500 1000 800 3000 800

Weights in this paper 55 50 25 10 8 30 8

3 Incorporated Techniques

Below we discuss the three incorporated techniques: early playout terminations in
Subsect. (3.1), implicit minimax backups in Subsect. (3.2), and quality-based rewards
in Subsect. (3.3).

3.1 Early Playout Terminations

For CDC, it is important to terminate playouts earlier for two reasons, speedup and
accuracy of simulated results. The first reason is obvious. The second is that it is more
accurate to terminate playouts at the time when they are very likely to win, lose, or draw.
For example, it is normally a draw in a situation, Gmm, where Red has only one guard
and Black has two ministers. In the case of keeping playing in the playout, Black may
lose accidentally, while it is supposed to be a draw since G cannot capture either m. Thus,
an early termination is actually more accurate than a continuous playout. Another
example is KGmm. No matter where the pieces are placed and whether the pieces are
revealed or not, Red always wins the game, since both K and G can capture m, but not
vice versa. However, it may result in draws in playouts since Red may not be able to go
to capture black pieces tactically during playouts.

In the rest of this subsection, we first review the previous work about early playout
terminations and then describes our work to incorporate it into DARKKNIGHT.

32 C.-H. Hsueh et al.

Previous Work. In [12], a method was proposed to collect information online, and
terminate playouts when the game obviously favors some player from the collected
information. They used it to save the time for more simulations for GGP.

Some other researchers were to return results after making a fixed number of moves
in playouts. In [21–23], for Amazons, Breakthrough and Havannah, they used evaluation
functions to determine the winners who the evaluated scores favor. In [2], they did a
shallow minimax search with fixed depths and then returned the evaluated scores
directly. Their method was tested for Othello, Breakthrough and Catch the Lion.

In [30, 31], their methods for Lines of Action (LOA) were to check the scores by
evaluation function every three moves, and then return the results in the following cases.
If the scores exceeded some threshold, the results were wins. On the contrary, if the
scores were below some threshold, the results were losses. Checking evaluation func‐
tions every three moves was for the sake of performance.

Our Work. Playouts are terminated earlier when detecting a likely outcome which is
win, loss, or draw, from Red’s perspective. The detection rules are based on a material
combination [9, 25], namely a set of remaining pieces on the board in CDC. For CDC,
the total number of legal material combinations is 8,503,055 (= (213561)2 – 1). In our
work, we analyzed all the combinations according to some heuristic rules. From the
analysis, 750,174 are set to win, 750,174 loss, 108,136 draw, and the rest are unknown.
For example, the likely outcomes for KGmm, KGk and KGggm are set to win, and those
for Gmm, CCccp and KPggm are draw. Note that we call it a likely outcome since the
outcome may not be always true in a few extreme cases as illustrated by the following
example. For KGggm, Black can try to exchange one g with G, though it is hard to do
so. If Black successfully exchanges g with G without losing m, then the game becomes
a draw.

In playouts, if the likely outcome for a material combination is one of win, loss and
draw, the playouts end immediately and return the outcomes. The overhead for the
detection is little, since we can simply lookup a table to check this. So, the detection is
done for every move in playouts.

3.2 Implicit Minimax Backups

This subsection reviews the previous work for implicit minimax backups and then
describes our work to incorporate it into the baseline program.

Previous Work. In [19], the researchers proposed implicit minimax backups which
incorporated heuristic evaluations into MCTS. The heuristic evaluations were used
together with the estimator to guide the selections of MCTS. Namely, in Formula
(1) was replaced by the following:

(2)

where is the minimax score of node by heuristic evaluation and is the weight of
the minimax score.

MCTS-Based Chinese Dark Chess Program 33

In each leaf of UCT, a heuristic evaluation function was applied to compute the score,
scaled to [–1, 1] through a sigmoid function. Then, the scaled score was also backed up
as classical minimax search. For consistency, was ranged in [–1, 1], too.

They improved the playing strength of the following three games, Kalah, Break‐
through and LOA, and obtained win rates of around 60 % to 70 % in different settings
of the self-play games. Their work also showed that even simple evaluation functions
can lead to better performance. However, they found that this technique did not work
on every game. They ran experiments on Chinese checkers and the card game Heart but
obtained no significant improvement.

Our Work. For CDC, we use as the heuristic evaluation function the weighted material
sum, namely the difference of the total piece weights between the player and the oppo‐
nent. The piece weights are listed in Table 1. The heuristic evaluations are then scaled
to [–1, 1] by a sigmoid function.

One issue to discuss is the heuristic evaluations for chance nodes, which were not
mentioned in [19]. An intuitive way is to use the probability distribution for unrevealed
pieces, when calculating the expected values for chance nodes. For example, suppose
to have four unrevealed pieces, two Ps, one k and one m (as in Fig. 1(b)). The probability
for P is 1/2, while those for the other two are 1/4. However, a problem occurs when
unrevealed pieces are not in the UCT yet. For example, if k has not been flipped yet, the
corresponding heuristic evaluation is unknown, making it hard to get the heuristic eval‐
uations for chance nodes.

In order to solve this problem, we use the ratios of visit counts as the probabilities
for all children of chance nodes. For the above example, assume to flip P 3 times and m
once, but none for k. Then, we use 3/4 for P and 1/4 for m.

3.3 Quality-Based Rewards

This subsection reviews the previous work for quality-based rewards and then describes
our work to incorporate it into the baseline program.

Previous Work. In [24], the researchers proposed new measurements to adjust the
rewards obtained from simulations. Simulation length and terminal state quality were
used as quality assessments of simulations to adjust the rewards from wins and losses.

In [24], simulation length, a domain independent quality assessment, was defined as
the length of simulated game from the root to the terminal state in the simulation. Intui‐
tively, in an advantageous position, the shorter the simulation length is, the better.

This technique maintained online sample mean and sample standard deviation of
simulation length, denoted by and , for player when wins. With these statistical
values, the reward for simulation length was calculated as follows:

(3)

where is the reward (e.g., 1 for a win and –1 for a loss), the influence for this quality,
 a sigmoid function as shown in Formula (4) which scales the values to [–1, 1],

a normalized value in Formula (5),

34 C.-H. Hsueh et al.

(4)

(5)

 a constant to be tuned and is the length of that simulation.
For terminal state quality, a function describing quality of terminal states was needed.

For example, for Breakthrough, the piece difference between the winning and losing
players was used to measure the terminal state quality, which was scaled to [0, 1]. Let

 and respectively denote sample mean and sample standard deviation of terminal
state quality for player . Similarly, the rewards for terminal state quality was calcu‐
lated in a way similar to Formula (3) as follows.

(6)

where is a normalized value in Formula (7),

(7)

and is the terminal state quality. In Formula (3) and (6), is a constant or is calculated
according to the data accumulated online. Their experimental results showed not much
difference.

Our Work. We also incorporate into DARKKNIGHT the above two quality assessments,
simulation length and terminal state quality, to adjust the rewards from wins and losses.
For draws, the simulations are not sampled. The two quality assessments are measured
when simulations end. Without early playout terminations, MCTS simulations end when
one player wins. With early playout terminations, MCTS simulations also end when one
obtains a likely outcome with win or loss.

At terminal states, simulation length is simply the same as the one described in
[24], and terminal state quality is obtained in the following way. First, simply count the
remaining pieces of the winner. Then, incorporate domain knowledge like piece weights.
Namely, we use the following formula:

(8)

where is the set of remaining pieces of the winner, the size of , a coefficient and
 the weight of piece as in Table 1. The larger the coefficient is, the higher the

influence of the piece weights. All values of terminal state quality are scaled to [–1, 1]
according to a sigmoid function.

4 Experiments

In our experiments, each modified version played 1,000 games against the baseline, the
original DARKKNIGHT. Among the 1,000 games, one played 500 games as the first and

MCTS-Based Chinese Dark Chess Program 35

the other 500 as the second. For each game, one scored 1 point for a win, 0 for a loss
and 0.5 for a draw. For a given version, the average score of 1,000 games was the win
rate against the baseline.

Initially, we performed a strength test for the baseline with different numbers of
simulations per move against the one with 10,000, as shown in Fig. 2. In the rest of
experiments, unless explicitly specified, we chose the one with 30,000, which was
reasonable in the sense of both strength and computation time. Namely, it had a win rate
of 75.75 %, while it took about 3.2 min to run a game with one thread on machines
equipped with Intel(R) Xeon(R) CPU E31225, 3.10 GHz.

Fig. 2. Baseline with different numbers of simulations per move against that with 10,000

4.1 Experiments for Incorporating Individual Techniques

In this subsection, we incorporate techniques mentioned in Sect. 3 individually into the
baseline to see how much they can improve.

Early Playout Terminations (EPT). As mentioned in Subsect. 3.1, we used material
combinations to detect whether a playout reaches a terminal state earlier with a likely
outcome, one of win, loss or draw. The experimental result showed a significant
improvement with a win rate of 60.75 % against the baseline program. The result indi‐
cated that the accuracy of the simulated results was indeed increased with the help of
the likely outcomes returned from EPT. In addition, the program with EPT also ran
faster, at 32,000 simulations per second, than the one without EPT, at 27,000.

Implicit Minimax Backups (IMB). As mentioned in Subsect. 3.2, we used heuristic
evaluations to help guide the selections of MCTS more accurately. In our experiments,
we tested different weights of minimax score, , and different numbers of simulations
per move. The experimental results are shown in Fig. 3 which includes three lines,
respectively, for 10,000, 30,000 and 100,000 simulations per move. For fairness, the
corresponding baselines also ran the same numbers of simulations.

Figure 3 shows that the win rates are the highest when for the three lines,
and 78.45 % for the one with 10,000 simulations per move, 70.90 % for 30,000 and
64.60 % for 100,000. The figure shows that IMB did significantly improve the playing
strength. On the one hand, in the case that was too high, the win rates went down for
the following reason. The heuristic evaluations weighted too much higher than online

36 C.-H. Hsueh et al.

estimation which is usually more accurate than heuristic evaluations for a sufficiently
large number of simulations. On the other hand, in the case that was too low, the win
rates also went down for the following reason. Less heuristic information was used to
help guide the selections of MCTS accurately, since short-term tactical information
provided by the minimax scores was missing, as explained in [19].

Figure 3 also has the following implication. For a higher number of simulations per
move, the improvement was relatively smaller. This hints that IMB has less improve‐
ment for a sufficiently large number of simulations per move. The reason is: the help of
minimax scores decreases, since simulated results become more accurate with more
simulations.

In [19], they mentioned that IMB had no significant improvement for Heart, also a
PO game. Interestingly, our results show that IMB did significantly improve the playing
strength for CDC.

Quality-Based Rewards. As mentioned in Subsect. 3.3, we used simulation length (SL)
and terminal state quality (TSQ) to adjust the rewards from simulations to favor those
with shorter length and higher terminal state quality.

For SL, we tested two parameters, the influence, , and the sigmoid function constant,
, and obtained the results as shown in Fig. 4(a). The highest win rate was 57.50 % when

 and .
For TSQ, we needed one more parameter, , a coefficient of piece weights for

measuring terminal state quality. In our experiments, we obtained the highest win rate
of 59.00 %, when , and . By fixing and , we
obtained the highest at , slightly better than the one at , as in Fig. 4(b).
Similarly, by fixing and , we obtained the highest at as in Fig. 4(c). By fixing
 and , we obtained the highest win rate at as shown in Fig. 4(d).

4.2 Combinations of Techniques

In this subsection, we further improved the playing strength by combining the above
techniques, each of which used the best settings from the experimental results in the
previous subsection. Table 2 first lists the best results for incorporating each individual
technique, EPT, IMB, SL and TSQ (from the previous subsection). Then, we combined

Fig. 3. Win rates for IMB with different and different numbers of simulations per move

MCTS-Based Chinese Dark Chess Program 37

both EPT and IMB first, denoted by EPT + IMB, since these two techniques improved
the most when used alone. The result showed a win rate of 74.75 % for EPT + IMB.

Furthermore, we incorporated SL, TSQ, and SL + TSQ respectively into the above
EPT + IMB. Their win rates are shown in Table 2. By incorporating all techniques
together, the win rate reached up to 76.70 %.

Table 2. The best win rates of EPT, IMB, SL, TSQ and their combinations

EPT IMB SL TSQ EPT +
IMB

EPT +
IMB + SL

EPT +
IMB +
TSQ

EPT +
IMB +
SL + TSQ

Win rate 60.75 % 70.90 % 57.50 % 59.00 % 74.75 % 76.00 % 75.95 % 76.70 %

5 Conclusion

To our best knowledge, this paper is the first attempt to incorporate the three techniques,
early playout terminations (EPT), implicit minimax backups (IMB) and quality-based
rewards (SL and TSQ) together and obtained significant improvement. We demonstrate
this through an MCTS-based CDC game-playing program, DARKKNIGHT. Our experi‐
ments showed that all of these techniques did significantly improve the playing strength
with win rates of 60.75 %, 70.90 %, 57.50 % and 59.00 % against the original
DARKKNIGHT when incorporating EPT, IMB, SL and TSQ, respectively. By incorpo‐
rating all together, the win rate reached up to 76.70 %. The results demonstrated the
effectiveness of the above techniques for an MCTS-based CDC program. Besides, the

(a) (b)

(c) (d)

Fig. 4. The win rates for (a) SL, and for TSQ with different (b) , (c) and (d)

38 C.-H. Hsueh et al.

enhanced DARKKNIGHT, with more fine tunings, won the CDC tournament in the 18th
Computer Olympiad.

Acknowledgements. The authors would like to thank the Ministry of Science and Technology
of the Republic of China (Taiwan) for financial support of this research under contract numbers
MOST 102-2221-E-009-069-MY2, 102-2221-E-009-080-MY2, 104-2221-E-009-127-MY2, and
104-2221-E-009-074-MY2.

References

1. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed bandit problem.
Mach. Learn. 47(2–3), 235–256 (2002)

2. Baier, H., Winands, M.H.: Monte-Carlo tree search and minimax hybrids with heuristic
evaluation functions. In: Cazenave, T., Winands, M.H., Björnsson, Y. (eds.) CGW 2014.
CCIS, vol. 504, pp. 45–63. Springer, Heidelberg (2014)

3. Björnsson, Y., Finnsson, H.: CadiaPlayer: a simulation-based general game player. IEEE
Trans. Comput. Intell. AI Games 1(1), 4–15 (2009)

4. Borsboom, J., Saito, J.-T., Chaslot, G., Uiterwijk, J.: A comparison of Monte-Carlo methods
for phantom go. In: Proceedings of BeNeLux Conference on Artificial Intelligence, Utrecht,
The Netherlands, pp. 57–64 (2007)

5. Browne, C.B., Powley, E., Whitehouse, D., Lucas, S.M., Cowling, P.I., Rohlfshagen, P.,
Tavener, S., Perez, D., Samothrakis, S., Colton, S.: A survey of Monte Carlo tree search
methods. IEEE Trans. Comput. Intell. AI Games 4(1), 1–43 (2012)

6. Chang, H.-J., Hsu, T.-S.: A quantitative study of 2 × 4 Chinese dark chess. In: van den Herik,
H., Iida, H., Plaat, A. (eds.) CG 2013. LNCS, vol. 8427, pp. 151–162. Springer, Heidelberg
(2014)

7. Chen, B.-N., Hsu, T.-S.: Automatic generation of opening books for dark chess. In: van den
Herik, H., Iida, H., Plaat, A. (eds.) CG 2013. LNCS, vol. 8427, pp. 221–232. Springer,
Heidelberg (2014)

8. Chen, B.-N., Shen, B.-J., Hsu, T.-S.: Chinese dark chess. ICGA J. 33(2), 93–106 (2010)
9. Chen, J.-C., Lin, T.-Y., Chen, B.-N., Hsu, T.-S.: Equivalence classes in chinese dark chess

endgames. IEEE Trans. Comput. Intell. AI Games 7(2), 109–122 (2015)
10. Chen, J.-C., Lin, T.-Y., Hsu, S.-C., Hsu, T.-S.: Design and implementation of computer

Chinese dark chess endgame database. In: Proceeding of TCGA Workshop 2012, pp. 5–9,
Hualien, Taiwan (2012) (in Chinese)

11. Enzenberger, M., Müller, M., Arneson, B., Segal, R.: Fuego: an open-source framework for
board games and go engine based on Monte Carlo tree search. IEEE Trans. Comput. Intell.
AI Games 2(4), 259–270 (2010)

12. Finnsson, H.: Generalized Monte-Carlo tree search extensions for general game playing. In:
The Twenty-Sixth AAAI Conference on Artificial Intelligence, pp. 1550–1556, Toronto,
Canada (2012)

13. Gelly, S., Silver, D.: Monte-Carlo tree search and rapid action value estimation in computer
go. Artif. Intell. 175(11), 1856–1875 (2011)

14. Gelly, S., Wang, Y., Munos, R., Teytaud, O.: Modification of UCT with patterns in Monte-
Carlo go. Technical report, HAL - CCSd - CNRS, France (2006)

15. Jouandeau, N.: Varying complexity in CHINESE DARK CHESS stochastic game. In:
Proceeding of TCGA Workshop 2014, pp. 86, Taipei, Taiwan (2014)

MCTS-Based Chinese Dark Chess Program 39

16. Jouandeau, N., Cazenave, T.: Monte-Carlo tree reductions for stochastic games. In: Cheng,
S.-M., Day, M.-Y. (eds.) TAAI 2014. LNCS, vol. 8916, pp. 228–238. Springer, Heidelberg
(2014)

17. Jouandeau, N., Cazenave, T.: Small and large MCTS playouts applied to Chinese dark chess
stochastic game. In: Cazenave, T., Winands, M.H., Björnsson, Y. (eds.) CGW 2014. CCIS,
vol. 504, pp. 78–89. Springer, Heidelberg (2014)

18. Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: Fürnkranz, J., Scheffer,
T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 282–293. Springer,
Heidelberg (2006)

19. Lanctot, M., Winands, M.H.M., Pepels, T., Sturtevant, N.R.: Monte Carlo tree search with
heuristic evaluations using implicit minimax backups. In: 2014 IEEE Conference on
Computational Intelligence and Games, CIG 2014, pp. 1–8 (2014)

20. Lin, Y.-S., Wu, I.-C., Yen, S.-J.: TAAI 2011 computer-game tournaments. ICGA J. 34(4),
248–250 (2011)

21. Lorentz, R.J.: Amazons discover Monte-Carlo. In: van den Herik, H., Xu, X., Ma, Z.,
Winands, M.H. (eds.) CG 2008. LNCS, vol. 5131, pp. 13–24. Springer, Heidelberg (2008)

22. Lorentz, R.: Early playout termination in MCTS. In: The 14th Conference on Advances in
Computer Games (ACG2015), Leiden, The Netherlands (2015)

23. Lorentz, R., Horey, T.: Programming breakthrough. In: van den Herik, H., Iida, H., Plaat, A.
(eds.) CG 2013. LNCS, vol. 8427, pp. 49–59. Springer, Heidelberg (2014)

24. Pepels, T., Tak, M.J., Lanctot, M., Winands, M.H.M.: Quality-based rewards for Monte-Carlo
tree search simulations. In: 21st European Conference on Artificial Intelligence, Prague,
Czech Republic (2014)

25. Saffidine, A., Jouandeau, N., Buron, C., Cazenave, T.: Material symmetry to partition
endgame tables. In: van den Herik, H., Iida, H., Plaat, A. (eds.) CG 2013. LNCS, vol. 8427,
pp. 187–198. Springer, Heidelberg (2014)

26. Su, T.-C., Yen, S.-J., Chen, J.-C., Wu, I.-C.: TAAI 2012 computer game tournaments. ICGA
J. 37(1), 33–35 (2014)

27. Theory of computer games, a course in National Taiwan University taught by Tsu, T.-S.
http://www.iis.sinica.edu.tw/~tshsu/tcg/index.html

28. Tseng, W.-J., Chen, J.-C., Chen, L.-P., Yen, S.-J., Wu, I.-C.: TCGA 2013 computer game
tournament report. ICGA J. 36(3), 166–168 (2013)

29. Van Lishout, F., Chaslot, G., Uiterwijk, J.W.: Monte-Carlo tree search in Backgammon. In:
Computer Games Workshop, pp. 175–184, Amsterdam, The Netherlands (2007)

30. Winands, M.H.M., Björnsson, Y., Saito, J.-T.: Monte Carlo tree search in lines of action.
IEEE Trans. Comput. Intell. AI Games 2(4), 239–250 (2010)

31. Winands, M.H., Björnsson, Y., Saito, J.-T.: Monte-Carlo tree search solver. In: van den Herik,
H., Xu, X., Ma, Z., Winands, M.H. (eds.) CG 2008. LNCS, vol. 5131, pp. 25–36. Springer,
Heidelberg (2008)

32. Yang, J.-K., Su, T.-C., Wu, I.-C.: TCGA 2012 computer game tournament report. ICGA J.
35(3), 178–180 (2012)

33. Yen, S.-J., Chou, C.-W., Chen, J.-C., Wu, I.-C., Kao, K.-Y.: Design and implementation of
Chinese dark chess programs. IEEE Trans. Comput. Intell. AI Games 7(1), 66–74 (2015)

34. Yen, S.-J., Chen, J.-C., Chen, B.-N., Tseng, W.-J.: DarkKnight wins Chinese dark chess
tournament. ICGA J. 36(3), 175–176 (2013)

35. Yen, S.-J., Su, T.-C., Wu, I.-C.: The TCGA 2011 computer-games tournament. ICGA J.
34(2), 108–110 (2011)

40 C.-H. Hsueh et al.

http://www.iis.sinica.edu.tw/%7etshsu/tcg/index.html

LinUCB Applied to Monte-Carlo Tree Search

Yusaku Mandai(B) and Tomoyuki Kaneko

The Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
mandai@graco.c.u-tokyo.ac.jp

Abstract. UCT is a de facto standard method for Monte-Carlo tree
search (MCTS) algorithms, which have been applied to various domains
and have achieved remarkable success. This study proposes a family of
LinUCT algorithms that incorporate LinUCB into MCTS algorithms.
LinUCB is a recently developed method that generalizes past episodes
by ridge regression with feature vectors and rewards. LinUCB outper-
forms UCB1 in contextual multi-armed bandit problems. We introduce
a straightforward application of LinUCB, LinUCTPLAIN by substituting
UCB1 with LinUCB in UCT. We show that it does not work well owing
to the minimax structure of game trees. To better handle such tree struc-
tures, we present LinUCTRAVE and LinUCTFP by further incorporating
two existing techniques, rapid action value estimation (RAVE) and fea-
ture propagation, which recursively propagates the feature vector of a
node to that of its parent. Experiments were conducted with a synthetic
model, which is an extension of the standard incremental random tree
model in which each node has a feature vector that represents the charac-
teristics of the corresponding position. The experimental results indicate
that LinUCTRAVE, LinUCTFP, and their combination LinUCTRAVE-FP

outperform UCT, especially when the branching factor is relatively large.

1 Introduction

UCT [13] is a de facto standard algorithm of Monte-Carlo tree search
(MCTS) [3]. UCT has achieved remarkable successes in various domains includ-
ing the game of Go [8].

For game-tree search, UCT constructs and evaluates a game tree through a
random sampling sequence. At each time step, a playout involving Monte-Carlo
simulation is performed to improve the empirical estimation of the winning ratio
at a leaf node and that of the ancestors of the leaf. For each playout, a leaf in the
game tree is selected in a best-first manner by descending the most promising
move with respect to the upper confidence bound of the winning ratio, UCB1 [1].
After it reaches the leaf, the score of the playout is determined by the terminal
position, which is reached by alternatively playing random moves. Therefore,
UCT works effectively without heuristic functions or domain knowledge. The
fact is a remarkable advantage over traditional game-tree search methods based
on alpha beta search [12], because such methods require adequate evaluation
functions to estimate a winning probability of a position. Generally, the con-
struction of such evaluation functions requires tremendous effort [11].
c© Springer International Publishing Switzerland 2015
A. Plaat et al. (Eds.): ACG 2015, LNCS 9525, pp. 41–52, 2015.
DOI: 10.1007/978-3-319-27992-3 5

42 Y. Mandai and T. Kaneko

Although UCT does not explicitly require heuristics, many studies have incor-
porated domain-dependent knowledge into UCT to improve the convergence
speed or playing strength, such as progressive widening [6], prior knowledge [10],
and PUCB [16]. Such approaches utilize a set of features, i.e., a feature vector,
which is observable in each state or in each move.

This study proposes a family of LinUCT as new MCTS algorithms. Lin-
UCT is based on LinUCB [5,15], which has been studied in contextual multi-
armed bandit problem [4]. While UCB1 only considers past rewards for each
arm, LinUCB generalizes past episodes by ridge regression with feature vectors
and rewards to predict the rewards of a future state. Thus, LinUCB is an alter-
native means to incorporate domain knowledge in an online manner. We first
introduce LinUCTPLAIN by substituting UCB1 with LinUCB in UCT. However,
this straightforward application of LinUCB is not promising, because it does not
consider information in the subtree expanded under a node. To overcome this
problem, we present LinUCTRAVE and LinUCTFP, by incorporating two existing
techniques, rapid action value estimation (RAVE) [9] and feature propagation
that propagates feature vectors in a subtree to its root. We conducted experi-
ments with a synthetic model that is a variant of incremental random trees that
have served as good test sets for search algorithms [7,13,14,18,20]. We extend
the trees such that each node has a feature vector while preserving the main
property of the incremental random trees. The experiments demonstrate that
LinUCTRAVE, LinUCTFP, and their combination LinUCTRAVE-FP outperform
UCT, especially when the branching factor is relatively large.

2 MCTS and Algorithms in Multi-armed Bandit
Problems

In the game of Go [2], minimax tree search does not work effectively because of
the difficulties in constructing heuristic evaluation functions. After the emergence
of a new paradigm, Monte-Carlo tree search (MCTS), the playing strength of
computer players has been improved significantly in Go [8]. MCTS relies on a
number of random simulations according to the following steps [3].

1. Selection: Starting at the root node, the algorithm descends the tree to
a leaf. At each internal node, an algorithm for multi-armed bandit prob-
lems is employed to determine and select the move with the highest value
with respect to a given criterion. Here, we consider UCB1, UCB1RAVE, and
LinUCB, as the selection criteria.

2. Expansion: The children of the leaf are expanded if appropriate, and one
child is selected randomly.

3. Simulation: The rest of the game is played randomly. Typically, the game
consists of completely random moves; however, some studies have suggested
that a well-designed probability of moves yields improved performance [6,17].

4. Back propagation: The result (i.e., win/loss) of the simulation is back-
propagated to the nodes on the path the algorithm descended in Step 1.

LinUCB Applied to Monte-Carlo Tree Search 43

These steps are repeated until the computational budget (e.g., time) is
exhausted. Then, the best move, typically the most visited child of the root,
is identified.

2.1 UCT

UCT (UCB applied to trees) is one of the most successful MCTS variants. In
the selection step at time t, UCT computes the UCB1 value [1] for move a of
node s as follows:

UCB1(s, a) = Xa +
√

2 ln Ns

Na
(1)

where Xa is the empirical mean of the rewards of move a, and Ni is the number
of visits to the node or move i. Note that a position after a move is defined
without ambiguity in deterministic games. Thus, we use move a or the position
after move a interchangeably for simplicity. The best move converges to the same
move identified by a minimax algorithm under a certain assumption [13].

2.2 RAVE

RAVE is a remarkable enhancement to MCTS, particularly effective in Go [10].
It is a generalization of the All Moves As First (AMAF) heuristic, where AMAF
treats all moves in a simulation as if they were selected as the first move. When
RAVE is incorporated, the following interpolation UCB1RAVE is used as the
selection criterion:

UCB1RAVE(s, a) = β(s) RAVE(s, a) + (1 − β(s)) UCB1(s, a) (2)

where RAVE(s, a) has a similar form as Eq. (1). Note that Xa and Na are counted
according to AMAF in Go. Thus, the RAVE value may become rapidly a good
estimate of the reward by incorporating various simulation results that are not
contained in UCB1 for Xa. The interpolation weight β(s) is

√
k

3Ns+k . Therefore,
the value of UCB1RAVE converges to that of UCB1 for large Ns, while RAVE
covers the unreliable prediction of UCB1 when Ns is small. Parameter k controls
the number of episodes when both terms are equal [9].

2.3 LinUCB

LinUCB is an algorithm for the contextual bandit problems [5,15]. Here, a fea-
ture vector is observable for each arm, and it is assumed that the expected
reward of arm a is defined by the inner product between the feature vector xa

and an unknown coefficient vector θ∗
a; E[ra|xa] = x�

a θ∗
a, where ra is the reward

of arm a. The LinUCB algorithm employs ridge regression to estimate θ∗
a using

the trials performed so far. The criterion in arm selection in LinUCB is expressed
as follows:

LinUCB(a) = x�
a θ̂a + α

√

x�
a A

−1
a xa, (3)

44 Y. Mandai and T. Kaneko

Algorithm 1. LinUCB
Inputs: α ∈ R+

for t = 1, 2, 3, ... do
for all a ∈ At do � At is a set of available arms at t

if a is new then
Aa ← Id×d � d dimensional identity matrix
ba ← 0d×1 � d dimensional zero vector

θ̂a ← A−1
a ba

pa ← x�
a θ̂a + α

√
x�
a A

−1
a xa

at ← arg max
a∈At

pa with ties broken arbitrarily

Observe a real-valued payoff rt
Aat ← Aat + xatx

�
at

bat ← bat + rtxat

where θ̂a is the current estimate of θ∗
a, and A−1

a is the inverse of the variance-
covariance matrix for the regression on arm a. Constant α > 0 controls the
exploration-exploitation balance. With a probability of at least 1 − δ, the dif-
ference between the current estimate x�

a θ̂a and the expected reward E[ra|xa] is
bounded [15,19] as follows:

|x�
a θ̂a − E[ra|xa]| ≤ α

√

x�
a A

−1
a xa, where α = 1 +

√
ln(2/δ)/2. (4)

Thus, the first term of the right side of Eq. (3) estimates the reward of arm
a, and the second term works as the confidence interval of the average reward.
Therefore, LinUCB calculates the upper confidence bound of the reward of each
arm, similar to UCB algorithms. Algorithm 1 describes the LinUCB algorithm,
which updates θ̂a via supplementary matrix A and vector b, at each time step.

Note that we introduce only the basic LinUCB framework for simplicity of
the paper. The authors of LinUCB also presented an extended framework in
which a feature vector models both a visiting user and an article available at
time t [5,15].

3 LinUCT and Variants

In the original LinUCB, it is assumed that each arm a has its own coefficient
vector θ∗

a; therefore matrix Aa and vector ba are maintained individually. How-
ever, this configuration prevents LinUCB from generalizing information among
positions when we model a move as an arm in deterministic games. In contrast,
it is reasonable to assume that the expected rewards are under the control of
a common θ∗, for all nodes in a searched game tree. Hereafter, we use a com-
mon θ∗, matrix A, and vector b (without subscripts). This decision follows the
observation that a common evaluation function is used throughout search by
minimax-based methods.

LinUCB Applied to Monte-Carlo Tree Search 45

Algorithm 2. Supplementary Procedures in LinUCT
1: procedure LinUct-Initialize
2: A ← Id×d

3: b ← 01×d

4: procedure Back-Propagation-Added(path, Δ)
5: for s ∈ path do
6: A ← A + xsx

�
s

7: b ← b + Δsxs

3.1 LinUCTPLAIN: Basic LinUCT

Here we introduce LinUCTPLAIN, which is a straightforward application of Lin-
UCB to MCTS. In LinUCTPLAIN, the selection step described in Sect. 2 employs
LinUCB with the following adjustment in counting the number of simulations:

LinUCB’(s, a) = x�
a θ̂ + α

√

x�
a · Ns0

Na
A−1 · xa, (5)

where s0 is the root node of a given search tree.
Algorithm 2 shows the supplementary procedures used in LinUCTPLAIN. Pro-

cedure LinUct-Initialize initializes the global variables A and b. After each
simulation, in addition to the standard back-propagation process of Ns and Xs

in MCTS, procedure Back-Propagation-Added updates variables A and b
for each node s in the path from the root using the result of a playout Δ. Vari-
able Δs is the relative reward of Δ with respect to the player of s. Consequently,
matrix A is updated multiple times for each playout, while it is updated exactly
once in the original LinUCB. This makes the second term for exploration in
Eq. (3) too small too rapidly. Therefore, as in Eq. (5), we scale the elements in
matrix A by the total number of playouts divided by the number of visits to
the node.

3.2 LinUCTRAVE: LinUCB Combined with UCB1 in RAVE Form

A concern with LinUCTPLAIN is that it evaluates a node only by its static
feature vector. Consequently, the descendant node information is completely
ignored, which is apparently problematic, because in traditional minimax search
methods, the minimax value of as deep search as possible is preferable to a mere
evaluation function’s value for the root node.

LinUCTRAVE, a combination of LinUCB and UCB1, resolves this problem
by simply utilizing LinUCB as the RAVE heuristic function in Eq. (2).

LinUCBRAVE(s, a) = β(s) LinUCB’(s, a) + (1 − β(s)) UCB1(s, a) (6)

The value converges to UCB1 value as the original RAVE presented in Eq. (2)
does. In addition, LinUCTRAVE makes the idea of RAVE more domain-
independent. While the original RAVE assumes that the value of a move is

46 Y. Mandai and T. Kaneko

Algorithm 3. Back-propagation process of LinUCTFP

1: procedure Back-Propagation-Added(path, Δ)
2: for s ∈ path do
3: A ← A + xsx

�
s

4: b ← b + Δsxs

5: p ← parent of s
6: if p is not null then
7: xp ← (1 − γ) xp + γ xs

independent of move order in most cases in a target game. This assumption
holds in Go; however, apparently it does not hold in chess. In contrast to the
original RAVE, LinUCTRAVE can be applied to any game where a positional
feature vector is available.

3.3 LinUCTFP: LinUCB with Propagation of Features

LinUCTFP (feature propagation) is a completely different solution that consid-
ers subtrees. In LinUCTFP, by recursively propagating the feature vector of a
node to that of its parent, the LinUCB value calculated using Eq. (3) reflects
the expected rewards of playouts through the node. Algorithm3 describes the
modified back-propagation process used in LinUCTFP, where γ ∈ (0, 1) controls
the learning rate of a feature vector. We also present LinUCTRAVE-FP, which
incorporates this propagation scheme into LinUCTRAVE.

4 Incremental Random Game Tree with Feature Vectors

Here we introduce an extension to existing random game-tree models. Incremen-
tal random trees (or P-game) have served as domain-independent test sets for
evaluation of various search algorithms [7,13,14,18,20]. In this context, a ran-
dom value is assigned to each edge, and the game theoretical value of a leaf is
defined as the summation of the edge values in the path from the root. Moreover,
for an internal node, the same summation can serve as a heuristic score returned
by an evaluation function for that node. The advantages of this model are that
(1) the search space can be controlled easily via the width and height, and (2) a
correlation between the heuristic score of a node and that of its descendants is
produced, which is expected in real games. Here, we extend the trees such that
each node has a feature vector while preserving the main property of incremental
random trees.

In our new trees, each tree has its own hidden d-dimensional vector θ∗ ∈ R
d,

which cannot be observed by search algorithms. In addition, each node in a tree
has two d-dimensional binary feature vectors (the one is for a player to move, and
the other for the opponent): xm,xo ∈ {0, 1}d. In MCTS, a leaf returns binary
reward r = {0, 1} for each playout, and the expected reward E(r) is defined by
these vectors as follows:

E(r) = (xm − xo)�θ∗ + 0.5. (7)

LinUCB Applied to Monte-Carlo Tree Search 47

(x1
m,x1

o) (x2
m,x2

o)

(x11
m ,x11

o)
(x12

m ,x12
o)

(x21
m ,x21

o)
(x22

m ,x22
o)

Fig. 1. Example of an incremental random tree with feature vectors.

0

200

400

600

800

1000

1200

1400

1600

1800

0.2 0.3 0.4 0.5 0.6 0.7 0.8

F
re

q
u
en

cy

Expectations of reward

10-dim
20-dim
30-dim
40-dim
50-dim
60-dim
70-dim

Fig. 2. Reward distributions

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

0.005

10 20 30 40 50 60 70

V
a
ri

a
n
ce

Dimension of feature vector

Variance of the distributions
Fitting curve: e−0.2994d−0.9746

Fig. 3. Variance v.s. dimension

Similarly, the inner product (xm − xo)�θ̂ gives the estimation of reward in
LinUCB algorithms. This setting is equivalent to a Bernoulli multi-armed bandit
problem when a tree depth is one.

To model a move in a two-player game, the feature vectors of each child
(x′

m,x′
o) are computed using those of the parent (xm,xo). The feature vectors of

a child inherit those of the parent with changing their owners, i.e., x′
m = xo. This

swap of vectors models the zero-sum property. Then, with a fixed probability p,
each element (bit) is flipped. These flips correspond to changes in a board made
by a move. Figure 1 shows an example of our tree. The left child of the root has
feature vectors (x1

m,x1
o), and its left child has feature vectors (x11

m ,x11
o). These

vectors are similar to (x1
o, x

1
m). For integer i ∈ [0, d], the i-th element of x11

m has
the same or flipped value as that of the corresponding element of x1

o with the
probability p or 1 − p, respectively.

Here we discuss some of the properties of our trees. We generated 100 trees
by varying the dimension d of features. Note that the width and depth of a tree
are fixed to 100 and 1, respectively. Figure 2 shows the histogram of the expected
rewards, and Fig. 3 gives their variances with a fitted curve. As can be seen, the
distributions with higher dimension have a smaller variance. The reason for this
is that each element of θ∗ is randomly set in [−0.5/d, 0.5/d], to ensure that the
probability given in Eq. (7) is within [0, 1]. However, the difference in variances
may cause a problem because it is difficult for UCB algorithms to select the best
arm when the reward of the second best arm is close to that of the best one.
Therefore, we adjust the rewards according to the observed variances, and use
the following formula rather than Eq. (7):

E(r) = min(1.0,max(0.0,
(xm − xo)

�
θ

√
e−3.24994d−0.9746/σ′2 + 0.5)), (8)

48 Y. Mandai and T. Kaneko

where e is the base of the natural logarithm, and σ′2 is the desired variance. The
constants −3.24994 and −0.9746 come from the curve fitted in Fig. 3. We con-
firmed that this modification yields nearly the same distributions of rewards for
various dimensions d and that approximately 96 % were in [0, 1] for σ′ = 0.5/3.

5 Experiments

We performed experiments with various configurations of artificial trees to eval-
uate the performance of the proposed algorithms (LinUCTPLAIN, LinUCTRAVE,
LinUCTFP, and LinUCTRAVE-FP) and UCT. These algorithms were investigated
in terms of regrets and failure rates following the experiments in the litera-
ture [13]. Regret R, which is the cumulative loss of the player’s selection, is a
standard criterion in multi-armed bandit problems. To fit in the range [0, 1], we
divide R by the number of playouts n and use the average regret per playout
R/n = μ∗ − 1/n

∑n
t=1 μit . Here, μ∗ is the expectation of reward of the optimal

(maximum) move, and μit is the expected reward of the pulled arm it at time t.
For game trees, we defined μi for each child i of the root as the theoretical
minimax value of node i (i.e., the expected reward of the leaf of the principal
variation). The failure rate is the rate by which the algorithm fails to choose the
optimal move at the root. For each tree instance, each algorithm and each time t,
whether the algorithm fails is determined by whether the most visited move in
the root so far is the optimal move. By averaging them over tree instances, we
obtain the failure rate of each algorithm at time t.

Instances of trees were generated randomly as described in Sect. 4. The para-
meter p for controlling the similarity between a parent and a child was fixed to
0.1, while the dimension d of feature vectors was selected according the number
of leaves. In addition, we removed trees in which the optimal move is not unique.
Each MCTS algorithm grows its search tree iteratively until it covers all nodes
of the generated tree. All MCTS algorithms expand the children of a node at the
second visit to the node unless the node is a leaf of the generated tree. For each
playout, a move is selected randomly until it reaches the leaf. Then, the reward
is set randomly by the probability associated with the node given in Eq. (8).

5.1 Robustness with Respect to Parameters

LinUCT algorithms depend on the parameters, i.e., exploration parameter α in
the LinUCB value in Eq. (3), k in LinUCBRAVE and its variants, and propagat-
ing rate γ for LinUCTFP. To observe the dependency of performance of LinUCT
algorithms on these parameters, we evaluated the combinations of various con-
figurations: for α, the values 1.0, 1.59, 1.83, and 2.22 were tested, where 1.0 is the
minimum value and the rest correspond to δ = 1.0, 0.5, and 0.1 in Eq. (4), respec-
tively. For k and γ, the values 100, 1000, and 10000 and 0.1, 0.01, and 0.001 were
tested, respectively. To observe the dependence on the tree size, various pairs
of (depth, branching factor) were tested: (1, 256), (2, 16), (4, 4) and (8, 2). Note

LinUCB Applied to Monte-Carlo Tree Search 49

0.01

0.1

1

1 10 100 1000 10000 100000

F
a
il
u
re

ra
te

Number of playouts

LinUCT α = 1.00
LinUCT α = 1.59
LinUCT α = 1.83
LinUCT α = 2.22

LinUCTFP α = 1.00
LinUCTFP α = 1.59
LinUCTFP α = 1.83
LinUCTFP α = 2.22

0.001

0.01

0.1

1

1 10 100 1000 10000 100000

A
v
er

a
g
e

re
g
re

t

Number of playouts

LinUCT α = 1.00
LinUCT α = 1.59
LinUCT α = 1.83
LinUCT α = 2.22

LinUCTFP α = 1.00
LinUCTFP α = 1.59
LinUCTFP α = 1.83
LinUCTFP α = 2.22

0.01

0.1

1

1 10 100 1000 10000 100000

F
a
il
u
re

ra
te

Number of playouts

LinUCTRAVE-FP k = 100
LinUCTRAVE-FP k = 1000

LinUCTRAVE-FP k = 10000
LinUCTRAVE k = 100

LinUCTRAVE k = 1000
LinUCTRAVE k = 10000

0.001

0.01

0.1

1

1 10 100 1000 10000 100000

A
v
er

a
g
e

re
g
re

t

Number of playouts

LinUCTRAVE-FP k = 100
LinUCTRAVE-FP k = 1000

LinUCTRAVE-FP k = 10000
LinUCTRAVE k = 100

LinUCTRAVE k = 1000
LinUCTRAVE k = 10000

0.01

0.1

1

1 10 100 1000 10000 100000

F
a
il
u
re

ra
te

Number of playouts

LinUCTFP γ = 0.001
LinUCTFP γ = 0.010
LinUCTFP γ = 0.100

LinUCTRAVE-FP γ = 0.001
LinUCTRAVE-FP γ = 0.010
LinUCTRAVE-FP γ = 0.100

0.001

0.01

0.1

1

1 10 100 1000 10000 100000

A
v
er

a
g
e

re
g
re

t

Number of playouts

LinUCTFP γ = 0.001
LinUCTFP γ = 0.010
LinUCTFP γ = 0.100

LinUCTRAVE-FP γ = 0.001
LinUCTRAVE-FP γ = 0.010
LinUCTRAVE-FP γ = 0.100

Failure rate Average regret

Fig. 4. Effects by constants α, k, and γ: depth = 4, width = 4, d = 8

that the dimension of feature vectors d was set to 8. Therefore each tree has
exactly 256 leaves; thus, LinUCB can distinguish leaves in ideal cases.

The top, middle, and bottom two panels in Fig. 4 show the failure rates and
average regrets for each algorithm with varying α, k, and γ, respectively. Each
point represents the average over 100 trees. As can be seen, the constants α = 1.0,
k = 100, and γ = 0.01 are slightly better than others, although the differences
among the algorithms are more crucial than those between the parameters for
the same algorithm. Therefore, we used these parameters for the rest of our
experiments. Note that we only show the results for trees (4, 4), because, the
results obtained with different tree configurations were similar.

5.2 Comparison with UCT

We compared LinUCT algorithms to UCT, which is the standard algorithm in
MCTS. For this experiment, the depth of the tree was fixed to four, while various
branching factors (4–16) were used. Figure 5 shows the failure rates and regrets
for each algorithm, where each point (x, y) is the branching factor of trees for
x, and the average failure rate or regret over 100 trees at time 10,000 for each
algorithm for y. As expected, LinUCTPLAIN resulted in the highest failure rate
(i.e., worst performance) for most cases. UCT outperformed the others for very

50 Y. Mandai and T. Kaneko

0.1

1

4 5 6 7 8 9 10 11 12 13 14 15 16

F
a
il
u
re

ra
te

Branching factor

LinUCTPLAIN

LinUCTFP

LinUCTRAVE-FP

LinUCTRAVE

UCT

(a) Failure rate

0.01

0.1

4 5 6 7 8 9 10 11 12 13 14 15 16

A
v
er

a
g
e

re
g
re

t

Branching factor

(b) Average regret

Fig. 5. Comparison of LinUCT algorithms with UCT for various trees: depth = 4,
d = 16

0.1

1

1 10 100 1000 10000

F
a
il
u
re

ra
te

Number of playouts

LinUCT
LinUCTFP

LinUCTRAVE-FP

LinUCTRAVE

UCT

(a) Failure rate (width=4)

0.01

0.1

1

1 10 100 1000 10000

A
v
er

a
g
e

re
g
re

t

Number of playouts

LinUCT
LinUCTFP

LinUCTRAVE-FP

LinUCTRAVE

UCT

(b) Average regret (width=4)

0.1

1

1 10 100 1000 10000

F
a
il
u
re

ra
te

Number of playouts

LinUCT
LinUCTFP

LinUCTRAVE-FP

LinUCTRAVE

UCT

(c) Failure rate (width=10)

0.01

0.1

1

1 10 100 1000 10000

A
v
er

a
g
e

re
g
re

t

Number of playouts

LinUCT
LinUCTFP

LinUCTRAVE-FP

LinUCTRAVE

UCT

(d) Average regret (width=10)

Fig. 6. Performances of each algorithm (depth = 4, d = 16)

small trees (e.g., branching factor four), LinUCTRAVE-FP performed better with
a branching factor of 5–9, and LinUCTFP achieved good results for trees with
a branching factor of greater than 12. These results suggest that LinUCTFP is
effective in games that have a relatively large branching factor. Figure 6 shows
that the failure rates and average regrets decreased along with an increased
number of playouts. The performance of compared algorithms is similar up to a
certain point; however, they differ substantially at time 10,000.

6 Conclusion

We presented a family of LinUCT algorithms that incorporate LinUCB into UCT
for tree search: LinUCTPLAIN, LinUCTRAVE, LinUCTFP, and LinUCTRAVE-FP.

LinUCB Applied to Monte-Carlo Tree Search 51

LinUCTPLAIN is the simplest algorithm in which the LinUCB value is used rather
than the UCB1 value. However, there is room for improvement. Feature vectors
observed for a node by the algorithm do not contain the information about
the structure of the subtree expanded thus far. To address the problem, we
incorporated existing techniques: a RAVE framework and feature propagation.
LinUCTRAVE combines LinUCB and UCB1 in a RAVE framework. LinUCTFP is
a modified version of LinUCTPLAIN in which the feature vectors of descendants
are propagated to ancestors. LinUCTRAVE-FP is a combination of LinUCTRAVE

and LinUCTFP.
Experiments were performed with incremental random trees to assess the

proposed algorithms in terms of the failure rates and regrets. In these exper-
iments, each random tree was extended to have its own coefficient vector and
feature vectors for each node, where the expected reward at each leaf is defined
by the inner product of the feature vector and the coefficient vector. The results
obtained with trees of a branching factor of 4–16 showed that LinUCTRAVE,
LinUCTFP and LinUCTRAVE-FP outperformed UCT, with the exception of small
trees, and LinUCTFP demonstrated the best performance with a branching fac-
tor greater than 11.

There are two directions for future work. The most important direction for
future work would be to examine the practical performance of the proposed
family of LinUCT algorithm with major games such as Go. The other interesting
direction is convergence analysis of the proposed LinUCT algorithms.

Acknowledgement. A part of this work was supported by JSPS KAKENHI Grant
Number 25330432.

References

1. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed
bandit problem. Mach. Learn. 47(2–3), 235–256 (2002)

2. Bouzy, B., Cazenave, T.: Computer Go: an AI-oriented survey. Artif. Intell.
132(1), 39–103 (2001)

3. Browne, C., Powley, E., Whitehouse, D., Lucas, S., Cowling, P., Rohlfshagen, P.,
Tavener, S., Perez, D., Samothrakis, S., Colton, S.: A survey of monte carlo tree
search methods. IEEE Trans. Comput. Intell. AI Games 4(1), 1–43 (2012)

4. Bubeck, S., Cesa-Bianchi, N.: Regret analysis of stochastic and nonstochastic
multi-armed bandit problems. Found. Trends Mach. Learn. 5(1), 1–122 (2012)

5. Chu, W., Li, L., Reyzin, L., Schapire, R.E.: Contextual bandits with linear pay-
off functions. In: Gordon, G.J., Dunson, D.B., Dud́ık, M. (eds.) Proceedings of
the Fourteenth International Conference on Artificial Intelligence and Statistics,
AISTATS 2011. JMLR Proceedings, vol. 15, pp. 208–214. JMLR.org (2011)

6. Coulom, R.: Computing elo ratings of move patterns in the game of go. ICGA J.
30(4), 198–208 (2007)

7. Furtak, T., Buro, M.: Minimum proof graphs and fastest-cut-first search heuris-
tics. In: Boutilier, C. (ed.) Proceedings of the 21st IJCAI, pp. 492–498 (2009)

52 Y. Mandai and T. Kaneko

8. Gelly, S., Kocsis, L., Schoenauer, M., Sebag, M., Silver, D., Szepesvári, C., Tey-
taud, O.: The grand challenge of computer go: Monte carlo tree search and exten-
sions. Commun. ACM 55(3), 106–113 (2012)

9. Gelly, S., Silver, D.: Combining online and offline knowledge in uct. In: Proceed-
ings of the 24th ICML, pp. 273–280. ACM (2007)

10. Gelly, S., Silver, D.: Monte-carlo tree search and rapid action value estimation in
computer go. Artif. Intell. 175(11), 1856–1875 (2011)

11. Hoki, K., Kaneko, T.: Large-scale optimization for evaluation functions with min-
imax search. J. Artif. Intell. Res. 49, 527–568 (2014)

12. Knuth, D.E., Moore, R.W.: An analysis of alpha-beta pruning. Artif. Intell. 6(4),
293–326 (1975)

13. Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: Fürnkranz, J.,
Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp.
282–293. Springer, Heidelberg (2006)

14. Korf, R.E., Chickering, D.M.: Best-first minimax search. Artif. Intell. 84, 299–337
(1996)

15. Li, L., Chu, W., Langford, J., Schapire, R.E.: A contextual-bandit approach to
personalized news article recommendation. In: Proceedings of the 19th Interna-
tional Conference on World Wide Web, pp. 661–670. ACM (2010)

16. Rosin, C.: Multi-armed bandits with episode context. Ann. Math. Artif. Intell.
61(3), 203–230 (2011). doi:10.1007/s10472-011-9258-6

17. Silver, D., Tesauro, G.: Monte-carlo simulation balancing. In: Proceedings of the
26th Annual ICML, pp. 945–952. ACM (2009)

18. Smith, S.J., Nau, D.S.: An analysis of forward pruning. In: AAAI, pp. 1386–1391
(1994)

19. Walsh, T.J., Szita, I., Diuk, C., Littman, M.L.: Exploring compact reinforcement-
learning representations with linear regression. In: Proceedings of the Twenty-
Fifth Conference on Uncertainty in Artificial Intelligence, pp. 591–598. AUAI
Press (2009)

20. Yoshizoe, K., Kishimoto, A., Kaneko, T., Yoshimoto, H., Ishikawa, Y.: Scalable
distributed monte-carlo tree search. In: the 4th SoCS, pp. 180–187 (2011)

http://dx.doi.org/10.1007/s10472-011-9258-6

Adapting Improved Upper Confidence Bounds
for Monte-Carlo Tree Search

Yun-Ching Liu(B) and Yoshimasa Tsuruoka

Department of Electrical Engineering and Information Systems,
University of Tokyo, Tokyo, Japan

cipherman@gmail.com

Abstract. The UCT algorithm, which combines the UCB algorithm and
Monte-Carlo Tree Search (MCTS), is currently the most widely used vari-
ant of MCTS. Recently, a number of investigations into applying other
bandit algorithms to MCTS have produced interesting results. In this
research, we will investigate the possibility of combining the improved
UCB algorithm, proposed by Auer et al. [2], with MCTS. However, var-
ious characteristics and properties of the improved UCB algorithm may
not be ideal for a direct application to MCTS. Therefore, some mod-
ifications were made to the improved UCB algorithm, making it more
suitable for the task of game-tree search. The Mi-UCT algorithm is the
application of the modified UCB algorithm applied to trees. The perfor-
mance of Mi-UCT is demonstrated on the games of 9 × 9 Go and 9 × 9
NoGo, and has shown to outperform the plain UCT algorithm when only
a small number of playouts are given, and rougly on the same level when
more playouts are available.

1 Introduction

The development of Monte-Carlo Tree Search (MCTS) has made significant
impact on various fields of computer game play, especially the field of com-
puter Go [6]. The UCT algorithm [3] is an MCTS algorithm that combines the
UCB algorithm [4] and MCTS, by treating each node as a single instance of the
multi-armed bandit problem. The UCT algorithm is one of the most prominent
variants of the Monte-Carlo Tree Search [6].

Recently, various investigations have been carried out on exploring the pos-
sibility of applying other bandit algorithms to MCTS. The application of simple
regret minimizing bandit algorithms has shown the potential to overcome some
weaknesses of the UCT algorithm [7]. The sequential halving on trees (SHOT)
[8] applies the sequential halving algorithm [11] to MCTS. The SHOT algorithm
has various advantages over the UCT algorithm, and has demonstrated better
performance on the game of NoGo. The H-MCTS algorithm [9] performs selec-
tion by the SHOT algorithm for nodes that are near to the root and the UCT
algorithm for deeper nodes. H-MCTS has also shown superiority over the UCT
in games such as 8 × 8 Amazons and 8 × 8 AtariGo. Applications of the KL-
UCB [12] and Thompson sampling [13] to MCTS have also been investigated
and produced some interesting results [10].
c© Springer International Publishing Switzerland 2015
A. Plaat et al. (Eds.): ACG 2015, LNCS 9525, pp. 53–64, 2015.
DOI: 10.1007/978-3-319-27992-3 6

54 Y.-C. Liu and Y. Tsuruoka

Algorithm 1. The Improved UCB Algorithm [2]
Input: A set of arms A, total number of trials T
Initialization: Expected regret Δ0 ← 1, a set of candidates arms B0 ← A
for rounds m = 0, 1, · · · , � 1

2
log2

T
e
� do

(1) Arm Selection:
for all arms ai ∈ Bm do

for nm = � 2 log(TΔ2
m)

Δ2 � times do
sample the arm ai and update its average reward wi

end for
end for

(2) Arm Elimination:
amax ← MaximumRewardArm(Bm)
for all arms ai ∈ Bm do

if (wi +
√

log(TΔ2)
2nm

) < (wmax −
√

log(TΔ2)
2nm

) then

remove ai from Bm

end if
end for

(3) Update Δm

Δm+1 = Δm
2

end for

The improved UCB algorithm [2] is a modification of the UCB algorithm,
and it has been shown that the improved UCB algorithm has a tighter regret
upper bound than the UCB algorithm. In this research, we will explore the
possibility of applying the improved UCB algorithm to MCTS. However, some
(we mention early explorations and not an anytime algorithm) characteristics
of the improved UCB algorithm may not be desirable for a direct application
to MCTS. Therefore, we have made appropriate modifications to the improved
UCB algorithm, making it more suitable for the task of game-tree search. We
will demonstrate the impact and implications of the modifications we have made
on the improved UCB algorithm in an empirical study under the conventional
multi-armed bandit problem setting. We will introduce the Mi-UCT algorithm,
which is the application of the modified improved UCB algorithm to MCTS. We
will demonstrate the performance of the Mi-UCB algorithm on the game of 9×9
Go and 9 × 9 NoGo, which has shown to outperform the plain UCT when given
a small number of playouts, and roughly on the same level when more playouts
are given.

2 Applying Modified Improved UCB Algorithm to Trees

In this section we will first introduce the improved UCB algorithm. We will then
proceed to make three main modifications to the improved UCB algorithm, and
finally show how to apply the modified algorithm to Monte-Carlo Tree Search.

Adapting Improved Upper Confidence Bounds for Monte-Carlo Tree Search 55

2.1 Improved UCB Algorithm

In the multi-armed bandit problem (MAB), a player is faced with a K-armed
bandit, and the player can decide to pull one of the arms at each play. The bandit
will produce a reward r ∈ [0, 1] according to the arm that has been pulled. The
distribution of the reward of each arm is unknown to the player. The objective
of the player is to maximize the total amount of reward over T plays. Bandit
algorithms are policies that the player can follow to achieve this goal. Equivalent
to maximizing the total expected reward, bandit algorithms aim to minimize the
cumulative regret, which is defined as

Rt =
∑T

t=1
r∗ − rIt ,

where r∗ is the expected mean reward of the optimal arm, and rIt is the received
reward when the player chooses to play arm It ∈ K at play t ∈ T . If a bandit
algorithm can restrict the cumulative regret to the order of O(log T), it is said
to be optimal [1]. The UCB algorithm [4], which is used in the UCT algorithm
[3], is an optimal algorithm which restricts the cumulative regret to O(K log(T)

Δ),
where Δ is the difference of expected reward between a suboptimal arm and the
optimal arm. The improved UCB algorithm [2] is a modification of the UCB
algorithm, and it can further restrict the growth of the cumulative regret to the
order of O(K log(TΔ2)

Δ).
The improved UCB algorithm, shown in Algorithm 1, essentially maintains

a candidate set Bm of potential optimal arms, and then proceeds to system-
atically eliminate arms which are estimated to be suboptimal from that set.
A predetermined number of total plays T is given to the algorithm, and the
plays are further divided into � 1

2 log2(
T
e)� rounds. Each round consists of three

major steps. In the first step, the algorithm samples each arm that is in the can-
didate set nm = � 2 log(TΔ2

m)
Δ2

m
� times. Next, the algorithm proceeds to remove the

arms whose upper bounds of estimated expected reward are less than the lower
bound of the current best arm. The estimated difference Δm is then halved in
the final step. After each round, the expected reward of the arm ai is effectively
estimated as

wi ±
√

log(TΔ2
m)

2nm
= wi ±

√
log(TΔ2

m) · Δ2
m

4 log(TΔ2
m)

= wi ± Δm

2
,

where wi is the current average reward received from arm ai.
In the case when the total number of plays T is not predetermined, the

improved UCB algorithm can be run in an episodic manner; a total of T0 = 2
plays is given to algorithm in the initial episode, and the number of plays of
subsequent episodes is given by T�+1 = T 2

� .

2.2 Modification of the Improved UCB Algorithm

Various characteristics of the improved UCB algorithm might be problematic for
its application to MCTS. We mention two of the characteristic modifications.

56 Y.-C. Liu and Y. Tsuruoka

Algorithm 2. Modified Improved UCB Algorithm
Input: A set of arms A, total number of trials T
Initialization: Expected regret Δ0 ← 1, arm count Nm ← |A|, plays till Δk update

TΔ0 ← n0 · Nm, where n0 ← � 2 log(TΔ2
0)

Δ2
0

�, number of times arm ai ∈ A has been

sampled ti ← 0.

for rounds m = 0, 1, · · · T do

(1)Sample Best Arm:

amax ← arg max
i∈|A|

(wi +

√
log(TΔ2

k
)·ri

2nk
), where ri = T

ti

wmax ← UpdateMaxWinRate(A)
ti ← ti + 1
x
(2) Arm Count Update:
for all arms ai do

if (wi +

√
log(TΔ2

k
)

2nk
) < (wmax −

√
log(TΔ2

k
)

2nk
) then

Nm ← Nm − 1
end if

end for

(3) Update Δk when Deadline TΔk is Reached
if m ≥ TΔk then

Δk+1 = Δk
2

nk+1 ← � 2 log(TΔ2
k+1)

Δ2
k+1

�
TΔk+1 ← m + (nk+1 · Nm)
k ← k + 1

end if
end for

– Early Explorations. The improved UCB algorithm tries to find the optimal
arm by the process of elimination. Therefore, in order to eliminate suboptimal
arms as early as possible, it has the tendency to devote more plays to sub-
optimal arms in the early stages. This might not be ideal when it comes to
MCTS, especially in situations when time and resources are rather restricted,
because it may end up spending most of the time exploring irrelevant parts
of the game tree, rather than searching deeper into more promising subtrees.

– Not an Anytime Algorithm. We note that (1) the improved UCB algo-
rithm requires the total number of plays to be specified in advance, and (2) its
major properties or theoretical guarantees may not hold if the algorithm is
stopped prematurely. Since we are considering each node as a single instance
of the MAB problem in MCTS, internal nodes which are deeper in the tree
are most likely the instances that are prematurely stopped. So, on the one
hand the “temporal” solutions provided by these nodes might be erroneous,
and the effect of these errors may be magnified as they propagate upward to

Adapting Improved Upper Confidence Bounds for Monte-Carlo Tree Search 57

the root node. On the other hand, it would be rather expensive to ensure that
the required conditions are met for the improved UCB algorithms on each
node, because the necessary amount of playouts will grow exponentially as
the number of expanded node increases.

Therefore, we have the relevant some adjustments to the improved UCB
algorithm before applying it to MCTS.

The modified improved UCB bandit algorithm is shown in Algorithm 2. The
modifications try to retain the major characteristics of the improved UCB algo-
rithm, especially the way the confidence bounds are updated and maintained.
Nonetheless, we should note that these modifications will change the algorithm’s
behaviour, and the theoretical guarantees of the original algorithm may no longer
be applicable.

Algorithmic Modifications. We have made two major adjustments to the
algorithmic aspect of the improved UCB algorithm.

1. Greedy Optimistic Sampling. We only sample the arm that currently has
the highest upper bound, rather than sampling every possible arm nm times.

2. Maintain Candidate Arm Count. We will only maintain the count of
potential optimal arms, instead of maintaining a candidate set.

Since we are only sampling the current best arm, we are effectively performing
a more aggressive arm elimination; arms that are perceived to be suboptimal
are not being sampled. Therefore, there is no longer a need for maintaining a
candidate set.

However, the confidence bound in the improved UCB algorithm for arm ai

is defined as wi ±
√

log(TΔ2
m)

2nm
, and the updates of Δm and nm are both dictated

by the number of plays in each round, which is determined by (|Bm| · nm), i.e.,
the total number of plays that is needed to sample each arm in the candidate
set Bm for nm times. Therefore, in order to update the confidence bound we will
need to maintain the count of potential optimal arms.

The implication of sampling the current best arm is that the guarantee for
the estimated bound wi ± Δm to hold will be higher than the improved UCB
algorithm, because the current best will likely be sampled more or equal to nm

times. This is desirable in game-tree search, since it would be more efficient to
verify a variation is indeed the principal variation, than trying to identify and
verify others are suboptimal.

Confidence Bound Modification. Since we have modified the algorithm to
sample only the current best arm, the confidence bound for the current best
arm should be tighter than other arms. Hence, an adjustment to the confidence
bound is also needed.

In order to reflect the fact that the current best arm is sampled more than
other arms, we have modified the definition of the confidence bound for arm ai to

58 Y.-C. Liu and Y. Tsuruoka

Algorithm 3. Modified Improved UCB Algorithm applied to Trees (Mi-UCT)
function Mi-UCT(Node N)

bestucb ← −∞
for all child nodes ni of N do

if ni.t = 0 then
ni.ucb ← ∞

else
ri ← N.episodeUpdate/ni.t

ni.ucb ← n.w +

√
log(N.T×N.Δ2)×ri

2N.k
end if
if bestucb ≤ ni.ucb then

bestucb ← ni.ucb
nbest ← ni

end if
end for

if nbest.times = 0 then
result ←RandomSimulation((nbest))

else
if nbest is not yet expanded then NodeExpansion((nbest))
result ← Mi-UCT((nbest))

end if

N.w ← (N.w × N.t + result)/(N.t + 1)
N.t ← N.t + 1

if N.t ≥ N.T then
N.Δ ← 1
N.T ← N.t + N.T × N.T
N.armCount ← Total number of child nodes
N.k ← � 2 log(N.T×N.Δ2)

N.Δ2 �
N.deltaUpdate ← N.t + N.k × N.armCount

end if

if N.t ≥ N.deltaUpdate then
for all child nodes ni of N do

if (ni.w +

√
log(N.T×N.Δ2)

2n.k
) < (N.w −

√
log(N.T×N.Δ2)

2n.k
) then

N.armCount ← N.armCount − 1
end if

end for

N.Δ ← N.Δ
2

N.k ← � 2 log(N.T×N.Δ2)
N.Δ2 �

N.deltaUpdate ← N.t + N.k × N.armCount
end if
return result

end function

function NodeExpansion(Node N)
N.Δ ← 1
N.T ← 2
N.armCount ← Total number of child nodes

N.k ← � 2 log(N.t×N.Δ2)
N.Δ2 �

N.deltaUpdate ← N.k × N.armCount
end function

Adapting Improved Upper Confidence Bounds for Monte-Carlo Tree Search 59

wi ±
√

log(TΔ2
m) · ri

2nm
,

where the factor ri = T
ti

, and ti is the number of times that the arm has been
sampled. The more arm ai is sampled, the smaller ri will be, and hence the
tighter is the confidence bound. Therefore, the expected reward of arm ai will
be estimated as

wi ±
√

log(TΔ2
m) · ri

2nm
= wi ±

√
log(TΔ2

m) · Δ2
m · ri

4 log(TΔ2
m)

= wi ± Δm

2

√
ri = wi ± Δm

2

√
T

ti
.

Since it would be more desirable that the total number of plays is not required
in advance, we will run the modified improved UCB algorithm in an episodic
fashion when we apply it to MCTS, i.e., assigning a total of T0 = 2 plays to the
algorithm in the initial episode, and T�+1 = T 2

� plays in the subsequent episodes.
After each episode, all the relevant terms in the confidence bound, such as Δm

and nm, will be re-initialized, and hence information from previous episodes will
be lost. Therefore, in order to “share” information across episodes, we will not
re-initialize ri after each episode.

2.3 Modified Improved UCB Applied to Trees (Mi-UCT)

We will now introduce the application of the modified improved UCB algorithm
to Monte-Carlo Tree Search, or the Mi-UCT algorithm. The details of the Mi-
UCT algorithm are shown in Algorithm 3.

The Mi-UCT algorithm adopts the same game-tree expansion paradigm as
the UCT algorithm, that is, the game tree is expanded over a number of itera-
tions, and each iteration consists of four steps: selection, expansion, simulation,
and backpropagation [3]. The difference is that the tree policy is replaced by the
modified improved UCB algorithm. The modified improved UCB on each node
is run in an episodic manner; a total of T0 = 2 plays to the algorithm in the
initial episode, and T�+1 = T 2

� plays in the subsequent episodes.
The Mi-UCT algorithm keeps track of when N.Δ should be updated and

the starting point of a new episode by using the variables N.deltaUpdate and
N.T , respectively. When the number of playouts N.t of the node N reaches the
updating deadline N.deltaUpdate, the algorithm halves the current estimated
regret N.Δ and calculates the next deadline for halving N.Δ. The variable N.T
marks the starting point of a new episode. Hence, when N.t reaches N.T , the
related variables N.Δ and N.armCount are re-initialized, and the starting point
N.T of the next episode, along with the new N.deltaUpdate are calculated.

3 Experimental Results

We will first examine how the various modifications we have made to the
improved UCB algorithm affect its performance on the multi-armed bandit
problem. Next, we will demonstrate the performance of the Mi-UCT algorithm
against the plain UCT algorithm on the game of 9 × 9 Go and 9 × 9 NoGo.

60 Y.-C. Liu and Y. Tsuruoka

3.1 Performance on Multi-armed Bandits Problem

The experimental settings follow the multi-armed bandit testbed that is specified
in [5]. The results are averaged over 2000 randomly generated K-armed bandit
tasks. We have set K = 60 to simulate more closely the conditions in which
bandit algorithms will face when they are applied in MCTS for games that
have a middle-high branching factor. The reward distribution of each bandit is
a normal (Gaussian) distribution with the mean wi, i ∈ K, and variance 1. The
mean wi of each bandit of every generated K-armed bandit task was randomly
selected according to a normal distribution with mean 0 and variance 1.

The cumulative regret and optimal action percentage are shown in Figs. 1
and 2, respectively. The various results correspond to different algorithms as
follows.

– UCB: the UCB algorithm.
– I-UCB: the improved UCB algorithm.
– I-UCB (episodic): the improved UCB algorithm ran episodically.
– Modified I-UCB (no r): only algorithmic modifications on the improved

UCB algorithm.
– Modified I-UCB (no r, episodic): only algorithmic modifications on the

improved UCB algorithm ran episodically.
– Modified I-UCB: both algorithmic and confidence bound modifications on

the improved UCB algorithm.
– Modified I-UCB (episodic): both algorithmic and confidence bound mod-

ifications on the improved UCB algorithm ran episodically.

Contrary to theoretical analysis, we are surprised to observe the original
improved UCB, both I-UCB and I-UCB (episodic), produced the worst cumu-
lative regret. However, their optimal action percentages are increasing at a very
rapid rate, and are likely to overtake the UCB algorithm if more plays are given.
This suggests that the improved UCB algorithm does indeed devote more plays
to exploration in the early stages.

The “slack” in the curves of the algorithms that were run episodically are the
points when a new episode begins. Since the confidence bounds are essentially
re-initialized after every episode, effectively extra explorations are performed.
Therefore, there were extra penalties on the performance, and it can be clearly
observed in the cumulative regret.

We can further see that by making only the algorithmic modification, to
give Modified I-UCB (no r) and Modified I-UCB(no r, episodic), the optimal
action percentage increases very rapidly, but it eventually plateaued and stuck
to suboptimal arms. Their cumulative regret also increased linearly instead of
logarithmically.

However, by adding the factor ri to the confidence bound, the optimal action
percentage increases rapidly and might even overtake the UCB algorithm if more
plays are given. Although the optimal action percentage of the modified improved
UCB, both Modified I-UCB and Modified I-UCB (episodic), are rapidly catching
up with that of the UCB algorithm; there is still a significant gap between their
cumulative regret.

Adapting Improved Upper Confidence Bounds for Monte-Carlo Tree Search 61

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

C
um

ul
at

iv
e

R
eg

re
t

Plays

UCB
I-UCB

I-UCB (episodic)
Modified I-UCB (no r)

Modified I-UCB (no r, episodic)
Modified I-UCB

Modified I-UCB (episodic)

Fig. 1. Cumulative regret of various modifications on improved UCB algorithm

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

%
 O

pt
im

al
 A

ct
io

n

Plays

UCB
I-UCB

I-UCB (episodic)
Modified I-UCB (no r)

Modified I-UCB (no r, episodic)
Modified I-UCB

Modified I-UCB (episodic)

Fig. 2. Optimal arm percentage of various modifications on improved UCB algorithm

3.2 Performance of Mi-UCT Against Plain UCT on 9 × 9 Go

We will demonstrate the performance of the Mi-UCT algorithm against the plain
UCT algorithm on the game of Go played on a 9 × 9 board.

For an effective comparison of the two algorithms, no performance enhancing
heuristics were applied. The simulations are all pure random simulations without
any patterns or simulation policies. A total of 1000 games were played for each
constant C setting of the UCT algorithm, each taking turns to play Black. The
total number of playouts was fixed to 1000, 3000, and 5000 for both algorithms.

The results are shown in Table 1. It can be observed that the performance of
the Mi-UCT algorithm is quite stable against various constant C settings of the

62 Y.-C. Liu and Y. Tsuruoka

Table 1. Win rate of Mi-UCT against plain UCT on 9 × 9 Go

Constant C 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1000 playouts 57.1% 55.2% 57.5% 52.2% 58.6% 58.4% 55.8% 55.3% 54.5%

3000 playouts 50.8% 50.9% 50.3% 52.2% 52.2% 54.4% 56.5% 56.0% 54.1%

5000 playouts 54.3% 54.2% 52.4% 51.0% 52.4% 57.5% 54.9% 56.1% 55.3%

plain UCT algorithm, and is roughly on the same level. The Mi-UCT algorithm
seems to have better performance when only 1000 playouts are given, but slightly
deteriorates when more playouts are available.

3.3 Performance of Mi-UCT Against Plain UCT on 9 × 9 NoGo

We will demonstrate the performance of the Mi-UCT algorithm against the plain
UCT algorithm on the game of NoGo played on a 9× 9 board. NoGo is a misere
version of the game of Go, in which the first player that has no legal moves other
than capturing the opponent’s stone loses.

All the simulations are all pure random simulations, and no extra heuristics
or simulation policies were applied. A total of 1000 games were played for each
constant C setting of the UCT algorithm, each taking turns to play Black. The
total number of playouts was fixed to 1000, 3000, and 5000 for both algorithms.

The results are shown in Table 2. We can observe that the Mi-UCT algorithm
significantly dominates the plain UCT algorithm when only 1000 playouts were
given, and the performance deteriorates rapidly when more playouts are avail-
able, although it is still roughly on the same level as the plain UCT algorithm.

The results on both 9 × 9 Go and 9 × 9 NoGo suggest that the performance
of the Mi-UCT algorithm is comparable to that of the plain UCT algorithm, but
scalability seems poorer. Since the proposed modified improved UCB algorithm
essentially estimates the expected reward of each bandit by wi + Δm

2

√
ri, where

ri =
√

T
ti

, the exploration term converges slower than that of UCB algorithm,
and hence more exploration might be needed for the modified improved UCB
confidence bounds to converge to a “sufficiently good” estimate value; this might
be the reason why Mi-UCT algorithm has poor scalability. Therefore, we might
able to overcome this problem by trying other definitions for ri.

Table 2. Win rate of Mi-UCT against plain UCT on 9 × 9 NoGo

Constant C 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1000 playouts 58.5% 56.1% 61.4% 56.7% 57.4% 58.4% 59.6% 56.9% 57.8%

3000 playouts 50.3% 51.4% 53.1% 51.0% 49.6% 54.4% 56.0% 54.2% 53.9%

5000 playouts 45.8% 48.8% 48.5% 49.6% 55.1% 51.3% 51.3% 55.0% 52.7%

Adapting Improved Upper Confidence Bounds for Monte-Carlo Tree Search 63

4 Conclusion

The improved UCB algorithm is a modification of the UCB algorithm, and has
a better regret upper bound than the UCB algorithm. Various characteristics
of the improved UCB algorithm, such as early exploration and not being an
anytime algorithm, are not ideal for a direct application to MCTS. Therefore,
we have made relevant modifications to the improved UCB algorithm, making it
more suitable for the task of game-tree search. We have investigated the impact
and implications of each modification through an empirical study under the
conventional multi-armed bandit problem setting.

The Mi-UCT algorithm is the application of the modified improved UCB
algorithm applied to Monte-Carlo Tree Search. We have demonstrated that it
outperforms the plain UCT algorithm on both games of 9 × 9 Go and 9 × 9
NoGo when only a small number of playouts are given, and on comparable level
with increased playouts. One possible way of improving the scalability would be
trying other definitions of ri in the modified improved UCB confidence bounds.

It would also be interesting to investigate the possibility of enhancing the
performance of the Mi-UCT algorithm by combining it with commonly used
heuristics [6] or develop new heuristics that are unique to the Mi-UCT algorithm.
Finally, since the modifications made essentially changed the behaviour of the
original algorithm, investigation into the theoretical properties of our modified
improved UCB algorithm may provide further insight into the relation between
bandit algorithms and Monte-Carlo Tree Search.

References

1. Lai, T.L., Robbins, H.: Asymptotically efficient adaptive allocation rules. Adv.
Appl. Math. 6(1), 4 (1985)

2. Auer, P., Ortner, R.: UCB revisited: improved regret bounds for the stochastic
multi-armed bandit problem. Periodica Math. Hung. 61, 1–2 (2010)

3. Kocsis, L., Szepesvári, C.: Bandit based monte-carlo planning. In: Fürnkranz, J.,
Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp.
282–293. Springer, Heidelberg (2006)

4. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed
bandit problem. Mach. Learn. 47(2–3), 235–256 (2002)

5. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA (1998)

6. Browne, C.B., Powley, E., Whitehouse, D., Lucas, S.M., Cowling, P.I., Rohlfshagen,
P., Tavener, S., Perez, D., Samothrakis, S., Colton, S.: A survey of monte carlo tree
search methods. IEEE Trans. Comput. Intell. AI Games 4(1), 1–43 (2012)

7. Tolpin, D., Shimony, S.E.: MCTS based on simple regret. In: Proceedings of the
26th AAAI Conference on Artificial Intelligence, pp. 570–576 (2012)

8. Cazenave, T.: Sequential halving applied to trees. IEEE Trans. Comput. Intell. AI
Games 7, 102–105 (2014)

9. Pepels, T., Cazenave, T., Winands, M.H.M., Lanctot, M.: Minimizing simple and
cumulative regret in monte-carlo tree search. In: Cazenave, T., Winands, M.H.M.,
Björnsson, Y. (eds.) CGW 2014. CCIS, vol. 504, pp. 1–15. Springer, Heidelberg
(2014)

64 Y.-C. Liu and Y. Tsuruoka

10. Imagawa, T., Kaneko, T.: Applying multi armed bandit algorithms to MCTS and
those analysis. In: Proceedings of the 19th Game Programming Workshop (GPW-
14), pp. 145–150 (2014)

11. Karnin, Z., Koren, T., Oren, S.: Almost optimal exploration in multi-armed ban-
dits. In: Proceedings of the 30th International Conference on Machine Learning
(ICML’13), pp. 1238–1246 (2013)

12. Garivier, A., Cappe, A.: The KL-UCB algorithm for bounded stochastic ban-
dits and beyond. In: Proceedings of 24th Annual Conference on Learning Theory
(COLT ’11), pp. 359–376 (2011)

13. Kaufmann, E., Korda, N., Munos, R.: Thompson sampling: an asymptotically opti-
mal finite-time analysis. In: Bshouty, N.H., Stoltz, G., Vayatis, N., Zeugmann, T.
(eds.) ALT 2012. LNCS, vol. 7568, pp. 199–213. Springer, Heidelberg (2012)

On Some Random Walk Games
with Diffusion Control

Ingo Althöfer1(B), Matthias Beckmann1, and Friedrich Salzer2

1 University of Jena, Jena, Germany
ingo.althoefer@uni-jena.de

2 Frankfurt University, Frankfurt, Germany

Abstract. Random walks with discrete time steps and discrete state
spaces have widely been studied for several decades. We investigate such
walks as games with “Diffusion Control”: a player (=controller) with
certain intentions influences the random movements of the particle. In
our models the controller decides only about the step size for a single
particle. It turns out that this small amount of control is sufficient to
cause the particle to stay in “premium regions” of the state space with
surprisingly high probabilities.

1 Introduction

The paper presents results on discrete 1-player random walk games with dif-
fusion control. In the games, time is running in discrete steps, and also the
1-dimensional state spaces are discrete (sometimes finite and sometimes infinite).
A single particle is walking in the state space, and the player is an “outside”
controller who has some influence on the movements of the particle. The con-
troller is assumed to always have full information about the system. The control
actions are small ones: in our games, the controller only decides whether the
particle makes a small or a large fair random step in the current moment. Here,
“fair” means that the particle makes steps to the left and to the right with the
same probability 1

2 . Also the widths of the steps are the same for both directions.
The main results are: (i) a great deal of influence is possible and (ii) in finite

(circular) state spaces the controller’s influence is much larger compared to the
controller’s influence in infinite state spaces. Section 2 lists related research. In
Sect. 3 a random walk on the integers is investigated. It allows to model a stock
market situation: the player is a broker and tries to maximize the probability of
getting a bonus. Her1 optimal strategy is both simple and successful and tells why
current bonus-systems in investment banking are problematic. Technically, our
analysis is based on discrete dynamic programming and the Bellman equations.
Section 4 investigates control of a random walk in a closed ring. In Sect. 5, we
conclude with a discussion and the formulation of three open problems.

1 For brevity, we use ‘he’ and ‘his’, whenever ‘he or she’ and ‘his or her’ are meant.

c© Springer International Publishing Switzerland 2015
A. Plaat et al. (Eds.): ACG 2015, LNCS 9525, pp. 65–75, 2015.
DOI: 10.1007/978-3-319-27992-3 7

66 I. Althöfer et al.

2 Related Work

Three different results are mentioned. First, the famous theorem by Polya makes
clear why analysis of the control problem on the set of integers is non-trivial:
certain events happen with probability 1, but have infinite expected run time.
Second, we mention Ankirchner’s recent analysis of a continuous diffusion control
problem. Third, Beckmann’s investigation of random walk models where the
controller is allowed to induce drift, is discussed.

2.1 Polya’s Recurrence Theorem on Fair Random Walks
Without Control

Polya’s theorem [12] reads as follows. A single particle is moving on the infinite
set Z of integers in discrete time. It is going from i to i − 1 and i + 1 with
probability 1

2 each for all i and in all moments t. When the particle starts in 0,
it will return to 0 with probability 1 earlier or later. However, the expected time
until its first return is infinite. The same statement is true for dimension 2, but
not for dimension 3 or higher.

2.2 Continuous Models with Diffusion Control

Recently, Ankirchner [4] proved a continuous counterpart of the casino model of
Sect. 3: He assumed Brownian motion with 1-fold speed for all states x ≥ 0 and
double or triple speed in the negative part of the real axes. With this strategy,
a particle starting in 0 stays in the positive numbers with probabilities 2

3 and
3
4 , respectively. Ankirchner also found the old abstract McNamara paper [10] on
optimal continuous diffusion control, where a bang-bang strategy is proven to be
optimal for a whole class of reward functions (highest possible diffusion rate in
the negative numbers, smallest possible in the positive numbers). Similar models
have been investigated in ecology [14] and in insurance mathematics [5].

2.3 Beckmann’s Evacuation Models

Even more recently, Beckmann [7] analysed random walk models where the con-
troller is allowed to block one of the direct neighbour states of the particle. In a
one-dimensional state space optimal control is trivial, in stale spaces of dimen-
sion 2 and all higher dimensions it becomes interesting. These “single direction
blockades” allow the particle to travel with linear expected speed – in contrast to
the square-root speed of particles in normal random walks and Brownian motion.
In particular, single blockades make random walks recurrent for all finite dimen-
sions, in contrast to the unblocked case (see [12]).

3 Play in (m,n)-Casinos

Below, we introduce a set of new models for actions of a broker at the stock
market. The broker is working for her bank. By contract, at the end of the year

On Some Random Walk Games with Diffusion Control 67

she gets a bonus of fixed size when she has not made a loss in total in that year.
Each day, she has to perform exactly one transaction (a small one or a big one;
her choice), where the outcome is positive with probability 1

2 and negative also
with probability 1

2 . (So, the stock market is assumed to be a fair casino for each
transaction.)

Each model has two integral parameters m and n, with 1 ≤ m < n. If the
action is a small one, win and loss are +m and −m, respectively. If the action
is a big one, win and loss are +n and −n, respectively. The broker knows her
current balance and the remaining number of days. Then the day has arrived
that the broker has to decide between a small action and a big action for that
day. The broker wants to maximize the probability of getting a bonus. We call
these models (m,n)-casinos.

For the two simplest cases (1, 2) and (1, 3) a complete theoretical analysis has
been executed [2,11]. Due to space limitations we give only the recursions and
plausibility arguments for both results. In Subsect. 3.3 the Theorem of Polya is
used to make the 2

3 - and 3
4 -results plausible. Subsection 3.4 contains a conjecture

based on computational runs for all pairs (m,n) with 1 ≤ m < n ≤ 10.

3.1 The (1, 2)-Casino

We formalize this optimization problem by discrete dynamic programming [8],
with the following variables and recursions. Let pt(i) be the probability for get-
ting the bonus, when the broker “plays” optimally, has currently balance i, and
there are still t days to be played. Then the starting values are

p0(i) = 1 for all i ≥ 0 and p0(i) = 0 for all i < 0.

For all t ≥ 0 the Bellman equations say

pt+1(i) = max{0.5 · pt(i − 1) + 0.5 · pt(i + 1);
0.5 · pt(i − 2) + 0.5 · pt(i + 2)}

for all i in Z. The pt(i) can be computed with computer help, for instance, on
a PC with moderate memory space for all t < 1, 024 and all i between −10, 240
and +10, 240. Outcomes for the central state i = 0 are

p1(0) =
1
2
, p2(0) =

3
4
,

p3(0) =
5
8
, p4(0) =

11
16

,

p5(0) =
21
32

, p6(0) =
43
64

. . .

In each step the denominator is doubled, and the nominator is doubled ±1. For
general t, this structure is proved in [11]. The proof is based on manipulations
of modified equations for binomial coefficients.

The consequence is limt→∞ pt(0) = 2
3 . In particular, for t = 240 (a realistic

value for the number of trading days in a year) the bonus probability is already

68 I. Althöfer et al.

very close to 2
3 : the difference is smaller than 1

2240 . A corresponding optimal
strategy consists in small steps whenever i ≥ 0 and big steps for all situations
(i, t) with i < 0. One side observation: there are many situations (i, t) where
both actions are equally optimal.

For people from investment banking, the optimal strategy does not come
as a surprise. When a bonus depends only on the plus-minus sign of the final
balance, the broker should act the more aggressive the more she is in the minus.
If she would be allowed to make arbitrary non-negative stakes in each round,
the optimal strategy would be the well known “doubling strategy”: Start with
amount 1 in round 1. If you win, stop immediately (by staking 0 in all successive
rounds). If you lose, stake amount 2 in round 2. If you win, stop immediately. If
you lose, put amount 4 in the third round etc.

3.2 The (1, 3)-Casino

A slightly different model assumes big actions to have step sizes +3 and −3
instead of +2 and −2, all other things remaining unchanged. Recursions analo-
gous to those in Subsect. 3.1 can be set up. It turns out that lim pt(0) = 3

4 for
t to infinity. A corresponding optimal strategy makes small steps for all states
i ≥ 0 and large steps for all states i < 0, for all t [2]. The structure of the solution
and the corresponding probabilities are simpler than those for the (1, 2)-casino,
because all possible steps have odd size. So, a particle starting in state 0 at t = 0
will always be in the set of even numbers for all even values of t, and in the set
of odd numbers for all odd values of t.

3.3 Making the 2
3
-Result for the (1, 2)-Casino Plausible with Help

of Polya’s Theorem

Computing “like in physics”, the 2
3 -probability for the (1, 2)-casino becomes plau-

sible as follows: A fair random walk on Z starting in state “1” needs in average
infinitely (= inf) many steps to reach state “0” for the first time. Analogously,
a fair random walk starting in state “0” needs in average again inf many steps
to reach state “−1” for the first time. So, walking from “+1” to “−1” takes on
average 2 · inf many steps. On the other hand, a random walk with (+2,−2)-
steps and start in “−1” takes on average inf many steps to reach “+1” for the
first time. So, in average one cycle from negative border “−1” to “+1” and back
from “+1” to “−1” via “0” takes inf +2 · inf steps. The corresponding ratio

2·inf
2·inf + inf = 2

3 is exactly what holds for the (1, 2)-casino.
In analogy, in the (1, 3)-casino it takes inf + inf + inf = 3 · inf many steps to

start in “+2” and reach “−1” via “+1” and “0”, and only 1 · inf steps to return
from “−1” to “+2” with random steps of size 3. And 3·inf

3·inf + inf = 3
4 .

3.4 More General (m,n)-Casinos

With computer help we have looked at all 31 cases (m,n) with 1 ≤ m < n ≤
10, where m and n have greatest common divisor 1. For the basic strategy

On Some Random Walk Games with Diffusion Control 69

(small steps in the non-negative numbers, large ones in the negative numbers)
we computed pt(i) for all t ≤ 1, 024 and all i between −10, 240 and +10, 240. Like
before, pt(0) is the probability to end in the non-negative numbers after t steps
when the start is in 0 and optimal decisions are made. In the Appendix we give
p64(0), p256(0), and p1024(0) for each pair (m,n). Also the expected limit values
are given for each parameter pair (m,n). With that data and the plausibility
argument of Subsect. 3.3 in mind, we formulate two conjectures.

Conjecture 3.1: In the (1, n)-casino, it is optimal to make random steps of
size 1 for all states i ≥ 0 and steps of size n for all states i < 0. As a conse-
quence, a particle starting in 0 stays in the non-negative area asymptotically
with probability n

(n+1) .

Conjecture 3.2: In the (m,n)-casino with 1 < m < n, it is optimal to make
random steps of size m for almost all states i ≥ 0 and steps of size n for almost
all states i < 0. As a result, a particle starting in 0 will stay in the non-negative
area asymptotically with probability n

n+m .

4 The (m,n)-Casinos on a Circle

Now we leave the stock market model by changing the state space: from Z to a
closed circle with 2p cells. Motivation for such spaces comes from physics and
bio-physics: given some compact space, agility of a particle may depend on the
region in the space. For instance, the group Braun at LMU (Ludwig-Maximilians-
Universität München) investigates phenomena such as thermophoresis where
temperature-dependent diffusion leads to movement of large molecules [13].

Figure 1 shows a circle with 2 · p = 2 · 13 = 26 cells. The diffusion controller
wants to steer the particle into R = {0, 1, . . . , p− 1}, the right half of the circle.
For convenience, we name the complement of R by S; so S = {p, p+1, . . . , 2p−1}.

4.1 The (1, 2)-Casino on the Circle

The recursions are similar to those in Subsect. 3.1. The only difference is that
the state numbers are now meant modulo 2p. Let rt(i) be the largest possible
probability to end in R, when i is the current state of the particle and still t
steps are to be walked. Then we have

r0(i) = 1 for all i in R and r0(i) = 0 for all i in S .

For all t ≥ 0 we obtain

rt+1(i) = max{0.5 · rt(i − 1) + 0.5 · rt(i + 1);
0.5 · rt(i − 2) + 0.5 · rt(i + 2)}

for all i. Modulo 2p means for instance that rt(−1) = rt(2p − 1).

70 I. Althöfer et al.

2
2

2

2

2

2

2

2

2

2
2

1

11

1

1

1

1

1

1

0

0

0

0

0

0

S
2-steps

R
1-steps

Fig. 1. The state space with 13 + 13 cells. The right half, called R, is the preferred
region. Also shown are the relative values of the stationary distribution for the (1, 2)-
casino.

Observation: For all states i the rt(i) converge; for large p, limt→∞ rt(i) ≈ 4
5 .

This limit can be achieved by the basic strategy with random steps of size 1 in
R and steps of size 2 in S.

Fixing this basic strategy, the model can be viewed as a homogenous Markov
process with a unique stationary distribution r(). Fortunately, this distribution
has a simple structure. In the (1, 2)-model, for instance we achieve for p = 13

r(i) =
2
D

for all i ∈ {1, 2, . . . , 11}, r(0) = r(12) =
1
D
,

r(i) =
1
D

for all i ∈ {13, 15, . . . , 23, 25}, and r(i) = 0 for all i ∈ {14, 16, . . . , 24}.
The denominator D is to be chosen to obtain the total probability equal to 1.
(So, for p = 13 we have D = 33.)

More important than the absolute value D is the observation that almost all
states in R obtain 2-fold probability whereas only about half of the states in S
obtain 1-fold probability (the other S-states become zero). Admittedly, it was
on purpose that we took an odd number p(= 13) for the example. Also for even
numbers, state space R will end at almost 4

5 of the probability. However, the
structure of the stationary distribution r() is less simple.

4.2 The (1, 3)-Casino on the Circle

In the analogous model with steps of size 1 and 3 and state size 2p, with p = 3q+1
(for some integer q) the stationary distribution belonging to the basic strat-
egy is (1, 2, 3, 3, . . . , 3, 2, 1; 1, 0, 0, 1, 0, 0, 1, . . . , 1, 0, 0, 1). (The appropriate gen-
eral denominator is omitted again.) The positions left of the semicolon belong
to the states in R: most of them have 3-fold probability. The positions right of
the semicolon stand for the states in S. Only every third position in S has a
positive probability, namely a 1-fold. In total this means that R achieves almost
9
10 of the total probability, when p is large.

On Some Random Walk Games with Diffusion Control 71

4.3 On the General Circle Structure

Below, we give a heuristic explanation for the ratio 4
5 in the (1,2)-casino, in

analogy to the heuristic argument in Subsect. 3.3. Starting in state 2p − 1 (or
in p), the particle makes steps of size 2 until it reaches either +1 (or p − 2). In
the average, these are about 1 · p

2 many steps. Starting in state +1 (or in p− 2),
the particle makes steps of size 1, until it reaches either state 2p− 1 or p. In the
average, these are about 2 · p steps. 2 · p ≈ 4 · p

2 , hence the particle is in R for
about 4

4+1 of the time.
The term 4 contains one factor 2 from the double size of the steps in S; the

other factor 2 results from the fact that the particle enters set R not in its border
states 0 or p − 1, but in states 1 or p − 2. From there, it takes in the average
about 2 ·(p−2) ≈ 2p small steps to leave R again. (See Table 1 in the Appendix.)

Table 2 in the Appendix shows probability distributions between R and S for
all pairs (m,n) with 1 ≤ m < n ≤ 10, where m and n have greatest common
divisor 1. In all cases we give the data for three circle sizes p = 125, 250, 500.

Observation 4.1: In the model with steps of size 1 in R and size n in S, the
particle stays in R for about n2

n2+1 of the time. The corresponding stationary
distribution has a simple structure for all p of the form p = n · q + 1. For other
forms of p, we have at least experimental evidence for the asymptotic ratio n2

n2+1 .

Conjecture 4.2: In a large circle with steps of sizes m in R and n in S, the
particle stays in R for about n2

n2+m2 of the time. So, the parameters m and n
enter the asymptotic distribution formula in squared form.

5 Discussion and Conclusions

Below, we provide a miscellaneous set of four subsections. They deal with (5.1)
a Comparison, (5.2) Open Problems, (5.3) Other Bonus-/Malus-Functions, and
(5.4) Micro Control.

5.1 Comparing Z and the Circle

In both state spaces it is optimal to make small steps in the “good” regions
and large steps in the complement. However, the consequences are different. On
the integral axes optimal control leads to ratio n

n+m , whereas on the circle the

better ratio n2

n2+m2 is achieved. So, the compact circle allows for much higher
concentrations than the unbounded set Z.

5.2 Open Problems

– We “need” formal proofs for (1, n)-casinos on Z, for all n ≥ 4.
– More generally, still missing are formal proofs for (m,n)-casino models for all

0 < m < n, on Z and on the circle.

72 I. Althöfer et al.

– In one of our models the parameters enter with exponent 1 (on Z) and in
the other model with exponent 2 (circle model). Do there exist reasonable
(1, n)-models with exponent 3 or even higher for n? We think the answer is
“no”, but how to prove it?

5.3 Other Bonus-/Malus-Functions

(1, 2)-casino models with other bonus functions have completely different optimal
strategies.

Example I: Variable bonus X, when the final balance is X > 0. Thus, there
is no malus for X ≤ 0. Then the optimal strategy is to always play big, i.e.,
random steps of size 2.

Example II: Variable malus |Y |, when the final balance is Y < 0. Thus, there
is no bonus for Y ≥ 0. Then the optimal strategy is to play always small, i.e.
random steps of size 1.

The results for the examples bear consequences for the following more general
theorem.

Theorem 5.1: Assume a bonus/malus function g on the set Z of integers. When
g is convex on the whole range then the controller should always make big steps.
For concave g it is optimal to make only small steps. The proof for the convexity
case is a simple consequence of the convexity definition. From

g(x) < 0.5 · g(x − 1) + 0.5 · g(x + 1) for all x

it follows immediately that also

0.5 · g(x − 1) + 0.5 · g(x + 1) < 0.5 · g(x − 2) + 0.5 · g(x + 2) for all x.

An analogous statement is true for the case of concave functions g.
The function g in Example I is convex, the function g in Example II concave.

The bonus function from Sect. 3 is neither convex nor concave. In general, func-
tions with a mixture of convex and concave sections typically have non-trivial
optimal control functions. Such mixed cases have been investigated in [10].

5.4 Remarks on Micro Control in Board Games

So far, micro control is not a hot topic in classical board games. However, sports
such as sailing, gliding, paragliding, or car racing involve elements of diffusion
control. Concerning MCTS bots for games such as Go, Hex or Havannah, human
controllers with little influence may be able to improve the performance of the
bots considerably. This happened, for instance, in the Havannah prize match [1],
where one of the bot teams successfully modified very few Monte-Carlo para-
meters of the evaluation function between rounds. Very recently, small control
actions helped to improve the performance of a human+computer team in Go on
high-dan level [3]. An early investigation of Random Walk games can be found
in [6].

On Some Random Walk Games with Diffusion Control 73

Acknowledgments. Torsten Grotendiek [9] did rudimentary experimental analysis of
the (1, 2)-model on the circle in his dissertation. Students from Ingo Althöfer’s courses
helped by active feedback on the casino models. Thanks go in particular to Bjoern
Blenkers, Thomas Hetz, Manuel Lenhardt, and Maximilian Schwarz. Thanks will also
go to two anonymous referees for their helpful criticism.

Appendix: Data for (m,n)-Casinos

Below, only the data for those pairs (m,n) are presented where m and n have
greatest common divisor 1. In Table 1, for each tuple the probabilities for t =
64, 256, and 1024 are listed, as well as the suspected limit value n

n+m . In Table 2,
for each tuple (m,n) the values of the stationary distributions for p = 125, 250
and 500 are listed as well as the suspected limit value n2

n2+m2 .

Table 1. (m,n)-casino on Z

steps (1,2) (1,3) (1,4) (1,5) (1,6) (1,7) (1,8)

64 0.666667 0.750000 0.779447 0.816419 0.827122 0.849332 0.868798

256 0.666667 0.750000 0.789957 0.824987 0.842735 0.862446 0.872004

1024 0.666667 0.750000 0.795005 0.829173 0.850000 0.868756 0.880547

lim 0.666667 0.750000 0.800000 0.833333 0.857143 0.875000 0.888889

steps (1,9) (1,10) (2,3) (2,5) (2,7) (2,9) (3,4)

64 0.853216 0.869981 0.600000 0.698222 0.755097 0.786544 0.571609

256 0.884895 0.890578 0.600000 0.706992 0.766552 0.804225 0.571429

1024 0.892502 0.899981 0.600000 0.710703 0.772220 0.811342 0.571429

lim 0.900000 0.909091 0.600000 0.714286 0.777778 0.818182 0.571429

steps (3,5) (3,7) (3,8) (3,10) (4,5) (4,7) (4,9)

64 0.625000 0.689351 0.703005 0.750332 0.557630 0.626214 0.673888

256 0.625000 0.694938 0.717800 0.757499 0.555556 0.631586 0.684221

1024 0.625000 0.697497 0.722695 0.763451 0.555556 0.634070 0.688430

lim 0.625000 0.700000 0.727273 0.769231 0.555556 0.636364 0.692308

steps (5,6) (5,7) (5,8) (5,9) (6,7) (7,8) (7,9)

64 0.551902 0.583350 0.603999 0.634489 0.550146 0.549748 0.563288

256 0.545457 0.583333 0.611152 0.639180 0.538502 0.533566 0.562500

1024 0.545455 0.583333 0.613428 0.641062 0.538462 0.533333 0.562500

lim 0.545455 0.583333 0.615385 0.642857 0.538462 0.533333 0.562500

steps (7,10) (8,9) (9,10)

64 0.583356 0.549682 0.549674

256 0.584860 0.530137 0.527881

1024 0.586722 0.529412 0.526316

lim 0.588235 0.529412 0.526316

74 I. Althöfer et al.

Table 2. (m,n)-casino on a circle with 2p cells

size p (1.2) (1.3) (1.4) (1.5) (1.6) (1.7) (1.8)

125 0.797428 0.897106 0.938462 0.959119 0.970815 0.978054 0.982854

250 0.798722 0.898551 0.939839 0.960342 0.971909 0.979045 0.983747

500 0.799361 0.899279 0.940510 0.960944 0.972443 0.979526 0.984187

lim 0.800000 0.900000 0.941176 0.961538 0.972973 0.980000 0.984615

size p (1,9) (1,10) (2,3) (2,5) (2,7) (2,9) (3,4)

125 0.986184 0.988612 0.688889 0.856354 0.918861 0.947761 0.636366

250 0.987016 0.989370 0.690608 0.859209 0.921714 0.950393 0.638177

500 0.987415 0.989740 0.691453 0.860641 0.923124 0.951676 0.639080

lim 0.987805 0.990099 0.692308 0.862069 0.924528 0.952941 0.640000

size p (3,5) (3,7) (3,8) (3,10) (4,5) (4,7) (4,9)

125 0.729167 0.836413 0.867961 0.908666 0.606061 0.744969 0.824084

250 0.732193 0.840627 0.872340 0.913140 0.607859 0.749383 0.829533

500 0.733743 0.842716 0.874540 0.915297 0.608806 0.751617 0.832284

lim 0.735294 0.844828 0.876712 0.917431 0.609756 0.753846 0.835052

size p (5,6) (5,7) (5,8) (5,9) (6,7) (7,8) (7,9)

125 0.586161 0.654957 0.709142 0.752725 0.572305 0.562445 0.615415

250 0.588234 0.658530 0.714284 0.758389 0.574490 0.564431 0.619221

500 0.589205 0.660377 0.716672 0.761249 0.575508 0.565399 0.621211

lim 0.590164 0.662162 0.719101 0.764151 0.576471 0.566372 0.623077

size p (7,10) (8,9) (9,10)

125 0.660562 0.554180 0.548682

250 0.665900 0.556654 0.550442

500 0.668524 0.557640 0.551476

lim 0.671141 0.558621 0.552486

References

1. Althöfer, I.: Havannah - the old man and the C’s. ICGA J. 35, 114–119 (2012)
2. Althöfer, I.: Theoretical analysis of the (1,3)-casino model. Working paper, Jena

University, Faculty of Mathematics and Computer Science, September 2014
3. Althöfer, I., Marz, M., Kaitschick, S.: Computer-aided Go on high-dan level. Sub-

mitted for Presentation in the Workshop “Go and Science” at the European Go
Congress 2015, Liberec (2015)

4. Ankirchner, S.: The answer is two third. Personal communication, July 2014
5. Asmussen, S., Taksarb, M.: Controlled diffusion models for optimal dividend pay-

out. Insur. Math. Econ. 20, 1–15 (1997)
6. Bachelier, L.: Le Jeu, la Chance et le Hasard (1914). (Republished in 2012 by Nabu

Press)

On Some Random Walk Games with Diffusion Control 75

7. Beckmann, M.: On some evacuation games with random walks. In: Plaat, A., van
den Herik, J., Kosters, W. (eds.) Advances in Computer Games. LNCS, vol. 9525,
pp. 89–99. Springer, Heidelberg (2015)

8. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)
9. Grotendiek, T.: Analyse einiger Random Walk-Entscheidungsmodelle. Doctoral

dissertation, Universitaet Bielefeld, Fakultaet fuer Mathematik (1996)
10. McNamara, J.M.: Optimal control of the diffusion coefficient of a simple diffusion

process. Math. Oper. Res. 8, 373–380 (1983)
11. Mitschunas, J.: Theoretical analysis of the (1,2)-casino model. Working paper, Jena

University, Faculty of Mathematics and Computer Science, April 2015
12. Polya, G.: Über eine aufgabe betreffend die irrfahrt im strassennetz. Math. Ann.

84, 149–160 (1921)
13. Reichl, M.R., Braun, D.: Thermophoretic manipulation of molecules inside living

cells. J. Am. Chem. Soc. 136, 15955–15960 (2014)
14. Stephens, D.W.: The logic of risk sensitive foraging processes. Anim. Behav. 29,

628–629 (1981)

Go Complexities

Abdallah Saffidine1(B), Olivier Teytaud2, and Shi-Jim Yen3

1 CSE, The University of New South Wales, Sydney, Australia
abdallahs@cse.unsw.edu.au

2 Tao team, Inria, LRI, University of Paris-Sud, Orsay, France
3 Ailab, CSIE, National Dong Hwa University, Shoufeng Township, Taiwan

Abstract. The game of Go is often said to be exptime-complete. The
result refers to classical Go under Japanese rules, but many variants of
the problem exist and affect the complexity. We survey what is known
on the computational complexity of Go and highlight challenging open
problems. We also propose a few new results. In particular, we show that
Atari-Go is pspace-complete and that hardness results for classical Go
carry over to their Partially Observable variant.

1 Introduction

The 2000’s and 2010’s have seen a huge progress in computer Go, with the advent
of Monte Carlo Tree Search (MCTS) [3], sequence-like simulations [7], rapid
action value estimates [6], and human expertise included in the tree search. The
game of Go is rich of terminologies; there are semeais which are hard for MCTS
algorithms, ladders which connect remote parts of the board, Ko fights which
are at the heart of Robson’s proof of exptime-hardness for Go with Japanese
rules, and Tsumegos (problems of varying difficulty, studied both by beginners
and experts). It is also rich of variants, such as Killall Go and the partially
observable variant Phantom Go.

The complexity of problems for a game is usually formalized as follows.
A position is any particular state of the game, i.e., in the case of Go with Japanese
rules a board equipped with stones. We consider a family P of initial positions,
and we consider the following decision problem.

Sure win problem: Is a given position p ∈ P a sure win for Black
assuming perfect play?

The complexity of a game is the complexity of this decision problem. It is well
defined for fully observable (FO) games, as long as rules are formally described,
and all information pertaining to a state is included in the input. We have

– For Go with Japanese rules, not all situations are completely formalized. For-
tunately, the rules are not ambiguous for a large subset of positions, and we
can still work on the complexity of Go with Japanese rules.

– Chinese rules present a distinct problem: some necessary information is
not included in the position. Indeed, because cycles are forbidden by the

c© Springer International Publishing Switzerland 2015
A. Plaat et al. (Eds.): ACG 2015, LNCS 9525, pp. 76–88, 2015.
DOI: 10.1007/978-3-319-27992-3 8

Go Complexities 77

superko rule, one must remember past positions and avoid them. We will
consider the decision problem associated to positions, considering there is no
history of forbidden past state. This is the classical considered setting, e.g.,
in [8].

For partially observable variants, we still assume a fully observed input state,
which is then played with its partially observable setting. The decision problem
is not a sure win anymore but rather winning with a sufficiently high likelihood.

Threshold problem: Given a fully observable position p ∈ P and a
rational number c ∈ [0, 1], is there a strategy for Black (possibly but not
necessarily randomized) so that for all White strategies, Black wins with
probability at least c when the game starts in position p?

2 Rules, Variants, and Terminology

At the beginning of the game, the board is empty. Players, starting with Black,
take turns putting a stone of their color on a free intersection. When a maximum
group of 4-connected stones of a same color has no liberty (i.e., does not touch
any free intersection), then it is removed from the board — this is termed capture.
Suicide, i.e., playing a stone that would be immediately captured, is forbidden.
Playing a move which goes back to the previous situation is forbidden; this is
the Ko rule. In some versions, any move which goes back to an earlier position
is forbidden; this is the Superko rule. The game terminates when no players
want/can play. The score of a player, according to Chinese rules, is then the
number of stones on the board, plus the surrounded empty locations. As Black
plays first, White is given a bonus, termed Komi. The player with the greatest
score is the winner.

Black’s inherent first move advantage may skew games between equally
skilled opponents. It is therefore traditional to give White a number of bonus
points called Komi as a compensation. The larger the Komi, the easier the game
for White. A Komi of 7 is considered fair, but to prevent draws, non-integer Komi
such as 6.5 and 7.5 are regularly used. Games between unequally skilled oppo-
nents need to use a balancing scheme to provide a challenge for both players.
The handicap mechanism is popular whereby Black is given a specified number
of free moves at the start of the game, before White plays any move. The larger
the handicap, the easier the game for Black.

Chinese and Japanese Rules. In most practical settings, there is no difference
between using Chinese or Japanese rules. In mathematical proofs, however, it
makes a big difference, as the latter allow cycles. Cycles of length 2 (termed ko)
are forbidden in all variants of the rules, but longer cycles (termed superko) are
forbidden in Chinese rules, whereas they are allowed in Japanese rules.

In Japanese rules, when a cycle occurs, the game is considered as a draw
and replayed.1 More than 20 pro games draw with superko are known in the
1 See the detailed rules at http://www.cs.cmu.edu/∼wjh/go/rules/Japanese.html.

http://www.cs.cmu.edu/~wjh/go/rules/Japanese.html

78 A. Saffidine et al.

world since 1998. On 2012, September 5th, in the Samsung world cup, the game
Lee Shihshi - Ku Li featured a quadruple Ko, leading to a loop in the game,
which was replayed.

Ladders are an important family of positions in Go. They involve a growing
group of stones, e.g., white stones; Black is trying to kill that group, and White is
trying to keep it alive by extending it. At each move, each player has a limited set
of moves (one or two moves usually) which are not immediate losses of the ladder
fight. An interesting result is that ladders are pspace-hard [9]: one can encode
geography (pspace-complete) in planar-geography, and planar-geography in Go.
So, Go, even restricted to ladders, is pspace-hard. This result is less impressive
than the exptime-hardness, but the proof is based on moderate size gadgets
which can almost really be reproduced in a Go journal.

[4] proved that Tsumegos, in the restricted sense of positions in which, for
each move until the problem is over, one player has only one meaningful move
and the other has two, are np-complete. This means that there is a family of
Tsumegos (with the previous definition, from [4]) for which the set of positions
which are a win for Black, in case of perfect play, is np-complete.

2.1 Go Variants

Killall is a variant of Go in which Black tries to kill all groups of the opponent
and White tries to survive. The Killall Go variant can be seen as a special case
of Classic Go with appropriately set Komi and handicap. The Komi is almost
the size of the board, so that White wins if and only if she2 has at least one
stone alive at the end of the game. The handicap is large enough that the game
is approximately fair. For example, on a 9 × 9 board, the Komi would be set to
80.5 and the handicap would be 4 stones; on a 19 × 19 board, the Komi would
be 360.5 and the handicap between 17 and 20 stones.

Atari Go is another variant, in which the first capture leads to a victory.
Therefore, Komi has no impact. Atari Go is usually played as a first step for
learning Go.

Phantom Go is a partially observable variant of Go. Given a fully observable
(FO) game G, Phantom G denotes the following variant. A referee (possibly
a computer is the referee) takes care of the board, and players only see their
stones on their private version of the board. That is, White is only informed of
the position of White stones, whereas Black is only informed of the position of
Black stones. Moves are not announced, so even with perfect memorization, it is
usually not possible to know where the opponent stones are. Illegal moves should
be replayed. Depending on variants, the player can get additional information,
such as captures, and possibly the location of captured stones.

Blind Go exactly follows the rules of Go, except that the board is not vis-
ible; players must keep the board in mind. In case of an illegal move due to
a memorization error, they should propose another move. One-color Go is an
easier version: there are stones on the board, but they all have the same color;
2 For brevity, we use ‘she’ and ‘her’ whenever ‘she or he’ and ‘her or his’ are meant.

Go Complexities 79

players should memorize the “true” color of stones. In these variants, the com-
putational complexity is the same as in the original game; contrary to Phantom
Go, the difference with Go boils down to a memory exercise.

3 Results in Fully Observable Variants

Below we discuss the results in fully observable variants of Go. We do so for
the Japanese rules (3.1), the Chinese rules (3.2), the Killall Go variant, and
Atari Go (3.4).

3.1 Japanese Rules

[10] has proved the exptime-hardness of a family P of Go positions for which
the rules are fully formalized. This is usually stated as exptime-completeness of
Go. The point is that Go with Japanese rules is not formally defined; there are
cases in which the result of the game is based on precedents or on a referee deci-
sion rather than on rules (confusing examples are given in http://senseis.xmp.
net/?RuleDisputesInvolvingGoSeigen, and precedents are discussed in http://
denisfeldmann.fr/rules.htm#p4).

However, FO games are exptime-complete in general, unless there are tricky
elements in the evaluation of the result of the game (more formally: if evaluating
a final state cannot be done in exponential time) or in the result of a move (more
formally: the board after a move is played can be computed in exponential time);
therefore, we can consider that Go is exptime-complete for any “reasonable”
instantiation of the Japanese rules, i.e., an instantiation in which (i) the situ-
ations for which the rules are clear are correctly handled and (ii) deciding the
consequences of a move and who has won when the game halts can be done in
exponential time.

The original proof by Robson is based on Ko fights, combined with a complex
set of gadgets that correspond to a ladder [10]. More recent work has shown that
these ladder gadgets could be simplified [5].

3.2 Chinese Rules

Go with Chinese rules is different. The same Ko fight as in Robson’s proof can be
encoded in Chinese rules, but the result is different from that by the Japanese
rules (at least if humans follow the superko rules forbidding cycles, which is
not that easy in some cases). In contrast, the pspace-hardness is applicable
with Chinese rules as well as with Japanese rules; therefore, one might, at first
view, believe that Go with Chinese rules is either pspace-complete or exptime-
complete. However, the state space with Chinese rules is much bigger than the
size of the apparent board: one must keep in memory all past positions, to allow
avoiding cycles. As a consequence, Go with Chinese rules is not subject to the
general exptime result; and expspace is the current best upper bound.

Theorem 1 (Folklore Result). Go with Chinese rules is in expspace.

http://senseis.xmp.net/?RuleDisputesInvolvingGoSeigen
http://senseis.xmp.net/?RuleDisputesInvolvingGoSeigen
http://denisfeldmann.fr/rules.htm#p4
http://denisfeldmann.fr/rules.htm#p4

80 A. Saffidine et al.

Proof. Extend the state with an (exponential size) archive of visited states. This
augmented game is acyclic. Therefore it is solved in polynomial space (by depth
first search of the minimax tree) on this exponential size representation; this is
therefore an expspace problem.

This is widely known and we do not claim this as a new result. Lower
bounds for games with a no-repeat condition are typically much more diffi-
cult to obtain, but the general case is expspace-hard [8, Sect. 6.3]. There is no
exptime-hardness of expspace-hardness result for the specific case of Go with
Chinese rules. So the actual complexity of Go with Chinese rules is open and
might lie anywhere between pspace and expspace. A nice consequence in com-
plexity theory is that if Go with Japanese rules is harder than Go with Chinese
rules (in a computational complexity perspective), then exptime (where we find
Go with Japanese rules) is different from pspace.

3.3 Killall Go Variant

A detailed proof of complexity for Killall Go is beyond the scope of this paper;
but we give a few hints in this direction. A key component for applying classi-
cal results (such as the exptime-hardness with Japanese rules or the pspace-
hardness with Chinese rules) is to rewrite

1. a big group, the life or death of which decides the result of the game (this is
a key component for all proofs); this big group can make life only through a
ladder;

2. the Ko-fight (necessary for the exptime-hardness of Japanese Go);
3. the ladder components from [5], or the ones from [10] (both are equivalent,

the ones from [5] are simpler), necessary for both the pspace-hardness of
Chinese Go and the exptime-hardness of Japanese Go.

These components should be adapted to the Killall Go setting. The first part of
this, number 1 above, consists in designing a position in which winning the game
boils down to winning the ladder, thanks to a big group which must live thanks
to the ladder. First, we need a group which will live or die, only depending on
the ladder. This is easily obtained as shown in Fig. 1.

The Ko fight is also not a problem; there is no room for making life around
the Ko fight, so Killall Go and Go are equivalent for this part of the game. Then,
we must adapt the gadgets for the ladder itself. The difficult point is to ensure
that there is no room elsewhere on the board in which White might make life,
out of the line of play used in the widgets. The principles are as follows.

– Fill all empty spaces with strong Black stones, which cannot be killed. We
only have to keep two empty points beside each point of the ladder path; we
can fill all other parts of the board with black stones and their eyes.

– Since the ladder path is thin and the surrounding Black stones are very strong,
White cannot make two eyes even if she plays three continuous white stones
in a row. We get ladders as in, e.g., Fig. 2.

Go Complexities 81

Fig. 1. A position in which White wins
(in a Killall Go sense) if and only if she
can win the ladder.

Fig. 2. White to play. A ladder, adapted
to Killall Go: the left-most Black group
can make life by killing in this ladder.
Black cannot make life without winning
the ladder.

We believe this statement can be made rigorous by a long and tedious for-
malization; this is however a very long exercise and beyond the scope of this
work; so, we only have the following conjecture.

Conjecture 1. Killall Go with Japanese rules is exptime-hard. Killall Go with
Chinese rules is pspace-hard and expspace.

Note that Killall Go with Chinese (resp. Japanese) rules is in expspace
(resp. exptime) because it forms a subset of decision problems for Classical Go.

3.4 Atari Go

There is no capture until the end of a game of Atari-Go and each turn a new
stone is added to the board, therefore the game is polynomially bounded and is in
pspace. To prove hardness, we will reduce from the two-player game Generalized
Geography. The variant we use assumes a planar bipartite graph of degree at
most 3 and is pspace-hard [9].

We can partition the set of vertices of a planar bipartite graph of degree
3 based on the indegree, the outdegree, and the color of the vertex. We can
restrict ourselves to considering the following 6 types of vertices: White vertex
with indegree 1 and outdegree 1 (W1-1 vertex for short), W2-1, W1-2, B1-1,
B2-1, and B1-2. The Atari Go gadgets for each White vertex type are presented
in Fig. 3, and the gadgets for Black vertex types are the same with the color
reversed.

The gadgets comprise interior groups, exterior groups, and link groups. The
interior groups only appear in 1-2-vertex gadgets and initially contain 1 or

82 A. Saffidine et al.

Fig. 3. Gadgets reducing Generalized Geography on bipartite planar graphs of degree
at most 3 to Atari-Go. Each gadget represents a type of white vertex, the black vertices
can be represented by flippling colors.

3 stones. The exterior groups all have a large number of liberties and will never
be under any capturing threat. The link groups serve as links between the differ-
ent gadgets. Each link group is flanked on each side by an exterior group of the
opposite color, and the three groups take the shape of a corridor so as to imitate
the path of the Generalized Geography edge. To each edge in the Generalized
Geography instance corresponds a single link group in the Atari Go instance.

Our construction ensures that initially, each link group has two end liberties
in the vertex gadget it arrives in and one starting liberty in the vertex gadget it
departs from. As such, before the start of the game, every group on the board
has at least 3 liberties, except for single-stone interior groups. Playing in the
starting liberty of a link group simulates selecting the corresponding edge in
Generalized Geography, we call it attacking this link group.

Lemma 1. If the opponent just attacked a given link group, it is a dominant
strategy for the player to extend this group by playing in one of the two end
liberties.

In the case of the 1-1 and 2-1 gadgets, one of the end liberties is only shared
with an opponent’s exterior group, so it is dominant to play in the other end
liberty. This remark and Lemma 1 ensure that it is dominant for both players
to continue simulating Generalized Geography on the Atari Go board.

Theorem 2. Atari Go is pspace-complete.

Proof. The branching factor and the game length are bounded by the size of
the board so the problem belongs to pspace. Generalized Geography on planar
bipartite graphs of degree 3 is pspace-hard and can be reduced to Atari Go as
we have shown above. Therefore, Atari Go is pspace-hard as well.

While the complexity of Atari Go is the same as that of Ladders, a different
proof was needed because one of the ladder gadgets involves an intermediate
capture.

Go Complexities 83

4 Phantom Go

Go is usually FO, but variants in which the opponent’s moves are not observed
have been defined. In order to preserve the consistency of games, when a move
is illegal (typically, but not only, because it is played on an opponent’s stone)
then the player is informed, and the move is replayed. Detailed rules differ, but
players are always informed when their stones are captured. A consequence is
that Ko fights can be played as in the FO game.

Phantom Go is a nice challenge, in particular because the best algorithms are
somehow simple; basically, the pseudo-code of the best algorithms for playing in
a situation S is as follows, for some parameter N .

– For each possible move m, repeat N times:
• let K be the number of unknown opponent stones;
• randomly place the K unknown opponent stones on the board;
• perform a Monte Carlo simulation.

– Play the move m with best average performance.

In particular, this is not a consistent approach; even with N infinite, such an algo-
rithm is not optimal. Nonetheless it usually performs better than more sophis-
ticated approaches [2].

4.1 Lower Bounds on Phantom Go Complexity

We here present lower bounds on Phantom Go complexities derived by adapting
the proofs in the FO case. There are two sets of gadgets we would like to use in
the phantom framework.

– The Ko fight defined in Robson’s work [10]. The situation here is easy, because,
in Phantom Go rules, captures are visible. Ko fights involve one capture per
move; therefore, they are played exactly as if it was standard Go.

– The ladder gadgets, either from [10] or [5]. These gadgets are necessary both
for adapting Robson’s proof to the Phantom Go case (there is more than a
Ko fight in [10], there is also a ladder), and directly for the pspace-hardness
of ladders in the Phantom Go case. We reproduce the gadget ladders in Fig. 4
for convenience [5, Fig. 2].

Theorem 3. Ladders are pspace-hard also in Phantom Go with both Chinese
and Japanese rules. Go is exptime-hard in Phantom Go with Japanese rules.

This holds for the existence of a sure win for Black, and therefore also for
the threshold problem.

Proof. We consider the problem of the existence of a sure win for Black.

Preliminary Remark: Black has a sure win, if and only if Black has a deter-
ministic strategy for winning surely against the White player playing uniformly
at random. Therefore, Black has a sure win even if the White player, by chance,
plays exactly as if White could see the Board.

84 A. Saffidine et al.

Fig. 4. Gadgets to build a pspace-complete family of ladder problems [5, Fig. 2]. We
show that the same family of ladder problems is pspace-complete in Phantom Go.

The proof consists in using the same positions as in [5], and showing that
strategies used in [5] can be adapted to the Phantom Go case, with the key
property that optimal strategies in [5] are adapted to optimal policies in the
Phantom Go case. This implies that we can adapt ladders in Phantom Go.
Thanks to the remark above (Ko fights are played in Phantom Go with the
same line of play as in Go) we can also play Ko fights. So, simulating ladders
leads both to pspace-hardness (for both Chinese and Japanese rules) and to
exptime-hardness (for Japanese rules, because we simulate a Ko fight for which
the hardness proof exists only in the case of Chinese rules).

So, let us consider ladders, and let us simulate them in Phantom Go. In the
(fully observable) Go version of the game, the line of play is as follows.

Each player is forced to play the line of play described in Fig. 4, otherwise
she loses the game [5]. The Black Choice Fig. 4a gadget leads to Fig. 4b or c,
up to Black. White Choice Fig. 4d leads to Fig. 4e or f, up to White. Join leads
to Fig. 4g, in case the ladder comes as in Fig. 4h or as in Fig. 4i. Mirror leads to
Fig. 4k. In all cases, there are at most two choices for each player at each move.

Case 1: When White has a Forced Move. Let us consider the case in
which, in Go, White has only one move M which is not an immediate loss.
In the positions proposed in [5] this happens when the ladder just propagates,
without any choice, including the mirror and the join.

Let us show that it is also the case in Phantom Go. This case is the easiest:
the killing move for Black is precisely the move M that White should play. So
Black can just try to play M . If M kills, Black wins. Otherwise, Black is informed
that White has played M , since the rules of Phantom Go state that in case a
move is illegal for Go it should be replayed elsewhere.

Case 2: When Black has a Forced Move, i.e., a Move Such that All
Other Moves Immediately Make the White Ladder Alive. By the pre-
liminary remark, if Black does not play this move, it does not have a sure Win.
This case is concluded.

Go Complexities 85

Case 3: When White has a Choice. Let us consider the case in which, in
Go, White has two choices. This is the case in “White Choice” gadgets. Let us
show that it is also the case in Phantom Go, and that Black can guess which
move White has played. Let us consider that White plays one of the two choices
displayed in Fig. 4e and f (Fig. 4, move 12 in Fig. 4e and f respectively). Let us
show that Black can guess which move and reply as in Fig. 4e and f, even in
the Phantom Go case. This is easy because the move number 12 in Fig. 4e is a
capture. So if White plays this move, Black is informed, and we are back at the
line of play of Fig. 4e. Otherwise, Black can just check that White has played
the move 12 in Fig. 4f by trying to play it: if White had not actually played that
move, then this captures the ladder and Black has won.

Case 4: When Black has a Choice. Let us consider the case in which, in the
FO line of play, Black has two choices. By the preliminary remark, Black wins
surely only if it wins surely if White plays with knowledge of Black’s move, so
we can consider the case of omniscient White. If Black does not play one of the
two moves, White makes life in the FO line of play. If Black plays one of the two
moves, we can consider the case in which White has made a correct assumption
on which move Black has played.

4.2 Upper Bounds on Phantom Go Complexity

Japanese Rules. Given that some partially observable deterministic two-player
games can be undecidable even when restricted to a finite state space [1], it is
not even clear that Phantom Go with Japanese rules is decidable at all. The
best bound we have is the following.

Theorem 4. Phantom Go with Japanese rules is in 0’, the set of decision prob-
lems which can be decided by a Turing machine using the halting problem as an
oracle.

Proof. Thanks to Theorem 5 in [1], the following machine halts if and only if
Black has a strategy for winning with probability greater than c, in Phantom
Go with Japanese rules.

– K = 1
– while (true)

• Solve exactly the game up to K time steps, starting in a given position
p.

• if Black can win with probability > c, then halt.
• Otherwise, K ← 10K

Then, the following machine with the halting problem as oracle can solve the
decision problem of the present theorem.

86 A. Saffidine et al.

– Input: a position p.
– Output:

• output yes if the machine above halts.
• output no otherwise.

This yields the expected result.

It implies that finding the optimal move is also computable in 0’. So, as a
summary: Phantom Go with Japanese rules is exptime-hard and in 0’.

Chinese Rules. We propose an upper bound for Phantom Go, in the case of
Chinese rules. Due to Chinese rules, there is a superko rule: it is forbidden to
have twice the same move. We claim the following.

Theorem 5. Phantom Go with Chinese rules is in 3exp, the set of decision

problems which can be solved in 22
2poly(n)

time, where poly(n) is a polynomial
function.

Proof. We consider games of Phantom Go with Chinese rules, on an n × n
board, and we compute upper bounds on the number of board positions, B,
the maximum length of a game, L, the number of distinct histories, N , and the
number of pure (i.e., deterministic) strategies, P . We first have B = 3n×n, since
any intersection can be empty, black, or white.

The length of a game is at most L = 3(1 + n × n)B, where the 3 factor
indicates whether players have passed zero, one, or two times in the current
position. The n× n+ 1 factor arises because a player can play again when their
move is rejected in Phantom Go, for each “real” move, there are at most n×n+1
trials (including pass), which can be (i) accepted or (ii) rejected as illegal. Finally
the B factor is due to the superko rule: each position is allowed at most once.

One move leads to (n×n+1) possibilities (including pass). Then, the player
observes some information, which is of size at most 1+2n×n; this is the number
of possible captures, plus one for the “illegal” information. Therefore, an upper
bound on the number of histories is N = ((n × n + 1)(1 + 2n×n))L.

Pure strategies are mappings from histories to actions; there are therefore
at most P = (1 + n × n)N pure strategies. The 1 + n × n stands for the n × n
standard moves, plus a possibility of pass.

Substituting the B, L, and N for their values, we obtain that the number
of pure strategies is at most a tower of 3 exponentials in n. Solving the input
Phantom Go position can therefore be reduced to solving a normal-form game
of size triply exponential in n. Two-player zero-sum games in normal-form can
be solved in time polynomial in the size of the matrix, for instance by solving
the corresponding linear program, so Phantom Go can be solved in time triply
exponential in n.

Go Complexities 87

Table 1. Summary of the complexity of Go-related problems. Results with a * have
not been fully formalized yet and should be considered as conjecture only. New results
are highlighted in boldface.

Rules Variant Lower bound Upper bound

Atari-Go pspace-hard pspace

Chinese Classic pspace-hard expspace

Phantom pspace-hard 3exp

Killall pspace-hard* expspace

Japanese Classic exptime-hard exptime

Phantom exptime-hard 0’ (decidability unsure)

Killall exptime-hard* exptime

5 Conclusion

We (i) surveyed the state of the art in the complexity of Go, (ii) proved a new
result for Atari-Go, (iii) proposed (without formal proof) the extensions of these
results to Killall Go variants, and (iv) proved lower and upper bounds for Phan-
tom Go. The main open problems are (i) the decidability of Phantom Go with
Japanese rules (because undecidability would be the first such result for a game
played by humans), (ii) the complexity of Go with Chinese rules (because the
gap between the lower and upper bounds is huge, more than for any other game),
and (iii) the complexity of Phantom Go with Chinese rules. Table 1 summarizes
the known results on the complexity of Go and its variants. Upper bounds for
Japanese rules assume that we only consider reasonable formalizations of the
rules and rule out ambiguous positions.

Acknowledgments. We are grateful to Tristan Cazenave for fruitful discussions
around Phantom Go. The first author was supported by the Australian Research Coun-
cil (project DE 150101351).

References

1. Auger, D., Teytaud, O.: The frontier of decidability in partially observable recursive
games. Int. J. Found. Comput. Sci. 23(7), 1439–1450 (2012)

2. Cazenave, T., Borsboom, J.: Golois wins Phantom Go tournament. ICGA J. 30(3),
165–166 (2007)

3. Coulom, R.: Efficient selectivity and backup operators in monte-carlo tree search.
In: van den Herik, H.J., Ciancarini, P., Donkers, H.H.L.M.J. (eds.) CG 2006. LNCS,
vol. 4630, pp. 72–83. Springer, Heidelberg (2007)

4. Crâsmaru, M.: On the complexity of Tsume-Go. In: van den Herik, H.J., Iida, H.
(eds.) CG 1998. LNCS, vol. 1558, p. 222. Springer, Heidelberg (1999)

5. Crâsmaru, M., Tromp, J.: Ladders are PSPACE-complete. In: Marsland, T., Frank,
I. (eds.) CG 2001. LNCS, vol. 2063, p. 241. Springer, Heidelberg (2002)

88 A. Saffidine et al.

6. Gelly, S., Silver, D.: Combining online and offline knowledge in UCT. In: Proceed-
ings of the 24th International Conference on Machine Learning, ICML ’07, pp.
273–280. ACM Press, New York (2007)

7. Gelly, S., Wang, Y., Munos, R., Teytaud, O.: Modification of UCT with patterns in
Monte-Carlo Go. Rapport de recherche INRIA RR-6062 (2006). http://hal.inria.
fr/inria-00117266/en/

8. Hearn, R.A., Demaine, E.D.: Games, Puzzles, and Computation. A K Peters,
Cambridge (2009)

9. Lichtenstein, D., Sipser, M.: Go is polynomial-space hard. J. ACM 27(2), 393–401
(1980)

10. Robson, J.M.: The complexity of Go. In: IFIP Congress, pp. 413–417 (1983)

http://hal.inria.fr/inria-00117266/en/
http://hal.inria.fr/inria-00117266/en/

On Some Evacuation Games
with Random Walks

Matthias Beckmann(B)

University of Jena, Jena, Germany
matthias.beckmann@uni-jena.de

Abstract. We consider a single-player game where a particle on a board
has to be steered to evacuation cells. The actor has no direct control over
this particle but may indirectly influence the movement of the particle
by blockades. We examine optimal blocking strategies and the recurrence
property experimentally and conclude that the random walk of our game
is recurrent. Furthermore, we are interested in the average time in which
an evacuation cell is reached.

1 Introduction

Our point of interest is a special class of random walk games. Whilst in simple
discrete random walks every neighboring cell is reached with probability one
divided by the number of neighboring cells, our model discusses a random walk
with a slight control component. In every single step of the random walk, a part
of its connections to neighboring cells may be blocked. The intention is to guide
the particle of this random walk to an evacuation cell. The optimal blocking
strategy can be derived by solving a non-linear equation system. A related model
is discussed in [2].

We can also find a similar blocking principle in the thought experiment of
the Maxwell Demon [5]. The Maxwell Demon sorts particles into slow moving
and fast moving kinds by opening or blocking a passage between two rooms,
depending on what kind of particle is located in front of the passage.

The motivation for this game came up when a bumblebee got lost in
Ingo Althöfer’s living room and the question was how to get the insect out
of the room without inflicting injuries to her1 [1]. The seemingly erratic moving
pattern of the bumblebee reminds one of a random walk.

Polya’s Theorem [6] is an important result for simple random walks. It is
often paraphrased as “A drunk man always finds his way home, but the drunk
bird may not find its way home”. The concrete mathematical formulation is that
the simple random walk returns to the point of origin with probability one in
dimensions one and two, while in higher dimensions this probability is lower than
one. We will examine this property experimentally for our random walk game
and observe that the random walk in our model is recurrent in all dimensions.

1 For brevity, we use ‘he’ and ‘his’, whenever ‘he or she’ and ‘his or her’ are meant.

c© Springer International Publishing Switzerland 2015
A. Plaat et al. (Eds.): ACG 2015, LNCS 9525, pp. 89–99, 2015.
DOI: 10.1007/978-3-319-27992-3 9

90 M. Beckmann

This paper is thematically divided into two parts. The first part concerns the
basic game and computation of optimal strategies. It consists of Sects. 2 and 3.
The Basic Game and its applications are outlined in Sect. 2. We demonstrate
how to compute optimal blocking strategies in Sect. 3 and show results for three
medium size boards graphically. In the second part, consisting of Sects. 4, 5
and 6, we cover the time aspect of optimal strategies derived in the first part as
well as a new simple heuristic.

2 The Basic Game

For the sake of easier reading we limit our description to the two dimensional
game. We assume that the reader may derive the corresponding definitions for
higher dimensional games easily and apply them to the higher dimensional games
in later parts of this paper.

We consider a single particle on a board. Important examples are the infinite
board Z

2 and finite boards {1, 2, . . . ,m} × {1, 2, . . . , n}. The goal is that our
particle reaches an evacuation cell as soon as possible. Evacuation cells are dis-
tinguished cells of the board. If the particle reaches such a cell, the game ends.
Time in this game passes in discrete steps. In every step the particle moves into
one of the permitted neighbor cells. The user may block the access to one specific
neighboring cell. In further extensions of the model the access to more than one
neighboring cell is blocked. Usually the number of allowed blockade placements
is much lower than the number of neighbors.

In addition to that we forbid all blocking strategies which would corner the
particle on its current cell. This is especially important for finite boards.

The process of blocking over one time step is shown graphically in Fig. 1.
Figure 1(a) shows an initial situation for our model. The moving particle is rep-
resented by the circle denoted with a B. The objective is to reach the grayed
out evacuation cell on top of the board. We can think of B as a bumblebee and
the 5× 5 board representing Ingo’s living room. Outdoors is modeled by the
evacuation cell and the window of our room, leading to outdoors, is represented
by a small white rectangle.

Figure 1(b) shows the placement of a single blockade. In this case the blockade
is placed south of the bumblebee. The remaining three possible moves are shown
in Fig. 1(c). Each of them has a probability of 1

3 . Figure 1(d) displays one of the
possible follow-up positions. This position would be the initial position for the
next time step.

We imagine multiple real world applications of our model. For one we may
interpret the board as a top view of a room, the particle as a bumblebee which got
lost in Ingo’s room and the window through which the bumblebee shall escape is
represented through evacuation cells. A human now tries to encourage the bum-
blebee to move to the window by blocking its flight path with a piece of paper.

In a second approach we can view the board as a bird’s eye view of a city
with a grid-like street network. The cells in our model represent intersections of
these streets. In our city there is an unruly mob, for example, upset soccer fans

On Some Evacuation Games with Random Walks 91

B

1 2 3 4 5

1

2

3

4

5

a) b) c) d)

B
1
3

1
3

1
3

B B

Fig. 1. A single time step in the basic model. Here for particle B the southern direction
is blocked.

moving in a random pattern through the streets. The goal is to evacuate this
mob to a certain point for example a train station. The means of blocking in
this model is a police team which may block one street per time unit. The goal
is to get the mob to the evacuation point as soon as possible. The decider is the
head of the police who is looking for the optimal use of her police officers.

Thirdly we can apply the game to a special atomic diffusion problem. We
consider a crystal with a single particle inside. The task is to move the particle
out of the crystal and thus make the crystal flawless. We want to use diffusion
to move the particle out of the crystal. To start the random walk process the
crystal is heated up. Blockades may be realized through uneven heating or with
the help of lasers.

3 Computing Optimal Strategies and Results

For every non-evacuation cell (i, j) on our board we define

a(i, j) = Expected number of steps till evacuation
if an optimal blocking strategy is used.

In addition we set a(i, j) = 0 for every evacuation cell (i, j).
For every non-evacuation cell (i, j) the following equations hold

a(i, j) = min{Expected value of the blocking options + 1}

The equation system of the example from Fig. 1 consists of 26 equations,
25 for the cells in the room and one trivial equation for the evacuation cell. To
make understanding the equation system easier, we give the equations for three
selected cells (3, 3), (1, 1) and (5, 3).

The cell (3, 3) is located in the interior of the board. Here we are allowed to
place the blockade in one of the positions west, east, north or south. Thus, for
a(3, 3) the equation

92 M. Beckmann

a(3, 3) = min
{1

3
· [a(4, 3) + a(3, 4) + a(2, 3)

]
+ 1;

1
3
· [a(2, 3) + a(3, 2) + a(4, 3)

]
+ 1;

1
3
· [a(3, 4) + a(2, 3) + a(3, 2)

]
+ 1;

1
3
· [a(3, 2) + a(4, 3) + a(3, 4)

]
+ 1

}

holds. Here the first term in the minimum operator represents the option of
blocking west. 1

3 · [a(4, 3) + a(3, 4) + a(2, 3)
]

is the average number of steps of
the three possible successor cells after the step. The additional one counts the
step from the actual cell to the new cell.

In the corner of the board, the movement options as well as the blocking
options are limited by the boundaries of the board. Exemplarily for the lower
left corner cell (1, 1) we are only allowed to put a blockade in the positions north
or east. Thus the equation

a(1, 1) = min
{
a(1, 2) + 1; a(2, 1) + 1

}

holds.
Similarly, for the cell (5, 3) on the boundary, the equation

a(5, 3) = min
{1

2
· [a(5, 4) + a(5, 2)

]
+ 1;

1
2
· [a(4, 3) + a(5, 2)

]
+ 1;

1
2
· [a(5, 4) + a(4, 3)

]
+ 1

}

holds.

block south

block east

block east

block west

block west

Fig. 2. Optimal strategy for a special 20× 20 board. The board gets partitioned into
five areas. In all cells of an area the blocking direction is identical.

On Some Evacuation Games with Random Walks 93

block southblock west block east

ambiguous: block either west or east

Fig. 3. Optimal strategy for a special 21× 21 board. There is a single cell in the
southern part where the optimal strategy is ambiguous.

block south block west

block north

block south

block east

block west block west

block east block south

Fig. 4. Optimal strategy for a 20× 20 board with two exits. The board can roughly be
divided into two parts. In each of these parts the controller steers the particle towards
the exit in this part.

We can compute the solution for this system of non-linear equations numer-
ically. We obtain the optimal strategy used by memorizing where the minimum
was reached. While our equation system has a unique solution the optimal strat-
egy does not have to be unique. (See the Appendix.) Typical examples with
multiple optimal strategies are symmetric boards.

Figure 2 shows the optimal strategy for a 20× 20 board with four additional
evacuation cells. Possible blockade options for each cell are west, east, north and
south. The four evacuation cells are represented by gray cells on the upper ledge

94 M. Beckmann

of our board. This group models one bigger exit for instance a big window in
case of the bumblebee.

For a single exit on one side of the board we observe a typical strategy.
Around the exit we observe a catchment area in which the particle is guided
towards the exit. On the boundary opposite to exit we notice a ‘shadow’ of the
catchment area and in the area between the catchment area, the neighbor cell
opposite to the border with the exit is blocked.

Another 21× 21 example board is given in Fig. 3. In this figure we underlayed
the catchment area in light gray. It consists of both northern “block east” and
“block west” areas as well as part of the “block south” area and is approximately
of circular shape. In this figure the shadow consists of the southern boundary cells.

For multiple exits we observe similar patterns which interfer with each other,
limiting the size of the catchment area and seperating the board into different
zones in which the particle is guided to the exit accompanying the zone. An
example for a 20× 20 board with two distinct exits is given in Fig. 4.

4 Evacuation Models and Recurrence

Polya’s theorem [6] states that the simple random walk on the infinite line or
on the infinite two dimensional board returns to the origin with probability one,
but in higher dimensions this probability is less than one. A common paraphrase
for Polya’s theorem is

“A drunk man will find his way home, but a drunk bird may get lost forever.”

This phrase is attributed to Shizuo Kakutani and was coined in a conference
talk [3]. We show experimentally that our control aspect helps the drunk bird
to find its way home.

4.1 A Heuristic Strategy for Random Walks in Z
n

In Sect. 3 we derived the optimal strategy by solving a non-linear equation system
numerically. It is possible to define a corresponding infinite equation system for
the infinite board Z

n and solve it numerically. But in this case it is not possible
to solve it via our method described in the appendix.

We propose a simple heuristic strategy for our infinite board with one block-
ade and a single evacuation cell in the following way.

Strategy: For each cell block the access to the neighboring cell with the largest
component.

Two-dimensional example: Our goal is at (0, 0) and the particle is in the cell
(2, 4) with neighboring cells (1, 4), (3, 4), (1, 3), (2, 5). Here the access to (2, 5)
would be blocked.

In some cases there is more than one cell with the largest distance from the
goal in one component. We break the tie arbitrarily.

On Some Evacuation Games with Random Walks 95

block north

block south

block eastblock west

Fig. 5. Optimal strategy for a 23× 23 board with a single evacuation cell in the center.
Non-captioned cells have at least two optimal blockade positions.

This strategy is based on observations for the finite board. We calculated
optimal strategies for square boards of side length 7, 11, 15, 19 and 23 and
observed that the optimal strategy converges with growing board size to the
simple strategy stated above. Figure 5 shows the optimal strategy for the 23× 23
board with a single evacuation cell in the center. The circular area around the
evacuation cell has the same strategy as the heuristic strategy. We observe that
this area grows with increasing board size and always has a diameter of side
length minus two. Thus, we expect that the optimal strategy on the infinite
board is similar to the proposed strategy. While the heuristic strategy is not
necessarily the optimal strategy, it is a good heuristic.

4.2 Simulation Results for the Heuristic Strategy on Z
n

We estimate the expected number of steps until the random walk returns to
the origin and the rate of return by simulating one million random walks for
dimensions 2 to 4 and 100,000 random walks for dimensions 5 and 6. For each
random walk 10,000,000 steps are simulated. If the random walk returns within
this time frame we count this as a successful return. If it does not return to
the origin we do not count it as a return. The results of the simulation are
given in Table 1. The expected time till return to the origin is estimated by
the arithmetic mean of the number of steps taken in our simulations. We also
included the already known results for the simple random walk for comparision.

Remarkable is that the rate of return is one in all dimensions. Polya’s theorem
states that without blockades these rates are less than one for dimensions greater

96 M. Beckmann

Table 1. Recurrence property for the evacuation model on Z
n

n Expected time till return Rate of return Rate of return without blockades

2 11.5 1.00000 1

3 95.5 1.00000 0.340537

4 1020.7 1.00000 0.193206

5 13257 1.00000 0.135178

6 197890 1.00000 0.104715

than two. The rates for the simple random walk are given in the third column
and were derived numerically by [4].

We also observe a connection between the dimension and the expected num-
ber of steps till return – if the dimension increases from n to n+ 1 the expected
number of steps increases by a factor of about 2n + 4.

5 Evacuation Speed

In case of an evacuation it is important to know how fast our particle can reach
an evacuation cell. For a certain cell on the board the number is given by the a
variables from Sect. 2.

We are especially interested in boards of the following shape: The board is
square with odd side length m. The only evacuation cell is located in the middle
of one of the sides. One such board with n = 2 is shown in Fig. 1. A second
board with n = 10 and the accompanying optimal blocking strategy is shown in
Fig. 3. We want to examine how long it takes in average to evacuate the particle
if it is placed randomly on one of the inner cells with probability 1

m2 for each
cell. We examine this question for different numbers of blockades.

We choose just this class of boards in order to obtain a class of boards of
growing size which only depends on a single parameter. The placement of the
evacuation cell reflects our initial idea of evacuating a bumblebee out of a room.

To answer the question we define the average time until evacuation as

aM =
1
m2

∑

(i,j) is an inner field
of the board

a(i, j),

where the set M indicates how many blockades may be placed at each cell,
e.g., if M = {1, 2} one or two blockades may be placed. The amount of allowed
blockades might be different at corner and boundary cells because of the special
rules for these cells outlined in the basic model. Thus on corner cells at most
one access to a neighbor may be blocked and on boundary cells only two cells
may be blocked at most.

We focus on the sets M1 = {1}, M2 = {1, 2}, and M3 = {1, 2, 3}. In the
case of M3 all randomness is lost and the controller can always force the particle

On Some Evacuation Games with Random Walks 97

Table 2. Expected time until evacuation for different blockade options

Blockade options Expected number of steps aM

1 2.2500 ·m + 20.3644

1 to 2 1.0000 ·m + 2.0015

1 to 3 3
4
·m + 1

2
+ 1

4
· 1
m

on the neighbor cell of her choice. Therefore, for a certain cell the time until
evacuation is given by the Manhattan distance of this cell to the evacuation cell.

For sufficiently large boards with side length m > 50 we observe a linear
relation between board size and average time until evacuation. The results for
the optimal strategies of these blockade possibilities are shown in Table 2.

The results for M1 and M2 are computed by solving the corresponding equa-
tion systems. The result for M3 was obtained by a short elementary computation.

6 Random Walk Half Life

In connection with Recurrence and Evacuation speed we are also interested in
how long it takes to evacuate a particle with probability 50 %. In case of multiple
repeated independent evacuations this property will reflect how much time is
needed to save 50 % of a given population.

For this task we consider infinite boards of dimension n. Our particle starts
at (0, 0) and the task is to let it return to this cell by placing a single blockade
in every turn.

We estimate the Random Walk half life by Monte Carlo simulations. The
numbers are given by the median of the time until return to the origin. The
resulting half life periods for dimensions two to six are shown by Table 3.

Table 3. Experimental Results for the Random Walk half life time

n Number of steps until evacuation of at least 50 % Growth compared with n− 1

2 6 –

3 34 5.67

4 532 15.65

5 8110 15.24

6 123691 15.25

We observe for dimension 3 or higher that if we increase the dimension by
one, the number of steps until evacuation of at least 50 % increases by a factor
of about 15.25.

7 Conclusions

We worked on two questions regarding the evacuation game. For question one
we were concerned about how we should block the access to neighboring cells to

98 M. Beckmann

get the object of concern in the fastest possible way to a predetermined cell. For
question two we were interested in the time aspect of our evacuation.

For finite boards we can answer the question one of how to place blockades
by solving a special equation system with min expressions. For the infinite board
we derived a good heuristic strategy from our observations from the finite board.
If we examine finite boards with a single exit we can divide the board into three
areas where three blocking patterns are prevalent – a catchment area around the
exit, a shadow opposite the exit and an intermediate area.

An important part of our investigation was whether the recurrence property
holds or not in infinite boards of dimension 3 or higher. For the proposed simple
heuristic we observed experimentally that the particle returns to the origin in
all dimensions with probability one. In the context of the drunk bird parable we
may conclude that just one blockade will help a drunk bird to find its home in
any finite dimensions.

For question two, the expected time until a particle is evacuated, we observe a
linear relation between side length of the 2-dimensional board under investigation
and the evacuation time.

We also took a look at the time it takes to evacuate 50 % of a given population
by using single blockades in each step. We observe that this time increases quickly
with the dimension of the problem.

Research questions for the future are

– To find a formal proof for recurrence in high dimensions.
– Identifying optimal strategies on infinite boards in d dimensions.

Acknowledgments. The author would like to thank Ingo Althöfer for asking the
interesting bumblebee evacuation question. Thanks also to three anonymous referees
for their constructive comments.

Appendix

Method of Monotonous Iterations

Given an equation system (E) of the form x = f(x) and a starting vector x(0)

we compute x(i+1) by
x(i+1) = f(x(i)).

This method converges towards a solution, for instance, if the following con-
ditions hold

1. (E) has a unique solution, and
2. the sequence x(i) is monotonically increasing in all coordinates and has an

upper bound in each coordinate.

The first condition holds for the problems outlined in this paper.
The second condition depends on the starting vector x(0). Only a good start-

ing vector will lead to the solution of (E). A good solution for our problems is
x(0) = (0, 0, . . . , 0) for which the second property is fulfilled.

On Some Evacuation Games with Random Walks 99

References

1. Althöfer, I.: Personal Communication in June 2014
2. Althöfer, I., Beckmann M., Salzer. F.: On some random walk games with diffusion

control (2015)
3. Durrett, R.: Probability: Theory and Examples (2010). http://www.math.duke.edu/

rtd/PTE/PTE4 1.pdf. Accessed on 9th March 2015
4. Finch, S.R.: Polya’s Random Walk Constant. Section 5.9 in Mathematical Con-

stants, pp. 322–331. Cambridge University Press, Cambridge (2003)
5. Maxwell, J.C.: Theory of Heat, 9th edn. Longmans, London (1888)
6. Polya, G.: Ueber eine Aufgabe betreffend die Irrfahrt im Strassennetz. Math. Ann.

84, 149–160 (1921)

http://www.math.duke.edu/ rtd/PTE/PTE4_1.pdf
http://www.math.duke.edu/ rtd/PTE/PTE4_1.pdf

Crystallization of Domineering Snowflakes

Jos W.H.M. Uiterwijk(B)

Department of Knowledge Engineering (DKE),
Maastricht University, Maastricht, The Netherlands

uiterwijk@maastrichtuniversity.nl

Abstract. In this paper we present a combinatorial game-theoretic
analysis of special Domineering positions. In particular we investigate
complex positions that are aggregates of simpler fragments, linked via
bridging squares.

We aim to extend two theorems that exploit the characteristic of an
aggregate of two fragments having as game-theoretic value the sum of
the values of the fragments. We investigate these theorems to deal with
the case of multiple-connected networks with arbitrary number of frag-
ments, possibly also including cycles.

As an application, we introduce an interesting, special Domineer-
ing position with value ∗2. We dub this position the Snowflake. We
then show how from this fragment larger chains of Snowflakes can be
built with known values, including flat networks of Snowflakes (a kind of
crystallization).

1 Introduction

Domineering is a two-player perfect-information game invented by Göran
Andersson around 1973. It was popularized to the general public in an arti-
cle by Martin Gardner [9]. It can be played on any subset of a square lattice,
though mostly it is restricted to rectangular m × n boards, where m denotes
the number of rows and n the number of columns. The version introduced by
Andersson and Gardner was the 8 × 8 board.

Play consists of the two players alternately placing a 1 × 2 tile (domino) on
the board, where the first player may place the tile only in a vertical alignment,
the second player only horizontally. The player first being unable to move loses the
game; his opponent (who made the last move) is declared the winner. Since the
board is gradually filled, i.e., Domineering is a converging game, the game always
ends, and ties are impossible. With these rules the game belongs to the category of
combinatorial games, for which a whole theory (the Combinatorial Game Theory,
or CGT in short) has been developed. In CGT the first player conventionally is
called Left, the second player Right. Yet, in our case we also sometimes will use
the more convenient indications of Vertical and Horizontal, for the first and second
player, respectively.

Among combinatorial game theorists Domineering received quite some atten-
tion. However, the attention was limited to rather small or irregular boards

c© Springer International Publishing Switzerland 2015
A. Plaat et al. (Eds.): ACG 2015, LNCS 9525, pp. 100–112, 2015.
DOI: 10.1007/978-3-319-27992-3 10

Crystallization of Domineering Snowflakes 101

[1,4,5,7,11,16]. Larger (rectangular) boards were solved using α-β search [12],
leading to solving all boards up to the standard 8 × 8 board [2], later extended
to the 9×9 board [10,15], and finally extended to larger boards up to 10×10 [6].

Recently the combination of CGT and α-β solvers was investigated [3]. First,
endgame databases with CGT values for all Domineering positions up to 15
squares were constructed. Then they were used during the search process. Exper-
iments showed reductions up to 99%. As a sidetrack we discovered many inter-
esting Domineering positions, some of which form the basis for the present paper.

2 Combinatorial Game Theory and Domineering

In this section we start by a short introduction to the field of CGT applied to
Domineering, in Subsect. 2.1. We next describe games with number and nimber
values in Subsect. 2.2; they are of particular interest for the remainder of this
paper. Finally, we explain the notion of disjunctive sums of games in Subsect. 2.3.
For a more detailed introduction we refer to [1,5,7], where the theory is explained
and many combinatorial games including Domineering are treated.

2.1 Introduction to the Combinatorial Game Theory

In CGT applied to Domineering it is common to indicate the two players by
Left (Vertical) and Right (Horizontal). A game is then described by its Left
(vertical) and Right (horizontal) options, where options are again games. A Left
option describes a legal move Left can make by giving the game position after
performing the move, whereas a Right option describes a legal move which Right
can make. To better understand this recursive definition, it is convenient to start
by analyzing the simplest of games. A game of Domineering consisting of no
or merely one square (see Fig. 1 left) has no legal move for either player, i.e.,
no Left options and no Right options, and is called zero or 0. In short, since
games are represented by their Left and Right options, this game is described
by G = {|} = 0.

= {|} = 0 = {0|} = 1 = {|0} = −1

Fig. 1. From left to right, the simplest Domineering positions with values 0, 1, and −1.

The second and third game in Fig. 1 show the two next simplest Domineering
games, 1 and −1; each have exactly one legal move for Left or Right, respectively.
Using the previously shown game notation of Left and Right options, they are
defined as 1 = {{|}|} = {0|} and −1 = {|{|}} = {|0}. By expanding the game
board to larger and more arbitrary shapes, very complex representations can be
obtained. Only a small portion of the larger games have easy values such as 0,
1 or −1. It is generally true that games with positive values pose an advantage
for Left, and games with negative values pose an advantage for Right.

102 J.W.H.M. Uiterwijk

2.2 Number and Nimber Games

We next focus on two types of games with special characteristics, numbers and
nimbers. As usual in CGT, we further freely use numbers and nimbers to indicate
both a game and the value of that game. The context will make clear what is
meant.

Numbers. The games 0, 1, and −1 have values that are called numbers. Num-
bers may be positive and negative integers, but can also be fractions. In games
with finite game trees specifically, all numbers are dyadic rationals, i.e., rational
numbers whose denominator is a power of two. Numbers are represented by the
options for both Left and Right: G = {GL|GR}, where GL and GR are either
{} = ∅ or sets of other numbers. For all numbers with two non-empty options
it holds that GL < GR. Generally, the sign of a number indicates which player
wins the game, while the value 0 indicates a win for the player who made the last
move, i.e., the previous player. Numbers and combinations of multiple numbers
thus have a predetermined outcome.

Infinitesimals. Infinitesimal games have values that are very close to zero and
are less than every number with the same sign. Being infinitesimally close to zero,
these games can never overpower any game with non-zero number value under
optimal play. There are several types of infinitesimal values, such as ups/downs,
tinies/minies, and nimbers. We next introduce the latter ones.

Nimbers. Nimbers commonly occur in impartial games, but may occur in
partizan games like Domineering. Their main characteristic is that their Left
and Right options are identical, following a certain schema, and that they are
their own negatives. The only frequent representative of this group in Domineer-
ing, according to Drummond-Cole [8], is the star or ∗. In game notation a star
looks as G = {0 | 0} = ∗1 = ∗. Figure 2 shows the most simple star position in
Domineering.

= { | }
Fig. 2. A Domineering star position and its Left and Right options.

The next nimber, ∗2, is defined as ∗2 = {0, ∗|0, ∗}, and in general a nimber
∗n is defined as ∗n = {0, ∗, ..., ∗(n − 1)|0, ∗, ..., ∗(n − 1)}. Clearly, the first player
to move in a nimber game wins by moving to 0, which is why the outcome is not
predetermined and why its value is truly confused with zero. This introduces an

Crystallization of Domineering Snowflakes 103

interesting property of nimbers: every nimber is its own negative, i.e., ∗n = −∗n.
As a consequence, when two identical nimbers occur, they cancel each other:
∗n + ∗n = 0, where n is any integer ≥ 0.

When we add a third square to the central square of the position in Fig. 2,
the value of the position does not change, since any move by a player necessarily
destroys the central square, leaving unconnected squares with 0 as resulting sum
value. This even holds when we add a fourth square to the central one. Therefore,
the two positions Small-T and Plus in Fig. 3 also have value ∗.

= { | }
= { | }

Fig. 3. Two more Domineering star positions and their Left and Right options, the
Small-T (top) and the Plus (bottom).

2.3 Sums of Games

As a game progresses, it is common for many combinatorial games that the posi-
tions begin to decompose. This usually means that the game board consists of
two or more components (subgames) that can no longer interact. Their indepen-
dent nature allows for an independent analysis. Each subgame has a value and
the combination of multiple components, denoted as the sum of the subgames,
also has a value: the sum of their individual values.

More formally, the (disjunctive) sum of two games G and H is defined as
G + H = {GL + H,G + HL |GR + H,G + HR}, with the superscripts indicating
the Left or Right options of a game. The reasoning behind this definition is that
a player can only move in one of the two subgames, thus to the Left or Right
options of one game plus the entire other game.

When adding two numbers, the sum will always simplify back to a number
again. In fact, number games and their values can be treated like mathemati-
cal numbers, and the sum is equivalent to their mathematical sum. When two
nimbers are added, their sum is given by the nim-addition rule, and is a nimber
again. Two equal nimbers add to ∗0 = 0, meaning that they cancel each other.
Indeed, 0 is the only value being a number and a nimber at the same time.
For any other type of game theoretical values the sum can easily become quite
complex.

104 J.W.H.M. Uiterwijk

3 CGT Theorems for Domineering

In this section we focus on theorems in CGT, that are specifically applicable to
Domineering positions. The first such theorem was already given by Conway in
[7, p. 115]. We start this section by presenting Conway’s theorem and proof, in
Subsect. 3.1. This theorem is only applicable to linearly connected structures of
exactly two fragments. In a previous publication [14] we extended this theorem
to arbitrarily connected structures, involving up to four fragments. We repeat
this theorem and its proof in Subsect. 3.2. In the present paper we extend this
to structures of an arbitrary number of fragments (networks), possibly involving
cycles. The new theorem and its proof are given in Subsect. 3.3.

3.1 The Bridge Splitting Theorem for Domineering

Though the preceding theory is applicable to any combinatorial game, Conway
formulated a beautiful decomposition theorem that is specifically applicable to
Domineering [7]. Because of its importance, we repeat the theorem and its proof.
We denote it as the Bridge Splitting Theorem, to contrast it with the other
theorems to be formulated in the next subsections.

Theorem 1 (Bridge Splitting Theorem). If for some game G� its value
is equal to that of the game G alone, then the value of G�H is the sum of the
values of G and �H, provided that G and H do not interfere.

The condition that the games G and H should not interfere means that there
may be no overlap between the edges of the squares of G with the edges of the
squares of H.

Proof.
G�H ≤ G + �H = G� + �H ≤ G�H

The first inequality is justified, since splitting a horizontal line can only favor
Vertical. The equality is the condition of the theorem. The second inequality
is justified since joining two horizontally adjacent squares also can only favor
Vertical. ��
Following Conway [7] we denote such bridging square as explosive. Note that this
theorem concerns two fragments connected horizontally. Of course, the theorem
is equally valid when the two fragments are vertically connected. Important is
that the two fragments are linearly connected via an explosive bridge, i.e., that
the bridge has two opposite edges in common with the two fragments.

3.2 The Bridge Destroying Theorem for Domineering

When the bridge between two connecting fragments is an explosive square for
both fragments, then it was shown in [14] that the two fragments need not
necessarily be linearly connected, but also may be orthogonally connected via

Crystallization of Domineering Snowflakes 105

an explosive bridge, i.e., that the bridge has two adjacent edges in common with
the two fragments. In fact, the explosive square then may act as a bridge between
any possible number of fragments from (trivially) zero to the full amount of four.
The proof is as follows.

Theorem 2 (Bridge Destroying Theorem). If for some game G� its value

is equal to that of the game G alone, for some game �
H

its value is equal to that
of the game H alone, for some game �I its value is equal to that of the game I
alone, and for some game �

J
its value is equal to that of the game J alone, then

the value of G�
H

J
I is the sum of the values of G, H, I, and J , provided that G,

H, I, and J do not interfere. Games G, H, I, and J might be empty.

Proof.

G�
H

J
I ≤ G + �

H

J
I ≤ G + �

H

J
+ I = G + �

H
+ I + J

= G + H + I + J

= G� + H + I + J

= G�I + H + J ≤ G�
H

I + J ≤ G�
H

J
I

The first two inequalities are justified, since splitting a horizontal line can only
favor Vertical, the first equality is an application of the Bridge Splitting Theorem
for vertical connections, the next two equalities are just two conditions of the
theorem, the fourth equality is an application of the Bridge Splitting Theorem
for horizontal connections, and the last two inequalities are justified, since linking
along a vertical line also can only favor Vertical. ��
We note that this proof also includes the cases where any subset of {G,H, I, J}
are empty games, since the value of the empty square equals the value of an
empty game. We further note that for two non-empty games this theorem is cov-
ered by the Bridge Splitting Theorem when the games are connected to opposite
sides of the bridging square, but that this is not needed for the Bridge Destroying
Theorem, i.e., a “corner” connection is also allowed.

3.3 The Bridge Destroying Theorem for Domineering Networks

In this subsection we extend the previous Bridge Destroying Theorem to arbitrar-
ily large networks of fragments. Here, networks are defined as single-component
positions with an arbitrary number of fragments connected by bridges to exactly
two fragments each (two-way bridges). So, we refrain from the requirement that
the fragments, apart from the bridging square under consideration, may not
interfere. To be more precise, we allow the components to have multiple con-
nections, but every connection should be via an explosive square to exactly two
fragments.

106 J.W.H.M. Uiterwijk

Before we give the proof we first, in analogy with Conway’s explosive squares,
define the notion of superfluous squares.

Definition 1. A superfluous square is a square that does not influence the CGT
value of a position. This means that the CGT value of the position is exactly
equal with and without that square.

We note that the bridging squares in the formulation of Theorem 2 are super-
fluous. We also note that it can be the case that several squares are candidates
for being superfluous. We then have to choose which square(s) will be denoted
as superfluous. As a case in point, the two side squares of a Small-T component
(see Fig. 3, top) both satisfy the condition for being superfluous, but once one is
denoted as superfluous, the other no longer satisfies the requirement. When can-
didate superfluous squares do no interfere, e.g., side squares in different Small-T
components in some position, they may all be denoted as superfluous. This leads
us to the following definition of sets of independent superfluous squares.

Definition 2. A set S of superfluous squares in a position is independent if the
CGT value of the position is exactly equal with and without any subset of S.

In the remainder we consider single-component positions consisting of fragments
connected via two-way bridges from an independent set of superfluous squares
(further called aggregates). Since we only consider two-way bridges, we can define
the notion of the connection graph of an aggregate, together with some related
characteristics.

Definition 3. A connection graph of an aggregate is the graph with as nodes
the fragments of the aggregate and as edges the bridges.

Definition 4. A tree-structured aggregate is an aggregate for which the connec-
tion graph is a tree. We also denote this as a 0-cyclic aggregate.

Definition 5. An n-cyclic aggregate is an aggregate that contains at least one
bridge such that without the bridge the aggregate is (n − 1)-cyclic.

Using these definitions we can prove the following theorem.

Theorem 3 (Bridge Destroying Theorem for Networks). If an aggregate
A consists of n fragments F1, F2, · · · , Fn that are connected via bridging squares
from an independent set of superfluous squares, the value of the aggregate is
equal to the sum of the values of all fragments.

Proof. We will prove this theorem in two parts. First we will prove the theo-
rem for networks without cycles. Second, using this proof as base case, we will
prove the theorem for networks with cycles by induction on the cyclicity of the
aggregate.

Base Case: If the aggregate is tree-structured (0-cyclic), then the connection
graph of the aggregate is a tree. As a result, there is at least one node with
degree 1, i.e., a fragment which is singly connected to the remainder of the

Crystallization of Domineering Snowflakes 107

aggregate. Removing the superfluous bridging square results in a position con-
sisting of an unconnected fragment and the remainder of the aggregate (if any).
Using the Bridge Destroying Theorem the value of the resulting position is the
sum of the fragment value and the value of the remainder. Moreover, since the
original aggregate was tree-structured, any remainder of the aggregate is also
tree-structured, meaning that there is again at least one fragment in the remain-
der with degree 1, that we can decouple. This process can be continued until all
fragments are decoupled, showing that the value of the original aggregate equals
the sum of the values of all fragments.

Induction Hypothesis: Assume that for n-cyclic aggregates for some unspec-
ified integer n ≥ 0 it holds that their values equal the sum of the values of their
fragments.

Induction Step: If we have an (n + 1)-cyclic aggregate A, it contains by def-
inition a bridging square without which the aggregate is an n-cyclic aggregate
A′. Since the value of A′ is the sum of the values of the fragments, due to the
induction hypothesis, and since adding a superfluous bridging square does not
change the value, it follows that the value of A equals the value of A′, so also is
the sum of the values of the fragments. ��

The complete position A can thus always be built from a tree-structured
aggregate with the same fragments (with as value the sum of the values of the
fragments according to the base case) by proper addition of bridging squares from
an independent set of superfluous squares (induction steps) without changing the
value.

4 Domineering Snowflakes

In Subsect. 4.1 we introduce an interesting Domineering position. This posi-
tion has properties that make the position quite suitable to build large con-
nected polygames of known values. Due to its appearance we dub this position
the Domineering Snowflake. Next, in Subsect. 4.2 we show how this Snowflake
can be used to build larger chains of Snowflakes with known values, based on
Theorems 1 and 2. We then show in Subsect. 4.3 that using Theorem 3 we also
can build 2-dimensional lattices of Snowflakes with known values, which we call
crystallization of Snowflakes for obvious reasons.

4.1 The Domineering Snowflake

In [14] we showed that, contrary to expectations [8], there exist many Domineer-
ing positions with value ∗2 and ∗3. The smallest one, with value ∗2 is depicted
in Fig. 4. We further just call it the Star2 position. Left’s first option with three
unconnected subgames has value 1∗ + 0 + −1 = ∗; Left’s second option with
two unconnected subgames has value 1/2 − 1/2 = 0. The two Right options are
their negatives, so also ∗ and 0. Therefore, the proper value of this position is
{∗, 0|∗, 0} = ∗2.

108 J.W.H.M. Uiterwijk

=

{ , | , }
Fig. 4. The Star2 Domineering position, with value ∗2, and its optimal Left and Right
options.

The four squares at the extremes lend themselves for attachment to explosive
squares of additional fragments, yielding a position with as value the sum of
the component values (applying Theorem 1 four times, twice for a horizontal
connection, twice for a vertical connection). When we attach Small-T pieces
with value ∗ to the Star2 position, the resulting position is also a nimber, where
the value is obtained by appropriate nim additions. So, attaching one Small-T
to Star2 gives a position with value ∗2 + ∗ = ∗3. Adding a second Small-T then
gives ∗3+∗ = ∗2, a third addition then again gives a ∗3 position. Finally, adding
Small-T’s to all extremes gives the position from Fig. 5 with value ∗2, which we
have dubbed the Snowflake position.

Fig. 5. The Snowflake position, with value ∗2. The dashed lines show that this position
can be considered as the sum of the Star2 position with four Small-T pieces attached.

4.2 Forming Chains of Snowflakes

Since one side square of each Small-T in the Snowflake position is superfluous,
we may connect two Snowflakes linearly, applying Theorem 2, to form a chain
of two Snowflakes, with value ∗2 + ∗2 = 0, see Fig. 6.

Crystallization of Domineering Snowflakes 109

•

Fig. 6. A chain of two Snowflakes with value 0. The bullet marks the superfluous
bridging square.

We can continue adding Snowflakes in the same direction, building arbitrarily
long horizontal chains of Snowflakes, where each chain consisting of an even num-
ber of Snowflakes has value 0 and each chain with an odd number of Snowflakes
has value ∗2. Of course, we symmetrically can build vertical chains of Snowflakes
in this way. In fact, we are even able to chain a Snowflake simultaneously in two
orthogonal directions, as illustrated in Fig. 7.

•

•

Fig. 7. Three orthogonally connected Snowflakes with value ∗2. The bullets mark the
superfluous bridging squares.

The grey cell in this figure denotes a covered square, which means that the
fragments here touch, but do not interfere. (This means that the position is

110 J.W.H.M. Uiterwijk

not reachable in “standard” Domineering, but is a “generalized” Domineering
position [8].) Therefore, the proper value of this position is again ∗2.

We may extend chains or attach chains likewise, as long as we make sure that
chains do not interfere. The proper sum of such a loosely connected network
(without cycles) is determined by the total number of Snowflakes being odd
(with value ∗2) or even (with value 0).

4.3 Crystallisation of Snowflakes

If we try to connect four Snowflakes in a square arrangement, we see that we
get a cycle introduced. This 2 × 2 network of Snowflakes is depicted in Fig. 8.

•

• •

•

Fig. 8. A square network of four Snowflakes, with value 0. The bullets mark the super-
fluous bridging squares.

Using Theorem 3 it follows that this connected square matrix still has as CGT
value the sum of the values of the four component Snowflakes, i.e., 4 × ∗2 = 0
(a loss for the player to move).

Now this process of connecting Snowflakes in any (linear or orthogonal) direc-
tion can be continued to form arbitrary multiple-connected flat networks, where
again the whole network has value 0 for an even number of Snowflakes, and
value ∗2 for an odd number. We denote this as crystallization of Snowflakes.
A snapshot of a part of such a “crystal” is given in Fig. 9, where for clarity all
covered cells have been indicated in grey.

Crystallization of Domineering Snowflakes 111

Fig. 9. A snapshot of a Snowflake crystal.

5 Conclusions and Future Research

The main contribution of this paper is that we have stated and proved a new,
powerful theorem, that indicates when an aggregate consisting of multiple con-
nected networks of fragments has as game-theoretic value the sum of the values
of its components.

As an application, we introduced the Snowflake position, with value ∗2, and
showed how from this Snowflake larger chains of Snowflakes can be built, includ-
ing flat networks (crystals) of Snowflakes, with known values 0 or ∗2. We note
that all game values stated in this paper have extensively been checked using
Aaron Siegel’s CGSUITE software tool [13].

It is challenging to develop other interesting positions as alternatives for
Snowflakes, especially also exhibiting the ability to form arbitrarily large net-
works with known simple values. Even more challenging is to find a ∗4 position
(and probably accompanying positions with values ∗5, ∗6, and ∗7 by combination
with smaller nimbers). It then has to be investigated whether such positions lend
themselves also for the kind of crystallization as described for the Snowflakes.

112 J.W.H.M. Uiterwijk

References

1. Albert, M.H., Nowakowski, R.J., Wolfe, D.: Lessons in Play: An Introduction to
Combinatorial Game Theory. A K Peters, Wellesley (2007)

2. Breuker, D.M., Uiterwijk, J.W.H.M., van den Herik, H.J.: Solving 8×8 Domineer-
ing. Theor. Comput. Sci. (Math Games) 230, 195–206 (2000)

3. Barton, M., Uiterwijk, J.W.H.M.: Combining combinatorial game theory with an
α-β solver for Domineering. In: Grootjen, F., Otworowska, M., Kwisthout, J. (eds.)
BNAIC 2014: Proceedings of the 26th Benelux Conference on Artificial Intelligence,
Radboud University, Nijmegen, pp. 9–16 (2014)

4. Berlekamp, E.R.: Blockbusting and Domineering. J. Combin. Theory (Ser. A) 49,
67–116 (1988)

5. Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning Ways for your Mathematical
Plays. Academic Press, London (1982). 2nd edn. in four volumes: vol. 1 (2001),
vols. 2, 3 (2003), vol. 4 (2004). A K Peters, Wellesley

6. Bullock, N.: Domineering: solving large combinatorial search spaces. ICGA J. 25,
67–84 (2002)

7. Conway, J.H.: On Numbers and Games. Academic Press, London (1976)
8. Drummond-Cole, G.C.: Positions of value *2 in generalized Domineering and chess.

Integers Electr. J. Combin. Number Theory 5, #G6, 13 (2005)
9. Gardner, M.: Mathematical games. Sci. Am. 230, 106–108 (1974)

10. van den Herik, H.J., Uiterwijk, J.W.H.M., van Rijswijck, J.: Games solved: now
and in the future. Artif. Intell. 134, 277–311 (2002)

11. Kim, Y.: New values in Domineering. Theor. Comput. Sci. (Math Games) 156,
263–280 (1996)

12. Knuth, D.E., Moore, R.W.: An analysis of alpha-beta pruning. Artif. Intell. 6,
293–326 (1975)

13. Siegel, A.N.: Combinatorial game suite: a computer algebra system for research in
combinatorial game theory. http://cgsuite.sourceforge.net/

14. Uiterwijk, J.W.H.M., Barton, M.: New results for Domineering from combinatorial
game theory endgame databases. Theor. Comput. Sci. 592, 72–86 (2015)

15. Uiterwijk, J.W.H.M., van den Herik, H.J.: The advantage of the initiative. Inf. Sci.
122, 43–58 (2000)

16. Wolfe, D.: Snakes in Domineering games. Theor. Comput. Sci. (Math Games) 119,
323–329 (1993)

http://cgsuite.sourceforge.net/

First Player’s Cannot-Lose Strategies
for Cylinder-Infinite-Connect-Four

with Widths 2 and 6

Yoshiaki Yamaguchi1(B) and Todd W. Neller2

1 The University of Tokyo, Tokyo, Japan
yamaguchi@klee.c.u-tokyo.ac.jp

2 Gettysburg College, Gettysburg, USA

Abstract. Cylinder-Infinite-Connect-Four is Connect-Four played on a
cylindrical square grid board with infinite row height and columns that
cycle about its width. In previous work, the first player’s cannot-lose
strategies have been discovered for all widths except 2 and 6, and the sec-
ond player’s cannot-lose strategies have been discovered with all widths
except 6 and 11. In this paper, we show the first player’s cannot-lose
strategies for widths 2 and 6.

1 Introduction

We begin by introducing the two-player game of Cylinder-Infinite-Connect-Four.
We call the first and second players Black and White, respectively. Cylinder-
Infinite-Connect-Four is played on a square grid board that wraps about a semi-
infinite cylinder (Fig. 1). Rows extend infinitely upward from the ground, and
we number columns of a width w board with indices that cycle rightward from
0 to w − 1 and back to 0. Players alternate in dropping disks of their colors to
the lowest unoccupied grid cell of each drop column. Thus a game position, i.e. a
configuration of disks, is unambiguously described as a sequence of column num-
bers. For clarity, we additionally prefix each column number with the first letter
of the player color, so “Bi” or “Wi” means that Black or White, respectively,
places a disk in column i.

The object of the game is to be the first player to place four or more of one’s
own disks in an adjacent line horizontally, vertically, or diagonally. We call such
a four-in-a-row a Connect4. Because of the cylindrical nature of the board, the
Connect4 is further constrained to consist of 4 different disks. Thus, a horizontal
Connect4 is not allowed for widths less than 4. If, for a given state and given
player strategies, we can show the impossibility of either player ever achieving a
Connect4, the value of the game is said to be draw.

We call a configuration of disks a position. When a player places a disk, back-
ground of the cell is colored gray. We duplicate columns 0 through 2 to the right
on wider boards to allow easy inspection of wraparound Connect4 possibilities.
Figure 2 shows an example terminal game position after B0W0B2W2B1W3B5.
A threat is defined as a single grid cell that would complete a Connect4 [3].
c© Springer International Publishing Switzerland 2015
A. Plaat et al. (Eds.): ACG 2015, LNCS 9525, pp. 113–121, 2015.
DOI: 10.1007/978-3-319-27992-3 11

114 Y. Yamaguchi and T.W. Neller

Fig. 1. Board of Cylinder-Infinite-
Connect-Four

Fig. 2. Example position

After B0W0B2W2B1, Black has a double threat on the bottom row. Although
W3 removes one threat, Black can play the other threat B5 and complete a
Connect4.

In previous work [1], the first player’s cannot-lose strategies have been discov-
ered for all widths except 2 and 6, and the second player’s cannot-lose strategies
have been discovered for all widths except 6 and 11. In this paper, we show the
first player’s cannot-lose strategies for widths 2 and 6.

2 Related Work

In 1988, James Dow Allen proved that Connect-Four played on the standard
board with width 7 and height 6 is a first player win [2]; 15 days later, Victor
Allis independently proved the same result [4]. Results for Connect-Four games
played on finite boards with non-standard heights and/or widths were reported
in [9]. Yamaguchi et al. proved that Connect-Four played on a board infinite in
height, width, or both, leads to a draw by demonstrating cannot-lose strategies
for both players [10]. These cannot-lose strategies are based on paving similar
to that used in polyomino achievement games [13–16,18] and 8 (or more) in a
row [17].

Other solved connection games include Connect6 for special openings [20], the
Hexagonal Polyomino Achievement game for some hexagonal polyominoes [18,
19], Gomoku [11], Renju [12], Qubic [5–7], and Rubik’s Cube [8]. Other games
with cyclic topology include Cylinder Go [21], Torus Go [21], and TetroSpin [22].

3 First Player’s Cannot-Lose Strategy
for Cylinder-Infinite-Connect-Four for Width 2

In this section, we show the Black cannot-lose strategy for width 2. First, we
define a follow-up play as a play in the same column where the opponent just
played [4]. Figure 3 shows a Black follow-up play. A follow-up strategy is a strat-
egy consisting of follow-up plays.

After Black’s first play in Cylinder-Infinite-Connect-Four for width 2, each
player has only 2 play choices: follow-up or non-follow-up. Black’s cannot-lose
strategy is summarized as follows:

First Player’s Cannot-Lose Strategies 115

Fig. 3. Black follow-up play Fig. 4. White never plays follow-up

– As long as White plays a non-follow-up strategy, Black alternates between
follow-up and non-follow-up plays, starting with follow-up.

– If White plays a follow-up after Black plays a follow-up (Fig. 5), then Black
always plays a follow-up strategy thereafter.

– If instead White plays a follow-up after Black plays the initial move or a non-
follow-up (Case 2 of Fig. 6), then Black always plays a follow-up except after
White plays a non-follow-up after White plays a follow-up at first.

We now consider this strategy in detail. As long as White does not play
follow-up, Black’s alternating follow-up and non-follow-up play leads to the game
sequence B0W1B1W0B1W0B0W1 (Fig. 4) and the resulting pattern permits no
Connect4 for either player. If this play pattern continues, the game is a draw.
Thus we now need only to consider the ramifications of Black’s response to a
White follow-up play.

As soon as White makes a follow-up play, there are 2 cases shown in Figs. 5
and 6 which include mirror-symmetric cases as well. These cases capture both of
the essentially different situations that may arise in a White non-follow-up play
sequence of any length, including 0. When White plays follow-up in White’s first
and second moves, the “ground” line Figs. 5 and 6 are in Fig. 4 play sequence.

When White plays follow-up at Case 1, Black responds with follow-up there-
after (Fig. 7). If White were to play in column 1, Black’s follow-up response
would then win, so White must then continue an infinite follow-up sequence in
column 0 to draw.

After Case 2, Black plays follow-up (Fig. 8). In Fig. 8, the bold line within
figures serves to highlight pieces below that must have been played. If White
only plays a follow-up strategy, the game is drawn. However, if White plays
non-follow-up in column 0, then Black plays non-follow-up in column 1 and then
plays a pure follow-up strategy thereafter. As can be seen in Fig. 8, Black’s low-
est diagonal Connect4 undercuts White’s lowest diagonal Connect4 (highlighted
with a zig-zag line), so any efforts of White to complete a Connect4 will result
in Black completing a Connect4 first.

116 Y. Yamaguchi and T.W. Neller

Fig. 5. Case 1 Fig. 6. Case 2

Fig. 7. After Case1 Fig. 8. After Case2

4 First Player’s Cannot-Lose Strategy
for Cylinder-Infinite-Connect-Four for Width 6

In this section, we show the Black first player’s cannot-lose strategy for width
6 via a branching game-tree case analysis. For each possible line of White play,
we show that Black can prevent a White Connect4.

B0W1B2- Fig. 9.
B0W{2 or 3}B0- Fig. 10.
B0W0B2W1B0- Fig. 9.
B0W0B2W3B3W1B0- Fig. 9.
B0W0B2W3B3W{2, 4, or 5}B3- Fig. 11.

First Player’s Cannot-Lose Strategies 117

Fig. 9. There is neither Connect4. Fig. 10. There is neither Connect4.

Fig. 11. There is neither Connect4. Fig. 12. There is neither Connect4.

Fig. 13. There is neither Connect4. Fig. 14. There is neither Connect4.

118 Y. Yamaguchi and T.W. Neller

Fig. 15. There is neither Connect4. Fig. 16. There is neither Connect4.

B0W0B2W3B3W0B2- Figs. 13 or 14.
B0W0B2W3B3W3B2W{0, 1, or 2}B3- Figs. 13 or 14.
B0W0B2W3B3W3B2W3B2W2B2- Figs. 15 or 16.
B0W0B2W5B5W1B0- Fig. 9.
B0W0B2W5B5W{2, 3, or 4}B5- Fig. 12.
B0W0B2W5B5W0B2- Figs. 17 or 18.
B0W0B2W5B5W5B2W{0, 1, or 2}B5- Figs. 17 or 18.
B0W0B2W5B5W5B2W5B0- Figs. 19 or 20.

We begin our explanation of this case analysis by observing that after Black’s
play in column 0, we may ignore symmetric board positions and only treat the
cases where White plays in columns 0 through 3. When B0W1, Black plays in
the column 2 and then plays only follow-up afterward (Fig. 9). Above the highest
bold line in all board figures of this section, Black’s disk is always on White’s
disc. Some pieces above the bold line may have been played. All possible 4 × 4
subboards of each board are present so that all possible Connect4 achievements
may be visually checked.

After B0W2B0 or B0W3B0, we mark 3 cells with a “T” as in Fig. 10 and
note that White’s disk occupies one of these 3 T cells. When White plays in one
of the 2 remaining empty T cells, Black immediately responds by playing in the
other. This pattern of play is repeated in other figures with T cells.

If White does not reply in the column 1, 3, or 5 after B0W0B2, then Black
can create a bottom-row double threat (as in Fig. 2) by playing in column 1 and
achieve a Connect4 on the next turn in column 3 or 5. Black’s follow-up strategy
response to B0W0B2W1 is shown in Fig. 9.

First Player’s Cannot-Lose Strategies 119

Fig. 17. There is neither Connect4. Fig. 18. There is neither Connect4.

Fig. 19. There is neither Connect4. Fig. 20. There is neither Connect4.

After B0W0B2W3B3, White can play in any of the columns 0–5. We show
cases B0W0B2W3B3W1B0 and B0W0B2W3B3W{2, 4, or 5}B3 in Figs. 9 and 11,
respectively.

After B0W0B2W3B3W0 and B0W0B2W3B3W3, Black plays in column 2
and establishes row 2 threat with playing only follow-up in columns 4 and 5.
Because of this 2 threats, White cannot place a disk in both columns 4 and 5.
Case B0W0B2W3B3W0B2 is shown in Figs. 13 or 14 where Black plays only
follow-up in columns 4 and 5. White can play in any of the columns 0–3 except
for columns 4 and 5 after B0W0B2W3B3W3. Cases B0W0B2W3B3W3B2W{0,
1, or 2}B3 are shown in Figs. 13 or 14. Case B0W0B2W3B3W3B2W3B2W2B2
are shown in Figs. 15 or 16 where Black plays only follow-up in columns 4 and 5.

120 Y. Yamaguchi and T.W. Neller

B0W0B2W5 cases are similar in nature to those of B0W0B2W3. Note that
columns 3 or 4 often fulfill the same lowest-threat role that columns 4 or 5 did
in prior cases.

5 Conclusion

In this paper, we have shown the first player’s cannot-lose strategies for widths
2 and 6. For width 2, we have shown that a simple pattern prevents White Con-
nect4 for non-follow-up White play, and that the first follow-up White play allows
Black to draw with follow-up strategy after a single non-follow-up response. (This
is only for Case 2. Case 1 is only follow-up play. And Black may win by some
White response.)

For width 6, we have shown a detailed case analysis where two techniques
proved most useful: (1) marking “T” positions to establish a shape for a follow-
up draw, and (2) establishing a lowest threat to prevent White from playing in
2 columns and then focusing on (1) to force a draw elsewhere.

We conjecture that the same techniques used for first-player width 6 cannot-
lose strategy will also be useful in future work for establishing the same result
for second-player width 6 and 11 cannot-lose strategies.

Acknowledgement. We thank I-Chen Wu for giving us important advice on Black’s
cannot-lose strategy for Cylinder-Infinite-Connect-Four for width 2.

References

1. Yamaguchi, Y., Tanaka, T., Yamaguchi, K.: Cylinder-infinite-connect-four except
for widths 2, 6, and 11 is solved: draw. In: van den Herik, H.J., Iida, H., Plaat, A.
(eds.) CG 2013. LNCS, vol. 8427, pp. 163–174. Springer, Heidelberg (2014)

2. Allen, J.D.: A note on the computer solution of connect-four. In: Levy, D.N.L., Beal,
D.F. (eds.) Heuristic Programming in Artificial Intelligence, The first Computer
Olympiad, pp. 134–135. Ellis Horwood, Chinchester (1989)

3. Allen, J.D.: The Complete Book of Connect 4: History, Strategy, Puzzles. Sterling
Publishing Co., Inc., New York (2010)

4. Allis, L.V.: A Knowledge-Based Approach to Connect-Four. The game is solved:
White wins, Master’s thesis, Vrije Universiteit (1988)

5. Mahalko, E.M.: A Possible Win Strategy for the Game of Qubic, Computer Science
Master’s thesis, Brigham Young University (1976)

6. Patashnik, O.: Qubic: 4× 4× 4 Tic-Tac-Toe. Math. Mag. 53, 202–216 (1980)
7. Allis, L.V.: Searching for Solutions in Games and Artificial Intelligence, Thesis,

University of Limburg (1994)
8. God’s Number is 20. http://www.cube20.org
9. Tromp, J.: Solving connect-4 on medium board sizes. ACG 31(2), 110–112 (2008)

10. Yamaguchi, Y., Yamaguchi, K., Tanaka, T., Kaneko, T.: Infinite connect-four is
solved: draw. In: van den Herik, H.J., Plaat, A. (eds.) ACG 2011. LNCS, vol. 7168,
pp. 208–219. Springer, Heidelberg (2012)

http://www.cube20.org

First Player’s Cannot-Lose Strategies 121

11. Allis, L.V., van den Herik, H.J., Huntjens, M.P.H.: Go-Moku and Threat-Space
Search, Report CS 93–02. Faculty of General Sciences, University of Limburg,
Department of Computer Science (1993)

12. Wagner, J., Virag, I.: Note solving renju. ICGA J. 24, 30–35 (2001)
13. Harary, F., Harborth, H.: Achievement and avoidance games with triangular ani-

mals. J. Recreational Math. 18(2), 110–115 (1985–1986)
14. Gardner, M.: Mathematical games. Sci. Amer. 240, 18–26 (1979)
15. Halupczok, I., Puchta, J.C.S.: Achieving snaky integers. Electron. J. Comb. Num-

ber Theor. 7, G02 (2007)
16. Harary, F.: Is snaky a winner? Geombinatorics 2, 79–82 (1993)
17. Zetters, T.G.L.: 8 (or More) in a row. Am. Math. Mon. 87, 575–576 (1980)
18. Bode, J.P., Harborth, H.: Hexagonal polyomino achievement. Discrete Math. 212,

5–18 (2000)
19. Inagaki, K., Matsuura, A.: Winning strategies for hexagonal polyomino achieve-

ment. In: 12th WSEAS International Conference on Applied Mathematics, pp.
252–259 (2007)

20. Wu, I.C.: Relevance-zone-oriented proof search for connect 6. IEEE Trans. Intell.
AI Games (SCI) 2(3), 191–207 (2010)

21. Geselowitz, L.: Freed Go. http://www.leweyg.com/lc/freedgo.html
22. TetroSpin Free APK 1.2. http://m.downloadatoz.com/apps/emre.android.

tetrominofree,158809.html

http://www.leweyg.com/lc/freedgo.html
http://m.downloadatoz.com/apps/emre.android.tetrominofree,158809.html
http://m.downloadatoz.com/apps/emre.android.tetrominofree,158809.html

Development of a Program for Playing
Progressive Chess

Vito Janko1(B) and Matej Guid2

1 Jožef Stefan Institute, Ljubljana, Slovenia
vito.janko@ijs.si

2 Faculty of Computer and Information Science,
University of Ljubljana, Ljubljana, Slovenia

Abstract. We present the design of a computer program for playing
Progressive Chess. In this game, players play progressively longer series of
moves rather than just making one move per turn. Our program follows
the generally recommended strategy for this game, which consists of
three phases: looking for possibilities to checkmate the opponent, playing
generally good moves when no checkmate can be found, and preventing
checkmates from the opponent. In this paper, we focus on efficiently
searching for checkmates, putting to test various heuristics for guiding
the search. We also present the findings of self-play experiments between
different versions of the program.

1 Introduction

Chess variants comprise a family of strategy board games that are related to,
inspired by, or similar to the game of Chess. Progressive Chess is one of the most
popular Chess variants [1]: probably hundreds of Progressive Chess tournaments
have been held during the past fifty years [2], and several aspects of the game
have been investigated and documented [3–6]. In this game, rather than just
making one move per turn, players play progressively longer series of moves.
White starts with one move, Black plays two consecutive moves, White then
plays three moves, and so on.

Rules for Chess apply, with the following exceptions (see more details in [2]):

– Players alternately make a sequence of moves of increasing number.
– A check can be given only on the last move of a turn.
– A player may not expose his own king to check at any time during his turn.
– The king in check must get out of check with the first move of the sequence.
– A player who has no legal move or who runs out of legal moves during his

turn is stalemated and the game is drawn.
– En passant capture is admissible on the first move of a turn only.

There are two main varieties of Progressive Chess: Italian Progressive Chess and
Scottish Progressive Chess. The former has been examined to a greater extent,
and a large database of games (called ‘PRBASE’) has been assembled. In Italian
c© Springer International Publishing Switzerland 2015
A. Plaat et al. (Eds.): ACG 2015, LNCS 9525, pp. 122–134, 2015.
DOI: 10.1007/978-3-319-27992-3 12

Development of a Program for Playing Progressive Chess 123

Fig. 1. Black to move checkmates in 8 (consecutive) moves.

Progressive Chess, a check may only be given on the last move of a complete
series of moves. Even if the only way to escape a check is to give check on the
first move of the series, then the game is lost by the player in check. In Scottish
Progressive Chess, check may be given on any move of a series, but a check
also ends the series. It has been shown that the difference very rarely affects the
result of the game [7].

The strategy for both players can be summarized as follows. First, look for
a checkmate; if none can be found, ensure that the opponent cannot mate next
turn. Second, aim to destroy the opponent’s most dangerous pieces whilst maxi-
mizing the survival chances of your own [2]. Searching for checkmates efficiently –
both for the player and for the opponent – is thus an essential task, i.e., the single
most important task in this game.

The diagram in Fig. 1 shows an example of a typical challenge in Progressive
Chess: to find the sequence of moves that would result in checkmating the oppo-
nent. Black checkmates the opponent on the 8th consecutive move (note that
White King should not be in check before the last move in the sequence).

Our goal is to develop a strong computer program for playing Progres-
sive Chess. We know of no past attempts to build Progressive Chess playing
programs. In the 1990s, a strong Progressive Chess player from Italy, Deumo
Polacco, developed Esau, a program for searching for checkmates in Progres-
sive Chess. According to the program’s distributor, AISE (Italian Association
of Chess Variants), it was written in Borland Turbo-Basic, and it sometimes
required several hours to find a checkmate. To the best of our knowledge, there
are neither documented reports about the author’s approach, nor whether there
were any attempts to extend Esau to a complete Progressive Chess playing
program.

From a game-theoretic perspective, Progressive Chess shares many properties
with Chess. It is a finite, sequential, perfect information, deterministic, and zero-
sum two-player game. The state-space complexity of a game (defined as the
number of game states that can be reached through legal play) is comparable
to that of Chess, which has been estimated to be around 1046 [8]. However, the

124 V. Janko and M. Guid

per-turn branching factor is extremely large in Progressive Chess, due to the
combinatorial possibilities produced by having several steps per turn.

Another chess variant is Arimaa, where “only” four steps per turn are allowed.
The branching factor is estimated to be around 16,000 [9]. Up to March 15, 2015,
human players prevailed over computers in every annual “Arimaa Challenge”
competition. The high branching factor was up to then considered as the main
reason why Arimaa is difficult for computer engines [10]. On April 18, 2015, a
challenge match between the world’s strongest computer program, called Sharp,
and a team of three elite human players (Matthew Brown, Jean Daligault, and
Lev Ruchka) was completed. Each of the humans played a 3-game match against
Sharp. Sharp was given the task to win all three of the individual matches.
It did so by 2-1, 2-1, and 3-0, respectively; in total the final score was 7-2 in favor
of Sharp (see [11]). Technical details on Sharp are described in [12]. As conse-
quence of this victory in the Arimaa domain, we now expect Progressive Chess
to provide a challenging new domain in which we may test new algorithms, ideas,
and approaches.

This contribution is organized as follows. In Sect. 2, we describe the design
of our Progressive Chess playing program. In Sect. 3, we focus on the specific
challenge of searching for checkmates. Experimental design and results of the
experiments are presented in Sects. 4 and 5. We then conclude the paper in
Sect. 6.1

2 Application Description

The graphical user interface of our Progressive Chess playing program is shown
in Fig. 2. We implemented the Italian Progressive Chess rules (see Sect. 1 for
details). The application provides the following functionalities:

– playing against the computer,
– searching for checkmates,
– watching the computer playing against itself,
– saving games,
– loading and watching saved games.

The user is also allowed to input an arbitrary (but legal) initial position, both
for playing and for discovering sequences of moves that lead to a checkmate. The
application and related material is available online [13].

2.1 Search Framework

As indicated in the introduction, one of the greatest challenges for AI in this
game is its combinatorial complexity. For example, on turn five (White to move
has 5 consecutive moves at his2 disposal) one can play on average around 107 dif-
ferent series of moves. Games usually end between turns 5–8, but may lengthen
1 The solution to Fig. 1: Bb4-d6, b6-b5, b5-b4, b4-b3, b3xa2, a2xb1N, Nb1-c3, Bd6-f4.
2 For brevity, we use ‘he’ and ‘his’, whenever ‘he or she’ and ‘his or her’ are meant.

Development of a Program for Playing Progressive Chess 125

Fig. 2. Our Progressive Chess playing program. Black’s last turn moves are indicated.

considerably as both players skill increases. Generating and evaluating all possi-
ble series for the side to move quickly becomes infeasible as the game progresses.
Moreover, searching through all possible responses after each series is even less
feasible, rendering conventional algorithms such as minimax or alpha-beta rather
useless for successfully playing this game.

Generally speaking, our program is based on heuristic search. However, the
search is mainly focused on sequences of moves for the side to move, and to a
much lesser extent on considering possible responses by the opponent. In accor-
dance with the aforementioned general strategy of the game, searching for the
best series of moves consists of three phases.

Searching for Checkmate. In the first phase, the aim of the search is to
discover whether there is a checkmate available. If one is found, the relevant
series of moves is executed and the rest of the search is skipped. Checkmates
occur rather often, thus finding them efficiently is crucial for successfully
playing this game.

Searching for Generally Good Moves. A second search is performed, by
trying to improve the position maximally. Usually, the aim of this phase
is to eliminate the opponent’s most dangerous pieces, and to maximize the
survival chances of the own pieces. For example, giving check on the last move
of a turn is considered a good tactic, as it effectively reduces the opponent’s
sequence of moves by one. The king should be given air (e.g., a king on the
back rank is often at risk). Pawn promotions are also an important factor
to consider. It is often possible to prevent inconvenient opponent’s moves by
placing the king so that they will give premature check etc. If the allocated
time does not allow to search all available series of moves, only a subset of

126 V. Janko and M. Guid

the most promising ones (according to the heuristics) is searched. The series
are then ordered based on their heuristic evaluation.

Preventing Checkmate. The previous phase generates a number of sequences
and their respective evaluation. It is infeasible to perform a search of all
possible opponent replies for each sequence. However, it is advisable to verify
whether we are getting mated in the following turn. The most promising
sequence of moves is checked for opposing checkmate. In case it is not found,
this sequence of moves is then executed. Otherwise the search proceeds with
the next-best sequence, and the process then repeats until a safe move is
found, or the time runs out. In the latter case, the best sequence according
to the heuristic evaluation is chosen. In this phase, again a quick and reliable
method for finding checkmates is required.

In Sect. 2.2, we describe the heuristics for finding generally good moves (see the
description of the second phase above). In Sect. 3, we describe our approach to
searching for checkmates, which is the main focus of this paper.

2.2 Position Heuristics

As described in Sect. 2.1, heuristic evaluation of a particular series of moves is
used for finding generally good moves (when checkmate is not available), and
taking into account the opponent’s replies is often infeasible. Relatively complex
heuristics are therefore required. Discovering good heuristics is challenging, as
the game is relatively unexplored. Furthermore, a fair bit of what is known to
be good in Chess does not apply for Progressive Chess. Defending pieces is an
obvious example: while it may be a good idea in orthodox chess, it is often
completely useless in Progressive Chess.

We hereby briefly describe the most important heuristics that our program
uses for finding sensible sequences of moves (when checkmate is not available):

Material Count. The Shannon value of pieces (Queen = 9, Rook = 5 etc.)
hardly apply in Progressive Chess. Bishops are better than Knights in the
early stages. In the ending, however, Knights are much better than Bishops
because of their ability to reach any square. Pawns are much more dangerous
than in the original game, since their promotions often cannot be prevented.
Finally, queens are extremely dangerous, because of their huge potential for
delivering checkmates. Additional experiments are still required to determine
a suitable relative value of the pieces.

King Safety. Kings tend to be safe in the open air, preferably not at the edge
of the board. Given the nature of the game it is usually trivial to checkmate
a king that is enclosed with its own pieces, so the usual pawn defences or
castling are discouraged. Practice showed that king is safest on the second
rank; away from opponent pieces, but still safe from back rank mates.

Pawn Placements. Pawns can promote in five moves from their starting posi-
tion. Stopping them becomes essential as the game progresses. It can be done
by block them with pieces, placing pawns in such formation that opposing

Development of a Program for Playing Progressive Chess 127

pawns cannot legally bypass them, or using the King to prevent promotions
due to a premature check (but note the Bishop and Knight promotions).
Positions where there is no legal promotion from the opponent side are
rated higher. It is also favorable to advance pawns, bringing them closer
to the promotion square.

Development. Development is a risky proposition, since pieces in the center are
more easily captured, and they can often be brought into action from their
initial positions rather quickly. Nevertheless, pieces with higher mobility are
positively rewarded.

Opening Book. The opening book is upgrading based on results of previous
games. The statistics are then used as a part of heuristic evaluation.

Search Extensions. For leaf nodes at the end of the turn it is possible to sim-
ulate some opponent replies. Searching only a limited amount of moves may
not give an accurate representation of an opponent’s best reply, but it gives
a general idea. For example, it prevents spending five moves for promoting
a pawn that could be taken right on the next move by the opponent.

3 Searching for Checkmate

Searching for checkmates efficiently is the main focus of this paper, i.e., it is our
first research question. In this section, we explore various attempts to achieve
this goal. It can be considered as a single agent search problem, where the goal
is to find a checkmate in a given position. An alternative problem setting would
be to find all checkmates in the position, or to conclude that a checkmate does
not exist, without exploring all possibilities.

The A* algorithm was used for this task. We considered various heuristics
for guiding the search. In the experiments, we observed the performance of two
different versions of the algorithm (see Sect. 3.1), and of five different heuristics
(see Sect. 3.2). Experimental design is described in Sect. 4.

3.1 Algorithm

The task of finding checkmates in Italian Progressive Chess has a particular
property – all solutions of a particular problem (position) lie at a fixed depth.
Check and checkmate can only be delivered on the last move of the player’s
turn, so any existing checkmate must be at the depth equal to the turn number.
A* uses the distance of the node as an additional term added to the heuristic
evaluation, guiding the search towards shorter paths. In positions with a high
turn number (where a longer sequence of moves is required) this may not be
preferred, as traversing longer variations first is likely to be more promising (as
they are the only ones with a solution). One possibility to resolve this problem is
to remove the distance term completely, degrading the algorithm into best-first
search. An alternative is to weight the distance term according to the known
length of the solution. Weight a/length was used for this purpose, where the
constant a was set arbitrarily for each individual heuristic. In all versions we

128 V. Janko and M. Guid

Fig. 3. The values of heuristics listed in Table 1 for this position are as follows. Man-
hattan: 13, Ghost: 7, Covering: 3, Squares: 8.

acknowledged the symmetry of different move orders and treated them accord-
ingly. In the experiments, we used both versions of the algorithm: best-first search
and weighted A*.

3.2 Heuristics

For the purpose of guiding the search towards checkmate positions, we tried an
array of different heuristics with different complexities, aiming to find the best
trade-off between the speed of evaluation and the reliability of the guidance. This
corresponds to the well known search-knowledge tradeoff in game-playing pro-
grams [14]. All the heuristics reward maximal value to the checkmate positions.
It is particularly important to observe that in such positions, all the squares in
the immediate proximity of the opponent’s King must be covered, including the
King’s square itself. This observation served as the basis for the design of the
heuristics. They are listed in Table 1.

Figure 3 gives the values of each heuristic from Table 1 for the pieces in the
diagram. In Manhattan, pawns are not taken into account, resulting in the value
of 13 (2+5+6). The value of Covering is 3, as the squares a1, a2, b1 are not
covered. The Ghost heuristic obtains the value of 7 (2+1+2+2): the Rook needs
two moves to reach the square immediate to the king, the Bishop needs one, the
Knight needs two moves (to reach a1), the Pawn needs one move to promote and
one move with the (new) Queen. The value of Squares heuristic is 8 (2+3+2+1):
the square a1 can be reached in two moves with the Knight, a2 can be reached
in three moves with the Knight or Rook, b1 can be reached in two moves with
the Rook, b2 can be reached in one move with the Bishop. The player’s King is
never taken into account in the calculations of heuristic values.

Aside from covering squares around the opponent’s King, there are two more
useful heuristics that can be combined with the existing ones; we named them
Promotion and Pin (see Table 2).

Development of a Program for Playing Progressive Chess 129

Table 1. Heuristics for guiding the search for checkmates.

Name Description

Baseline Depth-first search without using any heuristic values

Manhattan The sum of Manhattan distances between pieces and the opponent’s
King

Ghost The number of legal moves pieces required to reach the square around
the king, if they were moving like “ghosts” (ignoring all the
obstacles).

Covering The number of squares around the king yet to be covered

Squares The sum of the number of moves that are required for each individual
piece to reach every single square around the king.

Fig. 4. Left: White to move checkmates in 7 moves. Right: the final position.

A majority of checkmates that occur later in the game include promoting
one of the Pawns, getting an extra attacker for delivering checkmate. Rewarding
promotions of the Pawns is therefore beneficial.

Another eighth useful heuristic takes advantage of a “self-pin.” Figure 4 shows
the controversial “Italian mate,” which is enthusiastically championed by some
but is felt by others to be undesirably artificial [7]. It occurs where the only way
to escape a check is to give a check in return, making that move illegal. The posi-
tion on the left diagram is from a game Boniface – Archer (played in the year
1993), where White played 7 c4, Kd2, Kc3, Kb4, Nf3, Rd1, Rxd7. The final posi-
tion (diagram on the right) is checkmate according to Italian rules. Our program
found an alternative solution (albeit with the same idea), putting the Knight on
h3. The moves played were indicated by the program. The solution shows the idea
of exploiting the self-pin, moving the King to an appropriate square.

4 Experimental Design

The goal of the experiments was to verify empirically how promising is our
approach for finding checkmates in an efficient manner. In particular, (1) which

130 V. Janko and M. Guid

Table 2. Additional heuristics that can be combined with the existing ones.

Name Description

Promotion How far are Pawns to the square of promotion, also rewards extra
queens

Pin How far is the King to the closest square where self-pin could be
exploited

of the two search algorithms performs better (best-first search or weighted A*),
(2) which is the most promising heuristic to guide the search (Manhattan, Ghost,
Covering, or Squares), and (3) what is the contribution of the two additional
two heuristics (Promotion and Pin; see Table 2).

A second research question is who has the advantage in Progressive Chess:
White or Black (note that this is not so clear as in orthodox chess). The Classi-
fied Encyclopedia of Chess Variants claims that masters have disagreed on this
question, but practice would indicate that White has a definite edge [2].

4.1 Experiment

Two sets of experiments were conducted. First, we observed how quickly do
different versions of the program find checkmates on a chosen data set of positions
with different solution lengths (see Sect. 4.2). Both average times and success
rates within various time constraints were measured. The search was limited to
60 s per position (for each version of the program).

Second, self-play experiments were performed between the programs with the
same algorithm (weighted A* with the two additional heuristics) and various
other heuristics. The programs played each other in a round-robin fashion. The
winning rates were observed for each version of the program, and both for Black
and White pieces. In the second phase of the game (see Sect. 2.1), a small random
factor influenced the search so the games could be as diverse as possible. Four
different, increasingly longer time settings were used in order to verify whether
different time constrains affect the performance.

4.2 The Checkmates Data Set

We collected 900 checkmates from real simulated games between programs.
In each turn in the range from 4 to 12, there were 100 different checkmates
included. The shortest checkmates in Progressive Chess can be made on turn
3, however, they are few and rather trivial. Longer games are rare, and even
then there are usually very few pieces left on the board, making the checkmate
either trivial or impossible. The above distribution allowed us to observe how
the length of the solution affects the search performance.

Development of a Program for Playing Progressive Chess 131

5 Results

Below we offer three types of results: average times for finding checkmates (5.1),
success rates (5.2), and self-play experiments (5.3).

5.1 Average Times for Finding Checkmates

Figure 5 gives the average times for finding checkmates with the best-first search
algorithm. It roughly outlines the difficulty of the task: finding checkmates is
easier when the solution is short (turns 4–6), more difficult when the solutions
are of medium length (turns 7–10), and easier again in the later stage (turns
11–12), as the material on the board dwindles.

Fig. 5. Average times (in milliseconds) with the best-first search algorithm. The hori-
zontal axis represents the length of the solution.

It is interesting to observe that the baseline heuristic (i.e., depth-first search)
even outperforms some other heuristics at turns 4–6 and 11–12, i.e., when the
solution is less difficult (note that the problems at higher turns typically contain
less material on the chessboard). The Covering heuristic performs best most of
the time (up to turn 9), and the Squares heuristic performs best at the later
stages.

The average times with the weighted A* algorithm are given in Fig. 6. They
are slightly shorter than the ones obtained by the best-first search algorithm
up to turn 9. However, the average time increases greatly at the later stages.
The main reason is that the heuristics tend to fail to find the solutions in later
stages (note that each failed attempt is “penalized” with 60,000 ms, i.e., the time
limit for each problem).

However, the performance of the A* algorithm improves drastically when
it also uses the two additional heuristics: Promotion and Pin (see Fig. 6). In
particular, the Promotion heuristic turns out to be very useful at the later stages
in the game.

Overall, the A* algorithm with the two additional heuristics performed best,
and Covering heuristic turned out to be the most promising one. This holds, in
particular, since most of the games in Progressive Chess finish before turn 10.

132 V. Janko and M. Guid

Fig. 6. On the left are average times (in milliseconds) with the A* algorithm, on the
right are average times (in miliseconds) with the improved A* algorithm.

Fig. 7. Percentage of checkmates found in less then x seconds.

5.2 Success Rates

Figure 7 demonstrates how many checkmates were found at any given point of
time (in seconds). The Covering heuristic performed clearly best at every cutoff
point. It found 80 % (722 out of 900) checkmates in less than a second, and 99 %
(891) of the checkmates within the time limit of 60 s. The improved A* algorithm
(using the two additional heuristics) was used in this experiment.

5.3 Self-play Experiments

The results of the self-play experiments are given in Fig. 8, showing the number
of wins for each heuristic. The Covering heuristic clearly outperformed all the
other heuristics, and each heuristic performed better with the black pieces.

There was the total of 31,260 games played, and each program played the
same number of games. 20,340 games were played at the time control of 1 s/move,
6,900 at 4 s/move, 2540 at 15 s/move, and 1,480 at 30 s/move. The average length
of the games was 8.3 turns (σ = 2.8). The success rate of white pieces against
black pieces was 47.2 % vs. 52.8 %, which suggests that Black has a slight advan-
tage in Progressive Chess. Only 13.7 % of the games ended in a draw.

Development of a Program for Playing Progressive Chess 133

Fig. 8. The success rate for each program (left) and for each piece color (right).

6 Conclusion

The aim of our research is to build a strong computer program for playing and
learning Progressive Chess. This chess variant was particularly popular among
Italian players in the last two decades of the previous century [2]. By developing
a strong computer program, we hope to revive the interest in this game both
among human players, who may obtain a strong playing partner and an analysis
tool, as well as among computer scientists. In particular, the extremely large
branching factor due to the combinatorial explosion of possibilities produced by
having several moves per turn makes Progressive Chess both an interesting game
and a very challenging environment for testing new algorithms and ideas.

Our program follows the generally recommended strategy for this game,
which consists of three phases: (1) looking for possibilities to checkmate the
opponent, (2) playing generally good moves when no checkmate can be found,
and (3) preventing checkmates from the opponent. In this paper, we focused
on efficiently searching for checkmates, which is considered as the most impor-
tant task in this game. We introduced various heuristics for guiding the search.
The A* algorithm proved to be suitable for the task. In the experiments with
(automatically obtained) checkmate-in-N-moves problems, the program found
the solutions rather quickly: 80 % within the first second, and 99 % within one
minute of search on regular hardware.

A self-play experiment (more than 30,000 games played) between various
versions of the program lead to the success rate of 47.2 % vs. 52.8 % in favor of
Black. Notably, each version of the program performed better with black pieces.

Our program requires significant further work to achieve the level of the
best human players. Particularly in the second phase of the game (which is
not directly associated with searching for checkmates) we see much room for
improvements, possibly by introducing Monte-Carlo tree search techniques [15].
The question of who has the advantage in Progressive Chess is therefore still
open and could be the subject of further investigation.

References

1. Pritchard, D.: Popular Chess Variants. BT Batsford Limited, UK (2000)
2. Pritchard, D.B., Beasley, J.D.: The classified encyclopedia of chess variants. J.

Beasley (2007)

134 V. Janko and M. Guid

3. Leoncini, M., Magari, R.: Manuale di Scacchi Eterodossi, Siena-Italy (1980)
4. Dipilato, G., Leoncini, M.: Fondamenti di Scacchi Progressivi, Macerata-Italy

(1987)
5. Castelli, A.: Scacchi Progressivi. Matti Eccellenti (Progressive Chess. Excellent

Checkmates), Macerata-Italy (1996)
6. Castelli, A.: Scacchi progressivi. Finali di partita (Progressive Chess. Endgames),

Macerata-Italy (1997)
7. Beasley, J.: Progressive chess: how often does the “italian rule” make a dif-

ference? (2011). http://www.jsbeasley.co.uk/vchess/italian rule.pdf. Accessed 06
March 2015

8. Chinchalkar, S.: An upper bound for the number of reachable positions. ICCA J.
19(3), 181–183 (1996)

9. Wu, D.J.: Move ranking and evaluation in the game of Arimaa. Master’s thesis,
Harvard University, Cambridge, USA (2011)

10. Kozelek, T.: Methods of MCTS and the game Arimaa. Master’s thesis, Charles
University, Prague, Czech Republic (2010)

11. Lewis, A.: Game over, Arimaa? ICGA J. 38(1), 55–62 (2015)
12. Wu, D.: Designing a winning Arimaa program. ICGA J. 38(1), 19–40 (2015)
13. Janko, V., Guid, M. http://www.ailab.si/progressive-chess/
14. Junghanns, A., Schaeffer, J.: Search versus knowledge in game-playing programs

revisited. In: Proceedings of 15th International Joint Conference on Artificial Intel-
ligence, vol. 1, pp. 692–697. Morgan Kaufmann (1999)

15. Coulom, R.: Efficient selectivity and backup operators in Monte-Carlo tree search.
In: 5th International Conference on Computers and Games, CG 2006, Turin, Italy,
29–31 May 2006, Revised Papers, pp. 72–83 (2006)

http://www.jsbeasley.co.uk/vchess/italian_rule.pdf
http://www.ailab.si/progressive-chess/

A Comparative Review of Skill Assessment:
Performance, Prediction and Profiling

Guy Haworth1(✉), Tamal Biswas1,2, and Ken Regan2

1 The University of Reading, Reading, UK
guy.haworth@bnc.oxon.org

2 The University at Buffalo (SUNY), Amherst, NY, USA
{tamaltan,regan}@buffalo.edu

Abstract. The assessment of chess players is both an increasingly attractive
opportunity and an unfortunate necessity. The chess community needs to limit
potential reputational damage by inhibiting cheating and unjustified accusations
of cheating: there has been a recent rise in both. A number of counter-intuitive
discoveries have been made by benchmarking the intrinsic merit of players’
moves: these call for further investigation. Is Capablanca actually, objectively the
most accurate World Champion? Has ELO rating inflation not taken place?
Stimulated by FIDE/ACP, we revisit the fundamentals of the subject to advance
a framework suitable for improved standards of computational experiment and
more precise results. Other games and domains look to chess as demonstrator of
good practice, including the rating of professionals making high-value decisions
under pressure, personnel evaluation by Multichoice Assessment and the organ‐
ization of crowd-sourcing in citizen science projects. The ‘3P’ themes of perform‐
ance, prediction and profiling pervade all these domains.

1 Introduction

This position paper is motivated by the recent proliferation of studies and analyses of
chess players’ skill. A more serious requirement is the need for both scientific rigour
and clarity of explanation stemming from the rise in the number of alleged and proven
accusations of computer-assisted cheating over the board. FIDE and the Association of
Chess Professionals (ACP) are taking n urgent action, involving the third author, to
defend the reputation and commercial dimensions of the game [10].

The aim here is to introduce a framework for the discussion and analysis of assess‐
ment methods that evaluate the ‘intrinsic merit’ of the subject’s decisions. It clearly
separates the goals of metrics for Performance and Prediction, and quantifies the use of
Profiling. Performance refers to quantitative measures that can be correlated with ELO
ratings. Prediction means anticipating the distribution of some 100–300 move choices
that a player might make in a tournament. Both recognise that strong players will find
better moves but anti-cheating tests have to do better than merely identify someone who
is ‘playing too well’. This is required if analyses of excellent play are to have more
statistical significance and more reliably trigger further investigation.

© Springer International Publishing Switzerland 2015
A. Plaat et al. (Eds.): ACG 2015, LNCS 9525, pp. 135–146, 2015.
DOI: 10.1007/978-3-319-27992-3_13

Profiling refers to the use of information about a player’s behavior and achievements
prior to the period of time relevant to that player’s later assessment. Bayesian inference
as used by Haworth et al. [1, 3, 5, 6, 15–18] is the natural vehicle for this as it combines
an expression of prior belief with the modification of that belief in the light of subsequent
evidence. Players may also be profiled from a ‘cold start’ if ‘know nothing’ priors are
adopted. The new FIDE Online Arena with its AceGuard cheating-detection system is
notable for its user-profiling which is not done by other statistical methods [9]. Arguably
it should have no role in measuring performance but its ability to predict is something
that this paper’s recommendations will help to study.

1.1 The Chess Engine as Benchmarking Player

All assessment research approaches now use computer-generated move analysis as the
benchmark. The reality is that computers are now better and quicker decision makers
than humans in the vast majority of chess positions. The top-ranked chess engines are
now rated some 300–400 ELO points better than the top human players and no prominent
equal-terms match has been played since December 2006. Chess engines deliver their
verdicts on the available moves at each nominal ply-depth of their forward-search
process. The current top two engines, KOMODO 8, STOCKFISH 6 and others do so via the
standard UCI communication protocol [19]. Moves may ‘swing up’ or ‘swing down’ as
they gain or lose apparent merit at increased depths. This illustrates both the engines’
fallibility induced by the finiteness of their vision and the theoretically proven trend to
greater precision at higher depths.

However, it is clear that chess engines’ centipawn evaluations of positions are not
definitive but merely best estimates: engines are fallible agents, even if the best are less
fallible than human players. They tend to depart from 0.00 as a decisive result becomes
more obvious with increased depth of search, and they vary from engine to engine on
the same position [7, 24]. Only in the endgame zone where endgame tables (EGTs) have
been computed does an infallible benchmark exist [1, 16–18].

Chess engines operate in one of two modes, Single-PV and Multi-PV. They focus on
what they deem to be the best move in Single-PV mode, testing its value rather than also
testing ‘inferior moves’ for comparison. Multi-PV guarantees full evaluation to search-
depth sd of up to k ‘best’ moves as determined by the last round of search. Setting k to
50 essentially gives an sd-evaluation of every reasonable legal move and many others.
Multi-PV working requires more time than Single-PV working but is required if the full
move-context of a move is to be considered.

Alternative-move evaluations are the only input to the benchmarking processes
below. No information about the clock-regime, move number, material, relative ELO
difference or clock-times is considered, although there is evidence of the error-inducing
zeitnot effect as players approach move 40 under classic conditions [21].

1.2 A Framework of Requirements for Assessment Methods

The approach here is to re-address the fundamental question ‘What are the objectives
of player assessment?’, to identify the requirements in more detail, and then consider a

136 G. Haworth et al.

portfolio of assessment methods in the context of those requirements. All this may be
done under our headings of performance and prediction. As will be seen, all the methods
reviewed below measure past performance, some less informed than others. Only a
subset of the methods are suitable for reliable prediction.

A more detailed list of requirements is as follows:

1. identifying the current or overall performance of players on some scale,
2. identifying their ‘intrinsic skill’, i.e., on the basis of their moves, not results,
3. doing so in terms of a ‘most likely’ scale-point and with c % confidence limits,
4. identifying performance across the years, including the pre-ELO years,
5. ranking players relative to each other on the basis of their intrinsic skill,
6. understanding the stability of methods when subject to small input changes,
7. comparing methods as to the uncertainty budgets associated with their verdicts,
8. using ‘robust’ methods which are least sensitive to small input changes,
9. improving assessment methods where the opportunity to do so arises,
10. identifying suspected cheating with a suitably high degree of confidence,
11. identifying suspected cheating in real-time in order to trigger further action [11],
12. quashing ‘false positive’ accusations of over the board cheating,
13. discouraging players from cheating with evidence of good anti-cheating methods,
14. discouraging unfounded accusations of cheating in a similar way, and
15. estimating the probability that player P will play move m in a given position.

The following classification of information illustrates the range of algorithmic
sophistication available to a notional punter betting on future moves:

A) Played move and engine-optimal move(s) as evaluated at greatest search-depth,
B) Values of all (reasonable) legal moves as evaluated at greatest search-depth,
C) Values of all (reasonable) moves at all available depths of search,
D) Information about the chess position other than move values, and
E) Information as to a player’s tendencies prior to the time of the moves assessed.

Category ‘C’ highlights the fact that this information has been available but has only
recently been recognised as valuable [4]. We argue that ‘C’ is where the separation of
performance and prediction should be focused. The demerit of a superficially attractive
move which ‘traps’ the opponent only becomes visible at the greater depths of search.
Heading ‘D’ includes considerations of pawn structure, attack formations and whether
a move is advancing or retreating. Observations on how such factors influence move-
choice are made by kibitzers but have not yet been captured by computer algorithm.
Time management might be taken into account. Heading ‘E’ involves considering
players’ past game and how they might help predict future moves.

2 Useful Notation

The following notation is used in subsequent sections:

• AP, the assessed player
• BP, the benchmark player against which AP is assessed

A Comparative Review of Skill Assessment 137

• CP, the cheating player, not only cheating but deceiving an assessment method
• HP, the honest player who is not cheating
• RP, a Reference Player, i.e., a stochastic agent with defined choice-behaviour
• pi ≡ position i, often implicitly understood to be one of a sequence of positions
• {mj, vj,d} ≡ moves from a position, resulting in values (at depth d) vj,d: vj,1 ≥ vj,2 etc.
• aci ≡ the apparent competence of player AP after moving from position pi.

3 Survey of Assessment Methods

This section gives names to each of the methods known, and lists the methods’ absolute
and relative advantages (‘+’), caveats (‘±’) and disadvantages (‘–’). The first list applies
to all methods.

+ chess engines are the only benchmarks which perform consistently across time,
+ the best chess engines are now thought to be better than humans at all tempi,
+ increasing engine ELO decreases move-choice suboptimality by the engine,
+ increasing search-depth increases engine ELO and decreases suboptimality,
+ ‘cold start’, defined-environment, single-thread running ensures reproducibility,
+ skill-scales may be calibrated in ELO terms using ‘Reference ELO e players’
+ skill assessments on such calibrated scales lead to inferred ELO ratings,
± results from different benchmarking engines BPi may be combined with care,
– AP’s actual competence varies within games, tournaments and over the years,
– move-choices stem from a plan but are modelled as independent events,
– chess engines are not fully independent, tending to make the same mistakes,
– multithread processing, though attractive, introduces lack of reproducibility,
– there is a probability pm > 0 that cheating player CP will not be detected,
– there is a probability pfp > 0 that honest player HP will be accused of cheating.

The eight methods reviewed below are classified under three headings:

• ‘Agreement’: the observance of agreement between AP and BP,
• ‘Average Difference’: the recording of centipawn value ‘lost’ by AP, and
• ‘Whole Context’: the appreciation of AP’s move in the full context of options.

3.1 Agreement Between AP and BP

The methods here are ‘MM: Move Matching’ and its enhancement ‘EV: Equal-value
Matching’ requiring a little more data as from Multi-PV mode.

MM: Move Matching. Observers of games commonly note whether the human player’s
choice move matches that of some ‘kibitzer-engine’ and compute a %-match MM.
Specific merits (+) and demerits (−) of this method:

+ Engine- and human-moves are easily generated, communicated and compared,
+ the method applies to all moves, even those where engines see ‘mate in m’,

138 G. Haworth et al.

+ ‘MM(AP) = 1.00’ is a clear ‘best possible performance’ calibration point,
+ there is no need to scale centipawn values provided by engine BP,
– MM(AP) changes on forced moves when nothing is learned about AP’s skill,
– different but equivalent/equi-optimal moves are not regarded as ‘matches’,
– some engines may randomly choose different equi-optimal moves to top their list,
– cheater CH can easily lower their MM(CH) at minimal cost,
– ‘Canals on Mars syndrome’: observers are attracted to high-MM(AP) coincidences,
– this method uses the least information of any method.

EV: Equal-value Matching. Disadvantages 2−3 of MM are addressed [2]. Equi-
optimal moves are regarded as ‘matches’, requiring the engines to identify them all:

+ EV is not susceptible to random ordering by chess engine BP whereas MM is,
+ EV results are reproducible whereas MM results from a ‘randomising BP’ are not,
– EV, unlike MM, requires all equi-optimal moves to be communicated.

3.2 ‘Average Difference’ Methods

AD: Average Difference. Note that we chose AD not AE (Average Error) as the error
may come from the benchmarking computer BP rather than from AP [12, 13, 23]:

+ The requisite information is again easily generated, communicated and used,
+ ‘AD(AP) = 0.00’ is a clear ‘best possible performance’ calibration point,
+ AD, using more information than MM or EV, should give more robust ratings,
– AD(AP) changes on forced moves when nothing is learned about AP’s skill,
– AD(AP) changes when AP has only equi-optimal moves to choose from,
– AD only uses information about the best apparent move and AP’s choice,
– BP1 and BP2 may return different AD(AP), even when choosing the same moves,
– AD cannot be used where the engine gives ‘mate in m’ rather than an evaluation,
– AD does not scale ‘differences’ in consideration of the position’s absolute value.

AG: Accumulated Gain. This method [8] varies from AD. AP’s move is credited with
the difference between BP’s evaluation of the position before and after the move.

+ AG uses only BP’s position evaluation at depth d before and after the played move,
± AG guarantees that the winner will be higher rated than the loser,
– AG conflates the ‘horizon effect’ with AP’s performance,
– AG can give a positive score for a suboptimal move if BP sees a win more clearly,
– AG can penalize an optimal move by the loser as BP sees the win more clearly,
– AG, unlike AD, does not produce a clear mark (0.00) of perfect performance.

Had AG evaluated the position after AP’s move at search-depth d−1, it would be
close to AD. However, it moves BP’s horizon on by one ply and therefore credits AP
with BP’s change of perception one ply later. It does not compare AP’s and BP’s deci‐
sions at the same moment. The concept seems flawed and is not considered further here.

A Comparative Review of Skill Assessment 139

ASD: Average Scaled Difference. The last caveat on the AD method anticipates a key
finding by Regan [21, 22] that average-difference correlates with the absolute value of
the position, see Fig. 1. This may be because (a) humans are only sensitive to the relative
values of moves, (b) humans with an advantage tend to avoid the risk associated with
the sharpest tactical plans, and/or (c) engines see the win more clearly when the position
is relatively decisive already. The case for scaling seems clear.

Unscaled and Scaled
AP/BP differences

A
D

(A
P)

Advantage

Fig. 1. Unscaled AP/BP differences, before and after scaling [21].

If pv = |position value|, AP’s ‘difference ad relative to BP’s choice is scaled to be
ad/ln(1 + pv). Regan reports that he now prescales all differences in his industry-scale
computations. The recommendation here is that all results produced by the AD method
should be revisited and scaled in this way.

A detailed study of results from the EV and AD methods [2] also notes the danger
of ‘false positive’ conclusions about suspected cheating over the board. It points to
extreme ratings, which any corpus of results will have, which would at first sight be
suspicious had they not been achieved before the availability of chess engines at grand‐
master level. Table 1 highlights some games analysed with STOCKFISH 3.0.

Table 1. Achievements over the board which would be or are ‘false positives’ [2]

Book Search Moves
Year White Black Res. depth Depth Anal. CV Comment
1 1857 Kennicott Morphy 0-1 29 18 10 —/1.00 Morphy moves 15-24
2 1857 Schulten Morphy 0-1 8 16 13 —/1.00 Morphy moves 5, 17
3 1866 Morphy Maurian 1-0 12 18 12 1.00/— Morphy moves 7, 18
4 1889 Weiss Burille 1-0 13 20 26 1.00/— Weiss moves 8-33
5 1965 Carames Fedorovsky ½-½ 18 18 0.85/0.82 Dead drawn, positions 62b-101w
6 1980 Browne Timman 1-0 33 8 23 1.00/— Browne moves 18-40
7 2009 Mamedyarov Kurnosov 0-1 31 var. 6 —/— too few moves; CV insignificant

140 G. Haworth et al.

3.3 ‘Whole Context’ Analysis: Deepest Evaluations Only

These methods potentially draw on the full context of a move-choice to assess the choice
made by AP. They deploy a set SBP ≡ {BP(ci)} of stochastic benchmark players of
defined competence ci. As ci increases, the expected value of BPi’s chosen move
increases if this is possible. For these methods:

+ a much fuller use of the move-context is being made,
+ ‘apparent competence’ does not change if nothing is learned from the move-choice,
+ these methods can easily calculate MM/EV and AD/ASD as byproducts,
– the method potentially requires all moves to be evaluated,
– the method uses the evaluation of the moves at the greatest depth only,
– the number MultiPV of ‘best moves’ considered is a computation parameter,
– the definition of qj,i ≡ {Pr[m = mj | BP(ci)]} requires some domain-specific insight,
– the task of communicating statistical significance is greater than for other methods,
– the results of two SR computations cannot easily be combined.

SR: Statistical Regression. This method, deployed by Regan [20–22] identifies the BPi

which best fits the observed play: it is essentially frequentist. The probability of BP(ci)
playing moves m1-mk is p(ci) ≡ Πqj,i and ci is found to maximize p(ci). The model also
generates variances and hence provides z-scores for statistical tests employing the MM,
EV, and AD/ASD measures.

– the results of two SR computations cannot easily be combined.

We report here that SR, carried out to FIDE/ACP guidelines, comes to a negative
rather than a positive conclusion on all the games of Table 1, and on the aggregate of
Morphy’s moves. Given a distribution of MM/EV figures for players of Morphy’s
standard, the MM/EV figures’ z-scores are less than the minimum mark of 2.75 stated
[10] as needed to register statistical support for any ‘positive’ conclusion about cheating
likelihood. The Browne-Timman and Mamedyarov-Kurnosov results are less than 0.50.
The reason is that the whole-context analysis finds these and Weiss’s and Morphy’s
games to be unusually forcing, so SR gives higher projections than the simpler MM/EV
or AD/ASD analyses as [2] would expect. Thus, our category ‘B’ outclasses ‘A’ here
for the purpose of prediction. This distinction is legislated in [10].

SK: Skilloscopy, the Bayesian approach. Classical probability asks how probable a
future event is given a defined scenario. Bayesian analysis asks instead ‘What is the
probability of each of a set of scenarios given (a) a prior belief in the likelihood of those
scenarios and (b) a set of observed events?’ An important advantage is that his simple
formula can be used iteratively as each new observation arrives.

Skilloscopy is the name given to the assessment of skill by Bayesian Inference [1, 3, 5,
6, 15–18]. It proceeds from initial inherited or presumed probabilities pi that AP ‘is’ BP(ci):
AP’s initial presumed apparent competence ac is therefore Σi pi . Given a move mj and the
probability qj,i ≡ {Pr[m = mj | BP(ci)]}, the {pi} are adjusted by the Bayesian formula

A Comparative Review of Skill Assessment 141

The {pi′} continue to represent how specifically AP’s apparent competence on the
ci-scale is known: AP’s apparent competence ac = Σi pi′.

Skilloscopy was first conceived [1, 17, 18] in the context of that part of chess for
which endgame tables (EGTs) hold perfect information. These EGTs provided infallible
benchmark players BPc so the above caveats about the fallibility of BP do not apply.

+ SK can combine the results of two independent, compatible computations,
+ SK may evaluate the moves in any order, chronologically or not,
– the choice of {BP(ci)} affects APj’s rating acj after a defined input of evidence,
– APj’s rating acj is meaningful only relative to other ratings acj.

3.4 ‘Whole Context’ Analysis: Evaluations at All Depths

The most recent addition to the spectrum of assessment methods [4] is labelled ‘SRA’
here, being SR but taking move-valuations from all depths of BP’s search. It is clear that
if a move takes and retains top ranking early in the search, it is more likely to be selected
by AP than a move that emerges in the last iteration of the search. Therefore, to ignore
shallower-depth evaluations is to ignore valuable information.

Similarly, one can study the way in which such indices as MM/EV and AD/ASD
plateau out as search-depth increases. It appears that greater depths are required to get
stable MM/EV/ASD ratings for better players. Figure 2 generated from the STOCKFISH

v2.31 and v3 data [4] shows this for ASD and also corroborates the contention of Guid
and Bratko [12, 13, 23] that even CRAFTY’S relatively shallow analysis of world cham‐
pions suffices to rank them accurately if not to rate them accurately. The sixty players
in the 2013 World Blitz championship (WB) had average rating 2611 but showed a
competence lower than 2200 at classical time controls.

Fig. 2. ‘Average Difference’ statistics reaching a plateau as BP’s search depth increases.

142 G. Haworth et al.

4 The Reference ELO Player

RPe, a Reference Player with ELO e may be defined by analyzing the moves of a set of
players with ELO e ± δ, e.g., [2690, 2710]. This was done [5, 6, 15], in fact restricting
chosen games to those between two such players.1 The players’ ratings in MM/EV, AD/
ASD and SR/SK terms may be used to calibrate their respective scales.

Following such calibration, any set of move-choices may be given an Inferred
Performance Rating, IPR. That IPR may be placed in the distribution of IPRs by nomi‐
nally similar players and may be admired or investigated as appropriate (Fig. 3).

0.00

0.10

0.20

0.30

0.40

0.50

0.60

1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35

2100_Elo

2200_Elo

2300_Elo

2400_Elo

2500_Elo

2600_Elo

2700_Elo

2100

2200 2300
2400 2500

2600

2700

Apparent Competence, c

Pr
ob

ab
ili

ty

Fig. 3. The set of ELO e Reference Players used by Skilloscopy [5, 6, 15].

5 Standards for a Research Community

The statistical assessment of IPRs requires large amounts of relevant data. The large
choice of chess engines, versions, search depths and other computational parameters
does not help in combining results by different workers. There is a natural preference to
use the best available engines to reduce position-evaluation inaccuracy, and the typical
reign of the ‘best engine’ is usually short.2

However, greater interworking in the community may be assisted by:

• the ‘separation’ of move-analysis, skill-rating and inferred performance rating,
• computational experiments being done in a defined and reproducible way,
• a comprehensive data-model encompassing the computations’ results, and
• a robust, accessible repository of results consonant with the data-model about: move

analyses, skill-rating exercises and inferences of ‘apparent ELO’.

1 This probably increased the apparent competence ac of RPe: draws exhibited higher ac.
2 Over the last four years, the winners of the TCEC events [24] have been HOUDINI 1.5a, HOUDINI

3, KOMODO 1142, STOCKFISH 170514 and KOMODO 1333.

A Comparative Review of Skill Assessment 143

The reproducibility of computational experiments certainly requires single-thread
mode [2], non-learning mode, and the full specification of UCI parameters.3 Figure 4 is
a proposed data-model which may be implemented in Relational or XML databases.
The advent of the web-related XML family of standards4 and the lighter weight ‘JSON’
Javascript Object Notation have greatly improved the communication and manipulation
of hierarchical data.

Game G

G used
in A

Evaluation
A(M, Level)

Side

Event E

Player P

Nation N

Position,
Move

Chosen

Chess Engine CE

CE Version

Evaluation A

Move M

1-to-many relationship

e.g., 1 game, m positions

Key:

Contributor

Results

Fig. 4. Data Model: Computer-assessments of game-moves at various search-levels.

6 Summary and View Forward

A number of skill assessment methods have been compared. They vary in their conclu‐
sions but differences between workers’ computations make definitive comparison diffi‐
cult at this time.

Greater interworking within the community of those interested in skill assessment
is required to quantify the intuitive, widely held but qualitative belief that:

“The more information is used by a method, the better the method is.”

Specifically, here, it is believed that MM 〈 EV 〈〈 AD 〈〈 ASD 〈〈 SR/SK 〈 SRA.5 The
FIDE/ACP committee certainly regards MM/EV/AD as ‘screening methods’ but looks
to more informed methods for definitive assessments [10].

Therefore the first requirement is to agree on a shared computational approach and
on a set of computation subjects in order to quantify the belief above. Agreed tools and
data-management interfaces will facilitate progress within the community.

3 UCI = Universal Chess Interface [19].
4 An example of chess-position in XML format is given in [2].
5 The notation here is: 〈 means ‘worse than’ and 〈〈 means ‘much worse than’.

144 G. Haworth et al.

Finally, the authors have sought here not only to bring a new coherence to the
community of those assessing chess skill but to explore better ways to communicate the
subtleties of assessment to the non-specialist and the public. Data supporting this article
is freely available and is being evolved [14].

Acknowledgements. In addition to thanking various parties for stimulating discussions on skill
assessment, the authors thank David Barnes and Julio Hernandez Castro of the University of Kent
for advance and subsequent discussion of their paper [2]

References

1. Andrist, R.B., Haworth, G.McC.: Deeper model endgame analysis. Theor. Comput. Sci.
349(2), 158–167 (2005). doi:10.1016/j.tcs.2005.09.044. ISSN 0304-3975

2. Barnes, D.J., Hernandez-Castro, J.: On the limits of engine analysis for cheating detection in
chess. Comput. Secur. 48, 58–73 (2015)

3. Bayes, T.: An essay towards solving a problem in the doctrine of chances. Phil. Trans. Royal
Soc. 53, 370–418 (1763). doi:10.1098/rstl.1763.0053

4. Biswas, T., Regan, K.W.: Quantifying depth and complexity of thinking and knowledge. In:
ICAART 2015, the 7th International Conference on Agents and Artificial Intelligence,
January 2015, Lisbon, Portugal (2015)

5. Di Fatta, G., Haworth, G.McC.: Skilloscopy: Bayesian modeling of decision makers’ skill.
IEEE Trans. Syst. Man Cybern. Syst. 43(6), 1290–1301 (2013). doi:10.1109/TSMC.
2013.2252893. ISSN 0018-9472

6. Di Fatta, G., Haworth, G.McC., Regan, K.: Skill rating by bayesian inference. In: IEEE CIDM
Symposium on Computational Intelligence and Data Mining (2009)

7. Ferreira, D.R.: The impact of search depth on chess playing strength. ICGA J. 36(2), 67–90
(2013)

8. Ferreira, D.R.: Determining the strength of chess players based on actual play. ICGA J. 35(1),
3–19 (2012)

9. FIDE Online Arena with AceGuard: http://www.fide.com/fide/7318-fide-online-arena.html,
http://arena.myfide.net/ (2015)

10. FIDE/ACP. Anti-Cheating Guidelines approved by FIDE (2014). http://www.fide.com/
images/-stories/NEWS_2014/FIDE_news/4th_PB_Sochi_Agenda_Minutes/Annex_50.pdf

11. Friedel, F.: Cheating in chess. In: Advances in Computer Games, vol. 9, pp. 327 − 346.
Institute for Knowledge and Agent Technology (IKAT), Maastricht (2001)

12. Guid, M., Perez, A., Bratko, I.: How trustworthy is CRAFTY’s analysis of chess champions?
ICGA J. 31(3), 131–144 (2008)

13. Guid, M., Bratko, I.: Computer analysis of world chess champions. ICGA J. 29(2), 65–73
(2006)

14. Haworth, G.McC., Biswas, T., Regan, K.W.: This article and related, evolving datasets
including pgn and statistics files (2015). http://centaur.reading.ac.uk/39431/

15. Haworth, G.McC, Regan, K., Di Fatta, G.: Performance and prediction: bayesian modelling
of fallible choice in chess. In: van den Herik, H.J., Spronck, P. (eds.) ACG 2009. LNCS, vol.
6048, pp. 99–110. Springer, Heidelberg (2010)

16. Haworth, G.McC.: Gentlemen, stop your engines! ICGA J. 30(3), 150–156 (2007)
17. Haworth, G.McC., Andrist, R.B.: Model endgame analysis. In: van den Herik, H.J., Iida, H.,

Heinz, E.A. (eds.) Advances in Computer Games: Many Games, Many Challenges, vol.
135(10), pp. 65–79. Kluwer Academic Publishers, Norwell (2004). ISBN 9781402077098

A Comparative Review of Skill Assessment 145

http://dx.doi.org/10.1016/j.tcs.2005.09.044
http://dx.doi.org/10.1098/rstl.1763.0053
http://dx.doi.org/10.1109/TSMC.2013.2252893
http://dx.doi.org/10.1109/TSMC.2013.2252893
http://www.fide.com/fide/7318-fide-online-arena.html
http://arena.myfide.net/
http://www.fide.com/images/-stories/NEWS_2014/FIDE_news/4th_PB_Sochi_Agenda_Minutes/Annex_50.pdf
http://www.fide.com/images/-stories/NEWS_2014/FIDE_news/4th_PB_Sochi_Agenda_Minutes/Annex_50.pdf
http://centaur.reading.ac.uk/39431/

18. Haworth, G.McC.: Reference fallible endgame play. ICGA J. 26(2), 81–91 (2003)
19. Huber, R., Meyer-Kahlen, S.: Universal Chess Interface specification (2000). http://wbec-

ridderkerk.nl/html/UCIProtocol.html
20. Regan, K.W., Biswas, T.: Psychometric modeling of decision making via game play. In: CIG

2013, the 2013 IEEE Conference on Computational Intelligence in Games, August 2013,
Niagara Falls, Canada (2013)

21. Regan, K.W., Macieja, B., Haworth, G.McC.: Understanding distributions of chess
performances. In: van den Herik, H.J., Plaat, A. (eds.) ACG 2011. LNCS, vol. 7168, pp. 230–
243. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31866-5_20

22. Regan, K.W., Haworth, G.McC.: Intrinsic chess ratings. In: AAAI 2011, the 25th AAAI
Conference on Artificial Intelligence, 07–11 August 2011, San Francisco, USA, pp. 834–839
(2011). ISBN: 9781-5773-5507-6

23. Riis, S.: Review of “Computer Analysis of World Champions” (2006). http://
www.chessbase.com/newsdetail.asp?newsid=3465

24. TCEC: Thoresen’s Chess Engine Competition, Seasons 1–7 (2014). http://
tcec.chessdom.com/archive.php

146 G. Haworth et al.

http://wbec-ridderkerk.nl/html/UCIProtocol.html
http://wbec-ridderkerk.nl/html/UCIProtocol.html
http://dx.doi.org/10.1007/978-3-642-31866-5_20
http://www.chessbase.com/newsdetail.asp?newsid=3465
http://www.chessbase.com/newsdetail.asp?newsid=3465
http://tcec.chessdom.com/archive.php
http://tcec.chessdom.com/archive.php

Boundary Matching for Interactive Sprouts

Cameron Browne(B)

Queensland University of Technology, Gardens Point, Brisbane 4000, Australia
c.browne@qut.edu.au

Abstract. The simplicity of the pen-and-paper game Sprouts hides a
surprising combinatorial complexity. We describe an optimization called
boundary matching that accommodates this complexity to allow move
generation for Sprouts games of arbitrary size at interactive speeds.

1 Introduction

Sprouts is a combinatorial pen-and-paper game devised by mathematicians
Michael S. Paterson and John H. Conway in the 1960s [2], and popularised
in a 1967 Scientific American article by Martin Gardner [5]. The game is played
on a set of n vertices, on which players take turns drawing a path from one
vertex to another (or itself) and adding a new vertex along that path, such that
|vi|, the cardinality1 of any vertex vi, never exceeds 3, and no two paths ever
touch or intersect (except at vertices). The game is won by the last player able
to make a move, so is strictly combinatorial in the mathematical sense.

Figure 1 shows a complete game of n = 2 Sprouts between players 1 and 2.
Player 2 wins on the fourth move, as player 1 has no moves from this position.
A game on n vertices will have at least 2n moves and at most 3n− 1 moves.

It is conjectured that a game on n vertices is a win for player 1 if (n modulo
6) is 0, 1 or 2, and a win for player 2 otherwise [1]. This so called Sprouts
Conjecture [7] has not been proven yet, but has held for all sizes so far, which
include n = {1–44, 46–47, 53}.2

1.1 Motivation

There exist computer Sprouts solvers [1,7] and interactive Sprouts position edi-
tors [3], but almost no Sprouts AI players beyond the 3Graph player [8] which
plays a perfect game up to n = 8 vertices, and an iOS player [6] that apparently3

supports up to n = 15 vertices.
This relative lack of Sprouts AI players is something of a mystery. The game

is well-known, interesting, looks simple, and has an intuitive topological aspect
that just cries out for fingers tracing paths on touch screens – so why are there
not more Sprouts apps? We identify the following barriers to implementation:
1 Number of paths incident with vertex vi.
2 http://sprouts.tuxfamily.org/wiki/doku.php?id=records.
3 The app did not work on any device tested.

c© Springer International Publishing Switzerland 2015
A. Plaat et al. (Eds.): ACG 2015, LNCS 9525, pp. 147–159, 2015.
DOI: 10.1007/978-3-319-27992-3 14

http://sprouts.tuxfamily.org/wiki/doku.php?id=records

148 C. Browne

1 2 1 2

Fig. 1. A game of n = 2 Sprouts, won by player 2, who makes the last move.

1. Complexity: The game’s state space complexity grows at a surprising expo-
nential rate, for even small game sizes [4].4

2. Geometry: It is non-trivial to synchronise free-form user input curves with an
underlying algebraic representation of the game.

This paper addresses the first issue by describing an optimization called
boundary matching, which accommodates the game’s inherent combinatorial
complexity to reduce move generation time to interactive speeds even for large
game sizes (the issue of geometry will be left for another paper). Section 2 sum-
marizes relevant computational representations for Sprouts, Sect. 3 describes the
boundary matching optimization, Sect. 4 examines the performance of the new
approach, and Sect. 5 discusses its suitability for the task at hand.

2 Representation

Sprouts positions can be represented internally at three levels: set representa-
tion, string representation and canonical representation, as per previous work [1].
We briefly summarise these levels of representation, as necessary background for
describing the Boundary Matching algorithm in Sect. 3.

2.1 Set Representation

A Sprouts position is a planar graph obtained according to the rules of the game.
Closed paths resulting from moves divide the position into connected components
called regions. Each region contains at least one boundary that is a connected
component of the paths made by players and associated vertices. Each vertex

A
B C

D

EF G

H
I

J

K
L

ONM

P

Q

R

S

T
U

Fig. 2. Example position after ten moves in an n = 11 game (from [7]).

4 Denis Mollison’s analysis of the n = 6 game famously ran to 47 pages [2, p. 602].

Boundary Matching for Interactive Sprouts 149

may be enclosed within its respective region, or exist on the region border to be
shared with adjoining regions.

For example, Fig. 2 shows an example position after ten moves in an n = 11
game (from [7]), and Fig. 3 shows the five regions that make up this position.

0
1

2 3
4

Fig. 3. Region labelling of the position shown in Fig. 2.

A vertex vi is alive if |vi| < 3, otherwise |vi| = 3 and the vertex is dead. For
example, vertices {A, B, D, E, G, H, J, L, N, O, P, Q, R, S, T, U} in Fig. 2 are alive,
whereas vertices {C, F, I, K, M} are dead and play no further part in the game.

2.2 String Representation

We use a slightly simplified version of previous string representations, that we
believe is easier to read. Each vertex v is labeled with a unique uppercase char-
acter {‘A’, ..., ‘Z’} in these examples. Each boundary B is represented by the
list of vertex labels encountered as the boundary is traversed. Each region R is
represented by the concatenation of the boundaries it contains, separated by the
character ‘,’. A position P is represented by the concatenation of the regions
it contains, separated by the character ‘;’. For example, the position shown in
Fig. 2 might be described by the string:

AL;AL,BNMCMN;D,COFPGQFOCM;E,HRISJSIUKTKUIR,FQGP;KT

Subgames: It can be convenient to subdivide positions into independent sub-
games, that describe subsets of regions in which moves cannot possibly affect
other subgames. This occurs when all vertices on the border between two such
region subsets are dead. Subgames are denoted in the position string by the
separating character ‘/’. For example, the position shown in Fig. 2 can be sub-
divided as follows:

AL;AL,BNMCMN/D,COFPGQFOCM;E,HRISJSIUKTKUIR,FQGP;KT

Move Types: Before introducing the canonical representation, it is useful to
describe the two possible move types. Each move occurs within a region R:

150 C. Browne

1. Double-Boundary Moves: Moves from a vertex vi on boundary Bm to a vertex
vj on boundary Bn join the two boundaries within R. For example, the first
move in Fig. 1 joins two singleton vertices to form a common boundary.

2. Single-Boundary Moves: Moves from a vertex vi on boundary Bm to a vertex
vj on the same boundary (vi may equal vj) partition the region R into two
new regions Ra and Rb. For example, the second move in Fig. 1 creates two
regions, one inside and one outside the enclosed area.

See [7, p. 4] for the exact computational steps required to perform these
moves.

1

2 3

Fig. 4. Opening moves for the n = 4 game. Representative invariants are indicated.

Figure 4 shows all possible opening moves for the n = 4 game, by way of
example. The top row shows the six possible double-boundary moves, and the
remaining four rows show the 32 possible single-boundary moves. For any given
game size n, the number of opening moves On is given by:

On =
n(n− 1)

2
+ n2n−1 (1)

If O4 = 38 is a surprising number of opening moves for only four vertices, con-
sider that O10 = 5, 165 opening moves and O20 = 10, 485, 950 opening moves(!).
The main problem is the exponential growth factor n2n−1, due to the number
of ways that the region can be partitioned by single-boundary moves.

Boundary Matching for Interactive Sprouts 151

Invariants: This problem of combinatorial explosion can be addressed by
observing that many of the positions in a game of Sprouts are topologically
equivalent to others, and can be reduced to a much smaller set of invariant
forms. For example, each of the 38 positions shown in Fig. 4 are topologically
equivalent to one of the three invariant forms indicated, which represent, respec-
tively:

1. all double-boundary moves between one vertex and another;
2. all single-boundary moves that create partitions of {0} and {3} boundaries;
3. all single-boundary moves that create partitions of {1} and {2} boundaries.

We therefore only need to consider these three representative cases when
evaluating opening moves for the n = 4 game. The number of invariant opening
forms O+

n for a game of size n is given by:5

O+
n =

⌈n

2

⌉
+ 1. (2)

For comparison, there are six invariant opening forms for the n = 10 game
from the 5,165 actual opening moves, and only eleven invariant opening forms
for the n = 20 game from the 10,485,950 actual opening moves. The following
section explains how to derive these invariant forms.

2.3 Canonical Representation

Canonical representation involves reducing the string representation of a given
position to its canonical (invariant) form. The steps are briefly described below,
using the string representation of Fig. 2 as an example:

AL;AL,BNMCMN/D,COFPGQFOCM;E,HRISJSIUKTKUIR,FQGP;KT

1. Relabel singleton vertices as ‘0’:
AL;AL,BNMCMN/0,COFPGQFOCM;0,HRISJSIUKTKUIR,FQGP;KT

2. Relabel non-singleton vertices that occur exactly once as ‘1’:
AL;AL,1NMCMN/0,COFPGQFOCM;0,1RIS1SIUKTKUIR,FQGP;KT

3. Eliminate vertices that occur three times (i.e. dead vertices):
AL;AL,1NN/0,OPGQO;0,1RS1SUTUR,QGP;T

4. Eliminate boundaries with no remaining vertices and regions with < 2 lives:
AL;AL,1NN/0,OPGQO;0,1RS1SUTUR,QGP

5. Relabel vertices that occur twice in a row along a boundary as ‘2’:
AL;AL,12/0,2PGQ;0,1RS1SUTUR,QGP

6. Relabel vertices that occurred twice but now occur once due to step 4 as ‘2’:
AL;AL,12/0,2PGQ;0,1RS1SU2UR,QGP

7. Relabel vertices that occur twice within a boundary with lower case labels,
restarting at ‘a’ for each boundary:
AL;AL,12/0,2PGQ;0,1ab1bc2ca,QGP

5 Except for O+
1 = 1.

152 C. Browne

8. Relabel vertices that occur in two different regions with upper case labels,
restarting at ‘A’ for each subgame:
AB;AB,12/0,2ABC;0,1ab1bc2ca,CBA

The resulting string is then processed to find the lexicographically minimum
rotation of each boundary within each region, with characters relabeled as appro-
priate, and sorted in lexicographical order to give the final canonical form:

0,1ab1bc2ca,ABC;0,2ABC/12,AB;AB

Note that the boundaries within a region can be reversed without affecting
the result, provided that all boundaries within the region are reversed.

It would be prohibitively expensive to perform a true canonicalization6 that
finds the optimal relabeling of uppercase characters for positions in larger games,
so we compromise by performing a fast pseudo-canonicalization at the expense
of creating some duplicate canonical forms. See [1,7] for details.

3 Boundary Matching

Generating all possible moves for a given position, then reducing these to their
canonical forms, is a time consuming process for larger game sizes. Instead, we
use a technique called boundary matching (BM) to reduce the number of moves
that are generated in the first place.

BM works by deriving an invariant form for each boundary relative to its
region, and moving most of the invariant filtering further up the processing
pipeline, before the moves are actually generated. The basic idea is to identify
equivalent boundaries within a region, then simply avoid generating duplicate
moves from/to boundaries if such moves have already been generated from/to
equivalent boundaries in that pass.

3.1 Boundary Equivalence

We describe two regions as equivalent if they have the same invariant form, and
all live vertices along any member boundary adjoin the same external regions.
We describe two boundaries within a region as equivalent if they have the same
invariant form, and all regions shared by live vertices along each boundary are
equivalent.

For example, consider the position shown in Fig. 5, in which region 1 contains
the boundaries AK, BC, DF, GH, I and J. Singleton vertices I and J are obviously
equivalent boundaries within this region. Boundaries AK, BC and GH are also
equivalent within this region, as each adjoin equivalent regions that adjoin back
to only region 1. Boundary DF does not have any equivalents, as the region it
adjoins (region 3) has a different internal boundary structure.
6 We prefer to use the full term “canonicalization” rather than the abbreviation “can-
onization”; we do not claim that the algorithms perform miracles.

Boundary Matching for Interactive Sprouts 153

A

B

C

D

E

F

G

H

I J
K

0
1

2 3 4

Fig. 5. Within region 1, I and J are equivalent, and AK, BC and GH are equivalent.

The exact steps for calculating region equivalences are not important here,
as a singleton optimization (described shortly in Sect. 3.4) simplifies this step.

3.2 Efficient Move Generation

If each equivalent boundary type is assigned an index t = 1 . . . T , then a boundary
profile of each region is provided by the multiset of component boundary type
indices. For example, region 1 in Fig. 5 would have the boundary profile {1, 1,
2, 2, 2, 3}, with T = 3 equivalent boundary types.

Double-Boundary Moves: It is only necessary to generate double-boundary
moves between unique pairs of equivalent types, where the actual boundaries to
be used are selected randomly from the appropriate equivalent subset.

Double-boundary moves would be generated between equivalence types
{1, 1}, {1, 2}, {1, 3}, {2, 2} and {2, 3} in our example. While this provides
some improvement, the real savings come from single-boundary moves.

Single-Boundary Moves: It is only necessary to generate single-boundary
moves from a single representative of each equivalent boundary type, chosen
at random from the appropriate equivalent subset, to itself. Further, it is only
necessary to generate partitions of the remaining boundaries within the region,
according to the powerset of the region’s boundary profile (excluding the source
boundary itself).

For our example profile of {1, 1, 2, 2, 2, 3}, generating single-boundary moves
from a representative boundary of equivalence type 1 would generate moves
defined by the following partitions: {}, {1}, {2}, {3}, {1,2}, {1,3}, {2,2}, {2,3},
{1,2,2}, {1,2,3}, {1,2,2,2}, {1,2,2,3}, {1,2,2,2,3}, where the actual boundaries
used in each partition are again chosen randomly from the equivalence set with
that index.

154 C. Browne

3.3 Algorithms

Given the boundary profiles for a region R, as outlined above, the algorithms for
generating representative double-boundary and single-boundary moves within
R using BM optimization are presented in Algorithms 1 and 2, respectively. In
each case, the algorithms avoid duplication by only processing boundaries of
equivalence type t once in each role as source and/or destination boundary. The
actual moves themselves are generated as per usual (see Sect. 2.2) from each
pairing of live vertices along each selected from/to boundary pair.

Algorithm 1. Double-Boundary Moves with BM
1. for each boundary type t1 = 1 . . . T
2. select boundary b1 of type t1 at random
3. for each live vertex vi=1...I in b1
4. for each boundary type t2 = t1 . . . T
5. select boundary b2 of type t2 at random, such that b1 �= b2
6. for each live vertex vj=1 ... J in b2
7. generate double-boundary move from vi to vj

Algorithm 2. Single-Boundary Moves with BM
1. for each boundary type t = 1 . . . T
2. select boundary b of type t at random
3. for each live vertex vi=1 ... I in b
4. for each live vertex vj=i ... I in b
5. if i �= j or |vi| + |vj | < 2
6. generate single-boundary moves from vi to vj (i may equal j)
7. one partition for each powerset entry (excluding t)

3.4 Singleton Optimization

The approach described above provides significant savings in terms of reducing
combinatorial complexity, by avoiding effectively duplicate permutations. How-
ever, we can further improve the runtime of the technique by realizing that
singleton boundaries comprised of a single vertex are: easy to detect; easier to
match than other boundary types; the most likely boundary type to match oth-
ers (on average); and the most common boundary type, at least in the early
stages of a game.

It has proven sufficient in our tests to assign all such singleton boundaries to
equivalence group 1, and assign each remaining boundary to its own equivalence
group without attempting to match it with other boundaries. A typical boundary
profile will therefore look something like: {1, 1, 1, 1, 2, 3, 4, . . . }, with the

Boundary Matching for Interactive Sprouts 155

Table 1. Opening move generation without canonicalisation.

n O+
n Without BM With BM

Moves s Moves s

1 1 1 <0.001 1 <0.001

2 2 4 <0.001 3 <0.001

3 3 15 <0.001 4 <0.001

4 3 38 0.002 5 <0.001

5 4 90 0.004 6 <0.001

6 4 207 0.010 7 <0.001

7 5 469 0.029 8 <0.001

8 5 1.052 0.060 9 <0.001

9 6 2,340 0.071 10 <0.001

10 6 5,165 0.067 11 <0.001

11 7 11,319 0.073 12 <0.001

12 7 24,642 0.172 13 <0.001

13 8 53,326 0.413 14 <0.001

14 8 114,772 0.941 15 <0.001

15 9 245,859 2.203 16 <0.001

16 9 524,387 5.261 17 <0.001

17 10 1,114,124 13.408 18 <0.001

18 10 2,358,850 25.110 19 <0.001

19 11 4,798,038 59.962 20 <0.001

20 11 10,473,050 217.342 21 <0.001

occurrences of index 1 reducing as the game progresses and singleton vertices
are consumed. This has the same effect as an optimization used by Lemoine and
Viennot in their “Glop” combinatorial game solver, which skips all singleton
groups except the last in any position during move generation.7

The singleton optimization avoids the need for potentially costly boundary
matching calculations for more complex cases. It appears that the choice to not
match more complex boundaries is compensated by the speed benefit of only
matching singleton boundaries, at least for the cases tried so far.

4 Performance

The approaches outlined above were implemented in Java 7 for performance
testing. For the boundary matching tests, each boundary profile was ordered by
index, converted to a string, and a hash map maintained to store the relevant

7 http://sprouts.tuxfamily.org/wiki/doku.php?id=home.

http://sprouts.tuxfamily.org/wiki/doku.php?id=home

156 C. Browne

powerset that contains the single-boundary move partitions for each distinct
profile. Powersets are calculated on-the-fly as required whenever a previously
unseen profile is encountered. Hence it is useful to seed the table by playing out
a number of random games whenever the program changes to a new game size n,
so that more commonly needed powersets are pre-generated during initialization
rather than during crucial AI thinking time. All timings were made on a single
thread of a standard 2 GHz Intel i7 machine.

Test #1: Opening Move Generation: The first test concerns the generation
of opening moves with and without BM optimization. Table 1 shows the number
of opening moves generated for games of size n = 1 to 20, and the time required
to generate each legal move set, with and without BM optimization.

The computational cost of move generation without BM increases exponen-
tially with n, whereas BM demonstrates linear performance that requires less
than a millisecond for legal move generation regardless of n. Note that canoni-
calization is not applied in either case here; these figures indicate the raw move
counts generated by each approach before invariant filtering.

The move counts with BM matching are one less than twice the number of
invariant forms in each case, as each partition in the powerset contains a mirror
image that is its complement. Unoptimised move generation (i.e. without BM)
starts to get too slow for realtime play from around n = 12 upwards.

s

m

 .25

 0

 0 10 20 30

 with BM

without BM

Fig. 6. Convergence of move generation timings over 100 × n = 10 games.

Test #2: In-Game Move Generation: The second test concerns the relative
performance of the BM optimization over the course of a game. Table 2 shows
the average branching factor (BF) for each move m over 100 randomly played
n = 10 games, and timings required to generate the legal move sets with and
without BM. Note that full canonicalization is performed in this case, to give
accurate branching factors, so timings with and without BM are greater than
in Test #1. The ruled line at the m = 20 mark indicates the point at which

Boundary Matching for Interactive Sprouts 157

Table 2. Branching factors and timings over 100 × n = 10 games.

m Samples BF Without BM With BM

ms ms

0 100 6.00 318.147 0.698

1 100 21.72 183.094 3.141

2 100 25.12 90.098 5.473

3 100 28.30 49.610 5.550

4 100 28.43 30.916 6.632

5 100 25.82 21.304 6.589

6 100 25.74 15.856 7.196

7 100 24.75 11.787 6.968

8 100 22.35 10.233 7.066

9 100 20.98 8.593 6.599

10 100 18.35 6.926 5.704

11 100 16.48 5.524 5.276

12 100 13.89 4.480 4.806

13 100 12.19 3.517 4.115

14 100 10.80 3.246 3.458

15 100 9.15 2.620 2.966

16 100 7.79 2.280 2.465

17 100 7.32 1.986 2.027

18 100 5.85 1.540 1.603

19 100 4.47 1.107 1.273

20 100 3.23 0.817 0.895

21 100 2.37 0.598 0.613

22 100 1.58 0.336 0.365

23 96 0.71 0.133 0.151

24 58 0.26 0.342 0.061

25 15 0.13 0.044 0.017

26 2 0.00 0.010 0.008

27 0 — — —

28 0 — — —

29 0 — — —

games reach the 2n mark (recall that all games must last at least 2n moves)
and typically enter the end game. These results are shown in Fig. 6, in which
the solid line indicates timings with BM and the dotted line indicates timings
without BM.

158 C. Browne

Move generation with BM is performed in reasonably constant time through-
out the course of each game, despite an increase in branching factor in the early-
to-mid game,8 while move generation with BM takes much longer at the start
of each game, dropping quickly until the performance of the two approaches
is almost indistinguishable from the mid-game onwards. Similar tests on larger
game sizes reveal a similar convergent trend in timings throughout the course of
games, although the initial discrepancy becomes much greater as n increases.

5 Discussion

Boundary matching provides significant savings for opening move generation in
Sprouts, especially for larger game sizes. For games of n = 15 and higher, a single
(unoptimized) legal move generation can take much longer than the desired AI
thinking time of a few seconds, making BM – or some optimization like it –
necessary to achieve realtime response in such cases.

The benefit of BM optimization quickly diminishes until there is little to
choose between optimized and unoptimized performance around the mid-game,
but it is the early moves that count. An AI player that relies on the lookup of
known positions from pre-calculated win/loss tables is more likely to encounter
known positions towards the end game, as the game decomposes into simpler sub-
games. It is in the opening stages that an AI player, without complete win/loss
lookup information for the game size being played, really needs to maximize its
lookahead penetration into the game tree.

A caveat with using BM is that the distribution of legal moves produced will
not necessarily be the same as that of a random sampling of the search space,
which can be a factor if Monte Carlo playouts are involved. For example, the
10,473,050 opening moves of the n = 20 game are composed of n(n−1)/2 = 190
double-boundary moves and n2n−1 = 10, 485, 760 single-boundary moves, in a
ratio of 0.000018. However, the BM optimization will only produce 1 (invariant)
double-boundary move and 20 (invariant with mirror reflection) single-boundary
moves, in a ratio of 0.05. Random sampling can be biased to reflect this inequity
(but care must be taken that the noise of single-boundary permutations do not
entirely drown out double-boundary moves for larger game sizes) or random
moves for playouts can be made directly from the state representation, choosing
move type, region and from/to boundaries with the appropriate probabilities.

6 Conclusion

One of the immediate challenges facing the implementation of AI Sprouts players
is the problem of move generation at interactive speeds for larger game sizes. The
BM optimization offers a solution by allowing fast, near-constant time move gen-
eration for arbitrary positions in games of arbitrary size, without any apparent

8 The early, mid and end games could be described as approximately covering moves
1 . . . n − 1, n . . . 2n − 1 and 2n . . . 3n − 1, respectively, on average.

Boundary Matching for Interactive Sprouts 159

drawbacks apart from the potential for random playout bias. Future work might
include the investigation of AI search methods, utilizing the BM optimization,
for playing the game at arbitrary sizes with minimal corpus knowledge. It would
also be worth investigating whether BM performance might be improved through
the inclusion of other simple patterns in addition to singletons.

Acknowledgments. This work was funded by a QUT Vice-Chancellor’s Research
Fellowship as part of the project Games Without Frontiers.

References

1. Applegate, D., Jacobson, G., Sleator, D.: Computer Analysis of Sprouts. Technical
report CMU-CS-91-144, Carnegie Mellon University Computer Science Technical
Report (1991)

2. Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning Ways for Your Mathematical
Plays, vol. 3, 2nd edn. AK Peters, Natick (2001)

3. Department of Mathematics, University of Utah: The Game of Sprouts. http://
www.math.utah.edu/∼pa/Sprouts

4. Focardi, R., Luccio, F.L.: A modular approach to sprouts. Discrete Appl. Math.
144(3), 303–319 (2004)

5. Gardner, M.: Mathematical games: of sprouts and brussels sprouts; games with a
topological flavour. Sci. Am. 217(1), 112–115 (1967)

6. Gehrig, D.: Sprouts - A Game of Maths!. https://itunes.apple.com/au/app/
spouts-a-game-of-maths!/id426618463?mt=8

7. Lemoine, J., Viennot, S.: Computer Analysis of Sprouts with Nimbers. Technical
report, arXiv:1008.2320v1 (2011)

8. Reiß, S.: 3Graph. http://www.reisz.de/3graph en.htm

http://www.math.utah.edu/~pa/Sprouts
http://www.math.utah.edu/~pa/Sprouts
https://itunes.apple.com/au/app/spouts-a-game-of-maths!/id426618463?mt=8
https://itunes.apple.com/au/app/spouts-a-game-of-maths!/id426618463?mt=8
http://arxiv.org/abs/1008.2320v1
http://www.reisz.de/3graph_en.htm

Draws, Zugzwangs, and PSPACE-Completeness
in the Slither Connection Game

Édouard Bonnet1, Florian Jamain2, and Abdallah Saffidine3(B)

1 SZTAKI, Hungarian Academy of Sciences, Budapest, Hungary
edouard.bonnet@lamsade.dauphine.fr

2 LAMSADE, Université Paris-Dauphine, Paris, France
florian.jamain@lamsade.dauphine.fr

3 CSE, The University of New South Wales, Sydney, Australia
abdallahs@cse.unsw.edu.au

Abstract. Two features set Slither apart from other connection
games. Previously played stones can be relocated and some stone con-
figurations are forbidden. We show that the interplay of these peculiar
mechanics with the standard goal of connecting opposite edges of a board
results in a game with a few properties unexpected among connection
games, for instance, the existence of mutual Zugzwangs. We also estab-
lish that, although there are positions where one player has no legal
move, there is no position where both players lack a legal move and that
the game cannot end in a draw. From the standpoint of computational
complexity, we show that the game is pspace-complete, the relocation
rule can indeed be tamed so as to simulate a hex game on a Slither
board.

1 Introduction

Invented in 2010 by Corey Clark, Slither is relatively new connection game
with an increasing popularity among online board game players. Unlike hex
and havannah which are played on a hexagonally-paved board, Slither is
played on a grid and each player is trying to connect a pair of opposite edges
corresponding to their color by constructing connected groups of stones. Whereas
moves in most other connection games only involve putting down a new element
on the board, moves in Slither also allow relocating previously played stones.
A second important difference between usual connections games and Slither
is that some stone configurations are forbidden in Slither. Namely, a player is
not allowed to play a stone diagonally adjacent to a pre-existing stone of their
color unless one of their already placed stones would be mutually adjacent.

The goal of this paper is to study the properties of Slither in order to
understand better the impact of features such as forbidden configurations and
stone relocation on a connection game.

Since its independent inventions in 1942 and 1948 by the Danish poet and
mathematician Piet Hein and the American economist and mathematician John
Nash, the game of Hex has acquired a special spot in the heart of abstract
c© Springer International Publishing Switzerland 2015
A. Plaat et al. (Eds.): ACG 2015, LNCS 9525, pp. 160–176, 2015.
DOI: 10.1007/978-3-319-27992-3 15

Draws, Zugzwangs, and PSPACE-Completeness 161

game aficionados. Its purity and depth has lead Jack van Rijswijck to conclude
his PhD thesis with the following hyperbole [15].

“Hex has a Platonic existence, independent of human thought. If ever we
find an extraterrestrial civilization at all, they will know Hex, without
any doubt.”

Hex does not only exert a fascination on players, but it is the root of the
field of connection games which is being actively explored by game designers
and researchers alike [4]. The focuses of the researchers include (1) the design
and programming of strong artificial players and solvers [1,6], (2) the compu-
tational complexity of determining the winner in arbitrary positions [2,5,11],
and (3) theoretical considerations on aspects specific to connection games such
a virtual connections and inferior cells [9,13–15]. The two-player game Slither
that we study in this article should not be confused with the Japanese single-
player puzzle slither link which has been the object of two other independent
papers [16,17].

The paper is organized as follows. After describing the rules of the Slither
game, we demonstrate via specific game positions that a few properties that
typically hold in connection games may actually not hold for Slither. The last
section establishes that determining the winner in a two-player game of Slither
is a pspace-complete problem.

2 Rules

Slither is a two-player game starting on an empty n by n grid (or board). Let
us call the players Black (or B) and White (or W). Black and White alternate
moves. Before stating what a move consists of, and what the winning conditions
are, we introduce some useful definitions.

Fig. 1. Some examples of allowed and forbidden configurations. Forbidden configura-
tions are crossed.

As the game proceeds, squares of the board can be empty, or contain a black
stone, or contain a white stone. We refer to black (resp. white) stones as the

162 É. Bonnet et al.

(a) Black to play and win in one move. (b) The winning move for Black.

Fig. 2. Illustration of a move and a winning group in a 7 by 7 board.

stones of player B (resp. W). We say that two squares of the board are adjacent
if they are in the same row and adjacent columns, or in the same column and
adjacent rows. They are king-adjacent if a chess king can move from one square
to the other, and diagonally-adjacent if they are king-adjacent but not adjacent.
Two stones are adjacent (resp. king-adjacent, diagonally-adjacent) if they are
in adjacent (resp. king-adjacent, diagonally-adjacent) squares. For P ∈ {W,B},
let GP be the graph of which the vertices are the stones of player P placed in
the board, and the edges encode the adjacent relation. That is, two vertices are
linked by an edge if and only if they represent adjacent stones. Like in the game
of Go, a group for player P is a maximal connected component in GP .

A move for player P consists of an optional relocation of an existing stone
of P on a king-adjacent empty grid square, followed by a mandatory placement
a stone of P into an empty grid square (see Fig. 2). For a move to be legal,
the resulting position may not have two diagonally-adjacent stones of P that do
not also have an orthogonally-adjacent stone in common (see Fig. 1). In what
follows, we refer to this restrictive rule as the diagonal rule.

Black wins if they form a group with at least one stone in the first and in
the last column. White wins if they form a group with at least one stone in the
first and in the last row. Informally, Black wants to connect left-right and White
wants to connect top-bottom (see Fig. 2b).

As in most connection games, a swap rule is usually implemented. That is,
after the first move, the second player can decide either to play themself a move
and the game goes on normally, or to become first player with that very same
move.

3 Elementary Properties of the Game

We now present some observations on and properties of Slither. Some of the
observations made in this section have independently been pointed out earlier
in the abstract game community, especially on BoardGameGeek.1 However, we
1 http://boardgamegeek.com/thread/692652/what-if-there-no-legal-move.

http://boardgamegeek.com/thread/692652/what-if-there-no-legal-move

Draws, Zugzwangs, and PSPACE-Completeness 163

A B C D E

1

2

3

4

5

a b c

(a) Mutual zugzwang: no good move
for Black and no good move for White.

(b) No move allowed for Black,
only White has legal moves.

Fig. 3. Slither positions with a shortage of moves.

prove for the first time that the standard Slither variant cannot end in a draw,
thereby settling an open-problem often raised in this community.

The concept of zugzwang appears in chess and denotes a position in which
the current player has no desirable move and would rather pass and have the
opponent act. A mutual zugzwang is a position in which both players would
rather have the opponent play. Although zugzwangs are virtually unheard of in
typical connection games, where additional moves can never hurt you, things are
different in Slither.

Proposition 1. Zugzwangs and mutual zugzwangs can occur in Slither.

Proof. In Fig. 3a, if it is White (resp. Black) to play, only one move is available,
moving stone on C2 (resp. C4) to a and placing a stone on c or equivalently
moving to c and placing on a. Then Black (resp. White) wins by placing a stone
on C2 (resp. moving stone B5 to C4 and placing a stone on b).

When John Nash discovered/invented the game Hex, one of his motiva-
tions was to find a non-trivial game with a non-constructive proof that the first
player has a winning strategy in the initial position. To obtain this result, Nash
developed a strategy-stealing argument which can be summed up as follows [15].
Assume for a contradiction that the second player has a winning strategy σ in
the initial position. Then a winning strategy for the first player can be obtained
as: start with a random move, then apply σ pretending that the initial move
did not occur. If σ ever recommends to play on the location of the initial move,
then play another random move and carry on. Given that having an additional
random stone on the board cannot hurt the first player, then we have developed
a winning strategy for the first player too. Since the second and first player can-
not both have a winning strategy at the same time, we may conclude that our
hypothesis does not hold. Therefore the initial Hex position is not a second-
player win when the swap rule is not used. Nash finishes his proof by showing
that there can be no draw in Hex and concludes that the initial position is a
first player win.

This strategy-stealing argument can be applied to many other games includ-
ing Twixt, Havannah, and games of the connect(m,n, k) family [10]. Since

164 É. Bonnet et al.

(a) Cylinder board: left and
right edges are connected.

(b) Torus board: left and right edges are connected
and top and bottom edges are connected.

Fig. 4. Drawn Slither positions on non-planar boards.

draws are not ruled-out in these games, the argument only shows that the initial
situation is not a second-player win. However, the strategy-stealing argument
cannot be applied to Slither.

Proposition 2. Nash’s strategy-stealing argument does not apply to Slither.

Proof. Consider the White zugzwang position in Fig. 3a. Had the A4 square not
been occupied by a White stone, White would have a winning move: move B4 to
b and place a stone on c. Since there are positions where having one too many
stones on the board can make a player lose the game, Nash’s strategy-stealing
argument does not apply.

Therefore, there is no theoretical indication yet that Slither is not a second-
player win on an empty board. However, in practice it is a huge advantage to
play first, so much that if the swap rule is used, it is recommended to swap no
matter where the first move is played, including corner locations. The Slither-
specific intuition behind this practical advice is that the game is dynamic and a
player can bring back a stone from a corner towards the center, moving it closer
every turn.

Proposition 3. There exist positions in which a player has no legal move.

Proof. For instance, Black has no legal move in the position Fig. 3b.

Proposition 4. Draws are possible when Slither is played on a cylinder or
on a torus.

Proof. In Fig. 4a (resp. Fig. 4b), if black (resp. black and white) sides are con-
nected, then both players have no legal moves.

That draws are possible for some exotic boards should enhance the accidental
aspect of our result on rectangular boards. There are probably no fundamental
reasons why the following result is true, and the proof, which we defer to the
appendix, consists of a large case analysis on the consequences of forbidding
diagonal configurations and the possibility of moving stones.

Draws, Zugzwangs, and PSPACE-Completeness 165

A B C

1

2

3

4

Fig. 5. Ladders.

Theorem 1. Draws are not possible in Slither on rectangular boards.

We end this section, remarking that the connection tactics (for instance lad-
ders) are quite different in Slither than in other connection games. For exam-
ple, in Fig. 5, White is connected to the bottom. Black has to defend on A1,
but White can play on C1 and then Black has to play on B1, White plays on
C2, Black answers on B2 and White ends the game moving stone A2 to B3 and
placing a stone on C3. This last winning move for White is typical in Slither
and would obviously not be allowed in a game like Hex.

4 Computational Complexity

Here, we show that deciding if one player has a winning strategy from a given
position is intractable.

A staple in proofs of pspace-hardness for two-player games seems to be gen-
eralized geography [12]. This problem has been used to show the intractabil-
ity of games as different as Hex [11], Amazons [7], Bridge [3], and many
more [8]. Our result for Slither also relies on generalized geography, albeit
indirectly since we reduce from Hex.

Theorem 2. It is pspace-complete to decide which player has a winning strat-
egy from a given Slither position.

Proof. The membership of this problem to pspace boils down to noticing that
the length of a game is bounded from above by the number of empty squares.
Indeed, at each move, one stone is added to the board. Thus, a minimax depth-
first search uses a polynomial amount of space.

We now present a reduction from Hex which is known to be pspace-complete
(see [11]). A hexagonal cell of Hex is encoded by the gadget depicted in Fig. 6.
More precisely, an empty cell (resp. a cell containing a black stone, resp. con-
taining a white stone) is transformed into the portion of position of Fig. 6a
(resp. Fig. 6b, c). The cell gadgets are glued together and attached to the edges
of the board as described in Fig. 7. The empty squares which do not correspond
to one of the eight squares designated by letter a to h in Fig. 6a can be filled
with black stones. For convenience, we do not represent those stones.

166 É. Bonnet et al.

A B C D E F G

1

2

3

4

5

6

7

u

v

w

x y

za b

c d

e f

g h

(a) An empty cell.

A B C D E F G

1

2

3

4

5

6

7

u

v

w

x y

z

c d

e f

g h

(b) A black cell.

A B C D E F G

1

2

3

4

5

6

7

u

v

w

x y

zb

d

e f

g h

(c) A white cell.

Fig. 6. The cell gadget.

Observation 1. When a player places a stone in an empty cell gadget (that
is, on a square marked with letter a to h), they create a configuration which is
forbidden by the diagonal rule. Thus, they should also move one of their stones
in the same cell gadget.

Lemma 1. In a black cell C (see Fig. 6b), White cannot prevent Black from
having a group containing stones in w, y, and u.

Proof. Black stones on w and y are already in the same group. Because of the
diagonal rule, White cannot place a stone in cell C and move a stone in another
cell gadget. By Observation 1 and the previous remark, if White moves a stone in
cell C, but decides to place a stone in another cell gadget, they can only do so in a
white cell, which turns out to be useless. Thus, White might as well place a stone
and move in cell C. After their move, White should occupy square c; otherwise,
Black places a stone on c and thereby connects their group containing u to their
group containing w and y.

There are three ways for W to occupy square c: (1) move stone on B4 to c, or
(2) move stone on D3 to c, or (3) place a new stone on c. The first option cannot
be extended into a legal move. Indeed, the diagonal rule would impose that a
stone is placed on d, to connect the two diagonally-adjacent white stones on c and
D3. But then white stones on d and E5 would form a forbidden configuration.
In the second option, White cannot place a stone on D3 nor on d, because of the
diagonal rule. And Black’s next move would consist of moving the stone on D2
to D3, and placing a stone on d, which connects u to w and y. Finally, in the
third option, White is forced to move their stone in D3 to a square other than
d. And Black connects in the same manner.

Since the cell gadget is symmetric, the following holds similarly.

Lemma 2. In a white cell (see Fig. 6c), Black cannot prevent White from having
a group containing stones on v, x, and z.

The following observation is outlined by Fig. 7.

Draws, Zugzwangs, and PSPACE-Completeness 167

Fig. 7. An empty 3 by 3 Hex board reduced to a Slither position.

Observation 2. When playing in a empty cell gadget, Black cannot do more
than connecting u, w, and y, and White cannot do more than connecting v, x,
and z.

From the empty cell gadget, Black can move stone E4 to b and place a stone
on a, resulting in the black cell configuration. By Lemma 1 and Observation 2,
it is the optimal play within this cell. Similarly, the optimal play for White in a
given empty cell, is to move stone D3 to c and place a stone on a, yielding the
white cell. Thus, having chosen the cell gadget where to play, the optimal move

168 É. Bonnet et al.

is to connect six paths going from this cell to the six adjacent cells in a hexagonal
paving (see Fig. 7). Hence, the built Slither position simulates a game of Hex,
and so, Slither is as hard as Hex.

5 Conclusion

This paper establishes the pspace-completeness of a connection game, Slither.
Although the diagonal rule and the relocation part of a move may seem, at first
sight, somewhat artificial, they provide a mechanism to avoid draw possibili-
ties. As such, they can be seen as a direct consequence of bringing Hex to a
more natural grid board. Both rules are necessary: the diagonal rule prevents a
straightforward drawing strategy, and draws would arise quite often if it was not
for the right to relocate stones (see, for instance, Figs. 3a, b, and 7).

Slither is not the first connection game played on a grid, but unlike in
Twixt where nodes can have direct links to up to 8 neighbors, the largest num-
ber of neighbors of a node is 4 in Slither. Going from an hexagonal paving
to a grid lowers the number of neighbors of each node, the degree. This change
rules out a direct reduction from Hex as was possible for twixt [2]. Our main
technical contribution is a hybrid connection mechanism between 6 groups on
a degree 4 grid: in one move, a player connects physically two pairs of paths
together and connects virtually the third pair to the other two. Our main prac-
tical contribution is to have ruled out the possibility of a draw on rectangular
boards.

A seemingly reasonable heuristic consists of playing the first move of a short-
est sequence leading to victory, supposing the opponent passes. We leave as an
open question if such a shortest sequence can be efficiently computed. This prob-
lem might already be np-hard. In fact, deciding if such a sequence exists at all,
is not necessarily easy to do.

Acknowledgments. The third author was supported by the Australian Research
Council (project DE 150101351).

Appendices

Below we provide four appendices, A, B, C, and D. They provide full proofs of
what has stated to be true in the Article.

A Draws are Impossible in SLITHER

Stating that slither does not feature any draw actually corresponds to the fol-
lowing three more elementary statements: each filled slither board has winning
groups for at least one player, each filled slither board has winning groups for
no more than one player, and each non-filled slither board has at least one
legal move for one of the two players. The first two statements can be obtained

Draws, Zugzwangs, and PSPACE-Completeness 169

rather directly from the equivalent ones in hex, thanks to the diagonal rule. The
third statement is much more involved and requires a careful case analysis on
non-filled boards.

Lemma 3. If a Slither board is filled, then exactly one of the two players
wins.

Proof. Recall that Hex can be played on a rectangular board provided we add
a link between each pair of king-adjacent squares along one specified diagonal
direction, as in Fig. 8. The forbidden configuration rule ensures that this king-
adjacent diagonal connection is respected in Slither, although it is indirect.
Therefore, any filled m × n Slither board can be mapped onto an equivalent
m × n Hex board such that any pair of Slither squares is connected if and
only if the corresponding pair of Hex cells is connected. Since any filled Hex
board is won by exactly one player, we have the desired Slither result.

Fig. 8. 6 × 4 Hex board represented on a rectangular Slither board.

Theorem 3. On a rectangular board, as long as there is at least one empty
square, at least one of the two players has a legal move.

Proof. We adopt the following proof technique.2 We assume for a contradiction
that we have a non-filled position with no legal moves for any players. We start
from an empty square and make deduction concerning its surrounding so as to
constrain the occupancy of the nearby squares. Each constraint is deduced based
on the established occupancies and from the no legal moves assumption or from
the diagonal rule. We may perform a split case analysis on squares that are not
constrained enough to have a definite status. In each case, however, we finally
arrive at a position with a legal move that cannot be prevented by adding any
further constraints.

As we add constraints to forbid legal moves from either player, we liberally
extend the size of the pattern around the empty square. If any such extension
was not possible because we would have reached the limit of the board, then
it would not be possible to forbid the desired legal move and our case would
be proved. We can therefore disregard the possibility of inadvertently meeting

2 No part of the argument will rely upon the color of the board edge.

170 É. Bonnet et al.

an edge of the board as we extend our patterns, at least for the sake of this
argument.

In addition to the regular three types of squares, white stone, black
stone, and empty, we add the following ones: no constraints yet, cannot
hold a white stone, and cannot hold a black stone.

Consider a rectangular board. If there is at least an empty square on the
board, then there is at least an empty square s such that one of the following 4
conditions on the bottom and left neighbors of s is satisfied. Either s is in the
bottom-left corner (Fig. 9a), or s is on the bottom edge and its left neighbor is
occupied (Fig. 9b), or s has three neighboring stones of different colors (Fig. 9c),
or these stones are all of the same color (Fig. 9d). We can assume w.l.o.g. that a
majority of the bottom-left neighboring stones are white.

The first two cases are treated in AppendixB, the third case is treated in
Appendix C, and the last case in Appendix D. In each case, we arrive to the
conclusion that at least one player can move.

A B

1

2

(a) Two edges.

A B

1

2

(b) A white stone
and an edge.

A B C

1

2

3

(c) A black stone and
two white stones.

A B C

1

2

3

(d) Three
white stones.

Fig. 9. Case analysis for the bottom left surroundings of the empty square.

B A Square in a Corner or on the Edge of the Board

If there is an empty square in a corner, as depicted in Fig. 9a, then placing a
stone on that very square is a legal move for at least one player.

If there is an empty square on an edge, we start from the situation in Fig. 9b
and use the following reasoning to constrain the surrounding and obtain Fig. 10.
C2 needs a white stone to forbid White’s move B1, and C1 cannot be white. A2
needs a black stone to forbid Black’s move B1. B2 needs to be empty to forbid
White’s and Black’s move B1. C1 cannot be empty to forbid White’s move C1.
A3 needs a white stone to forbid White’s move A1B1-B2, and B3 cannot be
white. C3 needs a black stone to forbid Black’s move C1B1-B2, and B3 cannot
be black. Similarly, A4 needs a black stone, C4 needs a white stone, and B4
needs to be empty, so as to forbid White’s move A1B2-B3 and Black’s move
C1B2-B3.

But then, C3B2-B1 is a legal move for Black.

Draws, Zugzwangs, and PSPACE-Completeness 171

A B C

1

2

3

4

Fig. 10. The case in Fig. 9b with a few deducible constraints filled in.

C A Square with Two White Stones and a Black Stone

We start from the situation in Fig. 9c and use the following reasoning to constrain
the surrounding and obtain Fig. 11. The C2 square cannot contain a white stone,
otherwise B2 is a legal move for White. Similarly, B3 cannot contain a black
stone, otherwise B2 is a legal move for Black. To forbid White’s move B2, there
should be a white stone on C1 or on C3 (Fig. 12).

A B C

1

2

3

Fig. 11. The case in Fig. 9c with a few deducible constraints filled in.

C.1 Fig. 12a

C2 cannot contain a black stone due to the diagonal rule (since B2 is empty by
assumption), and has to be empty. Now, we distinguish two subcases: either B3
is white, or it is empty (Fig. 13).

C.1.1 Fig. 13a. A3 contains a white stone, by the diagonal rule. C3 needs a
black stone to forbid Black’s move B2. D1 needs a black stone to forbid Black’s
move B1B2-C2. D3 needs a white stone to forbid White’s move C1B2-C2. D2
needs to be empty, by the diagonal rule on stones C1 and C3. E3 needs a black
stone to forbid Black’s move B1C2-D2.

But, in that situation, D3C2-B2 is a legal move for White.

C.1.2 Fig. 13b. To forbid White’s move C2, D3 needs a white stone and C3
and D2 cannot contain a white stone. To forbid White’s move D3C2-B2, there
should be white stones on E3 and D4 and E4 should not contain a white stone.
Now, we distinguish two subcases: either C3 is black, or it is empty (Fig. 14).

172 É. Bonnet et al.

A B C

1

2

3

(a) Assume C1 is white.

A B C

1

2

3

(b) Assume C3 is white.

Fig. 12. Case analysis for Fig. 11, either C1 is white or C3 is white.

A B C D E

1

2

3

(a) Assume B3 is white.

A B C D E

1

2

3

4

(b) Assume B3 is empty.

Fig. 13. Case analysis for Fig. 12a: B3 is either white or empty.

C.1.2.1 Fig. 14a A3 cannot contain a black stone to forbid Black’s move B3. D1
needs a black stone to forbid Black’s move C3B2-C2. D2 cannot contain a black
stone by the diagonal rule, and has to be empty.

But then, move B1C2-D2 is legal for Black.

C.1.2.2 Fig. 14b B4 needs a white stone to forbid White’s move C3. D2 needs a
black stone to forbid Black’s move C3.

But then, B1C2-C3 is legal for Black.

C.2 Fig. 12b

A3 needs a black stone to forbid Black’s move B2. B3 cannot contain a white
stone by the diagonal rule (with A2) and has to be empty. Now, we distinguish
two subcases: either C2 is black, or it is empty (Fig. 15).

A B C D E

1

2

3

4

(a) Assume C3 is black.

A B C D E

1

2

3

4

(b) Assume C3 is empty.

Fig. 14. Case analysis for Fig. 13b: C3 is either black or empty.

Draws, Zugzwangs, and PSPACE-Completeness 173

A B C

1

2

3

(a) Assume C2 is black.

A B C D

1

2

3

(b) Assume C2 is empty.

Fig. 15. Case analysis for Fig. 12b: C2 is either black or empty.

C.2.1 Fig. 15a. To forbid White’s move C3B2-B3 and Black’s move A3B2-B3,
there should be at least one white stone and one black stone in {A4, C4}. So,
we distinguish further between {A4 black, C4 white} and {A4 white, C4 black}
(Fig. 16).

A B C D

0

1

2

3

4

(a) Assume A4 is black and C4 is white.

A B C

1

2

3

4

5

(b) Assume A4 is white and C4 is black.

Fig. 16. Case analysis for Fig. 15a: the contents of A4 and C4 is white.

C.2.1.1 Fig. 16a. D2 needs a black stone to forbid Black’s move C2B2-B3, and
C0 needs a black stone to forbid Black’s move C1B2-B3.

But then, B1B2-B3 is a legal move for Black.

C.2.1.2 Fig. 16b. By the diagonal rule, square B4 has to be empty. C5 (as well
as D4) needs a black stone to forbid Black’s move C4B3-B2. Symmetrically, A5
needs a white stone to forbid White’s move A4B3-B2.

But then, C3B2-B4 is a legal move for White.

C.2.2 Fig. 15b. To forbid White’s move C2, there should be a white stone on
D1 but no white stones on C1 nor D2. We distinguish two subcases: C1 contains
a black stone, or it is empty (Fig. 17).

C.2.2.1 Fig. 17a. D3 needs a black stone to forbid Black’s move C2 (since B3 is
empty). Then, by the diagonal rule, square D2 can only be empty. E3 needs a
white stone to forbid White’s move C3D2-C2. E1 needs a black stone to forbid
Black’s move D3C2-D2.

But then, D1C2-B2 is a legal move for White.

174 É. Bonnet et al.

A B C D E

1

2

3

(a) Assume C1 is black.

A B C D E

0

1

2

3

(b) Assume C1 is empty.

Fig. 17. Case analysis for Fig. 15b: C1 is either black or empty.

C.2.2.2 Fig. 17b. The only way to forbid White’s move D1C2-B2 is to add two
white stones on D0 and on E1. To forbid White’s move C1, there should be a
white stone on B0 (and a white stone on A0, by the diagonal rule), and no white
stones on C0. C0 cannot contain a black stone because of the diagonal rule.

But then, C0 is a legal move for White.

D A Square with Three White Stones

We start from the situation in Fig. 9d. To forbid White’s move B2, there should
be a white stone on C3, but no white stones on B3 nor C2. To forbid Black’s
move B2, there should be a black stone on C1 or A3, say C1 w.l.o.g. (see Fig. 18).

A B C

1

2

3

Fig. 18. The case in Fig. 9d with a few deducible constraints filled in.

Therefore, B3 and C2 are empty or contain a black stone. They cannot both
contain a black stone since B2 is empty. We thus distinguish three cases: B3 and
C2 are empty, B3 contains a black stone, and C2 contains a black stone (Fig. 19).

D.1 Fig. 19a

D3 needs a black stone to forbid Black’s move C2. D1 needs a white stone to
forbid White’s move C3B2-C2. E3 needs a white stone to forbid White’s move
C3B2-D2. E1 needs a black stone to forbid Black’s move D3C2-D2.

But then, D1C2-B2 is legal for White.

D.2 Fig. 19b

A3 needs a black stone to forbid Black’s move B2. This case is equivalent to the
case of Fig. 15a under color and spatial symmetry.

Draws, Zugzwangs, and PSPACE-Completeness 175

A B C D E

1

2

3

(a) Assume B3 and
C2 are empty.

A B C

1

2

3

(b) Assume B3 is empty
and C2 is black.

A B C

1

2

3

(c) Assume B3 is black
and C2 is empty.

Fig. 19. Case analysis for Fig. 18: the contents of B3 and C2.

D.3 Fig. 19c

Let us consider cases for the contents of A3. If A3 contains a black stone, then
we obtain a position equivalent to Fig. 15a under color and spatial symmetry.

If A3 is empty or white, then a similar proof to Fig. 19a still holds. Indeed,
D3 needs a black stone to forbid Black’s move B3B2-C2 and D1 needs a white
stone to forbid White’s move C3B2-C2. The same way, E3 needs a white stone
to forbid White’s move C3B2-D2, and then E1 needs a black stone to forbid
Black’s move C1B2-D2.

But then, D1C2-B2 is legal for White.

References

1. Arneson, B., Hayward, R.B., Henderson, P.: Monte Carlo tree search in Hex. IEEE
Trans. Comput. Intell. AI Games 2(4), 251–258 (2010)

2. Bonnet, É., Jamain, F., Saffidine, A.: Havannah and TwixT are PSPACE-complete.
In: van den Herik, H.J., Iida, H., Plaat, A. (eds.) CG 2013. LNCS, vol. 8427, pp.
175–186. Springer, Heidelberg (2014)

3. Bonnet, É., Jamain, F., Saffidine, A.: On the complexity of trick-taking card games.
In: Rossi, F. (ed.) 23rd International Joint Conference on Artificial Intelligence
(IJCAI), Beijing, China, August 2013, pp. 482–488. AAAI Press (2013)

4. Browne, C.: Connection Games: Variations on a Theme. A K Peters, Massachusetts
(2005)

5. Even, S., Tarjan, R.E.: A combinatorial problem which is complete in polynomial
space. J. ACM (JACM) 23(4), 710–719 (1976)

6. Ewalds, T.: Playing and solving Havannah. Master’s thesis, University of Alberta
(2012)

7. Furtak, T., Kiyomi, M., Uno, T., Buro, M.: Generalized Amazons is PSPACE-
complete. In: Kaelbling, L.P., Saffiotti, A. (eds.) 19th International Joint Confer-
ence on Artificial Intelligence (IJCAI), pp. 132–137 (2005)

8. Hearn, R.A., Demaine, E.D.: Games, Puzzles, and Computation. A K Peters, USA
(2009)

9. Henderson, P.T.: Playing and solving the game of Hex. Ph.D. thesis, University of
Alberta, August 2010

10. Hsieh, M.Y., Tsai, S.-C.: On the fairness and complexity of generalized-in-a-row
games. Theor. Comput. Sci. 385(1–3), 88–100 (2007)

11. Reisch, S.: Hex ist PSPACE-vollständig. Acta Informatica 15(2), 167–191 (1981)

176 É. Bonnet et al.

12. Schaefer, T.J.: On the complexity of some two-person perfect-information games.
J. Comput. Syst. Sci. 16(2), 185–225 (1978)

13. Steane, A.M.: Threat, support and dead edges in the Shannon game, October 2012
14. Steane, A.M.: Minimal and irreducible links in the Shannon game, January 2013
15. van Rijswijck, J.: Set colouring games. Ph.D. thesis, University of Alberta, October

2006
16. Yato, T.: On the NP-completeness of the Slither link puzzle. In: Notes of the 74th

Meeting of IPSJ SIG ALgorithms, pp. 25–32 (2000)
17. Yoshinaka, R., Saitoh, T., Kawahara, J., Tsuruma, K., Iwashita, H., Minato, S.-I.:

Finding all solutions and instances of Numberlink and Slitherlink by ZDDs. Algo-
rithms 5(2), 176–213 (2012)

Constructing Pin Endgame Databases
for the Backgammon Variant Plakoto

Nikolaos Papahristou(✉) and Ioannis Refanidis

University of Macedonia, Thessaloniki, Greece
nikpapa@gmail.com, yrefanid@uom.gr

Abstract. PALAMEDES is an ongoing project for building expert playing bots that
can play backgammon variants. Until recently the position evaluation relied only
on self-trained neural networks. This paper describes the first attempt to augment
PALAMEDES by constructing databases for certain endgame positions for the back‐
gammon variant of Plakoto. The result is 5 databases containing 12,480,720
records in total; they can calculate accurately the best move for roughly
3.4 × 1015 positions. To the best of our knowledge, this is the first time that an
endgame database is created for this game.

1 Introduction

Computer game programs are using endgame databases to great effect, especially in
board games. Examples of complex games benefiting from such databases are chess [6],
Chinese chess [4], checkers [10], awari [8], Kriegspiel [3], and nine-men morris [5], to
name a few. Moreover endgame databases are catalytic in every attempt to solve a game,
as can be seen in solved games like checkers [11], nine-men morris [5] and more recently
heads-up limit texas holdem poker [2].

An endgame database usually contains precomputed game-theoretical values (or
near perfect heuristics) for each position record. The game playing program can use this
database by searching the records when an endgame position contained in the database
is reached by the AI search. The benefits for the program are multiple: (1) the value
retrieved from the database is more accurate than the program’s evaluation function;
(2) the retrieval of the database value is typically faster than the evaluation function
execution speed; (3) there is no need to search any further down the tree.

The endgame databases can also provide a powerful analytical tool for the game
professional and for understanding the game in general. A prominent example is chess,
where positions which humans had analyzed as draws were proven winnable and vice-
versa. Also the database constructed when heads-up limit texas holdem poker was solved
[2] offered insights that contradicted some human beliefs about the best play in this
game.

Backgammon programs also make use of endgame databases. These usually cover
the positions where both players have their checkers in the bearoff quadrant (also known
as bearoff databases). In the two-sided version, these databases offer the game-theoretic

© Springer International Publishing Switzerland 2015
A. Plaat et al. (Eds.): ACG 2015, LNCS 9525, pp. 177–184, 2015.
DOI: 10.1007/978-3-319-27992-3_16

value of the position whereas in the one-sided version, the goal being to minimize the
average number of rolls to bearoff, a distribution of the expected number of rolls to
bearoff. The one-sided version is much smaller than the two-sided version but it is not
as accurate with respect to finding the best move.

Our main focus is on several backgammon variants that are not yet sufficiently
examined by computer games research. The aforementioned bearoff endgame databases
can be used in many of the variants that we are interested in (Portes, Plakoto, Fevga,
Narde), since the bearoff positions of backgammon can occur in all of these games as
well. For this purpose, PALAMEDES already contains a two-sided bearoff database that
was constructed using similar techniques used by other programs. This database gives
the game theoretical value of all bearoff positions when the doubling cube is not used
and is 5.48 GB in size.

This paper describes our efforts of our first attempt to construct endgame databases
for positions only seen in the Plakoto variant. To the best of our knowledge, this is the
first time this kind of endgame database is constructed. We believe this is the first step
towards constructing bigger and better endgame databases in the future. Section 2
presents the rules of the Plakoto variant and introduces the position types that are stored
in the databases. Section 3 describes the algorithm used to compute the databases.
Section 4 discusses several issues including perspectives on building larger databases.
Finally, Sect. 5 concludes and gives five avenues for future work.

2 The Rules of the Plakoto Variant

This section presents the rules of the Plakoto variant (Sect. 2.1) and analyzes the posi‐
tions that we are interested in storing in the databases (Sect. 2.2). In Sect. 2.3 the number
of endgame positions will be discussed.

2.1 The Plakoto Variant

The general rules of the game are the same as the regular backgammon apart from the
procedure of hitting. Players start the game with fifteen checkers placed in opposing
corners (Fig. 1a) and move around the board in opposite directions until they reach the
home board which is located opposite from the starting area. Players can win a single
or double game as usual but there is no triple win as in backgammon. Finally, the
doubling cube is not typically used.

The key feature of the Plakoto variant is the ability to pin hostile checkers, so as to
prevent their movement. When a checker of a player is alone in a point, the opponent
can move a checker of his own in this point thus pinning (or trapping) the opponent’s
checker. This point counts then as a “made point” as in regular backgammon, which
means that the pinning player can move checkers in this point while the pinned player
cannot. The pinned checker is allowed to move normally only when all opponent pinning
checkers have left the point (unpinning). A more detailed explanation of the Plakoto
rules can be found in http://ai.uom.gr/nikpapa/Palamedes/manual/#Plakoto.

178 N. Papahristou and I. Refanidis

http://ai.uom.gr/nikpapa/Palamedes/manual/#Plakoto

2.2 Endgames with Pins

Strategically thinking, pinning is the most important characteristic of the Plakoto variant
for the following three reasons.

1. A “made point” can be constructed with only one checker instead of the usual two
which makes primes and other formations easier.

2. Players can nullify bad luck when they roll small rolls and/or the opponent rolls big
rolls. This is true because running to the bearoff phase is unimportant when one or
more checkers are trapped.

3. The side that has pinned without getting pinned usually gets a few rolls ahead in the
bearoff race. The further ahead the pin is, the bigger the advantage.

A typical occurrence in a Plakoto game is for both players to have pinned each other.
Then the best strategy usually is to try to maintain the pin(s) for as long as possible trying
to make the opponent unpin his own pins. This is especially true in race situations (like
Fig. 1c, d), where no more pins are possible. For this initial exploration on Plakoto pin
databases, we are interested in positions with the following characteristics:

Fig. 1. Various Plakoto positions: (a) Upper left: Starting position. Red player starts at point 1
and bears off at point 24, while green player starts at point 24 and bears off at point 1, (b) Upper
right: Typical middle-game position, (c) Lower Left: Endgame position where both players have
pins in their bearoff quadrant, and (d) Lower right: Both players have pins in their bearoff quadrants
and some checkers in the previous quadrant (Color figure online).

Constructing Pin Endgame Databases 179

• the side to move has pinned the opponent exactly once inside her bearoff quadrant
(points 2–6)1;

• the opponent has pinned the moving player exactly once;
• no more further pins are possible; in this paper, these no-contact positions are also

called race positions.

These endgames eventually resolve by one player unpinning his pin, followed by
the other player moving his newly freed checker to begin the bearoff. One reason that
we are interested in these endgames is that they occur frequently in practice. In an initial
100,000-game self-play experiment with PALAMEDES best neural network Plakoto-5 [7]
at the highest settings, we found out that these endgames occur in 14 % of games played.

2.3 Number of Endgame Positions

The number of positions (R) of C checkers residing inside P points can be calculated by
the following formula [9]:

(1)

The number of checkers for the positions of interest is 13 (one checker is pinned by the
opponent, and one checker must always be at the pinning point to maintain the pin).
Depending on the memory needs of the game-playing program a different number of
points (P) can be used. For example for P = 6 (all the non-pinned checkers are under
the 6-point, i.e., inside the bearoff quadrant) the total number of positions is 8568 per
pin placement. Such a position is shown in Fig. 1c. For the remainder of this paper the
assumption will be that all unpinned checkers of the player to move is under the 12 point
(P = 12, R = 2496144). A sample position can be seen in Fig. 1d. Note that in both
Fig. 1c and d, the position is valid for database retrieval for either player to move.

We have constructed a different database for each possible pin point of the moving
player (2–6), so we have 5 databases and 12,480,720 positions in total for the 12-point
version. This database is one-sided and corresponds to half the board. If we assume that
the opponent has a similar position to the other half, the total possible 2-sided “true”
positions that these databases can apply is 12,480,7202 = 155,768,371,718,400. If we
further assume that the opponent is pinning at the full half of his2 board (points 13–23)
then the total applicable positions are 12,480,720 × 2,496,144 × 11 =
342,690,417,780,480. This number is the lower bound because the endgame character‐
istics set in the previous section can be met in positions where the opponent player has
checkers below the 12 point.

1 No-contact positions where a player has pinned the 1-point (also known as “mana” point) are
proven double wins for the pinning player except for the rare cases when the opponent has also
pinned the 1-point (tie).

2 For brevity, ‘he’ and ‘his’ whenever ‘he or she’ and ‘his or her’ are meant.

180 N. Papahristou and I. Refanidis

3 Algorithm

The goal of a player in the endgame positions that we are interested in is to maintain his
pin as long as possible. In essence, the player is playing a mini-game where he tries to
maximize the number of moves keeping the pin. Since the game has a chance layer, this
goal becomes the maximization of the average distance to unpin. Due to the fact that
there is no contact, this metric can be computed using a one-sided database.

3.1 Plakoto Endgame Pin Database Algorithm

The procedure we use is inspired by retrograde analysis [12] where the algorithm starts
from a terminal position and works backwards. In our case we do not have terminal
positions, but we are starting at a position where all checkers have been moved the
furthest. This is the position where all 13 checkers are placed at the last point (point 1).
The procedure then works backwards as usual.

The database creation algorithm is shown in Algorithm 1. For every position encoun‐
tered and all 21 rolls, we find all the legal afterstates, retrieve the distances and return
the max distance. The distance of the current position is then calculated as the weighted
average of all rolls and stored in the database. The algorithm increments the position
and begins the next iteration until all positions are exhausted. The position is incre‐
mented in such a way that the resulting afterstates will always have a distance in the

Constructing Pin Endgame Databases 181

database. The only exception is when the roll has no moves, but we can find the distance
of this case with a simple recursive operation.

During actual play the database is activated when the position before the roll has the
characteristics described in Sect. 2.2. We retrieve the distances of all the afterstates and
we select the move which results in the largest distance.

3.2 Storage and Hashing

Important properties for many endgame databases are the storage and the compression
mechanisms used. We use a modified version of the hashing function used in [1] to
encode the board position to a 32-bit integer. This function is fast, gives a perfect hash,
and can be easily decoded for the reversed procedure (int to position). Since the number
of records is relatively small we have not made any attempts to compress the database.
For the same reason we store the distance value as a double for maximum precision,
although it may not be needed. The minimum amount of precision that is acceptable for
best play is left for future work. The final database size is 19 MB for the 12-point, and
67 Kb for the 6-point version per pin placement.

4 Discussion

In this section we discuss two interesting challenges with the one-sided databases
(Sect. 4.1) and conduct two experiments to evaluate our existing AI in positions from
the database (Sect. 4.2).

4.1 Errors in Actual Play with One-Sided Databases

One problem with one-sided databases is that it may give errors in actual play when we
take into account the opponent. This is already documented for the one-sided bear-off
databases used in backgammon [9]. We identified a class of questionable positions in
our pin endgame databases in the very rare situation where the player to move has a high
average distance to unpin for all available moves and the opponent is almost ready to
unpin. In these cases, because the unpinning of the opponent is almost certain, it may
be best for the moving player to prepare for a better placement in the bearoff quadrant
instead of continuing to maximize his distance to unpin. However, rollout experiments
in 5 samples of such cases have not given evidence that one strategy is better than the
other. We believe the problem exists in the one-sided bearoff databases because the
bearoff positions are near the end of the game while the questionable pin endgame posi‐
tions are much further away from terminal. This allows the luck factor to dramatically
reduce the effect of the (already small) “error”.

4.2 Using the Databases to Evaluate the Neural Networks

Second interesting use of endgame databases (or databases of solved games) is to eval‐
uate existing AI implementations. We conducted experiments with PALAMEDES in two

182 N. Papahristou and I. Refanidis

steps using the best neural network (NN) available for Plakoto (1) we checked if the
best move of the NN coincided with the best as seen in the databases for all database
positions and all possible rolls, and (2) we played 100,000 self-play games with the NN
and when a database position was encountered we again compared the move chosen by
the NN to the database’s optimal move (Table 1). For the first experiment we constructed
the opponent position as a mirror of the player to move.

Table 1. Evaluation of PALAMEDES AI in Plakoto pin endgames

Comparison method Correct moves by the NN (%)

All positions 15 %

Self-play positions 64 %

As can be seen the NN is not selecting the best move 85 % of the time in the first
test, however it is doing noticeably better at positions found in practical play. We believe
this is normal behavior for the NN to score so low in the first test. The reason is that the
self-play procedure used to train the network certainly could not generalize well to all
possible cases, most of which are corner cases rarely to be seen in actual play. The result
of the second test shows the importance of such databases to enhance the move selection
mechanism of the existing AI.

5 Conclusion and Future Work

We have presented an algorithm that created several one-sided endgame databases for
the game of Plakoto. The databases are small but can be applied to a huge number of
endgame positions. To the best of our knowledge this is the first time that endgame
databases are created for the game of Plakoto. We have also shown that the usage of
these databases greatly enhances our AI’s move selection.

There are several avenues to build upon these results. We mention five of them. The
first one is to construct more databases with the same method. We have only built data‐
bases for 2–6 pinned points, pinned points 7–18 can be easily created. The second one
is building databases with more than one pin per side. The conversion of our algorithm
to race endgames where the opponent has pinned more than one checker is straightfor‐
ward. The third avenue is a more difficult case, viz. is when the moving player has two
or more pins.

With the presence of these databases our neural network evaluation function does
not need to generalize in these types of positions. We could improve the representation
power of our network by retraining the NN without taking into account these endgames.

In the fourth avenue we would also like to explore compression techniques for
storage. This will be essential for the creation of larger pin endgame databases.

Acknowledgements. The authors would like to thank the anonymous referees for their useful
comments and suggestions that contributed to improving the final version of the paper.

Constructing Pin Endgame Databases 183

References

1. Benjamin, A., Ross, A.M.: Enumerating backgammon positions: the perfect hash. Interface:
Undergraduate Res. Harvey Mudd Coll. 16(1), 3–10 (1996)

2. Bowling, M., Burch, N., Johanson, M., Tammelin, O.: Heads-up limit hold’em poker is
solved. Science 347(6218), 145–149 (2015)

3. Ciancarini, P., Favini, G.P.: Solving Kriegspiel endings with brute force: the case of KR vs.
K. In: van den Herik, H., Spronck, P. (eds.) ACG 2009. LNCS, vol. 6048, pp. 136–145.
Springer, Heidelberg (2010)

4. Fang, H.-R., Hsu, T.-S., Hsu, S.-C.: Construction of Chinese chess endgame databases by
retrograde analysis. In: Marsland, T., Frank, I. (eds.) CG 2001. LNCS, vol. 2063, pp. 96–114.
Springer, Heidelberg (2002)

5. Gasser, R.: Solving nine men’s morris. Comput. Intell. 12(1), 24–41 (1996)
6. Nalimov, E.V., Haworth, G.M., Heinz, E.A.: Space-efficient indexing of chess endgame

tables. ICGA J. 23(3), 148–162 (2000)
7. Papahristou, N., Refanidis, I.: On the design and training of bots to play backgammon variants.

In: Iliadis, L., Maglogiannis, I., Papadopoulos, H. (eds.) Artificial Intelligence Applications
and Innovations. IFIP AICT, vol. 381, pp. 78–87. Springer, Heidelberg (2012)

8. Romein, J.W., Bal, H.E.: Solving awari with parallel retrograde analysis. Computer 36(10),
26–33 (2003)

9. Ross, A.M., Benjamin, A.T., Munson, M.: Estimating winning probabilities in backgammon
races. In: Ethier, S.N., Eadington, W.R. (eds.) Optimal Play: Mathematical Studies of Games
and Gambling, pp. 269–291. Institute for the Study of Gambling and Commercial Gaming,
University of Nevada, Reno (2007)

10. Schaeffer, J., Bjornsson, Y., Burch, N., Lake, R., Lu, P., Sutphen, S.: Building the checkers
10-piece endgame databases. In: van den Herik, H.J., Iida, H., Heinz, E.A. (eds.) Advances
in Computer Games: Many Games, Many Challenges, pp. 193–210. Kluwer Academic
Publishers, Dordrecht (2003)

11. Schaeffer, J., Burch, N., Björnsson, Y., Kishimoto, A., Müller, M., Lake, R., Lu, P., Sutphen,
S.: Checkers is solved. Science 317, 1518–1522 (2007)

12. Thompson, K.: Retrograde analysis of certain endgames. ICCA J. 9(3), 131–139 (1986)

184 N. Papahristou and I. Refanidis

Reducing the Seesaw Effect with Deep
Proof-Number Search

Taichi Ishitobi1(B), Aske Plaat2, Hiroyuki Iida1, and Jaap van den Herik2

1 Japan Advanced Institute of Science and Technology, Nomi, Japan
{itaichi,iida}@jaist.ac.jp

2 Leiden Institute of Advanced Computer Science, Leiden, The Netherlands
{aske.plaat,jaapvandenherik}@gmail.com

Abstract. In this paper, DeepPN is introduced. It is a modified ver-
sion of PN-search. It introduces a procedure to solve the seesaw effect.
DeepPN employs two important values associated with each node, viz.
the usual proof number and a deep value. The deep value of a node is
defined as the depth to which each child node has been searched. So, the
deep value of a node shows the progress of the search in the depth direc-
tion. By mixing the proof numbers and the deep value, DeepPN works
with two characteristics, viz., the best-first manner of search (equal to
the original proof-number search) and the depth-first manner. By adjust-
ing a parameter (called R in this paper) we can choose between best-first
or depth-first behavior. In our experiments, we tried to find a balance
between both manners of searching. As it turned out, best results were
obtained at an R value in between the two extremes of best-first search
(original proof number search) and depth-first search. Our experiments
showed better results for DeepPN compared to the original PN-search:
a point in between best-first and depth-first performed best. For ran-
dom Othello and Hex positions, DeepPN works almost twice as good as
PN-search. From the results, we may conclude that Deep Proof-Number
Search outperforms PN-search considerably in Othello and Hex.

1 Introduction

Proof Number Search (PN-search) was developed by Allis et al. in 1994 [16]. It is
one of the most powerful algorithms for solving games and complex endgame
positions. PN-search focuses on an AND/OR tree and tries to establish the
game-theoretical value in an efficient way, in a greedy least-work-first manner.
Each node has a proof number (pn) and disproof number (dn). This idea was
inspired by McAllister’s concept of conspiracy numbers, the number of leaves
that need to change their value for a node to change its value [10]. A proof
number shows the scale of difficulty in proving a node, a disproof number does
analogously for disproving a node. PN-search tries to expand a most-proving
node, which is the most efficient one for proving (disproving) a node. PN-search
is a best-first search in the sense that it follows a least-work-first order.

The success of PN-search prompted researchers to create many derivatives of
PN-search, e.g., PN* [17], PDS [6] and df-pn [7]. The history of these algorithms
c© Springer International Publishing Switzerland 2015
A. Plaat et al. (Eds.): ACG 2015, LNCS 9525, pp. 185–197, 2015.
DOI: 10.1007/978-3-319-27992-3 17

186 T. Ishitobi et al.

Fig. 1. An example of the Seesaw effect: (a) An example game tree (b) Expanding the
most-proving node

is described by Kishimoto et al. [2]. Using one of these algorithms, many games and
puzzles were solved, e.g., Checkers [13,14], and Tsume-shogi (the mating problem
of Japanese chess) [17]. The algorithms used many well-known techniques such
as transposition tables. On the one hand researchers sought to benefit from large
computer power and memory [15], and on the other hand, researchers worked at
some of the problems of PN-search, such as the seesaw effect (see Sect. 2).

In this paper, we propose a new proof-number algorithm called Deep Proof-
Number Search (DeepPN). DeepPN tries to solve the seesaw problem with a
different approach together with iterative deepening. In the experimental section,
we use endgame positions of Othello and the game of Hex as benchmarks, and
try to measure the performance of DeepPN.

The remainder of this paper is as follows. We briefly summarize the details
of the seesaw effect in Sect. 2. The algorithm of DeepPN and its performance
are discussed in Sect. 3. In Sect. 4 we give our conclusion and suggestions for
future work.

2 The Seesaw Effect

The derivatives of PN-search address many issues of the algorithm, and have
been used to solve many games. However, there are still some problems with
PN-search that remain. Pawlewicz and Lew [12], and Kishimoto et al. [3,4]
showed one such weak point, namely that of df-pn. The weak point has been
named the Seesaw-effect by Hashimoto [11]. Below we provide a short sketch.

To explain the seesaw effect, we show an example in Fig. 1. In Fig. 1a, a root
node has two large subtrees. The size of both subtrees is almost the same. Further
assume that the proof number of subtree L is larger than the proof number of
subtree R. In this case, PN-search will focus on subtree R, will continue the
searching, and will expand the most-proving node. When PN-search expands a
most-proving node, the shape of a game-tree changes as shown in Fig. 1b. By
expanding the most-proving node, the proof number of subtree R becomes larger
than the proof number of subtree L. Because of this, the position of the most-
proving tree changes from subtree R to subtree L. Similarly, when the search
expands the most-proving node in subtree L, the proof number of subtree L

Reducing the Seesaw Effect with Deep Proof-Number Search 187

changes to a larger value than the proof number of subtree R. Thus, the search
switches its focus from subtree L to subtree R. This changing continues to go
back and forth and looks like a seesaw. Therefore, it is named the Seesaw effect.
The Seesaw effect happens when the two trees are almost equal in size.

If the Seesaw effect occurs, the performance of PN-search and df-pn deterio-
rates significantly [7]. Df-pn usually tries to search efficiently by staying around
a most-proving node as in Fig. 1a. However, when the seesaw effect occurs, df-pn
should go back to the root node, and switch focus to another subtree and start
to find a new most-proving node existing in subtree L. If the seesaw effect occurs
frequently, the performance of df-pn becomes close to that of PN-search, because
df-pn loses the power of its depth-first behavior.

For PN-search, the algorithm uses the proof numbers to search efficiently
in a best-first manner. If the seesaw effect occurs frequently, PN-search will
concentrate alternatively on one subtree. PN-search will then expand subtrees L
and R equally and it cannot reach the required depth. In games which need to
reach a large fixed depth for solving, this effect works strongly against efficiency.

The causes of the seesaw effect are mostly (1) the shape of the game tree
and (2) the way of searching. Concerning the shape of game tree, there are
two characteristics: (1a) a tendency for the number of child nodes to become
equal and (1b) many nodes with equal values exist deep down in a game tree.
In (1a), if the number of a child node in each node becomes almost the same,
then the seesaw effect may occur easily. For (1b), this is the case in games such
as Othello and Hex. In many cases, these games need to search a large fixed
number of moves before settling, and it is difficult to assess upon a win, loss,
or draw before a certain number of moves has been played. In the game tree of
these games, the nodes can establish their value after a certain depth has been
searched. Thus, when the seesaw effect occurs and the search cannot reach the
required depth, it cannot determine the status of the subtrees. Instead of see-
sawing between subtrees, the search should stick with one subtree and search
more deeply. A game tree that has these characteristics is called a suitable tree by
Hashimoto. Games such as Othello, Hex and Go are able to build up a suitable
tree easily. For (2), the way of searching, i.e., the best-first manner causes the
seesaw effect. The most-proving node of PN-search and df-pn is determined using
proof numbers. Thus, in the Fig. 1, df-pn has to go back to the root node time and
again, and PN-search and df-pn cannot reach a required depth in the subtree.

One solution for the seesaw effect is the “1 + ε trick” proposed by Pawlewicz
and Lew [12]. They focused on df-pn and changed the term for calculating the
threshold. To paraphrase their explanation, they add a margin determined by ε
to the thresholds. This margin is calculated by the size of other subtrees, and
it is recalculated in each seesaw. By the added margin for the thresholds, df-pn
can reach nodes in a specific branch more deeply than the original algorithm.
Hence, the frequency of the seesaw effect is reduced. Consequently, df-pn with
the 1 + ε trick works better than the original df-pn. However, we believe that
this trick has at least three problems. First, the trick breaks a rule about the
most-proving node. The original thresholds keep the definition of most-proving

188 T. Ishitobi et al.

node, but 1 + ε just adds a margin to the thresholds. Second, if the game tree
changes become too large, then also the margin becomes too large, because the
margin is calculated by the size of the other subtree. On the one hand, a large
margin can reduce the frequency of the seesaw effects, on the other hand, if a
subtree to be searched is found not to lead to any result, then the search cannot
change the subtree until reaching that margin. Third, the 1 + ε trick only reduces
the frequency of the seesaw effect and does not completely solve the problem.

3 DeepPN

In this section, we explain a new algorithm based on proof numbers named Deep
Proof-Number Search (DeepPN).DeepPN ismodeled after the original PN-search,
and all nodes have proof numbers and dis-proof numbers. Additionally, for
DeepPN, each node is assigned also a so-called deep value. The deep values are
determined and updated by the terminal node analogously to the proof and dis-
proof numbers. DeepPN has been designed: (1) to combine best-first and depth-
first search, and (2) to try and solve the problemof the Seesaw effect. For evaluating
the performance of DeepPN, we use endgame positions of Othello and Hex.

3.1 The Basic Idea of DeepPN

In the original PN-search, the most-proving node is defined as follows [16].

Definition. For any AND/OR tree T, a most-proving node of T is a frontier
node of T, which by obtaining the value true reduces T’s proof number by 1,
while by obtaining the value false reduces T’s disproof number by 1.

This definition implies that the most-proving node sometimes exists in a
plural form in a tree, i.e., there are many fully equivalent most-proving nodes.
For example, if the child nodes have the same proof or disproof number then both
subtrees have each a most-proving node. The situation that the child node has
the same proof (disproof) number in an OR (AND) node is called a tie-break
situation. Now, we have the question about which most-proving node is the
best for calculating the game-theoretical value. PN-search chooses the leftmost
node with the smallest proof (disproof) number, also in a tie-break situation.
In particular, the proof and disproof number do not take other information into
account, and therefore PN-search cannot choose a more favorable most-proving
node in a tie-break situation.

Determining the best most-proving node in a tie-break situation is a difficult
task, because the answer depends on many aspects of the game. However, when
focusing on games which build up a suitable tree, we may develop some solutions.
In a suitable tree, the “best” most-proving node is indicated by its depth number.
Let us look at the example (given in Fig. 2).

This game tree is based on Othello. The game end is shown by “Game End”
in Fig. 2. All level-two nodes are most-proving nodes, because the proof numbers
of child nodes under the root node are the same (i.e., 2). So, we have a tie-break

Reducing the Seesaw Effect with Deep Proof-Number Search 189

Fig. 2. An example of a suitable tree for an Othello end-game position. This game tree
has a uniform depth of 4, and the terminal nodes are reached at game end.

situation. Now, in the next search step, PN-search will focus on the most-proving
node that exists in the left side as produced by the original PN-search algorithm.
However, if the search focuses immediately on the most-proving node of the right
side, then the search will be more efficient, because the nodes on the left side do
not reach the game end and their value cannot be found yet. In contrast, nodes
that exist at the right side reach the game end, and if we try to expand these
nodes, then the game value of each node is known. In this example, we follow
the idea that a most-proving node in the deepest tree of a suitable game tree, is
the best.

To test this idea, we performed a small experiment. We prepared an original
PN-search and a modified PN-search. In a tie-break situation, PN-search focuses
on a most-proving node that exists in the leftmost node, and the modified PN-
search focuses on the deepest most-proving node. For checking performance, we
prepared 100 Othello endgame positions. The performance of the modified PN-
search is better than the results of the original PN-search (about 10 % reduction).
These results suggest that the deepest most-proving node works advantageously
for finding the game-theoretical value.

In addition, the example of Fig. 2 shows the essence of the seesaw effect.
If the game end exists and has a depth of more than 4, then the search for a
proof number goes back and forth between the two subtrees. Even if the game
end is of depth 4, then the search that focuses on the right subtree will change
its focus on the left subtree. But, when modifying PN-search, the small seesaw
effect is suppressed. This phenomenon of modifying PN-search suggests a new
heuristic. The search depth of nodes can be used for solving the seesaw effect
in a suitable game tree. In fact, this is what the 1 + ε trick [12] in effect tries
to accomplish, to stay deep in a suitable game tree. Now, let us try to think of
a new technique. For instance, consider the moves that the modified PN-search
plays when finding the deepest most proving node. We noticed that these moves
combined best-first with depth-first behavior. The modified PN-search works in
a best-first manner, and in a tie-break situation, PN-search works depth-first for
the most-proving nodes. Depending on how often tie-breaks occur, the algorithm
works more frequently best-first than depth-first. The resulting improvement,
when measured in number of iterations and nodes leads to a small result. Thus,
we will design a new algorithm that can change the ratio of best-first manner

190 T. Ishitobi et al.

and depth-first manner. Its description is as follows. This system is named Deep
Proof-Number Search (DeepPN). Here, n.φ means proof number in an OR node
and disproof number in an AND node. In contrast, n.δ means proof number in
an AND node and disproof number in an OR node.

1. The proof number and disproof number of node n are now calculated as
follows.

n.φ =
{

n.pn (n is an OR node)
n.dn (n is an AND node)

n.δ =
{

n.dn (n is an OR node)
n.pn (n is an AND node)

2. When n is a terminal node
(a) When n is proved (disproved) and n is an OR (AND) node, i.e., OR wins

n.φ = 0, n.δ = ∞
(b) When n is disproved (proved) and n is an AND (OR) node, i.e., OR does

not win
n.φ = ∞, n.δ = 0

(c) When n is unsolved, i.e., its value is unknown

n.φ = 1, n.δ = 1

(d) When n is terminal node, then n has deep value

n.deep =
1

n.depth
(1)

3. When n is an internal node
(a) The proof and disproof number are defined as follows

n.φ = min
nc∈ children ofn

nc.δ

n.δ =
∑

nc∈ children ofn

nc.φ

(b) The deep values, DPN(n) and n.deep are defined as follows.

n.deep = nc.deep where nc = arg min
ni∈ unsolved children

DPN(ni) (2)

DPN(n) = (1 − 1
n.δ

)R + n.deep(1 − R) (0.0 ≤ R ≤ 1.0) (3)

The proof and disproof number are the same as in the original PN-search.
The improvement is the new term, i.e., the concept of the deep value. The deep
value in a terminal node is calculated by formula (1). The deep value is designed
to decrease inversely with depth. In an internal node, calculating the deep value

Reducing the Seesaw Effect with Deep Proof-Number Search 191

has only a limited complexity. First, we define a function named DPN (see
formula 3). DPN has two features: (a) n.δ is normalized and designed to become
larger according to the growth of n.δ and (b) a fixed parameter R is chosen. R
has a value between 0.0 and 1.0. If R is 1.0 then DeepPN works the same as
PN-search, and if R is 0.0 then DeepPN works the same as a primitive depth-
first search. Therefore, the normalized δ fulfills the role of best-first guide and
the deep acts as a depth-first guide. This means that by changing the value
of R, the ratio of best-first and depth-first search of DeepPN can be adjusted.
Second, in an internal node, the deep value is updated by its child nodes using
formula (2). The deep value of node n is decided by a child node nc which has
smallest DPN(nc). A point to notice is that the updating value is only deep, not
DPN(nc). Additionally, when nc is solved, then the deep value of nc is ignored
in arg min.

In DeepPN, an expanding node in each iteration is chosen as follows.

select expanding node(n) := arg min
nc∈ children ofn except solved

DPN(nc) (4)

This sequence is repeated until the terminal node is reached. That terminal
node is the node that is to be expanded. If R = 1.0, then this expanding node
is the most-proving node.

3.2 Performance with Othello

For measuring the performance of DeepPN, we prepared a solver using the
DeepPN algorithm and Othello endgame positions. We configured a primitive
DeepPN algorithm for investigating the effect of DeepPN only, without any sup-
portive mechanisms such as transposition tables and ε-thresholds. We prepared
1000 Othello endgame positions. They are constructed as follows. The positions
are taken from the 8×8 board. We play 44 legal moves at random from the begin
position. This implies that 48 squares from the 64 are covered. So, the depth of
the full tree to the end is 16.

In all our experiments DeepPN is applied to these 1000 endgame positions.
Our focus is the behavior of R (see formula (3)). For R = 1.0, DeepPN works
the same as PN-search and shows the same results. For R = 0.0, DeepPN works
the same as a primitive depth-first search. When R is between 1.0 to 0.0, then
DeepPN behaves as a mix between best-first and depth-first. We changed R from
1.0 to 0.0 by decrements of 0.05. We focus on the values of two concepts, viz.
the number of iterations and the number of nodes. The number of iterations is
given by counting the number of traces of finding the most-proving node from
the root node. This value indicates an approximate execution time unaffected
by the specifications of a computer. The number of nodes is an indication of
the total number of nodes that are expanded by the search. This value is an
approximation of the size of memory needed for solving. We show the results in
Fig. 3.

Figure 3a shows the variation of (1) the number of iterations and (2) the
number of nodes. Each point is the mean value calculated from the results of

192 T. Ishitobi et al.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

of
 It

er
at

io
ns

of

 N
od

es

R

of Iterations
of Nodes

(a) The variation

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
ed

uc
tio

n
[%

]

R

of Iterations
of Nodes

(b) The reduction rate

Fig. 3. Othello: The number of Iterations and Nodes, for the variation (left) and the
reduction rate (right) R = 1.0 is PN-search, R = 0.0 is depth-first search, and 1.0 >
R > 0.0 is DeepPN. Lower is better.

1000 Othello endgame positions. R = 1.0 shows the results of PN-search, and
this value is the base for comparison. As R goes to 0.8, the number of iterations
and nodes decrease almost by half. From R = 0.8 to 0.6, the number of iterations
stops decreasing, but the number of nodes decreases slowly. From R = 0.6 to 0.4,
the decrease stops, and the number of iterations starts increasing again slowly.
In R = 0.35, both numbers increase rapidly. We see that for R of around 0.4,
the balance between depth-first and best-first behavior appears to be optimal.
We surmise that DeepPN is stuck in one subtree and cannot get away since
the algorithm is too strongly depth-first. For R = 0.35 to 0.2, the number of
iterations and nodes is decreasing. Around R = 0.2, the balance was broken
again, and is decreasing towards 0.1. Finally, DeepPN performs worse when R
approaches 0.0 closely. In R = 0.0, almost no Othello end game position can be
solved, and this value is omitted from Fig. 3a.

In Fig. 3a, the scale of the number of iterations and nodes are different. To
ease our understanding, Fig. 3b shows the amount of the reduction rate. This
reduction rate is normalized by the result of PN-search, i.e., the reduction rate of
R = 1.0 is 100 %. Each point is the mean value of the reduction rate calculated
by the results of 1000 Othello endgame positions. The results of Fig. 3b show
almost the same characteristics as Fig. 3a. There is a different point where the
number of iterations decreases after R = 0.8 and the number of nodes decreases
after R = 0.6. In Fig. 3b, the number of iterations decreased about 50 % in
R = 0.4 and the number of nodes decreased about 35 % in R = 0.4. Thus,
DeepPN reduced the number of iterations (≈ time) to half and the number of
nodes (≈ space) to one-third. In R = 0.05, the number of iterations increased to
over 100 %, which is not shown.

Finally, we show two graphs about the changes in reducing and increasing
cases in Othello endgame positions in Fig. 4. Please note that in Fig. 4 we showed
the number of iterations and number of nodes.

The plots for reducing cases give the number of Othello endgame positions
which are solved efficiently compared to PN-search, i.e., the reduction rate is
under 100 %. In contrast, the plots for increasing cases give the number of

Reducing the Seesaw Effect with Deep Proof-Number Search 193

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

of

 c
as

es

R

of Reducing Cases
of Increasing Cases

(a) # of Iterations

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

of

 c
as

es

R

of Reducing Cases
of Increasing Cases

(b) # of Nodes

Fig. 4. Othello: The changes of Reducing and Increasing Cases for # of Iterations and
of Nodes

Othello endgame positions that have a reduction rate over 100 %. The verti-
cal axis shows the number of Othello endgame positions. Figure 4a shows the
number of iterations by which the reducing cases decrease slowly from R = 0.95
to 0.4. Likewise, for number of nodes the graph decreases slowly from R = 0.95
to 0.4. Around R = 0.4, the trend is broken, and the number of increasing cases
increases rapidly. From R = 0.35 to 0.2 and from 0.15 to 0.1, the number of cases
does not change much. This result indicates that the reason of decreasing from
R = 0.35 to 0.2 is shown in Fig. 3a and b. As the number of cases is not changed,
the decreasing number of iterations and nodes of the Othello endgame positions
are caused by reducing cases. In brief, some Othello end positions can be handled
efficiently as R is reduced. But, for some Othello endgame positions a changing
R causes an increase. Therefore, Othello endgame positions can be categorized
in relation to R. The first group belongs to R = 0.95 to 0.05. This group does
not react to changes in R, they do not switch between the reducing case and
increasing case. We can see this group clearly from R = 0.95 to 0.40. The second
group belongs to R = 0.35 to 0.2. This group fitted from R = 0.95 to 0.4, and
they could not keep efficiency work after R = 0.4. The third group belongs to
R = 0.15 to 0.1, and the characteristics of this group are the same as for the
second group. In either group, the cases are not efficiently close to R = 0.0.

The question remains when DeepPN works most efficiently in the Othello
endgame position for 16-ply. The answer depends on the group of Othello
endgame positions. However, if we have to choose the best R, then a value
of around 0.65 is a good compromise for most cases.

3.3 Performance with Hex

For measuring the performance of DeepPN, we also prepared a solver for Hex.
Similarly to the experiments of Othello, we created a primitive DeepPN algo-
rithm for checking the effect of DeepPN only. The Hex program is a simple
program that does not have any other mechanisms such as an evaluation func-
tion. Our Hex program uses a 4 × 4 board (called Hex(4)), and tries to solve
that board using DeepPN. Our focus is on the behavior of R (see formula 3).

194 T. Ishitobi et al.

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

40000000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
10000000
20000000
30000000
40000000
50000000
60000000
70000000
80000000
90000000
100000000

of

 It
er

at
io

ns

of

 N
od

es

R

of Iterations
of Nodes

(a) The variation

 0

 50

 100

 150

 200

 250

 300

 350

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
ed

uc
tio

n
[%

]

R

of Iterations
of Nodes

(b) The reduction rate

Fig. 5. Hex: # of Iterations and # of Nodes for Hex(4). R = 1.0 is PN-search, R = 0.0
is depth-first search, and 1.0 > R > 0.0 is DeepPN. Lower is better.

Concerning the characteristics of R, we refer to Sects. 3.1 and 3.2. We changed
R from 0.0 to 1.0 by 0.05, and tried to solve Hex(4) 10 times in each R. The
legal moves of Hex are sorted randomly in every configuration, viz. there is the
possibility that each result is different. The results in each R are calculated by
the average of the 10 experiments. Next we focused on two concepts: (1) number
of iterations and (2) number of nodes. About the characteristics of both values,
we refer to Sect. 3.2. The experimental data are given in Fig. 5.

Figure 5a shows the changes in the number of iterations and nodes. We can
see that the results of DeepPN decrease (improve) in some positions compared
by PN-search. This is not the case for R = 0.0, because we cannot solve Hex(4)
for this R if we limit ourselves to 500 million nodes. For ease of understanding, we
prepare another graph in Fig. 5b. There we show the reduction rates normalized
by the result of PN-search, i.e., the result of PN-search has 100 % reduction rate.

Figure 5b shows that the number of iterations and nodes is reduced by a 30 %
reduction rate between R = 0.95 and R = 0.5. The result has two downward
curves: from R = 1.0 to 0.7 and from R = 0.7 to R = 0.0. The first curve starts
from R = 1.0 and decreases toward 0.95. After R = 0.95, the results start to
increase and grow to over 100 % after 0.85. The second curve starts from R = 0.7
and the results starts to decrease again. At around R = 0.5, the results reach
about 50 %. Finally, the results are increasing again toward R = 0.0, just as
for Othello.

For understanding the details of how DeepPN works around R = 0.95, we
tried to change R by 0.1 between from 1.0 to 0.9. The results are shown in Fig. 6.

By looking at the results, we can see that DeepPN works almost twice as
good as PN-search from R = 0.99 to 0.95. From R = 0.95 to 0.90, we have a
small curve like Fig. 5b.

In Hex(4), the optimum value of R is around R = 0.95 (and perhaps R = 0.5).
We can see that depth-first does not work so well for Hex(4) as it does for Othello,
although there is an improvement over pure best-first.

Reducing the Seesaw Effect with Deep Proof-Number Search 195

 0

 20

 40

 60

 80

 100

 120

 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

R
ed

uc
tio

n
[%

]

R

of Iterations
of Nodes

Fig. 6. Hex: The detail of Fig. 5b. This figure is zoomed in for 1.0 ≤ R ≤ 0.9. The
lower is better.

3.4 Discussion

DeepPN works efficiently in 16-ply Othello endgame positions, and in Hex(4).
It can reduce the number of iterations and nodes almost by half compared to
PN-search. It must be noted that the optimum balance of R is different in each
game and for each size of game tree. We can see that for both games a certain
amount of depth-first behavior is beneficial, but the changes are not the same.
The precise relation is a topic of future work.

Both in Othello endgame positions and in Hex(4), we encountered positions
that showed increasing (worse) results. We suspect that a reason for this problem
may be (1) the holding problem and (2) the length of the shortest correct path.
Concerning (1), the depth-first search can remain stuck in one subtree (holding
on to the subtree). If this holding subtree cannot find the game-theoretical value,
then the number of iterations and nodes become meaningless. When DeepPN
employed a strong depth-first manner, then we found many increasing (worse)
results in Othello endgame positions. Also, in Hex(4), DeepPN cannot work
efficiently around R = 0.0. Finding an optimal R is a topic of future work.

Concerning (2), the problem is related to (1). In Othello, the shortest correct
path is almost the same for each position, because Othello has a fixed number of
depth to the end. However, in Hex(4), the shortest winning path may exist before
a depth of 16. If we happen to find a balance between depth and best-first, then
DeepPN will change the subtree on which it focuses on time. For example, when
R = 0.95, then DeepPN quickly finds the shortest path. But after R = 0.95,
DeepPN misses that path and arrives in regions that are more deeply in the
trees. Finding a good value of R in Hex is more difficult than in Othello.

4 Conclusion and Future Works

In this work, we proposed a new search algorithm based on proof numbers, named
DeepPN. DeepPN has three values (pn, dn, deep) and a single parameter, R, that
allows a choice between depth-first and best-first behavior. DeepPN employs two
types of values, viz. proof numbers and deep values which register the depth of
nodes. For measuring the performance of DeepPN, we tested DeepPN on solving
Othello endgame positions and on the game of Hex. We achieved two indicative

196 T. Ishitobi et al.

results in Othello and Hex. The algorithm owes its success to formula (3) in
which best-first and depth-first search are applied in a “balanced” way. From
there the results may conclude that DeepPN works better than PN-search in the
games which build up a suitable tree.

We have four main topics for future work. First, we have to investigate how to
find a good balance for R. In our experiments, the best results are produced by
different values of R. Second, DeepPN is too primitive to solve complex problems.
Df-pn+ and the use of a transposition table give a good hint for this problem.
The idea of deep value may also be applied to other ways of searching. Third,
we need to find a reason about the deterioration of search results in Othello
endgame positions and in the game of Hex. By investigating this problem, we
expect that DeepPN can become a quite useful algorithm for explaining the
intricacies.

The fourth topic is further away. Previous work on depth-first and best-first
minimax algorithms used null-windows around the minimax value to guide the
search in a best-first manner [8,9]. There, a relation between the SSS* and the
Alpha-beta algorithm was found. In this work, we focus on best-first behavior
guided by the size of the search tree, as is the essence of proof-number search.
It will be interesting to see if both kinds of best-first behavior can be combined
in future work in a new kind of conspiracy number search.

Acknowledgements. This research is funded by a grant from the Japan Society
for the Promotion of Science, in the framework of the Grant-in-Aid for Challenging
Exploratory Research (grant number 26540189).

References

1. Kishimoto, A., Müller, M.: About the completeness of depth-first proof-number
search. In: van den Herik, H.J., Xu, X., Ma, Z., Winands, M.H.M. (eds.) CG 2008.
LNCS, vol. 5131, pp. 146–156. Springer, Heidelberg (2008)

2. Kishimoto, A., Winands, M., Müller, M., Saito, J.-T.: Game-tree search using proof
numbers: the first twenty years. ICGA J. 35(3), 131–156 (2012)

3. Kishimoto, A., Muller, M.: Search versus knowledge for solving life and death
problems in go. In: Twentieth National Conference on Artificial Intelligence (AAAI
2005), pp. 1374–1379 (2005)

4. Kishimoto, A.: Correct and Efficient Search Algorithms in the Presence of Repe-
titions, Ph.D. thesis, University of Alberta (2005)

5. Nagai, A.: Df-pn Algorithm for Searching AND/OR Trees and Its Applications.
Ph.D. thesis, Dept. of Information Science, University of Tokyo, Tokyo (2002)

6. Nagai, A.: A new AND/OR tree search algorithm using proof number and dis-
proof number. In: Proceedings of Complex Games Lab Workshop, pp. 40–45. ETL,
Tsukuba (1998)

7. Nagai, A.: A new depth-first search algorithm for AND/OR trees. M.Sc. thesis,
Department of Information Science, The University of Tokyo, Japan (1999)

8. Plaat, A., Schaeffer, J., Pijls, W., de Bruin, A.: Best-first and depth-first minimax
search in practice. In: Proceedings of Computer Science in the Netherlands, pp.
182–193 (1995)

Reducing the Seesaw Effect with Deep Proof-Number Search 197

9. Plaat, A., Schaeffer, J., Pijls, W., de Bruin, A.: SSS* = Alpha-beta + TT. Technical
report 94–17, University of Alberta, Edmonton, Canada (1994)

10. McAllester, D.: Conspiracy numbers for min-max search. Artif. Intell. 35(1), 287–
310 (1988)

11. Hashimoto, J.: A Study on Game-Independent Heuristics in Game-Tree Search.
Ph.D. thesis, School of Information Science, Japan Advanced Institute of Science
and Technology (2011)

12. Pawlewicz, J., Lew, �L.: Improving depth-first PN-search: 1 + ε trick. In: van den
Herik, H.J., Ciancarini, P., Donkers, H.H.L.M.J. (eds.) CG 2006. LNCS, vol. 4630,
pp. 160–171. Springer, Heidelberg (2007)

13. Schaeffer, J., Björnsson, Y., Burch, N., Kishimoto, A., Müller, M., Lake, R., Lu,
P., Sutphen, S.: Checkers is solved. Science 317(5844), 1518–1522 (2007)

14. Schaeffer, J.: Game over: black to play and draw in checkers. ICGA J. 30(4),
187–197 (2007)

15. Hoki, K., Kaneko, T., Kishimoto, A., Ito, T.: Parallel dovetailing and its application
to depth-first proof-number search. ICGA J. 36(1), 22–36 (2013)

16. Allis, L.V., van der Meulen, M., van den Herik, H.J.: Proof-number search. Artif.
Intell. 66(1), 91–124 (1994)

17. Seo, M., Iida, H., Uiterwijk, J.W.H.M.: The PN*-search algorithm: application to
tsume-shogi. Artif. Intell. 129(4), 253–277 (2001)

18. Winands, M.H.M.: Informed Search in Complex Games., Ph.D. thesis, Maastricht
University, The Netherlands (2004)

19. Ueda, T., Hashimoto, T., Hashimoto, J., Iida, H.: Weak proof-number search. In:
van den Herik, H.J., Xu, X., Ma, Z., Winands, M.H.M. (eds.) CG 2008. LNCS,
vol. 5131, pp. 157–168. Springer, Heidelberg (2008)

Feature Strength and Parallelization of Sibling
Conspiracy Number Search

Jakub Pawlewicz1 and Ryan B. Hayward2(B)

1 Institute of Informatics, University of Warsaw, Warsaw, Poland
pan@mimuw.edu.pl

2 Computing Science, University of Alberta, Edmonton, Canada
hayward@ualberta.ca

Abstract. Recently we introduced Sibling Conspiracy Number Search —
an algorithm based not on evaluation of leaf states of the search tree but,
for each node, on relative evaluation scores of all children of that node —
and implemented an SCNS Hex bot. Here we show the strength of SCNS
features: most critical is to initialize leaves via a multi-step process. Also,
we show a simple parallel version of SCNS: it scales well for 2 threads
but less efficiently for 4 or 8 threads.

1 Introduction

Call a heuristic function local if it accurately compares the strength of sibling
moves in the search tree. Recently we introduced Sibling Conspiracy Number
Search [19], an algorithm designed for such a heuristic1, and implemented Deep-
Hex, an SCNS Hex bot. In this paper we show feature strength of our SCNS
Hex bot, and also describe a parallel implementation.

2 Conspiracy Number Search

In 2-player game search, CNS has shown promise in chess [13–15,17,23,24] and
shogi [11]. CNS can be viewed as a generalization of PNS (Proof Number Search).

PNS is used in two-player zero-sum games. One player is us, the other is
them or opponent. Value true (false) is a win for us (them). We (they) move at
an or-node (and-node). PNS is hard to guide with an evaluation function, as
leaves have only two possible values [1,4,12,18,22,25,26]. One can extend PNS
by allowing a leaf to have any rational value, with +(−)∞ for win(loss). If a
leaf is terminal, its value is the actual game value; if not terminal, its value can
be assigned heuristically. We (they) want to maximize (minimize) value. A node
from which we (they) move is a max-node (min-node). Internal node values
are computed in minimax fashion. Minimax(n) denotes the minimax value of
node n.
1 Hex has a good local heuristic. Shannon built an analogue circuit to play the con-

nection game Bridg-it, with moves scored by voltage drop [7]. Adding links between
virtual connected cells [2] improves the heuristic, which is reliable among siblings [9].

c© Springer International Publishing Switzerland 2015
A. Plaat et al. (Eds.): ACG 2015, LNCS 9525, pp. 198–209, 2015.
DOI: 10.1007/978-3-319-27992-3 18

Feature Strength and Parallelization of Sibling Conspiracy Number Search 199

PNS is computed using the two final values (true/false) and a temporary
value (unknown) assigned to non-terminal leaves. The (dis)proof number mea-
sures how difficult it is to change from unknown to true (false). Rather than
numbers, we use functions to represent the extended set of values denoted by
V = {−∞} ∪ R ∪ {+∞}.

Definition 1. The function pn : V �→ N0 = {0, 1, 2, . . .} is a proof function if,
for all v ∈ V, pn(v) is the minimum number of leaves in the subtree rooted at n
that must change value so that Minimax(n) ≥ v. Similarly, dn : V �→ N0 is a
disproof function if, for all v ∈ V, dn(v) is the minimum number of leaves in the
subtree rooted at n that must change value so that Minimax(n) ≤ v.

Rather than storing (dis)proof numbers at each node, we store (dis)proof func-
tions, computed recursively: If n is a leaf and x is its value (heuristic or actual)
then

pn(v) =

⎧
⎪⎨

⎪⎩

0 if v ≤ x

1 if v > x and n is non-terminal
+∞ if v > x and n is terminal,

dn(v) =

⎧
⎪⎨

⎪⎩

0 if v ≥ x

1 if v < x and n is non-terminal
+∞ if v < x and n is terminal,

(1)

otherwise, for every v ∈ V,

pn(v) = min
s∈children(n)

ps(v), dn(v) =
∑

s∈children(n)

ds(v) if n is or-node,

pn(v) =
∑

s∈children(n)

ps(v), dn(v) = min
s∈children(n)

ds(v) if n is and-node.
(2)

(Dis)Proof functions can be propagated up from leaves; f can be stored as an
array of possible f(v) for each v. For each node n

(i) pn is a non-decreasing staircase function, and
dn is a non-increasing staircase function.

(ii) minimax(n) is the meet point of pn and dn, i.e.,:

pn(v) = 0, dn(v) > 0 for v < Minimax(n),
pn(v) = 0, dn(v) = 0 for v = Minimax(n),
pn(v) > 0, dn(v) = 0 for v > Minimax(n).

See Fig. 1. Following McAllester, the conspiracy number CNn(v) = pn(v)+dn(v)
is the smallest number of leaves (called conspirators) whose values must change
for the minimax value of n to reach v. CNn(v) = 0 iff v = Minimax(n).

200 J. Pawlewicz and R.B. Hayward

−∞ MINIMAX(n) +∞
0

1

2

3

4

5

v

p
n
(v

),
d
n
(v

)

pn
dn

Fig. 1. Proof function pn and disproof function dn are monotonic staircase functions
meeting at (Minimax(n), 0).

2.1 Node Expansion

Our implementation of CNS follows PNS: iteratively select and expand a most
proving node (mpn) and then update (dis)proof functions on the path to the
root. So we define a CNS mpn.

Let vroot = Minimax(root). Choose target values vmax for Max (the max
player) and vmin for Min so that vmin < vroot < vmax. We discuss how in
Sect. 2.2. We call [vmin, vmax] the search value interval or search interval.2 For
fixed vmax and vmin, we say that Max (Min) wins if value vmax (vmin) is reached.
To find a mpn we use SelectMPN(root), with pn pn(vmax) and dn dn(vmin)
for every node n. Our CNS implementation — Algorithm 1 — differs from that
of McAllester, as we alter both sides of the search interval at once.

Algorithm 1. Conspiracy number search
1: function CNS(root)
2: while not reached time limit do
3: SetInterval � Set vmax and vmin

4: n ← SelectMPN(root)
5: Expand n and initiate new children by (1)
6: Update nodes along path to the root using (2)

7: function SelectMPN(n)
8: if n is leaf then
9: return n

10: else if n is max-node then
11: return SelectMPN(argmin

s∈children(n)

ps(vmax))

12: else � n is min-node
13: return SelectMPN(argmin

s∈children(n)

ds(vmin))

2 This is the current likely range of the final root minimax value. It is analogous to
the aspiration window of αβ search.

Feature Strength and Parallelization of Sibling Conspiracy Number Search 201

2.2 Choosing the Search Interval

One way to pick the search interval is to set vmax and vmin a fixed difference
from minimax(root), denoted vroot,

vmax = vroot + δp,

vmin = vroot − δd,
(3)

where δp and δd are possibly equal constants. But it can help to modify the
interval during search, e.g., by adjusting according to the root (dis)proof value,

vmax = max
v∈V

{v : proot(v) ≤ Pmax},

vmin = min
v∈V

{v : droot(v) ≤ Dmax},
(4)

where Pmax and Dmax are possibly equal constants. This approach was used in
the original CNS algorithm [13,16]. Search proceeds until the interval is suffi-
ciently small, i.e., vmax − vmin ≤ Δ, where Δ is a constant indicating an accept-
able error tolerance.

This method does not always converge, e.g., when the search is close to solving
a position, or — if thresholds are too small — when the search stumbles into a
stable position; in such cases it is better to increase thresholds and resume the
search. Our approach below mixes (3) and (4). Notice that (5) generalizes (4).

vmax = max
v∈V

{v : proot(v) ≤ max(proot(vroot + δp), Pmax)},

vmin = min
v∈V

{v : droot(v) ≤ max(droot(vroot − δd),Dmax)}.
(5)

To use CNS as a bot, we search until error tolerance is reached or time runs
out and then pick the best move. Experiments show the best criterion for best
move is the branch on which most time (leaf expansions in the subtree) is spent.

3 Sibling CNS

We convert a local heuristic — one that reliably scores relative strengths of
siblings — into a global heuristic useful for our CNS player by adding relative
errors, as follows. The evaluation of non-terminal game tree node n is given by

Eval(n) =
k∑

i=1

σ(pi−1) · e(pi−1 → pi), (6)

where p0 → p1 → · · · → pk = n is the path from root p0 to n, σ(pj) = 1(−1)
if we (the opponent) are to move at pj , and, for any child s of n, e(n → s) =
log E(n→s0)

E(n→s) is the relative error at n with respect to s, where s0 is a child of n

with best score. We call this siblings comparison evaluation function (scef).
Generally, CNS constructs paths to terminal nodes, and then branches so

that the player for whom the terminal node was losing tries to find another

202 J. Pawlewicz and R.B. Hayward

response in a subtree minimizing the cumulative error. So, the player tries to
fall back on another most promising move of the entire tree.

Although SCNS — CNS with scef — explores good lines of play, the version
we have described so far is wasteful, as CNS tends to expand all siblings whenever
a new child is expanded. To avoid this, especially for unpromising children, we
encode extra information in the (dis)proof function when creating a leaf. If a
move has a high error compared to its best sibling, then to increase the minimax
value of this move by this error will likely require many expansions. So, rather
than initializing (dis)proof functions via a two-step staircase function (1), we
use a multi-step staircase function, with the number of steps logarithmic in the
difference between current and minimax values. Hence

pn(v) =

{
0 if v ≤ x

i if iδ < 2(v−x) ≤ (i + 1)δ
dn(v) =

{
0 if v ≥ x

i if iδ < 2(x−v) ≤ (i + 1)δ
(7)

where x = Minimax(v), i is a positive integer and δ a positive rational. Using (7)
to initialize non-terminal leafs, SCNS expands only siblings whose score diverges
from that of the best sibling by at most δ. Depending on how values shift during
search, other (weaker) siblings might be expanded if the minimax value changes
by more than δ. With this modification, SCNS’s search behavior is now closer
to that of the human-like behaviour described above.

3.1 Gradual Forgetting of an Error

While cell energy works well in scef as a move’s error estimate, it can assign a
falsely high error to a good move. If SCNS spends much work at such a move
(i.e., expands many nodes in the node’s subtree) the initial error estimate should
be corrected. We gradually decrease error as follows,

e′(n → s) = e(n → s) · max
(
1 − ws

Wmax
, 0

)
, (8)

where ws is work done at s, Wmax is a constant parameter measuring the amount
of work after which the error should be zero, and e′(n → s) is the adjusted error
estimate.

3.2 Adding RAVE Statistics

One strength of MCTS Hex bots is their enhancement of move strength by the
Rapid Action Value Estimate, an all-moves-as-first statistic [8]. So we added
RAVE to SCNS. With each node we store a map from possible moves (cells)
to the RAVE statistic, which consists of two integers: RAVE wins and losses.
Statistics are updated whenever a terminal node is created by leaf expansion:
for each node on the path from root to the node, we update RAVE values for
each move played on the rest of the path.

Assume for the move n → s we have the RAVE win-loss statistic (wR, lR) of
the player to move. Denote the number of RAVE games as gR = wR + lR. We
modify move error:

e′(n → s) = (1 − α) · e(n → s) + α · Rimpacte
R(n → s), (9)

Feature Strength and Parallelization of Sibling Conspiracy Number Search 203

where α indicates how quickly we shift into RAVE error

α =

√
gR(n → s)

3Rshift + gR(n → s)
, (10)

eR(n → s) is a move error computed by RAVE

eR(n → s) = erf−1

(
lR(n → s) − wR(n → s)

gR(n → s) + 1

)

, (11)

erf−1 is inverse error function, and Rshift and Rimpact are constant parameters
which indicate how quickly we shift to RAVE error and the impact of RAVE
error respectively.

RAVE encourages (discourages) moves that are more often involved in win-
ning (losing) lines and gradually diminishes information from cell energy. SCNS
often reaches terminal nodes, so RAVE values accumulate quickly. RAVE can
be combined with gradual error forgetting by applying (8) on top of (9).

3.3 Transposition Table and Depth-First Implementation

PNS assumes (often incorrectly) that the complete tree can be stored in memory.
The DFPNS algorithm overcomes this restriction via a depth-first implementa-
tion and transposition table [18]. A DFPNS enhancement — the 1+ε method —
reduces the tendency of the search to jump around the tree [21]. The resulting
algorithm is stronger than PNS and returns to the root only rarely [18,21].

We apply these three enhancements to CNS. Again, search rarely returns to
the root, so updates to the search interval [vmin, vmax] are infrequent. It may
even happen that search stays too long in one subtree, in which case we want
to force the search back to the root after a few expansions in order to refine the
interval. A parameter for this is set according to the time-per-move setting.

3.4 Parallel SCNS

Our approach3 is to mimic the parallelization of DFPN [20]: use a quick thread
assignment that follows the natural CNS order, and halt thread execution once
its task is redundant. This is achieved by using virtual wins and losses, and
temporarily halting thread execution — returning the uncompleted portion of
thread’s task to the thread pool — once the thread has made MaxWorkPerJob
recursive calls. So our parallel SCNS works as follows. See [20] for more details.

1. Replace (dis)proof numbers by (dis)proof functions: each operation — leaf
initialization, node update, . . . — is now done via (dis)proof functions.

3 Another approach is to dynamically partition the CNS tree and evaluate subproblems
in parallel. Lorenz achieved this for the restriction of CNS to 2 conpirators, i.e.,
effectively bounding proof function numbers at 2 [14].

204 J. Pawlewicz and R.B. Hayward

2. Whenever search visits the root, set vmax and vmin.
3. Navigate the search tree as in DFPNS, but with (dis)proof numbers pn(vmax)

and dn(vmin) until search returns to the root.
4. Give each thread its own search interval, based on virtual (dis)proof functions.

4 Experimental Results

Using parallel SCNS, we implemented the Hex bot DeepHex on the Benzene
framework [3]. Benzene includes virtual connection and cell energy computations,
so as local SCNS heuristic we used the energy drop at each cell as described in
Sect. 1.

We used two bots as opponents: Wolve and MoHex, each also implemented
on Benzene. Wolve uses αβ Search with max-width pruning, with circuit resis-
tance for heuristic. MoHex — the strongest Hex bot since 2009 — uses MCTS
with RAVE, patterns, prior knowledge estimation, progressive bias, and CLOP
tuning of parameters [10]. Wolve and MoHex both compute virtual connec-
tions that prune moves and solve positions long before the game ends.

For openings, we used 36 relatively balanced single stone openings: a2 to k2,
a10 to k10, b1 to j1, and b11 to j11.

We optimized parameters using CLOP (Sect. 4.1). Then we ran a knockout
experiment to show feature importance (Sect. 4.2). Next we ran a tournament
to show how strength increases with number of threads (Sect. 4.3). Finally, we
ran a DeepHex vs. MoHex tournament at competition settings (Sect. 4.4).

4.1 Parameter Optimization by CLOP

We optimized parameters using CLOP [6]. In the tuning process we played 30 s
games, used MoHex as the reference opponent, and set the root-interlude (max-
imum number of node expansions before search must return to the root) to 20.
The final parameter settings are based on 30 000 games; CLOP already found
good settings after 20 000 games. DeepHex won 45 % of these CLOP-tuning
games. Final settings are shown in Table 1.

The CLOP-tuned values hint at the effect of various parameters. δ measures
the urgency of sibling expansion; 103 seems small, as moves become easily distin-
guishable with δ about 300. Pmax and Dmax are also small, so DeepHex prefers
exploring promising lines deeply before diverging; a hand-tuned version of Deep-
Hex with Pmax = Dmax = 1 was strong, so we expected that the CLOP-tuned
values to be close to 1; CLOP values 3,4 suggest that for DeepHex the best
CNS behavior is not far from that of PNS. CLOP values show optional extension
of the search interval by δp, δd is practically useless, as values 8,7 have negligible
effect on performance. Surprisingly, RAVE impact is small. We guessed it would
be important to incorporate the outcome of terminal nodes quickly, but values
211,782 show this is better done slowly. A similar conlusion holds for gradual
error forgetting.

Feature Strength and Parallelization of Sibling Conspiracy Number Search 205

Table 1. Parameters tuned by CLOP for DeepHex.

Parameter Value Description

ε 0.41 ε tolerance

η 0.30 Allowed relative error of numbers in proof function

δ 103 The end of the first step in leaf initialization

Pmax 3 Proof threshold when setting vmax

Dmax 4 Disproof threshold when setting vmin

δp 8 Extending the search interval on max side

δd 7 Extending the search interval on min side

Rshift 211 RAVE error shift factor

Rimpact 782 Impact of RAVE error

Wmax 1824 Error forgetting threshold

4.2 Knockout Experiment

Here we measure feature importance and accuracy of CLOP tuning. We tested
many versions of DeepHex, each with either a feature off or a parameter slightly
changed. For each version we played 720 matches against MoHex (10 times for
each opening) at 30 s/move and then — to measure scaling — at 60 s/move. See
Table 2.

Table 2. Knockout experiment results showing win percentage over MoHex by differ
settings in DeepHex. The DeepHex versions are: (base) all features, all parameters
with CLOP settings, (a) basic leaf initialization, (b) 1 + ε method off, (c) exact proof
functions (approximation off), (d) gradual error forgetting off, (e) RAVE off, (f) gradual
error forgetting and RAVE both off, (g) smallest possible thresholds inducing smaller
search interval, (h) as in (g) but extending search interval to at least 100 on each side,
(i) larger thresholds for setting the search interval.

id version 30 s 60 s

(base) CLOP tuned 60.0 52.6

(a) 2-step (dis)proof function in leafs 20.3 23.1

(b) no 1 + ε method (ε = 0) 57.5 50.6

(c) Exact proof functions (η = 0) 56.1 48.9

(d) no gradual error forgetting 56.7 51.9

(e) no rave 51.9 57.5

(f) pure scef 52.4 55.6

(g) Pmax = Dmax = 1 52.1 52.5

(h) Pmax = Dmax = 1 and δp = δd = 50 59.4 51.5

(i) Pmax = Dmax = 5 56.0 53.9

206 J. Pawlewicz and R.B. Hayward

As expected, at 30 s/move the CLOP-tuned version is strongest. The most
critical feature is better leaf initialization via the multi-step proof function.
RAVE is beneficial at 30 s/move but less so at 60s/move; perhaps DeepHex
tuning parameters (or at least the settings found by CLOP) are sensitive to
time/move.

4.3 Multi-threaded Tournament

Here we show how program strength scales with number of threads. 13 bots com-
peted: 1,2,4,8-thread DeepHex; 1,2,4,8-thread MoHex; 1,3,7-thread MoHex
plus 1 thread for solver; 1-thread Wolve; 1-thread Wolve plus 1 thread for
solver. In each game each bot had 30 s/move. Each bot played each other bot
two times on each opening, once as black (1st-player) and once as white (2nd-
player). So each bot played 864 of the 5616 tournament games.

1 2 4 8

100

150

200

250

300

148

276
284

105

161

224

262

168

188 189

number of threads

E
lo

MoHex+solver
MoHex

DeepHex

Fig. 2. Tournament results. Each point has error within 14 Elo, with 80 % confidence.
Reference player is 1-thread Wolve, BayesElo score 0.

Figure 2 shows tournament results. Scores are BayesElo [5] with respect to
reference player Wolve (win rate .31, score 0); Wolve and Wolve+solver (score
23) are not shown. MoHex scales well up to the maximum 8 threads; this is
perhaps not surprising, as MCTS strength typically increases uniformly with
number of simulations and parallelizes relatively easily. MoHex+solver scales
well up to 4 threads, but is only slightly stronger at 8 threads. The latter is
perhaps because, with solver effectively taking over end games, the difference in
opening play between 3-thread MoHex and 7-thread MoHex is not enough to
change many outcomes. DeepHex scales as well as MoHex up to 2 threads,

Feature Strength and Parallelization of Sibling Conspiracy Number Search 207

but then more poorly. This drop in scaling efficiency is more pronounced than
a similar drop in scaling efficiency of parallel DFPN [20], perhaps because the
underlying parallelization technique — prevent thread convergence in the search
tree via virtual wins and losses — works better in PNS than in CNS. More work
is needed to explore this behavior.

4.4 DeepHex versus MoHex

Here we simulated a competition tournament. Each bot had 12 threads. MoHex
used its strongest settings: 1 thread for its DFPNS solver and 11 for MCTS.
DeepHex does not yet have game-length time control, so to approximate 30
m/game, we allowed it 90 s/move, as, for almost every game, each bot knows
the winner before 40 moves.

We played 9 rounds, each with 72 games (2 per opening, each bot once black
and once white), a total of 648 games. DeepHex had a .448 win rate. Earlier
experiments suggest that more tuning might strengthen DeepHex, for instance
tuning parameters by CLOP for larger time limits or for more threads.

Under these settings MoHex seems stronger in early play but DeepHex sees
further in complicated positions. Figure 3 shows a typical game, where MoHex
pushes DeepHex into a losing position before DeepHex escapes.

a

a

b

b

c

c

d

d

e

e

f

f

g

g

h

h

i

i

j

j

k

k

11

22

33

44

55

66

77

88

99

0101

1111

1

2

3

4

5

6

7

89

10

11

12

1314 15

16

17

18

19

20

21

22 23

24

25

26

a

a

b

b

c

c

d

d

e

e

f

f

g

g

h

h

i

i

j

j

k

k

11

22

33

44

55

66

77

88

99

0101

1111

2728

29

30

31

32

33

34

35

36

37

38

39

40

41 42

43

44

45

46

47

48

49

50 51

5253

5455

56 57

58

59

60

61

62

63 64

65

66

67

68

69

70 71

Fig. 3. DeepHex (Black) escapes against MoHex. After 26.j5 DeepHex sees its loss
with PV i6 h6 i5 i10 i9 h10 h9 g10 g9 f10 g8 h2 k1 e9 c9 d8 a8 d7 d9 e8 c7 d6 a7 b5.
But MoHex sees neither this nor its win after 28.h6 and blunders with 30.h11 instead
of i10. After 60 s of search DeepHex sees a win 31.h10 with PV g11 g10 f11 f10 e11 e10
d11 d10 c11 b10 c10 c7 d9 b7 f8 b6 d3 d4 d1 b9 f2 f3 g2 g3 c8 b8 h2 b2 b3 a3 b5 c4
b4 c3. With 34.f11 the MoHex search threads score .62 before the solver thread finds
the loss.

In this tournament the average game length for a MoHex (DeepHex) win is
48.6 (61.2) moves. MoHex wins almost all short games, DeepHex wins almost all
long ones. See Table 3. MoHex seems strategically stronger, often — perhaps
because it is ahead — making simplifying moves. DeepHex seems tactically
further-sighted, often — perhaps because it is behind — making complicated
moves. A research challenge is to mix these two behaviors.

208 J. Pawlewicz and R.B. Hayward

Table 3. DeepHex win rate by game length.

Length 26–40 41–50 51–60 61–70 71–80 81–93

Rate .04 .20 .52 .73 .83 1.00

5 Conclusions and Further Research

We showed the strength of Sibling Conspiracy Number Search features by com-
peting our SCNS Hex bot with MCTS bot MoHex and αβ bot Wolve. By
far the most critical feature is to initialize leaf (dis)proof functions via a multi-
step— rather than 2-step— staircase function. Also, we showed a parallel version
of SCNS. Our parallel SCNS Hex bot scales well — as well as MoHex — with 2
threads, but less efficiently with 4 or 8 threads. An open problem is to parallelize
SCNS more effectively.

References

1. Allis, L.V.: Searching for Solutions in Games and Artificial Intelligence. PhD thesis,
University of Limburg, Maastricht, The Netherlands (1994)

2. Anshelevich, V.V.: A hierarchical approach to computer Hex. Artif. Intell. 134(1–
2), 101–120 (2002)

3. Arneson, B., Henderson, P., Hayward, R.B.: Benzene (2009). http://benzene.
sourceforge.net/

4. Breuker, D.M.: Memory versus Search in Games. PhD thesis, Maastricht Univer-
sity, Maastricht, The Netherlands (1998)

5. Coulom, R.: Bayesian elo rating (2010). http://remi.coulom.free.fr/Bayesian-Elo
6. Coulom, R.: CLOP: confident local optimization for noisy black-box parameter

tuning. In: van den Herik, H.J., Plaat, A. (eds.) ACG 2011. LNCS, vol. 7168, pp.
146–157. Springer, Heidelberg (2012)

7. Gardner, M.: The 2nd scientific american book of mathematical puzzles and diver-
sions, Chap. 7, pp. 78–88. Simon and Schuster, New York (1961)

8. Gelly, S., Silver, D.: Combining online and offline knowledge in UCT. In: 24th
ACM ICML, pp. 273–280 (2007)

9. Henderson, P.: Playing and solving Hex. PhD thesis, UAlberta (2010). http://
webdocs.cs.ualberta.ca/∼hayward/theses/ph.pdf

10. Huang, S.-C., Arneson, B., Hayward, R.B., Müller, M., Pawlewicz, J.: MoHex 2.0:
a pattern-based MCTS Hex player. In: van den Herik, H.J., Iida, H., Plaat, A.
(eds.) CG 2013. LNCS, vol. 8427, pp. 60–71. Springer, Heidelberg (2014)

11. Iida, H., Sakuta, M., Rollason, J.: Computer shogi. Artif. Intell. 134(1–2), 121–144
(2002)

12. Kishimoto, A., Winands, M., Müller, M., Saito, J.-T.: Game-tree searching with
proof numbers: the first twenty years. ICGA J. 35(3), 131–156 (2012)

13. Klingbeil, N., Schaeffer, J.: Empirical results with conspiracy numbers. Comput.
Intell. 6, 1–11 (1990)

14. Lorenz, U.: Parallel controlled conspiracy number search. In: Monien, B.,
Feldmann, R.L. (eds.) Euro-Par 2002. LNCS, vol. 2400, pp. 420–430. Springer,
Heidelberg (2002)

http://benzene.sourceforge.net/
http://benzene.sourceforge.net/
http://remi.coulom.free.fr/Bayesian-Elo
http://webdocs.cs.ualberta.ca/~hayward/theses/ph.pdf
http://webdocs.cs.ualberta.ca/~hayward/theses/ph.pdf

Feature Strength and Parallelization of Sibling Conspiracy Number Search 209

15. Lorenz, U., Rottmann, V., Feldman, R., Mysliwietz, P.: Controlled conspiracy num-
ber search. ICCA J. 18(3), 135–147 (1995)

16. McAllester, D.: Conspiracy numbers for min-max search. Artif. Intell. 35(3), 287–
310 (1988)

17. McAllester, D., Yuret, D.: Alpha-beta conspiracy search. ICGA 25(1), 16–35 (2002)
18. Nagai, A.: Df-pn Algorithm for Searching AND/OR Trees and Its Applications.

Ph.d. thesis, Department of Information Science, University Tokyo, Tokyo, Japan
(2002)

19. Pawlewicz, J., Hayward, R.: Sibling conspiracy number search. manuscript (2015)
20. Pawlewicz, J., Hayward, R.B.: Scalable parallel DFPN search. In: van den Herik,

H.J., Iida, H., Plaat, A. (eds.) CG 2013. LNCS, vol. 8427, pp. 138–150. Springer,
Heidelberg (2014)

21. Pawlewicz, J., Lew, �L.: Improving depth-first PN-search: 1 + ε trick. In: van den
Herik, H.J., Ciancarini, P., Donkers, H.H.L.M.J. (eds.) CG 2006. LNCS, vol. 4630,
pp. 160–171. Springer, Heidelberg (2007)

22. Saito, J.-T., Chaslot, G.M.J.-B., Uiterwijk, J.W.H.M., van den Herik, H.J.: Monte-
Carlo proof-number search for computer Go. In: van den Herik, H.J., Ciancarini,
P., Donkers, H.H.L.M.J. (eds.) CG 2006. LNCS, vol. 4630, pp. 50–61. Springer,
Heidelberg (2007)

23. Schaeffer, J.: Conspiracy numbers. Artif. Intell. 43(1), 67–84 (1990)
24. van der Meulen, M.: Parallel conspiracy-number search. Master’s thesis, Vrije Uni-

versiteit Amsterdam, The Netherlands (1988)
25. Winands, M.: Informed Search in Complex Games. PhD thesis, Universiteit

Maastricht, Maastricht, The Netherlands (2004)
26. Winands, M.H.M., Schadd, M.P.D.: Evaluation-function based proof-number

search. In: van den Herik, H.J., Iida, H., Plaat, A. (eds.) CG 2010. LNCS, vol.
6515, pp. 23–35. Springer, Heidelberg (2011)

Parameter-Free Tree Style Pipeline
in Asynchronous Parallel Game-Tree Search

Shu Yokoyama1, Tomoyuki Kaneko1(B), and Tetsuro Tanaka2

1 Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
kaneko@graco.c.u-tokyo.ac.jp

2 Information Technology Center, The University of Tokyo, Tokyo, Japan

Abstract. Asynchronous parallel game-tree search methods are
effective in improving the playing strength by using many computers
connected through relatively slow networks. In game-position paralleliza-
tion, the master program manages a game-tree and distributes positions
in the tree to workers. Then, each worker asynchronously searches the
best move and the corresponding evaluation for its assigned position.
We present a new method for constructing an appropriate master tree
that provides more important moves with more workers on their sub-
trees to improve the playing strength. Our contribution introduces two
advantages: (1) being parameter free in that users do not need to tune
parameters through trial and error, and (2) efficiency suitable even for
short-time matches, such as one second per move. We implemented our
method in chess with a top-level chess program Stockfish and evalu-
ated the playing strength through self-plays. We confirm that the playing
strength improves with up to sixty workers.

1 Introduction

Parallelization of game-tree search has been extensively studied to improve the
game programs’ playing strength, especially in chess and its variants. Several effi-
cient methods have been developed in hardware parallelization [2,4], in thread-
level parallelization [14], and for tightly connected computers [1,5,12,18].

Recently, as grid computing has become popular, new approaches utilizing
computational resources placed in different locations connected through wide-
area networks have been proposed. Game position parallelization (GPP) [16] is
one such method actually showing steady improvements in playing strength. In
that method, a local computing unit (we call it a worker, even though it could
be a cluster of tightly connected computing nodes) assumes a position assigned
to it. Each worker runs its own game-tree search independently, and then, the
master integrates the workers’ results to reach a decision.

This study presents pipeline GPP (P-GPP), which extends both Optimistic
Pondering [8] and GPP, by improving worker management. In P-GPP, positions

T. Kaneko—A part of this work was supported by JSPS KAKENHI Grant Number
25330432.

c© Springer International Publishing Switzerland 2015
A. Plaat et al. (Eds.): ACG 2015, LNCS 9525, pp. 210–222, 2015.
DOI: 10.1007/978-3-319-27992-3 19

Efficient Tree Style Pipeline in Asynchronous Parallel Game-Tree Search 211

are assigned to workers on the basis of realization probabilities [17] automatically
acquired from game records and a playing program. This automation frees users
from the need to tune heuristic parameters, whereas existing methods need many
configuration parameters. Experiments demonstrate P-GPP’s effectiveness with
up to sixty workers, with results comparable to those shown in the literature [8].
Therefore, P-GPP deserves further study of both its effectiveness and usability
in terms of being parameter free.

The remainder of this paper is organized as follows. The next section reviews
related research. The third section introduces the GPP framework, and the
fourth section presents the P-GPP method. The fifth section presents our exper-
imental results in chess and improvements in playing strength through self-play.
The last section provides our concluding remarks.

2 Related Work

In this section we discuss parallelisation of alpha-beta pruning (Sect. 2.1) and
integration of computing resources through the Internet (Sect. 2.2).

2.1 Parallelization of Alpha–Beta Pruning

State-of-the-art sequential algorithms on game-tree search have been built upon
alpha–beta pruning [13] with many enhancements. Basically, playing strength
improves when a program searches more deeply, assuming that adequate eval-
uation functions have been provided. Therefore, various parallel search algo-
rithms have been developed to improve strength by exploring game trees in
a shorter time by using more processors. The best solution depends on users’
environments, because there is a well-known trade-off in the design of paral-
lelization; an increase in shared information among processors increases prun-
ing effectiveness, while communication to share information inevitably incurs
overheads that degrade efficiency. State-of-the-art sequential algorithms prune
branches aggressively (e.g., by late move reductions1) by utilizing information of
the tree explored already, e.g., by transposition tables, αβ-windows, killer moves,
and history tables.

In parallel search methods in shared memory environments (e.g., Principal
Variation Splitting [14], Dynamic Tree Splitting2), transposition tables are nat-
urally shared. However, in effective parallelization in distributed environments,
only a part of a transposition table is shared [3,8] because the cost for full shar-
ing is not beneficial overall. Still, in major approaches including YBWC and
its enhancements [5,18], APHID [1], and TDSAB [12], αβ-windows or equiv-
alent information are shared in frequent communication. Therefore, they work
more effectively in a network with higher quality, e.g., Infiniband, than with an
ordinary one. Also, many practical systems incorporated hybrid parallelization
including hardware (e.g., DeepBlue [2] and Hydra [4]).
1 http://www.glaurungchess.com/lmr.html (Last access: February 2015).
2 https://www.cis.uab.edu/hyatt/search.html (Last access: February 2015).

http://www.glaurungchess.com/lmr.html
https://www.cis.uab.edu/hyatt/search.html

212 S. Yokoyama et al.

2.2 Integration of Computing Resources Through the Internet

Recently, accessing computational resources placed elsewhere has become easy,
if one permits relatively high latency and limited bandwidth to reach them, e.g.,
through ordinary Ethernet or wide-area networks. Hence, several new methods
for utilizing such resources have been developed to improve playing strength
further. Owing to network limitations, these methods are designed to work with
little inter-node communication. For example, majority voting requires only com-
munication regarding a position to search and vote for a move [15].

In Optimistic Pondering [7–9] and GPP [16] which were developed indepen-
dently, workers are assigned distinct positions and search independently without
sharing information. In Optimistic Pondering, the goal is to increase “ponder-
hit” rate as well as to begin pondering as many plies earlier as possible. Pondering
gains additional thinking time to deepen the search when pondering hits, i.e., the
position assigned to a worker is actually realized in the game. In GPP, the goal
is to conduct minimax search cooperatively by integrating search trees explored
by hundreds of workers [16].

A notable advantage of these approaches is that they lend themselves well
to combination with existing parallelization methods. The effectiveness of Opti-
mistic Pondering in integrating workers running in YBWC mode was demon-
strated in GridChess [8]. A combination of majority voting, GPP, and shared
memory parallelization on each worker is used for playing shogi in Akara [10].

3 Game Position Parallelization

This section introduces the details of Game Position Parallelization (GPP), on
which our work, P-GPP, is constructed (Sect. 3.1). GPP is based on a mas-
ter/worker model, with a typical worker being a universal chess interface (UCI)3

chess engine (Sect. 3.2). Finally, a comparison is made with similar systems
(Sect. 3.3).

3.1 Master Tree

GPP conducts minimax search by integrating the results obtained locally by
workers. The master constructs a master tree for task assignments for workers.
The root of a master tree corresponds to the current position, and the number of
nodes of the master tree must be the number of workers available. Assume that
we have six equivalent workers A, B, C, D, E, and F. The master constructs a
game tree rooted at the current position, which has five leaves. Figure 1 shows an
example of a master tree. A node depicted in a rounded rectangle corresponds
to a position similar to those in usual game trees. A leaf “others” enclosed in a
rectangle is a special position, in which the position is the same as that of the
parent but for which moves to be searched are limited, excluding moves already
3 http://www.shredderchess.com/chess-info/features/uci-universal-chess-interface.

html (Last access: February 2015).

http://www.shredderchess.com/chess-info/features/uci-universal-chess-interface.html
http://www.shredderchess.com/chess-info/features/uci-universal-chess-interface.html

Efficient Tree Style Pipeline in Asynchronous Parallel Game-Tree Search 213

root

Nf6 Score: 28
(PV: Nf3)

d4

others Score: 41
Best: d5

Worker A

Score: 28
(PV: Nf6, Nf3) e4 Score: 18

(PV: e5, Nf3) others Score: 11
Best: Nf3

Score: 28
(PV: d4, Nf6, Nf3)

e6 Score: 35
(PV: c4)

Worker B Worker C

Worker D

others Score: 21
Best: c5

Score: 18
(PV: Nf3)

Worker F Worker E

e5

Fig. 1. A master tree with the initial position at the root. Each leaf has a worker
assigned. For an internal node “d4”, workers A, B, and C work on it cooperatively.
Workers A and B assume responsibility for two child positions that are assumed to
be the best (“Nf6”) and second best (“e6”) successors, and C assumes responsibility
for the remaining moves. The best move and its score with respect to the max player
are kept at each leaf shown in a gray rounded rectangle. The scores and best moves of
internal nodes are computed, as in minimax search.

covered by its siblings. For example, at position “d4” in the figure, the worker
C does not search moves Nf6 and e6 because workers A and B are working on
them, respectively. Therefore, at each internal node, the children cover all moves
without duplication.

Each worker then independently execute game-tree search for a node and
periodically reports the best move (more precisely, a sequence of best moves, the
principal variation, PV) with its evaluation score. The master then integrates the
best moves and scores. Communication required in this process is supported by
standard game protocols, UCI for chess and universal shogi interface (USI)4 for
shogi. For example, the command go searchmoves restricts the moves searched
at an “others” leaf. The use of a text protocol improves software modularity.

GPP aims to achieve steady improvements in playing strength with hundreds
of workers in slow networks [16]. Therefore, neither transposition tables nor αβ
windows are shared. If the network quality is sufficient for them to be shared,
the methods introduced in Sect. 2.1 are preferable to GPP.

3.2 Tree Growth and Tree Style Pipeline

To improve playing strength in GPP, a master tree must be carefully constructed
such that a more relevant move should have more workers than less impor-
tant moves. The problem here is the difficulty in identifying relevant moves in
advance.

Having the master tree of the previous position available while playing a
game provides two advantages. First, relevant branches can be estimated from
the information stored in the tree. Second, workers working on common nodes
between the previous and new trees can continue searching without interruption.

4 http://www.glaurungchess.com/shogi/usi.html (Last access: February 2015).

http://www.glaurungchess.com/shogi/usi.html

214 S. Yokoyama et al.

Parent Position

best
move

second
best

others

(a) Simplified expression

Played
move

Workers
 to be reassigned

(b) Tree style pipeline

Fig. 2. Simplified notation (Fig. 2a): Merging a node for other moves into the parent,
makes the right tree equivalent to the left one. Either tree represents a portion of the
master tree shown in Fig. 1, where “Parent Position” corresponds to the position “d4”.
Tree-style pipeline (Fig. 2b): The left tree is the simplified notation for Fig. 1. When
the board situation changes, the master tree grows. Workers working on positions that
are not descendants of the new root (D, E, and F) are collected and assigned to the
newly created leaves. (See also Sect. 4.)

In this study, we call the idea related to these advantages tree style pipeline.
The idea has already been adopted in two different methods: tree of pondering
pipeline in Optimistic Pondering [9], and a recent GPP method [11].

In tree style pipeline, nodes in the previous master trees that remain effec-
tive in the new tree are preserved. The remaining nodes are discarded, and their
corresponding workers are assigned to new expanded leaves, as shown in Fig. 2b.
As a simple illustration, note that we draw a tree merging an “others” leaf to
its parent, as explained in Fig. 2a. An advantage in tree style pipeline is that
a worker on a shaded node in Fig. 2b continues searching without interruption
in the transition from the previous tree to the new one. In GPP, a normal leaf
sometimes becomes an “others” leaf, when its child is expanded. Node A in
Fig. 2b is in such a situation. A worker working on such a node is stopped and
immediately restarted with restriction of moves already expanded (i.e., D and E
in this example). This restart’s negative effect must be rather limited because the
contents in a transposition table are preserved in each worker. Workers outside
the common tree are collected and used to grow relevant branches of the tree.
In expanding a leaf of the tree, the current best move at the leaf is a promising
candidate to expand. However, it is still not clear which leaves (including “oth-
ers” nodes) are to be expanded and how many new workers each leaf is worth.
This study’s primary contribution is to present a new criterion and a procedure
for this problem.

3.3 Comparison with Similar Systems

Table 1 summarizes related work similar to our work. GridChess combines Opti-
mistic Pondering and tree style pipeline. The main difference between that work
and ours is minimax integration. Optimistic Pondering focuses on pondering
and does not perform minimax backup in a master tree. Consequently, tasks
assigned to workers are not disjoint in Optimistic Pondering, i.e., it does not
have any “others” leaf in GPP, such as worker C in Fig. 2a. Lacking minimax

Efficient Tree Style Pipeline in Asynchronous Parallel Game-Tree Search 215

Table 1. Comparison of distributed search methods and systems similar to GPP. The
first column is the name of the method or system. The second (third) column indicates
whether minimax backup (tree style pipeline) is used. The fourth column describes
when new leaves in the master tree are expanded. “New root” means when the root of
the master tree changes. The fifth column describes what information source is used
to select leaves to be expanded.

Minimax Pipeline Growth Source

GridChess [8] (chess) - Yes Anytime PV

GPP [16] (shogi) Yes (Yes) New root Shallow search

P-GPP(chess) Yes Yes New root Previous PV+Hash

backup can create a problem. Suppose that a move at the root seems promis-
ing within a certain search depth, but actually is a blunder that deeper search
can reveal. Through constructing a larger master tree by investing more work-
ers, GPP might detect it earlier than a single worker does. However, Optimistic
Pondering cannot see it until the search of the root worker reaches a sufficient
depth, even if many additional workers are involved. Additionally, Optimistic
Pondering changes its master tree more dynamically. While frequent changes
might improve playing strength, many heuristic parameters need to be tuned,
regarding when to start and stop pondering a position.

The idea of GPP was first developed in connection with shogi, integrating
more than 300 ordinary computers and reported in the literature [16]. The orig-
inal version does not have tree style pipeline. Instead, a shallow search is used
to determine the moves to be expanded at each step in the construction of a
master tree. Because this shallow search decreases the available time for the pri-
mary search, our work introduced an alternative method for growing a master
tree. Additionally, heuristic parameters r0 and r were used in the assignment of
workers; for the n-th promising move at a position having N workers, r0r

n−1N
workers are assigned. The values were r0 = 1/4, r = 3/4 for the root, and
r0 = r = 1/2, otherwise. Later, many heuristic parameters including domain-
dependent ones were introduced, when it was used in human–computer shogi
matches [10,11]. Therefore, our work is the first method incorporating both
GPP and tree style pipeline, simultaneously, eliminating heuristic parameters.

4 P-GPP: Pipeline GPP with Parameter-Free Approach

This section presents our method (P-GPP) extending GPP. When the board is
changed by a move played by a program or its opponent, the master tree for GPP
must be updated so that the node corresponding to the new position becomes
the root in a new tree. P-GPP constructs its new tree using the following three
steps, to find the best tree with respect to playing strength.

1. Unreachable nodes from the new root position are removed from the tree, and
the corresponding workers are collected (e.g., node D, E, and F in Fig. 2b).

216 S. Yokoyama et al.

2. The greedy algorithm presented here determines the number of workers for
each node (except for an “others” leaf), using realization probabilities.

3. For each node l and the number of workers n identified in the previous step,
a concrete sub-tree rooted at l having n nodes is created, considering the
transposition table of the worker at l.

The main contributions of this study are the new methods for steps 2 and 3
presented in Subsects. 4.1 and 4.2. For initiating the pipeline process, we define
the initial master tree as a tree having only its root as the starting position.
Alternatively, opening books can be used. In Sect. 4.3, we discuss adaptation of
realization probability, that is essential to implement step 2 and 3 in practice.

4.1 Utility of Master Tree Based on Realization Probability

We introduce the method assuming that the realization probability is available
for all nodes. The utility U(T) of a master tree T is the summation of the depth
weighted by its realization probability:

U(T) =
∑

v∈V (T)

pvdv, (1)

where V (T) is the set of vertices in the tree T , dv is the depth of node v and
pv is its realization probability. GPP works effectively, if a position included
in the master tree will be reached in an actual game in the future, and it is
more beneficial when the position is further from the root to have more thinking
time before it manifests. So, if we can predict the future, then narrow, deep
trees are preferable for that purpose. However, when we miss a prediction, many
workers must be reallocated, and their results do not contribute to the playing.
This means that the total number of workers collected in the future must be
minimized. Thus, the expectation over the probability in Eq. (1) is adopted.

The realization probability of a node, defined as the product of the transition
probability of each move [17], is the probability that the corresponding sequence
of moves is actually played. By definition, the realization probability of the root
is one. We also assume that the summation of the transition probability of all
legal moves is one in each position. We ignored such edges in counting the depth
in computing the utility that represent “others” moves, because they do not
reduce the search space compared to normal edges. In our simplified notation
of a tree (see Fig. 2a), each internal node corresponds to a leaf led by all other
moves. Hence, the summation of the realization probabilities for all the nodes in
a simplified tree is always one.

4.2 Greedy Growth Algorithm

Assuming that the realization probability of each node is available, we present
a simple greedy algorithm based on iteratively adding a node having the largest
realization probability. Figure 3 shows a step of the greedy algorithm, where

Efficient Tree Style Pipeline in Asynchronous Parallel Game-Tree Search 217

p

q r

s

t

P1 P2

P1 P2
P1

P1 P1

P3

P3

Pn: transition probability

realization probability

P1 · P1
def
= P1·1
= 0.2994

P2·1·1
= 0.0530

P2·2·1
= 0.0171

P2·3
= 0.0156

P3 = 0.0880
1st (p)

2nd

3rd

4th

5th

Fig. 3. Example of greedy steps: for a tree drawn with a solid line with candidates, each
of which is a dotted circle with its probability, node p having the largest probability is
added. After the fifth step, the tree in the right figure is obtained.

Pi is the transition probability of a rank i move, and the values are from our
experiments listed in Table 2. This algorithm yields a tree of maximum utility
in Eq. (1).

The proof is based on the change in the utility when a node is added (and
symmetrically removed). Let T1 be a tree, x a leaf in T1, and T0 the tree with
x removed from T1. The differences between T0 and T1 are node x which exists
only in T1 with probability px and parent x′, which exists both in T0 and T1

but px′ in T0 is greater than that in T1 by px. Thus, for the probability px, the
depth of x is added to U(T1) while the depth of x′ is added to U(T0), where the
difference in the depth of x and x′ is 1. Therefore, we have U(T1) − U(T0) = px.

Here is a sketch of the proof by contradiction. Let T be the tree yielded by our
greedy algorithm. We assume that there exists a tree T ′ having the maximum
utility that is strictly better than that of T , i.e., U(T ′) > U(T), T �= T ′ and
|V (T)| = |V (T ′)|. Then, we select two nodes, v∗ from T \ T ′ and v from T ′ \ T .
Let v∗ ∈ T \ T ′ be the node added at the earliest step. There exists a node v
in T ′ \ T , such that pv∗ > pv.5 Thus, when we generate T ′′ by replacing node v
in T ′ with node v∗, we have U(T ′′) > U(T ′). This contradicts the assumption
that T ′ has the maximum utility. ��

4.3 Realization Probability in Practice

For the realization probability in P-GPP, we used the empirical transition prob-
ability that expert players play a move of n-th rank when moves are ranked by
a worker program. While the class of a move (e.g., check) is used in the original
literature [17], we believe the ranks determined by the scores in the previous
master tree are more reliable sources here. The probabilities regarding the rank,
the only parameters that P-GPP requires, are obtained from a worker program
and game records, as shown in Table 2 in the experiments discussed later.
5 By the definition of the greedy algorithm, we have pv∗ ≥ pv for any v ∈ T ′ \ T . In

the special case that pv∗ = pv for all v ∈ T ′ \ T , utility U(T ′) equals U(T) by the
definition of v∗, and this contradicts the assumption that U(T ′) > U(T).

218 S. Yokoyama et al.

Having the score in each node, including “others” in the tree, the rank and
consequently the realization probability are identified for each node by virtu-
ally sorting nodes by their scores. However, the ranks and probabilities are not
available for newly added nodes at this step. Therefore, we virtually add an n-th
node as needed without knowing the actual n-th best move leading to the node.
Then, we count the number of virtual nodes added in this process for each node
and recover the original tree discarding these virtual nodes.

Now the problem is to construct an effective subtree with n nodes rooted at
the leaf, given a node l and the number n to be added. If n = 1, it is sufficient to
expand the best move. Otherwise, this can be achieved by extracting the n most
valuable positions from the transposition table of the corresponding worker (if
l is a leaf) or the worker of its “others” leaf (if l is an internal node). We used
the depth searched under a position for the criterion in this selection. These
positions are sent from each leaf to the master every time the new master tree is
constructed. Because the estimated data size is about one kilobyte for 32 entries,
it can be expected to consume negligible time and network resources.

5 Experiments

To evaluate P-GPP, we implemented our method in chess. We first show the
relative frequency (or empirical probability) of moves with respect to their rank,
obtained from game records. Then, by using the frequency as the transition
probability, self-play experiments are conducted.

5.1 Configurations

We adopted Stockfish DD6 as a worker program, because it is an open source
program and is expected to be one of the strongest chess programs. We added
the function of reporting information described in Sect. 4.3, extending the UCI
protocol. Each worker and the master are connected via standard TCP sockets.
The master is implemented in C++ with the boost/asio library. For a worker, a
utility program netcat is adopted as a proxy connecting stdin/stdout and a TCP
socket. To simulate a distributed environment, we used at most 64 cores in two
computers each of which is equipped with two Intel Xeon E5-4650 processors.
stockfish ran as a sequential program using a single thread. Each worker was
allowed to use 32MiB (Stockfish uses 16 bytes per position) for its transposi-
tion table.

5.2 Empirical Probability with Respect to the Rank of a Move

Table 2 shows the frequency of moves played for each rank. Twelve game records
played between DeepBlue and Kasparov consisting of 1 091 plies were used.
For each position, all moves are scored using fifteen-depth search and sorted to

6 https://s3.amazonaws.com/stockfish/stockfish-dd-src.zip.

https://s3.amazonaws.com/stockfish/stockfish-dd-src.zip

Efficient Tree Style Pipeline in Asynchronous Parallel Game-Tree Search 219

Table 2. Frequency of move w.r.t. the rank, evaluated by Stockfish

Rank 1 2 3 4 5 6 7 8 9 10 11+

Frequency 0.5472 0.1769 0.0880 0.0522 0.0293 0.0247 0.0211 0.0128 0.0082 0.0110 0.0284

get the rank. We classified the ranks in eleven classes, from first to tenth, and
the eleventh or greater. The result shows 54.7 % for the first-ranked move and
81 % in the top three moves.

5.3 Improvements in Strength

We conducted self-play experiments and showed the winning probability of sev-
eral variations of the presented system against a sequential program. The sequen-
tial program is nearly the same as the original Stockfish, except that it ponders
the current position instead of a future predicted position. The reason for the
adjustment is to average the effect of ponder-hits and misses. Additionally, the
sequential program is nearly the same as the presented method with a single
worker. A program XBoard managed matches in judging and recording the
results and a program Polyglot7 is used to connect XBoard and Stockfish.
The book used was performance.bin.8 The opening was randomly chosen from
the book by Polyglot. The win rate here is defined as the probability of wins
plus half of the probability of draws, following the literature [6].

To consider the communication overhead in distributed environments, we
imposed a thinking-time penalty on the proposed program. While the sequential
program was given 1 000 ms to think per ply, the presented system P-GPP was
given only 950 ms. We believe that 50 ms is more than sufficient for the commu-
nication in the presented method. In addition to P-GPP, we measured the win
rate of “Linear Speedup” and “Random Growth.” The former is the sequential
program given n-times thinking time instead of using n workers.9 This program
gives the upper bound of the win rates gained by the ideal parallelization with-
out overhead. The latter is a variation of P-GPP, ignoring transposition tables;
it adds the position after the best move and randomly picked up n−1 positions,
when adding n nodes to a leaf at the step in Sect. 4.3. For each configuration,
1 000 games were played alternating black and white.

Figure 4a shows the win rate of the parallel programs against the sequential
one. The horizontal axis indicates the concurrency in the log-scale, and the error
bars indicate as 95 % confidence interval. In P-GPP, the win rate increases with
the number of workers. With a single worker, the win rate was 48.1 %, not even
reaching 50 %. This was apparently caused by the thinking-time penalty. With 32
and 60 workers, our method achieved 62.5 % and 64.6 % win rates, respectively.
The improvements did not reach those in the linear speedup, but they are similar
to those reported in Optimistic Pondering built upon the cluster Toga [8].
7 Version 1.4w29 http://www.geenvis.net/polyglot1.4w29.zip.
8 http://wbec-ridderkerk.nl/html/downloada/lacrosse/performance.rar.
9 The opponent was configured not to use this additional time in pondering.

http://www.geenvis.net/polyglot1.4w29.zip
http://wbec-ridderkerk.nl/html/downloada/lacrosse/performance.rar

220 S. Yokoyama et al.

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

1 10 100

Discarding Transpos. Table (Seq.)

W
in

R
a
te

Workers

P-GPP
Random Growth
Linear Speedup

(a) Win rates

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

1 10 100

D
ep

th
Workers

P-GPP
Random Growth

Simulation Result

(b) Utility of trees

Fig. 4. Left (Fig. 4a): win rates of parallel systems in self-play. Right (Fig. 4b): observed
utility. The average number of played plies included in the master trees, in self-play for
the player’s turn, with a “Simulation Result” that is U(T) of the trees built virtually
using only the greedy algorithm with the realization probability.

Therefore, we may conclude that our method scaled reasonably at least up to 60
workers. In contrast, “Random Growth” did not improve the playing strength.
In the case of a single worker, the win rate was even, as the two players are
the same. However, it became weaker with four or more workers. These results
show the importance of master trees. When the master tree is random, only
the worker working on the root contributes to playing strength. Moreover, the
transposition tables of the workers tend to be filled with irrelevant positions,
possibly degrading strength. To examine this result further, we measured the
win rate of such a sequential program, which clears its transposition table every
time it plays a move. The win rate was only 39.2 %, explaining the contribution
of the transposition table to strength.

Figure 4b shows the utilities of the master trees constructed in self-play exper-
iments, with simulated utilities considering only the realization probabilities
listed in Table 2. The observed utilities are the average maximum depth of a
position reached in actual games. In P-GPP, the utilities increase along with
the concurrency and go beyond the simulated results, most likely because there
are sometimes fewer legal moves in some positions than the branching factor of
the simulated tree, and it is easier for Stockfish to predict moves played by the
same program than to predict moves played by Kasparov’s or by DeepBlue.
The utilities did not reach 1.0 in “Random Growth.”

Efficient Tree Style Pipeline in Asynchronous Parallel Game-Tree Search 221

6 Conclusion

We demonstrated that P-GPP, a new asynchronous parallel game-tree search
method, works effectively in chess. P-GPP has two advantages: it is parameter-
free in that users do not need to tune parameters through trial and error, and
it is suitably efficient even for short-time matches. We confirmed that playing
strength improves with up to sixty workers. The win rates are comparable to
those of an existing method [8]. Therefore, we believe that P-GPP is a simple
and promising alternative to existing methods. Interesting future work would
involve scalability up to hundreds of workers.

References

1. Brockington, M.: Asynchronous Parallel Game-Tree Search. Ph.D. thesis, Univer-
sity of Alberta (1998)

2. Campbell, M., Hoane Jr., A.J., Hsu, F.H.: Deep blue. Artif. Intell. 134(1–2), 57–83
(2002)

3. Donninger, C., Kure, A., Lorenz, U.: Parallel brutus: the first distributed, FPGA
accelerated chess program. In: Proceedings of the 18th International Symposium
on Parallel and Distributed Processing, 2004, p. 44, April 2004

4. Donninger, C., Lorenz, U.: The chess monster hydra. In: Becker, J., Platzner, M.,
Vernalde, S. (eds.) FPL 2004. LNCS, vol. 3203, pp. 927–932. Springer, Heidelberg
(2004)

5. Feldmann, R.: Game Tree Search on Massively Parallel Systems. Ph.D. thesis,
University of Paderborn (1993)

6. Heinz, E.A.: New self-play results in computer chess. In: Marsland, T., Frank, I.
(eds.) CG 2001. LNCS, vol. 2063, pp. 262–276. Springer, Heidelberg (2002)

7. Himstedt, K.: An optimistic pondering approach for asynchronous distributed
game-tree search. ICGA J. 28(2), 77–90 (2005)

8. Himstedt, K.: Gridchess: combining optimistic pondering with the young brothers
wait concept. ICGA J. 35(2), 67–79 (2012)

9. Himstedt, K., Lorenz, U., Möller, D.P.F.: A twofold distributed game-tree search
approach using interconnected clusters. In: Luque, E., Margalef, T., Beńıtez, D.
(eds.) Euro-Par 2008. LNCS, vol. 5168, pp. 587–598. Springer, Heidelberg (2008)

10. Hoki, K., Kaneko, T., Yokoyama, D., Obata, T., Yamashita, H., Tsuruoka, Y., Ito,
T.: Distributed-shogi-system Akara 2010 and its demonstration. Int. J. Comput.
Inf. Sci. 14(2), 55–63 (2013)

11. Kaneko, T., Tanaka, T.: Distributed game tree search and improvements – match
between hiroyuki miura and GPSShogi. IPSJ Mag. 54(9), 914–922 (2013). (In
Japanese)

12. Kishimoto, A.: Transposition table driven scheduling for two-player games. M.Sc.
thesis, University of Alberta, January 2002

13. Knuth, D.E., Moore, R.W.: An analysis of alpha-beta pruning. Artif. Intell. 6(4),
293–326 (1975)

14. Marsland, T.A., Popowich, F.: Parallel game-tree search. IEEE Trans. Pattern
Anal. Mach. Intell. 7, 442–452 (1985)

15. Obata, T., Sugiyama, T., Hoki, K., Ito, T.: Consultation algorithm for computer
shogi: move decisions by majority. In: van den Herik, H.J., Iida, H., Plaat, A. (eds.)
CG 2010. LNCS, vol. 6515, pp. 156–165. Springer, Heidelberg (2011)

222 S. Yokoyama et al.

16. Tanaka, T., Kaneko, T.: Massively parallel execution of shogi programs. In: The
Special Interest Group Technical Reports of IPSJ. 2, vol. GI-24, pp. 1–8 (2010) (In
Japanese)

17. Tsuruoka, Y., Yokoyama, D., Chikayama, T.: Game-tree search algorithm based
on realization probability. ICGA J. 25(3), 145–152 (2002)

18. Ura, A., Yokoyama, D., Chikayama, T.: Two-level task scheduling for parallel game
tree search based on necessity. J. Inf. Process. 21(1), 17–25 (2013)

Transfer Learning by Inductive Logic
Programming

Yuichiro Sato1(B), Hiroyuki Iida1, and H.J. van den Herik2

1 School of Information Science, Japan Advanced Institute of Science
and Technology, 1-1 Asahidai, Nomi, Ishikawa, Japan

{sato.yuichiro,iida}@jaist.ac.jp
2 Leiden Institute of Advanced Computer Science, P.O. Box 9512,

2300 RA Leiden, The Netherlands
jaapvandenherik@gmail.com

Abstract. In this paper, we propose a Transfer Learning method by
Inductive Logic Programing for games. We generate general knowledge
from a game, and specify the knowledge so that it is applicable in another
game. This is called Transfer Learning. We show the working of Transfer
Learning by taking knowledge from Tic-tac-toe and transfer it to Con-
nect4 and Connect5. For Connect4 the number of Heuristic functions we
developed is 30; for Connect5 it is 20.

1 Introduction

An important property of a learning process is generalization. Consequently, a
learning process is seen as an intelligent system able to generalize knowledge. For
example, if a person has learned to play a game well, then that person is able to
transfer his1 knowledge to similar games. This means that the person is able to
learn general knowledge about one game and then apply it as specific knowledge
in another game. Based on this observation, we formulate the following research
question: How do we construct a game-playing AI that has the same ability to
adapt to new games as a human being? In other words, how can we transfer
knowledge which is learned from one game to another game?

For this purpose, General Game Playing (GGP) is an appropriate research
topic. A general Game Player is able to play, in principle, all discrete, finite and
perfect information games (defined by General Games) without any human inter-
vention [1]. There exist many successful implementations for a General Game
Player [2–4]. GGP is a good test bed of algorithms generating game knowl-
edge automatically. An example of such a generation for alpha-beta search and
UCT-MC is reported by Walȩdzik and Mańdziuk [5]. Moreover, game knowl-
edge generation for Heuristic functions that are produced by neural networks
is described by Michulke and Thielscher [6]. However, these studies do generate
game knowledge for a specific game with the aim to play that game well. What
we are trying to achieve is (1) learning general knowledge from a game, and then
1 For brevity, we use ‘he’ and ‘his’, whenever ‘he or she’ and ‘his or her’ are meant.

c© Springer International Publishing Switzerland 2015
A. Plaat et al. (Eds.): ACG 2015, LNCS 9525, pp. 223–234, 2015.
DOI: 10.1007/978-3-319-27992-3 20

224 Y. Sato et al.

(2) applying the acquired knowledge as specific knowledge to another game. This
is called Transfer Learning. Transfer Learning is a learning strategy that trans-
fers previously learned general knowledge to improve the learning speed of a
new game [7]. In GGP, Hinrichs and Forbus have reported Transfer Learning by
analogy [8].

A telling example is learning the power of an additional square. This knowl-
edge can be transferred to another domain. For instance, consider the domain
of Tic-tac-toe. The game theoretical value of this game is draw. An interest-
ing question is: What is the game theoretical value when we add an additional
square as shown in Fig. 1? When using this board, the game is a win for the first
player, (start at square 9, with the threat to play on square 8; the idea is to use
the diagonal 2-6-10 as additional threat).

After this learning example, we consider the game of Chess. It is well-known
that a king and two knights are unable to force mate. The highest goal to reach
is stalemate. Assume that we augment the chess-board by an additional square
e0. Then the question again reads: What is the game theoretical outcome of the
KNNK endgame on this board? The answer reads: It is a win for the KNN side.
The end position is shown in Fig. 2. The important point for transfer learning is
that the power of an additional square in one game (Tic-tac-toe) may also unex-
pectedly change the original game theoretical outcome in another game (Chess).
See also [8]. We invite readers to find analogous transfer ideas of this kind.

In this paper we apply the Inductive Logic Programming (ILP) approach
to learn general knowledge for General Games. ILP is a successful approach,
e.g., learning Chess variants and rules is reported to be possible [9]. Some ILP
algorithms are able to make a reasonable specialization from general knowledge
by winning examples only. If the examples represent normal winning situations, a
winning strategy is expected to be learned. In our method, the general knowledge
are boolean functions which represent patterns in a game position. The patterns
may be winning position and losing position. The generated general patterns are
then made specific for incorporation in Heuristic functions that apply to another
game. This is an example of Transfer Learning between games.

Fig. 1. A Tic-tac-toe game board with
an additional square

Fig. 2. A Chess game board with an
additional square

Transfer Learning by Inductive Logic Programming 225

In this paper, Tic-tac-toe is chosen as the source game, Connect4 and Con-
nect5 are chosen as target games. We attempt to transfer general knowledge
that is learned from Tic-tac-toe to Connect4 and Connect5. In Sect. 2, we define
the general source concepts in such a way that they are suitable for transfer.
In Sect. 3, we generate the concepts that will be transferred from Tic-tac-toe. In
Sect. 4, we explain how ILP and Transfer Learning work. In Sect. 5, we transfer
concepts that are learned from Tic-tac-toe to Connect4 and Connect5 in order
to generate Heuristic functions for the game involved. In Sect. 6, we test the per-
formance of the generated Heuristic functions. Section 7 provides a discussion.
Section 8 concludes the paper.

2 Concepts in General Games

In GGP, games are described by a specific language, the Game Description
Language (GDL). GDL is a Lisp-like language which has sufficient keywords
to define General Games. General Games are discrete and finite; therefore, a
game position is described as a finite set of pieces which have finite arguments.
They form a string. If the game needs natural numbers, for example the x and y
coordinates of a piece, they are defined in a succ(essor) relationship by the
language [2].

There exist many types of concepts in General Games. For example, a pattern
in a game position must be a sort of concept in that game. All patterns have a
meaning. Some patterns indicate a close-to-win situation, while other patterns
have a meaning as close to loss. This must be included in the set of all concepts
of a particular game.

In GGP, patterns in General Games are also described by GDL. We are able
to convert GDL to Prolog. Therefore, pattern matching of logic programming
is able to describe patterns in General Games. Let us denote a piece in a game
position as a proposition (with the name piece). For example, in Tic-tac-toe, all
pieces are characterized by four coordinates (see Fig. 3). The first coordinate is
the type, in our case it is a cell. The second and third coordinates are the x and
y coordinates. The fourth coordinate is the occupation (x, o, or blank).

Fig. 3. A Tic-tac-toe game position as propositions

In Fig. 3, the first two pieces are described as

226 Y. Sato et al.

piece(cell,1,1,blank).

piece(cell,1,2,blank).

These two pieces are adjacent since the x coordinate is the same and the y
coordinate differs by one. Let us introduce four variables (viz. C, X, Y , and S)
to generalize a pattern in this position. Next to the above propositions, we also
have arithmetic propositions such as Y 2 is Y + 1 (notation is in Prolog). Now
consider the following pattern.

patternX :- piece(C,X,Y,S), Y2 is Y + 1, piece(C,X,Y2,S).

This pattern is a conjunction of three propositions (a conjunction is a com-
bination of propositions connected by and; in the example represented by a
comma). It is applicable to any game which has a two-dimensional game board
and symbols on it. If there exist two adjacent pieces which are represented by
the same symbol, this pattern returns true. In Fig. 4, we find in 4a and 4b the
pattern of two adjacent oo in the top row. In Fig. 4c, we see this pattern in
the second row (seen from the bottom) on position four and five. This way of
characterizing patterns is useful to distinguish game positions and is part of the
semantics of all games.

Fig. 4. A concept on Tic-tac-toe and Connect4

In games, there exist also other types of patterns. Examples are (1) a dis-
junction of propositions, and (2) patterns of time evolution of positions, e.g., a
sequence of changes of positions. For simplicity, we focus only on non-complex
patterns in a position. From now on, let us concentrate on straightforward pat-
terns in a game position (i.e., is the square occupied by x, o, or blank) and
consider them as concepts in the games.

3 Concept Generation from Tic-tac-toe

It is possible to generate concepts from game simulations. In this section, we
generate concepts from simulations of Tic-tac-toe. These concepts are useful
to play other games, e.g., Connect4 and Connect5. Below, we investigate the
generation of conjunctions and disjunctions.

Transfer Learning by Inductive Logic Programming 227

Our procedure is as follows. We generate conjunctions by replacing the same
symbols in the arguments by a variable. If the n-th arguments of pieces are the
same, then they are replaced by a variable. If the n-th arguments of pieces are
a number, a and b, then a is replaced by a variable and b is replaced by the
sum of the variable and b − a as is done in previous work [5]. The total result
of concept generation from random game simulations of Tic-tac-toe is seen in
Fig. 5. We generated two types of concepts. One is a binary concept and the other
one is a ternary concept. Binary concepts are patterns with two pieces. Ternary
concepts are patterns with three pieces. Concepts are learned from positions
after a playout. We see that if the number of simulations increases the number
of generated concepts also increases. After 2,000 simulations, the learning process
is saturated, i.e., 81 concepts are generated.

Fig. 5. Conjunction concept generation from Tic-tac-toe simulation

A disjunction of propositions is generated by Algorithm1 (a disjunction is
a combination of propositions connected by or). The algorithm has two types
of parameters, viz. concepts and positions. The input concepts are conjunctions
that are generated from Tic-tac-toe simulations as above. The input positions
are random simulations of Tic-tac-toe games with a winner. The algorithm gen-
erates a disjunction which matches the input positions maximally, and has a
quadratic running time. The result is given in Fig. 6. As the number of input
positions grows, the number of conjunction concepts in a disjunction also grows.
After 2,000 simulations, the learning process is saturated. Finally, a disjunction
made of 17 conjunctions is generated. Three examples in which conjunctions are
involved are as follows.

concept1 :- piece(X1, X2, X3, X4), X5 is X3 - 1, piece(X1, X2, X5, X4),

X6 is X5 - 1, piece(X1, X2, X6, X4).

concept2 :- piece(X1, X2, X3, X4), X5 is X3 + 1, piece(X1, X5, X3, X4),

concept3 :- piece(X1, X2, X3, X4), X5 is X3 - 2, X6 is X5 + 1,

piece(X1, X6, X3, X4).

One of the most complex learned pattern, learned from Tic-tac-toe, is as
follows.

228 Y. Sato et al.

Fig. 6. Disjunction concept generation from Tic-tac-toe simulation

concept11:- piece(X1, X2, X3, X4), X5 is X2 + 1, X6 is X3 + 1,

piece(X1, X5, X6, X4), X7 is X2 + 2, X8 is X3 + 2,

piece(X1, X7, X8, X4).

The example disjunction reads

disjunction :- concept1.

disjunction :- concept2.

disjunction :- concept3.

The concepts (i.e., conjunctions and disjunctions) that are generated in this
section are used to make a Heuristic function by ILP.

4 Concept Specialization by ILP

ILP is a research topic that generates theorems automatically [10]. For example,
it may create a theorem from positive examples, negative examples, and back-
ground knowledge. In our case, it is a specialization in the target game that is
built up by a number of general concepts from the source game. Concepts that
are generated in the previous section are too general to play a specific role in
that target game. Therefore they should be specified. For example, assume the
following concept (concept Y) is learned by generalization of a final position in
Tic-tac-toe (the position is assumed to be a win or a loss). For instance, take
concept Y as follows.

conceptY :- piece(X1, X2, X3, X4), X5 is X3 + 1, piece(X1, X2, X5, X4),

X6 is X5 + 1, piece(X1, X2, X6, X4).

Let us denote the following set of pieces as position 1.

piece(cell, 1, 1, o).

piece(cell, 1, 2, o).

piece(cell, 1, 3, o).

Transfer Learning by Inductive Logic Programming 229

Algorithm 1. disjunctionGeneration(concepts, positions)
restPosition ⇐ positions
restConcepts ⇐ concepts
result ⇐ empty list
while 0 < size of restPositions or 0 < size of restConcepts do

counts ⇐ count matchings for each restConcepts to restPositions
if 0 < max element of counts then

maxConcept ⇐ choose a concept with maximum matching from restConcepts

append maxConcept to result
remove maxConcept from restConcepts
remove positions which matches to maxConcept from restPositions

else
return make disjunction of result

end if
end while
return make disjunction of result

Subsequently, let us denote the following set of pieces as position 2.

piece(cell, 1, 1, x).

piece(cell, 1, 2, x).

piece(cell, 1, 3, x).

The concept Y is true for both position 1 and position 2.
Assume there exist two players: the o player and the x player. From concept

Y, it is impossible to evaluate whether o’s line is good and x’s line is bad; both
lines are evaluated as the same. To distinguish the o line from the x line, the
concept should be specified. In this case, X4 should be replaced by o or x. ILP
is useful to make (1) this kind of specialization and (2) to formulate Heuristic
functions for the specialization made under (1).

ILP algorithms find the most fitting proposition that explains the examples
by background knowledge. In this case, assume position 1 is a positive example
and position 2 is a negative example. Moreover, concept Y is taken as background
knowledge. Then, the ILP algorithm finds the only difference between position
1 and position 2, being the fourth argument. Consequently, it will make the
following specialization (i.e., the winning specialization is: replacing X4 by o).

conceptY :- piece(cell, 1, 1, o), X5 is 1 + 1, piece(cell, 1, X5, o),

X6 is X5 + 1, piece(cell, 1, X6, o).

This specialization satisfies our demand.
In the literatures we found many ILP implementations. For our ILP tool, we

used Aleph [11]. Aleph is a tool described by Muggleton and De Raedt [12,13].
What Aleph does is specifying general concepts that are learned from Tic-tac-toe
simulations in relation to a target game.

230 Y. Sato et al.

We tried two specializations, viz. a specialization to Connect4 and to Con-
nect5. Positive examples are game positions that end in a win; negative examples
are game positions that end in a loss. In these process, general knowledge is trans-
ferred from a simple game (Tic-tac-toe) to more complicated games (Connect4
and Connect5).

5 Transfer Learning by Concept Specialization

We tried Transfer Learning by specializing concepts from Tic-tac-toe to Con-
nect4 and Connect5. Positive and negative examples are given by random game
simulations. Specialized concepts are (1) a set of conjunctions and (2) a disjunc-
tion made of the conjunctions (see Sect. 3).

For Connect4, we experimented with a different number of positive examples
(and similarly negative examples). The range of the number of positive and
negative examples ran from 1 to 20 for conjunctions; and from 1 to 10 for the
best disjunction (we used only one disjunction in our experiments).

For Connect5, specializations were performed only for conjunctions. The
range of the number of positive and negative examples ran again from 1 to
20. For each set of positive and negative examples, a different specialization was
obtained.

In both cases, we see that if the number of examples increases, the number
of generated specified concepts also increases (see Fig. 7).

Let us now provide an example of a specified concept that is obtained by
the above ILP process. A Heuristic function generated by specialization of con-
junctions by 20 positive and 20 negative examples for Connect4 is made of the
following 5 specified conjunctions (see Fig. 8), consisting of concept 4, 6, 8, 10,
and 11.

concept4 :- piece(cell, 3, 2, r), Y1 is 3 + -1, Y2 is 2 + -1,

piece(cell, Y1, Y2, r).

concept6 :- piece(cell, 5, 3, w), Y1 is 5 + 2, Y2 is 3 + -1,

piece(cell, Y1, Y2, w).

concept8 :- piece(cell, 3, 2, b), Y1 is 3 + -1, piece(cell, Y1, 2, b).

concept10 :- piece(cell, 1, 2, r), Y1 is 1 + 2, Y2 is 2 + 2,

piece(cell, Y1, Y2, r).

concept11 :- piece(cell, 1, 3, w), Y1 is 1 + 2, Y2 is 3 + 1,

piece(cell, Y1, Y2, w).

The Heuristic function is made for the first player when playing Connect4.
Let us have a closer look at the specifications. We take concept 11. This concept
obtained the specification that the type of piece is characterized by cell; the x
coordinate is specified by 1, the y coordinate is specified by 3 and the occupation
by w that is the symbol for the white player (first player) in Connect4 (second
player is r).

For specialization toward Connect4, all conjunctions and the disjunction that
are obtained by Tic-tac-toe were used as background knowledge. However, not

Transfer Learning by Inductive Logic Programming 231

Fig. 7. Specialization to Connect4 and Connect5

Fig. 8. A Heuristic function for Connect4 seen as a set of specified concepts

all of them were used for the specialization. This means that some concepts are
useful, but others are not useful for this type of game. Here, we may anticipate
on the difference in complexity of Connect4 and Connect5. For instance, we
may state that, in a Tic-tac-toe specialization process toward Connect5, only
concepts which appear in the specialization for Connect4 are used as background
knowledge. This is a meta-concept, i.e., a relationship between concepts. The
meta-concept is suitable for reducing the computation time.

Once general concepts are specified to a target game, the specialized concepts
are useful to make a Heuristic function for that game. Our Heuristic functions
are a set of specialized concepts. If a specialized concept is true in a position,
we may evaluate the position; it will have a positive constant value. If some
specialized concepts are true in a position, the evaluated value of the position is
the total sum of the constant values.

232 Y. Sato et al.

In summary, a set of specialized concepts creates a Heuristic function. From
the specialization processes in this section, we generated 30 sets of specialized
concepts for Connect4 and 20 sets for Connect5. As a direct consequence, we
generated 30 types of Heuristic functions for Connect4 and 20 types of Heuristic
functions for Connect5.

6 Performance of Transfer Learning

The performance of the Heuristics functions generated by the specializations
for Connect4 and Connect5 were tested by game simulations. Game simulations
were performed by an alpha-beta player with a Heuristic function against a ran-
dom player (or an alpha-beta player). For Connect4 we had four experiments. In
experiment 1 and 2, the opponent player was set as a random player. In experi-
ment 3 and 4, the opponent player was set as an alpha-beta player. In experiment
1, the max search depth was set at 1 and the simulation size was set at 5,000. In
experiment 2, the max search depth was set at 3 and the simulation size was set
at 500. In experiment 3, the max search depth was set at 1 and the simulation
size was set at 500. In experiment 4, the max search depth was set at 3 and
the simulation size was set at 500. For Connect5 we performed only one exper-
iment (experiment 5). In experiment 5, the max search depth was set at 1 and
the simulation size was set at 500. The Heuristic functions were indexed by the
number of examples that were generated. Heuristic function 0 means the use of
alpha-beta search without Heuristic function. The results are seen in Figs. 9, 10
and 11.

Fig. 9. Game simulation with a player using a Heuristic function vs a random player
for Connect4

There exists a tendency that the winning ratio increases as the index of the
Heuristic functions also increases (see Figs. 9, 10 and 11). This means that the

Transfer Learning by Inductive Logic Programming 233

Fig. 10. Game simulation with heuris-
tics player vs random player for Con-
nect5, search depth 1

Fig. 11. Game simulation with heuris-
tics player vs 1-depth alpha-beta player
for Connect4

Heuristic functions that were generated by many positive and negative exam-
ples, have a better performance when compared to Heuristic functions that were
generated by a smaller number of positive and negative examples. The tendency
clearly appears for the depth-3 search case. We note that depth-1 searches totally
rely on Heuristic functions. However, our Heuristic functions are not perfect, they
have inaccuracies. Therefore we surmise that they guide the middle games suc-
cessfully, but miss sometimes a win in the endgame. This is why our Heuristic
functions perform better in 3-depth search than in 1-depth search, even though
the same Heuristic function is used.

7 Discussion

We observed Transfer Learning between Tic-tac-toe, Connect4, and Connect5.
The success relies on the fact that these games have a similar structure. For
example, the games have a two-dimensional game board, the goal of the game
is to make a line on the board and once a player puts a mark on the board, the
mark never moves.

To do more general Transfer Learning, more analysis for the semantics of
games is needed, e.g., the role of pieces needs to be analyzed. In other games,
there exist many pieces with a specific role. For example, in Chess and Shogi
(Japanese Chess) some pieces have the same legal moves but others do not. If
the similarity between pieces with the same movements has been learned, more
general Transfer Learning will be available.

8 Conclusions

In this paper, we successfully observed Transfer Learning by ILP between games
that have a similar structure. It was possible to produce a general background

234 Y. Sato et al.

knowledge from Tic-tac-toe simulations to make Heuristic functions for Connect4
and Connect5. Improvements of the generated Heuristic functions were observed
when we prepared an increasing number of positive and negative examples.

Acknowledgments. We would like to express great thanks to Aske Plaat for his
advice to this research, and Siegfried Nijssen for his advice on Inductive Logic Pro-
gramming.

References

1. Love, N., Hinrichs, T., Haley, D., Schkufza, E., Genesereth, M.: General Game
Playing: Game Description Language Specfication. Technical report LG-2006-01
Stanford Logic Group (2006)

2. Schiffel, S., Thielscher, M.: Fluxplayer: a successful general game player. In: The
Twenty-Second AAAI Conference on Artificial Intelligence, pp. 1191–1196 (2007)

3. Björnsson, Y., Finnsson, H.: CADIAPLAYER: a simulation-based general game
player. IEEE Trans. Comput. Intell. AI Games 1(1), 4–15 (2009)

4. Méhat, J.M., Cazenave, T.: Ary, a general game playing program. Board Games
Studies Colloquium (2010)

5. Walȩdzik, K., Mańdziuk, J.: An automatically-generated evaluation function in
general game playing. IEEE Trans. Comput. Intell. AI Games 6(3), 258–270 (2014)

6. Michulke, D., Thielscher, M.: Neural networks for state evaluation in general game
playing. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.)
ECML PKDD 2009, Part II. LNCS, vol. 5782, pp. 95–110. Springer, Heidelberg
(2009)

7. Taylor, E.M., Stone, P.: Transfer learning for reinforcement learning domains: a
survey. J. Mach. Learn. Res. 10, 1633–1685 (2009)

8. Hinrichs, R.T., Forbus, D.K.: Transfer learning through analogy in games. AI Mag.
32(1), 70–83 (2011)

9. Muggleton, S., Paes, A., Santos Costa, V., Zaverucha, G.: Chess revision: acquiring
the rules of chess variants through fol theory revision from examples. In: De Raedt,
L. (ed.) ILP 2009. LNCS, vol. 5989, pp. 123–130. Springer, Heidelberg (2010)

10. Mitchell, M.T., Keller, M.R., Kedar-cabelli, T.S.: Explanation-based generaliza-
tion: a unifying view. Mach. Learn. 1(1), 47–80 (1986)

11. Aleph. http://www.cs.ox.ac.uk/activities/machlearn/Aleph/aleph.html
12. Muggleton, S.H., De Raedt, L.: Inductive logic programming: theory and methods.

J. Logic Program. 19–20, 629–679 (1994)
13. Muggleton, S.: Inverse entailment and progol. New Gener. Comput. 13(3–4), 245–

286 (1995)

http://www.cs.ox.ac.uk/activities/machlearn/Aleph/aleph.html

Developing Computer Hex Using Global
and Local Evaluation Based on Board Network

Characteristics

Kei Takada(B), Masaya Honjo, Hiroyuki Iizuka, and Masahito Yamamoto

Graduate School of Information Science and Technology, Hokkaido University,
Kita 14, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0814, Japan

{takada,honjyo,iizuka,masahito}@complex.ist.hokudai.ac.jp

Abstract. The game of Hex was invented in the 1940s, and many stud-
ies have proposed ideas that led to the development of a computer Hex.
One of the main approaches developing computer Hex is using an eval-
uation function of the electric circuit model. However, such a function
evaluates the board states only from one perspective. Consequently, it
is recently defeated by the Monte Carlo Tree Search approaches. In this
paper, we therefore propose a novel evaluation function that uses net-
work characteristics to capture features of the board states from two
perspectives. Our proposed evaluation function separately evaluates the
board network and the shortest path network using betweenness cen-
trality, and combines the results of these evaluations. Furthermore, our
proposed method involves changing the ratio between global and local
evaluations through a support vector machine (SVM). So, it yields an
improved strategy for Hex. Our method is called Ezo. It was tested
against the world-champion Hex program MoHex. The results showed
that our method was superior to the 2011 version of MoHex on an
11 × 11 board.

1 Introduction

Hex is a classic board game. Classified as a two-player, zero-sum, perfect infor-
mation game, it was independently invented by Piet Hein and John Nash [1].
Hex is played on a rhombic board consisting of hexagonal cells. An 11 × 11
board is traditionally used, but it can be any size (Fig. 1 shows a 7 × 7 board).
The two players have uniformly colored pieces (e.g., black and white), and the
game proceeds by players placing their pieces in turn on empty cells. The two
black opposing sides of the board are assigned to the black player, and other two
opposing sides are assigned to the white player. The goal of the game is con-
necting the two opposing sides by own color pieces: the black player wins if the
black player successfully connects the black sides using black pieces, whereas the
white player wins if the white player successfully connects the white sides using
white pieces (Fig. 2). It is shown that the first player has a winning strategy [2],
and the game cannot end in a draw [3].

c© Springer International Publishing Switzerland 2015
A. Plaat et al. (Eds.): ACG 2015, LNCS 9525, pp. 235–246, 2015.
DOI: 10.1007/978-3-319-27992-3 21

236 K. Takada et al.

Fig. 1. 7 × 7 Hex gameboard Fig. 2. Game board showing a winning
configuration for black

Approaches to the development of computer Hex can be roughly classified
into two groups: those that use evaluation functions (e.g., Wolve [4], Six [5],
Hexy [6]), and those that use the Monte Carlo Tree Search (MCTS) (e.g.,
MoHex [7], Panoramex [8]). A well-known program that uses an evaluation
function is Wolve developed by Arneson [4]. The evaluation functions used
in Wolve and similarly developed programs are based on the electric circuit
model. This model involves evaluating board states only from one perspective.
By evaluating board states from a greater number of perspectives, since human
players change strategies in response to board states, we think that a better
evaluation function can be created.

In this paper, we propose a novel evaluation function using two different
perspectives, and develop a computer Hex program called Ezo by dynamically
changing the ratio between the strategies yielded by the two perspectives. Board
states are regarded as a network in order to capture these from different per-
spectives. Our evaluation function separately evaluates board states from the
board network and the shortest path network, and combines the two evalua-
tions. Global evaluation involves evaluating the overall strategy of board states,
and local evaluation evaluates local strategy directly relating to winning or losing
the match. In strategizing for Hex, it may be effective to capture the global strat-
egy at the beginning of the match, the local strategy becomes more important
in the latter part of the match. It is possible to change the criteria of evaluation
by changing the ratio between the global and local evaluations. This allows for
the development of a satisfactory strategy for Hex. We verify the effectiveness
of our novel evaluation function as well as the method to alter the ratio between
the two evaluations by comparing its performance with that of MoHex and
Wolve, respectively.

2 Proposed Method

We propose a novel evaluation function using network characteristics, and
develop a computer Hex program based on the evaluation function [9]. We first
describe the method of creating the board network from board states, followed by
the evaluation function formulated by using network characteristics calculated
from the board network. Finally, we detail our proposal and call it ComputerHex.

In this paper, we use players with black and white. Black is the first player
and White is the second.

Developing Computer Hex Using Global and Local Evaluation Based 237

2.1 Board Network Including Extra Board State Information

The states of the Hex board can be expressed as a network by treating cells as
nodes and connecting adjacent nodes with a link (or edge). The board network is
first created in this manner for each player, and is used to view the global board
states. The shortest path network between the sides of the board is then created
for each player to view the local board states, which are related to the results
of the matches. Gb

B(V,E) is the board network and Gp
B(V ′, E′) is the shortest

path network for Black, and Gb
W (V,E) is the board network and Gp

W (V ′, E′) is
the shortest path network for White, where V , V ′ are sets of nodes and E, E′

are sets of links. In order to consider future board states several turns ahead, we
use the idea of a virtual connection and virtual semi-connection [13]. Those
connections are included in the set of links E or E′.

Virtual Connection. V irtual connection (V C) and virtual semi-connection
(VSC) are connection strategies between two cell groups for the second player
and the first player, respectively. A connection strategy connects two cell groups.
V SC is a strategy whereby connections can be formed by placing the relevant
piece appropriately in a given move. V C is a strategy whereby pieces can be
connected even after an opponent’s move. If there are V Cs between the two
sides of the board belonging to a player, it means that the player has a win-
ning strategy. A large number of V Cs are found by applying two deduction
rules, called the and-rule and the or-rule. The and-rule can combine V Cs to a
create new V Cs or V SCs, and the or-rule combines non-interfering V SCs to
create new V Cs (Fig. 3). The algorithm for finding new V Cs or V SCs is called
h-search [13]. We use h-search and pattern matching to create V Cs. We aug-
ment our function by adding a few V C patterns that cannot be found by
h-search, as published by King [14].

(a) AND Deduction Rule (b) OR Deduction Rule

Fig. 3. Two deduction rules. x, y, u is a cell or cell group, and A, B, D is a node set
that constitutes V C or V SC

238 K. Takada et al.

2.2 Board Network Creation Algorithm

In order to evaluate the board state from different perspectives, we use two kinds
of networks: the board network and the shortest path network. We define cell i
as node vi, and connect it to adjacent nodes with a link (or edge). V is a set of
nodes and E is a set of links. Function C is defined as the condition of nodes.
C(vi) = 0 if vi is an empty cell, C(vi) = 1 if vi is occupied by Black, C(vi) = −1
if occupied by White. Further, the two opposing sides belonging to each player
are represented by nodes vs and vt. C(vs) = 1 and C(vt) = 1 for sides belonging
to Black, and C(vs) = −1 and C(vt) = −1 for those belonging to White.

The process to create a board network Gb
B(V,E) for Black is shown below.

The board network for White Gb
W (V,E) can be obtained in an analogous manner,

replacing black by white.

1. Links e(vi, vj) are added to E between all nodes adjacent to vi and vj .
2. Links e(vi, vs) are added to E between all nodes vi adjacent to vs, and e(vj , vt)

is added to E between all nodes vj adjacent to vt.
3. Nodes belonging to White vi (C(vi) = −1) are removed from V , and links

e(vi, vj) belonging to the vi are removed from E.
4. The h-search algorithm and pattern matching are applied to the board net-

work, and the V Cs yielded are added to E.

Figure 4 shows an example of a board network. The shortest path networks
Gp

B(V ′, E′) and Gp
W (V ′, E′) are created by nodes and links that form the shortest

path between vs and vt in order to evaluate the local strategy directly relating
to winning or losing the match.

2.3 Evaluation Function Using Network Characteristics

We propose an evaluation function based on network characteristics calculated
using the board networks and the shortest path networks that we created. The
evaluation function consists of global and local evaluations.

Fig. 4. Example of a 5×5 board state (left). The middle diagram shows the board net-
work Gb(V, E). The right diagram shows the shortest path network Gp(V ′, E′) between
vs and vt.

Developing Computer Hex Using Global and Local Evaluation Based 239

The objective of Hex to create a path between opposing sides, thus consider-
ing the variety of paths between any two nodes is important for successful Hex
strategies. To evaluate the global strategy on the board, we use the average of
betweenness centralities in the board network, which is an index of how a node
contributes to shortest paths in the network. Betweenness centrality can express
the variety of possible paths. On the contrary, the maximum value of between-
ness centrality in the shortest path network is used to evaluate local strategy
directly related to winning or losing the match. The net evaluation function Ev

is defined as follows:

Ev = (1 − α)
CW

CB
+ α

C ′
W

C ′
B

, (1)

where CB is the average of betweenness centralities of Black’s board network
Gb

B(V,E), and CW represents this for White’s network. C ′
B is the maximum

value of betweenness centrality in the shortest path network Gp
B(V ′, E′) between

vs and vt for Black, and C ′
W is that for White. α is a constant parameter used

to adjust the weight of the global and local strategies.
Betweenness centrality of node vi is calculated as follows,

bvi
=

2
(N − 1)(N − 2)

N∑

k=1

N∑

j=1

g(vi, vk, vj), (2)

where N is the number of nodes in the board network, and g(vi, vk, vj) is a
function that returns 1 when node vi is included in the shortest path network
between vk and vj , and 0 otherwise. In case vi = vk, vj = vk, or vi = vj ,
g(vi, vj , vk) is 0.

Boarding states with small values of CB or CW imply the existence of many
paths between any pair of nodes and many global strategies on the board. Thus,
small values of CB and large ones of CW indicate favorable states for Black
from the global perspective, and unfavorable ones for White. Figure 5 shows an
example of board states with small values of CB and large ones of CW . Moreover,
the board states for small values of C ′

B or C ′
W imply the existence of a large

number of paths as candidates for the shortest path between vs and vt, and many

Fig. 5. Example of a 5× 5 board state (left).The board network Gb
B(V, E) has a small

value CB , and Gb
W (V, E) has a large CW . It means that Black is playing better than

White.

240 K. Takada et al.

local strategies relating to the result of the match. In an analogous manner, small
values of C ′

B and large ones of C ′
W imply states favorable to Black with regard

to the local perspective related to the result. In sum, the global evaluation is
performed by the first term, CW /CB , and the local evaluation by the second
term, C ′

W /C ′
B . The constant parameter α adjusts the contribution weight of the

global and local evaluations.

2.4 Computer Hex Using Ev

We propose computer Hex CHEv
based on the above evaluation function. CHEv

uses Ev as the evaluation function and a 2-ply αβ search algorithm as a game-
tree search algorithm. In the electric circuit model, it is known that nodes with
higher energies are assigned higher priorities with regard to placing pieces. Sim-
ilarly, nodes with the high values of betweenness centrality are easy to place
pieces on. Hence, we use move ordering based on betweenness centrality. We
adopted 2-ply search because considerably more time is required to search for
the best move using 3-ply or 4-ply search. The search time for our proposed
method using 2-ply was approximately 35 s. In CHEv

, α is a constant value.

3 CHEv with Fixed α vs. MoHex

In order to evaluate our proposed method CHEv
for Hex, we tested it against

MoHex. MoHex is an MCTS player and the reigning Computer Olympiad
Hex gold medalist [11]. We downloaded the 2011 version of MoHex from the
Benezene project website1. MoHex has restricted the time to search future
moves to within 10 s.

CHEv
played against MoHex on an 11 × 11 board 100 times for each value

of α and each player (the first and the second player). The swap rule was not
considered. Each player started the search from the opening move. The game
judgment was performed by a 10-second Depth-First-Proof-Number (DFPN)
search downloaded from the website after every move [12]. The computer used
had a Phenom II X6 processor (six cores, 2.9 GHz clock).

Figure 6 shows the winning percentages of our method against MoHex for
each value of α. The highest winning percentage was obtained when α = 0.075
(79 %) for the first player and α = 0.05 (18 %) for the second player.

The highest winning percentage (α = 0.075) for our method was considerably
higher than that for a method that only used a global evaluation function (α = 0).
This means that both the global and local evaluations of our proposed method
worked in an appropriate manner. This was also true for the second player,
although the difference was small. Despite the fact that our evaluation function
only calculated simple network characteristics, e.g., betweenness centrality, etc.,
the winning percentage of the first player against MoHex was surprisingly high.

1 http://benzene.sourceforge.net/.

http://benzene.sourceforge.net/

Developing Computer Hex Using Global and Local Evaluation Based 241

0.0 0.2 0.4 0.6 0.8 1.0
0

20
40

60
80

10
0

α parameter

W
in

ni
ng

 P
er

ce
nt

ag
e

CHEv is the first player
CHEv is the second player

Fig. 6. CHEv with fixed α vs. MoHex (100 trials for each parameter).

4 Improving the Proposed Method

We have shown that our proposed evaluation function, which combines global
and local evaluations, is effective. However, the winning percentage of CHEv

against MoHex was 79 % of the first player and 18 % for the second player. In
other words, the winning percentage of MoHex against CHEv

was 82 % for the
first player and 21 % for the second player. Consequently, CHEv

is weaker than
MoHex.

We propose an extended evaluation method that alters the value of α in
response to board states. The local evaluation is important in determining the
winner of a match. We expect that it would be more effective to increase the
influence of the local evaluation in the latter part of matches because it is possible
for a match to last only a few turns. The value of α determines the ratio between
the global and local evaluations, and it is possible to increase the influence of
the local evaluation by increasing the value of α. In this section, we describe
a method to detect the time at which the value of α is changed using network
characteristics (4.1). Subsequently, we investigate the timing of the changes by
a support vector machine (4.2).

4.1 Effectiveness of Increasing α

In order to show that a higher value of α is effective in the latter part of matches,
we compare the winning percentages of the evaluation function with high and low
values of α. A high value of α was set to 0.5, and low values of α were set to 0.075
for the first player and 0.05 for the second player. These last two values were the
best ones obtained in Sect. 3. The initial board states were given by the history
of matches between CHEv

, with fixed low values of α, and MoHex. Therefore,
we could compare the winning percentages of the evaluation functions with fixed
high and low values of α for board states during matches. The comparison of
winning percentages clarified, for a given board state, whether a low or high value
of α should subsequently have been used. There were 659 board states for the

242 K. Takada et al.

0.0 0.2 0.4 0.6 0.8 1.0

−
10

−
5

0
5

10

turn

R
=

R
0.

5
−

R
0.

07
5

(a) CHEv is the first player.

0.0 0.2 0.4 0.6 0.8 1.0

−
10

−
5

0
5

10

turn

R
=

R
0.

5
−

R
0.

05

(b) CHEv is the second player.

Fig. 7. The difference in the number of wins between large α and small α.

first player and 655 for the second player in the history of the matches. Starting
from the board states, we compared the winning percentages. To calculate these,
we tested the matches starting from the same board states 10 times.

Figure 7 shows the difference between the number of wins obtained by using
keep-low α and those obtained using change-to-high α. The horizontal axis shows
the normalized number of turns, where 1.0 represents the end of a match. The
vertical axis shows the difference in the number of wins between high values of
α (α = 0.5) and low values (α = 0.075 or α = 0.05). This means that the plots
of high values at the vertical axis show that the winning percentages increased
by changing to higher α following the relevant board states. In the extreme case,
where the difference was 10, only high values of α could win against MoHex
and low values could never win following the relevant board states. The results
showed that there were some cases where α should have been changed to higher
values in the latter parts of matches.

It was clear that changing α can be effective. However, the kinds of board
states that should be changed and the appropriate time to increase the value
of α remain vague. The results also showed that changing the value of α at
inappropriate times can be detrimental. The next section contains an explanation
of a method to detect the timing of changes in values of α.

4.2 Creating Classifier by Using SVM

In order to capture features of the board states, the following 12 network char-
acteristics (six for each player) were used:

– the maximum, minimum, variance, and average of betweenness centralities
over all nodes of the board network (i.e. four characteristics),

– the maximum values of betweenness centrality in the shortest path network
(C ′

B , C ′
W);

– the shortest path length between vs and vt (dB , dW).

Developing Computer Hex Using Global and Local Evaluation Based 243

Each betweenness centrality (max, min, variance) measures the biases of the
relevant strategy. The average of betweenness centrality (CB , CW) captures the
global strategy, and C ′

B and C ′
W capture the local strategy. dB and dW estimate

how close a player is to victory.
Using the 12 network characteristics described above, we developed two clas-

sifiers for the first and the second player in order to classify board states into
cases where the values of α should or should not be changed. For this purpose, we
used a support vector machine (SVM), which is well-known as a high-precision
binary classifier and a method for supervised machine learning [15]. It learns
labels using training data and estimates these labels for new data.

The training data were collected from the results of Sect. 4.1. Higher values
on the vertical axis imply that α should have been changed to high values, and
low values mean that α should not have been changed in the relevant board
states. Therefore, we assigned a positive label (changing α) to a board state
if the value in Fig. 7 was greater than 4, and negative labels (maintaining the
value of α) to the other board states. The number of the board states satisfying
R > 4 was 42 for the first player and 12 for the second player. SVM learning
used the “kernlab” library in the statistical analysis software R, and performed
a non-linear classification using a kernel function [16]. Each parameter for SVM
was determined by a grid search.

5 Experiment

In order to show that our proposed computer Hex Ezo, which involves dynam-
ically changing the value of α, is superior to the fixed-α computer Hex, we
compared Ezo with Wolve, which uses the best available evaluation function
based on an electrical circuit model.

5.1 Proposed Method

Ezo uses Ev as the evaluation function, a 2-ply αβ search, and a classifier
developed using an SVM, as described in Sect. 4.2. Ezo uses move ordering
based on betweenness centrality, and takes approximately 35 s to search for a
next move. The value of α began at 0.075 for the first player or 0.05 for the second
player. When the classifiers output α = 0.5 from the network characteristics of
the board states, the value of α was changed to 0.5. Following this, α was kept
constant (α = 0.5).

5.2 Conditions

The winning percentage of Ezo against MoHex was compared with the winning
percentages of our fixed-α method against Wolve. Ezo was compared indirectly
with Wolve (through MoHex) in this manner because the matches between
the methods using evaluation functions were deterministic, and always generated
the same moves. Hence, direct comparison was difficult. Because the algorithm

244 K. Takada et al.

Table 1. The winning percentages of each computer Hex program for 100 trials
(first/second player). ± represents standard error, 68 % confidence.

Win % vs. MoHex

Ezo 92 ± 2.7/24 ± 4.2

CHEv (fixed α = 0.075 or α = 0.05) 79 ± 4.1/18 ± 3.8

Wolve 82 ± 3.8/42 ± 4.9

MoHex 83 ± 3.7/17 ± 3.7

of MoHex was based on MCTS, the winning percentages against MoHex could
be compared.

The experiment used four computer Hex programs, i.e., Ezo, the CHEv fixed-
α method, Wolve, and MoHex. The 2011 version of Wolve was downloaded
from the Benezene project site2. The swap rule was not considered. Each player
started the search from the opening move. The search time of Wolve was within
10 s, as for MoHex. The board size was 11 × 11, and 10-second DFPN search
was used for game judgment after each move.

5.3 Result

Table 1 shows the winning percentages for each computer Hex player against
MoHex. The results show that the winning percentages increased by changing
the value of α based on SVM for both the first and the second player. This means
that SVM could properly recognize board states and decide when α changed.
The number of matches where α changed was 19 for the first player and nine
for the second player. Ezo won 16 matches of 19, and eight out of nine for
the first and the second player, respectively. The winning percentage of fixed-α
was worse than that of Wolve. However, our improved method won more than
Wolve for the first player. Compared to MoHex, Ezo obtained a higher winning
percentage.

5.4 Discussion

The results in Sect. 5 show that increasing the value of α, which represents a
shift to the strategy, at a certain timing during the match is effective to obtain a
higher winning percentage. It is a popular method that is often used in the other
games, such as Go and Shogi (Japanese chess) [17]. For example, the phases of
the game in Shogi are roughly classified into the opening game, the middle game,
and the endgame. The transitions of the phases can be clarified and described
to some extent by the rules in the long history of the studies. This is not yet
clear in Hex. Wolve and MoHex do not explicitly use phase transition, though
it is possible for the evaluation function to use it indirectly. In our method, the

2 http://benzene.sourceforge.net/.

http://benzene.sourceforge.net/

Developing Computer Hex Using Global and Local Evaluation Based 245

transition timing data was collected from repeated matches starting from the
same board states, and the proper timings were trained using the SVM. Our
results showed that a trained SVM can detect the timing of the transition even
for unknown board states. Our proposed method has this advantage, and thus
was able to attain a higher winning percentage against MoHex.

The winning percentage of our proposed method for the first player was
better than that of Wolve, but was worse for the second player. According
to their original paper [4], the creators of Wolve used the same evaluation
function for the first and the second player. We also used the same evaluation
function, although a different value of the parameter was chosen for each player.
Despite the fact that our method was adjusted for the second player, the winning
percentage of the second player could not overtake that of Wolve. There are
two reasons for this.

One is that the evaluation function of Wolve was adjusted to win for both
the first and the second player. It is known that the strategies of the first player
are quite different from those of the second player because there always exist
winning strategies at the beginning of the match for the first player but not for
the second player. Unless the first player makes mistakes, i.e., loses the winning
strategies, the first player can win. The second player must make moves to
induce mistakes from the first player. Although the strategies are rather different,
the evaluation function of Wolve might be able to evaluate moves for both
strategies. On the contrary, our method would excel at evaluating moves in
order not to lose winning strategies because betweenness centrality measures
the balance of importance of each cell. To improve our method, it would be
better to find different network characteristics for the second player.

A second possible reason is that prior knowledge was implemented in Wolve,
and this might be effective only for the second player. For example, Wolve used
mustplay. Mustplay involves cells that the player must place on pain of losing the
match. Prior knowledge, especially mustplay, is useful for the second player but
not for the first player because the latter has winning strategies while the former
starts at a disadvantage. For these reasons, by implementing prior knowledge,
the winning percentage of our method can be further improved.

6 Conclusion

In this paper, we proposed a novel evaluation function for computer Hex that can
take into account the global and local strategies calculated from network char-
acteristics on the board network. The improved method can dynamically change
the weight of the global and local strategies. We showed that our improved
method is superior to Wolve, which uses the currently popular evaluation func-
tion based on an electrical circuit model. However, the winning percentage of the
second player in our method was worse than that in Wolve. In future research,
we intend to study methods to improve the winning percentage of the second
player in our Hex strategy, which might require different network characteristics
from the ones we considered here, or even prior knowledge. We also intend to
consider the swap rule.

246 K. Takada et al.

References

1. Browne, C.: Hex Strategy: Making the Right Connections. A.K. Peters Ltd, Natick
(2000)

2. Even, S., Tarjan, R.E.: A combinatorial problem which is complete in polynomial
space. J. Assoc. Comput. Mach. 23(4), 710–719 (1976)

3. Gale, D.: The game of hex and the brouwer fixed-point theorem. Am. Math. Mon.
75(10), 818–827 (1979)

4. Henderson, P.: Playing and Solving the Game of Hex, Doctoral Dissertation, pp.
1–149 (2010)

5. Hayward, R.B.: Six wins hex tournament. ICGA J. 29(3), 163–165 (2006)
6. Anshelevich, V.V.: Hexy wins hex tournament. ICGA J. 23(3), 181–184 (2000)
7. Huang, S., Arneson, A., Hayward, R.B., Müller, M., Pawlewicz, J.: MoHex2.0: a

pattern-based MCTS hex player. Comput. Games, 60–71 (2013)
8. Hayward, R.B.: Mohex wins hex tournament. ICGA J. 35, 124–127 (2012)
9. Takada, K., Honjo, M., Iizuka, H., Yamamoto, M.: Development of computer hex

strategy using network characteristics. Inf. Process. Soc. Jpn 55(11), 2421–2430
(2014)

10. Hayward, R.B., Arneson, B., Henderson, P.: Mohex wins hex tournament. ICGA
J. 32(2), 114–116 (2009)

11. Hayward, R.B.: Mohex wins hex tournament. ICGA J. 36(3), 180–183 (2013)
12. Arneson, B., Hayward, R.B., Henderson, P.: Solving hex: beyond humans. In: van

den Herik, H.J., Iida, H., Plaat, A. (eds.) CG 2010. LNCS, vol. 6515, pp. 1–10.
Springer, Heidelberg (2011)

13. Anshelevich, V.V.: A hierarchical approach to compute hex. Artif. Intell. 134(1–2),
101–120 (2002)

14. King, D.: Hall of Hexagons (2014). http://www.drking.org.uk/hexagons/hex/
index.html

15. Corters, C., Vapnik, V.: Support vector networks. Mach. Learn. 20, 273–297 (1995)
16. Karatzoglou, A., Smola, A., Hornik, K.: Kenel-Based Machine Learning Lab, R

Methods, Version 0.9–20 (2015)
17. Iida, H., Sakuta, M., Rollason, J.: Computer shogi. Artif. Intell. 134(1–2), 121–144

(2002)

http://www.drking.org.uk/hexagons/hex/index.html
http://www.drking.org.uk/hexagons/hex/index.html

Machine-Learning of Shape Names
for the Game of Go

Kokolo Ikeda(B), Takanari Shishido, and Simon Viennot

Japan Advanced Institute of Science and Technology, Nomi, Japan
{kokolo,sviennot}@jaist.ac.jp

Abstract. Computer Go programs with only a 4-stone handicap have
recently defeated professional humans. Now that the strength of Go pro-
grams is sufficiently close to that of humans, a new target in artificial
intelligence is to develop programs able to provide commentary on Go
games. A fundamental difficulty in this development is to learn the termi-
nology of Go, which is often not well defined. An example is the problem
of naming shapes such as Atari, Attachment or Hane. In this research,
our goal is to allow a program to label relevant moves with an associ-
ated shape name. We use machine learning to deduce these names based
on local patterns of stones. First, strong amateur players recorded for
each game move the associated shape name, using a pre-selected list of
71 terms. Next, these records were used to train a supervised machine
learning algorithm. The result is a program able to output the shape
name from the local patterns of stones. Including other Go features such
as change in liberties improved the performance. Humans agreed on a
shape name with a rate of about 82 %. Our algorithm achieved a similar
performance, picking the name most preferred by the humans with a rate
of about 82 %. This performance is a first step towards a program that
is able to communicate with human players in a game review or match.

1 Introduction

Until recently, the research about the game of Go was focused on obtaining strong
programs, but the best programs are now able to win against professionals with a
4-stone handicap, which is a level sufficient to play against most amateur players.
Apart from strength, a new target for research is now to entertain human players
or teach them how to improve at the game. Beginner players often learn the
game from strong players, but strong players are not all good teachers, especially
because other skills than strength are required for entertaining or teaching. There
are not so many skillful teachers and they are expensive, so there is a high
need for programs that would be able to teach the game to the players. Ikeda
et al. proposed the following 6 requirements for such a program: (1), acquire
an opponent model (2), control the advantage of the board position (3), avoid
unnatural moves (4), use various strategies (5), use a reasonable amount of time
for each move and resign at the correct timing, and (6) comment on the game
after it is completed [1].
c© Springer International Publishing Switzerland 2015
A. Plaat et al. (Eds.): ACG 2015, LNCS 9525, pp. 247–259, 2015.
DOI: 10.1007/978-3-319-27992-3 22

248 K. Ikeda et al.

In this research, we are interested in the last requirement of making the
program able to comment on the moves of the player. We consider only a sub-
problem, which consists of using the correct shape names (like Attachment or
Hane) to refer to game moves. Since the Go board is quite large (usually 19× 19),
Go players usually refer to moves with such shape names instead of the coordi-
nates that are used in many other games. Handling correctly these shape names
is a pre-requisite step for generating comments by a program, but it is also
useful in itself to help beginner players understand and memorize the names of
the shapes. In this research, we use machine learning to learn the shape name
associated to a given move and a given board state. The target game here is the
game of Go, but it must be noted that a similar method could be applied to
other games, for example to Chess, to output the name of tactical moves such
as “fork” or “discovered attack” from the board state.

2 Related Works

With the improvement of algorithms and hardware performance, the level of
computer players has now reached a sufficient level of strength for most games,
and more research is now done in the field of entertainment and naturalness.
For example, in the case of Mario Bros, which is a representative side-scrolling
game, there are computer competitions not only for finishing the level as fast as
possible, but also for playing as human-like as possible, or for generating levels
as fun as possible for humans [2].

Ikeda et al. proposed 6 requirements for entertaining players at the game of
Go, with a concrete approach for playing varied strategies or avoiding unnat-
ural moves [1], but no concrete approach was proposed for the requirement of
comments or more generally communication with the players.

A trial mode of discussion and comments can be found in some commercial
programs. For example, in “Yasashii Igo”, the computer players are able to speak
and can use to some extent the shape names instead of the coordinates, with
sentences like “The cut is a good move”. In the recent program “Tencho no
Igo 5”, the shape of the moves can be read by the voice of a professional female
player, which helps to improve the user experience [3]. It is not publicly disclosed
how these programs transform a move into the corresponding shape name, but
it is probable that they are using a rule-based system with a list of conditional
statements. One goal of our research is to develop a reproducible and systematic
method for such systems.

If it was possible to associate perfectly a shape name to a move in a given
board position, rule-based systems could be sufficient. However, there are many
shapes for which the difference is subtle and difficult to express simply, such as
“Magari vs Osae”, “Nobi vs Hiki”, “Tsume vs Extension”. A classical way to face
such a kind of problem is to use supervised machine-learning [4]. In supervised
machine learning, a large set of inputs with the associated correct outputs is
needed, and then the parameters of some function model that relates the input
to the output are optimized. For example, from a list of 100 examples of Nobi

Machine-Learning of Shape Names for the Game of Go 249

and Hiki, a machine-learning method can possibly find the relation between the
board positions and these shape names, and find the right shape names for a
given unknown board position, even if the definition of Nobi and Hiki is not
perfectly clear.

Machine-learning can be done through many possible algorithms, that can
be applied to learn many candidate function models between the input and the
output. Some important factors to consider are the number of different elements
of the input, and whether the input and the output are discrete or continuous
variables. In this research, machine-learning is done with decision trees, but
other classical algorithms like neural networks or support vector machines could
be considered too. Decision trees have the advantage of giving a result that can
be analysed, making it possible to know for what set of conditions on the inputs
a given output will be obtained.

3 Proposed Approach

In this research, our goal is to create a program able to tell the shape name
of a move, when given a move in a board position. The research is done in the
following order, with the same approach that we described in a technical report
in Japanese [5].

1. First, we evaluate the possibilities of existing programs to tell the name of
moves. Tencho Igo 5 is one strong program that has the ability
of telling the shape name of the moves, so we evaluate its per-
formance with strong human players.

2. Next, we perform a supervised machine-learning algorithm for single-move
shapes. Some Go terms refer to a set of consecutive moves instead of a single
move, but such higher-level terms are not considered in this research and left
as a future work. The learning data is a set of shape names each associated
to a move and a board position. It is gathered with the help of some strong
Go players. Then, we design features that seem promising to distinguish the
shapes, like the absolute position or surrounding pattern of stones. We output
the value of these features in a file, and the associated shape name given by the
human players. Classical machine-learning algorithms can then be performed
on this file. We use a simple decision-tree learning algorithm.

3. Then we ask professional players to evaluate the performance of our program
at telling the shape names of moves. Shape names are not always unique for
a given move, so the professionals were asked to evaluate the shape names in
a graded scale of satisfaction, instead of a binary correct/incorrect way.

4 Gathering of Learning Data and Performance
of Existing Methods

In this section we describe the limited set of target shapes (Sect. 4.1), the gath-
ering of learned data (Sect. 4.2), learning data (Sect. 4.3), and the performance
of existing methods (Sect. 4.4).

250 K. Ikeda et al.

4.1 Limited Set of Target Shapes

In this research, we try to learn the names of the most basic and classical
Go shapes. As shown in Table 1, we selected 71 basic shapes to be the tar-
get of the learning. For example, upper-Attachment, lower-Attachment, outside-
Attachment, inside-Attachment are not distinguished and are all classified as
an Attachment; high one-space Approach or two-space Approach are not dis-
tinguished and are all considered as an Approach. Moreover, terms referring to
the meaning of a move more than the shape are not included in the list, such as
Attack, Defence, Ladder-breaker, Kusuguri, Ko-threat, Yosumi or Kikashi.

4.2 Gathering of Learning Data

The learning data needed for this research consists of a list of board positions,
with the move played in that position and the name of the shape associated to
this move. To gather this learning data, we asked the cooperation of strong Go
players. We asked them to input the name of the shapes with the free software
Multigo [6], which can be used to read and also add comments to the record of
a Go game.

We use an input format such as “Tobi, Extension (90)”, that allows to record
not only one name for the shape, but multiple candidates. Multiple candidates
are allowed because it is frequent that the same move can be referred to by
multiple shape names. The number between parenthesis after a candidate name
for the shape is an evaluation between 70 and 100 by the human player of how
much this name is adapted to refer to the targeted shape. The evaluation of
the first candidate is always 100 points and so is not written. The players that
recorded the shape names and their evaluation were told that 90 corresponds to
a name almost as adequate as the first candidate, a value of 80 to a name that
feels not so right, and a value of 70 to a name that feels a bit strange but could
still be possible.

4.3 Learning Data

We describe in this section the details of the gathered learning data. The players
that recorded the shape names are 6 strong players, ranked above 4 dan on
the KGS server. The game records come from 60 games between professionals
or top amateurs players, for a total of 11,526 moves. As shown in Table 1, the
most frequent shape found in these moves is the Connection (Tsugi), found 1404
times, followed by the Osae, 1062 times.

There are big differences between the number of appearances of the shapes in
the game records. Some famous shapes appear less than 10 times, mainly because
despite the fact that they are famous, they appear rarely in a game. It implies
that it will probably be hard to classify them during the machine-learning.

Different game records were dispatched to the game players, except for one
game record (with 117 moves) that was given to all players. The frequency at
which the players recorded the same shape name on this common game record

Machine-Learning of Shape Names for the Game of Go 251

Table 1. Target shapes and number of appearances

Connection (1404) Sagari (223) Guzumi (88) Kata (50) Tsukidashi (18)

Osae (1062) Extension (209) Tobitsuke (87) Soi (46) Wariuchi (16)

Hane (940) Butsukari (203) Pincer (84) Narabi (46) Tobikomi (10)

Atari (827) Hai (193) Watari (80) Kado (44) Keima-

connection

(9)

Nobi (639) Hiki (192) Hanedashi (67) Tobisagari (40) Counter-

pincer

(7)

Push-

through

(612) Ko-tori (176) Tori (67) Hasamitsuke (39) Hoshishita (7)

Tobi (575) Approach (170) Shimari (66) Ogeima (37) Ryokakari (7)

Cut (531) Kaketsugi (151) Kake (66) Hirakizume (37) Hekomi (6)

Attachment (441) Nige (139) Uchikomi (65) Horikomi (36) Geta (4)

Keima (386) Kakae (135) Suberi (64) Oki (35) Takamoku (4)

Kosumi (352) Komoku (133) Boshi (62) Hazama (26) Mokuhazushi (5)

Nuki (351) Fukurami (123) Warikomi (62) Tachi (26)

Oshi (302) Hoshi (105) Tsume (60) Tsukekoshi (20)

Nozoki (295) Kosumitsuke (103) Takefu (54) Hanekomi (18)

Magari (251) Atekomi (101) San-san (54) Sashikomi (18)

was found to be 82.2% when considering only the first candidate, and only 87.0%
even when considering up to the second candidate. Despite the fact that 5 of
the 6 players come from the same community, a difference of almost 20 points
of percentage in the name used for a move shows the difficulty of defining and
assigning a shape name to a move. Figure 1 shows some examples where the
human players did not give the same shape name.

Fig. 1. Shapes labeled with multiple names by human players. Left: Hane, Osae. Mid-
dle: Kosumi, San-san. Right: Osae, Push-through, Cut, Magari, Guzumi

4.4 Performance of Existing Methods

In this section, we evaluate the performance of two existing programs for naming
the shapes of Go moves. The first program is the popular commercially available
Tencho No Igo 5, which has a mode for reading the shape names of the moves.

We gave 4 of the game records to the Tencho program, and it returned the
shape name for a total of 262 moves. Then, we asked to a strong Go player to

252 K. Ikeda et al.

evaluate the names given by Tencho and to classify them in the following 4
categories: (1) Correct shape name, (2) Unnatural shape name, (3) Absence of
shape name, (4) Incorrect shape name.

The 262 moves were divided in these 4 categories as follows. (1) 65.6 %,
(2) 2.3 %, (3) 30.2 %, (4) 1.9 %. It shows that the number of mistakes in the shape
names is small, but that in many cases, no shape name was given. Especially,
high-level shapes such as Atekomi, Guzumi or Hasami-tsuke are not output by
the program. We guess that for a commercial software, the priority was given to
avoiding mistakes rather than trying to give a shape name to all the moves.

Nomitan is a Go program developed in Japan Advanced Institute of Sci-
ence and Technology (JAIST) in the Ikeda and Iida laboratories. The program
contains a hand-coded set of 554 conditional rules that outputs the shape name
corresponding to a move. When applied on the 11,526 moves of Sect. 4.3, the
output of Nomitan matched the first candidate of human players with a rate of
73.7 %. The rate was 76.6 % when considering up to the second move. Compared
to the matching rate of 82.2 % and 87 % between human players, there is almost
a drop of 10 percentage points. This feature of Nomitan was originally designed
for a 9 × 9 board [7], and the absence of shapes such as Extension (Hiraki) and
Boshi is part of the reason for this drop.

The goal of this paper is to propose an approach that gives better perfor-
mance than the current existing programs.

5 Machine Learning and Preliminary Experiments

In this section we describe the design of the features (Sect. 5.1), a machine-
learning algorithm (Sect. 5.1), and preliminary experimental results (Sect. 5.1).

5.1 Design of the Features

It is preferable for the supervised machine-learning to use as inputs not the raw
board state, but the value of some well-chosen abstract features. The chosen
features have a direct influence on the performance of the machine-learning. Too
rough features prevent a good representation ability, but too detailed features
lead to overfitting and a poor generalization performance.

As a starting point, we have used the features already implemented in the
rule-based shape naming functions of Nomitan. These features are a simplified
version of features initially designed for a strong Go program. The only feature
really specific to shape naming is the feature related to the Cut. After removing
some useless features, this set of candidate features contains 25 features. The
distance used in the features is not the Euclidean distance, but the R-distance
defined by d(δx, δy) = δx + δy + max(δx, δy) as in [8].

– F1 (2 features) (x, y) coordinates so that y ≤ x ≤ 10 after rotation and reflec-
tion. Needed to categorize shapes such as Hoshi and Komoku.

– F2 Line of the stone, i.e., the distance to the closest board edge.

Machine-Learning of Shape Names for the Game of Go 253

– F3 R-distance to the closest stone of the same color. If there are no other
surrounding stones, a distance of 2 means a Narabi, 3 a Kosumi, 4 a Tobi,
and 5 a Keima.

– F4 R-distance to the closest enemy stone (opposite color). If there are no other
surrounding stones, a distance of 2 is an Attachment, 3 a Kado or Kata.

– F5 Line of the closest stone of the same color.
– F6 Line of the closest enemy stone. Often useful to distinguish Kado and

Kata, Oshi and Hai.
– F7 Number of enemy stones with only one liberty left in horizontal or vertical

contact. If this value is bigger than zero, the shape is often a Nuki.
– F8 Number of enemy stones with two liberties in horizontal or vertical contact.

If this value is bigger than zero, the shape is often Atari.
– F9 Number of stones of the same color with only one liberty left in horizontal

or vertical contact.
– F10 Number of stones of the same color with only two liberties left in hori-

zontal or vertical contact.
– F11 Number of liberties of the group of stones containing the stone just played.
– F12 Whether there is a stone of the same color left-down diagonally, and

enemy stones on the left and the down. This is directly related to a Cut
(Kiri).

– F13 (12 features) State of the 12 board intersections at R-distance 2 to 4 (0:
empty, 1: stone of the same color, 2: enemy stone, 3: out of the board).

5.2 Machine-Learning Algorithm

The supervised machine-learning is done with J48 (implementation in Java of
C4.5) from the data-mining Weka software [9,10] as follows.

1. The raw gathered data consists of a collection of board positions with their
associated moves and corresponding shape names, in the sgf file format. How-
ever, Weka cannot use directly such files, so we use first a script in combination
with Nomitan to compute the value of the features described in Sect. 5.1, and
output them in a csv file that can be read with Weka.

2. The csv file is read through Weka, and some information useless for the
machine learning (such as the game record number or the number of moves)
is removed. Then, a decision tree is constructed with J48, and the matching
ratio is obtained. It takes less than 1 s on a typical PC, and even the 10-fold
cross-validation takes less than 10 s.

3. We also obtain the matching ratio between the decision tree output and the
second shape name candidate.

5.3 Preliminary Experimental Results

In order to determine how well our machine-learning method works, we run a
preliminary experiment with the features described in Sect. 5.1. The matching
ratio after the machine-learning is as follows.

254 K. Ikeda et al.

– 75.3 % matching on the first candidate
– 76.8 % matching when considering up to the second candidate

It is already slightly better than the 73.7 % and 76.6 % of the rule-based system
of Nomitan, but still far from the 82.2 % and 87 % of matching ratio between
humans.

We compare in Table 2 the results of Nomitan and of the machine-learning
on some shapes related to the surrounding pattern of stones. The machine-
learning is clearly not very efficient on these shapes, which shows that some
improvement of the features is needed. The shapes appear a few hundred times,
so we can expect the machine-learning to work efficiently after a re-design of the
features.

Table 2. Proportion of correct answers for shapes related to surrounding patterns

Correctness ratio Nomitan Machine-learning

Magari (251) 76.6 41.6

Push-through (612) 83.2 59.3

Oshi (302) 85.4 65.2

6 Improvement of the Features and Evaluation
Experiment

In this section, we describe how we improved the features to solve the problematic
shapes presented in the previous section (Sect. 6.1), the relative importance of
the features (Sect. 6.2), the proportion of correct shape names and remaining
problems (Sect. 6.3), and the evaluation by a professional player (Sect. 6.4).

6.1 Improvement of the Features

The features related to the surrounding pattern of stones use 12 board intersec-
tions. The problem of these features is that it does not take into account rotation
and reflection equivalences. For example, the 8 patterns of Fig. 2 all correspond
to the same 3 × 3 pattern when rotations and reflections are considered. The
corresponding shape name is usually called Push-through (De). If the 8 patterns
are considered separately, it increases the number of conditions needed in the
decision tree, and more importantly, the quantity of learning data for each pat-
tern is greatly reduced. So, we included rotations and reflections in the design
of the features. The 8 patterns are reduced to a canonical pattern with the fol-
lowing order: place under the played stone as many stones from the player as
possible, then as many enemy stones as possible; then on the left, the right, the
bottom-left, the bottom-right and the top-left.

On the example of Fig. 2, (b) and (e) are given the priority with condition
1 of placing stones of the player below, and then the priority is given to (e) with

Machine-Learning of Shape Names for the Game of Go 255

condition 2 of placing stones of the players on the left. Then, all 8 patterns are
represented by the single (e) canonical pattern.

The effect of this improvement was quite important, with an increase of
5 points of the learning matching ratio. The rate of correct answers for the
3 shapes of Table 2 raised considerably to reach Magari: 75.5 %, Push-through:
83.6 %, Oshi: 81.9 %. We also tried to use the Tengen point (central point of the
Goban) as a reference in the order, to distinguish patterns oriented differently
towards the Tengen, but the improvement of the learning matching ratio was
only 1 point in that case. Keeping the information about the orientation towards
the Tengen is useful for some shapes such as Oshi and Hai, but for most other
shapes, it is more important to group the patterns under a single canonical
pattern. It increases the number of learning examples for this canonical pattern.

In addition, we have removed some too-fine features and tuned some para-
meters. The improvement from each of the following modifications was around
0.3 point so we cannot be sure that all of them would be welcome on a different
set of learning data. The six improvements read as follows.

– Feature related to the line of the stone is removed.
– The 8 intersections at an R-distance of 5 are added to the stone pattern.
– After rotation, the 3 intersections above and the 3 intersections below the

pattern are added to the pattern.
– After rotation, the number of stones of the player on the bottom-left, left,

bottom-right, bottom of the bottom-left, bottom of the bottom, bottom of
the bottom-right are added.

– Confidence parameter of J48 is set to 0.1 instead of the default 0.25 value.
– SubTree parameter of J48 is set to false.

After all these improvements, the matching ratio on the first shape name
reached 82.0 %, and 85.4 % when considering up to the second shape name. It is
significantly better than the performance of the rule-based system of Nomitan,
and quite close to the 82.2 % and 87.0 % matching ratio between humans.

Fig. 2. 8 equivalent patterns, often corresponding to a Push-through (De)

6.2 Relative Importance of the Features

We have also tested the influence on the matching ratio of removing some features
or changing the size of the local patterns. If only the local patterns (F13) are

256 K. Ikeda et al.

used, the matching ratio drops from 82.0 % to 75.3 %. If patterns of size 4 are
used instead of 5, it drops to 70.3 %, and then to 61.6 % with patterns of size 3.
If only F7 and F8 are removed, the maching ratio drops from 82.0 % to 78.9 %.
The recall of Atari and Nuki shapes is significantly decreased by 17 % and 37 %.
These shapes are clear examples where local patterns of stones are not sufficient.

6.3 Proportion of Correct Shape Names and Remaining Problems

The global matching ratio of the shape names is around 82 %, but there are
big differences between the shapes, some of them being better categorized than
others. On Fig. 3, we show the proportion of correct naming for the different
shapes, in function of the number of appearances of the shape in the game
records (logscale). The general tendency is that the proportion of correct nam-
ing increases with the number of examples, but even for a similar number of
appearances in the game records, there is a large spreading of the proportion
of correct naming between the shapes. For example, for shapes such as Hoshi,
Komoku, Takamoku, Mokuhazushi, the proportion of correct naming is almost
100 % even though these shapes appear only a small number of times. The reason
is that these shapes are easily identified by their position on the board.

Fig. 3. Proportion of correct names in function of the number of appearances

By contrast, Hirakizume, another shape with a similar low appearance ratio
has a very low proportion of correct naming, around 30 %. Figure 4 shows an

Machine-Learning of Shape Names for the Game of Go 257

example named as a Hirakizume by the program, but this shape is clearly not
a Hirakizume. The reason for this error is that the rule for Hirakizume in the
decision tree is “third or fourth line, with a stone of the same color at R-distance
6 and an enemy stone at R-distance less than 6”. These conditions are indeed
observed in a Hirakizume shape, but more conditions are needed such as “the
stone of the same color and the enemy stone must also be on the third or fourth
line”. However, there are only 35 appearances of Hirakizume (0.3 %) in the game
records, which is probably not sufficient to deduce the full set of conditions
characteristic of a Hirakizume shape. This current limitation of the machine-
learning could be improved by creating more learning data.

Fig. 4. Examples of naming mistakes. Hirakizume instead of Uchikomi (left), Boshi
instead of Nozoki (right)

6.4 Evaluation by a Professional Player

In order to evaluate if the shape naming obtained with the machine-learning is
satisfactory from the point of view of humans, we asked to a professional player
(Nihon-kiin 6-dan player) to evaluate the shape names recorded in some game
records. As explained in Sect. 3, we use a satisfaction scale instead of just a
binary correct/incorrect scale.

First, we selected randomly 5 game records from Sect. 4.2 where the shape
names were recorded by strong human players. For 3 of these game records, we
kept only the first 100 moves, and for the 2 other game records, we kept only the
moves from 101 to 200. Then, for this total of 500 moves, we named the shapes
with the decision tree obtained from the machine-learning by Weka.

The professional player was not told whether the shape names were recorded
by human players or by an algorithm, and was asked to rank the shape name of
each move in the following scale.

1. A professional would use the same shape name.
2. A professional would not use this shape name, but it is acceptable.
3. This shape name seems a bit awkward.
4. This shape name is clearly incorrect.

258 K. Ikeda et al.

Moreover, the shape name of each move was evaluated with a total score, with
roughly the following scale: 90 points if this shape name could be used in a
professional review of a game, 80 points if it could be used in a game review
by 3-dan amateur players, and 70 points if it could be used by 6-kyu lower-
level players. We show the result of the shape name evaluation in Table 3. The
columns (2), (3) and (4) show the average number of times in 100 moves where
the shape name was evaluated as (2), (3) or (4) by the professional player.

Table 3. Evaluation by a professional of the shape names given by amateur players,
and by the machine-learning method. Number of times of bad names and total score.

Game records from (2) (3) (4) Total score

Human players 5.4 3.8 4.0 84.6

Weka 4.4 3.6 4.6 83.8

The machine learning total score has an average of only 0.8 points lower
than the average total score of human players. The performance of the machine
learning is close to strong amateur players.

7 Conclusion

In this paper, we presented a method to name automatically the shape of moves
for the game of Go. We used machine-learning on learning data recorded by
strong human players, who were asked to record the name of each move in
a set of game records. Abstract features were used in the machine-learning,
and after optimization, the shape naming quality is close to the level of strong
amateur players, both in terms of matching ratio and from the point of view
of a professional player. There is a limited number of small mistakes, but the
main problem is that some big mistakes are found, mainly on shapes that appear
rarely. Hopefully, it could be improved by using more learning data, or designing
better abstract features. Naming correctly the shape of the moves will probably
be important in the future, in order to create programs that are able to teach
the game to human players.

Acknowledgment. This work was supported by JSPS KAKENHI Grant Number
26330417.

References

1. Ikeda, K., Viennot, S.: Production of various strategies and position control for
Monte-Carlo Go - entertaining human players. In: IEEE-CIG, pp. 145–152 (2013)

2. IEEE-CIG (Computer Intelligence and Games) Competitions. http://geneura.ugr.
es/cig2012/competitions.html

http://geneura.ugr.es/cig2012/competitions.html
http://geneura.ugr.es/cig2012/competitions.html

Machine-Learning of Shape Names for the Game of Go 259

3. http://batora1992.blog.fc2.com/blog-entry-17.html
4. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York

(2007)
5. Shishido, T., Ikeda, K., Viennot, S.: Japanese expression of the move of Go by

machine learning, 33rd GI Kenkyukai, Tokyo (2015)
6. http://www.ruijiang.com/multigo/
7. JAIST CUP 2012, Game Algorithm Competition, 9x9 Entertainment Go Contest.

http://www.jaist.ac.jp/jaistcup/2012/jc/9ro.html
8. Coulom, R.: Computing Elo ratings of move patterns in the game of Go. In: ICGA

Workshop
9. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publish-

ers, San Francisco (1993)
10. J48, open source java implementation of C4.5 algorithm. http://weka.sourceforge.

net/doc.dev/weka/classifiers/trees/J48.html

http://batora1992.blog.fc2.com/blog-entry-17.html
http://www.ruijiang.com/multigo/
http://www.jaist.ac.jp/jaistcup/2012/jc/9ro.html
http://weka.sourceforge.net/doc.dev/weka/classifiers/trees/J48.html
http://weka.sourceforge.net/doc.dev/weka/classifiers/trees/J48.html

Author Index

Althöfer, Ingo 65

Beckmann, Matthias 65, 89
Biswas, Tamal 135
Bonnet, Édouard 160
Browne, Cameron 147

Cazenave, Tristan 20
Chen, Jr-Chang 29

Graf, Tobias 1
Guid, Matej 122

Haworth, Guy 135
Hayward, Ryan B. 198
Honjo, Masaya 235
Hsueh, Chu-Hsuan 29

Iida, Hiroyuki 185, 223
Iizuka, Hiroyuki 235
Ikeda, Kokolo 247
Ishitobi, Taichi 185

Jamain, Florian 160
Janko, Vito 122

Kaneko, Tomoyuki 41, 210

Liu, Yun-Ching 53
Lorentz, Richard 12

Mandai, Yusaku 41

Neller, Todd W. 113

Papahristou, Nikolaos 177
Pawlewicz, Jakub 198
Plaat, Aske 185
Platzner, Marco 1

Refanidis, Ioannis 177
Regan, Ken 135

Saffidine, Abdallah 76, 160
Salzer, Friedrich 65
Sato, Yuichiro 223
Shishido, Takanari 247

Takada, Kei 235
Tanaka, Tetsuro 210
Teytaud, Olivier 76
Tseng, Wen-Jie 29
Tsuruoka, Yoshimasa 53

Uiterwijk, Jos W.H.M. 100

van den Herik, Jaap 185, 223
Viennot, Simon 247

Wu, I-Chen 29

Yamaguchi, Yoshiaki 113
Yamamoto, Masahito 235
Yen, Shi-Jim 29, 76
Yokoyama, Shu 210

	Preface
	Organization
	Contents
	Adaptive Playouts in Monte-Carlo Tree Search with Policy-Gradient Reinforcement Learning
	1 Introduction
	2 Background
	3 Adaptive Playouts
	4 Experiments in Computer Go
	4.1 Implementation
	4.2 Features
	4.3 Speed
	4.4 Playing Strength
	4.5 Two Safe Groups

	5 Related Work
	6 Conclusions and Future Work
	References

	Early Playout Termination in MCTS
	1 Introduction
	2 History
	3 Details
	3.1 Blending Mini-Max and EPT
	3.2 Progressive Widening
	3.3 When to Terminate
	3.4 Miscellaneous

	4 Conclusions
	References

	Playout Policy Adaptation for Games
	1 Introduction
	2 Online Policy Learning
	3 Experimental Results
	4 Conclusion
	References

	Strength Improvement and Analysis for an MCTS-Based Chinese Dark Chess Program
	Abstract
	1 Introduction
	2 Background
	2.1 CDC
	2.2 Previous Work for CDC Game-Playing Programs

	3 Incorporated Techniques
	3.1 Early Playout Terminations
	3.2 Implicit Minimax Backups
	3.3 Quality-Based Rewards

	4 Experiments
	4.1 Experiments for Incorporating Individual Techniques
	4.2 Combinations of Techniques

	5 Conclusion
	References

	LinUCB Applied to Monte-Carlo Tree Search
	1 Introduction
	2 MCTS and Algorithms in Multi-armed Bandit Problems
	2.1 UCT
	2.2 RAVE
	2.3 LinUCB

	3 LinUCT and Variants
	3.1 LinUCTPLAIN: Basic LinUCT
	3.2 LinUCTRAVE: LinUCB Combined with UCB1 in RAVE Form
	3.3 LinUCTFP: LinUCB with Propagation of Features

	4 Incremental Random Game Tree with Feature Vectors
	5 Experiments
	5.1 Robustness with Respect to Parameters
	5.2 Comparison with UCT

	6 Conclusion
	References

	Adapting Improved Upper Confidence Bounds for Monte-Carlo Tree Search
	1 Introduction
	2 Applying Modified Improved UCB Algorithm to Trees
	2.1 Improved UCB Algorithm
	2.2 Modification of the Improved UCB Algorithm
	2.3 Modified Improved UCB Applied to Trees (Mi-UCT)

	3 Experimental Results
	3.1 Performance on Multi-armed Bandits Problem
	3.2 Performance of Mi-UCT Against Plain UCT on 99 Go
	3.3 Performance of Mi-UCT Against Plain UCT on 99 NoGo

	4 Conclusion
	References

	On Some Random Walk Games with Diffusion Control
	1 Introduction
	2 Related Work
	2.1 Polya's Recurrence Theorem on Fair Random Walks Without Control
	2.2 Continuous Models with Diffusion Control
	2.3 Beckmann's Evacuation Models

	3 Play in (m,n)-Casinos
	3.1 The (1,2)-Casino
	3.2 The (1,3)-Casino
	3.3 Making the 23-Result for the (1,2)-Casino Plausible with Help of Polya's Theorem
	3.4 More General (m,n)-Casinos

	4 The (m,n)-Casinos on a Circle
	4.1 The (1,2)-Casino on the Circle
	4.2 The (1,3)-Casino on the Circle
	4.3 On the General Circle Structure

	5 Discussion and Conclusions
	5.1 Comparing Z and the Circle
	5.2 Open Problems
	5.3 Other Bonus-/Malus-Functions
	5.4 Remarks on Micro Control in Board Games

	References

	Go Complexities
	1 Introduction
	2 Rules, Variants, and Terminology
	2.1 Go Variants

	3 Results in Fully Observable Variants
	3.1 Japanese Rules
	3.2 Chinese Rules
	3.3 Killall Go Variant
	3.4 Atari Go

	4 Phantom Go
	4.1 Lower Bounds on Phantom Go Complexity
	4.2 Upper Bounds on Phantom Go Complexity

	5 Conclusion
	References

	On Some Evacuation Games with Random Walks
	1 Introduction
	2 The Basic Game
	3 Computing Optimal Strategies and Results
	4 Evacuation Models and Recurrence
	4.1 A Heuristic Strategy for Random Walks in Zn
	4.2 Simulation Results for the Heuristic Strategy on Zn

	5 Evacuation Speed
	6 Random Walk Half Life
	7 Conclusions
	References

	Crystallization of Domineering Snowflakes
	1 Introduction
	2 Combinatorial Game Theory and Domineering
	2.1 Introduction to the Combinatorial Game Theory
	2.2 Number and Nimber Games
	2.3 Sums of Games

	3 CGT Theorems for Domineering
	3.1 The Bridge Splitting Theorem for Domineering
	3.2 The Bridge Destroying Theorem for Domineering
	3.3 The Bridge Destroying Theorem for Domineering Networks

	4 Domineering Snowflakes
	4.1 The Domineering Snowflake
	4.2 Forming Chains of Snowflakes
	4.3 Crystallisation of Snowflakes

	5 Conclusions and Future Research
	References

	First Player's Cannot-Lose Strategies for Cylinder-Infinite-Connect-Four with Widths 2 and 6
	1 Introduction
	2 Related Work
	3 First Player's Cannot-Lose Strategy for Cylinder-Infinite-Connect-Four for Width 2
	4 First Player's Cannot-Lose Strategy for Cylinder-Infinite-Connect-Four for Width 6
	5 Conclusion
	References

	Development of a Program for Playing Progressive Chess
	1 Introduction
	2 Application Description
	2.1 Search Framework
	2.2 Position Heuristics

	3 Searching for Checkmate
	3.1 Algorithm
	3.2 Heuristics

	4 Experimental Design
	4.1 Experiment
	4.2 The Checkmates Data Set

	5 Results
	5.1 Average Times for Finding Checkmates
	5.2 Success Rates
	5.3 Self-play Experiments

	6 Conclusion
	References

	A Comparative Review of Skill Assessment: Performance, Prediction and Profiling
	Abstract
	1 Introduction
	1.1 The Chess Engine as Benchmarking Player
	1.2 A Framework of Requirements for Assessment Methods

	2 Useful Notation
	3 Survey of Assessment Methods
	3.1 Agreement Between AP and BP
	3.2 ‘Average Difference’ Methods
	3.3 ‘Whole Context’ Analysis: Deepest Evaluations Only
	3.4 ‘Whole Context’ Analysis: Evaluations at All Depths

	4 The Reference ELO Player
	5 Standards for a Research Community
	6 Summary and View Forward
	References

	Boundary Matching for Interactive Sprouts
	1 Introduction
	1.1 Motivation

	2 Representation
	2.1 Set Representation
	2.2 String Representation
	2.3 Canonical Representation

	3 Boundary Matching
	3.1 Boundary Equivalence
	3.2 Efficient Move Generation
	3.3 Algorithms
	3.4 Singleton Optimization

	4 Performance
	5 Discussion
	6 Conclusion
	References

	Draws, Zugzwangs, and PSPACE-Completeness in the Slither Connection Game
	1 Introduction
	2 Rules
	3 Elementary Properties of the Game
	4 Computational Complexity
	5 Conclusion
	A Draws are Impossible in SLITHER
	B A Square in a Corner or on the Edge of the Board
	C A Square with Two White Stones and a Black Stone
	C.1 Fig.12a
	C.2 Fig.12b

	D A Square with Three White Stones
	D.1 Fig.19a
	D.2 Fig.19b
	D.3 Fig.19c

	References

	Constructing Pin Endgame Databases for the Backgammon Variant Plakoto
	Abstract
	1 Introduction
	2 The Rules of the Plakoto Variant
	2.1 The Plakoto Variant
	2.2 Endgames with Pins
	2.3 Number of Endgame Positions

	3 Algorithm
	3.1 Plakoto Endgame Pin Database Algorithm
	3.2 Storage and Hashing

	4 Discussion
	4.1 Errors in Actual Play with One-Sided Databases
	4.2 Using the Databases to Evaluate the Neural Networks

	5 Conclusion and Future Work
	References

	Reducing the Seesaw Effect with Deep Proof-Number Search
	1 Introduction
	2 The Seesaw Effect
	3 DeepPN
	3.1 The Basic Idea of DeepPN
	3.2 Performance with Othello
	3.3 Performance with Hex
	3.4 Discussion

	4 Conclusion and Future Works
	References

	Feature Strength and Parallelization of Sibling Conspiracy Number Search
	1 Introduction
	2 Conspiracy Number Search
	2.1 Node Expansion
	2.2 Choosing the Search Interval

	3 Sibling CNS
	3.1 Gradual Forgetting of an Error
	3.2 Adding RAVE Statistics
	3.3 Transposition Table and Depth-First Implementation
	3.4 Parallel SCNS

	4 Experimental Results
	4.1 Parameter Optimization by CLOP
	4.2 Knockout Experiment
	4.3 Multi-threaded Tournament
	4.4 DeepHex versus MoHex

	5 Conclusions and Further Research
	References

	Parameter-Free Tree Style Pipeline in Asynchronous Parallel Game-Tree Search
	1 Introduction
	2 Related Work
	2.1 Parallelization of Alpha--Beta Pruning
	2.2 Integration of Computing Resources Through the Internet

	3 Game Position Parallelization
	3.1 Master Tree
	3.2 Tree Growth and Tree Style Pipeline
	3.3 Comparison with Similar Systems

	4 P-GPP: Pipeline GPP with Parameter-Free Approach
	4.1 Utility of Master Tree Based on Realization Probability
	4.2 Greedy Growth Algorithm
	4.3 Realization Probability in Practice

	5 Experiments
	5.1 Configurations
	5.2 Empirical Probability with Respect to the Rank of a Move
	5.3 Improvements in Strength

	6 Conclusion
	References

	Transfer Learning by Inductive Logic Programming
	1 Introduction
	2 Concepts in General Games
	3 Concept Generation from Tic-tac-toe
	4 Concept Specialization by ILP
	5 Transfer Learning by Concept Specialization
	6 Performance of Transfer Learning
	7 Discussion
	8 Conclusions
	References

	Developing Computer Hex Using Global and Local Evaluation Based on Board Network Characteristics
	1 Introduction
	2 Proposed Method
	2.1 Board Network Including Extra Board State Information
	2.2 Board Network Creation Algorithm
	2.3 Evaluation Function Using Network Characteristics
	2.4 Computer Hex Using Ev

	3 CHEv with Fixed vs. MoHex
	4 Improving the Proposed Method
	4.1 Effectiveness of Increasing
	4.2 Creating Classifier by Using SVM

	5 Experiment
	5.1 Proposed Method
	5.2 Conditions
	5.3 Result
	5.4 Discussion

	6 Conclusion
	References

	Machine-Learning of Shape Names for the Game of Go
	1 Introduction
	2 Related Works
	3 Proposed Approach
	4 Gathering of Learning Data and Performance of Existing Methods
	4.1 Limited Set of Target Shapes
	4.2 Gathering of Learning Data
	4.3 Learning Data
	4.4 Performance of Existing Methods

	5 Machine Learning and Preliminary Experiments
	5.1 Design of the Features
	5.2 Machine-Learning Algorithm
	5.3 Preliminary Experimental Results

	6 Improvement of the Features and Evaluation Experiment
	6.1 Improvement of the Features
	6.2 Relative Importance of the Features
	6.3 Proportion of Correct Shape Names and Remaining Problems
	6.4 Evaluation by a Professional Player

	7 Conclusion
	References

	Author Index

