
Chapter 8
The Invariant Subspace Problem

LOMONOSOV’S FAMOUS THEOREM

Overview. This chapter is about the most vexing problem in the theory of linear
operators on Hilbert space:

THE INVARIANT SUBSPACE PROBLEM. Does every operator on Hilbert space
have a nontrivial invariant subspace?

Here “operator” means “continuous linear transformation,” and “invariant sub-
space” means “closed (linear) subspace that the operator takes into itself.” To say
that a subspace is “nontrivial” means that it is neither the zero subspace nor the
whole space. Examples constructed toward the end of the last century show that
in the generality of Banach spaces there do exist operators with only trivial invari-
ant subspaces. For Hilbert space, however, the Invariant Subspace Problem remains
open, and is the subject of much research. In this chapter we’ll see why invariant
subspaces are of interest and then will prove one of the subject’s landmark theorems:
Victor Lomonosov’s 1973 result, a special case of which states:

If an operator T on a Banach space commutes with a non-zero compact oper-
ator, then T has a nontrivial invariant subspace.

This result, which far surpassed anything that seemed attainable at the time, is only
part of what Lomonosov proved in an astonishing two-page paper [71] that intro-
duced nonlinear methods—in particular the Schauder Fixed-Point Theorem—into
this supposedly hard-core-linear area of mathematics.

Prerequisites. Basics of inner-product spaces, Hilbert and Banach spaces.
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84 8 The Invariant Subspace Problem

8.1 Invariant Subspaces

For linear transformations on vector spaces for which no topology is assumed, “in-
variant subspace” will simply mean “subspace taken into itself by the transforma-
tion.” Eigenvalues give rise to an important class of nontrivial invariant subspaces.

Theorem 8.1 (Invariance of eigenspaces). Suppose T is a linear transformation
on a vector space V , and that T is not a scalar multiple of the identity. Let λ be an
eigenvalue of T . Then the subspace ker(T −λ I) is nontrivial and invariant for every
linear transformation on V that commutes with T .

Proof. Let E = kerT −λ I. By hypothesis there is a vector v∈V\{0}with T v= λ v.
Thus v ∈ E , so E �= {0}. Since T �= λ I we know E �=V . Thus E is nontrivial.

Now suppose S is a linear transformation on V that commutes with T . Suppose
v ∈ E . We wish to show that Sv ∈ E , i.e., that T Sv− λ Sv = 0. This follows right
away from the commutativity of S and T :

T Sv−λ Sv= STv−λ Sv = S(λ v)−λ Sv= λ Sv−λ Sv= 0. ��
Exercise 8.1 (Invariant subspaces without eigenvalues). Let C([0,1]) denote the Banach
space of complex-valued continuous functions on the unit interval [0,1], endowed with the
“max-norm”

‖ f ‖= max{| f (x)| : 0 ≤ x ≤ 1} ( f ∈C([0,1])).

Show that the Volterra operator, defined by

V f (x) =
∫ x

0
f (t)dt ( f ∈C([0,1]), x ∈ [0,1]),

is an operator that takes the Banach space C([0,1]) into itself, that has no eigenvalue, but
that nonetheless has nontrivial invariant subspaces.

Hyperinvariant subspaces. If a subspace of a Banach space is invariant for every
operator that commutes with a given operator T , we’ll call that subspace hyperin-
variant for T . Thus Theorem 8.1 shows that every operator on CN that’s not a scalar
multiple of the identity has a nontrivial hyperinvariant subspace. It’s not known,
however, if this is true for infinite dimensional Hilbert spaces. In other words, the
“Hyperinvariant Subspace Problem” is just as open as is the “Invariant Subspace
Problem.”

Why the Invariant Subspace Problem? In studying the Invariant Subspace Prob-
lem one is searching for two things: simplicity and approximation.

Simplicity. One hopes that restriction of an operator to an invariant subspace will
result in a simpler operator that provides insight into the workings of the original
one. This is just what happens in the finite dimensional setting where the study of in-
variant subspaces leads to Schur’s Theorem (Theorem 8.3 below), which asserts that
every operator on CN has—relative to an appropriately chosen orthonormal basis—
an upper-triangular matrix. Schur’s Theorem in turn leads to the Jordan Canonical
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Form (see, e.g., [51, Chap. 3]), which tells us that every operator on CN is similar
to either an operator of the form λ I +N, where λ is a scalar and N is nilpotent
(possibly the zero-operator), or to a direct sum of such operators.

For the infinite dimensional situation, suppose we have an operator T on a sepa-
rable Hilbert space and that T has a nontrivial invariant subspace M. Upon choosing
an orthonormal basis for M and completing it to one for the whole space we can
write—just as in the finite dimensional case—a matrix (an infinite one this time)
representing T with respect to this basis. This matrix will have a “block upper tri-
angular” form

[
A B
0 C

]
, where the matrix A represents the restriction of T to M, B

the restriction of PT to M⊥ (P being the orthogonal projection of our Hilbert space
onto M), and C the restriction to M⊥ of (I−P)T . In fact the existence of a nontrivial
invariant subspace is equivalent to T having such a matrix representation.

Approximation. For an operator T on a Banach space X , here’s a natural way to
construct an invariant subspace. Fix a non-zero vector x0 ∈ X and take the linear
span of its iterate sequence under T , i.e., look at the linear subspace of X consisting
of all vectors p(T )x0, where p is a polynomial with complex coefficients. This linear
subspace is taken into itself by T , hence so is its closure V = V (T,x0). Since V
contains x0, it is not the zero subspace; in fact V is the smallest T -invariant subspace
containing x0. If V �= X then we’ve produced a nontrivial invariant subspace for T .
On the other hand, if V = X then we have an approximation theorem: every vector
in X is the limit of a sequence of polynomials in T applied to the cyclic vector x0.

Example. Let T denote the linear transformation of “multiplication by x” on the
Banach space C([0,1]). More precisely,

(T f )(x) = x f (x) ( f ∈C([0,1]), 0 ≤ x ≤ 1).

It’s easy to see that T is a bounded operator on C([0,1]).

Claim: The constant function 1 is a cyclic vector for T .

Proof of Claim. For p a polynomial with complex coefficients, the vector p(T )1 is
just p, now viewed as a function on [0,1]. Thus V (T,1) is the closure in C([0,1]) of
the polynomials. Now convergence in C([0,1]) is uniform convergence on [0,1] so
by the Weierstrass Approximation Theorem [101, Theorem 7.26, p. 159],V (T,1) =
C([0,1]). ��

The operator of “multiplication by x” also makes sense for the Hilbert space
L2([0,1]), and since the continuous functions are dense therein, the function 1 is a
cyclic vector in that setting too. This is not to say that our operator T is devoid of
nontrivial invariant subspaces; it has non-cyclic vectors, too. For example, in the
setting of C([0,1]) each function f that takes the value zero somewhere on [0,1] is
a non-cyclic vector (exercise), so V (T, f ) is a nontrivial invariant subspace for T .
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Exercise 8.2. Characterize the cyclic vectors for the operator of “multiplication by x” when
setting is

(a) The Banach space C([0,1]).

(b) The Hilbert space L2([0,1]).

Exercise 8.3. Show that every operator on a non-separable Banach space has a nontrivial
invariant subspace. Thus the invariant subspace problem really concerns only separable
Banach spaces.

Exercise 8.4 (Reducing subspaces). A subspace is said to reduce an operator if it’s invariant
and has an invariant complement, i.e., if the whole space can be decomposed as the direct
sum of the original invariant subspace and another one. Not every operator, even in finitely
many dimensions, has a nontrivial reducing subspace; show that the operator induced on
C

2 by the matrix
[

0 1
0 0

]
does not have such a subspace. More generally the same is true for

every N ×N matrix whose N-th power is the zero-matrix, but whose (N − 1)-st power is
not.

Invariant subspaces and projections. Suppose X is a vector space, V a linear
subspace, and P a projection taking X onto V , i.e., P is a linear transformation with
P(X) = V whose restriction to V is the identity operator.1 The fact that P is the
identity map when restricted to its image can be expressed by the equation P2 = P.
Clearly the linear transformation Q = I −P is also a projection with PQ = QP = 0.
Since P+Q = I these equations tell us that the projections P and Q decompose X
into the direct sum of V = P(X) and W = Q(X).

Proposition 8.2. Suppose X is a vector space, V a linear subspace, P a projection
taking X onto V , and T : X → X a linear transformation on X. Then the following
three statements are equivalent:

(a) T (V )⊂V.
(b) PT P = T P.
(c) QTQ = QT, where Q = I−P.

Proof. Statements (a) and (b) both assert that the restriction of P to T (V ) is the
identity map on T (V ). As for the equivalence of (b) and (c): note that since Q= I−P
we have

QT Q = T −TP−PT +PTP = QT +(PTP−TP)

so QT Q = QT if and only PT P−TP = 0. ��

8.2 Invariant Subspaces in C
N

Invariant subspaces are important even for finite dimensional operators. For exam-
ple, the following 1909 result of Issai Schur is a fundamental result in matrix theory.

1 If X were a normed linear space with P continuous we could use the language introduced in
Sect. 4.1 and call P a retraction of X onto V .
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Theorem 8.3 (Schur’s Triangularization Theorem). Suppose V is a finite dimen-
sional complex inner-product space and T is a linear transformation on V . Then V
has an orthonormal basis relative to which the matrix of T is upper triangular.

Schur’s Theorem is really a statement about invariant subspaces. Suppose
dimV = N, and let V = (v j : 1 ≤ j ≤ N) be the orthonormal basis it promises
for the operator T (it’s important to note here that “basis” means: “linearly indepen-
dent spanning set, written as an ordered list”). Let [T ] denote the matrix of T with
respect to this basis, i.e., for each index j, the j-th column of [T ] is the column vec-
tor of coefficients of T v j with respect to the basis V . Thus the upper-triangularity of
[T ] asserts that T v j belongs to the linear span Vj of the basis vectors (v1,v2, . . . ,v j),
so for each j between 1 and N:

Vj is a nontrivial invariant subspace for T .

Schur’s Theorem therefore promises, for each operator T on V , the existence of a
descending chain of invariant subspaces

V =VN ⊃VN−1 ⊃ ·· · ⊃V1 ⊃V0 = {0} , (8.1)

each of which has codimension one in the preceding one. It’s an easy exercise to
see that the existence of such a chain is equivalent to that of the basis promised by
Schur’s Theorem.

Proof of Schur’s Theorem. This proceeds by induction on the dimension N. For
N = 1 the theorem is trivial, so suppose N > 1 and the result is true for N − 1. The
transformation T has an eigenvalue; let v1 be a unit eigenvector for this eigenvalue,
let V1 be the (one dimensional) linear span of the singleton {v1}, and let W = V⊥

1 ,
the orthogonal complement in V of V1. The subspace W has dimension N − 1, but
unfortunately it need not be invariant under T . To remedy this, let P denote the
orthogonal projection of V onto W and consider the operator R = PT , for which W
is invariant. Our induction hypothesis applies to the restriction R|W of R to W , and
produces an orthonormal basis (v2,v3, . . . ,vN) for W relative to which the matrix of
R|W is upper triangular.

Thus (v1,v2,v3, . . . ,vN) is an orthonormal basis for V . We aim to show that the
matrix of T with respect to this basis is upper triangular, i.e., that T v j lies in the
linear span of the vectors v1,v2, . . .v j for each index 1 ≤ j ≤ N. We already know
T v1 ∈V1, so suppose j > 1. We have

T v j = (I−P)Tv j +PTv j = (I −P)Tv j +Rv j

with I−P the orthogonal projection of V onto V1. Now R takes v j into the subspace
spanned by the vectors vk for 2 ≤ k ≤ j. Thus T v j belongs to the linear span of the
vectors (v1,v2, . . . ,v j), as we wished to prove. ��

Applications of Schur’s Theorem. Before moving on let’s see how Schur’s The-
orem makes short work of several fundamental results of linear algebra.
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Hermitian Operators. Let V be a finite dimensional inner-product space, with inner
product 〈·, ·〉. Then to each operator T on V we can attach another one called the
adjoint T ∗ of T , defined by

〈T x,y〉= 〈x,T ∗y〉 (x,y ∈V ). (8.2)

To say an operator T on V is hermitian means that T = T ∗. If (v1,v2, . . . vN) is an
orthonormal basis for V , then an operator T on V is hermitian if and only if (8.2)
holds with T = T ∗ when x and y run through the elements of this basis, i.e., when

〈T vi,v j〉= 〈vi,T v j〉= 〈T v j,vi〉∗, (1 ≤ i, j ≤ N),

where the notation λ ∗, when applied to a complex scalar λ , denotes “complex con-
jugate.” Thus:

An operator T on V is hermitian if and only if, with respect to every (or even
“some”) orthonormal basis, its matrix and the conjugate-transpose of this
matrix are the same.

With these preliminaries in hand we obtain from Schur’s Theorem—almost
trivially—one of the most important theorems of linear algebra:

Corollary 8.4 (The Spectral Theorem for hermitian operators). Suppose T is a her-
mitian operator on a finite dimensional inner-product space. Then the space has an
orthonormal basis relative to which the matrix of T is diagonal.

Proof. Schur’s Theorem promises an orthonormal basis for the space, relative to
which T has an upper-triangular matrix. With respect to this basis, the matrix of the
adjoint T ∗ has all entries above the main diagonal equal to zero. But T = T ∗, so the
matrix of T has all entries off the main diagonal equal to zero. ��

Why is this result is called a “spectral theorem?” For a finite dimensional op-
erator, the set of eigenvalues is often called the “spectrum,” and for each diagonal
matrix this is precisely the set of diagonal entries. With this in mind, it’s an easy
exercise to check that the above Corollary can be restated:

If T is a hermitian operator on a finite dimensional inner-product space V
then there is an orthonormal basis for V consisting of eigenvectors of T .

Normal Operators. To say an operator on a finite dimensional inner-product space,
or even a Hilbert space, is normal means that the operator commutes with its ad-
joint. Hermitian operators are normal, but not all normal operators are hermitian
(Example: a diagonal matrix with at least one non-real entry.). It turns out that the
spectral theorem for hermitian operators holds as well for normal operators. The
proof follows the hermitian model, once we have the following surprisingly simple
generalization of Schur’s Theorem.
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Theorem 8.5 (Schur’s Theorem for Commuting Pairs of Operators). If two oper-
ators commute on a finite dimensional inner-product space then the space has an
orthonormal basis with respect to which each operator has upper-triangular matrix.

Proof. This one is a minor modification of the induction proof of Theorem 8.3.
Let V be the inner-product space in question, with N = dimV , and let S and T be
operators on V that commute. The result we want to prove is trivially true for N = 1,
so suppose it holds for dimension N − 1, where N > 1. We want to prove it for
dimension N. Once again we observe that T has an eigenvalue—call it μ , but now,
instead of choosing just one unit T -eigenvector for μ , we look at the full eigenspace
E = ker(T − μI), and note that since S commutes with T , Theorem 8.1 guarantees
that this eigenspace is invariant for S. Thus the restriction of S to E has an eigenvalue
λ , hence a corresponding unit eigenvector v1, which by design is a λ -eigenvector for
T . As before, let V1 be the span of the single vector v1, let W =V⊥

1 , and let P be the
orthogonal projection of CN onto W . Let A = PS and B = PT . Both operators take
W into itself, so if we can show that their restrictions to W commute, our induction
hypothesis will supply an orthonormal basis for W relative to which the matrices
of these restrictions are both upper triangular. Upon adjoining v1 to this basis, then
applying to both S and T the argument that finished off the proof of Theorem 8.3,
we’ll be done.

In fact, it’s easy to see that A commutes with B on all of V . Since W⊥ = V1 is
invariant for both S and T , we know from the equivalence of (a) and (c) in Proposi-
tion 8.2 (with the roles of P and Q reversed) that PTP = PT and PSP = PS. Thus

AB = PSPT = PST = PTS = PTPS = BA,

where the third inequality uses the commutativity of S and T . ��

Corollary 8.6 (The Spectral Theorem for normal operators onCN). If T is a normal
operator on CN then there exists an orthonormal basis for CN relative to which the
matrix of T is diagonal.

The above proof of Schur’s Theorem for commuting pairs of operators can easily
be extended to finite collections of commuting operators. The following exercise
shows that this proof extends even further:

Exercise 8.5 (Triangularization for commuting families). Show that: If C is a family of
commuting operators on a finite dimensional inner-product space V , then there exists an
orthonormal basis of V relative to which each operator in C has upper-triangular matrix.

In particular, if the commuting family C consists of normal operators, there’s an orthonor-
mal basis for V relative to which each operator in the family has a diagonal matrix.

Outline of proof: The key is to prove that the family C has a common eigenvector; then
the proof can proceed like that of Theorem 8.5. Note first that there are nontrivial sub-
spaces of V that are C -invariant (meaning: “invariant for every operator in C ”). Example:
the eigenspace of any operator in C . Let m be the minimum of the dimensions of all the
eigenspaces of operators in C , so m ≥ 1. Choose a C -invariant subspace of CN having this
minimum dimension m. Show that every operator in C is, when restricted to that subspace,
a scalar multiple of the identity.
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8.3 Compact Operators

The result we seek to understand, Lomonosov’s Theorem, deals with two concepts:
invariant subspaces and compact operators. Having spent some time getting a feel-
ing for the former, let’s now take a moment to review some of the fundamental facts
about the latter.

A linear transformation on a normed linear space is said to be compact if it takes
the closed unit ball into a relatively compact set. Since relatively compact sets are
bounded it follows from Proposition C.8 (Appendix C, p. 196) that: Every compact
linear transformation is continuous, and so is an “operator.”

Exercise 8.6 (Basic Facts About Compact Transformations). Here all linear transformations
act on a normed linear space X .

(a) If dimX < ∞ then every linear transformation on X is compact.

(b) For operators A and K on X: if K is compact then so are AK and KA (i.e., the compact
operators on X form a closed ideal in the algebra of all operators).

The following exercise gives some feeling for the concept of compactness for a
natural class of concrete operators on the Hilbert space �2.

Exercise 8.7. For a bounded sequence Λ := (λk) of complex numbers, define the linear
“diagonal map” DΛ on �2 by DΛ (x) = (λkξk) for each vector x = (ξk) ∈ �2. Show that DΛ
is continuous on �2, and compact if and only if λk → 0.

Suggestion. For compactness: first show that a subset S of �2 is relatively compact if and
only if it is “equicontinuous at ∞” in the sense that

lim
n→∞

sup
f∈S

∑
k≥n

| f (k)|2 = 0.

As noted in Exercise 8.6(a), every operator on a finite dimensional normed linear
space is compact. By contrast we pointed out at the beginning of Sect. 7.2 that the
unit ball of an infinite dimensional Hilbert space is not compact; according to Exer-
cise 7.2 the same is true for C([0,1]). Thus the identity operator is not compact on
either of these spaces. More is true:

Theorem 8.7. If a normed linear space is infinite dimensional then its closed unit
ball is not compact.

This result, along with Proposition C.9 of Appendix C, shows that for normed
linear spaces, compactness of the closed unit ball characterizes finite dimensional-
ity. The key to its proof is the following lemma:

Lemma 8.8. Suppose X is a normed linear space, Y a finite dimensional proper
subspace, and 0 < r < 1. Then there exists a unit vector x ∈ X whose distance to Y
is greater than r.

Proof. Fix a vector x0 ∈ X that is not in Y , and let d denote the distance from x0 to
Y , i.e.,
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d = inf{‖x0 − y‖ : y ∈ Y}.
According to Corollary C.10 of Appendix C, the subspace Y is complete in the
norm-induced metric on X , thus Y is closed in X . It follows that d > 0, hence there
exists y0 ∈Y with ‖x0 − y0‖< d/r.

Claim: The unit vector x = x0−y0
‖x0−y0‖ is the one we seek.

Proof of Claim. If y ∈ Y then

x− y =
1

‖x0 − y0‖
[
x0 − (y0 + ‖x0 − y0‖y)︸ ︷︷ ︸

∈Y

]
.

Thus the term on the right in square brackets has norm ≥ d, so

‖x− y‖ ≥ d/‖x− x0‖> d/(d/r) = r,

hence the distance from x to Y is > r, as desired. ��
Proof of Theorem 8.7. Let X be an infinite dimensional normed linear space. Fix a
countable linearly independent set {xn}∞

1 in X and let Yn be the linear span of the
vectors {x1, . . . ,xn}. There results the strictly increasing chain

Y1 ⊂ Y2 ⊂ Y3 ⊂ ·· ·

of subspaces of X , each of which is finite dimensional hence closed in its successor.
By Lemma 8.8 there is, for each index n > 1, a unit vector yn ∈Yn at distance ≥ 1/2
to yn−1. Let y1 = x1/‖x1‖. Suppose the indices i and j are different, say i < j. Then
yi ∈ Yj−1, so ‖yi − y j‖ ≥ 1/2. Thus (yn) is a sequence of vectors in the closed unit
ball of X that has no convergent subsequence. ��
Corollary 8.9. The identity operator on a normed linear space is compact if and
only if the space is finite dimensional.

This suggests that for operators, compactness should be intertwined with finite
dimensionality. The following result gives one important way in which this is true;
it’s the beginning of what’s known as “The Riesz Theory of Compact Operators.”

Proposition 8.10. Suppose K is a compact operator on a Banach space. If λ �= 0 is
an eigenvalue of K then the eigenspace ker(K −λ I) is finite dimensional.

Proof. We may suppose without loss of generality that λ = 1 (exercise). Thus M :=
ker(K − I) is an invariant subspace for K and the restriction of K to M is a compact
operator on M. Since this restriction equals the identity operator on M, the closed
unit ball of M must be compact, hence M is finite dimensional by Theorem 8.7. ��

On infinite dimensional Banach spaces, compact operators need not have eigen-
values. The exercise below provides an example: the Volterra operator, which was
shown in Exercise 8.1 to have no eigenvalues.

Exercise 8.8 (Compactness Without Eigenvalues). Use the Arzela–Ascoli Theorem (Ap-
pendix B, Theorem B.8) to show that the Volterra operator is compact on C([0,1]).
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8.4 Lomonosov’s Theorem

We now turn to what is easily the most celebrated result on the existence of invariant
subspaces. Here’s a special case:

Theorem 8.11 (Lomonosov 1973). Every non-zero compact operator on an infinite
dimensional Banach space has a nontrivial hyperinvariant subspace.

This result says that not only does every operator commuting with a non-zero
compact have a nontrivial invariant subspace—already far more than was previ-
ously known—but also that there’s even a nontrivial subspace invariant for all the
operators commuting with the given compact. We’ll devote the rest of this section
to proving this remarkable result; the method of proof will provide an even more
remarkable generalization.

The key to Theorem 8.11 is the following Lemma which, although Lomonosov
did not state it explicitly, is in fact the crucial step in his argument.

Lemma 8.12. Suppose X is an infinite dimensional Banach space and K is a non-
zero compact operator on X. If K does not have a hyperinvariant subspace then
there is an operator A on X that commutes with K and for which KA has a fixed
point in X\{0}.

Proof that Lemma 8.12 implies Theorem 8.11. Suppose K is a non-zero compact
operator on X that has no hyperinvariant subspace. Let A be as in the Lemma.
Thus M = ker(AK − I) is not the zero subspace, and since AK is compact (by Ex-
ercise 8.6(b)) its eigenspace M is finite dimensional (Proposition 8.10), hence not
equal to X . Now K commutes with A, hence it commutes with AK. Theorem 8.1
guarantees that M is invariant for every operator that commutes with AK, hence M
is invariant for K. Since M is finite dimensional the restriction of K to M—hence K
itself—has an eigenvalue; call it λ .

The corresponding eigenspace E := ker(K−λ I) is a non-zero subspace of X that
is, by Theorem 8.1, invariant for every operator that commutes with K. Also, E �= X ;
if λ = 0 this follows from the fact that K �= 0, while if λ �= 0 then it follows from
the finite dimensionality of E . Thus E is a nontrivial hyperinvariant subspace for
K, contradicting our assumption that K had no such subspace. Conclusion: K does
have a nontrivial hyperinvariant subspace. ��

Proof of Lemma 8.12. We’re given a non-zero compact operator K on an infinite
dimensional Banach space X and are assuming that K has only trivial hyperinvariant
subspaces. Our goal is to produce an operator A that commutes with K such that AK
has a non-zero fixed point (i.e., has 1 as an eigenvalue).

Step I. An Algebra of Operators. Let A denote the collection of operators on X that
commute with K, the notation reflecting the fact that A is an algebra of operators,
i.e., closed under addition, scalar multiplication and multiplication (= composition)
of operators. In particular: for each x ∈ X the set of vectors A x = {Ax : A ∈A } is
a linear subspace of X (since A is closed under addition and scalar multiplication
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of operators) that’s taken into itself by each operator in A (since A is closed under
operator multiplication). Furthermore A contains the identity operator on X , so
if x �= 0 then A x �= {0}. Since we’re assuming K has only trivial hyperinvariant
subspaces, A x has to be dense for each 0 �= x ∈ X ; otherwise its closure would be a
nontrivial hyperinvariant subspace for K.

Step II. Some Sets. Since multiplication of K by a non-zero scalar changes neither
its compactness, its commutation properties, nor its hyperinvariant subspace struc-
ture, we may without loss of generality assume that ‖K‖= 1. Thus K is contractive:
‖Kx‖ ≤ ‖x‖ for every x ∈ X . Choose a vector x0 ∈ X for which ‖Kx0‖> 1. Because
‖K‖= 1 this implies ‖x0‖> 1, so the closed ball

B = {x ∈ X : ‖x− x0‖ ≤ 1}

does not contain the origin. Let C denote the closure in X of K(B). Since K is a
compact operator and B is a bounded subset of X , the set C is compact. In addition,
since B is convex and K linear, C is convex. Finally (and crucially), as the calculation
below shows, C does not contain the origin. Indeed, for each x ∈ X :

‖Kx‖= ‖K(x− x0)+Kx0‖ ≥ ‖Kx0‖−‖K(x− x0)‖ ≥ ‖Kx0‖−‖x− x0‖ ,

the last inequality arising from the contractivity of K. Thus for each x ∈ B we have
‖Kx‖ ≥ ‖Kx0‖− 1 := δ > 0, hence every vector in K(B), so also in its closure C,
has norm at least δ .

Some wishful thinking. If we could produce an operator A∈A for which A(C)⊂B, then KA,
which also belongs to the algebra A , would map the compact, convex set C continuously
into itself, so by Schauder’s theorem would have the desired fixed point. This is not quite
what’s going to happen, but it’s still worth keeping in mind as we proceed.

Step III. A Map with a Fixed Point. Let B◦ denote the interior of the closed ball
B. Suppose 0 �= y ∈ X . Since A y is dense in X there exists A ∈ A for which y ∈
A−1(B◦). Thus {A−1(B◦) : A ∈A } is an open cover of X\{0}, hence an open cover
of C. Since C is compact, it has a finite subcover U = {Uj}N

1 , where Uj := A−1
j (B◦).

While we haven’t produced a map A ∈ A with A(C) ⊂ B, we have produced a
finite collection {A1,A2, . . . ,AN} of operators in A , each of which takes a piece of
C into B, as shown by the right-hand side of Fig. 8.1.

Fig. 8.1 What we want (left) vs. what we’ve got (right)
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Lomonosov’s great insight was to use a standard “nonlinear” argument to glue the
operators A j together into a continuous map that takes C into B. By Proposition B.6
of Appendix B there is a partition of unity subordinate to the open covering U of
C, i.e., a set {p j : 1 ≤ j ≤ N} of continuous functions taking C into the unit interval
[0,1] that sum to 1 at each point of C, and have the property that for each index j
the function p j is ≡ 0 on C\Uj. Define Φ : C → X by

Φ(y) =
N

∑
j=1

p j(y)A jy (y ∈C) .

Being a finite sum of continuous maps, Φ is continuous. Moreover Φ(y) is, for each
y ∈ C, a convex combination of vectors in the convex ball B, so it, too, belongs to
B. Thus Φ is a continuous map taking C into B, hence K ◦Φ takes C continuously
into itself. Since C is a compact, convex subset of a Banach space, the Schauder
Fixed-Point Theorem (Theorem 7.1) guarantees that K ◦Φ has a fixed point y0 ∈C.

Step IV. Linearization. Let A = ∑N
j=1 p j(y0)A j, a linear combination of operators in

A and therefore also an operator in A . Moreover

(KA)y0 = K

(
N

∑
j=1

p j(y0)A jy0

)
= K(Φ(y0)) = y0 .

Thus A ∈ A and y0 ∈ X\{0} are the operator and vector we seek. This establishes
Lemma 8.12 and with it, Lomonosov’s Theorem 8.11. ��

Exercise 8.9. The hypothesis of Theorem 8.11 does not hold for every operator; there exist
operators that commute with no non-zero compact operator. For ϕ ∈C([0,1]) not identically
zero, let Mϕ denote the operator on C([0,1]) of “multiplication by ϕ ,” i.e.,

(Mϕ f )(x) = ϕ(x) f (x) (0 ≤ x ≤ 1; f ∈C([0,1]) .

If ϕ(x)≡ x we’ll write Mx instead of Mϕ . Show that the operators Mϕ are the only ones that
commute with Mx, and that none of these is compact. Hint: If T = Mϕ then ϕ = T1.

We mentioned earlier that there are Banach space operators with no nontrivial in-
variant subspace, but that the problem is still open for Hilbert space (see the Notes
at the end of this chapter for references and more details). Thus Exercise 8.9 would
have more significance if it were set in a Hilbert space. The following modification
does just that, replacing C[0,1] with the Hilbert space L2 = L2([0,1]) consisting of
(a.e.-equivalence classes of) measurable complex-valued functions on [0,1] whose
moduli are square integrable with respect to Lebesgue measure. The arguments are
similar to those of the exercise above, but they require a bit more work.

Exercise 8.10. Let L∞ denote the space of (a.e.-equivalence classes of) essentially bounded
complex-valued functions on [0,1]. Define multiplication operators Mϕ for ϕ ∈ L∞, and Mx,
as above. Show that if ϕ ∈ L∞\{0} then Mϕ is an operator on L2 that is not compact. Show
that if an operator T on L2 commutes with Mx, then T = Mϕ for some ϕ ∈ L∞.



8.5 What Lomonosov Really Proved 95
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According to Exercise 8.10 there exist operators on L2 that commute with no non-
zero compact operator. Consequently Lomonosov’s Theorem 8.11, spectacular as it
is, does not solve the Invariant Subspace Problem for Hilbert space. However the
story does not end here. At the very end of his paper [71], Lomonosov notes that the
reasoning he used to prove Theorem 8.11 yields more. In what follows, let’s agree
to call an operator “nonscalar” if it is not a scalar multiple of the identity operator.

Theorem 8.13 (Lomonosov). If a nonscalar operator T on an infinite dimensional
Banach space commutes with a non-zero compact operator, then T has a nontrivial
hyperinvariant subspace.

Our original Lomonosov Theorem implies that, on an infinite dimensional Ba-
nach space, every operator that commutes with a non-zero compact operator has a
nontrivial invariant subspace. This one implies that a nontrivial invariant subspace
exists for every operator that commutes with a nonscalar operator that commutes
with a compact one.

Proof of Theorem 8.13. Let X be our infinite dimensional Banach space. The proof
of Lemma 8.12 goes through word-for-word to establish this:

Lemma 8.12, Enhanced. Suppose A is an algebra of operators on X, and K is
a non-zero compact operator on X. Suppose there is no nontrivial closed subspace
invariant for every member of A . Then there exists an operator A ∈ A for which
KA has a fixed point in X\{0}.

Suppose T is a nonscalar operator on X that commutes with our non-zero com-
pact operator K. Let A denote the algebra of all operators that commute with T . We
wish to show that there is a closed subspace, neither the zero subspace nor the whole
space, that is invariant under every operator in A . Suppose this is not the case. Then
by the enhanced Lemma 8.12 we know that there exists A ∈A such that KA has a
fixed point in X\{0}. The eigenspace M := ker(KA− I) is, just as before: �= {0},
finite dimensional so �= X , and invariant for every operator that commutes with KA.
Since T commutes with both K and A, it commutes with KA, hence M is invariant
for T . The restriction of T to the finite dimensional invariant subspace M therefore
has an eigenvalue λ . The eigenspace Mλ := ker(T −λ I) is a closed subspace of X
that is: not the zero subspace, not X (because T is nonscalar), and invariant for every
operator that commutes with T . But we’ve assumed that A has no such subspace.
Contradiction! Therefore A does have such a subspace. ��

Notes

Schur’s Triangularization Theorem. This occurs in Schur’s paper [109, p. 490],
where it’s applied to the study of integral equations. According to Horn and Johnson
[51, p. 101], Schur’s Theorem is “perhaps the most fundamentally useful fact of
elementary matrix theory.” Exercise 8.5 is from [51], see in particular Theorems
1.3.19, pp. 63–63 and 2.3.3, p. 103.
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Compact operators. Lemma 8.8 is due to F. Riesz; it’s Lemma 1 on p. 218 of his
book [98] with Sz.-Nagy. Sections 76–80 of this book contain a nice exposition,
set in the Hilbert space L2, of the Riesz Theory of Compact Operators, a funda-
mental piece of which is—as we noted above—Proposition 8.10. The Riesz theory
shows that compact operators behave “spectrally” very much like operators on fi-
nite dimensional spaces. For a modern exposition set in Banach spaces, see [103,
Sects. 4.16–4.25, pp. 103–111]. J. H. Williamson showed in [124] that with the
proper definition of “compact operator” the Riesz theory carries over to arbitrary
(Hausdorff, but not necessarily locally convex) topological vector spaces.

Lomonosov’s Theorem: prehistory. In the early 1930s von Neumann proved that ev-
ery compact operator on Hilbert space has a nontrivial invariant subspace. He never
published this result, and it was rediscovered about thirty years later by Aronszajn
who, along with K. T. Smith, simplified the proof and in [4] generalized the result
to Banach spaces.

The work of Aronszajn and Smith suggested the question of whether or not every
operator whose square is compact has a nontrivial invariant subspace. This remained
open until 1966 when Bernstein and Robinson in [11] showed, using non-standard
analysis, that an operator has a nontrivial invariant subspace whenever some poly-
nomial (not ≡ 0) in it is compact.

Various authors refined the Bernstein–Robinson proof, replacing their polyno-
mial hypotheses with one of the form: “Some of limit of polynomials or rational
functions in the operator is compact.” Lomonosov’s results superseded most of this
earlier work. The version presented here of Lomonosov’s work closely follows his
original paper [71], as well as the exposition [92] of Pearcy and Shields.

Chains of commutation. For operators S and T on some Banach space, let’s write
T ↔ S whenever S commutes with T , and let’s write K for a generic non-zero com-
pact operator. Theorem 8.11 implies that:

T ↔ K =⇒ T has a nontrivial invariant subspace.

We’ve observed that, thanks to Exercise 8.10, the above consequence of
Lomonosov’s theorem doesn’t solve the Invariant Subspace Problem for Hilbert
space. However Theorem 8.13, the “real” Lomonosov Theorem, tells us that:

T ↔ S (nonscalar) ↔ K =⇒ T has a nontrivial invariant subspace,

so it makes sense to ask if this might solve the Invariant Subspace Problem for
Hilbert space, i.e., “Does every operator on Hilbert space commute with a nonscalar
operator that commutes with a non-zero compact?” This hope was destroyed in 1980
by Hadwin et al. [44].

One might still hope to solve the Invariant Subspace Problem by extending
Lomonosov’s method to get a result for longer “commutation chains.” Unfortunately
Troitsky in [119] showed that at least for the Banach space �1 there’s no hope for
such a result (see below for more details).
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Counterexamples for Banach spaces. Per Enflo produced the first example of an
operator on a Banach space possessing no nontrivial invariant subspace. Enflo’s
paper is [38, 1987], but his result was already circulating in preprint form over a
decade earlier. A few years after Enflo released his preprint, Charles Read produced
a much simpler counterexample, and then went on to find one set in the sequence
space �1 [95, 1986]. Read later gave examples of Banach-space operators having no
closed invariant subset [96, 1988].

In [119] Troitsky showed for Read’s operator T on �1 that there exist non-
scalar operators S1 and S2 on �1 such that T ↔ S1 ↔ S2 ↔ K, thus showing that
Lomonosov’s arguments cannot be extended to handle longer commutation chains.

In a totally different direction Argyros and Haydon [3] recently showed that there
exist Banach spaces on which every bounded operator has the form “compact plus
scalar multiple of the identity.” Thus every bounded operator on such a space has a
nontrivial invariant subspace (by the Aronszajn-Smith theorem), and even one that
is hyperinvariant (by Lomonosov’s theorem). Needless to say, such Banach spaces
do not occur in the course of every-day mathematical life.

The current state of affairs. It’s impossible to summarize quickly the many research
efforts currently under way related to the Invariant Subspace Problem. The book [24,
2011] is an up-to-date exposition of the subject, while [94, 2003] is the standard
reference for the state of the art circa 1973, and contains an outline, along with
extensive references, of subsequent results up to 2003.


	8 The Invariant Subspace Problem
	8.1 Invariant Subspaces
	8.2 Invariant Subspaces in CN
	8.3 Compact Operators
	8.4 Lomonosov's Theorem
	8.5 What Lomonosov Really Proved
	Notes


