
Chapter 4
Brouwer in Higher Dimensions

THE BROUWER FIXED-POINT THEOREM IN ALL FINITE DIMENSIONS

Overview. Having discussed the Brouwer Fixed-Point Theorem (Chap. 1) and
proved it for triangles (Chap. 2), we’re ready to prove it in every dimension for
closed balls and even for compact, convex sets. Our proof will be quite different
from that of Chap. 2, with the combinatorics of Sperner’s Lemma replaced by meth-
ods of analysis.

Prerequisites. Undergraduate-level real analysis, especially calculus of functions
of several variables. Some metric-space theory may be helpful, but is not required;
all the action takes place in R

N .

4.1 Fixed Points and Retractions

To say that a metric space (S,d) has the “fixed-point property” means that every
continuous mapping of the space into itself has a fixed point. Thus the Brouwer
Fixed-Point Theorem can be restated:

Theorem 4.1. For every positive integer N, the closed unit ball of RN has the fixed-
point property.

Our proof of Brouwer’s theorem will involve reduction to an equivalent result
about an important class of mappings called retractions. Suppose S is a metric space
and A is a subset of S. To say that a continuous mapping P : S → A is a retraction of
S onto A means that P(S) = A and the restriction of P to A is the identity map on A.
When this happens we’ll call A a “retract” of S.

Exercise 4.1. A continuous mapping P is a retraction onto its image if and only if P◦P = P.

Perhaps the most familiar example of a retraction is a linear projection taking
R

N onto a subspace. Here are two such examples, where S =R
2, A is the horizontal

axis, and x = (ξ1,ξ2) is a typical vector in R
2.
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42 4 Brouwer in Higher Dimensions

(a) Let P(x) = (ξ1,0). Here P is the orthogonal projection of R2 onto the hori-
zontal axis.

(b) Let P(x) = (ξ1 + ξ2,0). Now P is a 45◦ projection onto the horizontal axis.

Here’s an example more relevant to our immediate purposes. Consider a closed
annulus in R

2 centered at the origin, having outer radius 1 and some positive inner
radius. For x in this annulus let P(x) = x/|x|, where | · | denotes the Euclidean norm
on R

2. Then P is a continuous map taking the annulus onto its outer boundary, the
unit circle, upon which its restriction is the identity map. Thus the unit circle is a
retract of the annulus. This example is of interest to us because no such mapping
exists for the unit disc:

The unit circle not a retract of the closed unit disc.

This follows immediately from the N = 2 version of the Brouwer Fixed-Point The-
orem (Chap. 2). Indeed, if there were a retraction P taking the closed unit disc onto
the unit circle, then Q = −P would be a continuous mapping of the disc into itself
(more precisely: onto the unit circle), that has no fixed point.

This argument for the disc works just as well for the closed unit ball of RN so:
The Brouwer Fixed-Point Theorem for dimension N will show that no closed ball
in R

N can be retracted onto its boundary. It is the converse of this result that will
concern us for the rest of this chapter. Our strategy will be to prove, independent of
Brouwer’s Theorem:

Theorem 4.2 (The No-Retraction Theorem). For each positive integer N: There is
no retraction taking the closed unit ball of RN onto its boundary.

We’ll show in the next section that the No-Retraction Theorem implies the
Brouwer Fixed-Point Theorem, after which we’ll give our “Brouwer-independent”
proof of the No-Retraction Theorem.

4.2 “No-Retraction” ⇒ “Brouwer”

We’ve already noted (Chap. 1, Sect. 1.6) that for N = 1 Brouwer’s Theorem follows
from the Intermediate Value Theorem of elementary calculus, so now we’ll work in
R

N with N > 1, employing the notation | · | for the Euclidean norm in that space.
Suppose the closed unit ball B of RN does not have the fixed-point property, i.e.,

that there is a continuous map f : B → B that has no fixed point. We’ll show that f
can be used to construct a retraction of B onto its boundary, thus establishing (the
contrapositive equivalent of) the result we want to prove.

To visualize this retraction, note that since we’re assuming f fixes no point of
B we can draw, for each x in B, the directed half-line that starts at f (x) and passes
through x. Let P(x) be the point at which this line intersects ∂B, noting that P(x) = x
if x ∈ ∂B. Thus P will be the retraction we seek—once we prove its continuity.
It seems intuitively clear from Fig. 4.1 that P should be continuous. To prove this
without recourse to pictures we need to represent P analytically:
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Fig. 4.1 The retraction P : B → ∂ B

P(x) = x+λ (x)u(x) (x ∈ B) (4.1)

where u(x) is the unit vector in the direction from f (x) to x:

u(x) =
x− f (x)
|x− f (x)| (x ∈ B) (4.2)

and λ (x) is the scalar ≥ 0 chosen to make |P(x)|= 1 (so λ (x) = 0 if x ∈ ∂B).
Since x− f (x) is continuous on B and never zero there, u inherits the continuity

of f . As for λ = λ (x), it is the non-negative solution to the equation

0 = |P(x)|2 − 1 = |x+λ u(x)|2 − 1 = λ 2 + 2bλ − c (4.3)

where c = 1−|x|2 and b = 〈x,u(x)〉, the dot product of the vectors x and u(x). The
quadratic equation (4.3) yields solutions −b±√

b2 + c; since c ≥ 0 we know that
these solutions are real. Since

√
b2 + c ≥

√
b2 = |b| we know that the non-negative

solution is the one with the plus sign. Thus

λ (x) =−〈x,u(x)〉+
√
〈x,u(x)〉2 +(1−|x|2) (x ∈ B), (4.4)

which establishes the desired continuity of λ , and therefore of P. 
�

Exercise 4.2 (More on the “fictitious” unit vector1u(x)). In the argument above we defined
λ (x) to take the value zero for x ∈ ∂ B, a fact reflected in Eq. (4.3). Note that, thanks to
Eq. (4.4) this implies 〈x,u(x)〉 ≥ 0 whenever |x|= 1. Prove that for all x ∈ ∂ B and y ∈ B we
must have 〈x,x− y〉 ≥ 0, with equality if and only if y = x. Conclude that in the argument
above, 〈x,u(x)〉 > 0 whenever x ∈ ∂ B, hence the quantity under the radical sign on the
right-hand side of (4.4) is > 0 for every point of B.

1 . . . “fictitious” because its existence stems from our assumption that there exists a retraction of
B onto its boundary, which we’re in the process of proving cannot exist. Fictitious or not, we will
need the result of this exercise in the next section!
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4.3 Proof of the Brouwer Fixed-Point Theorem

We know now that the Brouwer Fixed-Point Theorem (henceforth “BFPT”) is equiv-
alent to the No-Retraction Theorem (henceforth “NRT”) in the sense that each im-
plies the other. In this section we’ll show that the BFPT follows from a “C1 version”
of NRT, which we’ll then proceed to establish. Here is an outline of the argument.
First we’ll show that:

C1-NRT =⇒ C1-BFPT =⇒ BFPT (*)

where, the prefix “C1-” means that the result is being claimed only for maps whose
(real-valued) coordinate functions have continuous first order partial derivatives on
some open set that contains B. Then we’ll get down to business and prove C1-NRT.

(a) C1-BFPT =⇒ BFPT. The key is the following approximation theorem:

Given f : B →R
N continuous and ε > 0 there exists a C1 map g : B → R

N

with | f (x)− g(x)| ≤ ε for every x ∈ B.

See Appendix A.2 for a proof.2 Now suppose f : B → B is a continuous map.
To show that f has a fixed point, let ε > 0 be given and choose—by the above-
mentioned approximation result—a C1 map fε : B → R

N with

| fε (x)− (1− ε) f (x)| ≤ ε (x ∈ B). (4.5)

By the “reverse triangle inequality” we have | fε (x)| − (1− ε)| f (x)| ≤ ε for every
x ∈ B, i.e.,

| fε (x)| ≤ ε +(1− ε)| f (x)| ≤ ε +(1− ε) = 1.

Thus fε maps B into itself, so by our assumption that the C1-BFPT holds, fε has a
fixed point pε ∈ B. By the (ordinary) triangle inequality, for every x ∈ B:

| fε (x)− f (x)| = | fε (x)− (1− ε) f (x)− ε f (x)|

≤ | fε (x)− (1− ε) f (x)|+ ε| f (x)|

≤ ε + ε = 2ε

so in particular

| f (pε )− pε |= | f (pε )− fε(pε)| ≤ 2ε (k ∈ N), (4.6)

i.e., pε is a “2ε-approximate fixed point” for f . Since ε is an arbitrary positive
number, the Approximate-Fixed-Point Lemma (Lemma 2.2, page 24) guarantees
that f has a fixed point. 
�

2 More is true: the Stone–Weierstrass Theorem (see, e.g., [101, Theorem 7.6, page 159]) guarantees
that the coordinate functions of g can even be chosen to be polynomials (in n variables).
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(b) C1-NRT =⇒ C1-BFPT. Suppose C1-BFPT fails, so there exists a C1 map
f : B → B with no fixed point. We’ll show that in this case the retraction P given by
Eqs. (4.1)–(4.4) on page 43 is C1 on B. In the defining Eq. (4.2) for the unit vector
u, the function x− f (x) is C1 and never zero, hence the denominator |x− f (x)| is C1

and (thanks to the compactness of B) bounded away from zero on B. Thus u is C1 on
B. The only issue left is the C1 nature of the parameter λ (x) on the right-hand side of
Eq. (4.1), but this follows immediately from Eq. (4.4) and the fact that, on the right-
hand side of that equation, the quantity under the radical sign is C1 and—thanks to
Exercise 4.2—strictly positive for each x ∈ B. 
�
(c) Proof of C1-NRT. This is the heart of our proof of the BFPT. Suppose C1-NRT
is false, i.e., suppose there exists a C1 retraction P taking B onto its boundary. We
will show that this leads to a contradiction. The argument takes place in several
steps.

STEP I: A bridge from the identity map to P.
For 0 ≤ t ≤ 1 define the map Pt : B → R

N by

Pt(x) = (1− t)x+ tP(x) (x ∈ B). (4.7)

Directly from this definition it follows that:

(a) P0 is the identity map on B, while P1 = P.
(b) Each Pt is a C1 map that—since each of its values is a convex combination of

two elements of B—takes B into itself.
(c) Each map Pt fixes every point of ∂B.

For the next step let B◦ denote the interior of B, i.e., the open unit ball of RN .

STEP II: There exists t0 ∈ (0,1] such that for all t ∈ [0, t0],

(a) detP′
t (x)> 0 for all x ∈ B.

(b) Pt is a homeomorphism of B◦ onto itself.

Here P′
t (x) is the derivative of Pt evaluated at x ∈ B◦ (see Appendix A.1); we view

P′
t (x) as an N ×N matrix whose entries are continuous, real-valued functions on

some open set that contains B. We’re claiming that for t sufficiently close to zero,
Pt inherits the salient properties of the identity map P0. Let’s defer the proof of this
statement until we’ve seen how it leads to the desired contradiction.

STEP III: Deriving the contradiction. Define h : [0,1]→R by the multiple Riemann
integral:

h(t) =
∫

B◦
detPt

′(x)dx (0 ≤ t ≤ 1).

By STEP II and the Change-of-Variable Theorem (Theorem A.4):

h(t) =
∫

Pt (B◦)
dx = Volume of B◦ (0 ≤ t ≤ t0). (4.8)
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Now detPt
′ is a polynomial in t with continuous real-valued coefficients, so by (4.8)

h(t) is a polynomial in t that, on the interval [0, t0], takes the constant value “volume
of B◦,” and so has that constant value for all t ∈ [0,1]. In particular, h(1) > 0. But
we’re assuming that P1 = P maps B◦ into the unit sphere ∂B, a subset of RN that
has no interior, so by the Inverse-Function Theorem (Appendix A, Theorem A.3) its
derivative matrix P′(x) is singular for every x ∈ B◦. Thus for t = 1 the integrand on
the right-hand side of (4.8) is identically zero, i.e., h(1) = 0. Contradiction!

PROOF OF STEP II. This takes place in several stages, each of which expresses the
fact that as we restrict t to increasingly smaller values, Pt inherits successively more
properties of the identity map P0.

STEP IIA: For all t sufficiently small, Pt is a homeomorphism of B onto Pt(B).

Because P is a C1 map on the compact set B, the Mean-Value Inequality (Ap-
pendix A, Theorem A.2, page 184) provides a positive constant L such for each
pair x,y of points in B,

|P(x)−P(y)| ≤ L|x− y|,
i.e., P satisfies a “Lipschitz condition” on B. Thus for x,y ∈ B and 0 ≤ t ≤ 1:

|Pt(x)−Pt(y)|= |(1− t)(x− y)+ t[P(x)−P(y)]|

≥ (1− t)|x− y|− t|P(x)−P(y)|

≥ (1− t)|x− y|− tL|x− y|

= [1− t(1+L)] |x− y| .

Conclusion: For 0 ≤ t < 1/(1+L) the mapping Pt takes B one-to-one into itself,
and (Pt)

−1 satisfies a Lipschitz condition, hence is continuous. In other words, for
all sufficiently small t, the mapping Pt is a homeomorphism taking B onto some
subset of B.

Our goal now is to show that, at least for t sufficiently small, this subset is all of
B. Since Pt is the identity map on ∂B, it will be enough to show that Pt(B◦) = B◦ for
all sufficiently small t.

STEP IIB: For all t sufficiently small, Pt(B◦) is an open subset of B◦.

From the definition (4.7) of Pt we see that for each t ∈ [0,1]:

Pt
′(x) = (1− t) I+ t P′(x) (x ∈ B)

where I denotes the N ×N identity matrix. Thus the “C1-ness” of the retraction P
translates into continuity for the map (t,x)→ Pt

′(x) as it takes the compact product
space [0,1]×B into the space of N ×N real matrices endowed with the metric of
R

N2
. Since continuous functions on compact metric spaces are uniformly continu-

ous, the function (t,x) → detPt
′(x) is a uniformly continuous real-valued function

on [0,1]×B. Since P0
′(x) is the N ×N identity matrix for each x ∈ B this uniform
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continuity implies (exercise) that there exists 0 < t0 < 1/C (C being the constant
of Step IIa) such that detPt

′(x) ≥ 1/2 for each (t,x) ∈ [0, t0]×B. This justifies our
application of the change-of-variable formula in STEP III, and shows that Pt

′(x) is
invertible for all t ∈ [0, t0] and all x ∈ B. Thus if 0 ≤ t ≤ t0 the Inverse-Function
Theorem (Appendix A, Theorem A.3) shows that Pt maps open sets to open sets; in
particular Pt(B◦) is open in B◦.

STEP IIC: For all t as promised by STEP IIB, Pt(B◦) = B◦.

Fix such a t, so Pt is a homeomorphism of B0 onto Pt(B0). Suppose Pt(B◦) �= B◦.
Then there is a point y0 ∈ B◦ that belongs to the boundary of Pt(B◦). One can there-
fore choose a sequence (yk) of points in Pt(B◦) with yk → y0. Thus there exists
a sequence (xk) in B◦ with Pt(xk) = yk for each index k. Thanks to the compact-
ness of B we may assume, upon replacing (xk) by an appropriate subsequence, that
limk xk = x0 ∈ B. Thus y0 = Pt(x0) by the continuity of Pt . It follows that x0 ∈ B◦;
otherwise x0 would belong to ∂B so, because Pt is the identity map on ∂B, the point
y0 = Pt(x0) would equal x0, and so would lie on ∂B, contradicting our assumption
that y0 lies in B◦.

This completes the proof of STEP II, and with it, the proof of the Brouwer Fixed-
Point Theorem. 
�

4.4 Retraction and Convexity

So far the work of this chapter has concentrated on the equivalence of the Brouwer
Fixed-Point Theorem and the No-Retraction Theorem. Here is a different (and very
useful) connection between fixed points and retractions.

Theorem 4.3. Every retract of a space with the fixed-point property has the fixed-
point property.

Proof. Suppose S is a metric space with the fixed-point property, A is a subset of
S, and P : S → A is a retraction of S onto A. Let f : A → A be a continuous map.
We need to show that f has a fixed point. Since g = f ◦P maps S into itself it has
a fixed point. Since g maps S into A this fixed point, call it a, belongs to A. But the
restriction of P to A is the identity map, so a = g(a) = f (P(a)) = f (a). 
�

Which spaces have the fixed-point property? Every one-point space has it (triv-
ially), and for each positive integer N the closed unit ball of RN has it (The Brouwer
Fixed-Point Theorem). No circle has it (nontrivial rotations have no fixed point),
hence no closed curve (homeomorphic image of a circle) has it.

The extension of Brouwer’s theorem provided by Theorem 4.3 allows us to ex-
hibit more examples. Here is one that is “one dimensional,” but not homeomorphic
to a closed interval (exercise).

Example 4.4. The letter “X” has the fixed-point property.
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Proof. Here “the letter ‘X’ ” is the union in R
2 of those parts of the lines y = x

and y = −x that lie in B, the closed unit ball of R2 (a.k.a “the closed unit disc”).
Then X ⊂ B, so by Brouwer’s theorem and Theorem 4.3 above we need only show
that X is a retract of B. We’ll accomplish this by modifying the “non-orthogonal”
projection introduced above in Sect. 4.1. The set X divides B into four quadrants,
each bisected by the coordinate half-axes. Project each point in B onto X by moving
it parallel to the closest coordinate axis. Thus, each point of a coordinate axis goes
to the origin, each point of X stays fixed, each point of the region above X goes
straight down onto X , each point to the right of X goes horizontally onto X , etc. The
result is a map P that takes B onto X , and whose restriction to X is the identity. I
leave it to you to convince yourself that P is continuous. 
�

Exercise 4.3. Which capital letters of the English alphabet have the fixed-point property?

So much for amusing examples. Here’s the result we’re really after.

Theorem 4.5 (The “Convex” Brouwer Fixed-Point Theorem). Every compact con-
vex subset of RN has the fixed-point property.

Proof. Let C be a compact convex subset of RN .

Claim. C is a retract of RN.

Even though R
N does not have the fixed-point property, this will prove our result.

Indeed, since C is compact it is contained in a closed ball B (not necessarily the unit
ball now) which, by Brouwer’s theorem, has the fixed-point property. The Claim
will give us a retraction P of RN onto C, and the restriction of P to B will be a
retraction of B onto C. The result will then follow from Theorem 4.3.

Proof of the Claim. The retraction we’re about to produce—important in its own
right—is the Closest-Point Map. Suppose x ∈ R

N . Since C is compact there is at
least one point κ ∈C with |x−κ |= inf{|x− c| : c ∈C} (Proof: There is a sequence
(c j) of points in C for which |x− c j| converges to the infimum in question. By the
compactness of C, this sequence has a convergent subsequence, whose limit κ is a
point that achieves the infimum).

The convexity of C guarantees that κ is the unique closest point in C to x. To
prove this, suppose k ∈C is another point “closest to x.” For convenience let

d = inf{|x− c| : c ∈C}= |x−κ |= |x− k|

Let v = x−κ and w = x− k. By the Parallelogram Law:

|v+w|2 + |v−w|2 = 2|v|2 + 2|w|2 = 4d2 .

On the other hand, the convexity of C guarantees that (κ + k)/2 ∈C, hence

|(v+w)/2|= |(κ + k)/2− x| ≥ d.
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The last two displays yield

4d2 + |v−w|2 ≤ 4d2

so 0 = |v−w|= |k−κ |, hence κ = k, as desired.

Now that we know there’s a unique closest point in C to x, let’s give it a name:
P(x). Thus P maps RN onto C, and fixes each point of C. To show that P retracts
R

N onto C we need only verify its continuity. The result below shows that this
follows from the “closest-point uniqueness” from which the mapping P owes its
definition. 
�
Proposition 4.6. Suppose (X ,d) is a metric space and A is a compact subset of X
such that every x ∈ X has a unique closest point P(x) in A. Then P is a retraction of
X onto A.

Proof. Define the function “distance to A” by

dA(x) = inf{a ∈ A : d(x,a)} (x ∈ X).

Note first that dA : X → [0,∞) is continuous; in fact, it is “non-expansive” in the
sense that

|dA(x)− dA(y)| ≤ d(x,y) (x,y ∈ X). (4.9)

In fact this is true for every A ⊂ X . To see why, fix x and y in X ; suppose (without
loss of generality) that dA(x) ≥ dA(y). Then dA(x) ≤ d(x,a) ≤ d(x,y)+ d(y,a) for
every a ∈ A, from which follows (thanks to the fact that a was an arbitrary element
of A) that dA(x)≤ d(x,y)+ dA(y), which is another way of stating (4.9).

Now let’s return to our compact subset A that does have the “unique closest point”
property, and the map P(x) = “closest point in A to x.” We’re trying to show that
P is continuous, so fix x0 ∈ X and suppose (xn) is a sequence in X that converges
to x0. Our goal is to show that P(xn) → P(x0). Since A is compact, the sequence
(P(xn)) of closest points has a subsequence convergent to a point—call it y0—of A.
To keep notation under control, let’s replace (temporarily) the whole sequence by
this subsequence, so that P(xn)→ y0. Then:

dA(x0) = lim
n

dA(xn) (continuity of dA)

= lim
n

d(xn,P(xn)) (definition of P)

= d(x0,y0) (definition of y0)

so y0 is a closest point in A to x0, hence by uniqueness, y0 = P(x0). This argument
actually proves that if x0 is a point of X and (xn) is a sequence that converges to
x0, then every subsequence of (xn) has a further subsequence whose image under
P converges to P(x0). Thus P(xn)→ P(x0), as desired. This completes the proof of
the Proposition, and with it the proof that the closest-point mapping of RN onto the
compact convex subset C is continuous, hence a retraction. 
�
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Notes

Proof of the Brouwer Fixed-Point Theorem. The argument given here is C.A.
Rogers’ modification [99] of an argument due to John Milnor [78]. In [67] Peter
Lax proves an “oriented” version of the change-of-variable formula for multiple
integrals, and uses this result to provide a more direct proof of Brouwer’s Theo-
rem. For a differential-forms interpretation of Lax’s change-of-variable argument
see [53], which also gives a valuable survey of papers that offer analytic proofs of
Brouwer’s Theorem.

More on proofs of the Brouwer Fixed-Point Theorem. We’ve seen two proofs of the
Brouwer Fixed-Point Theorem: the one in Chap. 2 (for N = 2) based on the Sperner
Lemma, and the one in this chapter. There are many others; see [112] for a nice
survey. Brouwer’s original proof [18], published in 1912, used methods of (what
has since become known as) algebraic topology. Simultaneously, and for the rest of
his life, Brouwer thought deeply about the foundations of mathematics—a pursuit
that ultimately led him, 40 years later, to renounce this proof of his theorem [19].

The “Closest Point Property” of convex sets. With a little more care we can weaken
the compactness hypothesis on the convex set C to just “closed-ness.” The idea is
that an application, similar to the one above, of the Parallelogram Law shows that
the “minimizing sequence” (c j) discussed above is actually a Cauchy sequence, and
therefore converges, its limit being the unique closest point in C to x. In case C is
a linear subspace of RN this closest point turns out to be the orthogonal projection
of x onto C. These arguments generalize, with no essential changes, to the setting of
infinite dimensional Hilbert space (see [125, Sect. 3.2, p. 26 ff.], for example).

Non-expansiveness of the closest-point map. For a closed convex subset of RN (or
more generally of a Hilbert space) the “closest point map” P is more than just con-
tinuous: it is “non-expansive” in the sense that

|P(x)−P(y)| ≤ |x− y|

for all x,y ∈ R
N ; see, for example, [50, Theorem 3.13, p. 118] for the details.
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