
Chapter 3
Contraction Mappings

BANACH’S CONTRACTION-MAPPING PRINCIPLE

Overview. In this chapter we’ll study the best-known of all fixed-point theorems:
the Banach Contraction-Mapping Principle, which we’ll apply to Newton’s Method,
initial-value problems, and stochastic matrices.

Prerequisites. Undergraduate-level real analysis and linear algebra. The basics of
metric spaces: continuity and completeness.

3.1 Contraction Mappings

The theorem we’re going to apply to Newton’s Method, Initial-Value Problems,
and the Internet was proved by the Polish mathematician Stefan Banach as part of
his 1922 doctoral dissertation. Although the setting of Banach’s theorem is far more
general than that of Brouwer’s, the restricted nature of the mappings involved makes
its proof a lot simpler.

Banach’s theorem is set in a metric space: a pair (S,d) where S is a set and d is a
“metric” on S, i.e., a function d : S× S → R+ such that for all x,y,z ∈ S

(m1) d(x,y) = 0 iff x = y,
(m2) d(x,y) = d(y,x), and
(m3) d(x,z)≤ d(x,y)+ d(y,z).

The last property is called, for obvious reasons, “the triangle inequality.”

Example. Let S be R
N , or a subset thereof, and take d(x,y) to be the Euclidean

distance between x and y: d(x,y) = ‖x− y‖. Alternatively d could be the distance
on R

N induced in the same way by the one-norm introduced in the proof of Theo-
rem 1.6. As we pointed out there, the two metrics are equivalent in that they have
the same convergent sequences.
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28 3 Contraction Mappings

The mappings addressed by Banach’s Principle are called strict contractions.1

To say F : S → S is one of these means that there is a positive “contraction constant”
c < 1 for which

d(F(x),F(y))≤ cd(x,y) ∀ x,y ∈ S. (3.1)

Clearly every strict contraction is continuous on S.

Definition 3.1. A Cauchy sequence in a space with metric d is a sequence (xn) such
that: For each ε > 0 there is a positive integer N = N(ε) such that d(xn,xm) < ε
whenever the indices m and n are larger than N. A complete metric space is one in
which every Cauchy sequence converges.

Theorem 3.2 (The Banach Contraction-Mapping Principle). Suppose (S,d) is a
complete metric space and F : S → S is a strict contraction. Then F has a unique
fixed point, and every iterate sequence converges to this point.

We’ll prove this shortly; first, a few comments.

Iterate sequence. Recall that, for a mapping F taking a set S into itself, the iterate
sequence starting at x0 ∈ S is (xn) where xn+1 = F(xn) for n = 0,1,2, . . . .

Uniqueness. If (S,d) is a metric space on which F is a strict contraction and p ∈ S
is a fixed point of F , then there can be no other fixed point.

Proof. If q ∈ S is also a fixed point of f then

d(p,q) = d(F(p),F(q))≤ cd(p,q).

Since 0 < c < 1 we must have d(p,q) = 0, whereupon condition (m1) in the defini-
tion of “metric” guarantees that p = q. ��
“Non-strict” contractions. If in Theorem (3.1) we merely assume that the contrac-
tion constant c is 1, then:

– Existence can fail. Example: F(x) = x+ 1 defined on the real line.
– Uniqueness can also fail. Example: the identity map on a metric space with

more than one point.

Exercise 3.1 (Necessity of completeness). Give an example of an incomplete metric space
on which there is a strict contraction with no fixed point.

Fixed points and iterate sequences. We contended in Sect. 1.2 (page 4) that if the
iteration of Newton’s method for an appropriate function f were to converge, then
that limit had to be a root of f (i.e., a fixed point of the Newton function of f ). The
next result justifies this contention in a far more general setting.

Proposition 3.3. If (S,d) is a metric space, F : S → S is continuous, and x0 is a
point of S for which the iterate sequence {x0,F(x0),F(F(x0), . . .} converges, then
the limit of that sequence has to be a fixed point of F.

1 These are often just called “contractions”; the terminology here is more in keeping with conven-
tions used in (linear) operator theory.
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Proof. Suppose the iterate sequence (xn) of x0 converges to p∈ S, i.e., limn d(xn, p)=
0. Then the continuity of F insures that xn+1 =F(xn)→F(p). Also limn d(xn+1, p)=
0, i.e., xn+1 → p, so (because limits in metric spaces are unique) p = F(p). ��

If we assume further that F is a strict contraction, then there results a very strong
converse.

Proposition 3.4. Suppose F is a strict contraction on a metric space. If p is a fixed
point of F then every iterate sequence converges to p.

Proof. Let c denote the contraction constant of the mapping F , so 0 < c < 1 and
F satisfies (3.1) above. Fix x0 ∈ S and define the iterate sequence (xn) in the usual
way: x1 = F(x0), . . . ,xn = F(xn−1), . . . . Then

d(xn, p) = d(F(xn−1),F(p))≤ cd(xn−1, p)≤ . . . ≤ cnd(x0, p),

so d(xn, p)→ 0 as n → ∞, i.e., (xn) converges to p. ��
Exercise 3.2 (Lessons from a simple initial-value problem). For the initial-value problem
(IVP) y′ = y, y(0) = 1, write down the integral operator T on C(R) defined on page 4 by
Eq. (IE), and compute explicitly the iterate sequence that has y0 ≡ 1 as its initial function.
On which intervals [−a,a] does this iterate sequence converge uniformly to a solution of the
IVP? For which of these intervals does the Contraction-Mapping Principle guarantee such
convergence?

Proof of the Contraction-Mapping Principle. In view of Proposition 3.4 only one
strategy will work: fix a point x0 ∈ S and prove that its iterate sequence (xn) con-
verges. By Proposition 3.3 this limit must be a fixed point.

Since our metric space is complete it’s enough to show that (xn) is a Cauchy
sequence. To this end, consider a pair of indices m< n and use the triangle inequality
to observe that

d(xn,xm)≤
n−1

∑
j=m

d(x j+1,x j).

From the strict contractiveness of F:

d(x j+1,x j) = d(F(x j),F(x j−1)≤ cd(x j,x j−1)≤ . . . ≤ c jd(x1,x0),

whereupon (since c < 1)

d(xm,xn)≤
n−1

∑
j=m

c jd(x1,x0) = d(x1,x0)
∞

∑
j=m

c j =
d(x1,x0)

1− c
cm .

Now given ε > 0, we may choose N so that d(x1,x0)
1−c cN < ε , which insures, by the

above chain of inequalities, that N ≤ m < n ⇒ d(xm,xn) < ε , hence our iterate se-
quence (xn) is indeed Cauchy. ��

The Contraction-Mapping Principle seems to be a perfect theorem: easy to prove
and widely applicable. However there is a catch: proving a given mapping to be a
strict contraction usually requires some work—as you’ll see in the next few sections.
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3.2 Application: Stochastic Matrices/Google

In Sect. 1.9 we introduced the “Google matrix” G, a stochastic matrix with entries
all positive, and observed with the help of the Brouwer Fixed-Point Theorem (a key
step in our proof of Perron’s Theorem) that G has an essentially unique positive
fixed point whose coordinates rank internet web pages.

There remains, however, the problem of proposing an algorithm for actually find-
ing this fixed point. Recall that the application of Brouwer/Perron to the Google
matrix ultimately rested on the stochasticity of that matrix, which implied that G
(indeed each N ×N stochastic matrix) maps the standard N-simplex ΠN continu-
ously into itself. The positivity of G then guaranteed the uniqueness of its fixed
point.

The generalization to R
N of the “walking-through-rooms” proof of Brouwer’s

theorem set out for N = 2 in Sect. 2.3 could provide the basis for an algorithm
that approximates the desired fixed point. On the other hand, Banach’s theorem has
built into it a scheme that—at least in theory—is easily implemented: Use iterate
sequences to approximate fixed points. However to be certain that this will work we
need each positive stochastic matrix to induce a strict contraction on its standard
simplex (so far we’ve established only “non-strict” contractivity: Exercise 1.5).

Does stochasticity imply strict contractivity? Is this too much to ask? Read on!

Theorem 3.5. Every N ×N, positive, stochastic matrix induces a strict contraction
on the standard simplex ΠN, taken in the metric induced by the one-norm.

Proof. Suppose A is a positive, stochastic, N×N matrix. We already know (proof of
Theorem 1.6) that A takes ΠN into itself. We’re claiming that there exists a positive
number c strictly less than 1 such that

‖Ax−Ay‖1 ≤ c‖x− y‖1 (x,y ∈ ΠN) . (3.2)

Let ai, j denote the matrix A’s entry in the i-th row and j-th column. Since each of
these numbers is positive we may choose a positive number ε that is strictly less
than all of them. Since each column of A sums to 1 we know that Nε < 1 (Proof: for
j an index, 1 = ∑i ai, j > Nε). Thus we may form the new N ×N matrix B, whose
(i, j)-entry is

bi, j =
ai, j − ε
1−Nε

.

Clearly B is a positive matrix, and it’s easy to check that B is stochastic. Now

A = (1−Nε)B+ εE

where E is the N ×N matrix, all of whose entries are 1.

Claim. A satisfies (3.2) with c = (1−Nε).

Proof of Claim. Since Nε lies strictly between 0 and 1, so does c. What makes this
argument work is the fact that if x ∈ ΠN then Ex is the vector in R

N , each of whose
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coordinates is the sum of the coordinates of x, namely 1. In particular if x and y
belong to ΠN then Ex = Ey, whereupon

Ax−Ay = c(Bx−By)+ ε(Ex−Ey)= c(Bx−By).

By Exercise 1.5, every N ×N stochastic matrix induces, in the 1-norm, a (possibly
non-strict) contraction on R

N , so from the last equation and the linearity of B:

‖Ax−Ay‖1 = ‖c(Bx−By)‖1 = c‖B(x− y)‖1 ≤ c‖x− y‖1 (x,y ∈ ΠN),

which proves the Claim, and with it the theorem. ��
Corollary 3.6. If A is an N ×N positive stochastic matrix, then its (unique) Perron
eigenvector is the limit of the iterate sequence of each initial point x0 ∈ ΠN.

In particular, the unique ranking of web pages produced by the Google matrix
can be computed by iteration. For x0 ∈ ΠN the iterate sequence of Corollary 3.6 is
(xn), where

xn = Axn−1 = A2xn−2 = . . .= Anx0 (n = 1,2, . . .).

For this reason the approximation scheme of the Corollary is called power iteration;
it is used widely in numerical linear algebra for eigen-value/vector approximation.

3.3 Application: Newton’s Method

Suppose f is a real-valued function defined on a finite, closed interval [a,b] of the
real line, and that we know f has a root somewhere in the open interval (a,b).
We’re going to use the Contraction-Mapping Principle to show that, under suitable
hypotheses on f , Newton’s method for each appropriate starting point converges to
this root.

More precisely, suppose f ∈ C2(I) with f ′ never zero on I, and suppose f has
different signs at the endpoints of I; say (without loss of generality) f (a) < 0 and
f (b) > 0. Then f has a unique root x∗ in the interior (a,b) of I. Under these hy-
potheses we have

Theorem 3.7. There exists δ > 0 such that for every x0 in [x∗−δ ,x∗+δ ], Newton’s
method with starting point x0 converges to x∗.

In other words, under reasonable hypotheses on f : for starting points close
enough to a root of f the iterate sequence for the Newton function

F(x) = x− f (x)
f ′(x)

(x ∈ I)

will converge to that root.
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Proof. Let M denote the maximum of | f ′′(x)| as x ranges through I, and let m denote
the corresponding minimum of | f ′(x)|. By the continuity of f ′′, and the hypothesis
that f ′ never vanishes on I, we know that M is finite and m > 0.

Differentiation of F via the quotient rule yields

F ′(x) =
f (x) f ′′(x)

f ′(x)2 (x ∈ I)

which, along with our bounds on f ′ and f ′′, provides the estimate

|F ′(x)| ≤ M
m2 | f (x)| (x ∈ Iδ ).

Thus, upon shrinking δ enough to insure that

| f (x)| ≤ m2

2M
for |x− x∗|< δ

(possible because f is continuous at x∗ and takes the value zero there) we see that
|F ′(x)| ≤ 1/2 for each x ∈ Iδ = [x∗ − δ ,x∗+ δ ]. This estimate on F ′ does the trick!
For starters, if x,y ∈ Iδ then, along with the Mean-Value Theorem of differential
calculus, it shows that

|F(x)−F(y)|= |F ′(x)(x− y)| ≤ 1
2
|x− y| ∀x,y ∈ Iδ

where on the right-hand side of the equality, x lies between x and y. Thus F is a
strict contraction on Iδ —once we know F maps that interval into itself. But it does,
since the same inequality shows that for each x ∈ Iδ (upon recalling that the root x∗
of f is a fixed point of F):

|F(x)− x∗|= |F(x)−F(x∗)| ≤ 1
2
|x− x∗| ≤ 1

2
δ < δ

so F(x) ∈ Iδ , as desired.
Thus Banach’s Contraction-Mapping Principle applies to the strict contraction F

acting on the complete metric space Iδ = [x∗ − δ ,x∗ + δ ], and guarantees that for
every starting point in Iδ the corresponding F-iteration sequence converges to the
fixed point of F , which must necessarily be the unique root of f in Iδ . ��

In the course of this proof we had to overcome a problem that occurs frequently
when one seeks to apply Banach’s Principle:

The metric space for which the problem is originally defined is often not the
one to which you apply Banach’s Principle!

For example, the hypotheses of Theorem 3.7 refer to the Newton function F defined
on the compact interval (i.e., the complete metric space) I, but the theorem’s proof
depended on cutting this space down to the smaller one Iδ on which F acted as a
strict contraction.
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We’ll see this scenario play out again in the next section, where we’ll have to
shrink an entire metric space of continuous functions!

3.4 Application: Initial-Value Problems

It’s time for a careful treatment of the initial-value problem (IVP) of Sect. 1.3. Recall
its form: There is a differential equation plus initial condition

y′ = f (x,y), y(x0) = y0 (IVP)

with (x0,y0) ∈ R
2 and f assumed initially to be continuous on all of R2. Here we’ll

just assume that f is continuous on a closed rectangle R = I ×H, where I and H
are compact intervals of the real line, I having radius r and center x0 and H having
radius h and center y0. Thus R is a compact “r by h” rectangle in the plane, centered
at the point (x0,y0).

We’ll operate in the metric space C(I) consisting of real-valued functions that
are continuous on I. In the course of our work we’ll need to shrink the radius r of
I. To keep the notation simple we’ll re-assign the original symbols I, r, and R to the
newly shrunken objects, taking care to be sure that what we’ve accomplished in one
setting transfers intact to the new one.

Since continuous functions are bounded on compact sets and attain their maxima
thereon, we can define on C(I) the “max-norm”

‖u‖= max
x∈I

|u(x)| ( f ∈C(I))

and use this to define a metric d by:

d(u,v) = ‖u− v‖ (u,v ∈C(I)).

In this metric a sequence converges (resp. is Cauchy) if and only if it converges
(resp. is Cauchy) uniformly on I. A fundamental property of uniform convergence
is that every sequence of functions in C(I) that is uniformly Cauchy on I converges
uniformly on I to a function in C(I).2 Thus the metric space (C(I),d) is complete.
As in our treatment of Newton’s Method, we’ll have to find an appropriate subset of
C(I) in which to apply Banach’s Theorem. We’ll break this quest into several steps.

STEP I. C(I) is too large. For (IVP) to make sense for a prospective solution y =
u(x) we have to make sure that for every x∈ I the point (x,u(x)) lies in the domain of
the function f on the right-hand side of the differential equation in (IVP). We must
therefore restrict attention to functions u ∈C(I) having graph y = u(x) contained in
R, i.e., for which |u(x)−y0| ≤ h for every x ∈ I. In metric-space language this means
that in order for (IVP) to make sense, our prospective solutions must lie in

2 See [101, Theorems 7.14 and 7.15, pp. 150–151], for example.
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B = B(y0,h) = {u ∈C(I) : ‖u− y0‖ ≤ h},

the closed ball in C(I) of radius h, centered at the constant function y0.

STEP II. The integral equation. As we observed in Sect. 1.3, a real-valued function
y defined on the interval I satisfies IVP if and only if it satisfies the integral equation

y(x) = y0 +

∫ x

t=x0

f (t,y(t))dt (x ∈ I). (IE)

The right-hand side of this equation makes sense for every u ∈ B, and defines an
integral transformation T on C(I) by

(Tu)(x) = y0 +

∫ x

t=x0

f (t,u(t))dt (u ∈ B,x ∈R). (IT)

By an argument entirely similar to the one used in Sect. 1.3 (pages 4 and 5) to prove
that (IVP) is equivalent to the problem of finding a fixed point for (IT), we have

Lemma 3.8. If u ∈ B then Tu is differentiable on I and (Tu)′(x) = f (x,u(x)) for
every x ∈ I.

In particular, T maps B into C(I).

STEP III. Insuring that T (B)⊂ B. To use the Banach Contraction-Mapping Princi-
ple we must at the very least insure that T maps B into itself. For the moment, let’s
continue to assume only that f is continuous on the rectangle R, and set

M = max{| f (x,y)| : (x,y) ∈ R}.

Fix this value of M for the rest of the proof. Although we’ll allow ourselves to shrink
the horizontal dimension of the rectangle R, we won’t be changing the value of M.

Lemma 3.9. For M as above: if we redefine the interval I to have radius r ≤ h/M
then T (B)⊂ B.

Proof. For |x− x0| ≤ h/M we have for each u ∈ B:

|Tu(x)− y0|=
∣∣∣∣
∫ x

t=x0

f (t,u(t))dt

∣∣∣∣≤ M|x− x0| ≤ Mh/M = h.

Thus redefining I to have radius ≤ h/M insures that ‖Tu− y0‖ ≤ h for each u ∈ B,
i.e., that T maps B into itself. ��
STEP IV. Strict contractivity. So far we’ve found how to shrink the original interval
I so that the closed ball B of radius h in C(I) is mapped into itself by the integral op-
erator T . This ball, being a closed subset of the complete metric space C(I), is itself
complete in the metric inherited from C(I). However to apply Banach’s Principle
we need to know that T is a strict contraction on B. For this we’ll assume that the
function f , in addition to being continuous on the rectangle R, is also differentiable
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there with respect to its second variable, and that this partial derivative (call if f2) is
continuous on R.

Our goal now is to show that T is a strict contraction mapping on B for some
positive r ≤ h/M. Then Banach’s Contraction-Mapping Principle will guarantee a
fixed point for T in B, hence a unique solution therein to the integral equation (IE),
and therefore to the initial-value problem (IVP) on the interval I = [x0 − r,x0 + r].
Once done we’ll have proved

Theorem 3.10 (The Picard–Lindelöf Theorem). Suppose (x0,y0) ∈ R
2, U is an

open subset of R2 that contains (x0,y0), and f is a real-valued function that is
continuous on U and has thereon a continuous partial derivative with respect to
the second variable. Then the initial-value problem (IVP) has a unique solution on
some nontrivial interval centered at x0.

Proof. By the work above we may choose a compact rectangle R = I ×H in U ,
centered at (x0,y0), such that T (B) ⊂ B whenever the length of I is sufficiently
small. It remains to see how much further we must shrink I in order to achieve strict
contractivity for T on B. To this end let M′ := max{| f2(x,y)| : (x,y) ∈ R}, where the
compactness of R and the continuity of f2 on R guarantee that the maximum exists.
Note first that if y1 and y2 belong to the interval H with y1 ≤ y2 then the Mean-Value
Theorem of differential calculus guarantees for each x ∈ I that

| f (x,y2)− f (x,y1)|= | f2(x,η)(y2 − y1)| ≤ M′|y2 − y1| (3.3)

where on the right-hand side of the equality, η lies between y1 and y2. Thus if u and
v are functions in B and x ∈ I, we have upon letting J(x) denote the closed interval
between x and x0:

|Tu(x)−Tv(x)|=
∣∣∣∣
∫

J(x)
[ f (t,u(t))− f (t,v(t))]dt

∣∣∣∣≤
∫

J(x)
| f (t,u(t))− f (t,v(t))|dt

≤ M′
∫

J(x)
|u(t)− v(t)|dt ≤ M′‖u− v‖ · length of J(x)

= M′‖u− v‖ · |x− x0| ≤ M′r‖u− v‖

where the second inequality follows from estimate (3.3). Thus

‖Tu−Tv‖ ≤ M′r‖u− v‖ (u,v ∈ B),

so we can insure that T is a strictly contractive self-map of B simply by demanding
that, in addition to the restriction r ≤ h/M already placed on the radius of I, we
insure that r be < 1/M′. ��

Note that the proof given above will still work if the differentiability of f in the
second variable is replaced by a “Lipschitz condition”

| f (x,y1)− f (x,y2)| ≤ M′|y2 − y1| ((x,y1),(x,y2) ∈ R).
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For initial-value problems, the interval of existence/uniqueness promised us by
Banach’s Principle could be very small (see Exercise 3.2 for an example of this).
There is, however, always a maximal such interval, and this interval has the prop-
erty that the solution’s graph over this interval continues out to the boundary of the
region on which the function f is defined and satisfies the Picard–Lindelöf hypothe-
ses. For details see, e.g., [93, Sect. 2.4].

As an illustration of this phenomenon, consider the simple initial-value prob-
lem y′ = a(1+ y2),y(0) = 0, where a > 0. One checks easily that y = tan(ax) is a
solution for which the maximal interval of existence is (− π

2a ,
π
2a), and a separation-

of-variables argument shows that this is the only solution. Thus, even though the
right-hand side f (x,y) = a(1+ y2) of this IVP’s differential equation is infinitely
differentiable (even real-analytic) on the entire plane, the solution exists only on a
finite interval, which for large a is very small.

Conclusion: In nonlinear situations, singularities can arise “unexpectedly.”

Notes

Banach’s doctoral dissertation. This is [5]; the Contraction-Mapping Principle is
Theorem 6 on page 160 of that paper.

Stochastic matrices. The proof that every positive stochastic matrix induces a strict
contraction on its standard simplex (Theorem 3.5) is from [66], where the result is
attributed to Krylov and Bogoliubov. The same proof is in [20, Sect. 4, pp. 578–9].

We mentioned that the “power iteration” method of Corollary 3.6 works in more
generality. For more on this, see, e.g., [117, Lecture 27].

For the Google matrix G, revisited in Sect. 3.2, there is still the issue of its enor-
mous size. A preliminary discussion of how to handle this can be found in [17].

Initial-value problems. The Picard–Lindelöf Theorem originates in Lindelöf’s
1894 paper [70], in which he generalizes earlier work of Picard. In our special case
the iteration associated with Banach’s Principle is often called “Picard Iteration.”

Higher orders, higher dimensions. The restriction of our discussion of initial-value
problems to first order differential equations is not as severe as it seems. Consider,
for example, the second order problem for an open interval I containing the point
x0:

y′′ = f (x,y,y′), y(x0) = y0, y′(x0) = y1 (x ∈ I).

This problem can be rewritten as: Y ′ = F(x,Y ), Y (x0) = Y0 for x ∈ I, where Y =
(y,y′) is a function taking I into R

2, Y0 = (y0,y1) is a vector in R
2 (now thought of

as a space of row vectors), and F(x,Y ) = (y′, f (x,y,y′)) maps the original domain
of f (a subset of R3) into R

2.
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It’s not difficult to check that the proof given above for our original “scalar-
valued” IVP works almost verbatim in the new setting, with the absolute-value norm
on the real line replaced in the higher dimensions by the Euclidean one, thus pro-
ducing a unique solution for the second order IVP. Of course the idea generalizes
readily to initial-value problems of order larger than 2.

Newton’s Method again. In a similar vein, our analysis of Newton’s Method can be
generalized to higher dimensions. Suppose the function f maps some open subset
G of RN into itself, and that f (p) = 0 for some point p ∈ G. If we assume that all
first and second order partial derivatives of the components of f are continuous, and
that the derivative f ′, which is now a linear transformation on R

N , is nonsingular at
every point of G, then, just as in the single-variable case, we can form the “Newton
function” F(x) = x− f ′(x)−1 f (x), where on the right-hand side we see the inverse
of the linear transformation f ′(x) acting on the vector f (x). A bit more work than
before shows that, when restricted to a suitable closed rectangle centered at p, the
function F is a strict contraction, so for every point in that rectangle the Newton
iteration converges to p.
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