
Chapter 13
Beyond Markov–Kakutani

THE RYLL–NARDZEWSKI FIXED-POINT THEOREM

Overview. In the last chapter we extended the Markov–Kakutani Theorem—origi-
nally proved only for commuting families of continuous affine maps—to “solvable”
families of such maps. We used our enhanced theorem to show that every solvable
group is amenable and that Haar measure exists for every topological group that is
both solvable and compact. By contrast, we’ve seen (Chap. 11) that the group R of
origin-centric rotations of R3 is paradoxical, hence not amenable, and therefore not
solvable. Now R is naturally isomorphic to the group SO(3) of 3× 3 orthogonal
real matrices with determinant 1 (Appendix D), a group easily seen to be compact.
Thus not every compact group is amenable.

Conclusion: Fixed-point theorems that produce invariant means cannot prove the
existence of Haar measure for every compact group.

In this chapter we’ll turn to a fixed-point theorem in which the Markov–Kakutani
hypothesis of solvability is replaced by a topological condition of “uniform injectiv-
ity.” This result, due to the Polish mathematician Czesław Ryll–Nardzewski, works
with an appropriate modification of our previous duality method to provide Haar
measure for all compact topological groups. For ease of exposition we’ll focus on
compact groups that are metrizable, sketching afterwards how to make the argu-
ments work in general. Finally, we’ll identify the Haar measure for SO(3).

Throughout this chapter we’ll be working in vector spaces over the real numbers.

13.1 Introduction to the Ryll–Nardzewski Theorem

Theorem 13.1 (Ryll–Nardzewski [105]). Suppose X is a locally convex topological
vector space in which K is a nonvoid, compact, convex subset. Suppose S is a
semigroup of continuous, affine self-maps of K that is uniformly injective. Then S
has a fixed point in K.
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164 13 Beyond Markov–Kakutani

We’ll first seek to understand the hypotheses of the Ryll–Nardzewski Theorem after
which we’ll prove it for the duals of separable Banach spaces, a special case that’s
still general enough to provide the existence of Haar measure for compact, metriz-
able groups, and which gives an accurate guide to the proof of the general theorem.
Let’s start with the undefined terms in the Theorem’s statement, taking them in the
order in which they occur.

Semigroup. A set with an associative binary operation. If F is a family of self-
maps of some set S, then the semigroup generated by F (its operation being com-
position of maps) consists of all possible finite compositions of maps in F . This
is the smallest semigroup of self-maps of S containing F ; it has the same set of
common fixed points as F , and one can even throw in the identity map without
changing the common-fixed-point set. Thus when considering fixed points for fam-
ilies of self-maps one need only consider “compositional semigroups with identity.”

Locally Convex. For a topological vector space (always assumed Hausdorff) this
property means that each point has a base of convex neighborhoods. We have al-
ready worked with several important examples of locally convex spaces:

(a) Normed linear spaces: the balls centered at a given point are convex and form
a base for the neighborhoods of that point.

(b) The space R
S of all real-valued functions on a set S, with its topology of

“pointwise convergence”: the basic neighborhoods N( f ,F,ε) for this topol-
ogy, as defined by Eq. (9.9) (p. 110), are all convex.

(c) The weak-star topology induced on the algebraic dual V � of a real or complex
vector space V .

A version of the Hahn–Banach Theorem guarantees, for each locally convex topo-
logical vector space, the existence of enough continuous linear functionals to sep-
arate distinct points of the space, and more generally, to separate disjoint closed
convex sets.1 The exercise below shows that in the absence of local convexity such
separation is not guaranteed.

Exercise 13.1 (Non locally convex pathology2). For 0 < p < 1 consider the space Lp =
Lp([0,1]) consisting of (a.e.-equivalence classes of) real-valued Lebesgue measurable func-
tions f on the unit interval for which ‖ f ‖= ∫ 1

0 | f (x)|p dx < ∞ (omission of the p-th root of
the integral on the right is deliberate). For f ,g ∈ Lp let d( f ,g) = ‖ f −g‖. Show that:

(a) ‖ · ‖ is not a norm, but d is a metric making Lp into a topological vector space.

(b) On Lp the topology induced by the metric d is not locally convex. In fact, the only
open (nonempty) convex set is the whole space!

(c) The only continuous linear functional on Lp is the zero-functional.

Uniformly Injective. “Injective” is another way of saying “one-to-one.” To say a
family of maps F taking a set S into a topological vector space X is uniformly

1 See, e.g., [103, Chap. 3, pp. 56–62].
2 For more details, see [103, Sect. 1.47, pp. 36–37].
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injective3 means that for each pair of distinct points s, t ∈ S the zero vector does not
belong to the closure of the set { f (s)− f (t) : f ∈F}. If X is a normed linear space,
then uniform injectivity for F means that for every pair s, t ∈ S with s �= t there
exists a positive number δ = δ (s, t) such that:

δ < ‖ f (s)− f (t)‖ for every f ∈F . (13.1)

Why Injectivity? Let X =R, K = [0,1], and consider the two-element compositional
semigroup S = {ϕ ,ψ}, where ϕ ≡ 0 and ψ ≡ 1. Thus X is locally convex, K is
a nonempty, compact, convex subset of X , and S is a finite semigroup of affine,
continuous self-maps of K that does not have a common fixed point. The following
prototype of the Ryll–Nardzewski Theorem shows that the culprit here is “lack of
injectivity.”

Proposition 13.2. Suppose K is a nonvoid, compact, convex subset of a topological
vector space. Then every finite semigroup of continuous, injective, affine self-maps
of K has a common fixed point.

Proof. Let S denote our finite semigroup of maps. As noted earlier, there is no loss
of generality in assuming that it contains the identity map eK on K.

Claim. S is a group.

Proof of Claim. We need only show that each map in S has an inverse. Fix A ∈S
and note that since S is finite there exist positive integers n and m with 1 ≤ m < n
such that An =Am, (where, e.g., An denotes the composition of A with itself n times).
Thus An = AmAn−m = AnAn−m, and since An is injective

eK = An−m = An−m−1A = AAn−m−1.

This exhibits An−m−1 (which exists and belongs to S because n−m ≥ 1) as the
compositional inverse of A, thus proving the Claim.

Having established that S is a group, let A1,A2, . . . ,An denote its elements, and
denote by A0 the arithmetic mean of these elements:

A0x =
1
n

n

∑
j=1

A jx (x ∈ K).

Now A0, though perhaps not a member of S , is nonetheless a continuous, affine
self-map of K. The Markov–Kakutani Theorem4 therefore guarantees that A0 has a
fixed point x0 in K.

3 Alternative terminology: “non-contracting,” or in dynamical systems: “distal.”
4 For this we need only the “single-map” version: Proposition 9.8, p. 108.
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Fix A ∈ S . Since A is affine it respects convex combinations, so AA0 =
(1/n)∑n

j=1 AA j. Since S is a group, the n-tuple (AA1,AA2, . . . ,AAn) is a per-
mutation of the original list (A1,A2, . . . ,An) of the elements of S . Conclusion:
AA0 = A0. Consequently

x0 = A0x0 = AA0x0 = Ax0

i.e., x0 is a fixed point for A, hence a common fixed point for S . �	
On the other hand, for infinite semigroups of affine, continuous maps: injectivity

alone is not enough to guarantee a common fixed point. Once again let X = R and
K = [0,1], but now consider the (infinite) semigroup S generated by the pair of
injective affine self-maps ϕ(x) = (2x+ 1)/4 and ψ(x) = (x+ 1)/2 of K. Since ϕ
and ψ have no common fixed point, neither does S . The exercise below shows
what’s wrong.

Exercise 13.2. Show that S as described above is not uniformly injective.

13.2 Extreme points of convex sets

For the proof of the Ryll–Nardzewski Theorem we’ll make frequent use of the con-
cepts of convex set, convex combination, and convex hull, as set out in Appendix C,
Sect. C.1. Here’s a crucial addition to this list.

Definition 13.3 (Extreme point). For a convex subset C of a real vector space, an
extreme point is a point of C that does not lie in the interior of the line segment
joining two distinct points of C (i.e., a point that cannot be written as tx+(1− t)y,
with 0 < t < 1 and x, y distinct points of C).

Examples of extreme points. The endpoints of a closed interval of the real line, the
vertices of a triangle in R

2, or more generally a convex polygon in R
N (e.g., the

standard simplex ΠN). Every point on the boundary of a closed ball in R
N .

Non-examples. In a normed space: each point in the interior of a closed ball. For a
convex polygon in R

N : each point that is not a vertex (e.g., for ΠN , each point that
is not one of the standard basis vectors for RN).

Exercise 13.3. Suppose C is a convex subset of a real vector space. Then p∈C is an extreme
point if and only if p cannot be represented nontrivially as a convex combination of other
points of C.

A key step in our proof of the Ryll–Nardzewski Theorem will involve the follow-
ing fundamental result about extreme points. If S is a subset of a topological vector
space, we’ll use the notation convS for the closure of its convex hull.
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Theorem 13.4 (A Krein–Milman theorem). Suppose K0 is a nonempty compact
subset of a locally convex topological vector space X and that K = convK0 is also
compact.5 Then K0 contains an extreme point of K.

This result is a consequence of two famous theorems about nonempty compact sub-
sets K of locally convex spaces. First there is The Krein–Milman Theorem, which
asserts that not only does K have extreme points, it is in fact the closed convex hull
of these extreme points. Next, the “Milman Inversion” of this theorem says that if
K is the closed-convex hull of a compact subset K0, then all of K’s extreme points
belong to K0.6 For our purposes we’ll only need a special case of Theorem 13.4
(Theorem 13.6 below).

We begin with an even more special case of Theorem 13.4.

Lemma 13.5. Suppose K0 is a nonempty compact subset of an inner-product space.
If K := convK is compact then some point of K0 is an extreme point of K.

Proof. Let’s denote the ambient inner-product space by X , its inner product by 〈·, ·〉,
and its norm by ‖ ·‖ (i.e., ‖x‖2 = 〈x,x〉 for each x ∈ X). Since K0 is compact there is
a smallest closed ball B in X that contains it, and so also contains the closure of its
convex hull. Upon making an appropriate translation and dilation we may without
loss of generality assume that B is the closed unit ball of X . The compactness of K0

insures that it intersects ∂B in some vector v. This unit vector (or, for that matter,
every unit vector in K0) will turn out to be the desired extreme point for K. This
is obvious from a picture; for an analytic proof suppose v = tx+(1− t)y for some
vectors x,y ∈ K and for some 0 < t < 1. Since ‖x‖ and ‖y‖ are both ≤ 1,

1 = ‖v‖2 = 〈v,v〉= 〈v, tx+(1− t)y〉= t〈v,x〉+(1− t)〈v,y〉

≤ t‖v‖‖x‖+(1− t)‖v‖‖y‖≤ 1,

where the next-to-last inequality follows from the Cauchy–Schwarz Inequality ap-
plied to both 〈v,x〉 and 〈v,y〉. Thus there is equality throughout, in particular

‖x‖= ‖y‖= 〈v,x〉= 〈v,y〉= 1.

By the case of equality in the Cauchy–Schwarz inequality, this requires x =±v and
y = ±v. They can’t both be −v lest v = −v, i.e., v = 0, contradicting the fact that
v is a unit vector. On the other hand if one of them is v and the other is −v, then
v = ±(2t − 1)v whereupon t is either 0 or 1, another contradiction. Thus v is an
extreme point of K. �	

The version of Theorem 13.4 that we’ll actually need is the following conse-
quence of Lemma 13.5. Recall from Sect. 9.5 that if Y is a real vector space then

5 Compactness of the closed convex hull of a compact set is automatic for Banach spaces (Propo-
sition C.6, p. 195), but not so in general; it can fail even for non-closed subspaces of Hilbert space
(Remark C.7, p. 195).
6 For proofs of these theorems see, e.g., [103], Theorems 3.23 and 3.25, respectively, pp. 75–77.
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the weak-star topology on the algebraic dual Y � of Y is just the restriction to Y � of
the product topology of RY . If Y is a topological vector space then its dual space
Y ∗ is the collection of linear functionals on Y that are continuous. Note that Y ∗ is a
linear subspace of Y �, and its weak-star topology is just the restriction of the weak-
star topology of Y �, i.e., the topology of pointwise convergence on Y . We call Y the
predual of Y ∗.

Theorem 13.6 (A Krein–Milman Theorem for separable preduals). Suppose X is
the dual of a separable Banach space, and K0 ⊂ X is nonempty and weak-star com-
pact. If convK0 is weak-star compact, then it has an extreme point that lies in K0.

Proof. We are assuming that X = Y ∗, where Y is a separable (real) Banach space.
The closed unit ball Y1 of Y has a countable dense subset {yn}∞

1 (exercise). Each
element of f ∈ X , being a continuous linear functional on Y , is bounded on Y1.
Consequently the formula

〈 f ,g〉=
∞

∑
n=1

1
2n f (yn)g(yn) ( f ,g ∈ X) (13.2)

makes sense, and defines a bilinear form on X that is, in fact, an inner product.
To see why, define ‖ f‖ :=

√〈 f , f 〉 for f ∈ X . To say that 〈·, ·〉 is an inner product
is to say that the seminorm ‖ · ‖ is a norm, i.e., that ‖ f‖ = 0 only when f = 0. If
‖ f‖= 0 then by (13.2) we have f (yn) = 0 for n = 0,1,2, . . . , hence f = 0 on Y1 by
the continuity of f on Y and the density of {yn}∞

0 in Y1. Since f is a linear functional
it must therefore vanish on all of Y .

CLAIM. The norm topology η induced on X by this inner product coincides on
weak-star compact sets with the weak-star topology ω .

Once we’ve proved this Claim, the desired result on extreme points will follow from
Lemma 13.5.

Proof of Claim. Let K be a weak-star compact subset of X . We need only show that
the topology η is weaker than ω . Once this is done we’ll know that the identity map
j on K is continuous from ω to η , and so takes ω-closed subsets of K (which are
ω-compact) to η-compact subsets of K (which are η-closed). Thus j is not just a
continuous map from (K,ω) to (K,η), but also a closed one, and so (upon taking
complements) an open one. Thus j is a homeomorphism, i.e., ω = η .

To show that η is weaker than ω , note that by Proposition 9.10 (p. 111) we
know that each vector y ∈ Y1 induces an ω-continuous function ŷ : K → R via the
definition ŷ( f ) = f (y) ( f ∈K). Since K is ω-compact, ŷ is bounded thereon for each
y ∈Y1. Turning things around: K is pointwise bounded on Y1, hence by the Uniform
Boundedness Principal7 there exists a positive number M such that | f | < M on Y1

for every f ∈ K.
Now fix ε > 0 and a point f0 ∈ K, and consider the relatively open subset U

of K obtained by intersecting the η-ball of radius ε and center f0 with K. Choose

7 See, e.g., [102, Theorem 5.8, pp. 98–99], where it’s called the “Banach-Steinhaus Principle.”
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a positive integer N for which ∑∞
n=N+1 2−n < ε2/(8M2). Let F = {y0,y1, . . . ,yN}

be a finite subset of Y and suppose f ∈ N( f0,F,ε/
√

2). Then, continuing with the
notation ‖ · ‖ for the norm induced by the inner product (13.2):

‖ f − f0‖2 =
∞

∑
n=1

1
2n | f (yn)− f0(yn)|2 =

N

∑
n=1

+
∞

∑
n=N+1

1
2n | f (yn)− f0(yn)|2

<
ε2

2

N

∑
n=1

1
2n + (2M)2

∞

∑
n=N+1

1
2n <

ε2

2
+ ε2 4M2

8M2

=
ε2

2
+

ε2

2
= ε2.

Thus N( f0,F,ε/
√

2) ⊂U . We’ve shown that if f0 ∈ K then every η-neighborhood
of f0 contains an ω neighborhood of f0, i.e., that the topology η induced on X
by the inner product (13.2) is weaker than—and therefore equal to—the weak-star
topology induced on X by its predual Y . �	

The metrizability argument given above produces the following useful result:

Proposition 13.7 (Weak-star metrizability). If X is the dual of a separable Banach
space, then on each compact subset of X the weak-star topology is metrizable.

In the next section we’ll prove our “separable-predual” version of the Ryll–
Nardzewski Theorem. The action will take place in the dual space of C(G), where
G is a compact, metrizable group, so we will need to know that C(G) is separable.
According to Proposition B.7 of Appendix B, this is true even if G is just a compact
metric space.

13.3 Ryll–Nardzewski: separable predual version

In this section, X will be the (topological) dual of a separable (real) Banach space
Y . Instead of considering X in its norm topology, however, we will endow it with
the weak-star topology it gets from its predual Y . Thus by Proposition 13.7, every
(weak-star) compact subset of X will be metrizable.

Theorem 13.8 (“Ryll–Nardzewski lite”). Suppose X is the dual of a separable Ba-
nach space, K is a nonempty convex, weak-star compact subset of X, and S is a
uniformly injective semigroup of continuous, affine self-maps of K. Then S has a
common fixed point in K.

Proof. The argument is best broken into several pieces.

Step I. It is enough to show:

(*) Every finite subset of S has a common fixed point.
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For suppose we’ve established (*). If A ∈S let FA denote the fixed-point set of A:

FA = {x ∈ K : Ax = x}.

We wish to show that
⋂{FA : A ∈S } is nonempty. By the continuity of each map in

S we know that each fixed-point set FA is closed in K. Now (∗) is the assertion that
the family of all these sets has the finite intersection property. Thus the compactness
of K insures the entire family has nonvoid intersection.

Step II. Fix a finite subset A = {A1,A2, . . . An} of S . By Step I we’ll be done if
we can show that A has a common fixed point, so as noted above (Sect. 13.1, p.
164), we may as well assume that S is the semigroup generated by A . Note that
even though it is finitely generated, S need not be finite—if it were, we’d be done
by Proposition 13.2. Nevertheless, as in the proof of that Proposition, we’ll pin our
hopes on the affine continuous self-map A0 =(A1+A2+ · · ·+An)/n of K, for which
the Markov–Kakutani Theorem once again guarantees a fixed point x0 ∈ K. As in
the case of finite S , we’ll show that x0 is also a fixed point for each of the maps
A1, . . . ,An. Now, however, our argument needs to be more subtle.

Step III. Let S x0 = {Ax0 : A∈S }: the S -orbit of x0, and consider its closure K0, a
compact subset of K. Since C = convK0 is a closed subset of K, it too is compact, so
by Theorem 13.6 some point e of K0 is an extreme point of C. Since K is metrizable
(Proposition 13.7) there is a sequence (Tj) of maps in S such that Tjx0 → e. Since
A0x0 = x0 we have

e = lim
j
(TjA0)x0 = lim

j
Tj

(
A1x0 +A2x0 + · · · +Anx0

n

)

= lim
j

(
(TjA1)x0 +(TjA2)x0 + · · · +(TjAn)x0

n

)

.

In the last line, which follows from the affine-ness of the maps Tj, we’re looking at
n sequences ((TjAk)x0)

∞
j=1 for k = 1,2, . . . ,n, each drawn from S x0. Thanks to the

weak-star compactness and metrizability of K we can find a single subsequence ( ji)
of indices such that the sequence ((Tji Ak)x0)

∞
i=1 converges for each k to a vector yk ∈

K0 =S x0. Thus the vector e, which we know belongs to C = convK0, is actually
the average of the vectors y1,y2, . . . ,yn ∈ K0 and so belongs to convK0. Since e is
an extreme point of convK0 the yk’s must all be equal to e.

Step IV. Recall that we’re trying to show that x0 = Akx0 for each 1 ≤ k ≤ n. Since
A0x0 = x0 it’s enough to know (definition of A0) that all the vectors Akx0 are the
same. Choose two of them, say Aμx0 and Aνx0. We know from Step III that

0 = e− e = yμ − yν = lim
i
[Tji(Aμx0)−Tji(Aνx0)],

so the zero vector belongs to the closure of the set {T (Aμ x0)−T (Aνx0) : T ∈S }.
This, plus the uniform injectivity of S (at last!), guarantees that Aμx0 = Aνx0. �	
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Ryll–Nardzewski at full strength (sketch of proof). To upgrade the proof just
presented to one that establishes Theorem 13.1:

(a) In Step III: Instead of Theorem 13.6, the “separable predual” version of “A
Krein–Milman Theorem,” use the full-strength one, Theorem 13.4.

(b) In Step IV: Instead of sequences and subsequences, use “nets” and “subnets”
(see the Notes below for the definition and discussion of these concepts). The
proof just given then goes through mutatis mutandis. The reason for avoiding
this generality is that, while nets provide a straightforward generalization
of sequences, the same cannot be said for subnets vs. subsequences. In fact
subnets of sequences need not be subsequences [123, Problem 11B, p. 77].

13.4 Application to Haar Measure

In the Ryll–Nardzewski Theorem we finally have a result that allows the duality
method of Chaps. 9, 10, and 12 to establish the existence of Haar measure for every
compact topological group—commutative or not. Recall the basics of this method:
To each element γ of the group G we assign the left-translation operator Lγ defined
on either C(G) (the space of real-valued functions on G that are continuous) or
B(G) (the space of real-valued functions on G that are bounded) by Lγ f (x) = f (γx)
(x ∈ G). We implore a kind spirit to grant us a common fixed point for the collection
of algebraic adjoints of these operators. The Riesz Representation Theorem then
transforms this fixed point into Haar measure for G.

In Chap. 9 the group G was commutative and our translation adjoints lived on the
algebraic dual of C(G). In Chap. 10 we observed that the same argument worked
as well in the algebraic dual of B(G), where it produced an invariant mean which
gave rise to an invariant finitely additive “probability measure” on all subsets of G.
In Chap. 12, thanks to an enhanced Markov–Kakutani Theorem, the same method
produced both invariant means and Haar measure for solvable compact groups. By
invoking the Invariant Hahn–Banach Theorem (Theorem 12.5, p. 151) we could
even produce an invariant mean whose associated finitely additive measure extended
Haar measure from the Borel sets to all the subsets of G.

However our luck runs out if we try to extend the Markov–Kakutani Theorem
further, in the hope of providing Haar measure for all compact groups. In Chap. 11
we saw that not every compact group has an invariant mean; the group SO(3) of
rotation matrices, being paradoxical, furnishes just such an example. Thus, at least
for G = SO(3), there’s no kind spirit to provide an appropriate fixed point for trans-
lation adjoints on the algebraic dual of B(G). However the story is different for the
topological dual of C(G), thanks to the Ryll–Nardzewski Theorem.

To apply that theorem we’ll need to know that the continuity previously estab-
lished for algebraic adjoints remains true of topological ones:
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Lemma 13.9. Suppose X is a Banach space and X∗ its topological dual. If T is a
continuous linear transformation on X then its topological adjoint T ∗ is weak-star
continuous on X∗.

Proof. The key here is that T ∗ is the restriction to X∗ of the algebraic adjoint T �

acting on the algebraic dual X �. Proposition 9.18 tells us that T � is weak-star con-
tinuous on X �. Now the weak-star topology on X∗ is the restriction of the weak-star
topology on X �, so T ∗ inherits the weak-star continuity of T �. �	
Theorem 13.10. Haar measure exists for every compact topological group.

Outline of proof. Let G denote the group of left-translation operators Lγ for γ ∈ G,
and let G ∗ be the corresponding group of adjoints, operating on C(G)∗. Let K
denote the collection of positive linear functionals Λ on C(G) with Λ(1) = 1.

By Exercise 9.14 (p. 114) we know that |Λ( f )| ≤ ‖ f‖ for each Λ ∈K , hence
K is a pointwise bounded subset of C(G)∗. By Theorem 9.12 (p. 111, our “infinite
dimensional Heine–Borel theorem”) K is therefore relatively compact in the prod-
uct topology of RC(G). Now K is the analogue for C(G) of the set M of means
on B(G), and the proof that M is closed in R

B(G) works as well to show that K is
closed in R

C(G), hence K is a compact subset of RC(G). Since K is contained in
C(G)∗, and since the weak-star topology of C(G)∗ is just the restriction to that space
of the product topology of RC(G), we see that K is weak-star compact in C(G)∗.

Clearly K is convex. Each of the operators in G ∗ is a linear self-map of K that,
by Lemma 13.9, is weak-star continuous on C(G)∗. Thus if we can show that G ∗
is uniformly injective on K , the Ryll–Nardzewski Theorem will provide a fixed
point Λ ∈K for G ∗. Just as in the commutative and solvable cases, the Riesz Rep-
resentation Theorem will provide a regular Borel probability measure μ for G that
represents Λ via integration, with the G ∗-invariance of Λ translating into left G-
invariance for μ , i.e., μ will be Haar measure for G.

Proof for G metrizable. By Proposition B.7 we know that C(G) is separable, hence
Theorem 13.8, our “lite” version of the Ryll–Nardzewski Theorem, will apply to
C(G)∗ (taken in its weak-star topology) once we’ve established that G ∗ is uniformly
injective. For this we’ll need to know that:

(†) For each Λ ∈ K the map γ → L∗
γΛ takes G continuously into K (with its

weak-star topology).

Proof. Let μ denote the regular Borel probability measure for G that—thanks to the Riesz
Representation Theorem—represents Λ , i.e., Λ( f ) =

∫
G f dμ for f ∈ C(G). Since both G

and the weak-star topology on K are metrizable (the latter thanks to Propositions 13.7
and B.7) we may use sequences to establish continuity. Suppose (γn) is a sequence in G
that converges to an element γ of G. Then for f ∈C(G) we have, thanks to the Dominated
Convergence Theorem:

(L∗
γn

Λ)( f ) = Λ(Lγn f ) =
∫

f (γnx)dμ(x)→
∫

f (γx)dμ(x) = (L∗
γΛ)( f ).

Thus L∗
γn

Λ → L∗
γΛ in the weak-star topology (cf. Exercise 9.10, p.110), which establishes

the desired continuity of the map γ → L∗
γ . �	
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To show is that G ∗ is uniformly injective on K , fix Φ and Λ in C(G)∗ and suppose
the zero-functional belongs to the weak-star closure of Δ = {L∗

γΦ−L∗
γΛ : γ ∈ G}.

Our goal is to prove that Φ = Λ . Note that the set Δ is pointwise bounded on C(G),
so its closure is weak-star compact, and therefore metrizable. This, along with the
metrizability of G allows the following rephrasing of hypothesis on Δ: There exists
a sequence (γn) of elements of G such that L∗

γn
Φ−L∗

γn
Λ → 0 weak-star in C(G)∗.

Since G is compact we may, upon replacing our original sequence of group elements
by an appropriate subsequence, assume that (γn) converges to an element γ ∈ G. By
the continuity established in (†) above we have

0 = lim
n
[L∗

γn
Φ−L∗

γn
Λ ] = L∗

γ Φ−L∗
γΛ = Φ◦Lγ −Λ ◦Lγ = (Φ−Λ)◦Lγ .

Since Lγ is an isomorphism of C(G) onto itself this implies Φ = Λ , as desired.
Thus the hypotheses of our “lite” version of the Ryll–Nardzewski Theorem (The-

orem 13.8) are satisfied with X =C(G)∗, K =K , and S = G ∗, so G ∗ has a fixed
point in K ; as noted above, this provides Haar measure for G. �	

Sketch of proof for arbitrary compact G. In this setting the weak-star topology on
C(G)∗ is no longer metrizable on every compact set, so we can’t use sequential
arguments. This means we must modify the continuity proof for γ → L∗

γ so as to
avoid the Dominated Convergence Theorem. Instead the idea is to first prove that for
each f ∈C(G) the map γ → Lγ f is continuous from G to C(G) in its norm topology.
This follows from the fact each continuous function on G exhibits a form of uniform
continuity that generalizes the one familiar to us from metric-space theory.8 Once
we’ve established the desired continuity of the map γ → Lγ f it’s an easy matter
to show that the map γ → L∗

γΛ is continuous for each Λ ∈ C(G)∗. The rest of the
argument then goes through almost word-for-word, with nets and subnets replacing
sequences and subsequences.

Now that we know Haar measure exists (uniquely and bi-invariantly) on every
compact group, it’s time to investigate an important example.

13.5 Haar Measure on SO(3)

SO(3) is the collection of 3×3 matrices whose determinant is 1 and whose columns
form an orthonormal subset of R3. For every real square matrix A, such column or-
thonormality expresses itself in the matrix equation AAt = I, where At denotes the
transpose of A, and I is the identity matrix of the size of A. This, along with the
multiplicative property of determinants, makes it easy to show that SO(3) is a group
under matrix multiplication; in Appendix D it’s shown that the elements of this
group are precisely the matrices (with respect to the standard basis of R3) of rota-

8 See, e.g., [103], proof of Theorem 5.13, pp. 129–130.
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tions of R3 about the origin. For topological purposes we’ll regard SO(3) as a subset
of the sphere of radius

√
3 in R

9. It’s easy to check that the Euclidean topology of
R

9 makes SO(3) into a compact group (exercise), which therefore possesses Haar
measure. What is this measure? How does one integrate respect to it?

What is Haar Measure on SO(3)? Since we can regard SO(3) as the group of
rotations of the unit sphere S2 of R3, one might suspect that its Haar measure should
somehow involve surface area measure on that sphere. A natural way of connecting
group with sphere is to define the map ϕ : SO(3) → S2 which takes a matrix x ∈
SO(3) to its last column. Thus ϕ(x) = xe3, where we regardR3 as a space of column
vectors, and e3 = [0,0,1]t is the unit vector in R

3 “along the z-axis.”
Since matrix entries are continuous functions of their matrices, the map ϕ is

continuous. It is surjective (each unit vector can be the third column of a matrix in
SO(3)), but not one-to-one (it’s constant on subsets of SO(3) whose elements share
the same third column).

More precisely, let K denote the subgroup of matrices in SO(3) that fix the vector
e3 (i.e., which have third column equal to e3). Then the coset modulo K of a matrix
x ∈ SO(3) is xK = {xk : k ∈ K}, namely all matrices in SO(3) with third column
the same as that of x. If x and y in SO(3) have different third columns (i.e., belong
to different cosets mod K), then ϕ(x) �= ϕ(y). Thus ϕ is a one-to-one mapping of
cosets mod K onto S2.9

Now suppose f ∈C
(
SO(3)

)
. The subgroup K, being compact, has its own Haar

measure which we’ll denote by dk. Define fK on C
(
SO(3)

)
by:

fK(x) :=
∫

K
f (xk)dk

(
x ∈ SO(3)

)
.

Clearly fK is continuous; by the invariance of dk it is constant on cosets of SO(3)
modulo K.

To make the definition of fK more concrete, observe that each element of K has
the form

k(θ ) =

⎛

⎜
⎜
⎜
⎝

cosθ −sinθ 0

sinθ cosθ 0

0 0 1

⎞

⎟
⎟
⎟
⎠

(0 ≤ θ < 2π),

so the map that takes k(θ ) to its upper left-hand 2×2 submatrix, and then to the uni-
modular complex number cosθ + isinθ , establishes a homeomorphic isomorphism
between K and the unit circle, now viewed as the group of rotations of R2. This
allows Haar measure on K to be concretely represented by the Haar measure of the
circle group, i.e., normalized Lebesgue arc-length measure:

∫

K
g(k)dk =

1
2π

∫ 2π

0
g(k(θ ))dθ

(
g ∈C(K)

)
.

9 As such, ϕ can be regarded as a map taking SO(3) onto the quotient space SO(3)/K, but right
now we’ll avoid the notion of “quotient space.”
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Thus for f ∈C
(
SO(3)

)
,

fK(x) =
1

2π

∫ 2π

0
f
(
xk(θ )

)
dθ

(
x ∈ SO(3)

)
. (13.3)

Exercise 13.4. Define f : SO(3)→ [−1,1] by f (x) = (x2,2)
2. Show that

fK(x) =
1− (x2,3)

2

2

for each x ∈ SO(3).

The function fK , being constant on cosets mod K, may be viewed via the map ϕ
as a function on S2. More precisely, let

f̂ (p) = fK
(
ϕ−1(p)

)
(p ∈ S2).

Theorem 13.11. Haar measure dx on SO(3) is given by
∫

SO(3)
f (x)dx =

∫

S2
f̂ (p)dσ(p)

(
f ∈C

(
SO(3)

))
,

where σ denotes surface area measure on S2, normalized to have unit mass.

Proof. Define the linear functional Λ on C
(
SO(3)

)
by

Λ( f ) =
∫

S2
f̂ (p)dσ(p)

(
f ∈C

(
SO(3)

))
.

Then Λ is a positive linear functional on C
(
SO(3)

)
, so the Riesz Representa-

tion Theorem provides a regular Borel probability measure μ for SO(3) such that
Λ( f ) =

∫
f dμ for all f ∈C

(
SO(3)

)
. One checks easily that if f ≡ 1 on SO(3) then

Λ( f ) = 1, i.e., that μ
(
SO(3)

)
= 1; thus μ is a probability measure.

To show that μ is Haar measure on SO(3) we need only check is that it is left-
invariant, i.e., that if Ly is the “left-translation” operator on C

(
SO(3)

)
:

(Ly f )(x) = f (yx)
(

f ∈C
(
SO(3)

)
, x,y ∈ SO(3)

)
,

then Λ(Ly f ) = Λ( f ) for f ∈C
(
SO(3)

)
and y ∈ SO(3).

The proof of this hinges on the identity

(̂Ly f ) = Ly( f̂ ) for each f ∈C
(
SO(3)

)
, (13.4)

where on the right-hand side we have Ly operating in the obvious way on C(S2),
namely: Lyg(p) = g(yp) for p ∈ S2 and g ∈C(S2). Granting this: for f ∈C

(
SO(3)

)

and y ∈ SO(3):

Λ(Ly f ) =
∫

S2
L̂y f dσ =

∫

S2
Ly( f̂ )dσ =

∫

S2
f̂ dσ = Λ( f ),
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where the second equality uses (13.4), and the third one follows from the rotation-
invariance of surface area measure on S2.

The proof of (13.4) involves nothing more than chasing definitions. Fix p ∈ S2

and choose x ∈ SO(3) with ϕ(x) = p (so that p is the third column of the matrix x).
Fix the “translator” y ∈ SO(3). Note that

ϕ(yx) := yxe3 = yϕ(x) = yp (13.5)

so for f ∈C
(
SO(3)

)
,

(̂Ly f )(p) = (Ly f )K
(
ϕ−1(p)

)
=

∫

K
(Ly f )(xk)dk

=

∫

K
f (yxk)dk = fK(yx)

= fK(ϕ−1(yp)) (by (13.5))

= f̂ (yp) = (Ly f̂ )(p)

which completes the proof of the theorem. �	
It’s tempting to think of Theorem 13.11 as somehow expressing Haar measure on

SO(3) as the product of normalized surface area on the sphere S2 and Haar measure
on the subgroup K. Not so! One must instead regard Theorem 13.11 as “disintegrat-
ing” Haar measure on SO(3) into a family of translates of dk—one for each coset
mod K of SO(3)—which are “glued together” by the surface area measure dσ .

More precisely, denote left-multiplication by x on SO(3) by λx (i.e., λx(y) = xy
for y ∈ SO(3)), and Haar measure on K by ν . Then for x ∈ SO(3) can use the
change-of-variable formula of measure theory to rewrite the definition of fK(x) as:

fK(x) =
∫

K
f
(
λx(k)

)
dν(k) =

∫

xK
f d(νλ−1

x )
(

f ∈C
(
SO(3)

))
.

We have xK = ϕ−1(p), where p is the third column of the matrix x. Since fK(x)
is constant on ϕ−1(p), the formula above shows that the probability measure νλ−1

x
depends only on the point p ∈ S2. Upon writing νp for this measure we can rewrite
the conclusion of Theorem 13.11 as:

∫

SO(3)
f (x)dx =

∫

S2

(∫

ϕ−1(p)
f dνp

)

dσ(p)
(

f ∈C
(
SO(3)

))
, (13.6)

which exhibits how Haar measure on SO(3) “disintegrates” into the measures νp.

Exercise 13.5. Express the familiar formula from Calculus by which one integrates a con-
tinuous real-valued function over the plane triangle Δ = {0 ≤ y ≤ x,0 ≤ x ≤ 1} as a similar
“disintegration” of Lebesgue area measure on Δ into a family of one dimensional measures
on vertical (or, if you wish, the horizontal) cross-sections of that triangle.
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Exercise 13.6. Identify Haar measure on O(3), the group of all orthogonal 3×3 matrices.

13.6 Computation of some Haar integrals over SO(3)

Let’s use the usual subscript notion xi, j to denote the entry in the i-th row and j-th
column of a matrix x. Suppose g is a real-valued continuous function on the closed
real interval [−1,1]. What is

∫
SO(3) g(xi, j)dx ? For i = j = 3 the answer is easy to

find, since in this case the function g(x) = g(x3,3) is already constant on cosets of
SO(3) mod K, hence in our characterization of Haar measure on SO(3), g = gK , and
therefore ∫

SO(3)
g(x3,3)dx =

∫

S2
g(p3)dσ(p). (13.7)

Let (θ ,ϕ) be the usual spherical coordinates of a point of p ∈ S2, i.e., ϕ is the
angle from the z-axis to the line from the origin to p, and θ is the angle from the x-
axis to that line. Thus p = [cosθ sinϕ ,sinθ sinϕ ,cosϕ ]t . In particular, p3 = cosϕ ,
and we know from multivariable calculus that (normalized) area measure on S2 is
given by dσ(p) = 1

4π sin ϕ dϕ dθ . Thus the right-hand side of (13.7) is

1
4π

∫ 2π

θ=0

(∫ π

ϕ=0
g(cosϕ)sin ϕ dϕ

)

dθ ,

so upon setting t =−cosϕ in the inner integral we obtain

∫

SO(3)
g(x3,3)dx =

1
2

∫ 1

−1
g(t)dt . (13.8)

The same reasoning could be used to integrate g(xi,3) for i = 1,2, but there’s no
reason to do so; the bi-invariance of Haar measure reduces all such integrals to the
one we just worked out, yielding

Proposition 13.12. Suppose g ∈C([−1,1]) and 1 ≤ i, j ≤ 3. Then

∫

SO(3)
g(xi, j)dx =

1
2

∫ 1

−1
g(t)dt .

Proof. One can find matrices a,b∈SO(3) such that xi, j =(axb)3,3 (exercise) where-
upon the bi-invariance of Haar measure on SO(3) yields

∫

SO(3)
g(xi, j)dx =

∫

SO(3)
g
(
(axb)3,3

)
dx =

∫

SO(3)
g(x3,3)dx .

This, along with (13.8), above gives the promised result. �	
Corollary 13.13.

∫
SO(3) xi, j dx = 0 for all (i, j) with 1 ≤ i, j ≤ 3.
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Exercise 13.7. Show that the “normalized” matrix entries {xi, j/
√

3 : 1 ≤ i, j ≤ 3} form an
orthonormal set in L2

(
SO(3)

)
(with respect to Haar measure).

Suggestion. To prove orthogonality, use the bi-invariance of Haar measure to reduce the
problem to showing that xi, j ⊥ x3,3 whenever (i, j) �= (3,3). For this you’ll need to show
that if f (x) = xi, j then fK(x) = 0 whenever j �= 3, and = xi,3 otherwise.

Characters again. Recall from Sect. 9.7 the notion of character for a topological
group: a continuous homomorphism of that group into the circle group T. We saw
in that section that characters form the basis of an extension to compact abelian
groups of Fourier analysis on the circle. The exercise below shows that the situation
is much different for non-commutative groups.

Exercise 13.8 (The character group of SO(3) is trivial). This exercise requires only the
fact that matrices in SO(3) are in one-to-one correspondence with rotations of R3 about the
origin, that rotations preserve lengths of vectors and angles between vectors, and that each
such rotation is uniquely determined by its axis (a line through the origin, each point of
which is fixed) and its angle of rotation about that axis. For full details see Appendix D.

Let Ru(θ ) denote the rotation having axis in the direction of the unit vector u and rotation
angle θ ∈ [−π ,π), where the sign of the angle is determined by the “right-hand rule.” If u is
the unit vector along the x-axis, we’ll write Rx(θ ) instead of Ru(θ ), and similarly for Rz(θ ).

(a) Suppose u,v is a pair of unit vectors in R
3, and M ∈ SO(3) maps u on to v. Then

for each angle θ we have the (unitary) similarity Rv(θ ) = MRu(θ )M−1 (see Ap-
pendix D, p. 205 for a more detailed version of this). Conclude that for each char-
acter γ on SO(3), the value at each matrix in SO(3) depends only on the angle of
rotation and not on the axis.

(b) Let M(θ ) = Rz(θ )Rx(−θ ). Show that if γ is a character of SO(3) then γ(M(θ )) = 1
for every θ ∈ [−π ,π). Thus one need only prove that every α ∈ [−π ,π) is the angle
of rotation of some M(θ ) or its inverse.

(c) Prove that cosθ =
(
trace

(
Ru(θ )

)−1
)
/2. Use this to show that if f (θ ) is the cosine

of the angle of rotation of M(θ ) then

f (θ ) =−1/4+ cos(t)+ cos(2t)/4.

Show that f maps the interval (−π ,π ] onto [−1,1]. Conclude that if β ∈ (−π ,π ]
then there exists θ ∈ (−π ,π ] such that either M(θ ) or its inverse is a rotation through
angle β .Thus SO(3) has only the trivial character γ ≡ 1.

13.7 Kakutani’s Equicontinuity Theorem

The Ryll–Nardzewski Theorem generalizes:

Corollary 13.14 (Kakutani). Suppose K is a nonvoid, compact, convex subset of a
normed linear space, and G is an equicontinuous group of affine self-maps of K.
Then G has a fixed point in K.
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Proof. By Ryll–Nardzewski’s Theorem it’s enough to prove that the group G is
uniformly injective. To this end suppose x and y are vectors in K with x �= y. Let
ε = ‖x− y‖. By equicontinuity there exists δ > 0 such that if v and w are vectors in
K with ‖v−w‖ < δ then ‖A(v)−A(w)‖ < ε for every A ∈ G . Now fix A ∈ G , so
A−1 also belongs to G and ε = ‖A−1A(x)−A−1A(y)‖, hence ‖A(x)−A(y)‖ must be
≥ δ . Thus the zero vector does not belong to the closure of {A(x)−A(y) : A ∈ G },
which establishes the uniform injectivity of G . �	

This proof, with the notion of “equicontinuity” suitably interpreted, can be made
to work as well in every locally convex topological vector space; see, for example,
[103, Theorem 5.11, pp. 127–128]. Kakutani’s theorem can be used as the first step
of a proof (much different from the one given above) of the existence of Haar mea-
sure for every compact group. See, e.g., [103, Theorems 5.13–5.14, pp. 129–132].

Notes

The “real” Ryll–Nardzewski Theorem. Our version of Ryll–Nardzewski’s theorem
(Theorem 13.1) is due to Hahn [45]; it’s a special case of what Ryll–Nardzewski
actually proved. The “real” result, proved in [105], assumes compactness of the
convex set K and continuity for the affine semigroup of maps S for the weak topol-
ogy induced on the locally convex space X by its dual space. The notion of “uni-
form injectivity” however still refers to the original topology of X . Shorter proofs
were subsequently given by Namioka and Asplund [82], and later by Dugundji and
Granas [35].

Nets. A sequence (xn)
∞
1 from a set X is just a function x from the set N of natural

numbers to X , with xn denoting the value x(n). More generally, suppose D is a set on
which there is a relation ≺ that is both reflexive and transitive, and for which every
pair of elements in A has an upper bound. The pair (A,≺) is called a directed set,
and a function x : A → X is called a net from X , often abbreviated (xδ )δ∈D. If X is a
topological space then to say such a net converges to an element x0 ∈ X means that
for every neighborhood U of x0 there exists δ0 ∈ D such that δ0 ≺ δ =⇒ xδ ∈ U .
With this definition, the sequential arguments that establish the properties of closure
and continuity for metric spaces can be carried over directly to general topological
spaces simply by replacing sequences with nets. The subsequential characterization
of compactness for metric spaces even has an analogue for nets in general topolog-
ical spaces, but for this to happen the proper definition of “subnet” must be a lot
more subtle than that of “subsequence.” For the details see, e.g., [123, Chap. 4].

Haar Measure is named for the Hungarian mathematician Alfred Haar (1885–
1933) whose landmark paper [42, 1933] proved its existence for metrizable locally
compact groups. Subsequently Banach [8, 1937] modified Haar’s argument to pro-
vide measures invariant for the action of compact transformation groups acting con-
tinuously on compact metric spaces. The existence of an invariant measure for each
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locally compact (Hausdorff) topological group was proved in 1940 by André Weil.
Predating all of this, in 1897 Adolph Hurwitz defined the notion of invariant inte-
gral for SO(n), essentially identifying Haar measure for that group. For this, and
further historical background and references, see Hawkins’ exposition [49, 1999]
(especially p. 185 for Hurwitz’s result, and pp. 194–196 for the rest). Diestel and
Spalsbury in [29, 2014] provide a recent and accessible account of Haar measure,
its history, and many of its applications including a nice introduction to its role in
harmonic analysis on compact groups as well as some recent applications to Banach
space theory.

Disintegration of Haar Measure with respect to a subgroup. The argument that
proved Theorem 13.11 goes through almost verbatim to prove the same result with
SO(3) replaced by a compact group G, K by a closed subgroup, S2 by G/K, and
σ by μπ−1, where π : G → G/K is the “quotient map” x → xK (x ∈ G). The point
is that the quotient space G/K has a natural topology that renders it compact and
Hausdorff (namely: the strongest topology that makes π continuous); in the case of
SO(3) this is just the topology induced on G/K by its identification with S2. One
also needs to note that the natural action of G on G/K (xK → gxK for g,x ∈ K) is
continuous in this topology. With these substitutions Theorem 13.11 remains true,
and signals a disintegration of μ with respect to the family of translates νp of ν to
the cosets p that make up G/K.

Exercise 13.8. The argument outlined for this exercise expands on that of [36,
Sect. 4.8.4, p. 232].
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