
Chapter 12
Fixed Points for Non-commuting Map Families

MARKOV–KAKUTANI FOR SOLVABLE FAMILIES

Overview. Here we’ll generalize the Markov–Kakutani Theorem (Theorem 9.6, p.
107) to collections of affine, continuous maps that obey a generalized notion of com-
mutativity inspired by the group-theoretic concept of solvability. This will enable us
to show, for example, that the unit disc is not paradoxical even with respect to its
full isometry group, and that solvable groups are amenable, hence not paradoxical.
We’ll prove that compact solvable groups possess Haar measure, and will show how
to extend this result to solvable groups that are just locally compact.

12.1 The “Solvable” Markov–Kakutani Theorem

We know from the Banach–Tarski Paradox (Theorem 11.19) that B3 is paradoxi-
cal with respect to the full isometry group of R3. Thanks to the Markov–Kakutani
Fixed-Point Theorem and the commutativity of the group of origin-centered rota-
tions of R

2, we also know (Corollary 10.5, p. 123) that there is defined, for all
subsets of the unit disc B

2, a finitely additive probability measure that is rotation-
invariant. Consequently (Exercise 11.1) B2 is not paradoxical with respect to the
group of rotations of R2 about the origin. This raises the question:

Is B2 paradoxical with respect to its full group of isometries?

The isometry group of B2 allows, in addition to rotations about the origin, reflections
in a line through the origin; this creates non-commutativity. Indeed, we know from
linear algebra that the rotations of R2 about the origin are the linear transformations
represented (with respect to the standard unit-vector basis of R

2) by matrices of
the form

[
cosθ −sinθ
sinθ cosθ

]
, where θ ∈ [0,2π) is the angle of rotation. These rotation

matrices form the subgroup SO(2) of O(2), the group of all 2× 2 matrices whose
columns form an orthonormal set in R

2. Each matrix in O(2) has determinant ±1 (a
consequence of column-orthonormality, which can be rephrased: “The transpose of
each matrix in O(2) is its inverse”), those with determinant −1 being the reflections
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146 12 Fixed Points for Non-commuting Map Families

about lines through the origin, and those with determinant +1 constituting the ro-
tation group SO(2). The isometries of R2 that fix the origin are precisely the linear
transformations represented by matrices in O(2). More generally the same is true
for RN , with O(N) in place of O(2) (see Appendix D for the full story). Now the
matrix group O(2) (hence its alter ego, the isometry group of the unit disc) is not
commutative, as witnessed by the pair of matrices:

⎡

⎣
1√
2

− 1√
2

1√
2

1√
2

⎤

⎦ and

⎡

⎣1 0

0 − 1

⎤

⎦ ,

the first of which induces rotation through an angle of 45 degrees about the origin,
while the second induces reflection about the horizontal axis.

In this chapter we’ll generalize the Markov–Kakutani Theorem in a way that
applies to non-commutative groups like O(2); in so doing we’ll be able to extend
the disc’s non-paradoxicality from rotations to all its isometries.

Theorem 12.1 (The “Solvable” Markov–Kakutani Theorem). Suppose K is a non-
void compact, convex subset of a Hausdorff topological vector space. Then every
solvable family of continuous, affine self-maps of K has a common fixed point.

We’ll devote the next section to understanding the meaning of “solvable,” after
which we’ll prove Theorem 12.1 and show how to apply it.

12.2 Solvable Families of Maps

Our notion of solvability is inspired by group theory (see Appendix E).

Definition 12.2. Suppose A is a family of self-maps of some set.

(a) Solvable family of maps. This is what we’ll call A whenever there is a finite
chain of subfamilies

{Identity map} = A0 ⊂ A1 ⊂ A2 ⊂ ·· · ⊂ An = A (12.1)

such that for each 1 ≤ k ≤ n and each pair A,B of maps in Ak there exists a
“commutator” C ∈Ak−1 such that AB = BAC.

(b) Solvability degree. More precisely, we may call A as above “n-solvable.”
(c) Solvable group. This is what we’ll call the family A whenever it satisfies

condition (a) above, and each of the subfamilies Ak in (12.1) is a group under
composition. For more precision we may use the term “n-solvable group.”

Remarks 12.3. Suppose A denotes a family of self-maps that is solvable in the
sense of Definition 12.2 (a).

(a) Solvability and commutativity. A1 is commutative, so A is “1-solvable” if and
only if it is commutative. “2-solvable” is the next-best thing, . . . .



12.2 Solvable Families of Maps 147

(b) Semigroups and groups of self-maps. For a family of self-maps of a set, the
collection of common fixed points is not changed if one replaces the original
family of self-maps by the “unital semigroup” it generates, i.e., the set of all
possible finite compositions of the original maps, along with the identity map.
If each map of the original family is a bijection, we can even add all the inverses
to the original family without changing the common fixed-point set, in which
case the new “inverse-enhanced” family generates a group under composition
having the same common fixed-point set as the original family. Here we’ll only
consider self-map families that are groups.

(c) Solvable groups. Suppose G is a group with identity element e. We can consider
G to be a group of self-maps, acting itself by (say) left multiplication. Each pair
of elements a,b ∈ G has a unique commutator [a;b] := (ba)−1ab = a−1b−1ab.
Thus, according to Definition 12.2(c) above: G is a solvable group if and only
if there is a chain of subgroups

{e}= G0 ⊂ G1 ⊂ G2 . . . Gn = G (12.2)

such that for each index k between 1 and n the subgroup Gk−1 contains all the
commutators of Gk.

The usual definition of “solvable” for groups stipulates that for 1≤ k ≤ n the sub-
group Gk−1 must to be a normal subgroup of Gk, and that furthermore each quotient
group Gk/Gk−1 must be abelian. These requirements of normality plus commuta-
tivity turn out to be equivalent to the single commutator-containment condition of
the last paragraph; see Appendix E for the details.

Example 12.4. The matrix group O(2) is solvable. We’ve noted that the family of
isometric self-maps of B2 can be identified with O(2) acting by left-multiplication
of column vectors. Consider the chain of subgroups

{I} ⊂ SO(2)⊂ O(2), (12.3)

noting that SO(2), the group of 2× 2 rotation matrices, is commutative. The mul-
tiplicative property of determinants now takes over; each matrix in O(2) has deter-
minant either +1 or −1, and so has the same determinant as its inverse. Thus given
matrices A and B in O(2) the commutator [A;B] belongs to O(2) and has determinant
+1; it therefore belongs to SO(2).

Conclusion: O(2) is a 2-solvable group in the sense of Definition 12.2.

Example 12.5. The affine group of R is solvable. Let A(R) denote the collection of
affine transformations of the real line, i.e., the transformations γr,t : x → rx+ t (x ∈
R) for t ∈ R and r ∈ R\{0}. Then, with composition as the binary operation in
A(R):

(a) γr,t ◦ γρ ,τ = γrρ ,rτ+t , so A(R) is a group, with γ−1
r,t = γ1/r,−t/r .

(b) A(R) is generated by two commutative subgroups: the dilation group con-
sisting of maps γr,0 where r �= 0, and the translation group T (R) consisting of
maps γ1,t for t ∈ R.
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(c) The commutator [γr,t ;γρ ,τ ] = γ1,s ∈ T (R), where s = (1−ρ)t−(1−r)τ
rρ .

Thus we have the chain of groups: {identity map} ⊂ T (R) ⊂ A(R), where T (R) is
commutative and contains all the commutators of A(R).

Conclusion: A(R) is a 2-solvable group.

Exercise 12.1. Show that the map γr,t → [ r t
0 1 ] is a homomorphism taking A(R) onto a group

of invertible 2× 2 real matrices, and that all the calculations in the example above can be
done “matricially.”

The exercises below give two more examples of solvable matrix groups, the sec-
ond of which is 3-solvable, but not 2-solvable.

Exercise 12.2 (The Heisenberg group is solvable). The Heisenberg group is the collection
H = H3(R) of 3× 3 real matrices that are upper triangular and whose main diagonal
consists entirely of 1’s.

(a) Show that H is a group under matrix multiplication.

(b) Let K denote the subset of H consisting of matrices of the form
(

1 0 a
0 1 0
0 0 1

)
. Show that

K is a commutative subgroup of H .

(c) Show that if A,B ∈ H , then the commutator A−1B−1AB belongs to K . Conclude
that H is 2-solvable.

Exercise 12.3 (The Upper-Triangular group is 3-solvable, but not 2-solvable). Let U denote
the collection of 3× 3 matrices that are upper triangular, i.e., have all entries zero below
the main diagonal.

(a) Show that U is a group under matrix multiplication.

(b) Show that the Heisenberg group contains every U -commutator. Conclude that U is
3-solvable.

(c) Show that the U is not 2-solvable.

(d) Suggestion: By considering, e.g., matrices of the form A =
(

1 1 0
0 1 1
0 0 a

)
and B =

(
b 0 c
0 1 0
0 0 d

)
,

show that the collection of commutators of U exhausts the entire Heisenberg group.
Argue that if U were 2-solvable, then the Heisenberg group would have to be com-
mutative, which it is not.

The next exercise concerns a famous class of finite groups that are not solvable.

Exercise 12.4. Sn is not solvable for n ≥ 5. Here Sn denotes the set of permutations (1-to-1
onto maps) of a set of n elements, which we might as well take to be [1,n] := {1,2, . . . n}.
With composition as its binary operation, Sn is a group (the symbol “S” stands for “sym-
metric”). We assume here that n ≥ 5.

Of particular interest to us are the 3-cycles in Sn, i.e., the maps that permute a triple {a,b,c}
of distinct elements of [1,n] cyclically: a → b → c → a and leave everything else alone.
Notation for such a 3-cycle: (a,b,c). In the exercises below we assume n ≥ 5.

(a) Show that the 3-cycle (1,4,3) is the commutator [σ ,τ ] where σ = (1,2,3) and τ =
(3,4,5).
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(b) By making appropriate substitutions in part (a) show that every 3-cycle in Sn is a
commutator of other 3-cycles.

(c) Use part (b) to show that Sn is not solvable.

12.3 Proof of the solvable Markov–Kakutani Theorem

The argument proceeds by induction on the “solvability index” n in (12.1). Since
A1 is commutative, the case n = 1 is just the original Markov–Kakutani Theorem
(Theorem 9.6, p. 107).

For the induction step suppose n ≥ 2 and the result is true for all (n−1)-solvable
families, of which An−1 in (12.1) is one. The set Kn−1 of common fixed points
for An−1 is nonempty (induction hypothesis), compact (continuity of the maps in
An−1), and convex (affine-ness of the maps in An−1).

Claim: Each map A ∈A =An takes Kn−1 into itself.

Proof of Claim. Given A ∈A and p ∈ Kn−1 we’re claiming that A(p) ∈ Kn−1, i.e.,
that BA(p) = A(p) for every B ∈ An−1. Given A ∈ A and B ∈ An−1 there exists
C ∈ An−1 such that BA = ABC. Thus for p ∈ Kn−1 we have (since both B and C
belong to An−1): BA(p) = ABC(p) = AB(p) = A(p), as desired.

To finish the proof of Theorem 12.1 we’re going to show that ˜A , the collection of
restrictions to Kn−1 of maps in A , is commutative. This, along with the just-proved
Claim, will establish ˜A as a commutative family of continuous, affine self-maps of
Kn−1. The original Markov–Kakutani Theorem will then provide for ˜A a common
fixed point p ∈ Kn−1, a fortiori a fixed point for every map in A .

It remains to establish the desired commutativity for ˜A . For this, suppose A and
B belong to A and choose C ∈An−1 so that AB = BAC. Then for p ∈ Kn−1 (hence a
fixed point for C): A(B(p)) = B(A(C(p))) = B(A(p)), i.e., AB = BA on Kn−1. 
�

12.4 Applying the solvable M–K Theorem

Recall the cast of characters that emerged in Chaps. 9 and 10 when we applied the
original the Markov–Kakutani Theorem.

(a) There was a set S and a commutative family Φ of self-maps of S.
(b) Each ϕ ∈ Φ gave rise to the (linear) composition operator Cϕ : f → f ◦ ϕ

acting on B(S) (the vector space of bounded, real-valued functions on S). We
denoted the collection of all such composition operators by CΦ.

These actors will return in this chapter, except that now we’ll allow Φ to be “solv-
able” in the sense of Definition 12.2. The Markov–Kakutani triple (X ,K,A ) of
Sects. 9.5 and 10.1 will return unchanged:

(c) X = B(S)�, the algebraic dual of B(S), taken in its weak-star topology.
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(d) K =M (S), the set of “means” on B(S), i.e., those positive linear functionals
on B(S) that take value 1 on the function ≡ 1 on S.

(e) A =C�
Φ, the collection of adjoints of composition operators belonging to the

family CΦ.

To apply our enhanced Markov–Kakutani Theorem we need only to show that the
solvability assumed for the original family Φ of self-maps of S is inherited by the
family C�

Φ of affine self-maps of M (S). For this one need only check that the map
ϕ →Cϕ reverses composition (Cϕ◦ψ =CψCϕ ), and that the same is true of the map
T → T � that associates to each linear transformation on a vector space its adjoint.
Thus the map ϕ →C�

ϕ preserves the order of composition; in particular, if ϕ ,ψ ,γ ∈
Φ and γ is a commutator of the pair (ϕ ,ψ) in the sense that ϕ ◦ψ = ψ ◦ ϕ ◦ γ ,
then C�

γ is a commutator of the pair (C�
ϕ ,C

�
ψ). Consequently, if the original family of

maps Φ is solvable, then so is C�
Φ. Theorem 12.1 can therefore be applied to yield

Theorem 12.6 (Invariant means for solvable families of maps). Suppose Φ is a
solvable family of self-maps of a set S. Then:

(a) There is a mean Λ on B(S) that is invariant for C�
Φ, i.e., Λ ◦Cϕ =Λ for every

ϕ ∈ Φ (cf. Theorem 9.19).
(b) There is a finitely additive Φ-invariant probability measure on P(S) (cf. The-

orem 10.3).
(c) S is not Φ-paradoxical (see Exercise 11.1).

Since Φ = O(2) is a solvable family of self-maps of B2 and S1, we see in particular:

Corollary 12.7. B
2 and S1 are not O(2)-paradoxical.

Corollary 12.8. Solvable groups are amenable, hence not paradoxical.

In the other direction we have

Corollary 12.9. The following groups are not solvable:

(a) The free group F2 on two letters.
(b) The compact group SO(3) of 3×3 orthogonal matrices with determinant one.

Proof. Both groups are not amenable (Theorem 10.12 for F2 and Corollary 11.9 for
SO(3) in its guise as the rotation group R), hence not solvable. 
�

If our basic set S is a compact topological space, then we have the following
extension of Corollaries 9.20 and 9.21:

Corollary 12.10. If Φ is a solvable family of continuous affine self-maps of a com-
pact topological space S, then there exists a regular Borel probability measure μ for
S such that ∫

f ◦ϕ dμ =

∫
f dμ

for every f ∈C(S) and ϕ ∈ Φ.

Corollary 12.11. Every solvable compact topological group has a Haar measure.
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12.5 The (solvable) Invariant Hahn–Banach Theorem

Given a solvable family Φ of continuous self-maps of a compact Hausdorff space S,
our solvably enhanced version of the Markov–Kakutani Theorem produces—just as
did the original version in Sect. 10.2—two important Φ-invariant set functions for
S: A regular probability measure μ on the Borel sets of S (Corollary 12.10), and a
finitely additive probability measure ν defined for all subsets of S (Theorem 12.6).
This brings up the same question we faced in Sect. 10.2: “Can ν be realized as
an extension of μ?” Once again the answer is “yes,” with the heavy lifting done
by a “solvable” extension of the Invariant Hahn–Banach Theorem (Theorem 10.6,
p. 124).

Theorem 12.12 (The “solvable” Invariant Hahn–Banach Theorem). Suppose V is a
vector space and G is a solvable family of linear transformations V →V . Suppose
W is a linear subspace of V that is taken into itself by every transformation in G ,
and that p is a gauge function on V that is “G -subinvariant” in the sense that

p(γ(v))≤ p(v) for every v ∈V and γ ∈ G .

Suppose Λ is a G -invariant functional on W that is dominated by p, i.e.,

Λ ◦ γ =Λ for all γ ∈ G and λ (v)≤ p(v) for all v ∈W.

Then Λ has a G -invariant linear extension to V that is dominated on V by p.

Corollary 12.13. If S is a compact Hausdorff space upon which acts a solvable
family Φ of continuous self-maps, then each regular Φ-invariant probability mea-
sure on the Borel sets of S extends to a finitely additive probability measure defined
for all subsets of S.

The proofs of these two results are identical to those of their commutative ana-
logues (Theorem 10.6 and Corollary 10.7, pp. 124–125), except that the solvable
Markov–Kakutani Theorem replaces the original one.

We saw in Corollary 10.5 that for the closed unit disc B
2 there is a finitely addi-

tive, rotation-invariant probability measure on P(B2). Thanks to Example 12.4 and
Theorem 12.1 we now know there exists a finitely additive probability measure on
P(B2) invariant for the full isometry group O(2) of B2. Corollary 12.13 shows that
this isometry-invariant finitely additive probability measure can be chosen to extend
normalized Lebesgue area measure; similar results hold for the unit circle.

Invariant extension of Lebesgue measure on R. Lebesgue measure m on the
Borel subsets of the real line is invariant under translations, and “scales properly”
under dilations. More precisely: for each pair (r, t) of real numbers, and each Borel
subset E of R, we have m(rE + t) = |r|m(E). Thanks to the solvability of the affine
group A(R) of the real line (Exercise 12.5), our “solvable” Invariant Hahn–Banach
Theorem provides an extension of Lebesgue measure to a finitely additive measure
on P(R) that preserves the translation-invariance and scaling properties of the orig-
inal. More precisely:
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Theorem 12.14. There is an extension of Lebesgue measure to a finitely additive
measure μ on all subsets of R such that for each E ⊂ R:

μ(rE + t) = |r|μ(E) (0 �= r ∈ R, t ∈R) (12.4)

and
m∗(E)≤ μ(E)≤ m∗(E), (12.5)

where m∗(E) and m∗(E) denote, respectively, the inner and outer measures of E.

Proof. Let V be the collection of real-valued functions f on R for which the upper
integral ∫ ∗

| f | = inf

{∫
s : s ∈S , | f | ≤ s

}

of | f | overR is finite; here S denotes the collection of Borel-measurable, integrable
functions on R that are simple, i.e., take only finitely many values, and the integrals
are taken with respect to Lebesgue measure on the line. For f ∈V let p( f ) =

∫ ∗ | f |.

Exercise 12.5. Prove that p is a gauge function on V , as defined in the statement of the
Hahn–Banach Theorem on p. 124.

For γ = γr,t ∈ A(R) (notation as in Example 12.5), define the linear transformation
Lγ on V as the “weighted” composition operator:

(Lγ f )(x) = r f (γ(x)) ( f ∈V, x ∈ R),

and let A denote the collection of all such transformations. With composition as
its binary operation, A is a group that inherits the 2-solvability of A(R), and so
satisfies the hypotheses of the “solvable” Invariant Hahn–Banach Theorem.

Thanks to the change-of-variable formula for Lebesgue integrals, the functional
p is invariant for each Lγ ∈A :

p(Lγ f ) = p( f ) ( f ∈V, γ ∈ A(R)).

Let W denote the subspace of V consisting of functions whose absolute value is
Lebesgue measurable, and so Lebesgue integrable. On W let λ be the linear func-
tional of integration with respect to Lebesgue measure m. Then λ , too, is A -
invariant so Theorem 12.12 provides a A -invariant linear functional Λ on V that
extends λ and is dominated on V by p.

Now for the desired finitely additive measure: if E is a subset of R with finite
outer measure then its characteristic function χE is in V (its upper integral is pre-
cisely m∗(E)), so we can set μ(E) = Λ(χE). The A -invariance of Λ translates into
property (12.4) for μ , while the fact that Λ ≤ p on V shows us that

∫

∗
f =−p(− f )≤ Λ( f ) ≤ p( f ) =

∫ ∗
f ( f ∈V ),
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where on the right we see the lower integral of f , i.e., the supremum of the integrals
of integrable simple functions that are ≤ f at each point of R. In particular, for
f = χE with m∗(E)< ∞ we obtain (12.5).

It remains only to extend μ to all subsets of R, which we do by defining μ(E) =
∞ whenever m∗(E) = ∞. With the usual conventions involving arithmetic with ∞,
the result is still a finitely additive measure that preserves the desired properties. 
�
Higher dimensional extensions? Does the above result extend to affine maps of RN

for N > 1? In this case the maps are γA,v : x→Ax+v with A in the group of invertible
n× n real matrices and v a vector in R

N . The change of variable formula now tells
us that λ (γA,v(E)) = det(A)λ (E) for each Borel subset E of RN , where λ denotes
Lebesgue measure on R

N , so the question is: For n > 1 does there exist a finitely
additive extension of Lebesgue measure to all the subsets of RN that satisfies the
above transformation formula.

The answer is “No!” For N = 3 the Banach–Tarski Paradox tells us that no such
measure exists, even for the subgroup of A(R3) consisting of isometries of R3. The
Banach–Tarski Paradox extends to R

N with N > 3 (the proof is an adaptation—
not entirely trivial—of the three dimensional one; see, for example, [121, Chap. 5]),
with the same result for extensions of Lebesgue measure. For N = 2 there is no
Banach–Tarski Paradox to help us out here. In its place, however, is the von Neu-
mann Paradox, according to which any two bounded subsets of R2 with nonvoid in-
terior are equidecomposable with respect to the group of affine maps γA,v for which
det(A) = 1, i.e., the group of area-preserving affine maps. Thus, once again there is
no hope for a two dimensional extension of Theorem 12.14.

Countably additive extensions? The usual construction of a subset of R that’s not
Lebesgue measurable shows that (assuming the Axiom of Choice) there is no count-
ably additive extension of Lebesgue measure to all subsets of the real line.

12.6 Right vs. Left

Having left the friendly confines of commutativity, we need to address the question
of “rightness vs. leftness” for invariant Borel measures on topological groups, and
more generally for means on “non-topological” groups (recall Definition 9.16, p.
114). To this point “invariant,” for a group G and a mean Λ on B(G) has meant
that L�

γ Λ : = Λ ◦Lγ = Λ for each of the “left-translation maps” Lγ : B(G)→ B(G)
defined for γ ∈ G by

Lγ ( f )(x) = f (γx) (x ∈ G, f ∈ B(G)). (12.6)

If a compact group G has such an invariant mean (e.g., if G is abelian, or more
generally, solvable) then the Riesz Representation Theorem (Sect. 9.2, p. 104) asso-
ciates with the restriction of this mean to C(G) a similarly invariant regular Borel
probability measure—a Haar measure.
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For non-commutative groups we need to address the corresponding idea of
“right-invariance” that utilizes the transformations Rγ : B(G)→ B(G) defined by

Rγ( f )(x) = f (xγ) (x ∈ G, f ∈ B(G)). (12.7)

The question arises: “Is right-invariance the same as left invariance?”

Right vs. left Haar measure. We’ll see in the next chapter that every compact
topological group has a left-invariant regular Borel probability measure; we know
right now (Corollary 12.11 above) that such a measure exists if the group is solvable.
For the time being, however, let’s just assume the existence of such a measure for a
given compact group and see where this leads.

Theorem 12.15. Suppose G is a compact topological group and μ is a left-invariant
regular Borel probability measure for G. Then:

(a) μ is also right-invariant, hence “bi-invariant.”
(b) There is no other invariant regular probability measure for G.
(c) μ is “inversion invariant”:

∫
f (x−1)dμ(x) =

∫
f dμ ( f ∈C(G)),

i.e., μ(B) = μ(B−1) for every Borel subset B of G.

Proof. Suppose ν is a right-invariant regular probability measure for G. Then for
each f ∈C(G) the left-invariance of μ demands that

∫
f dμ =

∫
f (xy)dμ(y) (x ∈ G),

hence
∫

f dμ =

∫ (∫
f (xy)dμ(y)

)
dν(x) [ν(G) = 1]

=

∫ (∫
f (xy)dν(x)

)
dμ(y) [Fubini]

=

∫ (∫
f (x)dν(x)

)
dμ(y) [ν right invariant]

=

∫
f dν [μ(G) = 1].

Thus μ = ν , which establishes (a) and (b).
As for (c), note that μ has a natural right-invariant companion μ̃ defined, thanks

to the Riesz Representation Theorem, by
∫

f dμ̃ =

∫
f (x−1)dμ(x) ( f ∈C(G)).

By (b) we must have μ̃ = μ , thus establishing the inversion-invariance of μ . 
�
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Summary: For compact topological groups there’s no distinction between left- and
right-invariant Borel probability measures. Such a “bi-invariant” measure (whose
existence we’ll prove in the next chapter) is unique, and even “inversion-invariant.”

In the next section we’ll discuss topological groups that are not compact. The
following exercise shows that in this generality there may be left-invariant Borel
measures that are not right-invariant.

Exercise 12.6 (Haar measure(s) on a non-compact group). Let G = {(x,y) ∈R
2 : x > 0} be

the open right-half plane of R2 with the binary operation:

(a,b) · (x,y) := (ax,ay+b) ((a,b), (x,y) ∈ G).

(a) Show that G, in the operation described above, is a topological group that is solvable.

Suggestion: Examine the map (x,y)→ [ x y
0 1

]
(cf. Example 12.5 and Exercise 12.1).

(b) Use the change-of-variable formula for double integrals to show that the measure
dxdy/x2 is left-invariant on G, but not right-invariant.

(c) Show that the measure dxdy/x is right-invariant on G, but not left-invariant.

Right- vs. left-invariant means. For non-abelian groups the situation of left- vs.
right-invariance of means is more subtle than the one described above for measures.
It turns out that left-invariant means need not be right-invariant (and vice versa), but
once there is a left- or right-invariant mean, there is a “bi-invariant one.” Thus there
is no “left vs. right” problem with the notion of “amenable.”

In addition to the notions of left and right invariance for means, there is a notion
of inversion-invariance that mirrors the property observed for invariant measures in
Theorem 12.15. Define the linear transformation J : B(G)→ B(G) by

(J f )(x) = f (x−1) ( f ∈ B(G), x ∈ G) (12.8)

and call a mean Λ on B(G) inversion invariant if J�Λ = Λ , i.e., if Λ ◦ J = Λ .

Theorem 12.16. Suppose G is a group for which B(G) has a left-invariant mean.
Then B(G) has a mean that is both bi-invariant and inversion invariant.

Proof. We’ll first show that every left-invariant mean has a right-invariant counter-
part. To this end note that for the inversion operator J defined by (12.8),

RγJ = JLγ−1 and LγJ = JRγ−1 . (12.9)

Thus if λ is a left-invariant mean for B(G) then the calculation below shows that
ρ = J�λ is right invariant. For every γ ∈ G:

R�
γρ = R�

γJ�λ = (JRγ)
�λ = (Lγ−1 J)�λ = J�L�

γ−1 λ = J�λ = ρ ,

where the middle equality above comes from the first identity of (12.9) and the next-
to-last one from the left-invariance of λ . Clearly ρ(1) = 1, and it’s easy to check
that ρ is a positive linear functional on B(G), hence a right-invariant mean.
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From a left-invariant mean λ on B(G) and a right-invariant one ρ , the definition
below provides a bi-invariant one: a mean ν on B(G) with L�

γ ν = R�
γ ν = ν for every

γ ∈ G:

ν( f ) = λ ( f̃ ) where f̃ (γ) = ρ(Lγ f ) ( f ∈ B(G),γ ∈ G).

One checks easily that ν is a mean on B(G). As for its bi-invariance, a little calcula-
tion (using the identity Lγβ = Lβ Lγ , and the fact that every left translation commutes
with every right translation) shows that for each γ ∈ G and f ∈ B(G):

R̃γ f = f̃ and L̃γ f = Lγ f̃ ,

whereupon
ν(Rγ f ) = λ (R̃γ f ) = λ ( f̃ ) = ν( f )

and
ν(Lγ f ) = λ (L̃γ f ) = λ (Lγ f̃ ) = λ ( f̃ ) = ν( f )

as desired.
Finally, from the bi-invariant mean ν we form an inversion-invariant one η =

(ν + J�ν)/2 that is easily to inherit the bi-invariance of ν . 
�
Example 12.17 (A left-invariant mean that’s not right-invariant). Let G be the group
of Exercise 12.6; the identity of this group is the point (1,0), and the inverse of
(x,y) ∈ G is (1/x,−y/x).

By part (a) of Exercise 12.6 we know that G is solvable, hence Corollary 12.12,
our “solvable” Invariant Hahn–Banach Theorem, applies to B(G)�. In particular, let
p denote the gauge function on B(G) defined by the iterated upper limits

p( f ) = limsup
y→∞

[
limsup

x→∞
f (x,y)

]
( f ∈ B(G)).

Let W denote the set of all functions f ∈ B(G) for which the iterated limit

λ ( f ) = lim
y→∞

[
lim
x→∞

f (x,y)
]

exists (finitely). One checks easily that:

(a) p is left-invariant on B(G): p ◦Lγ = p for every γ ∈ G.
(b) W is a linear subspace of B(G) with Lγ (W )⊂W for each γ ∈ G, and
(c) λ is a linear functional on W that is left-invariant for G.

Since G is solvable, our extended Invariant Hahn–Banach Theorem applies to pro-
duce an extension of λ to a left-invariant linear functional Λ on B(G).

However Λ is not right-invariant for G. For example, if g(x,y) := xy/(x2 + y2)
then g ∈W with λ (g) = 0. For (a,b) ∈ G we have for each y ∈ R:
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lim
x→∞

R(a,b)g(x,y) = lim
x→∞

ax(bx+ y)
(ax)2 +(bx+ y)2 =

ab
a2 + b2 = g(a,b).

Thus λ (R(a,b)g)= g(a,b) which is �= 0 if b �= 0. However λ (g)= 0, so the functional
λ , and therefore its extension Λ , is not right-invariant.

Exercise 12.7. Show that the mean Λ of Example 12.17 is not inversion-invariant.

Exercise 12.8 (Banach limits for solvable groups). Suppose G is an infinite group that is
solvable. For a function f : G →R and c ∈R define “limγ→∞ f (γ) = c” to mean: “For every
ε > 0 there exists a finite subset Fε of G such that | f (γ)−c|< ε for every γ ∈ G\Fε .” Make
similar definitions for upper and lower limits. Use Corollary 12.12 to show that there exists
a mean Λ on B(G) that is both bi-invariant and inversion-invariant for G, and for which

liminf
γ→∞

f (γ)≤ Λ( f )≤ limsup
γ→∞

f (γ)

for each f ∈ B(G).

12.7 The Locally Compact Case

To say a topological space X is locally compact means that for each point x ∈ X ,
every neighborhood of x contains a compact neighborhood of x. In other words, at
each point the topology of the space has a local base of compact neighborhoods. As
we’ve mentioned previously (but will not prove here), every locally compact group
has a left—and therefore a right—Haar measure. Under appropriate regularity con-
ditions left Haar measure is unique up to positive scalar multiples, as is right Haar
measure, but we’ve already seen (Exercise 12.6) that left and right Haar measures
need not be scalar multiples of each other. Detailed proofs of the existence and
uniqueness of Haar measure on locally compact groups exist in many places; see,
for example, [39, Chap. 2] or [29, Chap. 7]. There does not, however, seem to be a
neat functional-analysis proof of this result. The purpose of this section is to show
how our “Markov–Kakutani method” can be modified to provide Haar measure, at
least for locally compact groups that are solvable.

Throughout this discussion it will help to keep in mind three examples: Lebesgue
measure on Euclidean space, and the left and right Haar measures on the group G of
Exercise 12.6. All three measures are unbounded, and the last two show that, even
in the solvable case, left and right Haar measures can be essentially different.

Regular and Radon measures. Suppose μ is a Borel measure for a locally com-
pact (Hausdorff) space X . To say that a Borel set E ⊂ X is:

– μ-outer regular means that μ(E) = inf{μ(U) : U is open and U ⊃ E}.
– μ-inner regular means μ(E) = sup{μ(K) : K is compact and K ⊂ E}.

To say that μ itself is

– Regular means that every Borel set is both inner and outer regular (similarly
we can attach to μ the terms “inner regular” or “outer regular”).
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– Locally finite means that every point of the space has a neighborhood of finite
measure.

– A Radon measure means that it is locally finite, outer regular, and every open
set is μ-inner regular.

We’ll see below (Exercise 12.10) that in general not every Radon measure is regular.
This is not something to worry about, especially in the compact case:

Exercise 12.9. Show that for compact spaces every Radon measure is regular.

Haar Measure To say that μ is a left Haar measure for a locally compact group
G means that μ is a Radon measure for G that is invariant for left-translation on the
group, i.e., μ(E) = μ(gE) for every Borel subset E of G and every g ∈ G. Right
Haar measure is defined similarly.

We’ll need the full-strength version of the Riesz Representation Theorem. If X is
a locally compact space that is not compact, the space C(X) of all continuous real-
valued functions on X is no longer an appropriate setting for the Riesz theorem;
non-compact spaces raise the spectre of unbounded functions and infinite measures,
creating problems for the integration of arbitrary continuous functions against arbi-
trary Borel measures. The resolution is to replace C(X) by its subspace Cc(X): those
continuous functions on X that have compact support, i.e., that vanish off some com-
pact set. Each such function is bounded and can be integrated against every locally
finite Borel measure. Such measures therefore induce linear functionals on Cc(X),
the positive ones inducing positive functionals. The Riesz Representation Theorem
says that each positive linear functional on Cc(X) is given by integration against
such a measure and, with the appropriate conditions of regularity, this representing
measure is unique. More precisely (see, e.g., [102, Theorem 2.14, pp. 40–41]):

The Riesz Representation Theorem for locally compact spaces. Suppose X is a
locally compact space and Λ a positive linear functional on Cc(X). Then there is a
unique Radon measure for X such that Λ( f ) =

∫
f dμ for every f ∈Cc(X).

The exercise below shows that Haar measure—even for a commutative locally
compact group—need not always be regular. The group G in question is the additive
group R

2 endowed with the product topology it gets when viewed as Rd ×R, where
Rd denotes the real line with the discrete topology.

Exercise 12.10 (A non-regular Haar measure). For the group G described above:

(a) Show that G is locally compact, and even metrizable (for p j = (x j ,y j) ∈ G( j = 1,2)
take d(p1 , p2) equal to |y1 − y2| if x1 = x2, and 1+ |y1 − y2| otherwise).

(b) Let δ denote the counting measure for Rd and let λ denote Lebesgue measure on
the Borel subsets of R. Show that each of these is a Haar measure for its respective
topological group.

(c) Show that Rd ×{0} (the “discrete x-axis” has μ-measure ∞, whereas each of its
compact subsets has μ-measure zero. Thus μ is not regular. Show that μ is, never-
theless, a Radon measure.

(d) Show that μ is a Haar measure for G.
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Here is the main result of this section.

Theorem 12.18. Every locally compact solvable topological group has a Haar
measure.

Strategy of proof. Assume G is solvable and locally compact, but not compact. Let
e denote the identity element of G. We seek to produce left Haar measure for G by
applying our “solvable” Markov–Kakutani theorem to an appropriate subset of the
algebraic dual Cc(G)� of Cc(G). Since non-zero constant functions no longer belong
to Cc(G), the space of “means” that worked so well in the compact situation no
longer exists. Our argument will hinge on finding a substitute.

Simplifying assumptions. To keep the argument as transparent as possible we’ll
assume G is metrizable and that its metric d is G-invariant in the sense that
d(γx,γy) = d(x,y) for all x,y,γ ∈ G (i.e., for each γ ∈ G the left-translation map
Lγ : x → γx (x ∈ G) is an isometry). See the Notes at the end of this chapter for some
discussion of these assumptions.

Notation. Let Br(x) denote the open d-ball of radius r > 0, centered at x ∈ G. The
G-invariance of d insures that γBr(x) = Br(γx) for all x,γ ∈ G. For f ∈Cc(G) we’ll
define ‖ f‖=max{| f (x)| : x ∈ G}, where compactness of support insures the (finite)
existence of the maximum.

Small and large functions. Since G is locally compact it has, at each point, a base of
compact neighborhoods. In particular, there exists r > 0 such that Br(e) has compact
closure. Thus Br(x) = xBr(e) has compact closure for each x ∈ G. Fix this radius r
for the rest of the proof.

Let C+
c (G) denote the collection of non-negative functions in Cc(G). To say that

f ∈C+
c (G) is:

– Small means that its values are all ≤ 1 on G and its support lies in Br/2(x) for
some x ∈ G.

– Large means that its values are all ≥ 1 on Br(x) for some x ∈ G.

Quasimeans. We’ll call a positive linear functional on Cc(G) a quasimean if it takes
values ≤ 1 on small functions in C+

c (G) and ≥ 1 on large ones. Let Q denote the
collection of quasimeans. We’ll prove the existence of Haar measure for G by show-
ing that Q is a nonempty, convex, weak-star compact subset of Cc(G)� that is taken
into itself by each translation-adjoint L�

γ . The usual argument involving the (solv-
able) Markov–Kakutani Theorem and the Riesz Representation Theorem will then
lead to the desired Haar measure.

It’s easy to check that Q is convex and, thanks to the fact that γBr(x) = Br(γx),
is also invariant under L�

γ for each γ ∈ G.

Q is weak-star closed. Suppose Λ ∈ Cc(G)� is a weak-star limit point of Q. We
wish to show that Λ ∈Q. For each ε > 0 and finite subset F of Cc(G), the weak-
star neighborhood of Λ

N(Λ ,F,ε) = {Γ ∈Cc(G)� : |Γ ( f )−Λ( f )|< ε ∀ f ∈ F}
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contains a point of Q. Suppose, then, that f ,g ∈ C+
c (G) with f small and g large.

Fix ε > 0, and choose Γ ∈ N(Λ ,{ f ,g},ε)∩Q. Then

Λ( f ) ≤ Γ ( f )+ ε ≤ 1+ ε and Λ(g)≥ Γ (g)− ε ≥ 1− ε.

Since ε is an arbitrary positive number, Λ( f ) ≤ 1 and Λ(g) ≥ 1, hence Λ ∈Q, as
desired.

Q is weak-star compact. Since we now know that Q is weak-star closed, to show
it’s compact we need only prove that it’s pointwise bounded on Cc(G) (Corol-
lary 9.15, p. 112). To this end fix Λ ∈ G and note that, thanks to the definition
of “small” function: for every f ∈ C+

c (G) with support contained in some ball of
radius r/2 we have Λ( f ) ≤ ‖ f‖. Now for arbitrary f ∈ C+

c (G) we can cover its
(compact) support by a finite number of open d-balls of radius r/2. Lemma B.6 (p.
190) provides a partition of unity

{p1, p2, . . . , pn} subordinate to that cover. Thus f = ∑n
j=1 p j f where each func-

tion p j f belongs to C+
c (G) and has support contained in a ball of radius r/2. It

follows that

Λ( f ) =
n

∑
j=1

Λ(p j f )≤
n

∑
j=1

‖p j f‖ ≤ n‖ f‖,

where the integer n depends on f , but not on Λ . Thus Q is pointwise bounded on
C+

c (G).
Now suppose f ∈ Cc(G). Then f = f+− f−, the difference of two functions in

C+
c (G), each of which has norm ≤ ‖ f‖ and support contained in that of f . Thus

|Λ( f )| ≤ Λ( f+)+Λ( f−)≤ n‖ f+‖+ n‖ f−‖ ≤ 2n‖ f‖,

where n does not depend on Λ . Thus Q is pointwise bounded on Cc(G), hence
weak-star compact in Cc(G)�.

Q is nonempty. For most proofs this sort of statement is a triviality. Not so here!
None of the “usual suspects” (the point evaluations) belong to Q. (Exercise: Why
not?) What’s needed is a subset S of G having the following properties:

(S1) S has at least one point in each open d-ball of radius r, and
(S2) S has no more than one point in each open ball of radius r/2.

Example 12.19. G = R and r = 1. Then S = Z has the desired properties. Note: S
is maximal with respect to the property that any pair of its distinct elements lies at
least 1 unit apart.

We’re going to show that such a set S exists in every group G of the sort we’re
considering. Assuming this for the moment, define the functional Λ on Cc(G) by

Λ( f ) := ∑
s∈S

f (s) ( f ∈Cc(G)). (12.10)

Since we can cover each compact subset of G by finitely many open balls of radius
r/2, each such set can contain at most finitely many points of S, hence for each
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f ∈Cc(G) only finitely many summands on the right-hand side of (12.10) are non-
zero. The right-hand side of (12.10) therefore makes sense and provides a positive
linear functional on Cc(G).

Suppose f ∈ C+
c (G) is “small,” i.e., has support in a ball of radius r/2 and all

values ≤ 1. Each such ball contains no more than one point of S, so Λ( f ) = 0 or
1. Thus Λ( f ) ≤ 1 on “small” functions in C+

c (G). Suppose on the other hand that
f ∈ C+

c (G) is “large,” i.e., takes only values ≥ 1 on some ball of radius r. Then
Λ( f ) ≥ 1 since this ball must contain a point of S. Thus Λ ∈Q, proving that Q is
not empty.

The proof that G harbors the desired set S is inspired by Example 12.19.

Claim. Suppose S ⊂ G is maximal with respect to the property

s, t ∈ S with s �= t =⇒ d(s, t)≥ r. (*)

Then S satisfies conditions (S1) and (S2) above.

Proof of Claim. To check S has property (S1), note that if this were not the case
there would be a point x ∈ G at distance ≥ r from each point of S. Then S∪{x},
which properly contains S, would obey (*) thus contradicting the maximality of S.
As for (S2), suppose s, t ∈ S lie in the ball Br/2(x). Then by the triangle inequality
d(s, t)< r, hence s = t, thus establishing the Claim.

It remains to prove the existence of our maximal S. Let T denote the family of
subsets T of G with the property (*).

T is nonempty. Since we’re assuming the closure of Br(e) is compact, while G is
not, there must exist x ∈ G with d(e,x) > r. Thus {e,x} ∈ T , so the family T is
nonempty.

Enter Zorn’s Lemma. If C is a subfamily of T that is totally ordered by inclusion
(i.e., given two members of C , one of them is contained in the other), then the union
of the sets that are elements of C belongs to T (exercise). Thus each subfamily of
T that is totally ordered has an upper bound, so by Zorn’s Lemma (Appendix E.3)
T has a maximal element S (note that this argument used only the fact that G is a
metric space and r < supx,y∈G d(x,y)).

Concluding the proof. We now have Q, our nonempty, convex, weak-star compact
subset of Cc(G)�, and the family L � of continuous affine (in fact linear) self-maps
L�

γ of Q (γ ∈ G). The argument in the paragraph preceding Theorem 12.6 shows that
the family of maps L � inherits the solvability of G, hence our extended Markov–
Kakutani Theorem (Theorem 12.1) guarantees that L � has a fixed point Λ in Q.
The measure provided for Λ by Riesz Representation Theorem is, by a familiar
argument, the Haar measure we seek. 
�
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Notes

Solvable families of maps. The original source for this is Day’s paper [27, p. 285];
see also [37, Theorem 3.2.1, pp. 155–156].

The symmetric group. Exercise 12.4 is from [108, p. 253]. The fact that Sn is not
solvable for n ≥ 5 is a crucial step in the proof of Abel’s Theorem: For each n ≥ 5
there is a polynomial of degree n whose roots can not all be found by radicals. See,
for example, Hadlock’s Carus Monograph [43, Chap. 3].

Corollary 12.8. The amenability of solvable groups is due to von Neumann [88].

Right vs. left. Theorem 12.16, showing that each left-invariant mean gives rise to a
bi-invariant one, is due to M.M. Day [27, Lemma 7, p. 285].

von Neumann’s Paradox. The original source is [88]. For a modern exposition in
English, see [121, Theorem 7.3, p. 99].

Exercise 12.10. This is taken directly from [102, Chap. 2, Exercise 17, p. 59].

Haar measure for solvable locally compact groups: Those simplifying assumptions.
Every metrizable topological group has an invariant metric. In fact the Birkhoff–
Kakutani Theorem asserts that every first countable group is metrizable and has
such a metric. See [29, Corollary 3.10, p. 53] or [80, Sect. 1.22, pp. 34–36] for a
proof, and [13, 57] for the original papers. With a bit more care the entire proof
given above for the existence of Haar measure can be carried out for every solvable
locally compact group. See Izzo [54] for how to do this in the commutative case;
the solvable one being no different. The argument given above is just a translation
of Izzo’s proof to the solvable, invariantly metrizable case.
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