
Chapter 10
The Meaning of Means

FINITELY ADDITIVE MEASURES, EXTENSIONS, AND AMENABLE GROUPS

Overview. In the last chapter we used the Markov–Kakutani Theorem to produce
for every compact abelian group G an “invariant mean”: a mean in the algebraic dual
space of B(G) fixed by the adjoint of every translation map on B(G). The Riesz Rep-
resentation Theorem then provided a G-invariant, regular, Borel probability measure
to represent this mean via integration on C(G). Thus was born Haar measure for G.

In this chapter we will scale back the role of topology and observe that for
each abelian group G this “Markov–Kakutani” mean easily provides a G-invariant,
finitely additive “probability measure” on P(G), the collection of all subsets of G.
We’ll examine the significance of such set functions. In the compact case, might one
of them extend Haar measure? Which non-abelian groups support such “measures”?
Such questions will lead (next chapter) into the study of “paradoxical decomposi-
tions,” most notably the celebrated Banach–Tarski Paradox.

Prerequisites. A little: measure theory, group theory, functional analysis.

10.1 Means and Finitely Additive Measures

We’ve previously attached to a set S the following cast of characters:

– P(S): The collection of all subsets of S.
– B(S): The vector space of all bounded, real-valued functions on S.
– B(S)�: The algebraic dual of B(S); all the linear functionals on B(S).
– M (S): The means on B(S); the collection of positive linear functionals Λ on

B(S) “normalized” so that Λ(1) = 1. We’ve noted that M (S) is a nonempty,
convex subset of B(S)� (Exercise 9.13).

– ω(S): The weak-star topology on B(S)�; the restriction to B(S)� of the product
topology of RB(S). We’ve seen that M (S) is ω(S)-compact (Corollary 9.17).
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122 10 The Meaning of Means

“Measures” from Means. Each mean Λ on B(S) naturally defines a function μ on
the collection P(S) of all subsets of S:

μ(E) = Λ(χE) (E ∈P(S)), (10.1)

where χE denotes the characteristic function of E (≡ 1 on E and ≡ 0 off E).

Exercise 10.1. For μ as defined above, show that:

(a) μ(S) = 1.

(b) μ is monotone: E ⊂ F ⊂ S =⇒ μ(E)≤ μ(F).

(c) μ(E)≤ 1 for every E ⊂ S.

The linearity of Λ translates into finite additivity for μ : if {E1,E2, . . . En} is a finite,
pairwise disjoint collection of subsets of S then χ∪kEk = ∑k χEk , so

μ

(⋃
k

Ek

)
= Λ(χ∪kEk) = Λ

(
∑
k

χEk

)
= ∑

k

Λ(χEk) = ∑
k

μ(Ek).

Definition 10.1. A finitely additive probability measure on P(S) is a finitely addi-
tive function μ : P(S)→ [0,1] with μ(S) = 1.

In this terminology the argument above established:

Proposition 10.2. Each mean Λ on B(S) induces via Eq. (10.1) a finitely additive
probability measure μ on P(S).

The exercise below shows that conversely each finitely additive probability mea-
sure μ onP(S) gives rise to a mean on B(S), created as a sort of “Riemann integral.”

Exercise 10.2 (Means from “Measures”). Let S (S) denote the collection of “simple func-
tions” on S, i.e., the functions f : S → R that take on only finitely many values.

Given a finitely additive probability measure μ on P(S) and a simple function f on S with
distinct values {a j}n

j=1, let E j = f −1(a j) and define Λ( f ) := ∑n
j=1 a jμ(E j).

(a) Check that S is a vector space on which the functional Λ is positive and linear, and
that Λ obeys the inequality promised for means by Exercise 9.14.

(b) Show that Λ has a unique extension to a mean on B(S) [Hint: Show that Λ is con-
tinuous if S is given the “sup-norm” ‖ · ‖ defined on B(S) by Eq. (9.10)].

Invariant Means. Theorem 9.19 told us that if Φ is a commutative family of self-
maps of the set S, then B(S) has a mean Λ that is Φ-invariant in the sense that
C�

ϕΛ = Λ for every ϕ ∈ Φ, where Cϕ : B(S) → B(S) is the composition operator
f → f ◦ ϕ defined on p. 114. The finitely additive probability measure μ that Λ
induces on P(S) via Eq. (10.1) inherits this Φ-invariance:

μ(ϕ−1(E)) = Λ(χϕ−1(E)) = Λ(χE ◦ϕ)) = (C�
ϕΛ)(χE)) = Λ(χE) = μ(E)

for every E ⊂ S and ϕ ∈ Φ. In summary:
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Theorem 10.3. If Φ is a commutative family of self-maps of a set S then there is a
finitely additive probability measure μ on P(S) that is Φ-invariant in the sense that
μ(ϕ−1(E)) = μ(E) for every E ∈P(S) and every ϕ ∈ Φ.

Corollary 10.4. If G is a commutative group then there exists a finitely additive
probability measure μ on P(G) that is G-invariant in the sense that μ(gE) = μ(E)
for each g ∈ G and E ∈P(G).

Proof. Apply Theorem 10.3 with S = G and Φ the collection of “translation maps”
x → g−1x for g and x in G. ��

Suppose in Theorem 10.3 we take Φ to be the group of rotations of R2 about the
origin and S to be either of the following subsets of R2: the closed unit disc B

2, or
its boundaryT, the unit circle. In either case Φ is a commutative family of self-maps
of S, hence Theorem 10.3 yields:

Corollary 10.5. Both P(B2) and P(T) support a rotation-invariant, finitely ad-
ditive probability measure.

The question arises for either case: can such a finitely additive, rotation-invariant
probability measure be chosen to agree, on Borel sets, with normalized Lebesgue
measure. Similarly, for every compact abelian group, must the invariant measure
promised by Corollary 10.4 agree on Borel sets with Haar measure? We’ll study
this matter of invariant extension in the next section. Not surprisingly, it will involve
the Hahn–Banach Theorem.

10.2 Extending Haar Measure

Suppose G is a compact abelian group. We now know that G has both:

– a G-invariant regular probability measure μ on its Borel sets (Haar measure:
Corollary 9.20), and

– a G-invariant finitely additive probability measure ν on its collection P(G)
of all subsets (Theorem 10.3).

Since ν arose from a G-invariant mean on B(G), and μ (via the Riesz Represen-
tation Theorem) from the restriction of that mean to C(G), one might suspect that
ν extends Haar measure from the Borel subsets of G to all of P(G), i.e., that the
restriction of ν to the Borel subsets of G is μ . Surprisingly, this need not be the case;
Banach proved in 1923 that it fails for the circle group T.

There exists a rotation-invariant, finitely additive probability measure on
P(T) that does not extend Haar measure [6, Théorème 20].

We’ll see later that for a compact group: there can be at most one Haar measure
(Chap. 12), and that there always is a Haar measure (Chap. 13). In particular, for the
unit circle T, normalized Lebesgue measure is the unique rotation-invariant regular
Borel measure. Thus Banach’s result can be restated:
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There exists a rotation-invariant, finitely additive probability measure on
P(T) whose restriction to the Borel subsets of T is not countably additive.

In view of Banach’s result, it makes sense to ask if Haar measure on G can be ex-
tended to a finitely additive G-invariant probability measure on P(G). Thanks to
the Markov–Kakutani Theorem the answer is affirmative, with the desired exten-
sion of Haar measure following from an “invariant” version of the Hahn–Banach
Theorem. First recall the usual version:

The Hahn–Banach Theorem. Suppose V is a vector space over the real field and
p : V → R is a gauge function on V , i.e.,

(a) p(u+ v)≤ p(u)+ p(v) for all u,v ∈V, and
(b) p(av) = ap(v) for every a ∈ R with a ≥ 0 and every v ∈V.

Suppose W is a linear subspace of V and Λ is a linear functional on W for which
Λ(w)≤ p(w) for all w ∈W . Then Λ has a linear extension Λ̃ to V such that

Λ̃ (v)≤ p(v) for all v ∈V.

Now consider that problem of extending Haar measure μ from the Borel subsets of
a compact abelian group G to a finitely additive measure ν on P(G). The measure
μ induces, via integration, a G-invariant linear functional Λ on C(G), where we
now view C(G) as a linear subspace of B(G). In order to make the desired extension
of μ it will be enough to extend Λ to a G-invariant mean on B(G). This will be
accomplished by:

Theorem 10.6 (The “Invariant” Hahn–Banach Theorem). Suppose V is a vector
space and G is a commutative family of linear transformations V →V. Suppose W
is a linear subspace of V that is taken into itself by every transformation in G , and
that p is a gauge function on V that is “G -subinvariant” in the sense that

p(γ(v))≤ p(v) for every v ∈V and γ ∈ G .

If Λ is a G -invariant linear functional on W that is dominated by p, i.e.,

Λ ◦ γ = Λ for all γ ∈ G and Λ(v)≤ p(v) for all v ∈W,

then Λ has a G -invariant linear extension to V that is dominated on V by p.

Proof. Endow V �, the algebraic dual of V , with the weak-star topology ω induced
on it by V . Let K be the collection of all linear extensions of Λ to V that are
dominated on V by p. Clearly K is a convex subset of V �. By the (usual) Hahn–
Banach Theorem, K is nonempty.

Claim: K is weak-star compact in V �.

Proof of Claim. By Corollary 9.15 we need only show that K is pointwise bounded
on V and weak-star closed in V �. If Λ̃ ∈K then for every x∈V we have, in addition
to the defining property Λ̃ (x)≤ p(x), also −Λ̃(x) = Λ̃(−x)≤ p(−x). Thus
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− p(−x) ≤ Λ̃(x) ≤ p(x) (x ∈V, Λ̃ ∈K ) (10.2)

so K is pointwise bounded on V .
To see that K is weak-star closed in V �, suppose Λ0 ∈ V � is a weak-star limit

point of K . We wish to show that Λ0 ∈K , i.e., that Λ0 is an extension of Λ from
W to V that’s dominated by p. To see that Λ0 extends V , fix w ∈W and ε > 0. Then
the weak-star basic neighborhood

N(Λ0,{w},ε) = {Λ ∈V � : |Λ(w)−Λ0(w)|< ε}

contains a linear functional Λ1 ∈K . Thus |Λ0(w)−Λ(w)|= |Λ0(w)−Λ1(w)|< ε,
whereupon Λ0(w) =Λ(w) because ε is an arbitrary positive number; hence Λ0 is an
extension of Λ to V .

Similarly, fix v ∈ V and ε > 0. Choose Λ2 ∈K ∩N(Λ0,{v},ε). Then |Λ0(v)−
Λ2(v)| < ε, so Λ0(v) < Λ2(v)+ ε ≤ p(v)+ ε, hence Λ0(v) ≤ p(v), once again by
the arbitrariness of ε . This completes the proof of the Claim.

Finally, since each γ ∈ G is a linear map V → V , it has an adjoint γ� : V � → V �.
Let G � := {γ� : γ ∈ G }. One checks easily that G � is a commutative family of linear
maps on V �, each of which, thanks to the G -subinvariance of the gauge function p,
takes K into itself. By Theorem 9.18 each map γ� is ω-continuous, hence the triple
(V �,K ,G �), with V � carrying its weak-star topology, satisfies the hypotheses of the
Markov–Kakutani theorem.

Conclusion: There exists Λ̃ ∈ K fixed by G �, i.e.,

Λ̃ ◦ γ = γ�(Λ̃) = Λ̃ for every γ ∈ G .

This functional Λ̃ is the desired G -invariant extension of our original one Λ . ��
Here, stated in generality, is our application to extension of invariant measures.

Corollary 10.7. Let S be a compact Hausdorff space upon which acts a commu-
tative family Φ of continuous mappings. Suppose μ is a (countably additive) Φ-
invariant probability measure on the Borel subsets of S. Then μ extends to a Φ-
invariant, finitely additive probability measure on P(S).

Proof. Let Λ be the positive linear functional defined on C(S) by integration against
μ . By the invariance of μ and the change-of-variable formula of measure theory,
Λ is invariant for each of the composition operators Cϕ on C(S) in the sense that
Λ ◦Cϕ = Λ for each ϕ ∈ Φ. Define the gauge function p on B(S) by

p( f ) = ‖ f‖= sup
s∈S

f (s) ( f ∈ B(S)).

Clearly: p is CΦ-invariant (in the sense that p◦Cϕ = p for every ϕ ∈ Φ), and Λ ≤ p
on C(S).

The Invariant Hahn–Banach Theorem now supplies an extension of Λ to a linear
functional Λ̃ on B(S) that’s also dominated by p, and is invariant for each mapping
Cϕ for ϕ ∈ Φ. Upon applying inequality (10.2) to our gauge function p, we see that
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inf
s∈S

f (s) ≤ Λ̃( f ) ≤ sup
s∈S

f (s) ( f ∈ B(S)),

so if f ≥ 0 on S then Λ̃( f ) ≥ 0, i.e., Λ̃ is a positive linear functional on B(S). Since
Λ̃(1) = Λ(1) = 1, the functional Λ̃ is a mean on B(S). The desired extension μ̃ of
μ to P(S) now emerges from Eq. (10.1) with Λ̃ in place of Λ , the Φ-invariance of
μ̃ following from the CΦ-invariance of Λ̃ . ��

For our original problem of extending Haar measure on a compact abelian group
G, we take in Corollary 10.7: S = G and Φ = the set of translation maps x → g−1x
for g and x in G. The result:

Corollary 10.8. For each compact abelian group G, Haar measure has an extension
to a finitely additive G-invariant measure on P(G).

Since the group of rotations of R2 about the origin is abelian, Corollary 10.7
yields

Corollary 10.9. There is a rotation-invariant, finitely additive probability measure
on the closed unit disc of R2 that extends Lebesgue area measure from the Borel sets
to all subsets. The unit circle supports a similar extension of normalized arc-length
measure.

Our final application of the invariant Hahn–Banach theorem involves the creation
of a notion of “limit” for every bounded real sequence. We’ll use the notation �∞ for
the space of all such sequences.

Corollary 10.10 (Banach limits). There exists a positive, translation-invariant lin-
ear functional Λ on �∞ such that

liminf
n→∞

f (n)≤ Λ( f ) ≤ limsup
n→∞

f (n) ( f ∈ �∞).

Proof. Let c denote the space of real sequences f : N → R for which λ ( f ) =
limn→∞ f (n) exists (in R). For f ∈ �∞ let

p( f ) = limsup
n→∞

f (n).

Then p is a gauge function on �∞, and λ ≤ p on c. For k ∈ N define the “translation
map” Tk on �∞ by

Tk f (n) = f (n+ k) ( f ∈ �∞,n ∈ N).

Thus T = {Tk : k ∈ N} is a commutative family of linear transformations �∞ →
�∞ for each of which: the subspace c is taken into itself, and both λ and p are
invariant. Thus the Invariant Hahn–Banach Theorem applies and produces a T -
invariant extension Λ of λ to �∞ with Λ ≤ p on �∞. By inequality (10.2):

liminf
n→∞

f (n) = − p(− f ) ≤ Λ( f ) ≤ p( f ) = limsup
n→∞

f (n) ( f ∈ �∞). ��
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The functional Λ produced above is called a Banach limit; the usual notation is
Λ( f ) := LIMn→∞ f (n).

Exercise 10.3. Each Banach limit defines a translation-invariant finitely additive probability
measure μ on P(N) by: μ(E) := LIMn χE(n) for E ⊂N.

(a) Show that μ({n}) = 0 for every n ∈ N. Conclude that μ is not countably additive.

(b) For n0 and k in N, let E denote the arithmetic progression {n0 + kn : n ∈ N∪{0}}.
What is μ(E)?

(c) Is there an infinite subset E of N with μ(E) = 0?

This exercise points the “Jekyll and Hyde” character possessed by an infinite di-
mensional vector space’s algebraic dual. On one hand, the algebraic dual is easy to
define and work with (e.g., no worries about continuity). On the other hand, thanks
to the Axiom of Choice it has bizarre inhabitants (e.g., Banach limits).

Exercise 10.4 (“Banach limits” for Z and R). Show that analogues of “Banach Limit” exist
for the additive groups of both the integers and the real line.

10.3 Amenable Groups

Thanks to Corollary 10.4 we know that every abelian group G possesses an invariant
mean, i.e., a positive linear functional Λ on B(G) that takes value 1 on the constant
function 1 and is fixed by the adjoint of every operator of translation by a group
element. We’ve noted that such a mean gives rise to a finitely additive probability
measure μ on P(G) that’s G-invariant in the sense that μ(gE) = μ(E) for each
g ∈ G and E ∈P(G).

Definition 10.11 (Amenable group). To say a group G is amenable means that there
is a G-invariant, finitely additive probability measure on P(G), i.e., there is a G-
invariant mean on B(G).

Thus every abelian group is amenable. What about the non-abelian ones? Once
we venture into the realm of non-commutativity there arises the spectre of “left vs.
right.” For non-abelian groups the sort of invariance we’ve been considering should
more accurately be called “left-invariance.”

Question. Are there separate notions of “right-” and “left-” amenable?

We’ll see later on (Sect. 12.6) that once a group has a left-invariant mean, then it also
has a right-invariant one, and even a “bi-invariant” one. So there are not separate
concepts of “left-amenable” and “right-amenable”; it’s all just “amenable.”

Exercise 10.5. Show that every finite group is amenable.
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It turns out that not every group is amenable. Here’s an example, whose apparent
simplicity belies its importance:

The Free Group F2 on Two Generators. The elements of F2 are “reduced words”
of the form x1x2 · · ·xn for n ∈ N where each x j comes from the set of symbols
{a,a−1,b,b−1}, subject only to the restriction that no symbol occurs next to its
“inverse.” Multiplication in F2 is defined to be concatenation of words, followed
by “reduction,” e.g., aba−1 · abba = abbba. Upon allowing the “empty word” e to
belong to F2 we obtain a group.

Caveat: To render the group operation of F2 “well-defined” it must be shown that the same
reduced word results no matter how this reduction is performed. This is not completely
trivial (see, e.g., [73, Theorem 1.2, pp. 134–5]). In the next chapter we’ll resolve this matter
differently by realizing F2 as a group of rotations of R3.

Exercise 10.6. Convince yourself that (modulo the above caveat) F2 is a group, that it’s not
abelian, and that it can be visualized as the fundamental group of a figure-eight.

Theorem 10.12. F2 is not amenable.

Proof. For x ∈ {a,a−1,b,b−1} let W (x) denote the set of reduced words that begin
with x. For example, a and ab−1abb belong to W (a), while b and a−1baab−1 do not.
Thus the sets W (a),W (a−1),W (b), and W (b−1) form a pairwise disjoint family of
sets in F2 whose union is F2\{e}. Note that aW (a−1) is the set of reduced words
in F2 that don’t begin with a, so F2 is the disjoint union of W (a) and aW (a−1);
similarly it’s also the disjoint union of W (b) and bW (b−1).

Now suppose for the sake of contradiction that μ is a finitely additive probability
measure on P(F2) that is F2-invariant. Then, upon using disjointness in the third
line below and the invariance of μ in the fourth, we obtain

1 ≥ μ(F2\{e})

= μ
(
W (a)∪W(a−1)∪W (b)∪W (b−1)

)
= μ

(
W (a)

)
+ μ

(
W (a−1)

)
+ μ

(
W (b)

)
+ μ

(
W (b−1)

)
= μ

(
W (a)

)
+ μ

(
aW (a−1)

)
+ μ

(
W (b)

)
+ μ

(
bW (b−1))

= μ
(

W (a)∪aW(a−1)︸ ︷︷ ︸
= F2

)
+ μ

(
W (b)∪bW(b−1)︸ ︷︷ ︸

= F2

)

= 1+ 1 = 2,

i.e., 1 ≥ 2: a contradiction. ��
The question of which groups are amenable is a profound one. We’ll see in chapters
to come that every solvable group is amenable, but that some compact groups are
not. Amenability is intimately connected with the phenomenon of paradoxicality
which we’ll take up in the next chapter; the free group F2 will play a crucial role.
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Notes

The Hahn–Banach Theorem. See, for example, [9, Chap. II, pp. 27–29], [60,
Theorem 3.4, p. 21] or [103, Theorem 3.2, pp. 57–58] for the “non-invariant”
version. Banach proved a precursor of the Hahn–Banach Theorem in the course
of showing that there’s a rotation-invariant mean on B(T) whose resulting finitely
additive probability measure on P(T) is not an extension of arc-length measure
on the Lebesgue measurable subsets of T [6, Theorem 19–20]. Banach’s result
answered the one dimensional case of a more general problem posed by one of his
former professors, Stanisław Ruziewicz.

The Ruziewicz Problem. This problem asks if Lebesgue surface measure on the unit
sphere of Rn+1 is the unique (up to multiplication by a positive constant) finitely
additive, isometry-invariant measure on the Lebesgue measurable subsets of the
sphere. The result of Banach mentioned above shows that the answer is “no” for
n = 1. For n > 1 the problem remained open until the 1980s, when the answer was
shown to be “yes” by Drinfeld [32] for n = 2 and 3, and for n > 3 independently by
Margulis [74] and Sullivan [114].

The Invariant Hahn–Banach Theorem. This is due to Agnew and Morse [1]; the
proof given here is taken from [37, Sects. 3.3 and 3.4].

Banach limits. The result here is due (with a different proof) to Banach [9, Chap. II,
p. 34], who also noted the connection with finitely additive probability measures on
the subsets of the positive integers [9, Remarques, Sect. 3, p. 231].

Amenable groups. In the 1920s von Neumann [88] initiated the study of groups G
for which P(G) supports invariant finitely additive probability measures. He called
such groups “measurable.” The currently preferred term “amenable” was coined
by M.M. Day in the late 1950s [28], reputedly as something of a pun on the term
“mean” (see [104, p. 34], for example).
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