
Chapter 1
From Newton to Google

WHAT ARE FIXED POINTS? WHAT ARE THEY GOOD FOR?

Overview. After setting out the definition of “fixed point” we’ll give examples of
their role in finding solutions: to equations (Newton’s Method), to initial-value prob-
lems, and to the problem of ranking internet web pages. After this we’ll show how
the notion of fixed point arises in set theory, where it provides an easy proof of
the Schröder–Bernstein theorem. We’ll introduce the famous Brouwer Fixed-Point
Theorem, show how it applies to the study of matrices with positive entries, and
discuss the application of these results to the internet page-ranking problem.

Prerequisites. Calculus (continuity and fundamental theorem of integral calculus),
differential equations (initial-value problems), basic linear algebra, some familiarity
with sets and the operations on them.

1.1 What Is a Fixed Point?

Definition (Fixed Point). Suppose f is a map that takes a set S into itself. A fixed
point of f is just a point x ∈ S with f (x) = x.

A map f can have many fixed points (example: the identity map on a set with
many elements) or no fixed points (example: the mapping of “translation-by-one,”
x → x+ 1 on the real line).

Exercise 1.1. The fixed points of a function mapping a real interval into itself can be vi-
sualized as the x-coordinates of the points at which the function’s graph intersects the line
y = x. Use this idea to help in determining the fixed points possessed by each of the func-
tions f : R→ R defined below.

(a) f (x) = sinx

(b) f (x) = x+ sinx

(c) f (x) = 2sinx
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1.2 Example: Newton’s Method

Suppose for simplicity that f is a differentiable function R → R, with derivative
f ′ continuous and never vanishing on R. Consider for f its “Newton function” F ,
defined by

F(x) = x− f (x)
f ′(x)

(x ∈ R). (1.1)

One can think of F(x) as the horizontal coordinate of the point at which the line
tangent to the graph of f at the point (x, f (x)) intersects the horizontal axis. Since
f ′ doesn’t vanish, F is a continuous mapping taking R into itself. The roots of f
(those points x ∈ R such that f (x) = 0) are precisely the fixed points of F .

Newton’s method involves iterating the Newton function in the hope of gen-
erating approximations to the roots of f . One starts with an initial guess x0, sets
x1 = F(x0), x2 = F(x1) . . . , and hopes that the resulting sequence of “Newton iter-
ates” converges to a fixed point of F . Geometrically it seems clear that if the Newton
iterate sequence converges then it must converge to a root of f . We’ll see later, as
a consequence of something far more general (Proposition 3.3, page 28), that this
indeed the case.

1.3 Example: Initial-Value Problems

From a continuous function f : R2 → R and a point (x0,y0) ∈ R
2 we can create an

initial-value problem
y′ = f (x,y), y(x0) = y0 . (IVP)

Geometrically, (IVP) asks for a differentiable function y whose graph is a smooth
“solution curve” in the plane that has the following properties:

(a) The curve passes through the point (x0,y0), and
(b) at each of its points (x,y) the curve has slope f (x,y).

As a first attempt to solve the differential equation y′ = f (x,y) one might try inte-
grating both sides with respect to x. If by “integrate both sides” we mean “take the
definite integral from x0 to x,” then there results the integral equation

y(x) = y0 +

∫ x

t=x0

f (t,y(t))dt (IE)

which is implied by (IVP) in the sense that each function y satisfying (IVP) for some
interval of x’s containing x0, also satisfies (IE) for that same interval.

Conversely, suppose y ∈ C(R) satisfies (IE) on some open interval I. Fix x ∈ I.
Then for h∈R\{0} small enough that x+h∈ I, the Mean-Value Theorem of integral
calculus provides a point ξ between x and x+ h such that



1.4 Example: The Internet 5

y(x+ h)− y(x)
h

=
1
h

∫ x+h

x
f (t,y(t))dt = f (ξ ,y(ξ )).

Thanks to the continuity of f , as h → 0 the expression on the right, and therefore the
difference quotient on the left, converges to f (x,y(x)). Thus y is differentiable at x
and y′(x) = f (x,y(x)), i.e., the function y satisfies the differential equation in (IVP)
on the interval I. That it satisfies the initial condition is trivial.

Conclusion: (IVP) ≡ (IE).

To make the connection with fixed points, let C(R) denote the vector space
of continuous, real-valued functions on R, and consider the integral transform
T : C(R)→C(R) defined by

(Ty)(x) = y0 +
∫ x

t=x0

f (t,y(t))dt (x ∈ R). (1.2)

Thus equation (IE) can thus be rewritten Ty = y, so to say y ∈C(R) satisfies (IVP)
turns out to be the same as saying: y is a fixed point of the mapping T . In Chap. 3
we’ll discuss the existence and uniqueness of such fixed points.

1.4 Example: The Internet

At each instant of time the publicly accessible Internet consists of a collection of N
web pages1 each of which can have links coming in from, and going out to, other
pages. To be effective, search engines such as Google must seek to determine the
importance of each individual page. Here’s a first attempt to do this.

To each web page Pi (1 ≤ i ≤N) we’ll assign a non-negative real number imp(Pi)
that measures the “importance” of that page. The page Pi will derive its importance
from all the pages that link into it: if Pj has a total of λ j outgoing links then we
decree that it bestow importance of imp(Pj)/λ j to each of the pages into which it
has links. In other words, if we think of Pj as having imp(Pj) “votes” then our rule
is that it must distribute these votes evenly among the pages into which it links. The
importance of a given web page is then defined to be the sum of the importances it
receives from each of the web pages that link to it (self-links are allowed).

This definition of “importance” for a web page may seem at first glance to be
circular, but it’s not! To make matters precise, define Li to be the set consisting of
all indices j for which Pj links into Pi. Then imp(Pi) is given by the equation

imp(Pi) = ∑
j∈Li

1
λ j

imp(Pj) (1 ≤ i ≤ N) (1.3)

1 According to www.worldwidewebsize.com, N was ≥ 4.74×109 on August 4, 2015.
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This is a set of N linear equations in the N unknowns imp(Pi); for these equations
to provide a reasonable ranking of web pages there needs to be a solution not iden-
tically zero, all coordinates of which are non-negative.

To see how fixed points enter into this discussion, let v to be the column vector
with imp(Pi) in the i-th position, and define the “hyperlink matrix” H to be the
N ×N matrix whose j-th column has 1/λ j in the i-th entry if Pj links to Pi, and zero
otherwise. With these definitions Eq. (1.3) can be rewritten in matrix form

v = Hv,

so the “importance vector” v we seek is a fixed point of the transformation that H
induces on the set of vectors in R

N\{0}, all of whose coordinates are non-negative.
In the language of linear algebra: we demand that 1 be an eigenvalue of H and

v be a corresponding eigenvector with non-negative entries. We’ll see in Sect. 1.7
that such a vector actually exists. In Sect. 1.8 we’ll also take up the crucial question
of uniqueness (at least up to positive scalar multiples); to be effective our method
needs to produce an unequivocal ranking of web pages.

Mini-example. Consider the fictional mini-internet pictured in Fig. 1.1 below which
consists of six web pages, the label on each link denoting the proportion of the donor
page’s importance being granted to the recipient page.

Fig. 1.1 An imaginary six-page internet
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The hyperlink matrix for our mini-web is

H0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1
2 0 1

3 0 0

0 0 1
2 0 0 0

0 0 0 1
3 0 0

0 0 0 0 0 1
2

1
2

1
2

1
2

1
3 0 1

2

1
2 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

for which your favorite matrix calculation program will verify that 1 is an eigen-
value, so the equation H0v = v does have a non-zero solution in R

6. Furthermore,
the calculation will show that this solution is unique up to scalar multiples, and
all of its entries have the same sign. When normalized to have positive entries and
Euclidean norm 1, this vector is, to two significant digits,

v = [0.14, 0.057, 0.11, 0.34, 0.61, 0.69]t

where the superscript “t” denotes “transpose.” This gives the following ranking,
from most to least important: (P6, P5, P4, P1, P3, P2).

This example illustrates a critical fact about the process of ranking pages: the
page with the most incoming links need not be the most important! In particular,
Page 6, with only two incoming links, is more important than Page 5, which has five
incoming links. Similarly, Page 4, with just one incoming link, is more important
than Page 1, which has two such links (Exercise: Can you explain in just a few
words what’s making this happen?).

Exercise 1.2. “Importance vectors” need not be unique. Consider the following mini-web,
still with six pages. but now with links that look like this:

1 → 2 → 3 → 1 and 4 → 5 → 6 → 4.

Write out the hyperlink matrix for this mini-web and show that it has several independent
importance vectors (some of which contain zeros).

The hyperlink matrix H for the full internet, although huge, consists mostly of
zeros; each web page links to a relatively tiny number of others.2 Furthermore each
column of H corresponding to a page with outlinks will sum to 1, but each column
corresponding to a page with no outlinks is identically zero. This latter kind of page
(a particularly annoying one) is called a “dangling node.” Were the internet to have
no such pages, its hyperlink matrix would be stochastic: each entry non-negative
and each column summing to one. This is the case for the six-page example worked
out above, as well as the mini-web of Exercise 1.2.

2 According to [12], on average somewhere in the hundreds.
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Stochastic matrices have particularly nice properties; we’ll show in Sect. 1.7 that
their associated linear transformations possess nontrivial fixed points (i.e., 1 is an
eigenvalue) with non-negative entries. Thus, were our internet to have no dangling
nodes, the hyperlink matrix would have a fixed point that would provide a rank-
ing of websites. For this reason we’d like to find a modification of H that achieves
“stochasticity” without compromising the intuition behind our definition of “impor-
tance.”

One way to do this is to think of a dangling node as, rather than linking to no
other web pages, actually linking to every web page (including itself), contributing
1/N of its importance to every web page. This models the behavior of a web surfer
who, stuck at a page with no outlinks, decides to skip directly to a random page,
thus establishing to that page a “link” of weight 1/N. Our new N ×N hyperlink
matrix, call it H1, is now stochastic; the columns previously identically zero are
now identically 1/N. We’ll return to this matrix in Sect. 1.7.

1.5 Example: The Schröder–Bernstein Theorem

The famous Schröder–Bernstein theorem of set theory asserts:

If X and Y are sets for which there is a one-to-one mapping taking X into Y
and a one-to-one mapping taking Y into X , then there is a one-to-one mapping
taking X onto Y .

This result follows from a more general one depicted in Fig. 1.2 below:

Fig. 1.2 The Banach Mapping Theorem

Theorem 1.1 (The Banach Mapping Theorem). Given sets X and Y and functions
f : X →Y and g : Y → X, there is a subset A of X whose complement is the g-image
of the complement of f (A).
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To see how the Banach Mapping Theorem implies the Schröder–Bernstein
Theorem, suppose in the statement of the Banach theorem that the maps f and g
are one-to-one. Then the map h : X → Y defined by setting h = f on A and h = g−1

on X\A is the one promised by Schröder–Bernstein. �	
The Banach Mapping Theorem is, in fact, a fixed-point theorem! Its conclusion

is that there is a subset A of X for which X\A = g(Y\ f (A)). This equation is equiv-
alent, upon complementing both sides in X , to

A = X\g(Y\ f (A)). (1.4)

For a set S, let’s write P(S) for the collection of all subsets of S. Define the function
Φ : P(X)→P(X) by

Φ(E) = X\g(Y\ f (E)) (E ∈P(X)).

With these definitions, Eq. (1.4) asserts that the set A is a fixed point of Φ.
That such a fixed point exists is not difficult to prove. The mapping Φ defined

above is best understood as the composition of four simple set-mappings:

P(X)
f−→P(Y )

CY−→P(Y )
g−→P(X)

CX−→P(X)

where CX denotes “complement in X” and similarly for CY , while f and g now de-
note the “set functions” induced in the obvious way by the original “point functions”
f and g. Since f and g preserve set-containment (i.e., E ⊂ F =⇒ f (E) ⊂ f (F))
while CX and CY reverse it, the composite mapping Φ preserves set-containment.

With these observations, the theorems of Banach and Schröder–Bernstein follow
from:

Theorem 1.2 (The Knaster–Tarski Theorem). If X is a set and Φ : P(X)→P(X)
is a mapping that preserves set-containment, then Φ has a fixed point.

Proof. Let E be the collection of subsets E of X for which E ⊂ Φ(E). Since E
contains the empty subset of X , it is nonempty. Let A denote the union of all the sets
in E .

Claim. Φ(A) = A.

Proof of Claim. Suppose E ∈ E . Then E ⊂ Φ(E) by the definition of E , and E ⊂ A
by the definition of A. Thus Φ(E)⊂ Φ(A) by the containment-preserving nature of
Φ, hence E ⊂ Φ(A). Consequently A ⊂ Φ(A), whereupon Φ(A)⊂ Φ(Φ(A)), which
places Φ(A) in E . Conclusion: Φ(A)⊂ A, hence Φ(A) = A. �	
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1.6 The Brouwer Fixed-Point Theorem

The most easily stated—and deepest—of the fixed-point theorems we’ll discuss in
this book was proved in 1912 by the Dutch mathematician L.E.J. Brouwer. Its initial
setting is the closed unit ball B of Euclidean space RN .

Theorem 1.3 (The Brouwer Fixed-Point Theorem). Every continuous mapping of
B into itself has a fixed point.

It’s easy to see that the result remains true if B is replaced by a homeomorphic
image (i.e., a set G = f (B) where f is continuous, one-to-one, with f−1 : G → B
also continuous).

For N = 1 the proof of Brouwer’s Theorem is straightforward. In this case f is
a continuous function mapping the real interval [−1,1] into itself. We may suppose
f doesn’t fix either endpoint (otherwise we’re done), so f (−1)>−1 and f (1)< 1.
In other words, the value of the continuous function g(x) = f (x)− x is positive at
x = −1 and negative at x = 1. By the Intermediate Value Theorem, g must take the
value zero at some point of the interval (−1,1); that point is a fixed point for f .

The proof for N > 1 is much more difficult, and there are many different versions.
For N = 2 we’ll prove in the next chapter a famous combinatorial lemma due to
Sperner which yields Brouwer’s Theorem for that case,3 and in Chap. 4 we’ll prove
the full result using methods of “advanced calculus.”

The Brouwer Theorem for convex sets. To say a subset of RN , or more generally of
a vector space over the real field, is convex means that if two points belong to the
set, then so does the entire line segment joining those points. More precisely:

Definition 1.4. To say a subset C of a real vector space is convex means that: when-
ever x and y belong to C then so does tx+(1− t)y for every real t with 0 ≤ t ≤ 1.

In the course of proving the Brouwer Theorem for R
N we’ll develop enough

machinery to obtain it for all closed, bounded convex sets therein (Theorem 4.5).
Officially:

Theorem 1.5 (The “Convex” Brouwer Fixed-Point Theorem). Suppose N is a posi-
tive integer and C is a closed, bounded, convex subset of RN. Then every continuous
mapping taking C into itself has a fixed point.

1.7 Application: Stochastic Matrices

Recall from Sect. 1.4 that a stochastic matrix is a square matrix that is non-negative
(all entries ≥ 0), all of whose columns sum to 1. In that section (see page 8)
we offered as an example the modified internet hyperlink matrix H1: the original

3 Our version of Sperner’s Lemma generalizes to dimension N > 2, where it also implies Brouwer’s
Theorem. However we will not pursue this direction.
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internet hyperlink matrix with the zero-columns replaced by “1/N-columns.” H1

is an N ×N stochastic matrix with N on the order of several billion. Our proposed
method for ranking internet websites depended on finding a vector v ∈R

N\{0} with
non-negative entries such that H1v = v. Now there’s no secret that H1v = v for some
vector v ∈ R

N\{0}, i.e., that 1 is an eigenvalue for H1; in fact this is true of every
stochastic matrix.

To see why, let e denote the (column) vector in R
N , all of whose entries are 1. Let

A be an N ×N stochastic matrix. Since all the columns of A sum to 1 we have Ate =
e, where the superscript “t” denotes “transpose.” Thus 1 is an eigenvalue of At . Since
each square matrix has the same eigenvalues as its transpose (the determinant of a
square matrix is the same as that of its transpose, hence both matrix and transpose
have the same characteristic polynomial) we see that 1 is an eigenvalue of A, i.e.,
there exists x ∈ R

N\{0} with Ax = x. However, to be meaningful for the internet
our eigenvector must have all coordinates non-negative and—up to positive scalar
multiples—be unique.

Uniqueness is a special problem. For example, the N × N identity matrix is
stochastic, but (if N > 1) has lots of essentially different non-negative fixed points.
We’ll return to this question in the next chapter. Right now let’s see how the Brouwer
Fixed-Point Theorem proves that, questions of uniqueness aside:

Theorem 1.6. Every stochastic matrix has a fixed point, all of whose entries are
non-negative, and at least one of which is positive.

In particular, the modified hyperlink matrix H1 of Sect. 1.4 has a fixed point that
produces at least one ranking of web pages.

For the proof of Theorem 1.6 we’ll view R
N as a space of column vectors, but

with distances measured in the metric arising from the “one-norm:”

‖x‖1 = |ξ1|+ |ξ2|+ . . . + |ξN | (x ∈ R
N), (1.5)

where ξ j is the j-th coordinate of the vector x.

Exercise 1.3. Check that ‖ · ‖1 is a norm4 on R
N , and that

1√
N
‖x‖ ≤ ‖x‖1 ≤

√
N‖x‖ (x ∈R

N)

where ‖x‖= (∑ j ξ 2
j )

1/2, the Euclidean norm of the vector x. Show that this implies that the

distance d1 defined on R
N by d1(x,y) = ‖x− y‖1 is equivalent to the one induced by the

Euclidean norm, in that both distances give rise to the same convergent sequences.

Definition 1.7 (Standard Simplex). The standard N-simplex ΠN is the set of non-
negative vectors in the closed ‖ · ‖1-unit “sphere” of RN , i.e.,

ΠN = {x ∈ R
N
+ : ‖x‖1 = 1},

where RN
+ denotes the set of vectors in R

N with all coordinates non-negative.

4 For the definition of “norm” see Appendix C.2, page 194.
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For example, Π2 is the line segment in R
2 joining the points (0,1) and (1,0),

while Π3 is the triangle in R
3 with vertices (1,0,0), (0,1,0), and (0,0,1). In general

ΠN is the convex hull of the standard unit vector basis in R
N , the smallest convex

subset of RN that contains those vectors (Proposition C.4 of Appendix C).

Exercise 1.4. Show that ΠN is closed and bounded in R
N , hence compact.

Proof of Theorem 1.6. Our goal is to show that A (more accurately: the linear trans-
formation that A induces on R

N) has a fixed point in ΠN . For this it’s enough to show
that A(ΠN) ⊂ ΠN , after which the continuity of A (see Exercises 1.5 and 1.6 be-
low), the compactness of ΠN (Exercise 1.4 above), and Theorem 1.5 (the “Convex”
Brouwer Fixed-Point Theorem) will combine to produce the desired fixed point.

To see that the matrix A takes ΠN into itself, let’s denote by ai, j the element of A
in row i and column j. Fix x ∈ ΠN , and let ξ j denote its j-th coordinate. Then, since
all matrix elements and coordinates are non-negative:

‖Ax‖1 =
N

∑
i=1

(
N

∑
j=1

ai, jξ j

)
=

N

∑
j=1

(
N

∑
i=1

ai, j

)
ξ j =

N

∑
j=1

ξ j = 1,

the third equality reflecting the fact that, to its left, the sum in parentheses is the j-th
column-sum of A, which by “stochasticity” equals 1. Thus x ∈ ΠN , as desired. �	
Regarding the Internet. Theorem 1.6 establishes that the modified hyperlink matrix
H1 has fixed points in ΠN , and so yields (possibly many) rankings of web pages.
This issue of non-uniqueness arose in Exercise 1.2; we’ll resolve it in the next
section.

Exercise 1.5. Modify the argument above to show that if A is a stochastic matrix then
‖Ax‖1 ≤ ‖x‖1 for every x ∈ R

N (and even for every x ∈ C
N ).

Exercise 1.6. Use the inequality of the previous exercise to show that A, or more accurately
the linear transformation A induces on R

N (and even on C
N ), is continuous in the distances

induced on R
N (and even on C

N ) by both the one-norm and the more familiar Euclidean
norm.

Exercise 1.7. Modify the ideas in the previous two exercises to establish the continuity of
the linear transformation induced on R

N (and even on C
N ) by any N ×N real matrix.

Exercise 1.8. Theorem 1.6 shows that every stochastic matrix has 1 as an eigenvalue. Use
Exercise 1.5 to show that no eigenvalue, real or complex, has larger modulus. In matrix-
theory language: Every stochastic matrix has spectral radius 1.

Exercise 1.9. Show that the collection of N ×N stochastic matrices is a convex subset of
the real vector space of all N ×N matrices.
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1.8 Perron’s Theorem

To call a real matrix A of any dimensions (square, row, column . . . ) “non-negative”
(written “A ≥ 0”) means that all its entries are non-negative, and to call it “positive”
(written “A> 0”) means that all its entries are strictly positive.5 Our first result picks
up where Theorem 1.6 above left off, and forms the core of Perron’s famous 1907
theorem on eigenvalues of positive matrices.

Theorem 1.8. Every positive square matrix has a positive eigenvalue, to which
corresponds a positive eigenvector.

We’ll prove this by modifying the argument used for Theorem 1.6. The difficulty
to be overcome is that, without the hypothesis of stochasticity, our matrices need
not take the standard N-simplex ΠN into itself. This is easy to fix.

Lemma 1.9. Suppose A is an M ×N matrix that is > 0. Then Ax > 0 for every
vector x ∈R

N
+\{0}.

In words: If every entry of A is strictly positive and every entry of x ∈ R
N\{0} is

non-negative, then every entry of Ax is strictly positive.

Proof of Lemma. Suppose x ∈ R
N
+\{0}. Fix an index j and note that the j-th co-

ordinate of Ax is the dot product of the j-th row of A with the (transpose of the)
column vector x. Since the entries of A are all strictly positive, and the entries of x
are non-negative and not all zero, this dot product is strictly positive. �	
Proof of Theorem. Suppose A is an N ×N positive matrix. Lemma 1.9 insures that
Ax > 0 for every x ∈ ΠN , hence the equation

F(x) =
Ax

‖Ax‖1
(x ∈ ΠN)

defines a map F that’s continuous on ΠN and takes that simplex into itself. The-
orem 1.5 then guarantees for F a fixed point x0 ∈ ΠN . Thus x0 is a vector with
non-negative coordinates, ‖x0‖1 = 1, and Ax0 = λ x0, where λ = ‖Ax0‖1 > 0, hence
Ax0 > 0 by Lemma 1.9. Conclusion: x0 = λ−1Ax0 > 0. �	
Perron Eigenpairs. Theorem 1.8 guarantees that every positive matrix A has what
we might call a Perron eigenpair (λ ,x): a positive (“Perron”) eigenvalue λ that has
a positive (“Perron”) eigenvector x with ‖x‖1 = 1. Now we’ve seen in Theorem 1.6
that every stochastic matrix has a “weak” Perron eigenpair (1,x) (“weak” because
some coordinates of x may be zero), and in Exercise 1.8 that for stochastic matrices,
no eigenvalue (real or complex) has modulus larger than 1. Our next result derives
a stronger conclusion from a weaker hypothesis.

Theorem 1.10 (Perron’s Theorem). Each positive square matrix A possesses ex-
actly one Perron eigenpair. Among all the (possibly complex) eigenvalues of A, the
Perron eigenvalue has the largest modulus.

5 Warning: This is not to be confused with the notion of “positive-definite,” which is something
completely different.
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Proof. Suppose A is a positive N ×N matrix and (λ ,x) is a Perron eigenpair. To
prove that λ is the only Perron eigenvalue, observe that since A is a positive matrix,
so is its transpose At . Thus Theorem 1.8 applies to At as well, and produces what
we might call a “left-Perron6 eigenpair” (μ ,y), where μ is a positive eigenvalue for
At and y a positive eigenvector for μ .

From the associative property of matrix multiplication:

μ(ytx) = (ytA)x = yt(Ax) = yt(λ x) = λ (ytx).

Now ytx, being the dot product of the positive column vectors y and x, is > 0, thus
μ = λ . This establishes the uniqueness of Perron eigenvalues, since if λ ′ is another
Perron eigenvalue for A then λ ′ = μ = λ .

To show that the Perron eigenvalue of A is the largest eigenvalue, let r(A) denote
the spectral radius of A, i.e.,

r(A) = max{|γ| : γ is an eigenvalue of A},

where on the right-hand side we allow all eigenvalues of A, even the complex ones!

Claim. r(A) is the Perron eigenvalue of A.

Proof of Claim. We wish to show that if λ is the unique Perron eigenvalue of A
and μ is an eigenvalue (real or complex) of A, then |μ | ≤ λ . To this end, let x be a
Perron eigenvector for λ . Suppose μ is an eigenvalue of A and w a corresponding
eigenvector, so w ∈C

N\{0} and Aw = μw. Let |w| denote the column vector whose
j-th entry is the absolute value of the corresponding entry of w. Then since the
entries of A are non-negative:

A|w| ≥ |Aw|= |μw|= |μ | |w|, (1.6)

where the inequality is coordinatewise. Now let y be a Perron eigenvector for At ,
so y > 0 and, since the Perron eigenvalues for A and At coincide, ytA = λ yt . Upon
left-multiplying both sides of (1.6) by the positive vector yt we obtain

λ yt |w|= (ytA)|w| ≥ yt |Aw|= |μ |yt |w| (1.7)

which implies (since the scalar yt |w| is > 0) that λ ≥ |μ |. Thus λ = r(A), as desired.

So far we know that the positive matrix A has exactly one Perron eigenvalue,
namely the spectral radius r(A). Now we want to show that there is just one Per-
ron eigenvector for this eigenvalue.

Suppose to the contrary that there are two distinct Perron eigenvectors x and y
for r(A), so that the pair x,y is linearly independent in R

N .

Claim: There exists a real number a > 0 such that the vector w = ax− y is ≥ 0 but
not > 0 (i.e., it has at least one coordinate equal to zero).

6 The terminology “left-Perron” comes from the fact that ytA = μyt , i.e., the row vector yt is a “left
eigenvector” for A with “left eigenvalue” μ .
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Granting this Claim: By linear independence, w �= 0, and clearly Aw = r(A)w.
Every entry of the matrix A is positive, and those of w are non-negative and not all
zero, so Lemma 1.9 assures us that r(A)w = Aw > 0. But r(A)> 0 by Theorem 1.8,
so w > 0: a contradiction.

Proof of Claim. It remains to find the positive constant a. For this, let ξ j denote the
j-th coordinate of the Perron vector x, and η j the j-th coordinate of y. We’re looking
for a ∈R such that aξ j ≥ η j for all j, and aξk = ηk for some k. Since no coordinate
of x is zero, we can rewrite our criteria as: a ≥ η j/ξ j for all j, and a = ηk/ξk for
some k; in other words the positive real number a = max j η j/ξ j does the job. �	
Corollary 1.11. If A is a positive N ×N stochastic matrix, then there is a positive
vector x ∈ ΠN such that Ax = x. The vector x is, up to scalar multiples, the unique
non-zero fixed point of A.

Proof. Since A is stochastic, Theorem 1.6 supplies a vector x0 ∈R
N
+\{0}with Ax0 =

x0. Thus x = x0/‖x0‖1 is a fixed point of A that lies in ΠN . Since A is also positive,
Perron’s Theorem (Theorem 1.10) guarantees that x is positive and is (up to scalar
multiples) the unique eigenvector of A for the eigenvalue 1. �	

Exercise 1.10 (Uniqueness of the Perron Eigenvector). Extend the argument above to show
that if A is a positive N×N matrix and x is a Perron vector for r(A), then the real eigenspace
{w ∈ R

N : Aw = r(A)w} is one dimensional. Then show that the corresponding complex
eigenspace is also one dimensional.

Exercise 1.11 (Loneliness of the Perron Eigenvalue). Show that if A is an N ×N positive
matrix then its Perron eigenvalue is the only eigenvalue on the circle {z ∈C : |z|= r(A)}.

Suggestion: Suppose μ is an eigenvalue of A (real or complex) with |μ | = r(A). Let w ∈
C

N\{0} be a μ-eigenvector of A. Without loss of generality we may assume that some
coordinate of w is positive. Our assumption that |μ |= r(A) implies that there is equality in
(1.7), and this implies that ∑ j ai, j|w j| =

∣∣∑ j ai, jw j
∣∣ for all indices i. Conclude that w j ≥ 0

for all j, hence μ > 0.

1.9 The Google Matrix

We’d like to apply Corollary 1.11 to the problem of ranking internet pages. Unfortu-
nately, the modified hyperlink matrix H1 we created at the end of Sect. 1.4 (page 8),
while stochastic, is far from positive; in fact we noted that “almost all” of its entries
are zero. But all is not lost: a simple modification of H1 shows that a reasonable
model of web-surfing can arise from a positive stochastic matrix.

Let E denote the N×N matrix, each of whose entries is 1. Fix a “damping factor”
d with 0 < d < 1, and let G denote the “Google Matrix”

G = dH1 +
(1− d)

N
E .
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Since the matrices H1 and 1
N E are both stochastic, so is G (cf., Exercise 1.9, page

12). Furthermore G > 0, so Corollary 1.11 guarantees a fixed point w > 0 that is
unique up to scalar multiples. Thus G provides a unique ranking of web pages.

Why does G provide a reasonable model for web-surfing? Recall that we’ve al-
ready noted how the modified hyperlink matrix H1 represents what might be termed
a “semi-deterministic” model for web-surfing, wherein the surfer at a given page
chooses randomly among its outlinks with uniform probability and, if there are
no outlinks, chooses randomly, again with uniform probability, from all possible
web pages. In this vein, the matrix 1

N E represents a purely random surfing strategy,
wherein our surfer at a given page ignores all links and moves to another page (or
stays put) with probability 1/N. Thus the matrix G models the behavior of a surfer
who, at a given page, chooses the next one using the semi-deterministic method with
probability d, and the purely random one with probability 1−d. Google’s early ex-
periments indicated that d = 0.85 could provide a reasonable start on a web-surfing
model [17].

The Elephant in the Room. Let’s not forget that G is a huge matrix: N×N with N in
the billions! Thanks to Brouwer and Perron we now know that G produces a unique
ranking of web pages, but it’s still not clear how to effectively compute this ranking.
The fixed-point theorem of Chap. 3 will show us a way that is simple—at least in
principle—to do this.

Notes

The Banach Mapping Theorem. Theorem 1.1 first appeared (for one-to-one map-
pings) in Banach’s paper [7]. I learned the result from John Erdman, who presented
it, along with its application to the Schröder–Bernstein Theorem, in a seminar at
Portland State. The same proof has recently been found independently by Ming-
Chia Li [69]. We’ll encounter this result again in Chap. 11 when we take up the
remarkable subject of paradoxical decompositions.

The Knaster–Tarski Theorem. In [116, page 286] Tarski points out that in the 1920s
he and Knaster discovered Theorem 1.2, with Knaster publishing the result in [63].
Tarski goes on to say that he found a generalization to “complete lattices” and lec-
tured on it and its applications during the late 1930s and early 1940s before finally
publishing his results in [116].

The Brouwer Fixed-Point Theorem. This result (Theorem 1.3) appeared in [18,
1912], where it was proved using topological methods developed by Brouwer. It
is one of the most famous and widely applied theorems in mathematics; see [91]
for an exhaustive survey of the legacy of this result, and [21, Chap. 1] for a popular
exposition.
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Positive matrices. The arguments used here to prove Theorem 1.10, the famous
theorem of Perron (1907), follow those of [30, Chap. 2]. In 1912 Frobenius extended
Perron’s results to certain matrices with non-negative entries. The resulting “Perron–
Frobenius” theory is the subject of ongoing research, with an enormous literature
spanning many scientific areas. For more on this see, e.g., [30, 72] or[76].
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