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Preface

Fixed points show up everywhere in mathematics. This book provides an introduc-
tion to some of the subject’s best-known theorems and some of their most important
applications, emphasizing throughout their interaction with topics in the analysis
familiar to students of mathematics. The level of exposition increases slowly, re-
quiring at first some undergraduate-level proficiency, then gradually increasing to
the kind of sophistication one might expect from a graduate student. Appendices at
the back of the book provide introduction to (or reminder of) some of the prerequi-
site material. To encourage active participation, exercises are integrated into the text.
Thus I hope readers will find the book reasonably self-contained and useable either
on its own or as a supplement to standard courses in the mathematics curriculum.

The material is split into four parts, the first of which introduces the Banach
Contraction Mapping Principle and the Brouwer Fixed-Point theorem, along with a
selection of interesting applications: Newton’s method, initial value problems, and
positive matrices (e.g., the Google matrix). Brouwer’s theorem is proved in dimen-
sion two via Sperner’s lemma, and Banach’s principle is proved in generality. In-
cluded also is a lesser known fixed-point theorem due to Knaster and Tarski—an
easy-to-prove result about functions taking sets to sets that makes short work of
the Schröder–Bernstein theorem and plays an important role in a later chapter on
paradoxical decompositions.

Part II focuses on Brouwer’s theorem, featuring an analysis-based proof of the
general result, and John Nash’s application of this result to the existence of Nash
equilibrium. Brouwer’s theorem leads to Kakutani’s theorem on set-valued maps,
upon which rests Nash’s remarkable“one-page” proof of his famous theorem. A
brief introduction to game theory motivates the exposition of Nash’s results.

The material of these first two parts should be accessible to undergraduates whose
background includes the standard junior–senior-level courses in linear algebra and
analysis taught at American colleges, which hopefully provides some familiarity
with basic set theory and metric spaces.

Part III applies Brouwer’s theorem to spaces of infinite dimension, where it
provides an important step in the proof of the Schauder Fixed-Point theorem.
Schauder’s theorem leads to both Peano’s existence theorem for initial value prob-
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lems and Lomonosov’s spectacular theorem on invariant subspaces for linear opera-
tors on Banach spaces. For this segment the reader needs only some experience with
the basics of Hilbert and Banach spaces.

The fourth and final part of the book rests on the work of Markov, Kakutani,
and Ryll-Nardzewski concerning fixed points for families of affine maps. These re-
sults lead to the existence of measures—both finitely and countably additive—that
are invariant under various groups of transformations. In the finitely additive case,
this leads to the concepts of invariant means and “paradoxical decompositions,”
especially the Banach–Tarski paradox. The countably additive case leads to the ex-
istence of Haar measure on compact topological groups. This part of the book gets
into notions of duality and weak-star topologies, with the necessary prerequisites
developed from scratch—but only within the narrow context in which they are used.
The result is a gentle introduction to abstract duality which suffices for our purposes,
and hopefully encourages the reader to appreciate this way of thinking.

Much of the material presented here originated in lectures given during the aca-
demic years 2012–2013 by participants in the Analysis Seminar at Portland State
University. I am particularly indebted to John Erdman, who organized the seminar
for many years and who introduced us to the Knaster–Tarski theorem; to Steve Sil-
verman who lectured on the work of Markov and Kakutani; to Mau Nam Nguyen,
Blake Rector, and Jim Rulla for their talks on set-valued analysis; to Steve Bleiler
and Cody Fuller for their lectures on game theory; and to all the seminar participants
whose thoughtful questions and comments contributed greatly to my appreciation
of the subject.

Sheldon Axler encouraged me to turn my lecture notes into a book and suggested
that Sperner’s lemma might have a place in it. Paul Bourdon contributed many in-
sightful comments on initial versions of manuscript and cleaned up several of my
more cumbersome arguments. The Fariborz Maseeh Department of Mathematics
and Statistics at Portland State University provided office space and technical as-
sistance, and Michigan State University—my employer in a former life—provided
invaluable electronic access to its library.

Above all, I owe a deep debt of gratitude to my wife Jane, without whose under-
standing and encouragement this project could never have reached completion.

Portland, OR, USA Joel H. Shapiro
August 2015
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Part I
Introduction to Fixed Points



These first three chapters explain the idea of “fixed point” and, in a manner ac-
cessible to readers with a background in undergraduate mathematics, motivate its
importance.



Chapter 1
From Newton to Google

WHAT ARE FIXED POINTS? WHAT ARE THEY GOOD FOR?

Overview. After setting out the definition of “fixed point” we’ll give examples of
their role in finding solutions: to equations (Newton’s Method), to initial-value prob-
lems, and to the problem of ranking internet web pages. After this we’ll show how
the notion of fixed point arises in set theory, where it provides an easy proof of
the Schröder–Bernstein theorem. We’ll introduce the famous Brouwer Fixed-Point
Theorem, show how it applies to the study of matrices with positive entries, and
discuss the application of these results to the internet page-ranking problem.

Prerequisites. Calculus (continuity and fundamental theorem of integral calculus),
differential equations (initial-value problems), basic linear algebra, some familiarity
with sets and the operations on them.

1.1 What Is a Fixed Point?

Definition (Fixed Point). Suppose f is a map that takes a set S into itself. A fixed
point of f is just a point x ∈ S with f (x) = x.

A map f can have many fixed points (example: the identity map on a set with
many elements) or no fixed points (example: the mapping of “translation-by-one,”
x → x+ 1 on the real line).

Exercise 1.1. The fixed points of a function mapping a real interval into itself can be vi-
sualized as the x-coordinates of the points at which the function’s graph intersects the line
y = x. Use this idea to help in determining the fixed points possessed by each of the func-
tions f : R→ R defined below.

(a) f (x) = sinx

(b) f (x) = x+ sinx

(c) f (x) = 2sinx

© Springer International Publishing Switzerland 2016
J.H. Shapiro, A Fixed-Point Farrago, Universitext,
DOI 10.1007/978-3-319-27978-7 1
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1.2 Example: Newton’s Method

Suppose for simplicity that f is a differentiable function R → R, with derivative
f ′ continuous and never vanishing on R. Consider for f its “Newton function” F ,
defined by

F(x) = x− f (x)
f ′(x)

(x ∈ R). (1.1)

One can think of F(x) as the horizontal coordinate of the point at which the line
tangent to the graph of f at the point (x, f (x)) intersects the horizontal axis. Since
f ′ doesn’t vanish, F is a continuous mapping taking R into itself. The roots of f
(those points x ∈ R such that f (x) = 0) are precisely the fixed points of F .

Newton’s method involves iterating the Newton function in the hope of gen-
erating approximations to the roots of f . One starts with an initial guess x0, sets
x1 = F(x0), x2 = F(x1) . . . , and hopes that the resulting sequence of “Newton iter-
ates” converges to a fixed point of F . Geometrically it seems clear that if the Newton
iterate sequence converges then it must converge to a root of f . We’ll see later, as
a consequence of something far more general (Proposition 3.3, page 28), that this
indeed the case.

1.3 Example: Initial-Value Problems

From a continuous function f : R2 → R and a point (x0,y0) ∈ R2 we can create an
initial-value problem

y′ = f (x,y), y(x0) = y0 . (IVP)

Geometrically, (IVP) asks for a differentiable function y whose graph is a smooth
“solution curve” in the plane that has the following properties:

(a) The curve passes through the point (x0,y0), and
(b) at each of its points (x,y) the curve has slope f (x,y).

As a first attempt to solve the differential equation y′ = f (x,y) one might try inte-
grating both sides with respect to x. If by “integrate both sides” we mean “take the
definite integral from x0 to x,” then there results the integral equation

y(x) = y0 +

∫ x

t=x0

f (t,y(t))dt (IE)

which is implied by (IVP) in the sense that each function y satisfying (IVP) for some
interval of x’s containing x0, also satisfies (IE) for that same interval.

Conversely, suppose y ∈ C(R) satisfies (IE) on some open interval I. Fix x ∈ I.
Then for h∈R\{0} small enough that x+h∈ I, the Mean-Value Theorem of integral
calculus provides a point ξ between x and x+ h such that
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y(x+ h)− y(x)
h

=
1
h

∫ x+h

x
f (t,y(t))dt = f (ξ ,y(ξ )).

Thanks to the continuity of f , as h → 0 the expression on the right, and therefore the
difference quotient on the left, converges to f (x,y(x)). Thus y is differentiable at x
and y′(x) = f (x,y(x)), i.e., the function y satisfies the differential equation in (IVP)
on the interval I. That it satisfies the initial condition is trivial.

Conclusion: (IVP) ≡ (IE).

To make the connection with fixed points, let C(R) denote the vector space
of continuous, real-valued functions on R, and consider the integral transform
T : C(R)→C(R) defined by

(Ty)(x) = y0 +
∫ x

t=x0

f (t,y(t))dt (x ∈ R). (1.2)

Thus equation (IE) can thus be rewritten Ty = y, so to say y ∈C(R) satisfies (IVP)
turns out to be the same as saying: y is a fixed point of the mapping T . In Chap. 3
we’ll discuss the existence and uniqueness of such fixed points.

1.4 Example: The Internet

At each instant of time the publicly accessible Internet consists of a collection of N
web pages1 each of which can have links coming in from, and going out to, other
pages. To be effective, search engines such as Google must seek to determine the
importance of each individual page. Here’s a first attempt to do this.

To each web page Pi (1 ≤ i ≤N) we’ll assign a non-negative real number imp(Pi)
that measures the “importance” of that page. The page Pi will derive its importance
from all the pages that link into it: if Pj has a total of λ j outgoing links then we
decree that it bestow importance of imp(Pj)/λ j to each of the pages into which it
has links. In other words, if we think of Pj as having imp(Pj) “votes” then our rule
is that it must distribute these votes evenly among the pages into which it links. The
importance of a given web page is then defined to be the sum of the importances it
receives from each of the web pages that link to it (self-links are allowed).

This definition of “importance” for a web page may seem at first glance to be
circular, but it’s not! To make matters precise, define Li to be the set consisting of
all indices j for which Pj links into Pi. Then imp(Pi) is given by the equation

imp(Pi) = ∑
j∈Li

1
λ j

imp(Pj) (1 ≤ i ≤ N) (1.3)

1 According to www.worldwidewebsize.com, N was ≥ 4.74×109 on August 4, 2015.
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This is a set of N linear equations in the N unknowns imp(Pi); for these equations
to provide a reasonable ranking of web pages there needs to be a solution not iden-
tically zero, all coordinates of which are non-negative.

To see how fixed points enter into this discussion, let v to be the column vector
with imp(Pi) in the i-th position, and define the “hyperlink matrix” H to be the
N ×N matrix whose j-th column has 1/λ j in the i-th entry if Pj links to Pi, and zero
otherwise. With these definitions Eq. (1.3) can be rewritten in matrix form

v = Hv,

so the “importance vector” v we seek is a fixed point of the transformation that H
induces on the set of vectors in R

N\{0}, all of whose coordinates are non-negative.
In the language of linear algebra: we demand that 1 be an eigenvalue of H and

v be a corresponding eigenvector with non-negative entries. We’ll see in Sect. 1.7
that such a vector actually exists. In Sect. 1.8 we’ll also take up the crucial question
of uniqueness (at least up to positive scalar multiples); to be effective our method
needs to produce an unequivocal ranking of web pages.

Mini-example. Consider the fictional mini-internet pictured in Fig. 1.1 below which
consists of six web pages, the label on each link denoting the proportion of the donor
page’s importance being granted to the recipient page.

Fig. 1.1 An imaginary six-page internet



1.4 Example: The Internet 7

The hyperlink matrix for our mini-web is

H0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1
2 0 1

3 0 0

0 0 1
2 0 0 0

0 0 0 1
3 0 0

0 0 0 0 0 1
2

1
2

1
2

1
2

1
3 0 1

2

1
2 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

for which your favorite matrix calculation program will verify that 1 is an eigen-
value, so the equation H0v = v does have a non-zero solution in R6. Furthermore,
the calculation will show that this solution is unique up to scalar multiples, and
all of its entries have the same sign. When normalized to have positive entries and
Euclidean norm 1, this vector is, to two significant digits,

v = [0.14, 0.057, 0.11, 0.34, 0.61, 0.69]t

where the superscript “t” denotes “transpose.” This gives the following ranking,
from most to least important: (P6, P5, P4, P1, P3, P2).

This example illustrates a critical fact about the process of ranking pages: the
page with the most incoming links need not be the most important! In particular,
Page 6, with only two incoming links, is more important than Page 5, which has five
incoming links. Similarly, Page 4, with just one incoming link, is more important
than Page 1, which has two such links (Exercise: Can you explain in just a few
words what’s making this happen?).

Exercise 1.2. “Importance vectors” need not be unique. Consider the following mini-web,
still with six pages. but now with links that look like this:

1 → 2 → 3 → 1 and 4 → 5 → 6 → 4.

Write out the hyperlink matrix for this mini-web and show that it has several independent
importance vectors (some of which contain zeros).

The hyperlink matrix H for the full internet, although huge, consists mostly of
zeros; each web page links to a relatively tiny number of others.2 Furthermore each
column of H corresponding to a page with outlinks will sum to 1, but each column
corresponding to a page with no outlinks is identically zero. This latter kind of page
(a particularly annoying one) is called a “dangling node.” Were the internet to have
no such pages, its hyperlink matrix would be stochastic: each entry non-negative
and each column summing to one. This is the case for the six-page example worked
out above, as well as the mini-web of Exercise 1.2.

2 According to [12], on average somewhere in the hundreds.
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Stochastic matrices have particularly nice properties; we’ll show in Sect. 1.7 that
their associated linear transformations possess nontrivial fixed points (i.e., 1 is an
eigenvalue) with non-negative entries. Thus, were our internet to have no dangling
nodes, the hyperlink matrix would have a fixed point that would provide a rank-
ing of websites. For this reason we’d like to find a modification of H that achieves
“stochasticity” without compromising the intuition behind our definition of “impor-
tance.”

One way to do this is to think of a dangling node as, rather than linking to no
other web pages, actually linking to every web page (including itself), contributing
1/N of its importance to every web page. This models the behavior of a web surfer
who, stuck at a page with no outlinks, decides to skip directly to a random page,
thus establishing to that page a “link” of weight 1/N. Our new N ×N hyperlink
matrix, call it H1, is now stochastic; the columns previously identically zero are
now identically 1/N. We’ll return to this matrix in Sect. 1.7.

1.5 Example: The Schröder–Bernstein Theorem

The famous Schröder–Bernstein theorem of set theory asserts:

If X and Y are sets for which there is a one-to-one mapping taking X into Y
and a one-to-one mapping taking Y into X , then there is a one-to-one mapping
taking X onto Y .

This result follows from a more general one depicted in Fig. 1.2 below:

Fig. 1.2 The Banach Mapping Theorem

Theorem 1.1 (The Banach Mapping Theorem). Given sets X and Y and functions
f : X →Y and g : Y → X, there is a subset A of X whose complement is the g-image
of the complement of f (A).
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To see how the Banach Mapping Theorem implies the Schröder–Bernstein
Theorem, suppose in the statement of the Banach theorem that the maps f and g
are one-to-one. Then the map h : X → Y defined by setting h = f on A and h = g−1

on X\A is the one promised by Schröder–Bernstein. 	

The Banach Mapping Theorem is, in fact, a fixed-point theorem! Its conclusion

is that there is a subset A of X for which X\A = g(Y\ f (A)). This equation is equiv-
alent, upon complementing both sides in X , to

A = X\g(Y\ f (A)). (1.4)

For a set S, let’s write P(S) for the collection of all subsets of S. Define the function
Φ : P(X)→P(X) by

Φ(E) = X\g(Y\ f (E)) (E ∈P(X)).

With these definitions, Eq. (1.4) asserts that the set A is a fixed point of Φ.
That such a fixed point exists is not difficult to prove. The mapping Φ defined

above is best understood as the composition of four simple set-mappings:

P(X)
f−→P(Y )

CY−→P(Y )
g−→P(X)

CX−→P(X)

where CX denotes “complement in X” and similarly for CY , while f and g now de-
note the “set functions” induced in the obvious way by the original “point functions”
f and g. Since f and g preserve set-containment (i.e., E ⊂ F =⇒ f (E) ⊂ f (F))
while CX and CY reverse it, the composite mapping Φ preserves set-containment.

With these observations, the theorems of Banach and Schröder–Bernstein follow
from:

Theorem 1.2 (The Knaster–Tarski Theorem). If X is a set and Φ : P(X)→P(X)
is a mapping that preserves set-containment, then Φ has a fixed point.

Proof. Let E be the collection of subsets E of X for which E ⊂ Φ(E). Since E
contains the empty subset of X , it is nonempty. Let A denote the union of all the sets
in E .

Claim. Φ(A) = A.

Proof of Claim. Suppose E ∈ E . Then E ⊂Φ(E) by the definition of E , and E ⊂ A
by the definition of A. Thus Φ(E)⊂ Φ(A) by the containment-preserving nature of
Φ, hence E ⊂Φ(A). Consequently A ⊂Φ(A), whereupon Φ(A)⊂Φ(Φ(A)), which
places Φ(A) in E . Conclusion: Φ(A)⊂ A, hence Φ(A) = A. 	
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1.6 The Brouwer Fixed-Point Theorem

The most easily stated—and deepest—of the fixed-point theorems we’ll discuss in
this book was proved in 1912 by the Dutch mathematician L.E.J. Brouwer. Its initial
setting is the closed unit ball B of Euclidean space RN .

Theorem 1.3 (The Brouwer Fixed-Point Theorem). Every continuous mapping of
B into itself has a fixed point.

It’s easy to see that the result remains true if B is replaced by a homeomorphic
image (i.e., a set G = f (B) where f is continuous, one-to-one, with f−1 : G → B
also continuous).

For N = 1 the proof of Brouwer’s Theorem is straightforward. In this case f is
a continuous function mapping the real interval [−1,1] into itself. We may suppose
f doesn’t fix either endpoint (otherwise we’re done), so f (−1)>−1 and f (1)< 1.
In other words, the value of the continuous function g(x) = f (x)− x is positive at
x = −1 and negative at x = 1. By the Intermediate Value Theorem, g must take the
value zero at some point of the interval (−1,1); that point is a fixed point for f .

The proof for N > 1 is much more difficult, and there are many different versions.
For N = 2 we’ll prove in the next chapter a famous combinatorial lemma due to
Sperner which yields Brouwer’s Theorem for that case,3 and in Chap. 4 we’ll prove
the full result using methods of “advanced calculus.”

The Brouwer Theorem for convex sets. To say a subset of RN , or more generally of
a vector space over the real field, is convex means that if two points belong to the
set, then so does the entire line segment joining those points. More precisely:

Definition 1.4. To say a subset C of a real vector space is convex means that: when-
ever x and y belong to C then so does tx+(1− t)y for every real t with 0 ≤ t ≤ 1.

In the course of proving the Brouwer Theorem for R
N we’ll develop enough

machinery to obtain it for all closed, bounded convex sets therein (Theorem 4.5).
Officially:

Theorem 1.5 (The “Convex” Brouwer Fixed-Point Theorem). Suppose N is a posi-
tive integer and C is a closed, bounded, convex subset of RN. Then every continuous
mapping taking C into itself has a fixed point.

1.7 Application: Stochastic Matrices

Recall from Sect. 1.4 that a stochastic matrix is a square matrix that is non-negative
(all entries ≥ 0), all of whose columns sum to 1. In that section (see page 8)
we offered as an example the modified internet hyperlink matrix H1: the original

3 Our version of Sperner’s Lemma generalizes to dimension N > 2, where it also implies Brouwer’s
Theorem. However we will not pursue this direction.
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internet hyperlink matrix with the zero-columns replaced by “1/N-columns.” H1

is an N ×N stochastic matrix with N on the order of several billion. Our proposed
method for ranking internet websites depended on finding a vector v ∈RN\{0} with
non-negative entries such that H1v = v. Now there’s no secret that H1v = v for some
vector v ∈ RN\{0}, i.e., that 1 is an eigenvalue for H1; in fact this is true of every
stochastic matrix.

To see why, let e denote the (column) vector in R
N , all of whose entries are 1. Let

A be an N ×N stochastic matrix. Since all the columns of A sum to 1 we have Ate =
e, where the superscript “t” denotes “transpose.” Thus 1 is an eigenvalue of At . Since
each square matrix has the same eigenvalues as its transpose (the determinant of a
square matrix is the same as that of its transpose, hence both matrix and transpose
have the same characteristic polynomial) we see that 1 is an eigenvalue of A, i.e.,
there exists x ∈ RN\{0} with Ax = x. However, to be meaningful for the internet
our eigenvector must have all coordinates non-negative and—up to positive scalar
multiples—be unique.

Uniqueness is a special problem. For example, the N × N identity matrix is
stochastic, but (if N > 1) has lots of essentially different non-negative fixed points.
We’ll return to this question in the next chapter. Right now let’s see how the Brouwer
Fixed-Point Theorem proves that, questions of uniqueness aside:

Theorem 1.6. Every stochastic matrix has a fixed point, all of whose entries are
non-negative, and at least one of which is positive.

In particular, the modified hyperlink matrix H1 of Sect. 1.4 has a fixed point that
produces at least one ranking of web pages.

For the proof of Theorem 1.6 we’ll view RN as a space of column vectors, but
with distances measured in the metric arising from the “one-norm:”

‖x‖1 = |ξ1|+ |ξ2|+ . . . + |ξN | (x ∈ R
N), (1.5)

where ξ j is the j-th coordinate of the vector x.

Exercise 1.3. Check that ‖ · ‖1 is a norm4 on R
N , and that

1√
N
‖x‖ ≤ ‖x‖1 ≤

√
N‖x‖ (x ∈R

N)

where ‖x‖= (∑ j ξ 2
j )

1/2, the Euclidean norm of the vector x. Show that this implies that the

distance d1 defined on R
N by d1(x,y) = ‖x− y‖1 is equivalent to the one induced by the

Euclidean norm, in that both distances give rise to the same convergent sequences.

Definition 1.7 (Standard Simplex). The standard N-simplex ΠN is the set of non-
negative vectors in the closed ‖ · ‖1-unit “sphere” of RN , i.e.,

ΠN = {x ∈ R
N
+ : ‖x‖1 = 1},

where RN
+ denotes the set of vectors in R

N with all coordinates non-negative.

4 For the definition of “norm” see Appendix C.2, page 194.
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For example, Π2 is the line segment in R2 joining the points (0,1) and (1,0),
while Π3 is the triangle in R3 with vertices (1,0,0), (0,1,0), and (0,0,1). In general
ΠN is the convex hull of the standard unit vector basis in RN , the smallest convex
subset of RN that contains those vectors (Proposition C.4 of Appendix C).

Exercise 1.4. Show that ΠN is closed and bounded in RN , hence compact.

Proof of Theorem 1.6. Our goal is to show that A (more accurately: the linear trans-
formation that A induces on RN) has a fixed point inΠN . For this it’s enough to show
that A(ΠN) ⊂ ΠN , after which the continuity of A (see Exercises 1.5 and 1.6 be-
low), the compactness of ΠN (Exercise 1.4 above), and Theorem 1.5 (the “Convex”
Brouwer Fixed-Point Theorem) will combine to produce the desired fixed point.

To see that the matrix A takes ΠN into itself, let’s denote by ai, j the element of A
in row i and column j. Fix x ∈ΠN , and let ξ j denote its j-th coordinate. Then, since
all matrix elements and coordinates are non-negative:

‖Ax‖1 =
N

∑
i=1

(
N

∑
j=1

ai, jξ j

)
=

N

∑
j=1

(
N

∑
i=1

ai, j

)
ξ j =

N

∑
j=1

ξ j = 1,

the third equality reflecting the fact that, to its left, the sum in parentheses is the j-th
column-sum of A, which by “stochasticity” equals 1. Thus x ∈ΠN , as desired. 	

Regarding the Internet. Theorem 1.6 establishes that the modified hyperlink matrix
H1 has fixed points in ΠN , and so yields (possibly many) rankings of web pages.
This issue of non-uniqueness arose in Exercise 1.2; we’ll resolve it in the next
section.

Exercise 1.5. Modify the argument above to show that if A is a stochastic matrix then
‖Ax‖1 ≤ ‖x‖1 for every x ∈ R

N (and even for every x ∈ C
N ).

Exercise 1.6. Use the inequality of the previous exercise to show that A, or more accurately
the linear transformation A induces on R

N (and even on C
N ), is continuous in the distances

induced on R
N (and even on C

N ) by both the one-norm and the more familiar Euclidean
norm.

Exercise 1.7. Modify the ideas in the previous two exercises to establish the continuity of
the linear transformation induced on RN (and even on CN ) by any N ×N real matrix.

Exercise 1.8. Theorem 1.6 shows that every stochastic matrix has 1 as an eigenvalue. Use
Exercise 1.5 to show that no eigenvalue, real or complex, has larger modulus. In matrix-
theory language: Every stochastic matrix has spectral radius 1.

Exercise 1.9. Show that the collection of N ×N stochastic matrices is a convex subset of
the real vector space of all N ×N matrices.
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1.8 Perron’s Theorem

To call a real matrix A of any dimensions (square, row, column . . . ) “non-negative”
(written “A ≥ 0”) means that all its entries are non-negative, and to call it “positive”
(written “A> 0”) means that all its entries are strictly positive.5 Our first result picks
up where Theorem 1.6 above left off, and forms the core of Perron’s famous 1907
theorem on eigenvalues of positive matrices.

Theorem 1.8. Every positive square matrix has a positive eigenvalue, to which
corresponds a positive eigenvector.

We’ll prove this by modifying the argument used for Theorem 1.6. The difficulty
to be overcome is that, without the hypothesis of stochasticity, our matrices need
not take the standard N-simplex ΠN into itself. This is easy to fix.

Lemma 1.9. Suppose A is an M ×N matrix that is > 0. Then Ax > 0 for every
vector x ∈RN

+\{0}.

In words: If every entry of A is strictly positive and every entry of x ∈ RN\{0} is
non-negative, then every entry of Ax is strictly positive.

Proof of Lemma. Suppose x ∈ RN
+\{0}. Fix an index j and note that the j-th co-

ordinate of Ax is the dot product of the j-th row of A with the (transpose of the)
column vector x. Since the entries of A are all strictly positive, and the entries of x
are non-negative and not all zero, this dot product is strictly positive. 	

Proof of Theorem. Suppose A is an N ×N positive matrix. Lemma 1.9 insures that
Ax > 0 for every x ∈ΠN , hence the equation

F(x) =
Ax

‖Ax‖1
(x ∈ΠN)

defines a map F that’s continuous on ΠN and takes that simplex into itself. The-
orem 1.5 then guarantees for F a fixed point x0 ∈ ΠN . Thus x0 is a vector with
non-negative coordinates, ‖x0‖1 = 1, and Ax0 = λx0, where λ = ‖Ax0‖1 > 0, hence
Ax0 > 0 by Lemma 1.9. Conclusion: x0 = λ−1Ax0 > 0. 	

Perron Eigenpairs. Theorem 1.8 guarantees that every positive matrix A has what
we might call a Perron eigenpair (λ ,x): a positive (“Perron”) eigenvalue λ that has
a positive (“Perron”) eigenvector x with ‖x‖1 = 1. Now we’ve seen in Theorem 1.6
that every stochastic matrix has a “weak” Perron eigenpair (1,x) (“weak” because
some coordinates of x may be zero), and in Exercise 1.8 that for stochastic matrices,
no eigenvalue (real or complex) has modulus larger than 1. Our next result derives
a stronger conclusion from a weaker hypothesis.

Theorem 1.10 (Perron’s Theorem). Each positive square matrix A possesses ex-
actly one Perron eigenpair. Among all the (possibly complex) eigenvalues of A, the
Perron eigenvalue has the largest modulus.

5 Warning: This is not to be confused with the notion of “positive-definite,” which is something
completely different.
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Proof. Suppose A is a positive N ×N matrix and (λ ,x) is a Perron eigenpair. To
prove that λ is the only Perron eigenvalue, observe that since A is a positive matrix,
so is its transpose At . Thus Theorem 1.8 applies to At as well, and produces what
we might call a “left-Perron6 eigenpair” (μ ,y), where μ is a positive eigenvalue for
At and y a positive eigenvector for μ .

From the associative property of matrix multiplication:

μ(ytx) = (ytA)x = yt(Ax) = yt(λx) = λ (ytx).

Now ytx, being the dot product of the positive column vectors y and x, is > 0, thus
μ = λ . This establishes the uniqueness of Perron eigenvalues, since if λ ′ is another
Perron eigenvalue for A then λ ′ = μ = λ .

To show that the Perron eigenvalue of A is the largest eigenvalue, let r(A) denote
the spectral radius of A, i.e.,

r(A) = max{|γ| : γ is an eigenvalue of A},

where on the right-hand side we allow all eigenvalues of A, even the complex ones!

Claim. r(A) is the Perron eigenvalue of A.

Proof of Claim. We wish to show that if λ is the unique Perron eigenvalue of A
and μ is an eigenvalue (real or complex) of A, then |μ | ≤ λ . To this end, let x be a
Perron eigenvector for λ . Suppose μ is an eigenvalue of A and w a corresponding
eigenvector, so w ∈CN\{0} and Aw = μw. Let |w| denote the column vector whose
j-th entry is the absolute value of the corresponding entry of w. Then since the
entries of A are non-negative:

A|w| ≥ |Aw|= |μw|= |μ | |w|, (1.6)

where the inequality is coordinatewise. Now let y be a Perron eigenvector for At ,
so y > 0 and, since the Perron eigenvalues for A and At coincide, ytA = λyt . Upon
left-multiplying both sides of (1.6) by the positive vector yt we obtain

λyt |w|= (ytA)|w| ≥ yt |Aw|= |μ |yt |w| (1.7)

which implies (since the scalar yt |w| is > 0) that λ ≥ |μ |. Thus λ = r(A), as desired.

So far we know that the positive matrix A has exactly one Perron eigenvalue,
namely the spectral radius r(A). Now we want to show that there is just one Per-
ron eigenvector for this eigenvalue.

Suppose to the contrary that there are two distinct Perron eigenvectors x and y
for r(A), so that the pair x,y is linearly independent in RN .

Claim: There exists a real number a > 0 such that the vector w = ax− y is ≥ 0 but
not > 0 (i.e., it has at least one coordinate equal to zero).

6 The terminology “left-Perron” comes from the fact that ytA = μyt , i.e., the row vector yt is a “left
eigenvector” for A with “left eigenvalue” μ .
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Granting this Claim: By linear independence, w �= 0, and clearly Aw = r(A)w.
Every entry of the matrix A is positive, and those of w are non-negative and not all
zero, so Lemma 1.9 assures us that r(A)w = Aw > 0. But r(A)> 0 by Theorem 1.8,
so w > 0: a contradiction.

Proof of Claim. It remains to find the positive constant a. For this, let ξ j denote the
j-th coordinate of the Perron vector x, and η j the j-th coordinate of y. We’re looking
for a ∈R such that aξ j ≥ η j for all j, and aξk = ηk for some k. Since no coordinate
of x is zero, we can rewrite our criteria as: a ≥ η j/ξ j for all j, and a = ηk/ξk for
some k; in other words the positive real number a = max jη j/ξ j does the job. 	

Corollary 1.11. If A is a positive N ×N stochastic matrix, then there is a positive
vector x ∈ ΠN such that Ax = x. The vector x is, up to scalar multiples, the unique
non-zero fixed point of A.

Proof. Since A is stochastic, Theorem 1.6 supplies a vector x0 ∈RN
+\{0}with Ax0 =

x0. Thus x = x0/‖x0‖1 is a fixed point of A that lies in ΠN . Since A is also positive,
Perron’s Theorem (Theorem 1.10) guarantees that x is positive and is (up to scalar
multiples) the unique eigenvector of A for the eigenvalue 1. 	


Exercise 1.10 (Uniqueness of the Perron Eigenvector). Extend the argument above to show
that if A is a positive N×N matrix and x is a Perron vector for r(A), then the real eigenspace
{w ∈ R

N : Aw = r(A)w} is one dimensional. Then show that the corresponding complex
eigenspace is also one dimensional.

Exercise 1.11 (Loneliness of the Perron Eigenvalue). Show that if A is an N ×N positive
matrix then its Perron eigenvalue is the only eigenvalue on the circle {z ∈C : |z|= r(A)}.

Suggestion: Suppose μ is an eigenvalue of A (real or complex) with |μ | = r(A). Let w ∈
CN\{0} be a μ-eigenvector of A. Without loss of generality we may assume that some
coordinate of w is positive. Our assumption that |μ |= r(A) implies that there is equality in
(1.7), and this implies that ∑ j ai, j|w j| =

∣∣∑ j ai, jw j
∣∣ for all indices i. Conclude that w j ≥ 0

for all j, hence μ > 0.

1.9 The Google Matrix

We’d like to apply Corollary 1.11 to the problem of ranking internet pages. Unfortu-
nately, the modified hyperlink matrix H1 we created at the end of Sect. 1.4 (page 8),
while stochastic, is far from positive; in fact we noted that “almost all” of its entries
are zero. But all is not lost: a simple modification of H1 shows that a reasonable
model of web-surfing can arise from a positive stochastic matrix.

Let E denote the N×N matrix, each of whose entries is 1. Fix a “damping factor”
d with 0 < d < 1, and let G denote the “Google Matrix”

G = dH1 +
(1− d)

N
E .
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Since the matrices H1 and 1
N E are both stochastic, so is G (cf., Exercise 1.9, page

12). Furthermore G > 0, so Corollary 1.11 guarantees a fixed point w > 0 that is
unique up to scalar multiples. Thus G provides a unique ranking of web pages.

Why does G provide a reasonable model for web-surfing? Recall that we’ve al-
ready noted how the modified hyperlink matrix H1 represents what might be termed
a “semi-deterministic” model for web-surfing, wherein the surfer at a given page
chooses randomly among its outlinks with uniform probability and, if there are
no outlinks, chooses randomly, again with uniform probability, from all possible
web pages. In this vein, the matrix 1

N E represents a purely random surfing strategy,
wherein our surfer at a given page ignores all links and moves to another page (or
stays put) with probability 1/N. Thus the matrix G models the behavior of a surfer
who, at a given page, chooses the next one using the semi-deterministic method with
probability d, and the purely random one with probability 1−d. Google’s early ex-
periments indicated that d = 0.85 could provide a reasonable start on a web-surfing
model [17].

The Elephant in the Room. Let’s not forget that G is a huge matrix: N×N with N in
the billions! Thanks to Brouwer and Perron we now know that G produces a unique
ranking of web pages, but it’s still not clear how to effectively compute this ranking.
The fixed-point theorem of Chap. 3 will show us a way that is simple—at least in
principle—to do this.

Notes

The Banach Mapping Theorem. Theorem 1.1 first appeared (for one-to-one map-
pings) in Banach’s paper [7]. I learned the result from John Erdman, who presented
it, along with its application to the Schröder–Bernstein Theorem, in a seminar at
Portland State. The same proof has recently been found independently by Ming-
Chia Li [69]. We’ll encounter this result again in Chap. 11 when we take up the
remarkable subject of paradoxical decompositions.

The Knaster–Tarski Theorem. In [116, page 286] Tarski points out that in the 1920s
he and Knaster discovered Theorem 1.2, with Knaster publishing the result in [63].
Tarski goes on to say that he found a generalization to “complete lattices” and lec-
tured on it and its applications during the late 1930s and early 1940s before finally
publishing his results in [116].

The Brouwer Fixed-Point Theorem. This result (Theorem 1.3) appeared in [18,
1912], where it was proved using topological methods developed by Brouwer. It
is one of the most famous and widely applied theorems in mathematics; see [91]
for an exhaustive survey of the legacy of this result, and [21, Chap. 1] for a popular
exposition.
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Positive matrices. The arguments used here to prove Theorem 1.10, the famous
theorem of Perron (1907), follow those of [30, Chap. 2]. In 1912 Frobenius extended
Perron’s results to certain matrices with non-negative entries. The resulting “Perron–
Frobenius” theory is the subject of ongoing research, with an enormous literature
spanning many scientific areas. For more on this see, e.g., [30, 72] or[76].



Chapter 2
Brouwer in Dimension Two

THE BROUWER FIXED-POINT THEOREM VIA SPERNER’S LEMMA

Overview. In dimension two the Brouwer Fixed-Point Theorem states that every
continuous mapping taking a closed disc into itself has a fixed point. In this chapter
we’ll give a proof of this special case of Brouwer’s result, but for triangles rather
than discs; closed triangles are homeomorphic to closed discs (Exercise 2.2 below)
so our result will be equivalent to Brouwer’s. We’ll base our proof on an appar-
ently unrelated combinatorial lemma due to Emanuel Sperner, which—in dimen-
sion two—concerns a certain method of labeling the vertices of “regular” decom-
positions of triangles into subtriangles. We’ll give two proofs of this special case of
Sperner’s Lemma, one of which has come to serve as a basis for algorithms designed
to approximate Brouwer fixed points.

Prerequisites. Undergraduate real analysis: compactness and continuity in the con-
text of R2.

2.1 Sperner’s Lemma

Throughout this discussion, “triangle” means “closed triangle,” i.e., the convex hull
of three points in Euclidean space that don’t all lie on the same straight line. A
“regular decomposition” of a triangle is a collection of subtriangles whose union
is the original triangle and for which the intersection of two distinct subtriangles
is either a vertex or a complete common edge. Figure 2.1 below illustrates both a
regular and an irregular decomposition of a triangle into subtriangles.

A “Sperner Labeling” of the subvertices (the vertices of the subtriangles) in a
regular decomposition is an assignment of labels “1,” “2,” or “3” to each subvertex
in such a way that:

(a) No two vertices of the original triangle get the same label (i.e., all three labels
get used for the original vertices),

© Springer International Publishing Switzerland 2016
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Fig. 2.1 Regular (left) and irregular (right) decomposition of a triangle into subtriangles

(b) Each subvertex lying on an edge of the original triangle gets labels drawn only
from the labels of that edge, e.g., subvertices on the original edge labeled “1”
and “2” (henceforth: a “{1,2} edge”) get only the labels “1” or “2,” but with
no further restriction.

(c) Subvertices lying in the interior of the original triangle can be labeled without
restriction.

We’ll call a subtriangle whose vertices have labels “1,” “2,” and “3” a com-
pletely labeled subtriangle. Figure 2.2 shows a regular decomposition of a triangle
into Sperner-labeled subtriangles, five of which (the shaded ones) are completely
labeled.

3

3 3 3

2

2

2 2

2

1

1 1

111

Fig. 2.2 A Sperner-labeled regular decomposition into subtriangles

Theorem 2.1 (Sperner’s Lemma for Dimension Two). Every Sperner-labeled regu-
lar decomposition of a triangle has an odd number of completely labeled subtrian-
gles; in particular there is at least one.
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The One dimensional case. Here, instead of triangles split “regularly” into sub-
triangles, we just have a closed finite line segment split into finitely many closed
subsegments which can intersect in at most a common endpoint. One end of the
original segment is labeled “1” and the other is labeled “2.” The remaining subseg-
ment endpoints get these labels without restriction.

Sperner’s Lemma for this situation asserts that: There is an odd number of sub-
segments (in particular, at least one!) whose endpoints get different labels.

To prove this let’s imagine moving from the one-labeled endpoint of our initial
interval toward the two-labeled one. If there are no subintervals, we’re done. Oth-
erwise there has to be a first subinterval endpoint whose label switches from “1”
to “2,” thus yielding a completely labeled subinterval with final endpoint “2.” At
the next switch, if there is one, the initial endpoint is “2” and the final endpoint is
“1,” thus yielding another completely labeled subinterval which must, somewhere
further on the line, have an oppositely labeled companion (else we’d never be able
to end up with the final subinterval labeled “2”). Thus there must be an odd number
of completely labeled subintervals. 	

The Two dimensional case. We start with a triangle Δ regularly decomposed into
a finite collection of subtriangles {Δ j}. Let ν(Δ j) denote the number of “{1,2}-
labeled edges” belonging to the boundary of Δ j, and set S = ∑ j ν(Δ j). We’ll com-
pute S in two different ways:

By counting edges. If a {1,2}-labeled edge of Δ j does not belong to the boundary
of Δ then it belongs to exactly one other subtriangle. If a {1,2}-labeled edge of
Δ j lies on the boundary of Δ, then that edge belongs to no other subtriangle. Thus
S is twice the number of “non-boundary” {1,2}-labeled edges plus the number of
“boundary” {1,2}-labeled edges. But by the one dimensional Sperner Lemma, the
number of boundary {1,2}-labeled edges is odd. Thus S is odd.

By counting subtriangles. Each completely labeled subtriangle has exactly one
{1,2}-labeled edge. All the others have either zero or two such edges. Thus the odd
number S is the number of completely labeled subtriangles plus twice the number
of subtriangles with {1,2} edges, hence our Sperner-labeled regular decomposition
of Δ has an odd number of completely labeled subtriangles.

2.2 Proof of Brouwer’s Theorem for a Triangle

We may assume, without loss of generality (see the exercise below), that our triangle
Δ is the standard simplex Π3 of R3 (see Definition 1.7). Fix a continuous self-map f
of Δ; for each x ∈Δ write f (x) = ( f1(x), f2(x), f3(x)). Thus for each index j = 1,2,3
we have a continuous “coordinate function” f j : Δ → [0,1] with f1(x) + f2(x) +
f3(x) = 1 for each x ∈ Δ.
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A Sperner labeling induced by f . Consider a regular decomposition of Δ into sub-
triangles and suppose f fixes no subvertex (if f fixes a subvertex, we are done).
Then f determines a Sperner labeling of subvertices in the following manner. Fix a
subtriangle vertex p. Since f (p) �= p, and since both p and f (p) have non-negative
coordinates that sum to 1, at least one coordinate of f (p) is strictly less than the
corresponding coordinate of p. Choose such a coordinate and use its index to label
the subvertex p.

In this way the three original vertices e1 = (1,0,0), e2 = (0,1,0), and e3 =
(0,0,1), get the labels “1,” “2,” and “3,” respectively. For example, f (e1) �= e1, so
the first coordinate of f (e1) must be strictly less than 1, and similarly for the other
two vertices of Δ. Each vertex on the {1,2} edge of ∂Δ (the line segment joining
e1 to e2) has third coordinate zero, so this coordinate cannot strictly decrease when
that vertex is acted upon by f . Thus (since that vertex is not fixed by f ) at least one
of the other coordinates must strictly decrease, so each vertex on the {1,2}-edge
gets only the labels “1” or “2,” as required by Sperner labeling. Similarly for the
other edges of ∂Δ; the vertices on the (2,3)-edge get only labels “2” and “3,” and
the vertices on the (1,3)-edge get only labels “1” and “3.” No further checking is
required for the labels induced by f on the interior vertices; Sperner labeling places
no special restrictions here. In this way f determines, for each regular subdivision
of Δ, a Sperner labeling of the subvertices (note that the continuity assumed for f
has not yet been used).

Approximate fixed points for f . Let ε > 0 be given. We’re going to show that our
continuous self-map f of Δ has an ε-approximate fixed point, i.e., a point p ∈ Δ such
that ‖ f (p)− p‖1 ≤ ε . Here ‖x‖1 is the “one-norm” of x ∈R3, as defined by Eq. (1.5)
(page 11). Being continuous on the compact set Δ, the mapping f is uniformly con-
tinuous there, so there exists δ > 0 such that x,y ∈ Δ with ‖x− y‖1 < δ implies
‖ f (x)− f (y)‖1 < ε/8. Upon decreasing δ if necessary we may assume that δ < ε/8.
Now suppose Δ is regularly decomposed into subtriangles of ‖ ·‖1-diameter < δ . If
some subvertex of this decomposition is a fixed point of f , we’re done. Suppose oth-
erwise. Thus f creates a Sperner labeling of the subvertices of this decomposition.
Let Δε be a completely labeled subtriangle, as promised by Sperner’s Lemma.

Claim. Δε contains an ε-approximate fixed point.

Proof of Claim. Let p, q, and r be the vertices of Δε , carrying the labels “1,” “2,”
and “3,” respectively, so that f1(p)< p1, f2(q)< q2, and f3(r)< r3. Thus:

‖p− f (p)‖1 = p1 − f1(p)︸ ︷︷ ︸
>0

+|p2 − f2(p)|+ |p3− f3(p)|

= p1 − f1(p)+ |q2 − f2(q)+ p2 − q2 + f2(q)− f2(p)|

+ |r3 − f3(r)+ p3 − r3 + f3(r)− f3(p)|
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≤ p1 − f1(p)︸ ︷︷ ︸
>0

+q2 − f2(q2)︸ ︷︷ ︸
>0

+r3 − f3(r3)︸ ︷︷ ︸
>0

+ |p2 − q2|+ | f2(q)− f2(p)|

+ |p3 − r3|+ | f3(r)− f3(p)|,

so ‖p− f (p)‖ ≤ A+B, where

A = [p1 − f1(p)]+ [q2 − f (q2)]+ [r3 − f (r3)]

which is > 0 since this is true of each bracketed term, and

B = |p2 − q2|+ | f2(q)− f2(p)|+ |p3− r3|+ | f3(r)− f3(p)|. (2.1)

Now each summand on the right-hand side of (2.1) is < ε/8, hence B < ε/2. As for
A, the same “adding-zero trick” we used above yields

A = p1 + p2 + p3︸ ︷︷ ︸
=1

− f1(p)+ f2(p)+ f3(p)︸ ︷︷ ︸
=1

+[q2 − p2]+ [ f2(p)− f2(q)]

+ [r3 − p3]+ [ f3(p)− f3(r)].

On the right-hand side of this equation, the top line equals zero and each bracketed
term has absolute value < ε/8, so by the triangle inequality, A < ε/2. These esti-
mates on A and B yield ‖p− f (p)‖1 < ε , the vertex p of Δε is an ε-approximate
fixed point of f . 	


The same argument shows that the other two vertices of Δε are also ε-
approximate fixed points of f ; the triangle inequality shows that every point of
Δε is a 5

4ε-approximate fixed point.

A fixed point for f . So far we know that our self-map f of Δ has an ε-approximate
fixed point for every ε > 0. In particular, for each positive integer n there is a 1/n-
approximate fixed point xn. Since Δ is compact there is a subsequence (xnk) conver-
gent to some point x ∈ Δ. By the triangle inequality for the norm ‖ · ‖1:

‖x− f (x)‖1 ≤ ‖x− xnk‖1 + ‖xnk − f (xnk)‖1 + ‖ f (xnk)− f (x)‖1

On the right-hand side of this inequality, as k → ∞:

The first summand → 0 (since xnk → x).
Therefore the third summand → 0 by the continuity of f .
The second summand → 0 because it’s < 1/nk.

Conclusion: ‖x− f (x)‖1 = 0, hence f (x) = x, as desired. 	
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The argument above works much more generally to prove:

Lemma 2.2 (The Approximate-Fixed-Point Lemma). Suppose (X ,d) is a compact
metric space and f : X → X is a continuous map. Suppose that for every ε > 0 there
exists a point xε ∈ X with d( f (xε ),x) ≤ ε . Then f has a fixed point.

Proof. Exercise: generalize the proof given above for the metric induced by the
one-norm to arbitrary metrics. 	


Exercise 2.1. Here’s another way to produce fixed points from completely labeled subtri-
angles. Make a regular decomposition of Δ into subtriangles of diameter < 1/n. For this
decomposition of Δ , use f to Sperner-label the subvertices, and let Δn be a resulting com-
pletely labeled subtriangle. Denote the vertices of Δn by p(n), q(n), and r(n), using the pre-

vious numbering scheme so that f1(p(n)) ≤ p(n)1 , etc. Show that it’s possible to choose a
subsequence of integers nk ↗ ∞ such that the corresponding subsequences of p’s, q’s, and
r’s all converge. Show that these three subsequences all converge to the same point of Δ,
and that this point is a fixed point of f .

Exercise 2.2. Show that every triangle is homeomorphic to a closed disc.

Suggestion: First argue that without loss of generality we can suppose that our triangle
T lies in R

2, contains the origin in its interior, and is contained in the closed disc D of
radius 1 centered at the origin. Then each point z ∈ T\{0} is uniquely represented as z = rζ
for ζ ∈ ∂D and r > 0. Let w = ρζ be the point at which the line through the origin and
z intersects ∂T . Show that the map that fixes the origin and takes z �= 0 to (r/ρ)ζ is a
homeomorphism of T onto D.

2.3 Finding Fixed Points by “Walking Through Rooms”

Finding fixed points “computationally” amounts to finding an algorithm that pro-
duces sufficiently accurate approximate fixed points. Thanks to the work just done
in Sect. 2.2, an algorithm for finding a completely labeled subtriangles will do the
trick. Here’s an alternate proof of Sperner’s Lemma that speaks to this issue.

Imagine our triangle Δ to be a house, and that the subtriangles of a regular sub-
division are its rooms. Given a Sperner labeling of the subvertices that arise from
this decomposition, think of each {1,2}-labeled segment of a subtriangle boundary
as a door; these are the only doors. For example, a {1,2,2}-labeled subtriangle has
two doors, some rooms have no doors (e.g., those with no subvertex labeled “2”);
the completely labeled subtriangles are those rooms with exactly one door.

Now imagine that you are outside the house. There is a door to the inside; the
Sperner labeling of the subvertices induces on the original {1,2} edge a one di-
mensional Sperner labeling which, by the N = 1 case of Sperner’s Lemma, must
produce a {1,2}-labeled subinterval. Go through this door. Once inside either the
room you’re in has no further door, in which case you’re in a completely labeled
subtriangle, or there is another door to walk through. Keep walking, subject to the
rule that you can’t pass through a door more than once (i.e., the doors are “trap-
doors”). There are two possibilities. Either your walk terminates in a completely
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labeled room, in which case you’re done, or it doesn’t, in which case you find your-
self back outside the house. In that case, you’ve used up two doors on the {1,2} edge
of Δ: one to go into the house, and the other to come back out. But according to the
one dimensional Sperner Lemma, there are an odd number of such boundary doors,
so there’s one you haven’t used. Re-enter the house. Continue. In a finite number of
steps you must encounter a room with just one door: a completely labeled one. 	


Figure 2.3 below illustrates this process. Starting at point A one travels through
three rooms, arriving outside at point B. The process starts again at B, this time
terminating at C, inside a completely labeled subtriangle.

Fig. 2.3 Finding a completely labeled subtriangle by walking through rooms

Notes

Sperner’s Lemma, higher dimensions. This result for all finite dimensions appears
in Sperner’s 1928 doctoral dissertation [111]. In dimensions > 2 the analogue of a
triangle is an “N-simplex” in RN ; the convex hull of N +1 points of RN in “general
position,” i.e., no point belongs to the convex hull of the others. The analogue of
our regular decomposition of a triangle is a “triangulation” of an N-simplex into
“elementary sub-simplices,” each of which is itself an N-simplex.

Nice descriptions of this generalization occur in [40, Chap. 3, Sect. 4], and in E.F.
Su’s expository article [113], which also provides a proof of the general Brouwer
theorem based on “walking through rooms.” Su’s article also contains interesting
applications of Sperner’s Lemma to problems of “fair division.”
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Walking through rooms. In [113] Su attributes this argument to Kuhn [64] and Co-
hen [26]. According to Scarf [106], however, the argument has its origin in Lemke’s
1965 paper [68]. This technique has been greatly refined to produce useful al-
gorithms for finding approximate fixed points, especially by Scarf, whose survey
[106], in addition to providing a nice introduction to the legacy of Sperner and
Lemke in the algorithmic search for fixed points, also introduces the reader to the
way in which economists view Brouwer’s theorem.



Chapter 3
Contraction Mappings

BANACH’S CONTRACTION-MAPPING PRINCIPLE

Overview. In this chapter we’ll study the best-known of all fixed-point theorems:
the Banach Contraction-Mapping Principle, which we’ll apply to Newton’s Method,
initial-value problems, and stochastic matrices.

Prerequisites. Undergraduate-level real analysis and linear algebra. The basics of
metric spaces: continuity and completeness.

3.1 Contraction Mappings

The theorem we’re going to apply to Newton’s Method, Initial-Value Problems,
and the Internet was proved by the Polish mathematician Stefan Banach as part of
his 1922 doctoral dissertation. Although the setting of Banach’s theorem is far more
general than that of Brouwer’s, the restricted nature of the mappings involved makes
its proof a lot simpler.

Banach’s theorem is set in a metric space: a pair (S,d) where S is a set and d is a
“metric” on S, i.e., a function d : S× S → R+ such that for all x,y,z ∈ S

(m1) d(x,y) = 0 iff x = y,
(m2) d(x,y) = d(y,x), and
(m3) d(x,z)≤ d(x,y)+ d(y,z).

The last property is called, for obvious reasons, “the triangle inequality.”

Example. Let S be RN , or a subset thereof, and take d(x,y) to be the Euclidean
distance between x and y: d(x,y) = ‖x− y‖. Alternatively d could be the distance
on R

N induced in the same way by the one-norm introduced in the proof of Theo-
rem 1.6. As we pointed out there, the two metrics are equivalent in that they have
the same convergent sequences.

© Springer International Publishing Switzerland 2016
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The mappings addressed by Banach’s Principle are called strict contractions.1

To say F : S → S is one of these means that there is a positive “contraction constant”
c < 1 for which

d(F(x),F(y))≤ cd(x,y) ∀ x,y ∈ S. (3.1)

Clearly every strict contraction is continuous on S.

Definition 3.1. A Cauchy sequence in a space with metric d is a sequence (xn) such
that: For each ε > 0 there is a positive integer N = N(ε) such that d(xn,xm) < ε
whenever the indices m and n are larger than N. A complete metric space is one in
which every Cauchy sequence converges.

Theorem 3.2 (The Banach Contraction-Mapping Principle). Suppose (S,d) is a
complete metric space and F : S → S is a strict contraction. Then F has a unique
fixed point, and every iterate sequence converges to this point.

We’ll prove this shortly; first, a few comments.

Iterate sequence. Recall that, for a mapping F taking a set S into itself, the iterate
sequence starting at x0 ∈ S is (xn) where xn+1 = F(xn) for n = 0,1,2, . . . .

Uniqueness. If (S,d) is a metric space on which F is a strict contraction and p ∈ S
is a fixed point of F , then there can be no other fixed point.

Proof. If q ∈ S is also a fixed point of f then

d(p,q) = d(F(p),F(q))≤ cd(p,q).

Since 0 < c < 1 we must have d(p,q) = 0, whereupon condition (m1) in the defini-
tion of “metric” guarantees that p = q. 	

“Non-strict” contractions. If in Theorem (3.1) we merely assume that the contrac-
tion constant c is 1, then:

– Existence can fail. Example: F(x) = x+ 1 defined on the real line.
– Uniqueness can also fail. Example: the identity map on a metric space with

more than one point.

Exercise 3.1 (Necessity of completeness). Give an example of an incomplete metric space
on which there is a strict contraction with no fixed point.

Fixed points and iterate sequences. We contended in Sect. 1.2 (page 4) that if the
iteration of Newton’s method for an appropriate function f were to converge, then
that limit had to be a root of f (i.e., a fixed point of the Newton function of f ). The
next result justifies this contention in a far more general setting.

Proposition 3.3. If (S,d) is a metric space, F : S → S is continuous, and x0 is a
point of S for which the iterate sequence {x0,F(x0),F(F(x0), . . .} converges, then
the limit of that sequence has to be a fixed point of F.

1 These are often just called “contractions”; the terminology here is more in keeping with conven-
tions used in (linear) operator theory.
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Proof. Suppose the iterate sequence (xn) of x0 converges to p∈ S, i.e., limn d(xn, p)=
0. Then the continuity of F insures that xn+1 =F(xn)→F(p). Also limn d(xn+1, p)=
0, i.e., xn+1 → p, so (because limits in metric spaces are unique) p = F(p). 	


If we assume further that F is a strict contraction, then there results a very strong
converse.

Proposition 3.4. Suppose F is a strict contraction on a metric space. If p is a fixed
point of F then every iterate sequence converges to p.

Proof. Let c denote the contraction constant of the mapping F , so 0 < c < 1 and
F satisfies (3.1) above. Fix x0 ∈ S and define the iterate sequence (xn) in the usual
way: x1 = F(x0), . . . ,xn = F(xn−1), . . . . Then

d(xn, p) = d(F(xn−1),F(p))≤ cd(xn−1, p)≤ . . . ≤ cnd(x0, p),

so d(xn, p)→ 0 as n → ∞, i.e., (xn) converges to p. 	

Exercise 3.2 (Lessons from a simple initial-value problem). For the initial-value problem
(IVP) y′ = y, y(0) = 1, write down the integral operator T on C(R) defined on page 4 by
Eq. (IE), and compute explicitly the iterate sequence that has y0 ≡ 1 as its initial function.
On which intervals [−a,a] does this iterate sequence converge uniformly to a solution of the
IVP? For which of these intervals does the Contraction-Mapping Principle guarantee such
convergence?

Proof of the Contraction-Mapping Principle. In view of Proposition 3.4 only one
strategy will work: fix a point x0 ∈ S and prove that its iterate sequence (xn) con-
verges. By Proposition 3.3 this limit must be a fixed point.

Since our metric space is complete it’s enough to show that (xn) is a Cauchy
sequence. To this end, consider a pair of indices m< n and use the triangle inequality
to observe that

d(xn,xm)≤
n−1

∑
j=m

d(x j+1,x j).

From the strict contractiveness of F:

d(x j+1,x j) = d(F(x j),F(x j−1)≤ cd(x j,x j−1)≤ . . . ≤ c jd(x1,x0),

whereupon (since c < 1)

d(xm,xn)≤
n−1

∑
j=m

c jd(x1,x0) = d(x1,x0)
∞

∑
j=m

c j =
d(x1,x0)

1− c
cm .

Now given ε > 0, we may choose N so that d(x1,x0)
1−c cN < ε , which insures, by the

above chain of inequalities, that N ≤ m < n ⇒ d(xm,xn) < ε , hence our iterate se-
quence (xn) is indeed Cauchy. 	


The Contraction-Mapping Principle seems to be a perfect theorem: easy to prove
and widely applicable. However there is a catch: proving a given mapping to be a
strict contraction usually requires some work—as you’ll see in the next few sections.
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3.2 Application: Stochastic Matrices/Google

In Sect. 1.9 we introduced the “Google matrix” G, a stochastic matrix with entries
all positive, and observed with the help of the Brouwer Fixed-Point Theorem (a key
step in our proof of Perron’s Theorem) that G has an essentially unique positive
fixed point whose coordinates rank internet web pages.

There remains, however, the problem of proposing an algorithm for actually find-
ing this fixed point. Recall that the application of Brouwer/Perron to the Google
matrix ultimately rested on the stochasticity of that matrix, which implied that G
(indeed each N ×N stochastic matrix) maps the standard N-simplex ΠN continu-
ously into itself. The positivity of G then guaranteed the uniqueness of its fixed
point.

The generalization to R
N of the “walking-through-rooms” proof of Brouwer’s

theorem set out for N = 2 in Sect. 2.3 could provide the basis for an algorithm
that approximates the desired fixed point. On the other hand, Banach’s theorem has
built into it a scheme that—at least in theory—is easily implemented: Use iterate
sequences to approximate fixed points. However to be certain that this will work we
need each positive stochastic matrix to induce a strict contraction on its standard
simplex (so far we’ve established only “non-strict” contractivity: Exercise 1.5).

Does stochasticity imply strict contractivity? Is this too much to ask? Read on!

Theorem 3.5. Every N ×N, positive, stochastic matrix induces a strict contraction
on the standard simplex ΠN, taken in the metric induced by the one-norm.

Proof. Suppose A is a positive, stochastic, N×N matrix. We already know (proof of
Theorem 1.6) that A takes ΠN into itself. We’re claiming that there exists a positive
number c strictly less than 1 such that

‖Ax−Ay‖1 ≤ c‖x− y‖1 (x,y ∈ΠN) . (3.2)

Let ai, j denote the matrix A’s entry in the i-th row and j-th column. Since each of
these numbers is positive we may choose a positive number ε that is strictly less
than all of them. Since each column of A sums to 1 we know that Nε < 1 (Proof: for
j an index, 1 = ∑i ai, j > Nε). Thus we may form the new N ×N matrix B, whose
(i, j)-entry is

bi, j =
ai, j − ε
1−Nε

.

Clearly B is a positive matrix, and it’s easy to check that B is stochastic. Now

A = (1−Nε)B+ εE

where E is the N ×N matrix, all of whose entries are 1.

Claim. A satisfies (3.2) with c = (1−Nε).

Proof of Claim. Since Nε lies strictly between 0 and 1, so does c. What makes this
argument work is the fact that if x ∈ΠN then Ex is the vector in RN , each of whose
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coordinates is the sum of the coordinates of x, namely 1. In particular if x and y
belong to ΠN then Ex = Ey, whereupon

Ax−Ay = c(Bx−By)+ ε(Ex−Ey)= c(Bx−By).

By Exercise 1.5, every N ×N stochastic matrix induces, in the 1-norm, a (possibly
non-strict) contraction on RN , so from the last equation and the linearity of B:

‖Ax−Ay‖1 = ‖c(Bx−By)‖1 = c‖B(x− y)‖1 ≤ c‖x− y‖1 (x,y ∈ΠN),

which proves the Claim, and with it the theorem. 	

Corollary 3.6. If A is an N ×N positive stochastic matrix, then its (unique) Perron
eigenvector is the limit of the iterate sequence of each initial point x0 ∈ΠN.

In particular, the unique ranking of web pages produced by the Google matrix
can be computed by iteration. For x0 ∈ ΠN the iterate sequence of Corollary 3.6 is
(xn), where

xn = Axn−1 = A2xn−2 = . . .= Anx0 (n = 1,2, . . .).

For this reason the approximation scheme of the Corollary is called power iteration;
it is used widely in numerical linear algebra for eigen-value/vector approximation.

3.3 Application: Newton’s Method

Suppose f is a real-valued function defined on a finite, closed interval [a,b] of the
real line, and that we know f has a root somewhere in the open interval (a,b).
We’re going to use the Contraction-Mapping Principle to show that, under suitable
hypotheses on f , Newton’s method for each appropriate starting point converges to
this root.

More precisely, suppose f ∈ C2(I) with f ′ never zero on I, and suppose f has
different signs at the endpoints of I; say (without loss of generality) f (a) < 0 and
f (b) > 0. Then f has a unique root x∗ in the interior (a,b) of I. Under these hy-
potheses we have

Theorem 3.7. There exists δ > 0 such that for every x0 in [x∗−δ ,x∗+δ ], Newton’s
method with starting point x0 converges to x∗.

In other words, under reasonable hypotheses on f : for starting points close
enough to a root of f the iterate sequence for the Newton function

F(x) = x− f (x)
f ′(x)

(x ∈ I)

will converge to that root.
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Proof. Let M denote the maximum of | f ′′(x)| as x ranges through I, and let m denote
the corresponding minimum of | f ′(x)|. By the continuity of f ′′, and the hypothesis
that f ′ never vanishes on I, we know that M is finite and m > 0.

Differentiation of F via the quotient rule yields

F ′(x) =
f (x) f ′′(x)

f ′(x)2 (x ∈ I)

which, along with our bounds on f ′ and f ′′, provides the estimate

|F ′(x)| ≤ M
m2 | f (x)| (x ∈ Iδ ).

Thus, upon shrinking δ enough to insure that

| f (x)| ≤ m2

2M
for |x− x∗|< δ

(possible because f is continuous at x∗ and takes the value zero there) we see that
|F ′(x)| ≤ 1/2 for each x ∈ Iδ = [x∗ − δ ,x∗+ δ ]. This estimate on F ′ does the trick!
For starters, if x,y ∈ Iδ then, along with the Mean-Value Theorem of differential
calculus, it shows that

|F(x)−F(y)|= |F ′(x)(x− y)| ≤ 1
2
|x− y| ∀x,y ∈ Iδ

where on the right-hand side of the equality, x lies between x and y. Thus F is a
strict contraction on Iδ—once we know F maps that interval into itself. But it does,
since the same inequality shows that for each x ∈ Iδ (upon recalling that the root x∗
of f is a fixed point of F):

|F(x)− x∗|= |F(x)−F(x∗)| ≤ 1
2
|x− x∗| ≤ 1

2
δ < δ

so F(x) ∈ Iδ , as desired.
Thus Banach’s Contraction-Mapping Principle applies to the strict contraction F

acting on the complete metric space Iδ = [x∗ − δ ,x∗ + δ ], and guarantees that for
every starting point in Iδ the corresponding F-iteration sequence converges to the
fixed point of F , which must necessarily be the unique root of f in Iδ . 	


In the course of this proof we had to overcome a problem that occurs frequently
when one seeks to apply Banach’s Principle:

The metric space for which the problem is originally defined is often not the
one to which you apply Banach’s Principle!

For example, the hypotheses of Theorem 3.7 refer to the Newton function F defined
on the compact interval (i.e., the complete metric space) I, but the theorem’s proof
depended on cutting this space down to the smaller one Iδ on which F acted as a
strict contraction.
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We’ll see this scenario play out again in the next section, where we’ll have to
shrink an entire metric space of continuous functions!

3.4 Application: Initial-Value Problems

It’s time for a careful treatment of the initial-value problem (IVP) of Sect. 1.3. Recall
its form: There is a differential equation plus initial condition

y′ = f (x,y), y(x0) = y0 (IVP)

with (x0,y0) ∈ R2 and f assumed initially to be continuous on all of R2. Here we’ll
just assume that f is continuous on a closed rectangle R = I ×H, where I and H
are compact intervals of the real line, I having radius r and center x0 and H having
radius h and center y0. Thus R is a compact “r by h” rectangle in the plane, centered
at the point (x0,y0).

We’ll operate in the metric space C(I) consisting of real-valued functions that
are continuous on I. In the course of our work we’ll need to shrink the radius r of
I. To keep the notation simple we’ll re-assign the original symbols I, r, and R to the
newly shrunken objects, taking care to be sure that what we’ve accomplished in one
setting transfers intact to the new one.

Since continuous functions are bounded on compact sets and attain their maxima
thereon, we can define on C(I) the “max-norm”

‖u‖= max
x∈I

|u(x)| ( f ∈C(I))

and use this to define a metric d by:

d(u,v) = ‖u− v‖ (u,v ∈C(I)).

In this metric a sequence converges (resp. is Cauchy) if and only if it converges
(resp. is Cauchy) uniformly on I. A fundamental property of uniform convergence
is that every sequence of functions in C(I) that is uniformly Cauchy on I converges
uniformly on I to a function in C(I).2 Thus the metric space (C(I),d) is complete.
As in our treatment of Newton’s Method, we’ll have to find an appropriate subset of
C(I) in which to apply Banach’s Theorem. We’ll break this quest into several steps.

STEP I. C(I) is too large. For (IVP) to make sense for a prospective solution y =
u(x) we have to make sure that for every x∈ I the point (x,u(x)) lies in the domain of
the function f on the right-hand side of the differential equation in (IVP). We must
therefore restrict attention to functions u ∈C(I) having graph y = u(x) contained in
R, i.e., for which |u(x)−y0| ≤ h for every x ∈ I. In metric-space language this means
that in order for (IVP) to make sense, our prospective solutions must lie in

2 See [101, Theorems 7.14 and 7.15, pp. 150–151], for example.
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B = B(y0,h) = {u ∈C(I) : ‖u− y0‖ ≤ h},

the closed ball in C(I) of radius h, centered at the constant function y0.

STEP II. The integral equation. As we observed in Sect. 1.3, a real-valued function
y defined on the interval I satisfies IVP if and only if it satisfies the integral equation

y(x) = y0 +

∫ x

t=x0

f (t,y(t))dt (x ∈ I). (IE)

The right-hand side of this equation makes sense for every u ∈ B, and defines an
integral transformation T on C(I) by

(Tu)(x) = y0 +

∫ x

t=x0

f (t,u(t))dt (u ∈ B,x ∈R). (IT)

By an argument entirely similar to the one used in Sect. 1.3 (pages 4 and 5) to prove
that (IVP) is equivalent to the problem of finding a fixed point for (IT), we have

Lemma 3.8. If u ∈ B then Tu is differentiable on I and (Tu)′(x) = f (x,u(x)) for
every x ∈ I.

In particular, T maps B into C(I).

STEP III. Insuring that T (B)⊂ B. To use the Banach Contraction-Mapping Princi-
ple we must at the very least insure that T maps B into itself. For the moment, let’s
continue to assume only that f is continuous on the rectangle R, and set

M = max{| f (x,y)| : (x,y) ∈ R}.

Fix this value of M for the rest of the proof. Although we’ll allow ourselves to shrink
the horizontal dimension of the rectangle R, we won’t be changing the value of M.

Lemma 3.9. For M as above: if we redefine the interval I to have radius r ≤ h/M
then T (B)⊂ B.

Proof. For |x− x0| ≤ h/M we have for each u ∈ B:

|Tu(x)− y0|=
∣∣∣∣
∫ x

t=x0

f (t,u(t))dt

∣∣∣∣≤ M|x− x0| ≤ Mh/M = h.

Thus redefining I to have radius ≤ h/M insures that ‖Tu− y0‖ ≤ h for each u ∈ B,
i.e., that T maps B into itself. 	

STEP IV. Strict contractivity. So far we’ve found how to shrink the original interval
I so that the closed ball B of radius h in C(I) is mapped into itself by the integral op-
erator T . This ball, being a closed subset of the complete metric space C(I), is itself
complete in the metric inherited from C(I). However to apply Banach’s Principle
we need to know that T is a strict contraction on B. For this we’ll assume that the
function f , in addition to being continuous on the rectangle R, is also differentiable
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there with respect to its second variable, and that this partial derivative (call if f2) is
continuous on R.

Our goal now is to show that T is a strict contraction mapping on B for some
positive r ≤ h/M. Then Banach’s Contraction-Mapping Principle will guarantee a
fixed point for T in B, hence a unique solution therein to the integral equation (IE),
and therefore to the initial-value problem (IVP) on the interval I = [x0 − r,x0 + r].
Once done we’ll have proved

Theorem 3.10 (The Picard–Lindelöf Theorem). Suppose (x0,y0) ∈ R2, U is an
open subset of R2 that contains (x0,y0), and f is a real-valued function that is
continuous on U and has thereon a continuous partial derivative with respect to
the second variable. Then the initial-value problem (IVP) has a unique solution on
some nontrivial interval centered at x0.

Proof. By the work above we may choose a compact rectangle R = I ×H in U ,
centered at (x0,y0), such that T (B) ⊂ B whenever the length of I is sufficiently
small. It remains to see how much further we must shrink I in order to achieve strict
contractivity for T on B. To this end let M′ := max{| f2(x,y)| : (x,y) ∈ R}, where the
compactness of R and the continuity of f2 on R guarantee that the maximum exists.
Note first that if y1 and y2 belong to the interval H with y1 ≤ y2 then the Mean-Value
Theorem of differential calculus guarantees for each x ∈ I that

| f (x,y2)− f (x,y1)|= | f2(x,η)(y2 − y1)| ≤ M′|y2 − y1| (3.3)

where on the right-hand side of the equality, η lies between y1 and y2. Thus if u and
v are functions in B and x ∈ I, we have upon letting J(x) denote the closed interval
between x and x0:

|Tu(x)−Tv(x)|=
∣∣∣∣
∫

J(x)
[ f (t,u(t))− f (t,v(t))]dt

∣∣∣∣≤
∫

J(x)
| f (t,u(t))− f (t,v(t))|dt

≤ M′
∫

J(x)
|u(t)− v(t)|dt ≤ M′‖u− v‖ · length of J(x)

= M′‖u− v‖ · |x− x0| ≤ M′r‖u− v‖

where the second inequality follows from estimate (3.3). Thus

‖Tu−Tv‖ ≤ M′r‖u− v‖ (u,v ∈ B),

so we can insure that T is a strictly contractive self-map of B simply by demanding
that, in addition to the restriction r ≤ h/M already placed on the radius of I, we
insure that r be < 1/M′. 	


Note that the proof given above will still work if the differentiability of f in the
second variable is replaced by a “Lipschitz condition”

| f (x,y1)− f (x,y2)| ≤ M′|y2 − y1| ((x,y1),(x,y2) ∈ R).
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For initial-value problems, the interval of existence/uniqueness promised us by
Banach’s Principle could be very small (see Exercise 3.2 for an example of this).
There is, however, always a maximal such interval, and this interval has the prop-
erty that the solution’s graph over this interval continues out to the boundary of the
region on which the function f is defined and satisfies the Picard–Lindelöf hypothe-
ses. For details see, e.g., [93, Sect. 2.4].

As an illustration of this phenomenon, consider the simple initial-value prob-
lem y′ = a(1+ y2),y(0) = 0, where a > 0. One checks easily that y = tan(ax) is a
solution for which the maximal interval of existence is (− π

2a ,
π
2a), and a separation-

of-variables argument shows that this is the only solution. Thus, even though the
right-hand side f (x,y) = a(1+ y2) of this IVP’s differential equation is infinitely
differentiable (even real-analytic) on the entire plane, the solution exists only on a
finite interval, which for large a is very small.

Conclusion: In nonlinear situations, singularities can arise “unexpectedly.”

Notes

Banach’s doctoral dissertation. This is [5]; the Contraction-Mapping Principle is
Theorem 6 on page 160 of that paper.

Stochastic matrices. The proof that every positive stochastic matrix induces a strict
contraction on its standard simplex (Theorem 3.5) is from [66], where the result is
attributed to Krylov and Bogoliubov. The same proof is in [20, Sect. 4, pp. 578–9].

We mentioned that the “power iteration” method of Corollary 3.6 works in more
generality. For more on this, see, e.g., [117, Lecture 27].

For the Google matrix G, revisited in Sect. 3.2, there is still the issue of its enor-
mous size. A preliminary discussion of how to handle this can be found in [17].

Initial-value problems. The Picard–Lindelöf Theorem originates in Lindelöf’s
1894 paper [70], in which he generalizes earlier work of Picard. In our special case
the iteration associated with Banach’s Principle is often called “Picard Iteration.”

Higher orders, higher dimensions. The restriction of our discussion of initial-value
problems to first order differential equations is not as severe as it seems. Consider,
for example, the second order problem for an open interval I containing the point
x0:

y′′ = f (x,y,y′), y(x0) = y0, y′(x0) = y1 (x ∈ I).

This problem can be rewritten as: Y ′ = F(x,Y ), Y (x0) = Y0 for x ∈ I, where Y =
(y,y′) is a function taking I into R2, Y0 = (y0,y1) is a vector in R2 (now thought of
as a space of row vectors), and F(x,Y ) = (y′, f (x,y,y′)) maps the original domain
of f (a subset of R3) into R2.
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It’s not difficult to check that the proof given above for our original “scalar-
valued” IVP works almost verbatim in the new setting, with the absolute-value norm
on the real line replaced in the higher dimensions by the Euclidean one, thus pro-
ducing a unique solution for the second order IVP. Of course the idea generalizes
readily to initial-value problems of order larger than 2.

Newton’s Method again. In a similar vein, our analysis of Newton’s Method can be
generalized to higher dimensions. Suppose the function f maps some open subset
G of RN into itself, and that f (p) = 0 for some point p ∈ G. If we assume that all
first and second order partial derivatives of the components of f are continuous, and
that the derivative f ′, which is now a linear transformation on RN , is nonsingular at
every point of G, then, just as in the single-variable case, we can form the “Newton
function” F(x) = x− f ′(x)−1 f (x), where on the right-hand side we see the inverse
of the linear transformation f ′(x) acting on the vector f (x). A bit more work than
before shows that, when restricted to a suitable closed rectangle centered at p, the
function F is a strict contraction, so for every point in that rectangle the Newton
iteration converges to p.



Part II
From Brouwer to Nash



The next three chapters focus on the Brouwer Fixed-Point Theorem, begin-
ning with an analysis-based argument that proves the theorem in all finite dimen-
sions. Then we’ll use Brouwer’s theorem to prove John Nash’s Nobel Prize win-
ning result on the existence of “Nash Equilibrium” in game theory. Finally we’ll
prove Kakutani’s set-valued extension of Brouwer’s theorem, which will lead us
to Nash’s celebrated “one-page proof” of his theorem. Throughout, the setting will
be finite dimensional, the only background needed being a reasonable exposure to
undergraduate-level analysis. Ideas from game theory will be carefully motivated.



Chapter 4
Brouwer in Higher Dimensions

THE BROUWER FIXED-POINT THEOREM IN ALL FINITE DIMENSIONS

Overview. Having discussed the Brouwer Fixed-Point Theorem (Chap. 1) and
proved it for triangles (Chap. 2), we’re ready to prove it in every dimension for
closed balls and even for compact, convex sets. Our proof will be quite different
from that of Chap. 2, with the combinatorics of Sperner’s Lemma replaced by meth-
ods of analysis.

Prerequisites. Undergraduate-level real analysis, especially calculus of functions
of several variables. Some metric-space theory may be helpful, but is not required;
all the action takes place in RN .

4.1 Fixed Points and Retractions

To say that a metric space (S,d) has the “fixed-point property” means that every
continuous mapping of the space into itself has a fixed point. Thus the Brouwer
Fixed-Point Theorem can be restated:

Theorem 4.1. For every positive integer N, the closed unit ball of RN has the fixed-
point property.

Our proof of Brouwer’s theorem will involve reduction to an equivalent result
about an important class of mappings called retractions. Suppose S is a metric space
and A is a subset of S. To say that a continuous mapping P : S → A is a retraction of
S onto A means that P(S) = A and the restriction of P to A is the identity map on A.
When this happens we’ll call A a “retract” of S.

Exercise 4.1. A continuous mapping P is a retraction onto its image if and only if P◦P = P.

Perhaps the most familiar example of a retraction is a linear projection taking
RN onto a subspace. Here are two such examples, where S =R2, A is the horizontal
axis, and x = (ξ1,ξ2) is a typical vector in R2.
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(a) Let P(x) = (ξ1,0). Here P is the orthogonal projection of R2 onto the hori-
zontal axis.

(b) Let P(x) = (ξ1 + ξ2,0). Now P is a 45◦ projection onto the horizontal axis.

Here’s an example more relevant to our immediate purposes. Consider a closed
annulus in R2 centered at the origin, having outer radius 1 and some positive inner
radius. For x in this annulus let P(x) = x/|x|, where | · | denotes the Euclidean norm
on R2. Then P is a continuous map taking the annulus onto its outer boundary, the
unit circle, upon which its restriction is the identity map. Thus the unit circle is a
retract of the annulus. This example is of interest to us because no such mapping
exists for the unit disc:

The unit circle not a retract of the closed unit disc.

This follows immediately from the N = 2 version of the Brouwer Fixed-Point The-
orem (Chap. 2). Indeed, if there were a retraction P taking the closed unit disc onto
the unit circle, then Q = −P would be a continuous mapping of the disc into itself
(more precisely: onto the unit circle), that has no fixed point.

This argument for the disc works just as well for the closed unit ball of RN so:
The Brouwer Fixed-Point Theorem for dimension N will show that no closed ball
in RN can be retracted onto its boundary. It is the converse of this result that will
concern us for the rest of this chapter. Our strategy will be to prove, independent of
Brouwer’s Theorem:

Theorem 4.2 (The No-Retraction Theorem). For each positive integer N: There is
no retraction taking the closed unit ball of RN onto its boundary.

We’ll show in the next section that the No-Retraction Theorem implies the
Brouwer Fixed-Point Theorem, after which we’ll give our “Brouwer-independent”
proof of the No-Retraction Theorem.

4.2 “No-Retraction” ⇒ “Brouwer”

We’ve already noted (Chap. 1, Sect. 1.6) that for N = 1 Brouwer’s Theorem follows
from the Intermediate Value Theorem of elementary calculus, so now we’ll work in
RN with N > 1, employing the notation | · | for the Euclidean norm in that space.

Suppose the closed unit ball B of RN does not have the fixed-point property, i.e.,
that there is a continuous map f : B → B that has no fixed point. We’ll show that f
can be used to construct a retraction of B onto its boundary, thus establishing (the
contrapositive equivalent of) the result we want to prove.

To visualize this retraction, note that since we’re assuming f fixes no point of
B we can draw, for each x in B, the directed half-line that starts at f (x) and passes
through x. Let P(x) be the point at which this line intersects ∂B, noting that P(x) = x
if x ∈ ∂B. Thus P will be the retraction we seek—once we prove its continuity.
It seems intuitively clear from Fig. 4.1 that P should be continuous. To prove this
without recourse to pictures we need to represent P analytically:
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Fig. 4.1 The retraction P : B → ∂B

P(x) = x+λ (x)u(x) (x ∈ B) (4.1)

where u(x) is the unit vector in the direction from f (x) to x:

u(x) =
x− f (x)
|x− f (x)| (x ∈ B) (4.2)

and λ (x) is the scalar ≥ 0 chosen to make |P(x)|= 1 (so λ (x) = 0 if x ∈ ∂B).
Since x− f (x) is continuous on B and never zero there, u inherits the continuity

of f . As for λ = λ (x), it is the non-negative solution to the equation

0 = |P(x)|2 − 1 = |x+λu(x)|2 − 1 = λ 2 + 2bλ − c (4.3)

where c = 1−|x|2 and b = 〈x,u(x)〉, the dot product of the vectors x and u(x). The
quadratic equation (4.3) yields solutions −b±√

b2 + c; since c ≥ 0 we know that
these solutions are real. Since

√
b2 + c ≥

√
b2 = |b| we know that the non-negative

solution is the one with the plus sign. Thus

λ (x) =−〈x,u(x)〉+
√
〈x,u(x)〉2 +(1−|x|2) (x ∈ B), (4.4)

which establishes the desired continuity of λ , and therefore of P. 	


Exercise 4.2 (More on the “fictitious” unit vector1u(x)). In the argument above we defined
λ (x) to take the value zero for x ∈ ∂B, a fact reflected in Eq. (4.3). Note that, thanks to
Eq. (4.4) this implies 〈x,u(x)〉 ≥ 0 whenever |x|= 1. Prove that for all x ∈ ∂B and y ∈ B we
must have 〈x,x− y〉 ≥ 0, with equality if and only if y = x. Conclude that in the argument
above, 〈x,u(x)〉 > 0 whenever x ∈ ∂B, hence the quantity under the radical sign on the
right-hand side of (4.4) is > 0 for every point of B.

1 . . . “fictitious” because its existence stems from our assumption that there exists a retraction of
B onto its boundary, which we’re in the process of proving cannot exist. Fictitious or not, we will
need the result of this exercise in the next section!
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4.3 Proof of the Brouwer Fixed-Point Theorem

We know now that the Brouwer Fixed-Point Theorem (henceforth “BFPT”) is equiv-
alent to the No-Retraction Theorem (henceforth “NRT”) in the sense that each im-
plies the other. In this section we’ll show that the BFPT follows from a “C1 version”
of NRT, which we’ll then proceed to establish. Here is an outline of the argument.
First we’ll show that:

C1-NRT =⇒ C1-BFPT =⇒ BFPT (*)

where, the prefix “C1-” means that the result is being claimed only for maps whose
(real-valued) coordinate functions have continuous first order partial derivatives on
some open set that contains B. Then we’ll get down to business and prove C1-NRT.

(a) C1-BFPT =⇒ BFPT. The key is the following approximation theorem:

Given f : B →RN continuous and ε > 0 there exists a C1 map g : B → RN

with | f (x)− g(x)| ≤ ε for every x ∈ B.

See Appendix A.2 for a proof.2 Now suppose f : B → B is a continuous map.
To show that f has a fixed point, let ε > 0 be given and choose—by the above-
mentioned approximation result—a C1 map fε : B → R

N with

| fε (x)− (1− ε) f (x)| ≤ ε (x ∈ B). (4.5)

By the “reverse triangle inequality” we have | fε (x)| − (1− ε)| f (x)| ≤ ε for every
x ∈ B, i.e.,

| fε (x)| ≤ ε+(1− ε)| f (x)| ≤ ε+(1− ε) = 1.

Thus fε maps B into itself, so by our assumption that the C1-BFPT holds, fε has a
fixed point pε ∈ B. By the (ordinary) triangle inequality, for every x ∈ B:

| fε (x)− f (x)| = | fε (x)− (1− ε) f (x)− ε f (x)|

≤ | fε (x)− (1− ε) f (x)|+ ε| f (x)|

≤ ε+ ε = 2ε

so in particular

| f (pε )− pε |= | f (pε )− fε(pε)| ≤ 2ε (k ∈ N), (4.6)

i.e., pε is a “2ε-approximate fixed point” for f . Since ε is an arbitrary positive
number, the Approximate-Fixed-Point Lemma (Lemma 2.2, page 24) guarantees
that f has a fixed point. 	


2 More is true: the Stone–Weierstrass Theorem (see, e.g., [101, Theorem 7.6, page 159]) guarantees
that the coordinate functions of g can even be chosen to be polynomials (in n variables).
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(b) C1-NRT =⇒ C1-BFPT. Suppose C1-BFPT fails, so there exists a C1 map
f : B → B with no fixed point. We’ll show that in this case the retraction P given by
Eqs. (4.1)–(4.4) on page 43 is C1 on B. In the defining Eq. (4.2) for the unit vector
u, the function x− f (x) is C1 and never zero, hence the denominator |x− f (x)| is C1

and (thanks to the compactness of B) bounded away from zero on B. Thus u is C1 on
B. The only issue left is the C1 nature of the parameter λ (x) on the right-hand side of
Eq. (4.1), but this follows immediately from Eq. (4.4) and the fact that, on the right-
hand side of that equation, the quantity under the radical sign is C1 and—thanks to
Exercise 4.2—strictly positive for each x ∈ B. 	

(c) Proof of C1-NRT. This is the heart of our proof of the BFPT. Suppose C1-NRT
is false, i.e., suppose there exists a C1 retraction P taking B onto its boundary. We
will show that this leads to a contradiction. The argument takes place in several
steps.

STEP I: A bridge from the identity map to P.
For 0 ≤ t ≤ 1 define the map Pt : B → RN by

Pt(x) = (1− t)x+ tP(x) (x ∈ B). (4.7)

Directly from this definition it follows that:

(a) P0 is the identity map on B, while P1 = P.
(b) Each Pt is a C1 map that—since each of its values is a convex combination of

two elements of B—takes B into itself.
(c) Each map Pt fixes every point of ∂B.

For the next step let B◦ denote the interior of B, i.e., the open unit ball of RN .

STEP II: There exists t0 ∈ (0,1] such that for all t ∈ [0, t0],

(a) detP′
t (x)> 0 for all x ∈ B.

(b) Pt is a homeomorphism of B◦ onto itself.

Here P′
t (x) is the derivative of Pt evaluated at x ∈ B◦ (see Appendix A.1); we view

P′
t (x) as an N ×N matrix whose entries are continuous, real-valued functions on

some open set that contains B. We’re claiming that for t sufficiently close to zero,
Pt inherits the salient properties of the identity map P0. Let’s defer the proof of this
statement until we’ve seen how it leads to the desired contradiction.

STEP III: Deriving the contradiction. Define h : [0,1]→R by the multiple Riemann
integral:

h(t) =
∫

B◦
detPt

′(x)dx (0 ≤ t ≤ 1).

By STEP II and the Change-of-Variable Theorem (Theorem A.4):

h(t) =
∫

Pt (B◦)
dx = Volume of B◦ (0 ≤ t ≤ t0). (4.8)



46 4 Brouwer in Higher Dimensions

Now detPt
′ is a polynomial in t with continuous real-valued coefficients, so by (4.8)

h(t) is a polynomial in t that, on the interval [0, t0], takes the constant value “volume
of B◦,” and so has that constant value for all t ∈ [0,1]. In particular, h(1) > 0. But
we’re assuming that P1 = P maps B◦ into the unit sphere ∂B, a subset of RN that
has no interior, so by the Inverse-Function Theorem (Appendix A, Theorem A.3) its
derivative matrix P′(x) is singular for every x ∈ B◦. Thus for t = 1 the integrand on
the right-hand side of (4.8) is identically zero, i.e., h(1) = 0. Contradiction!

PROOF OF STEP II. This takes place in several stages, each of which expresses the
fact that as we restrict t to increasingly smaller values, Pt inherits successively more
properties of the identity map P0.

STEP IIA: For all t sufficiently small, Pt is a homeomorphism of B onto Pt(B).

Because P is a C1 map on the compact set B, the Mean-Value Inequality (Ap-
pendix A, Theorem A.2, page 184) provides a positive constant L such for each
pair x,y of points in B,

|P(x)−P(y)| ≤ L|x− y|,
i.e., P satisfies a “Lipschitz condition” on B. Thus for x,y ∈ B and 0 ≤ t ≤ 1:

|Pt(x)−Pt(y)|= |(1− t)(x− y)+ t[P(x)−P(y)]|

≥ (1− t)|x− y|− t|P(x)−P(y)|

≥ (1− t)|x− y|− tL|x− y|

= [1− t(1+L)] |x− y| .

Conclusion: For 0 ≤ t < 1/(1+L) the mapping Pt takes B one-to-one into itself,
and (Pt)

−1 satisfies a Lipschitz condition, hence is continuous. In other words, for
all sufficiently small t, the mapping Pt is a homeomorphism taking B onto some
subset of B.

Our goal now is to show that, at least for t sufficiently small, this subset is all of
B. Since Pt is the identity map on ∂B, it will be enough to show that Pt(B◦) = B◦ for
all sufficiently small t.

STEP IIB: For all t sufficiently small, Pt(B◦) is an open subset of B◦.

From the definition (4.7) of Pt we see that for each t ∈ [0,1]:

Pt
′(x) = (1− t) I+ t P′(x) (x ∈ B)

where I denotes the N ×N identity matrix. Thus the “C1-ness” of the retraction P
translates into continuity for the map (t,x)→ Pt

′(x) as it takes the compact product
space [0,1]×B into the space of N ×N real matrices endowed with the metric of
RN2

. Since continuous functions on compact metric spaces are uniformly continu-
ous, the function (t,x) → detPt

′(x) is a uniformly continuous real-valued function
on [0,1]×B. Since P0

′(x) is the N ×N identity matrix for each x ∈ B this uniform
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continuity implies (exercise) that there exists 0 < t0 < 1/C (C being the constant
of Step IIa) such that detPt

′(x) ≥ 1/2 for each (t,x) ∈ [0, t0]×B. This justifies our
application of the change-of-variable formula in STEP III, and shows that Pt

′(x) is
invertible for all t ∈ [0, t0] and all x ∈ B. Thus if 0 ≤ t ≤ t0 the Inverse-Function
Theorem (Appendix A, Theorem A.3) shows that Pt maps open sets to open sets; in
particular Pt(B◦) is open in B◦.

STEP IIC: For all t as promised by STEP IIB, Pt(B◦) = B◦.

Fix such a t, so Pt is a homeomorphism of B0 onto Pt(B0). Suppose Pt(B◦) �= B◦.
Then there is a point y0 ∈ B◦ that belongs to the boundary of Pt(B◦). One can there-
fore choose a sequence (yk) of points in Pt(B◦) with yk → y0. Thus there exists
a sequence (xk) in B◦ with Pt(xk) = yk for each index k. Thanks to the compact-
ness of B we may assume, upon replacing (xk) by an appropriate subsequence, that
limk xk = x0 ∈ B. Thus y0 = Pt(x0) by the continuity of Pt . It follows that x0 ∈ B◦;
otherwise x0 would belong to ∂B so, because Pt is the identity map on ∂B, the point
y0 = Pt(x0) would equal x0, and so would lie on ∂B, contradicting our assumption
that y0 lies in B◦.

This completes the proof of STEP II, and with it, the proof of the Brouwer Fixed-
Point Theorem. 	


4.4 Retraction and Convexity

So far the work of this chapter has concentrated on the equivalence of the Brouwer
Fixed-Point Theorem and the No-Retraction Theorem. Here is a different (and very
useful) connection between fixed points and retractions.

Theorem 4.3. Every retract of a space with the fixed-point property has the fixed-
point property.

Proof. Suppose S is a metric space with the fixed-point property, A is a subset of
S, and P : S → A is a retraction of S onto A. Let f : A → A be a continuous map.
We need to show that f has a fixed point. Since g = f ◦P maps S into itself it has
a fixed point. Since g maps S into A this fixed point, call it a, belongs to A. But the
restriction of P to A is the identity map, so a = g(a) = f (P(a)) = f (a). 	


Which spaces have the fixed-point property? Every one-point space has it (triv-
ially), and for each positive integer N the closed unit ball of RN has it (The Brouwer
Fixed-Point Theorem). No circle has it (nontrivial rotations have no fixed point),
hence no closed curve (homeomorphic image of a circle) has it.

The extension of Brouwer’s theorem provided by Theorem 4.3 allows us to ex-
hibit more examples. Here is one that is “one dimensional,” but not homeomorphic
to a closed interval (exercise).

Example 4.4. The letter “X” has the fixed-point property.
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Proof. Here “the letter ‘X’ ” is the union in R2 of those parts of the lines y = x
and y = −x that lie in B, the closed unit ball of R2 (a.k.a “the closed unit disc”).
Then X ⊂ B, so by Brouwer’s theorem and Theorem 4.3 above we need only show
that X is a retract of B. We’ll accomplish this by modifying the “non-orthogonal”
projection introduced above in Sect. 4.1. The set X divides B into four quadrants,
each bisected by the coordinate half-axes. Project each point in B onto X by moving
it parallel to the closest coordinate axis. Thus, each point of a coordinate axis goes
to the origin, each point of X stays fixed, each point of the region above X goes
straight down onto X , each point to the right of X goes horizontally onto X , etc. The
result is a map P that takes B onto X , and whose restriction to X is the identity. I
leave it to you to convince yourself that P is continuous. 	


Exercise 4.3. Which capital letters of the English alphabet have the fixed-point property?

So much for amusing examples. Here’s the result we’re really after.

Theorem 4.5 (The “Convex” Brouwer Fixed-Point Theorem). Every compact con-
vex subset of RN has the fixed-point property.

Proof. Let C be a compact convex subset of RN .

Claim. C is a retract of RN.

Even though RN does not have the fixed-point property, this will prove our result.
Indeed, since C is compact it is contained in a closed ball B (not necessarily the unit
ball now) which, by Brouwer’s theorem, has the fixed-point property. The Claim
will give us a retraction P of RN onto C, and the restriction of P to B will be a
retraction of B onto C. The result will then follow from Theorem 4.3.

Proof of the Claim. The retraction we’re about to produce—important in its own
right—is the Closest-Point Map. Suppose x ∈ RN . Since C is compact there is at
least one point κ ∈C with |x−κ |= inf{|x− c| : c ∈C} (Proof: There is a sequence
(c j) of points in C for which |x− c j| converges to the infimum in question. By the
compactness of C, this sequence has a convergent subsequence, whose limit κ is a
point that achieves the infimum).

The convexity of C guarantees that κ is the unique closest point in C to x. To
prove this, suppose k ∈C is another point “closest to x.” For convenience let

d = inf{|x− c| : c ∈C}= |x−κ |= |x− k|

Let v = x−κ and w = x− k. By the Parallelogram Law:

|v+w|2 + |v−w|2 = 2|v|2 + 2|w|2 = 4d2 .

On the other hand, the convexity of C guarantees that (κ+ k)/2 ∈C, hence

|(v+w)/2|= |(κ+ k)/2− x| ≥ d.
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The last two displays yield

4d2 + |v−w|2 ≤ 4d2

so 0 = |v−w|= |k−κ |, hence κ = k, as desired.

Now that we know there’s a unique closest point in C to x, let’s give it a name:
P(x). Thus P maps RN onto C, and fixes each point of C. To show that P retracts
RN onto C we need only verify its continuity. The result below shows that this
follows from the “closest-point uniqueness” from which the mapping P owes its
definition. 	

Proposition 4.6. Suppose (X ,d) is a metric space and A is a compact subset of X
such that every x ∈ X has a unique closest point P(x) in A. Then P is a retraction of
X onto A.

Proof. Define the function “distance to A” by

dA(x) = inf{a ∈ A : d(x,a)} (x ∈ X).

Note first that dA : X → [0,∞) is continuous; in fact, it is “non-expansive” in the
sense that

|dA(x)− dA(y)| ≤ d(x,y) (x,y ∈ X). (4.9)

In fact this is true for every A ⊂ X . To see why, fix x and y in X ; suppose (without
loss of generality) that dA(x) ≥ dA(y). Then dA(x) ≤ d(x,a) ≤ d(x,y)+ d(y,a) for
every a ∈ A, from which follows (thanks to the fact that a was an arbitrary element
of A) that dA(x)≤ d(x,y)+ dA(y), which is another way of stating (4.9).

Now let’s return to our compact subset A that does have the “unique closest point”
property, and the map P(x) = “closest point in A to x.” We’re trying to show that
P is continuous, so fix x0 ∈ X and suppose (xn) is a sequence in X that converges
to x0. Our goal is to show that P(xn) → P(x0). Since A is compact, the sequence
(P(xn)) of closest points has a subsequence convergent to a point—call it y0—of A.
To keep notation under control, let’s replace (temporarily) the whole sequence by
this subsequence, so that P(xn)→ y0. Then:

dA(x0) = lim
n

dA(xn) (continuity of dA)

= lim
n

d(xn,P(xn)) (definition of P)

= d(x0,y0) (definition of y0)

so y0 is a closest point in A to x0, hence by uniqueness, y0 = P(x0). This argument
actually proves that if x0 is a point of X and (xn) is a sequence that converges to
x0, then every subsequence of (xn) has a further subsequence whose image under
P converges to P(x0). Thus P(xn)→ P(x0), as desired. This completes the proof of
the Proposition, and with it the proof that the closest-point mapping of RN onto the
compact convex subset C is continuous, hence a retraction. 	
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Notes

Proof of the Brouwer Fixed-Point Theorem. The argument given here is C.A.
Rogers’ modification [99] of an argument due to John Milnor [78]. In [67] Peter
Lax proves an “oriented” version of the change-of-variable formula for multiple
integrals, and uses this result to provide a more direct proof of Brouwer’s Theo-
rem. For a differential-forms interpretation of Lax’s change-of-variable argument
see [53], which also gives a valuable survey of papers that offer analytic proofs of
Brouwer’s Theorem.

More on proofs of the Brouwer Fixed-Point Theorem. We’ve seen two proofs of the
Brouwer Fixed-Point Theorem: the one in Chap. 2 (for N = 2) based on the Sperner
Lemma, and the one in this chapter. There are many others; see [112] for a nice
survey. Brouwer’s original proof [18], published in 1912, used methods of (what
has since become known as) algebraic topology. Simultaneously, and for the rest of
his life, Brouwer thought deeply about the foundations of mathematics—a pursuit
that ultimately led him, 40 years later, to renounce this proof of his theorem [19].

The “Closest Point Property” of convex sets. With a little more care we can weaken
the compactness hypothesis on the convex set C to just “closed-ness.” The idea is
that an application, similar to the one above, of the Parallelogram Law shows that
the “minimizing sequence” (c j) discussed above is actually a Cauchy sequence, and
therefore converges, its limit being the unique closest point in C to x. In case C is
a linear subspace of RN this closest point turns out to be the orthogonal projection
of x onto C. These arguments generalize, with no essential changes, to the setting of
infinite dimensional Hilbert space (see [125, Sect. 3.2, p. 26 ff.], for example).

Non-expansiveness of the closest-point map. For a closed convex subset of RN (or
more generally of a Hilbert space) the “closest point map” P is more than just con-
tinuous: it is “non-expansive” in the sense that

|P(x)−P(y)| ≤ |x− y|

for all x,y ∈ RN ; see, for example, [50, Theorem 3.13, p. 118] for the details.



Chapter 5
Nash Equilibrium

FIXED POINTS IN GAME THEORY

Overview. In this chapter we’ll study John F. Nash’s fundamental notion of “equi-
librium” in game theory. Following Nash, we’ll use the Brouwer Fixed-Point Theo-
rem to prove the result at the heart of his 1994 Nobel Prize in Economics: For every
finite non-cooperative game, the mixed-strategy extension has a Nash Equilibrium.
All will be explained; no prior experience with game theory will be assumed.

Prerequisites. Basic linear algebra and set theory.

5.1 Mathematicians Go to Dinner

Here’s an example that illustrates much of what is to follow. Twenty mathematicians
go out to dinner, agreeing to split the bill equally. Upon arrival they discover that
the restaurant offers only two choices: the $10 dinner and the $20 one. Nobody
wants to spend $20. Assuming that each person acts only on the basis of “rational
self-interest,” wouldn’t it be best for everyone to order the $10 dinner? Guess again!

On the basis of pure rational self-interest, each player reasons: “Everyone else is
going to choose the $10 dinner, so if I choose the $20 one, I get it for just $10.50.”
Unfortunately everyone else has the same thought, so it seems most likely that—
even though nobody wants to pay $20—everyone will choose the $20 dinner.

This is an example of Nash Equilibrium. Later we’ll formalize the idea but
for now let’s consider a few more examples, all of which involve—instead of 20
players—just two.
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5.2 Four Examples

Here are four simple two-person games, each player’s goal being: “maximize my
payoff.” At each play of the game, each player knows all the strategies and all the
payoffs, but not the strategy the other will use.

Matching Pennies. Each player puts down a penny. If both coins show the same
face (heads–heads or tails–tails), Player I wins the other’s coin. If the faces differ
(heads–tails or tails–heads), then Player II wins Player I’s coin. For this game, and
each example to follow, it’s convenient to represent the situation by a “payoff ma-
trix” whose entries represent the payoffs to each competitor for each possible play
of the game. For Matching Pennies the payoff matrix for Player I is

⎡
⎣

I\II H T

H 1 −1

T −1 1

⎤
⎦

Here the “(i, j)-entry” of the matrix represents Player I’s payoff upon playing face
i (H or T ) to Player II’s face j. For this game the payoff matrix for Player II is
the negative of the one for Player I, i.e., Matching Pennies is a “zero-sum” game:
each player’s gain is the other’s loss. In a two-person game it’s often convenient to
display the payoffs for both players in a “bi-matrix.” For Matching Pennies this is

⎡
⎣

I\II H T

H ( 1,−1) (−1, 1)

T (−1, 1) ( 1,−1)

⎤
⎦

where now the entry at row i and column j (“I plays strategy i and II plays j”)
displays Player I’s payoff in the first coordinate and Player II’s in the second.

Rock–Paper–Scissors. Here each competitor has strategies: “rock,” “paper,” or
“scissors.” At each play of the game, the players use the familiar hand signals to
simultaneously indicate their chosen strategies with the winner is determined by the
rules: “paper covers rock,” “scissors cuts paper,” and “rock breaks scissors.” Sup-
pose that at each play of the game the winner receives one penny from the loser,
with neither winning anything if both opt for the same strategy. The situation is
captured by the 3× 3 bi-matrix shown below, its “(i, j)-entry” representing both
players’ payoffs when Player I plays strategy i ∈ {r, p,s} to Player II’s strategy j.

⎡
⎢⎢⎢⎣

I\II r p s

r (0, 0) (−1,1) (1,−1)

p (1,−1) (0, 0) (−1,1)

s (−1,1) (1,−1) (0, 0)

⎤
⎥⎥⎥⎦
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Prisoners’ Dilemma. This game imagines both players to be prisoners held in sep-
arate interrogation cells. The police are sure the suspects have committed a serious
crime which, if this can be proven, will land each in prison for 5 years. However
there’s only enough evidence to convict the pair of a less serious infraction that car-
ries a prison term of just 1 year. The prisoners are offered this deal: If one of them
defects by implicating the other in the more serious crime while the other prisoner
does not defect, then the defector will go free while the loyal one will get the max-
imum sentence. If each prisoner defects, then for cooperating each will receive a
somewhat reduced sentence of 3 years. The bi-matrix below summarizes the pay-
offs, where “L” = “stay loyal” and “D” = “defect.”

⎡
⎣

I\II L D

L (−1,−1) (−5, 0)

D ( 0,−5) (−3,−3)

⎤
⎦

Battle of the Sexes. In this game Players I and II are a couple who wish to spend
an evening out. Player I wants to go to the ball game (B) while Player II prefers
the symphony (S). They work on opposite sides of town and plan to decide that
afternoon, via some form of electronic communication, which event to attend. But
a massive solar flare renders communication impossible, so each must guess the
other’s intention. The payoff matrix below indicates their preferences: the diagonal
terms indicate that for each player the favored event is twice as desirable as the
alternative while the cross-diagonals show that neither choice is so desirable as to
warrant going alone.

⎡
⎣

I\II B S

B (2,1) (0,0)

S ( 0,0) (1,2)

⎤
⎦

5.3 Nash Equilibrium

In Prisoners’ Dilemma it appears at first glance that both players should remain
loyal, thus insuring that—although nobody goes free—each gets a relatively light
sentence. However if one player believes in the other’s unswerving loyalty, then that
player will do better by defecting. A quick look at the rows of the payoff matrix
shows that Player I’s strategy D dominates L in the sense that no matter which strat-
egy Player II chooses, Player I’s payoff for D is better than for L. Similarly, looking
at the columns of the matrix, we see that Player II’s strategy D also dominates L.
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Thus each player has D as a dominant strategy, so—even though the best overall
result would be for both to stay loyal—the safest is for each to defect.

Such “dominance” is not always present; neither of the other three games de-
scribed above exhibits it. However in Battle of the Sexes the strategy pairs (B,B)
and (S,S) share a salient feature of dominant pairs: If a player deviates unilater-
ally from either pair then that player’s payoff decreases. The same is true of in the
“Mathematicians go to Dinner” game for the strategy 20-tuple: “Everyone chooses
the $20 dinner.”

In the middle of the last century John F. Nash made a profound study of this
“weaker-than-dominance” notion. Now called “Nash Equilibrium,” it has become a
cornerstone of modern economic theory. To describe it properly we need to formal-
ize our notion of “non-cooperative game.”

Definition 5.1. A non-cooperative game (henceforth, just a “game”) consists of a
set P of players, where each player P has

(a) A strategy set ΣP, and
(b) A real-valued function uP defined on the cartesian product Σ =∏P∈P ΣP of

strategy sets; this is player P’s payoff function.

Each element σ ∈ Σ represents a particular play of the game; think of it as a
“vector” with coordinates indexed by the players, σ(P) being the strategy chosen
by Player P. Then uP(σ) is Player P’s payoff for that particular play of the game.
Upon defining U = {uP : P ∈ P}, we can refer to the game described above as
simply the triple (P,Σ ,U ).

In the examples of Sect. 5.2 the set P of players has just has two elements, while
the strategy sets are finite and the same for each player. In Rock–Paper–Scissors,
for example, P = {Player I,Player II}, the strategy sets are ΣI = ΣII = {r, p,s}, the
collection Σ of strategy “vectors” is the nine-element cartesian product

ΣI ×ΣII = {(x,y) : x,y ∈ {r, p,s}},

and the payoff function for Player I is summarized by the matrix below; uI(x,y)
being the number located at the intersection of the x-row and the y-column

⎡
⎢⎢⎢⎣

I\II r p s

r 0 −1 1

p 1 0 −1

s −1 1 0

⎤
⎥⎥⎥⎦

(that of Player II is represented by the negative of this matrix; like Matching Pennies,
this is a “zero-sum” game). Thus, for example, uI(p,s) =−1 =−uII(p,s).

For “Mathematicians go to dinner” our player set is P = {P1,P2, . . . ,P20}, each
player Pj having the same strategy set Σ j = {10,20} (1 ≤ j ≤ 20). Thus the set
of strategy vectors Σ = Π20

j=1Σ j is the set of 20-tuples, each coordinate of which
is either 10 or 20. The description of the game suggests that Player Pj’s payoff for
strategy vector x = (x1,x2, . . . ,x20) should be
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u j(x) = x j − 1
20

20

∑
k=1

xk ( j = 1,2, . . . ,20),

where on the right-hand side the first term is the value of Pj’s dinner, and the sec-
ond is the amount Pj pays for it: the total cost of all 20 dinners, averaged over the
participants.

Definition 5.2 (Unilateral Change of Strategy). In a non-cooperative game
(P,Σ ,U ), suppose P ∈ P and σ and σ ′ are strategy vectors that differ only
in the P-coordinate (i.e., σ(Q) = σ ′(Q) for all Q ∈P\{P}, and σ ′(P) �= σ(P)). In
this case we’ll say that for Player P: σ ′ is a unilateral change of strategy from σ .

Definition 5.3 (Nash Equilibrium). For a non-cooperative game (P,Σ ,U ): a Nash
equilibrium is a strategy vector σ∗ with the property that: For each player, no uni-
lateral change of strategy from σ∗ results in a strictly better payoff. More precisely:
“σ∗ ∈ Σ is a Nash equilibrium” means

P ∈P , σ ∈ Σ , and σ(Q) = σ∗(Q) ∀Q ∈P\{P} =⇒ uP(σ)≤ uP(σ∗).

Nash equilibrium is perhaps best interpreted in terms of “best response.” To avoid
notational complications let’s consider this notion just for two-person games. In this
setting Player I and Player II have strategy sets X and Y , respectively, and Σ =X×Y :
the set of ordered pairs (x,y), where x ranges through X and y through Y .

Definition 5.4 (Best Response). To say that Player I’s strategy x∗ ∈ X is a best
response to Player II’s strategy y ∈ Y means that uI(x∗,y) = maxx∈X uI(x,y) .

We’ll always assume the maximum in this definition exists, either because the
strategy set available to each player is finite, or as in the next section, because it is a
compact subset of RN with the payoff functions continuous in each variable.

Similar language defines Player II’s best response to a given strategy of Player I.
With this terminology:

For a two-person game: a Nash Equilibrium is a pair of strategies, each of
which is a best response to the other.

In terms of bi-matrices it’s easy to identify such mutual best-response strategy pairs,
should they exist. For each column of the matrix, underline the entry or entries for
which Player I’s payoff is largest (the “best response(s)” of Player I to Player II’s
strategy for that column). Similarly, for each row, place a line over each entry for
which Player II’s payoff is largest. If an entry is marked twice, it is a Nash equi-
librium. It’s easy to check this way that (D,D) is a Nash equilibrium for Prisoners’
Dilemma, that Rock–Paper–Scissors and Matching Pennies have no Nash equilib-
rium, and that Battle of the Sexes has two Nash equilibria: (B,B) and (S,S). Thus:

(a) Not every game has a Nash equilibrium (Matching Pennies, Rock–Paper–
Scissors).

(b) If it exists, Nash equilibrium need not be unique (Battle of the Sexes).
(c) If it exists, Nash equilibrium need not provide the best possible outcome for

any player (Mathematicians go to Dinner, Prisoners’ Dilemma).
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5.4 Mixed Strategies

Let’s return to Matching Pennies. In a sequence of consecutive plays, how can each
competitor guard against falling into a behavior pattern discoverable by the other?
Each could choose heads or tails randomly, for example, tossing the coin rather than
just putting it down. Their coins might be biased; say Player I chooses a coin that
has probability p ∈ [0,1] of coming up Heads (and 1− p of Tails), while Player II
opts for one that has probability q ∈ [0,1] of Heads. So now we have the makings of
a new game, with the same players, but with new (“mixed”) strategies: probability
distributions over the original (“pure”) strategies. Let’s represent the mixed strategy
“Heads with probability p and Tails with probability 1− p” by the vector

xp = (p,1− p) = pH +(1− p)T

where now H = (1,0) denotes the pure strategy of choosing Heads with probability
1, and T = (0,1) the pure strategy of choosing Tails with probability 1. The strategy
set for each player can now be visualized as the line segment inR2 joining H =(1,0)
to T = (0,1).

We need payoff functions for this new game, and for these we choose expected
payoffs, calculated in the obvious way: Player I’s expected payoff for playing the
pure-strategy Heads to Player II’s mixed strategy yq = qH +(1− q)T is1

uI(H,yq) = 1 ·q+(−1) · (1− q)= 2q− 1 ,

while for playing Tails to Player II’s yq it is

uI(T,yq) =−1 ·q+ 1 · (1−q)= 1− 2q .

Thus Player I’s expected payoff for playing strategy xp to Player II’s yq is

uI(xp,yq) = p ·uI(H,yq)+ (1− p) ·uI(T,yq) = (2p− 1)(2q− 1) . (5.1)

Similarly, Player II’s expected payoff for playing strategy yq to Player I’s xp is

uII(xp,yq) = (1− 2q)(2p− 1)=−uI(xp,yq) . (5.2)

In this way we arrive at a new game, having the same players but a larger strategy
set to which the original payoff functions have been extended. We’ll call this new
game the mixed-strategy extension of the original one; note that by Eq. (5.2) the new
game preserves the zero-sum nature of the original.

Recall that the original Matching-Pennies game had no Nash equilibrium.
However for the mixed-strategy extension there is one, namely the strategy pair
(x1/2,y1/2) wherein each player chooses to flip a fair coin. The (expected) payoffs
for this strategy pair are not spectacular—zero for each—but neither player’s payoff

1 Even though yq and xq are the same vectors in R
2, it’s useful to pretend that the strategy sets of

the two players are different, and denote Player I’s mixed strategies by x’s and Player II’s by y’s.
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can be unilaterally improved. For example, if Player II chooses to play y1/2 then,
according to (5.1) above, Player I’s expected payoff is uI(xp,y1/2) = 0 for every
p ∈ [0,1], and similarly for Player II when Player I chooses to play x1/2. In other
words, each strategy xp with (0 ≤ p ≤ 1) is a best response for Player I to Player
II’s fair-coin strategy y1/2, and vice versa. Thus each strategy in the pair (x1/2,y1/2)
is a best response to the other, i.e., that strategy pair is a Nash equilibrium.

The “indifference of best response” that surfaced in the last paragraph is not
an accident. It arises from the linearity of mixed-strategy payoffs in each variable,
and will be important in Sect. 5.7 where we prove Nash’s general theorem on the
existence of equilibria. Right now, however, let’s show that the Nash equilibrium
we just found is the only one possible for the mixed-strategy extension of Matching
Pennies.

Proposition 5.5. For the mixed-strategy extension of Matching Pennies, the “fair-
coin” strategy pair (x1/2,y1/2) is the only Nash equilibrium.

Proof. Suppose (xp∗ ,yq∗) were a Nash equilibrium with q∗ �= 1/2. Then by defini-
tion we’d have uI(xp∗ ,yq∗)≥ uI(xp,yq∗) for each p ∈ [0,1]. Now substitute into the
right-hand side of this inequality: p = 1 if q∗ > 1/2 (i.e., Player I should play Heads
if Player II is more likely to play Heads), and p = 0 if q∗ < 1/2. By Eq. (5.1) Player
I’s payoff in either case would be |2q− 1|> 0. Thus uI(xp∗ ,yq∗) > 0. This, along
with (5.1), would imply that p∗ �= 1/2, in which case the same argument would
show that uII(xp∗ ,yq∗) > 0, contradicting the fact that the mixed-strategy extension
of Matching Pennies is a zero-sum game. 	


Exercise 5.1. Compute the payoff functions for the mixed-strategy extension of Prisoners’
Dilemma, and show that “D” is still each player’s best response to every mixed strategy of
the other. Thus (D,D) is still the only Nash equilibrium.

5.5 The Mixed-Strategy Extension of Rock–Paper–Scissors

Recall that for the Rock–Paper–Scissors game the payoff matrix for Player I is
(omitting the labels)

A =

⎡
⎢⎢⎢⎣

0 −1 1

1 0 −1

−1 1 0

⎤
⎥⎥⎥⎦ ,

and the corresponding matrix for Player II is just −A; it’s a zero-sum game.
Suppose that, in the mixed-strategy extension of this game, Player II uses the

strategy y = y1r + y2 p+ y3s (“rock” with probability y1, . . . ), which we interpret
as a probability vector (y1,y2,y2) (non-negative components that sum to 1, i.e., a
vector in the standard simplex Π3). Then the pure-strategy payoffs to Player I can
be expressed by matrix multiplication:
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⎡
⎢⎢⎢⎣

uI(r,y)

uI(p,y)

uI(s,y)

⎤
⎥⎥⎥⎦= Ayt = A

⎡
⎢⎢⎢⎣

y1

y2

y3

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣
−y2 + y3

y1 − y3

−y1 + y2

⎤
⎥⎥⎥⎦ . (5.3)

Thus the mixed-strategy payoff to Player I upon playing strategy x = x1r+x2 p+x3s
(where x = (x1,x2,x3) is a probability vector) is

uI(x,y) = xAyt = [x1,x2,x3]

⎡
⎢⎢⎢⎣
−y2 + y3

y1 − y3

−y1 + y2

⎤
⎥⎥⎥⎦

= (−y2 + y3)x1 +(y1 − y3)x2 +(−y1 + y2)x3)

= (x2 − x3)y1 +(−x1 + x3)y2 +(x1 − x2)y3 .

(5.4)

We see from the second line of (5.4) that if Player II employs the “uniform” strat-
egy y∗ = 1

3 r+ 1
3 p+ 1

3 s, then every mixed strategy x = x1r+ x2 p+ x3s for Player I
is a best response in that uI(x,y∗) = 0 (another instance of the soon-to-be proved
“Principle of Indifference”). In other words, a unilateral change of strategy cannot
improve Player I’s payoff. Since uII = −uI , the same is true for Player II if Player
I uses the uniform strategy. Thus the strategy pair (“uniform”,“uniform”) is a Nash
equilibrium for the mixed-strategy extension of Rock–Paper–Scissors.

Proposition 5.6. The mixed-strategy extension of Rock–Paper–Scissors has no
other Nash equilibrium.

Proof. The proof is similar to the uniqueness argument for Matching Pennies. Since
Rock–Paper–Scissors is a zero-sum game, so is its mixed-strategy extension. Let
(x∗,y∗) be a Nash equilibrium pair for this extended game. Suppose for the sake of
contradiction that y∗ is not the uniform strategy, i.e., some components are not 1/3.

The matrix equation (5.3) tells us that for each strategy y chosen by Player II, the
components of Player I’s payoff vector (the left-hand side of (5.3)) sum to zero, and
this vector is identically zero if and only if all the components of y are the same (i.e.,
= 1/3). Thus some component of the left-hand side of (5.3) must be positive, i.e.,
Player I has a pure strategy x for which uI(x,y∗) > 0, hence uI(x∗,y∗) > 0 (since
x∗ is a best response for Player I to Player II’s strategy y∗). It follows from the
second line of (5.4) that x∗ is not the uniform strategy, so one of its components
must be positive, hence by the same reasoning uII(x∗,y∗) > 0. Thus both uI(x∗,y∗)
and uII(x∗,y∗) are > 0, contradicting the fact that uI =−uII . 	
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5.6 The Principle of Indifference

The phenomenon of “indifference” noted in our analyses of Matching Pennies and
Rock–Paper–Scissors will be crucial to our proof of Nash’s existence theorem.
Recall from Definition 1.7 (Sect. 1.7, page 11) the standard simplex ΠN in R

N .
This is the set of vectors in RN with non-negative coordinates that sum to 1, i.e.,
the convex hull2 of the standard unit vectors {e1,e2, . . . eN} for RN . Here we’ll
think of the elements of ΠN as probability vectors. The idea is that each stan-
dard unit vector represents a pure strategy in an N-person game, while the vector
(ξ1,ξ2, . . . ,ξN) =∑ j ξ je j ∈ΠN represents the mixed strategy of playing the strategy
e j with probability ξ j.

Definition 5.7. The support of a vector x ∈ΠN is the set of vectors e j in the repre-
sentation x = ∑ j ξ je j for which ξ j �= 0. Notation: spt(x).

We begin with a simple maximum principle for restrictions to ΠN of linear func-
tions RN →R. Each such function f (henceforth simply called a “linear function on
ΠN”) is continuous (Exercise 1.7, page 12), which—along with the compactness of
ΠN (established in Exercise 1.4, page 12)—guarantees that f attains its maximum
at some point of ΠN . This point has special properties.

Lemma 5.8. Suppose f : ΠN → R is linear and attains its maximum at x∗ ∈ ΠN.
Then f ≡ f (x∗) on spt(x∗), and hence on the convex hull of that support.

Proof. Let m = f (x∗) = max{ f (x) : x ∈ ΠN} and let J denote the set of indices j
for which e j ∈ spt(x∗). Then

(a) x∗ = ∑ j∈J ξ je j, where ξ j > 0 for each j ∈ J and ∑ j∈J ξ j = 1.
(b) f (e j)≤ m for each j.

Suppose for the sake of contradiction that f (ek) < m for some ek ∈ spt(x∗). Then
by the linearity of f :

m = f (x∗) =∑
j∈J

ξ j f (e j) = ∑
j∈J\{k}

ξ j f (e j)︸ ︷︷ ︸
≤m

+ξk f (ek)︸ ︷︷ ︸
<m

< m∑
j∈J

ξ j = m,

hence m < m: contradiction. Thus f (e j) = m for every e j in spt(x∗). Again by lin-
earity, f ≡ m on the convex hull of spt(x∗). 	


In addition to the continuity of f this proof used only the fact that f “respects
convex combinations” in the sense that if x1,x2, . . . ,xn ∈ ΠN and (λ j)

N
j=1 ∈ ΠN ,

then f (∑ j λ jx j) =∑ j λ j f (x j). Functions on convex sets with this property are called
affine (example: every function of the form “linear + constant”).

Exercise 5.2. Suppose C is a convex subset of RN (or more generally, of a real vector
space), and f is an affine map taking C into RM (or more generally, into a possibly different
real vector space). Show that f (C) is convex, and f −1(E) is convex for any convex subset
E of f (C).

2 See Sect. C.1, Appendix C for the basic concepts involving convex sets.
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Corollary 5.9 (The Principle of Indifference). In the mixed-strategy extension of a
two-person game: suppose x∗ is a best response of Player I to Player II’s strategy
y. Then uI(·,y) is constant on the convex hull of the support of x∗. If y∗ is a best re-
sponse of Player II to Player I’s strategy x, then uII(x, ·) is constant on convspt(y∗).

Proof. We’re given that x∗ is a best response of Player I to Player II’s strategy y.
Then the function uI(·,y), being linear in the first variable, attains its maximum at
x∗. By Lemma 5.8 it’s therefore constant on the convex hull of the support of x∗.
The same argument works upon reversing the players’ roles. 	

In our work on the mixed-strategy extensions of both Matching Pennies and Rock–
Paper–Scissors we found that for each player: no unilateral deviation from the equi-
librium (x∗,y∗) could change that player’s payoff. Corollary 5.9 shows this to be
a consequence of that fact that, in each example, spt (x∗) = spt(y∗) = all the pure
strategies.

Example 5.10. Consider the mixed-strategy extension of “Battle of the Sexes.” Let
xp denote Player I’s mixed strategy pB+ (1 − p)S and let yq denote Player II’s
strategy qB+(1−q)S, where 0 ≤ p,q ≤ 1. If Player II plays strategy yq then Player
I’s pure-strategy responses result in these payoffs:

uI(B,yq) = quI(B,B)+ (1− q)uI(B,S) = 2q

and
uI(S,yq) = quI(S,B)+ (1− q)uI(S,S) = 1− q.

These payoffs are equal precisely when q = 1/3, hence for each 0 ≤ p ≤ 1:

uI(B,y1/3) = uI(S,y1/3) = uI(xp,y1/3) = 2/3

Thus by linearity:

Each of Player I’s mixed strategies is a best response to Player II’s strategy
y1/3 =

1
3 B+ 2

3 S. Furthermore, the strategy y1/3 is the only strategy of Player
II with this property.

Similar computations yield the fact that each of Player II’s strategies is a best re-
sponse to Player I’s strategy x2/3 =

2
3 B+ 1

3 S, and that x2/3 is unique in this regard.
Thus each coordinate of the strategy pair (x2/3,y1/3) is a best response to the other,
and this is the only mixed-strategy pair for which this happens.

Conclusion: In addition to the two pure-strategy Nash equilibria (B,B) and (S,S)
for the “Battle of the Sexes” game, there is a mixed-strategy equilibrium (x2/3,y1/3),
and these three equilibria are the only ones possible.
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5.7 Nash’s Theorem

We’re finally ready to state and prove Nash’s famous theorem establishing the exis-
tence of Nash equilibria for mixed-strategy extensions of finite games. For simplic-
ity we’ll state and prove the theorem for two-player games, after which we’ll point
out how the argument applies as well to the general situation.

Theorem 5.11 (Nash 1950). For every non-cooperative two-player game, the
mixed-strategy extension has a Nash equilibrium.

Proof. Suppose Player I has M pure strategies and Player II has N of them. Then, as
we observed in Sect. 5.5 for the special case of “Rock–Paper–Scissors,” the payoff
functions for each player can be represented in terms of M ×N payoff matrices A
(for Player I) and B (for Player II):

uI(x,y) = xAyt and uII(x,y) = xByt (5.5)

where the probability vectors x ∈ΠM and y ∈ΠN are regarded as row matrices, and
the superscript “t” means “transpose.” Both payoff functions are, in each variable
separately, linear and continuous.

Best Response. Since ΠN is a compact subset of RN , for each fixed y ∈ΠN the pay-
off function uI(·,y) attains its maximum thereon, say at x∗ ∈ΠM. In the terminology
of Definition 5.4, the strategy x∗ is a best response for Player I to Player II’s strategy
y. By Lemma 5.8, every vector in the support of x∗, and indeed in the convex hull
of this support, is also a best response to y. In particular, for each strategy y ∈ ΠN

of Player II, Player I has a pure strategy best response. Similarly, Player II has a
pure-strategy best response to each strategy of Player I.

Measuring Improvement. Since Player I’s pure strategies contain a best response to
Player II’s strategy y ∈ ΠN , we can measure how much a strategy x ∈ ΠM differs
from that best response by considering the non-negative functions δi defined by

δi(x,y) = max{uI(ei,y)− uI(x,y),0} (x ∈ΠM,y ∈ΠN)

for i = 1,2, . . . ,M. Let δ (x,y) be the vector in Rm whose i-th component is δi(x,y).
A little thought will convince you that for Player I:

x is a best response to y if and only if δ (x,y) = 0.

New strategies from old. Consider the map TI : ΠM ×ΠN →RM defined by

TI(x,y) =
x+ δ (x,y)

1+∑k δk(x,y)
(x ∈ΠM,y ∈ΠN). (5.6)

The coordinates of TI(x,y) are all non-negative and they sum to one, so TI maps
ΠM ×ΠN (continuously) into ΠM .

Claim: x ∈ΠM is a best response to y ∈ΠN if and only if TI(x,y) = x.
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Proof of Claim. We’ve observed that x is a best response to y if and only if δ (x,y) =
0, and from the definition of TI we see that if δ (x,y) = 0 then TI(x,y) = x.

It remains to prove the converse, which we’ll do in the contrapositive direction.
To this end, suppose x ∈ΠM is not a best response to y ∈ΠN . We wish to prove that
TI(x,y) �= x. By Lemma 5.8, Player I has a pure strategy ei (the i-th standard unit
vector for RM) that is a best response to y. Because x is not such a best response,
δi(x,y) > 0 and x �= ei, hence the i-th coordinate of x is < 1. Thus ∑k δk(x,y) > 0
and x · δ (x,y) < ∑k δk(x,y) (where “·” denote the dot product of vectors in RM). It
follows that

x ·T1(x,y) =
x · x+ x ·δ (x,y)
1+∑k δk(x,y)

=
1+ x ·δ (x,y)
1+∑k δk(x,y)

< 1 ,

hence T1(x,y) �= x, and the Claim is proved.

Enter the Brouwer Fixed-Point Theorem. So far we’ve created a continuous map
TI : ΠM ×ΠN →ΠM with the property that x ∈ΠM is a best response for Player I to
Player II’s strategy y ∈ΠN if and only if TI(x,y) = x. Similarly there’s a continuous
map TII : ΠM ×ΠN →ΠN such that y ∈ΠN is Player II’s best response to Player I’s
strategy x ∈ΠM if and only if TII(x,y) = y. Finally, define T : ΠM ×ΠN →ΠM ×ΠN

by
T (x,y) = (TI(x,y),TII(x,y)) (x,y) ∈ΠM ×ΠN.

Then T is a continuous self-map of the compact, convex subset ΠM ×ΠN of RMN ,
so by the Brouwer Fixed-Point Theorem it has a fixed point (x∗,y∗). Thus x∗ and y∗
are best responses to each other, i.e., the pair (x∗,y∗) is a Nash equilibrium. 	


To apply this argument to N-player games, note that throughout, Player II’s strat-
egy y is “inert” in that it could as well have been the strategy vector for the other
N−1 players in an N-player game. That observation having been made, it’s a routine
matter to extend the proof given above to the more general situation.

5.8 The Minimax Theorem

Let’s begin with a simple observation about real-valued functions of two variables.
Suppose X and Y are sets and u : X ×Y → R is a real-valued function. Then (as-
suming for simplicity that all maxima and minima mentioned below exist) for each
x0 ∈ X and y0 ∈ Y we have

min
y∈Y

u(x0,y)≤ u(x0,y0)≤ max
x∈X

u(x,y0)

whereupon
max
x∈X

min
y∈Y

u(x,y)≤ min
y∈Y

max
x∈X

u(x,y). (5.7)
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If we interpret X and Y as strategies for a two-player game, and u as the payoff func-
tion for the X-strategy player, then maxx∈X u(x,y0) is that player’s best payoff when
the other’s strategy is y0, so the right-hand side of (5.7) is the X-player’s “worst-
best” payoff. Similarly, miny∈Y u(x,y) is the X-player’s worst payoff for playing
strategy x, hence the left-hand side of (5.7) is that player’s “best-worst” payoff.
Thus inequality (5.7) says for the X-player that: “worst-best is always at least as
good as best-worst.”

Exercise 5.3. Show (e.g., by considering the example u(x,y) = |x−y| for 0 ≤ x,y ≤ 1) that
“worst-best” can be strictly better than “best-worst.”

For mixed-strategy extensions of finite, two-person, non-cooperative, zero-sum
games: Nash’s theorem shows that there is actually equality in (5.7). This is von
Neumann’s famous Minimax Theorem, which was considered, pre-Nash, to be the
fundamental theorem of game theory.

Theorem 5.12 (The Minimax Theorem). For every M×N real matrix A there exist
vectors x∗ ∈ΠM and y∗ ∈ΠN such that:

max
x∈ΠM

min
y∈ΠN

xAyt = x∗Ay∗t = min
y∈ΠN

max
x∈ΠM

xAyt (5.8)

Proof. Consider the mixed-strategy extension of the two-person game where Player
I’s payoff matrix is A and Player II’s is −A. Nash’s theorem asserts that there exists
a mixed-strategy pair x∗ ∈ΠM, y∗ ∈ΠN such that

xAy∗t ≤ x∗Ay∗t ∀x ∈ΠM and x∗(−A)yt ≤ x∗(−A)y∗t ∀y ∈ΠN ,

i.e.,
xAy∗t ≤ x∗Ay∗t ≤ x∗Ayt ∀(x,y) ∈ΠM ×ΠN .

Thus for each (x,y) ∈ΠM ×ΠN :

max
x∈ΠM

xAy∗t ≤ x∗Ay∗t ≤ min
y∈ΠN

x∗Ayt ,

from which it follows that

min
y∈ΠN

max
x∈ΠM

xAyt ≤ x∗Ay∗t ≤ max
x∈ΠM

min
y∈ΠN

xAyt .

This, along with (5.7) establishes (5.8). 	

The Minimax Theorem asserts that for every finite, two-person, zero-sum game

there is a number V , and mixed strategies x∗ for Player I and y∗ for Player II, such
that Player I’s payoff for strategy pair (x∗,y∗) is V , Player II’s payoff is −V , and nei-
ther player’s payoff can improve by a unilateral change of strategy. Here, of course,
V = x∗Ay∗t , where A is the payoff matrix for Player I, so each such game has a
definite value.
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Notes

Uniqueness of equilibria. For the mixed-strategy extensions of the Matching Pen-
nies and Rock–Paper–Scissors games, the arguments that proved the uniqueness of
their Nash equilibria (Propositions 5.5 and 5.6) were shown to me by Paul Bourdon.
The same is true for the “contrapositive” argument in the proof of Nash’s theorem.

Mathematicians go to dinner. This game, which comes from Erica Klarreich’s arti-
cle [61], is a very simple version of a situation that game theorists call “The Tragedy
of the Commons,” more serious instances of which concern resource depletion and
environmental degradation; see [47] for the original paper on this. In [61] Klarreich
gives a nice nontechnical description of game theory and Nash’s influence on it.

The Minimax Theorem. The original paper is [89]. According to Kuhn and Tucker
[65] this theorem was

... the source of a broad spectrum of technical results, ranging from his [von Neumann’s]
extensions of the Brouwer Fixed-Point Theorem, developed for its proof, to new and unex-
pected methods for combinatorial problems.

von Neumann’s above-mentioned extension of the Brouwer Fixed-Point Theorem
is actually a precursor to a result of Kakutani’s that Nash used to give a one-page
proof of his existence theorem [85]. We’ll study these matters in the next chapter.

The Nobel Prize. For his work on equilibrium in game theory Nash won the 1994
Nobel Prize in Economics. Quoting economist Roger Myerson: [81, esp. Sects. 1
and 6]:

... Nash’s theory of noncooperative games should now be recognized as one of the outstand-
ing intellectual advances of the twentieth century. The formulation of Nash equilibrium has
had a fundamental and pervasive impact in economics and the social sciences which is
comparable to that of the discovery of the DNA double helix in the biological sciences.

Nash’s statement and proof (the one presented here) of his famous theorem oc-
curred in his Ph.D. thesis [86, 87]. However the first published proof of this result
was the short proof mentioned above, which appeared in the Proceedings of the
National Academy of Sciences [85]. In an interesting article [79] written on the
occasion of Nash’s Nobel award, John Milnor surveys Nash’s important contribu-
tions, not only to game theory, but also to algebraic and differential geometry, and
to partial differential equations. Milnor also mentions the “Going to Dinner” game.

“That’s trivial, you know. That’s just a fixed-point theorem.” Allegedly [84, p. 94]
von Neumann’s reply to Nash upon being shown the existence of what has since
become known as Nash Equilibrium.

Schizophrenia. In his early thirties, at the height of his career, Nash succumbed
to this dreaded disease and disappeared from scientific life for the next 30 or so
years. Miraculously, he recovered in time to receive his 1994 Nobel Prize. About a
month after the award ceremony, Nash’s recovery was announced to the world by
Sylvia Nasar in a New York Times article [83]. Nasar went on to write a full length
biography of Nash [84], later adapted (very freely) into a major motion picture.



Chapter 6
Nash’s “One-Page Proof”

KAKUTANI’S SET-VALUED FIXED-POINT THEOREM

Overview. In this chapter we’ll study Shizuo Kakutani’s extension of the Brouwer
Fixed-Point Theorem to maps whose values are sets, and we’ll show how John Nash
used Kakutani’s result to provide a very quick proof of his famous Theorem 5.11 on
the existence of Nash Equilibrium.

Prerequisites. Undergraduate-level real analysis in RN , basic notions of set theory.
The notions of normed linear spaces and metric spaces pop up, but nothing will be
lost by thinking of everything in the context of RN .

6.1 Multifunctions

A multifunction1 Φ from a set X to a set Y (notation: Φ : X ⇒ Y ) is a function Φ
defined on X whose values are nonempty subsets of Y .

We’ll quite naturally refer to X as the domain of Φ, but perhaps somewhat less
naturally will refer to Y as its range, and will further abuse terminology by defining
Φ(E), the image of E ⊂ X , to be the union of the sets Φ(x) as x ranges through E .
Proceeding in this vein, the graph of Φ will be the subset of the product set X ×Y
defined by

graph(Φ) =
⋃
x∈X

{x}×Φ(x) = {(x,y) ∈ X ×Y : y ∈Φ(x)}.

Example 6.1 (Inverse Maps). Perhaps the most commonly encountered set-valued
map is the inverse map induced by an ordinary function. For such a function f : X →
Y , define f−1 : Y ⇒ X by

f−1(y) = {x ∈ X : f (x) = y} (y ∈ Y ).

1 Also called a “correspondence,” or simply a “set-valued map.”
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For example, if X = R and f (x) = x2 for each x ∈ R, then f−1(y) = {√y,−√
y},

a set-valued map whose domain is here taken to be the non-negative real numbers,
and whose range is R.

Exercise 6.1. For the general inverse mapping f −1 : Y ⇒ X , what is graph ( f −1), and how
does it relate to the graph of f ? How does this play out for the particular map f −1 where
f (x) = x2 (x real)?

Exercise 6.2 (A step map). Consider the set-valued map Φ : R⇒ R defined by

Φ(x) =

⎧⎪⎪⎨
⎪⎪⎩

{−1} if x < 0

[−1,1] if x = 0

{+1} if x > 0

What is Φ(R)? Sketch the graph of Φ; how does it differ from that of the “usual” step
function?

If Φ : X ⇒ Y where X and Y are metric spaces, we’ll say Φ is closed-valued if
Φ(x) is closed in Y for every x ∈ X , with similar definitions applying to all other
topological or geometric properties (openness, compactness, convexity, . . . ) that sets
may have. We’ll say Φ has closed graph if graph(Φ) is closed in the product space
X ×Y . For example, the step map defined in Exercise 6.2 above has closed graph.

Exercise 6.3. Show that if X and Y are metric spaces and f : X →Y is continuous, then the
graph of f −1 : Y ⇒ X is closed in Y ×X .

Exercise 6.4. Suppose X and Y are metric spaces. Show that if Φ : X ⇒Y has closed graph
then Φ(x) is closed for each x ∈ X . Is the converse true?

Example 6.2 (The metric projection). Suppose (X ,d) is a metric space and K is a
compact subset of X . Then for each x ∈ X there is an element ξ ∈ K that is nearest
to x, i.e.,

inf
k∈K

d(x,k) = d(x,ξ ) .

The metric projection of X onto K is the set-valued map PK that associates to a point
of X the collection of all these elements of K that are nearest to x.

We’ve already encountered the metric projection in Sect. 4.4, where X = R
N and K

is both compact and convex. In that setting we called PK the “closest point map,”
and showed that it’s an “ordinary” function in that each of its values is a singleton.

Exercise 6.5. Prove that the metric projection of a metric space onto a compact subset has
closed graph.
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6.2 Best Response

The notion of “best response” arose during our work in Chap. 5 on Nash Equilib-
rium. In this section we’ll strip the concept down to its essentials and see how it
really concerns a multifunction. We begin with an M × N real matrix A, and its
associated quadratic function

u(x,y) = xAyt (x ∈ R
M,y ∈ R

N).

Exercise 6.6. Show that u is continuous on R
M ×R

N .

We’ll be concerned only with the values u takes on the cartesian productΠM×ΠN of
the standard simplices in RM and RN , respectively, where—as in the last chapter—
we think of each simplex as a collection of probability vectors representing mixed
strategies for a two-player game, and u(x,y) as Player I’s “payoff” for playing strat-
egy x ∈ ΠM against Player II’s strategy y ∈ ΠN . Recall that for each y ∈ ΠN the
function u(·,y) is continuous on the compact subset ΠM of RM , hence there exists
x∗ ∈ΠM such that u(x∗,y) = maxx∈Πm u(x,y).

We’ve previously called the probability vector x∗ a “best response” for the first
player to the second player’s strategy y. In this section we’ll consider the set BR(y)
of all best responses to y, thereby obtaining the “best-response multifunction”
BR: ΠN ⇒ΠM for the payoff-matrix A.

Proposition 6.3. Each value of BR is a nonvoid compact, convex subset of ΠM. The
graph of BR is closed in ΠN ×ΠM.

Proof. We’ve already noted that BR(y) is nonempty for each y ∈ ΠN . Let’s fix y
and write uy(·) = u(·,y), so uy is an affine continuous function on ΠM. Let μ be
the first player’s payoff for some best response (hence for all best responses) to
the second player’s strategy y, i.e., μ = u(x∗,y) = uy(x∗) for every x∗ ∈ BR(y).
Thus BR(y) = u−1

y ({μ}). Now for each continuous function the inverse image of
a closed set is closed, and for each affine map the inverse image of a convex set
is convex (Exercise 5.2, page 59). Thus BR(y), being the image under u−1

y of the
closed, convex singleton {μ}, is itself a convex subset of ΠM that is closed, and
hence compact, in ΠM .

As for the closed graph, suppose ((y j,x j))
∞
j=1 is a sequence of points in the graph

of BR that converges in ΠN ×ΠM to a point (y,x), necessarily also in ΠN ×ΠM. We
need to prove that (y,x) belongs to the graph of B, i.e., that x is a best response to
y. For each j we know that x j is a best response to y j, i.e., if ξ ∈ ΠM is fixed, then
u(x j,y j)≥ u(ξ ,y j). By the continuity of u (Exercise 6.6) this inequality is preserved
as j →∞, so u(x,y)≥ u(ξ ,y). Since this last inequality is true for each ξ ∈ΠM , the
strategy x is a best response to y, i.e., (y,x) belongs to the graph of BR. 	
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6.3 The Kakutani Fixed-Point Theorem

To say x ∈ X is a fixed point of Φ : X ⇒ X means that x ∈Φ(x).

Exercise 6.7 (Fixed points of some multifunctions).

(a) For an “ordinary” function f : X → X , what does it mean to say that x ∈ X is a fixed
point of f −1 : X ⇒ X?

(b) What are the fixed points of the step function of Exercise 6.2?

(c) For the metric projection as in Example 6.2, what are the fixed points?

Here is the main theorem of this chapter.

Theorem 6.4 (Kakutani’s set-valued fixed-point theorem). If C is a nonvoid com-
pact, convex subset of R

N and Φ : C ⇒ C is a multifunction with compact, convex
values and closed graph, then Φ has a fixed point.

Were Φ to have a “continuous selection,” i.e., a continuous map ϕ : C →C with
ϕ(x) ∈Φ(x) for each x ∈C, then Kakutani’s result would follow immediately from
the Brouwer Fixed-Point Theorem. However under the hypotheses of Kakutani’s
theorem such selections need not always exist. For example, the “step-map” Φ of
Exercise 6.2, when restricted to (say) the closed interval C = [−1,1], satisfies those
hypotheses, but has no continuous selection. Nevertheless there is an “approximate”
version of this argument that will carry the day.

To simplify the statement of this “approximate-selection theorem:” for (X ,d) a
metric space, E ⊂ X , and ε > 0, define [E]ε =

⋃
x∈E Bε(x), where Bε(x) is the open

d-ball in X of radius ε , centered at x. Thus [E]ε is the set of all points in X that lie
a distance < ε from E . We’ll call [E]ε the “ε-expansion of E”; clearly, it’s an open
subset of X .

Exercise 6.8. Suppose C is a convex subset of RN (or for that matter, of a normed linear
space). Show that the ε-expansion [C]ε is convex for every ε > 0.

When the space in which such expansions take place is the product of two metric
spaces, we’ll take the “product distance” to be the maximum of the distances in the
individual factors. More precisely: if (X ,ρ) and (Y,σ) are metric spaces, then the
metric in X ×Y will be

d((x,y),(x′,y′)) : = max [ρ(x,x′),σ(y,y′)] ((x,y),(x′,y′) ∈ X ×Y).

Exercise 6.9. For the product space R×R (with the usual metric on each factor) describe
and sketch the open ε-ball with center at the origin. What’s the relationship between this
“product metric” and the Euclidean metric? Do they have the same convergent sequences?

Theorem 6.5 (The Approximate-Selection Theorem). Suppose X is a compact
metric space, Y a nonvoid compact, convex subset of a normed linear space, and
Φ : X ⇒Y a multifunction all of whose values are compact and convex. If graph(Φ)
is closed, then for every ε > 0 there exists a continuous function f : X → Y with
graph( f )⊂ [graph(Φ)]ε .



6.3 The Kakutani Fixed-Point Theorem 69

Proof of Kakutani’s Theorem. Granting the truth of The Approximate-Selection
Theorem, use that theorem to provide, for each positive integer n, a continuous
function fn : C →C whose graph lies in [graph(Φ)]1/n. Brouwer’s theorem provides,
for each n, a fixed point pn for fn, hence the pair (pn, pn) lies in graph( fn), and so
lies within 1/n of graph(Φ). Since C is compact the sequence of “approximate fixed
points” (pn) has a convergent subsequence—say convergent to p ∈C. But then the
corresponding subsequence of pairs (pn, pn) converges in C×C to (p, p), which lies
a distance zero from graph(Φ). Since graph(Φ) is closed, (p, p) belongs to it, i.e.,
p ∈Φ(p). 	


For the proof of the Approximate-Selection Theorem we need to explore the
consequences for a multifunction of possessing a closed graph.

Lemma 6.6 (Semicontinuity Lemma). Suppose X and Y are metric spaces with Y
compact. If Φ : X ⇒Y has closed graph, then for every ε > 0 and x ∈ X there exists
a ball Bx centered at x such that Φ(Bx)⊂ [Φ(x)]ε .

Multifunctions satisfying the conclusion of this Proposition are said to be upper
semicontinuous, reflecting the fact that for ξ close to x the set Φ(ξ ) “cannot be too
large” compared to Φ(x).

Proof of Lemma. Suppose Φ is not upper semicontinuous. Then there exists ε > 0,
x ∈ X , and a sequence (xn) in X convergent to x such that Φ(xn) is not contained in
[Φ(x)]ε , i.e., for each index n there exists yn ∈Φ(xn) that lies at least ε-distant from
Φ(x). Since Y is compact, we may, upon passing to an appropriate subsequence, as-
sume that (yn) converges to some point y ∈Y , which also lies at least ε-distant from
Φ(x). Thus the sequence of pairs (xn,yn), which belongs to graph(Φ), converges in
X ×Y to the pair (x,y) which is not in graph(Φ), so graph(Φ) is not closed. 	


Exercise 6.10 (Converse to the Semicontinuity Lemma). Suppose X and Y are metric spaces
and that Φ : X ⇒ Y is closed-valued and upper semicontinuous. Show that graph (Φ) is
closed.

Proof of Theorem 6.5. Fix ε > 0. For each x ∈ X , Lemma 6.6 provides us with
a ball Bx centered at x for which Φ(Bx) ⊂ [Φ(x)]ε . We may take this ball to have
radius < ε . The collection of balls 1

2 Bx (center still at x, but radius half that of Bx) is
an open cover of the compact space X , and so has a finite subcover which, to save
on subscripts, we’ll write as B = { 1

2 B1,
1
2 B2, . . .

1
2 Bn}, where B j is the original ball

centered at x j ∈ X . By Proposition B.6 of Appendix B there is a partition of unity
{p1, p2, . . . pn} subordinate to the coveringB, i.e., for each index j the function p j :
X → [0,1] is continuous and vanishes off 1

2 B j, while the totality of these functions
sums to 1 on X . For each index j choose y j ∈Φ(x j); then define f : X → Y by

f (x) =
n

∑
j=1

p j(x)y j (x ∈ X). (6.1)

Thus f is continuous on X , with values in the convex hull of Φ(X). We’ll be done if
we can show that graph( f ) ⊂ [graph(Φ)]ε , i.e., that for x ∈ X the point (x, f (x)) of
graph( f ) lies within ε of graph(Φ).



70 6 Nash’s “One-Page Proof”

Fix x ∈ X and note that since the “partition function” p j vanishes identically
off 1

2 B j, the sum on the right-hand side of Eq. (6.1) involves only those indices j
for which x ∈ 1

2 B j. Let J = J(x) denote this collection of indices, so that f (x) =
∑ j∈J p j(x)y j.

Let m be an index in J(x) corresponding to a ball B j of largest radius for j ∈ J(x).
Note that for each j ∈ J(x) our point x lies within radius( 1

2 B j)≤ radius( 1
2 Bm) of the

center x j, so all these points x j for j ∈ J(x) lie within radius(Bm) of each other.
Thus for each j ∈ J(x) we have (from our semicontinuity-driven initial choice of
balls): Φ(x j)⊂ [Φ(xm)]ε . In particular the point y j, chosen to lie in Φ(x j), also lies
in [Φ(xm)]ε . Conclusion: f (x) lies in the convex hull of [Φ(xm)]ε . But Φ(xm) is
convex, hence so is its ε-expansion [Φ(xm)]ε (Exercise 6.8). Thus f (x) ∈ [Φ(xm)]ε ,
i.e., there exists y ∈Φ(xm) with d( f (x),y) < ε .

Finally, note that x, being a point of 1
2 Bm, lies within radius(Bm) < ε of xm, so

by our definition of the metric in X ×Y the point (x, f (x)) lies within ε of (xm,y) ∈
graph(Φ), i.e., (x, f (x)) lies within ε of graph(Φ), as promised. 	

Remark. In this proof we used the compactness of Y only to deduce the upper
semicontinuity of Φ from the closed-graph hypothesis. Thus we could eliminate this
extra assumption on Y by requiring at the outset that Φ be upper semicontinuous.

6.4 Application to Nash Equilibrium

We’re now in a position to give Nash’s “one-page” proof [85] of Theorem 5.11 on
the existence of Nash Equilibria for mixed-strategy extensions of non-cooperative
finite games.

As usual, we’ll keep notation to a minimum by concentrating on the two-person
situation. Here the original “pure strategy” game provides M strategies for Player
I and N strategies for Player II. The payoff matrices are A and B for the respective
players, and the mixed-strategy payoff functions are: uI(x,y) = xAyt for Player I, and
uII(x,y) = xByt , where x ∈ΠM and y ∈ΠN . Denote the best response multifunction
for Player I by BRI, and for Player II by BRII. Recall that to say the strategy pair
(x∗,y∗) ∈ΠM ×ΠN is a Nash Equilibrium means that each is a best response to the
other, i.e., that x∗ ∈ BRI(y∗) and y∗ ∈ BRII(x∗). So if we define BR: ΠM ×ΠN ⇒
ΠM ×ΠN by

BR(x,y) = BRI(y)×BRII(x) (x,y) ∈ΠM ×ΠN ,

then we’re saying that our strategy pair (x∗,y∗) is a Nash Equilibrium if and only if
it’s a fixed point of the multifunction BR.

Since the set ΠM ×ΠN on which BR is acting is a compact, convex subset of
RMN , Kakutani’s Theorem 6.4 will produce the desired fixed point if we can verify
that BR satisfies its hypotheses.
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To this end, note that we’ve already shown (Proposition 6.3) the individual carte-
sian factors BRI and BRII of BR to have nonvoid compact convex values. Since these
properties are preserved by cartesian products the values of BR are also nonvoid,
compact, and convex. We’ve also shown that the factors of BR each have graphs that
are closed in their ambient compact product spaces, hence they are compact. Now
the graph of BR is homeomorphic via a permutation of coordinates to the carte-
sian product of the graphs of BRI and BRII, so it too is compact. Thus Kakutani’s
theorem applies, and shows that BR has the desired fixed point. 	


Notes

Kakutani’s Theorem. Theorem 6.5, the approximate selection result that did the
heavy lifting in the proof of Kakutani’s Theorem (Theorem 6.4) is attributed vari-
ously to von Neumann [89] and more recently to Cellina [23]. The proof given here
is taken from [16, pp. 59–62].

Kakutani’s original proof [58]. This takes place on an N-simplex where Kakutani
constructs, for each triangulation, a piecewise-affine approximate selection.

Another famous Kakutani. Michiko Kakutani, the influential New York Times lit-
erary critic and 1998 Pulitzer Prize winner, is Shizuo Kakutani’s daughter.

von Neumann and Kakutani. As mentioned in the Notes to the previous chapter,
von Neumann proved a special case of Theorem 6.4 on which he based his proof of
the Minimax Theorem. The reference for this is [89].



Part III
Beyond Brouwer: Dimension = ∞



The setting now shifts to infinite dimensional normed linear spaces. Here we’ll
prove Schauder’s extension of the Brouwer Fixed-Point Theorem and will explore
some of its applications to initial-value problems, operator theory, and measure
theory.



Chapter 7
The Schauder Fixed-Point Theorem

AN INFINITE DIMENSIONAL BROUWER THEOREM

Overview. Recall that to say a metric space has the fixed-point property means that
every continuous mapping taking the space into itself must have a fixed point. In
Chap. 4 we proved two versions of the Brouwer Fixed-Point Theorem:

THE “BALL” VERSION (Theorem 4.1). The closed unit ball of RN has the
fixed-point property,

and the seemingly more general, but in fact equivalent

“CONVEX” VERSION (Theorem 4.5). Every compact convex subset of RN has
the fixed-point property.

It turns out that the “ball” version of Brouwer’s theorem does not survive the
transition to infinitely many dimensions. However all is not lost: the “convex” ver-
sion does survive: compact, convex subsets of normed linear space do have the
fixed-point property. This is the famous Schauder Fixed-Point Theorem (circa 1930)
which will occupy us throughout this chapter. After proving the theorem we’ll use
it to prove an important generalization of the Picard–Lindelöf Theorem of Chap. 3
(Theorem 3.10). The Schauder Theorem will also be important in the next chapter
where it will provide a key step in the proof of Lomonosov’s famous theorem on
invariant subspaces for linear operators on Banach spaces.

Prerequisites. Basics of normed linear spaces and compactness in metric spaces.

7.1 The Theorem

Theorem 7.1 (The Schauder Fixed-Point Theorem). In every normed linear space,
each compact, convex subset has the fixed-point property.
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Our proof of Brouwer’s theorem depended strongly on the compactness of the
closed unit ball of RN . We’ll see in the next chapter (Proposition 8.7) that no infinite
dimensional normed space has this property. This is easiest to understand for infi-
nite dimensional Hilbert space, where for each orthonormal sequence the distance
between two distinct elements is

√
2, hence such a sequence, which belongs to the

closed unit ball, has no convergent subsequence. Conclusion: The closed unit ball
of an infinite dimensional Hilbert space is non-compact.

It gets worse! Recall that every separable Hilbert space is isometrically isomor-
phic to �2, the Hilbert space consisting of square-summable scalar sequences en-
dowed with the norm

‖ f‖=
(

∞

∑
n=1

| f (n)|2
)1/2

( f = ( f (n))∞1 ∈ �2).

Proposition 7.2. The closed unit ball of the Hilbert space �2 (hence of every sepa-
rable Hilbert space) does not have the fixed-point property.

Proof. Let (en)
∞
1 be the standard basis in �2 (i.e., en is the sequence with 1 in the

n-th position and zero elsewhere), and define the map T on �2 by

T f = (1−‖ f‖)e1 +
∞

∑
n=1

f (n)en+1 = (1−‖ f‖, f (1), f (2), . . .) ( f ∈ �2).

Then for f ∈ �2 with ‖ f‖ ≤ 1 we have from the triangle inequality:

‖T f‖ ≤ (1−‖ f‖)+
∥∥∥∥∥

∞

∑
n=1

f (n)en+1

∥∥∥∥∥︸ ︷︷ ︸
=‖ f‖

= (1−‖ f‖)+ ‖ f‖= 1,

so T takes the closed unit ball B of �2 into itself. Furthermore, if f and g are two
vectors in �2, then a straightforward calculation shows

‖T f −Tg‖2 = (‖ f‖−‖g‖)2+ ‖ f − g‖2 (7.1)

from which one deduces that T is continuous on �2.

Claim. T has no fixed point in B.

Proof of Claim. Suppose f ∈ B were a fixed point of T . Upon equating components
in the equation T f = f we would obtain

f (n) = 1−‖ f‖ (n ∈N), (7.2)

thus exhibiting f as a constant function. But f ∈ �2, so f (n) → 0, hence f (n) = 0
for all n. This, along with Eq. (7.2) above, yields the contradiction 0 = 1. 	
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Exercise 7.1. Verify the “straightforward calculation” (7.1) and show that it really does
establish the continuity claimed above for T .

The key to proving the Schauder Fixed-Point Theorem will be to show that each
compact subset of a normed linear space can be “almost” embedded in the convex
hull of a finite subset of its points. Such convex hulls are compact (Proposition C.5
of Appendix C), so Brouwer’s theorem can be applied to produce approximate fixed
points, and hence by Lemma 2.2 (the “Approximate Fixed-Point Lemma,” p. 24), an
actual fixed point.

7.2 The Proof

Crucial to the proof of Schauder’s theorem is the easily proved observation that each
compact subset of a metric space can be approximated arbitrarily closely by a finite
set. More precisely, for every ε > 0 our compact set K contains an ε-net: a finite
subset F of K such that for each point x ∈ K there is a point of F lying within ε of x
(Proposition B.3 of Appendix B). This in turn gives rise to an important map called
the Schauder Projection.

Proposition 7.3 (The Schauder Projection). Suppose C is a compact convex subset
of a normed linear space X. Then given ε > 0 and an ε-net Fε contained in C, there
exists a continuous map Pε (the Schauder Projection) that takes C into the convex
hull of Fε such that ‖Pε(x)− x‖< ε for every x ∈C.

Proof. We are assuming that Fε = {x1,x2, . . . xN} ⊂ C ⊂ ⋃N
j=1 B(x j,ε), where

B(x j,ε) denotes the open ball of radius ε centered at the point x j. By Proposi-
tion B.6 (p. 190) there is a partition of unity (p1, p2, . . . pN) on C subordinate to
the covering {B(x j,ε) : 1 ≤ j ≤ N}. Specifically: ∑ j p j ≡ 1 on C and for each index
j the function p j is non-negative and continuous on C, and identically zero outside
B(x j,ε).

Now we proceed as in the proof of the “Approximate Selection Theorem” of the
last chapter (Theorem 6.5): define the map Pε on C by

Pε(x) =
N

∑
j=1

p j(x)x j (x ∈C).

For each x ∈C the vector Pε(x) is a convex combination of the vectors x j, hence Pε
maps C into the convex hull of Fε (Proposition C.4 of Appendix C), and since each
coefficient function p j is continuous on C so is Pε . Moreover

‖Pε(x)− x‖=
∥∥∥∥∥

N

∑
j=1

p j(x)(x j − x)

∥∥∥∥∥≤
N

∑
j=1

p j(x)‖x j − x‖ (x ∈C),

where in the last sum on the right the coefficient p j(x) is zero whenever ‖x− x j‖ is
≥ ε . Thus ‖Pε(x)− x‖< ε ∑ j p j(x) = ε for every x ∈C, as desired. 	
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The final estimate above could also be viewed like this: The coefficient p j(x)
vanishes for those vectors x j − x that lie outside the ball B(0,ε), so Pε(x)− x is a
“subconvex” combination of points in that ball, so also lies in that ball.

Proof of the Schauder Fixed-Point Theorem. We’re given a compact, convex subset
C of a normed space X and a continuous map f : C → C. We wish to show that f
has a fixed point. By the Approximate Fixed-Point Lemma (Lemma 2.2, p. 24) it’s
enough to show that: given ε > 0 there exists xε ∈C such that ‖ f (xε )− xε‖< ε .

To this end let ε > 0 be given, choose an ε-net Fε ⊂C, and let Pε be the Schauder
projection of C onto conv(Fε). Then gε = Pε ◦ f maps C continuously into conv(Fε),
and so maps conv(Fε) continuously into itself. Since conv(Fε) is a compact (Propo-
sition C.5 of Appendix C), convex subset of a finite dimensional subspace of X , it
is, by Proposition C.9 (p. 197) homeomorphic (even linearly) to a compact, con-
vex subset of a finite dimensional Euclidean space, so by the “Convex” Brouwer
Fixed-Point Theorem (Theorem 4.5), gε has a fixed point xε that lies in conv(Fε),
and hence in C. Thus:

‖ f (xε)− xε‖= ‖ f (xε)− gε(xε)‖= ‖ f (xε )−Pε( f (xε )‖< ε,

as desired. 	


7.3 Generalization to Non-compact Situations

Here’s a sobering thought about the Schauder Fixed-Point Theorem: In infinite di-
mensional normed linear spaces there are not many compact sets. For example, we
noted just after our statement of the Schauder Theorem (Theorem 7.1, p. 75) that in
such spaces closed balls are never compact, and we gave an argument to prove this
for Hilbert space. The exercise below asks you to prove this for the situation we’ll
encounter in the next section.

Exercise 7.2. Suppose I is a compact interval of the real line. Show that no closed ball in
C(I) is compact.

All is not lost, however: thanks to the following result, Schauder’s theorem can be
applied to non-compact situations—provided that the maps in question have some
“built-in compactness.” Recall that to say a set in a metric space is “relatively com-
pact” means that its closure is compact.

Corollary 7.4. Suppose C is a closed convex subset of Banach space and f : C →C
is a continuous map. If f (C) is relatively compact in C then f has a fixed point.

Proof. Since f (C) is a relatively compact subset of the convex set C, Proposi-
tion C.6 of Appendix C guarantees that its convex hull is relatively compact. Thus
the closure, K, of conv( f (C)) is compact in our Banach space, and since C is closed,
K ⊂C. Thus f (K)⊂ f (C)⊂ K, so Schauder’s Theorem applies to the restriction of
f to K, and produces the desired fixed point. 	
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7.4 Application: Initial Value Problems

In Sect. 3.4 we used the Banach Contraction-Mapping Principle to prove that each
initial-value problem of the form

y′ = f (x,y), y(x0) = y0, (IVP)

with f satisfying appropriate smoothness conditions, has a unique solution on some
nontrivial interval centered at x0. The conditions required by this “ Picard–Lindelöf
theorem” (Theorem 3.10, p. 35) were that f be defined and continuous on some
open subset U of R2 containing the point (x0,y0), and that ∂ f

∂y , the partial derivative
of f with respect to the second variable, exist on U and be continuous there (or
just that f satisfy a uniform Lipschitz condition on U in the second variable). Now,
thanks to the Schauder Fixed-Point Theorem, we’ll be able to prove the existence of
solutions to (IVP) without having to assume extra second-variable smoothness for
f . However there will be a cost: the solutions need no longer be unique!

Theorem 7.5 (Peano’s Theorem). Suppose f is a real-valued function that is contin-
uous on some open subset of R2 containing the point (x0,y0). Then the initial-value
problem (IVP) has a solution on some nontrivial interval centered at x0.

Proof. By the work of Sect. 3.4 through Lemma 3.9 (p. 34) we know that there is
a compact real interval I centered at x0 such that the Banach space C(I) contains
a closed ball B centered at the constant function y0 with T (B) ⊂ B, where T is the
continuous integral operator on C(I) defined by

Tu(x) = y0 +
∫ x

t=x0

f (t,u(t))dt (u ∈C(I)).

We saw in Sect. 1.3 (p. 4) that a function y = u(x) is a solution on I of (IVP) if and
only if it is a fixed point of T . The Schauder Fixed-Point Theorem would imme-
diately provide such a fixed point if only B were compact in C(I). Unfortunately
Exercise 7.2 above shows that it’s not! However, we’ll be able to show that T (B) is
relatively compact in C(I), so the existence of a fixed point for T , and therefore of a
solution for (IVP), will follow from Corollary 7.4.

To prove this relative compactness it’s enough to show, by the Arzela–Ascoli
Theorem (Theorem B.8 of Appendix B), that T (B) is bounded in C(I) and equicon-
tinuous on I, i.e., for every ε > 0 there exists δ > 0 such that

x,y ∈ I & |x− y|< δ =⇒ |Tu(x)−Tu(y)|< ε ∀u ∈ B.

The boundedness of T (B) has already been established, since T (B) ⊂ B. As for
equicontinuity: fix u ∈ B and note that for each pair of points x,y ∈ I with x ≤ y and
|x− y|< δ :
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|Tu(x)−Tu(y)| =
∣∣∣∣
∫ x

t=x0

f (t,u(t))dt −
∫ y

t=x0

f (t,u(t))dt

∣∣∣∣

=

∣∣∣∣
∫ y

t=x
f (t,u(t))dt

∣∣∣∣

≤
∫ y

t=x
| f (t,u(t))|dt

≤ M|x− y| .

Thus if ε > 0 is given and |x− y|< ε/M, then |Tu(x)−Tu(y)|< ε for every u ∈ B,
thus establishing the equicontinuity of T (B).

Now the equicontinuity of T (B) carries immediately over to its convex hull
conv(T (B)), which, being contained in B, is also bounded. Thus conv(T (B)) is rel-
atively compact, so K, its closure in C(I), is compact. Since T (B)⊂ K, Schauder’s
theorem applies to the restriction of T to K, and furnishes the desired fixed point. 	

Non-Uniqueness in Peano’s Theorem. In contrast to the Banach Contraction-
Mapping Principle, Schauder’s Theorem makes no claims about uniqueness for the
fixed point it produces. The example below shows that non-uniqueness can even
occur “naturally.” Consider the initial-value problem:

y′ =−2y1/2, y(0) = 1, t ≥ 0. (T)

The solution that comes immediately to mind is: y(t) = (1− t)2. Here’s another one:

y(t) =

⎧⎨
⎩

(1− t)2 (0 ≤ t ≤ 1)

0 (t ≥ 1).

The initial-value problem (T) expresses a physical phenomenon discovered by
Evangalista Toricelli (1608–1647). Toricelli’s Law states that water issues from a
small hole in the bottom of a container at a rate that is proportional to the square
root of the water’s depth (see, e.g., [33] for more details). In (T) the function y(t)
expresses the depth of the water in the container at time t ≥ 0. The second solution
to (T) is the realistic one for this interpretation; it asserts that the water starts out at
t = 0 with height 1 and flows out until the container runs dry at t = 1, and thereafter
stays dry. By contrast, the “obvious” solution y= (1−t)2 for all t ≥ 0 unrealistically
predicts that after the tank runs dry at t = 1 it miraculously starts filling up again.
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7.5 Application: Multifunctions Again

In the proof of the Kakutani Fixed-Point Theorem (Theorem 6.4, p. 68): if one
replaces RN with a normed linear space, and Brouwer’s Fixed-Point Theorem with
Schauder’s, then the argument goes through without further change, yielding the
following generalization:

Theorem 7.6 (A “Kakutani–Schauder” fixed-point theorem). If C is a nonvoid com-
pact, convex subset of a normed linear space and Φ : C ⇒C is a multifunction with
compact, convex values, and closed graph, then Φ has a fixed point.

Notes

The Schauder Fixed-Point Theorem. Schauder published this result in [107, 1930].

Generalizations of Schauder’s theorem. In 1935 Andrey Tychonoff [120] gener-
alized Schauder’s Theorem to arbitrary linear topological spaces (see Sect. 9.3, p.
106 for the definition) that are locally convex, i.e., for which the neighborhoods of
each point have a basis of convex sets. That same year Schauder posed the prob-
lem of extending his theorem to complete, metrizable, linear topological spaces.
This “Schauder Conjecture” remained open until 2001 when it was settled in the
affirmative by Robert Cauty [22]. In [31] Tadeusz Dobrowolski offers an expanded
exposition of Cauty’s work, along with further references and historical background.

Failure of the fixed-point property for non-compact convex sets. Proposition 7.2,
showing that the closed unit ball of infinite dimensional Hilbert space fails to have
the fixed-point property, is due to Kakutani[59, 1943]. The generalization to all in-
finite dimensional normed linear spaces was proved in 1951 by Dugundji [34, The-
orem 6.3, p. 362], who showed that in this setting the closed unit ball can always
be retracted onto its boundary. Later Victor Klee generalized Dugundji’s result even
further [62, Sect. 2.3] by showing that for every metrizable locally convex linear
topological space: if a convex set has the fixed-point property, then it must be com-
pact. Along with Tychonoff’s extension of the Schauder theorem, this characterizes
for metrizable locally convex spaces the convex sets with the fixed-point property;
they are precisely the compact ones.



Chapter 8
The Invariant Subspace Problem

LOMONOSOV’S FAMOUS THEOREM

Overview. This chapter is about the most vexing problem in the theory of linear
operators on Hilbert space:

THE INVARIANT SUBSPACE PROBLEM. Does every operator on Hilbert space
have a nontrivial invariant subspace?

Here “operator” means “continuous linear transformation,” and “invariant sub-
space” means “closed (linear) subspace that the operator takes into itself.” To say
that a subspace is “nontrivial” means that it is neither the zero subspace nor the
whole space. Examples constructed toward the end of the last century show that
in the generality of Banach spaces there do exist operators with only trivial invari-
ant subspaces. For Hilbert space, however, the Invariant Subspace Problem remains
open, and is the subject of much research. In this chapter we’ll see why invariant
subspaces are of interest and then will prove one of the subject’s landmark theorems:
Victor Lomonosov’s 1973 result, a special case of which states:

If an operator T on a Banach space commutes with a non-zero compact oper-
ator, then T has a nontrivial invariant subspace.

This result, which far surpassed anything that seemed attainable at the time, is only
part of what Lomonosov proved in an astonishing two-page paper [71] that intro-
duced nonlinear methods—in particular the Schauder Fixed-Point Theorem—into
this supposedly hard-core-linear area of mathematics.

Prerequisites. Basics of inner-product spaces, Hilbert and Banach spaces.
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8.1 Invariant Subspaces

For linear transformations on vector spaces for which no topology is assumed, “in-
variant subspace” will simply mean “subspace taken into itself by the transforma-
tion.” Eigenvalues give rise to an important class of nontrivial invariant subspaces.

Theorem 8.1 (Invariance of eigenspaces). Suppose T is a linear transformation
on a vector space V , and that T is not a scalar multiple of the identity. Let λ be an
eigenvalue of T . Then the subspace ker(T −λ I) is nontrivial and invariant for every
linear transformation on V that commutes with T .

Proof. Let E = kerT −λ I. By hypothesis there is a vector v∈V\{0}with T v= λv.
Thus v ∈ E , so E �= {0}. Since T �= λ I we know E �=V . Thus E is nontrivial.

Now suppose S is a linear transformation on V that commutes with T . Suppose
v ∈ E . We wish to show that Sv ∈ E , i.e., that T Sv− λSv = 0. This follows right
away from the commutativity of S and T :

T Sv−λSv= STv−λSv = S(λv)−λSv= λSv−λSv= 0. 	

Exercise 8.1 (Invariant subspaces without eigenvalues). Let C([0,1]) denote the Banach
space of complex-valued continuous functions on the unit interval [0,1], endowed with the
“max-norm”

‖ f ‖= max{| f (x)| : 0 ≤ x ≤ 1} ( f ∈C([0,1])).

Show that the Volterra operator, defined by

V f (x) =
∫ x

0
f (t)dt ( f ∈C([0,1]), x ∈ [0,1]),

is an operator that takes the Banach space C([0,1]) into itself, that has no eigenvalue, but
that nonetheless has nontrivial invariant subspaces.

Hyperinvariant subspaces. If a subspace of a Banach space is invariant for every
operator that commutes with a given operator T , we’ll call that subspace hyperin-
variant for T . Thus Theorem 8.1 shows that every operator on CN that’s not a scalar
multiple of the identity has a nontrivial hyperinvariant subspace. It’s not known,
however, if this is true for infinite dimensional Hilbert spaces. In other words, the
“Hyperinvariant Subspace Problem” is just as open as is the “Invariant Subspace
Problem.”

Why the Invariant Subspace Problem? In studying the Invariant Subspace Prob-
lem one is searching for two things: simplicity and approximation.

Simplicity. One hopes that restriction of an operator to an invariant subspace will
result in a simpler operator that provides insight into the workings of the original
one. This is just what happens in the finite dimensional setting where the study of in-
variant subspaces leads to Schur’s Theorem (Theorem 8.3 below), which asserts that
every operator on CN has—relative to an appropriately chosen orthonormal basis—
an upper-triangular matrix. Schur’s Theorem in turn leads to the Jordan Canonical
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Form (see, e.g., [51, Chap. 3]), which tells us that every operator on CN is similar
to either an operator of the form λ I +N, where λ is a scalar and N is nilpotent
(possibly the zero-operator), or to a direct sum of such operators.

For the infinite dimensional situation, suppose we have an operator T on a sepa-
rable Hilbert space and that T has a nontrivial invariant subspace M. Upon choosing
an orthonormal basis for M and completing it to one for the whole space we can
write—just as in the finite dimensional case—a matrix (an infinite one this time)
representing T with respect to this basis. This matrix will have a “block upper tri-
angular” form

[
A B
0 C

]
, where the matrix A represents the restriction of T to M, B

the restriction of PT to M⊥ (P being the orthogonal projection of our Hilbert space
onto M), and C the restriction to M⊥ of (I−P)T . In fact the existence of a nontrivial
invariant subspace is equivalent to T having such a matrix representation.

Approximation. For an operator T on a Banach space X , here’s a natural way to
construct an invariant subspace. Fix a non-zero vector x0 ∈ X and take the linear
span of its iterate sequence under T , i.e., look at the linear subspace of X consisting
of all vectors p(T )x0, where p is a polynomial with complex coefficients. This linear
subspace is taken into itself by T , hence so is its closure V = V (T,x0). Since V
contains x0, it is not the zero subspace; in fact V is the smallest T -invariant subspace
containing x0. If V �= X then we’ve produced a nontrivial invariant subspace for T .
On the other hand, if V = X then we have an approximation theorem: every vector
in X is the limit of a sequence of polynomials in T applied to the cyclic vector x0.

Example. Let T denote the linear transformation of “multiplication by x” on the
Banach space C([0,1]). More precisely,

(T f )(x) = x f (x) ( f ∈C([0,1]), 0 ≤ x ≤ 1).

It’s easy to see that T is a bounded operator on C([0,1]).

Claim: The constant function 1 is a cyclic vector for T .

Proof of Claim. For p a polynomial with complex coefficients, the vector p(T )1 is
just p, now viewed as a function on [0,1]. Thus V (T,1) is the closure in C([0,1]) of
the polynomials. Now convergence in C([0,1]) is uniform convergence on [0,1] so
by the Weierstrass Approximation Theorem [101, Theorem 7.26, p. 159],V (T,1) =
C([0,1]). 	


The operator of “multiplication by x” also makes sense for the Hilbert space
L2([0,1]), and since the continuous functions are dense therein, the function 1 is a
cyclic vector in that setting too. This is not to say that our operator T is devoid of
nontrivial invariant subspaces; it has non-cyclic vectors, too. For example, in the
setting of C([0,1]) each function f that takes the value zero somewhere on [0,1] is
a non-cyclic vector (exercise), so V (T, f ) is a nontrivial invariant subspace for T .
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Exercise 8.2. Characterize the cyclic vectors for the operator of “multiplication by x” when
setting is

(a) The Banach space C([0,1]).

(b) The Hilbert space L2([0,1]).

Exercise 8.3. Show that every operator on a non-separable Banach space has a nontrivial
invariant subspace. Thus the invariant subspace problem really concerns only separable
Banach spaces.

Exercise 8.4 (Reducing subspaces). A subspace is said to reduce an operator if it’s invariant
and has an invariant complement, i.e., if the whole space can be decomposed as the direct
sum of the original invariant subspace and another one. Not every operator, even in finitely
many dimensions, has a nontrivial reducing subspace; show that the operator induced on
C

2 by the matrix
[

0 1
0 0

]
does not have such a subspace. More generally the same is true for

every N ×N matrix whose N-th power is the zero-matrix, but whose (N − 1)-st power is
not.

Invariant subspaces and projections. Suppose X is a vector space, V a linear
subspace, and P a projection taking X onto V , i.e., P is a linear transformation with
P(X) = V whose restriction to V is the identity operator.1 The fact that P is the
identity map when restricted to its image can be expressed by the equation P2 = P.
Clearly the linear transformation Q = I −P is also a projection with PQ = QP = 0.
Since P+Q = I these equations tell us that the projections P and Q decompose X
into the direct sum of V = P(X) and W = Q(X).

Proposition 8.2. Suppose X is a vector space, V a linear subspace, P a projection
taking X onto V , and T : X → X a linear transformation on X. Then the following
three statements are equivalent:

(a) T (V )⊂V.
(b) PT P = T P.
(c) QTQ = QT, where Q = I−P.

Proof. Statements (a) and (b) both assert that the restriction of P to T (V ) is the
identity map on T (V ). As for the equivalence of (b) and (c): note that since Q= I−P
we have

QT Q = T −TP−PT +PTP = QT +(PTP−TP)

so QT Q = QT if and only PT P−TP = 0. 	


8.2 Invariant Subspaces in C
N

Invariant subspaces are important even for finite dimensional operators. For exam-
ple, the following 1909 result of Issai Schur is a fundamental result in matrix theory.

1 If X were a normed linear space with P continuous we could use the language introduced in
Sect. 4.1 and call P a retraction of X onto V .
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Theorem 8.3 (Schur’s Triangularization Theorem). Suppose V is a finite dimen-
sional complex inner-product space and T is a linear transformation on V . Then V
has an orthonormal basis relative to which the matrix of T is upper triangular.

Schur’s Theorem is really a statement about invariant subspaces. Suppose
dimV = N, and let V = (v j : 1 ≤ j ≤ N) be the orthonormal basis it promises
for the operator T (it’s important to note here that “basis” means: “linearly indepen-
dent spanning set, written as an ordered list”). Let [T ] denote the matrix of T with
respect to this basis, i.e., for each index j, the j-th column of [T ] is the column vec-
tor of coefficients of T v j with respect to the basis V . Thus the upper-triangularity of
[T ] asserts that T v j belongs to the linear span Vj of the basis vectors (v1,v2, . . . ,v j),
so for each j between 1 and N:

Vj is a nontrivial invariant subspace for T .

Schur’s Theorem therefore promises, for each operator T on V , the existence of a
descending chain of invariant subspaces

V =VN ⊃VN−1 ⊃ ·· · ⊃V1 ⊃V0 = {0} , (8.1)

each of which has codimension one in the preceding one. It’s an easy exercise to
see that the existence of such a chain is equivalent to that of the basis promised by
Schur’s Theorem.

Proof of Schur’s Theorem. This proceeds by induction on the dimension N. For
N = 1 the theorem is trivial, so suppose N > 1 and the result is true for N − 1. The
transformation T has an eigenvalue; let v1 be a unit eigenvector for this eigenvalue,
let V1 be the (one dimensional) linear span of the singleton {v1}, and let W = V⊥

1 ,
the orthogonal complement in V of V1. The subspace W has dimension N − 1, but
unfortunately it need not be invariant under T . To remedy this, let P denote the
orthogonal projection of V onto W and consider the operator R = PT , for which W
is invariant. Our induction hypothesis applies to the restriction R|W of R to W , and
produces an orthonormal basis (v2,v3, . . . ,vN) for W relative to which the matrix of
R|W is upper triangular.

Thus (v1,v2,v3, . . . ,vN) is an orthonormal basis for V . We aim to show that the
matrix of T with respect to this basis is upper triangular, i.e., that T v j lies in the
linear span of the vectors v1,v2, . . .v j for each index 1 ≤ j ≤ N. We already know
T v1 ∈V1, so suppose j > 1. We have

T v j = (I−P)Tv j +PTv j = (I −P)Tv j +Rv j

with I−P the orthogonal projection of V onto V1. Now R takes v j into the subspace
spanned by the vectors vk for 2 ≤ k ≤ j. Thus T v j belongs to the linear span of the
vectors (v1,v2, . . . ,v j), as we wished to prove. 	


Applications of Schur’s Theorem. Before moving on let’s see how Schur’s The-
orem makes short work of several fundamental results of linear algebra.
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Hermitian Operators. Let V be a finite dimensional inner-product space, with inner
product 〈·, ·〉. Then to each operator T on V we can attach another one called the
adjoint T ∗ of T , defined by

〈T x,y〉= 〈x,T ∗y〉 (x,y ∈V ). (8.2)

To say an operator T on V is hermitian means that T = T ∗. If (v1,v2, . . . vN) is an
orthonormal basis for V , then an operator T on V is hermitian if and only if (8.2)
holds with T = T ∗ when x and y run through the elements of this basis, i.e., when

〈T vi,v j〉= 〈vi,T v j〉= 〈T v j,vi〉∗, (1 ≤ i, j ≤ N),

where the notation λ ∗, when applied to a complex scalar λ , denotes “complex con-
jugate.” Thus:

An operator T on V is hermitian if and only if, with respect to every (or even
“some”) orthonormal basis, its matrix and the conjugate-transpose of this
matrix are the same.

With these preliminaries in hand we obtain from Schur’s Theorem—almost
trivially—one of the most important theorems of linear algebra:

Corollary 8.4 (The Spectral Theorem for hermitian operators). Suppose T is a her-
mitian operator on a finite dimensional inner-product space. Then the space has an
orthonormal basis relative to which the matrix of T is diagonal.

Proof. Schur’s Theorem promises an orthonormal basis for the space, relative to
which T has an upper-triangular matrix. With respect to this basis, the matrix of the
adjoint T ∗ has all entries above the main diagonal equal to zero. But T = T ∗, so the
matrix of T has all entries off the main diagonal equal to zero. 	


Why is this result is called a “spectral theorem?” For a finite dimensional op-
erator, the set of eigenvalues is often called the “spectrum,” and for each diagonal
matrix this is precisely the set of diagonal entries. With this in mind, it’s an easy
exercise to check that the above Corollary can be restated:

If T is a hermitian operator on a finite dimensional inner-product space V
then there is an orthonormal basis for V consisting of eigenvectors of T .

Normal Operators. To say an operator on a finite dimensional inner-product space,
or even a Hilbert space, is normal means that the operator commutes with its ad-
joint. Hermitian operators are normal, but not all normal operators are hermitian
(Example: a diagonal matrix with at least one non-real entry.). It turns out that the
spectral theorem for hermitian operators holds as well for normal operators. The
proof follows the hermitian model, once we have the following surprisingly simple
generalization of Schur’s Theorem.
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Theorem 8.5 (Schur’s Theorem for Commuting Pairs of Operators). If two oper-
ators commute on a finite dimensional inner-product space then the space has an
orthonormal basis with respect to which each operator has upper-triangular matrix.

Proof. This one is a minor modification of the induction proof of Theorem 8.3.
Let V be the inner-product space in question, with N = dimV , and let S and T be
operators on V that commute. The result we want to prove is trivially true for N = 1,
so suppose it holds for dimension N − 1, where N > 1. We want to prove it for
dimension N. Once again we observe that T has an eigenvalue—call it μ , but now,
instead of choosing just one unit T -eigenvector for μ , we look at the full eigenspace
E = ker(T − μI), and note that since S commutes with T , Theorem 8.1 guarantees
that this eigenspace is invariant for S. Thus the restriction of S to E has an eigenvalue
λ , hence a corresponding unit eigenvector v1, which by design is a λ -eigenvector for
T . As before, let V1 be the span of the single vector v1, let W =V⊥

1 , and let P be the
orthogonal projection of CN onto W . Let A = PS and B = PT . Both operators take
W into itself, so if we can show that their restrictions to W commute, our induction
hypothesis will supply an orthonormal basis for W relative to which the matrices
of these restrictions are both upper triangular. Upon adjoining v1 to this basis, then
applying to both S and T the argument that finished off the proof of Theorem 8.3,
we’ll be done.

In fact, it’s easy to see that A commutes with B on all of V . Since W⊥ = V1 is
invariant for both S and T , we know from the equivalence of (a) and (c) in Proposi-
tion 8.2 (with the roles of P and Q reversed) that PTP = PT and PSP = PS. Thus

AB = PSPT = PST = PTS = PTPS = BA,

where the third inequality uses the commutativity of S and T . 	


Corollary 8.6 (The Spectral Theorem for normal operators onCN). If T is a normal
operator on CN then there exists an orthonormal basis for CN relative to which the
matrix of T is diagonal.

The above proof of Schur’s Theorem for commuting pairs of operators can easily
be extended to finite collections of commuting operators. The following exercise
shows that this proof extends even further:

Exercise 8.5 (Triangularization for commuting families). Show that: If C is a family of
commuting operators on a finite dimensional inner-product space V , then there exists an
orthonormal basis of V relative to which each operator in C has upper-triangular matrix.

In particular, if the commuting family C consists of normal operators, there’s an orthonor-
mal basis for V relative to which each operator in the family has a diagonal matrix.

Outline of proof: The key is to prove that the family C has a common eigenvector; then
the proof can proceed like that of Theorem 8.5. Note first that there are nontrivial sub-
spaces of V that are C -invariant (meaning: “invariant for every operator in C ”). Example:
the eigenspace of any operator in C . Let m be the minimum of the dimensions of all the
eigenspaces of operators in C , so m ≥ 1. Choose a C -invariant subspace of CN having this
minimum dimension m. Show that every operator in C is, when restricted to that subspace,
a scalar multiple of the identity.
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8.3 Compact Operators

The result we seek to understand, Lomonosov’s Theorem, deals with two concepts:
invariant subspaces and compact operators. Having spent some time getting a feel-
ing for the former, let’s now take a moment to review some of the fundamental facts
about the latter.

A linear transformation on a normed linear space is said to be compact if it takes
the closed unit ball into a relatively compact set. Since relatively compact sets are
bounded it follows from Proposition C.8 (Appendix C, p. 196) that: Every compact
linear transformation is continuous, and so is an “operator.”

Exercise 8.6 (Basic Facts About Compact Transformations). Here all linear transformations
act on a normed linear space X .

(a) If dimX < ∞ then every linear transformation on X is compact.

(b) For operators A and K on X: if K is compact then so are AK and KA (i.e., the compact
operators on X form a closed ideal in the algebra of all operators).

The following exercise gives some feeling for the concept of compactness for a
natural class of concrete operators on the Hilbert space �2.

Exercise 8.7. For a bounded sequence Λ := (λk) of complex numbers, define the linear
“diagonal map” DΛ on �2 by DΛ (x) = (λkξk) for each vector x = (ξk) ∈ �2. Show that DΛ
is continuous on �2, and compact if and only if λk → 0.

Suggestion. For compactness: first show that a subset S of �2 is relatively compact if and
only if it is “equicontinuous at ∞” in the sense that

lim
n→∞

sup
f∈S
∑
k≥n

| f (k)|2 = 0.

As noted in Exercise 8.6(a), every operator on a finite dimensional normed linear
space is compact. By contrast we pointed out at the beginning of Sect. 7.2 that the
unit ball of an infinite dimensional Hilbert space is not compact; according to Exer-
cise 7.2 the same is true for C([0,1]). Thus the identity operator is not compact on
either of these spaces. More is true:

Theorem 8.7. If a normed linear space is infinite dimensional then its closed unit
ball is not compact.

This result, along with Proposition C.9 of Appendix C, shows that for normed
linear spaces, compactness of the closed unit ball characterizes finite dimensional-
ity. The key to its proof is the following lemma:

Lemma 8.8. Suppose X is a normed linear space, Y a finite dimensional proper
subspace, and 0 < r < 1. Then there exists a unit vector x ∈ X whose distance to Y
is greater than r.

Proof. Fix a vector x0 ∈ X that is not in Y , and let d denote the distance from x0 to
Y , i.e.,
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d = inf{‖x0 − y‖ : y ∈ Y}.
According to Corollary C.10 of Appendix C, the subspace Y is complete in the
norm-induced metric on X , thus Y is closed in X . It follows that d > 0, hence there
exists y0 ∈Y with ‖x0 − y0‖< d/r.

Claim: The unit vector x = x0−y0
‖x0−y0‖ is the one we seek.

Proof of Claim. If y ∈ Y then

x− y =
1

‖x0 − y0‖
[
x0 − (y0 + ‖x0 − y0‖y)︸ ︷︷ ︸

∈Y

]
.

Thus the term on the right in square brackets has norm ≥ d, so

‖x− y‖ ≥ d/‖x− x0‖> d/(d/r) = r,

hence the distance from x to Y is > r, as desired. 	

Proof of Theorem 8.7. Let X be an infinite dimensional normed linear space. Fix a
countable linearly independent set {xn}∞1 in X and let Yn be the linear span of the
vectors {x1, . . . ,xn}. There results the strictly increasing chain

Y1 ⊂ Y2 ⊂ Y3 ⊂ ·· ·

of subspaces of X , each of which is finite dimensional hence closed in its successor.
By Lemma 8.8 there is, for each index n > 1, a unit vector yn ∈Yn at distance ≥ 1/2
to yn−1. Let y1 = x1/‖x1‖. Suppose the indices i and j are different, say i < j. Then
yi ∈ Yj−1, so ‖yi − y j‖ ≥ 1/2. Thus (yn) is a sequence of vectors in the closed unit
ball of X that has no convergent subsequence. 	

Corollary 8.9. The identity operator on a normed linear space is compact if and
only if the space is finite dimensional.

This suggests that for operators, compactness should be intertwined with finite
dimensionality. The following result gives one important way in which this is true;
it’s the beginning of what’s known as “The Riesz Theory of Compact Operators.”

Proposition 8.10. Suppose K is a compact operator on a Banach space. If λ �= 0 is
an eigenvalue of K then the eigenspace ker(K −λ I) is finite dimensional.

Proof. We may suppose without loss of generality that λ = 1 (exercise). Thus M :=
ker(K − I) is an invariant subspace for K and the restriction of K to M is a compact
operator on M. Since this restriction equals the identity operator on M, the closed
unit ball of M must be compact, hence M is finite dimensional by Theorem 8.7. 	


On infinite dimensional Banach spaces, compact operators need not have eigen-
values. The exercise below provides an example: the Volterra operator, which was
shown in Exercise 8.1 to have no eigenvalues.

Exercise 8.8 (Compactness Without Eigenvalues). Use the Arzela–Ascoli Theorem (Ap-
pendix B, Theorem B.8) to show that the Volterra operator is compact on C([0,1]).
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8.4 Lomonosov’s Theorem

We now turn to what is easily the most celebrated result on the existence of invariant
subspaces. Here’s a special case:

Theorem 8.11 (Lomonosov 1973). Every non-zero compact operator on an infinite
dimensional Banach space has a nontrivial hyperinvariant subspace.

This result says that not only does every operator commuting with a non-zero
compact have a nontrivial invariant subspace—already far more than was previ-
ously known—but also that there’s even a nontrivial subspace invariant for all the
operators commuting with the given compact. We’ll devote the rest of this section
to proving this remarkable result; the method of proof will provide an even more
remarkable generalization.

The key to Theorem 8.11 is the following Lemma which, although Lomonosov
did not state it explicitly, is in fact the crucial step in his argument.

Lemma 8.12. Suppose X is an infinite dimensional Banach space and K is a non-
zero compact operator on X. If K does not have a hyperinvariant subspace then
there is an operator A on X that commutes with K and for which KA has a fixed
point in X\{0}.

Proof that Lemma 8.12 implies Theorem 8.11. Suppose K is a non-zero compact
operator on X that has no hyperinvariant subspace. Let A be as in the Lemma.
Thus M = ker(AK − I) is not the zero subspace, and since AK is compact (by Ex-
ercise 8.6(b)) its eigenspace M is finite dimensional (Proposition 8.10), hence not
equal to X . Now K commutes with A, hence it commutes with AK. Theorem 8.1
guarantees that M is invariant for every operator that commutes with AK, hence M
is invariant for K. Since M is finite dimensional the restriction of K to M—hence K
itself—has an eigenvalue; call it λ .

The corresponding eigenspace E := ker(K−λ I) is a non-zero subspace of X that
is, by Theorem 8.1, invariant for every operator that commutes with K. Also, E �= X ;
if λ = 0 this follows from the fact that K �= 0, while if λ �= 0 then it follows from
the finite dimensionality of E . Thus E is a nontrivial hyperinvariant subspace for
K, contradicting our assumption that K had no such subspace. Conclusion: K does
have a nontrivial hyperinvariant subspace. 	


Proof of Lemma 8.12. We’re given a non-zero compact operator K on an infinite
dimensional Banach space X and are assuming that K has only trivial hyperinvariant
subspaces. Our goal is to produce an operator A that commutes with K such that AK
has a non-zero fixed point (i.e., has 1 as an eigenvalue).

Step I. An Algebra of Operators. Let A denote the collection of operators on X that
commute with K, the notation reflecting the fact that A is an algebra of operators,
i.e., closed under addition, scalar multiplication and multiplication (= composition)
of operators. In particular: for each x ∈ X the set of vectors A x = {Ax : A ∈A } is
a linear subspace of X (since A is closed under addition and scalar multiplication
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of operators) that’s taken into itself by each operator in A (since A is closed under
operator multiplication). Furthermore A contains the identity operator on X , so
if x �= 0 then A x �= {0}. Since we’re assuming K has only trivial hyperinvariant
subspaces, A x has to be dense for each 0 �= x ∈ X ; otherwise its closure would be a
nontrivial hyperinvariant subspace for K.

Step II. Some Sets. Since multiplication of K by a non-zero scalar changes neither
its compactness, its commutation properties, nor its hyperinvariant subspace struc-
ture, we may without loss of generality assume that ‖K‖= 1. Thus K is contractive:
‖Kx‖ ≤ ‖x‖ for every x ∈ X . Choose a vector x0 ∈ X for which ‖Kx0‖> 1. Because
‖K‖= 1 this implies ‖x0‖> 1, so the closed ball

B = {x ∈ X : ‖x− x0‖ ≤ 1}

does not contain the origin. Let C denote the closure in X of K(B). Since K is a
compact operator and B is a bounded subset of X , the set C is compact. In addition,
since B is convex and K linear, C is convex. Finally (and crucially), as the calculation
below shows, C does not contain the origin. Indeed, for each x ∈ X :

‖Kx‖= ‖K(x− x0)+Kx0‖ ≥ ‖Kx0‖−‖K(x− x0)‖ ≥ ‖Kx0‖−‖x− x0‖ ,

the last inequality arising from the contractivity of K. Thus for each x ∈ B we have
‖Kx‖ ≥ ‖Kx0‖− 1 := δ > 0, hence every vector in K(B), so also in its closure C,
has norm at least δ .

Some wishful thinking. If we could produce an operator A∈A for which A(C)⊂B, then KA,
which also belongs to the algebra A , would map the compact, convex set C continuously
into itself, so by Schauder’s theorem would have the desired fixed point. This is not quite
what’s going to happen, but it’s still worth keeping in mind as we proceed.

Step III. A Map with a Fixed Point. Let B◦ denote the interior of the closed ball
B. Suppose 0 �= y ∈ X . Since A y is dense in X there exists A ∈ A for which y ∈
A−1(B◦). Thus {A−1(B◦) : A ∈A } is an open cover of X\{0}, hence an open cover
of C. Since C is compact, it has a finite subcover U = {Uj}N

1 , where Uj := A−1
j (B◦).

While we haven’t produced a map A ∈ A with A(C) ⊂ B, we have produced a
finite collection {A1,A2, . . . ,AN} of operators in A , each of which takes a piece of
C into B, as shown by the right-hand side of Fig. 8.1.

Fig. 8.1 What we want (left) vs. what we’ve got (right)
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Lomonosov’s great insight was to use a standard “nonlinear” argument to glue the
operators A j together into a continuous map that takes C into B. By Proposition B.6
of Appendix B there is a partition of unity subordinate to the open covering U of
C, i.e., a set {p j : 1 ≤ j ≤ N} of continuous functions taking C into the unit interval
[0,1] that sum to 1 at each point of C, and have the property that for each index j
the function p j is ≡ 0 on C\Uj. Define Φ : C → X by

Φ(y) =
N

∑
j=1

p j(y)A jy (y ∈C) .

Being a finite sum of continuous maps, Φ is continuous. Moreover Φ(y) is, for each
y ∈ C, a convex combination of vectors in the convex ball B, so it, too, belongs to
B. Thus Φ is a continuous map taking C into B, hence K ◦Φ takes C continuously
into itself. Since C is a compact, convex subset of a Banach space, the Schauder
Fixed-Point Theorem (Theorem 7.1) guarantees that K ◦Φ has a fixed point y0 ∈C.

Step IV. Linearization. Let A =∑N
j=1 p j(y0)A j, a linear combination of operators in

A and therefore also an operator in A . Moreover

(KA)y0 = K

(
N

∑
j=1

p j(y0)A jy0

)
= K(Φ(y0)) = y0 .

Thus A ∈ A and y0 ∈ X\{0} are the operator and vector we seek. This establishes
Lemma 8.12 and with it, Lomonosov’s Theorem 8.11. 	


Exercise 8.9. The hypothesis of Theorem 8.11 does not hold for every operator; there exist
operators that commute with no non-zero compact operator. For ϕ ∈C([0,1]) not identically
zero, let Mϕ denote the operator on C([0,1]) of “multiplication by ϕ ,” i.e.,

(Mϕ f )(x) = ϕ(x) f (x) (0 ≤ x ≤ 1; f ∈C([0,1]) .

If ϕ(x)≡ x we’ll write Mx instead of Mϕ . Show that the operators Mϕ are the only ones that
commute with Mx, and that none of these is compact. Hint: If T = Mϕ then ϕ = T1.

We mentioned earlier that there are Banach space operators with no nontrivial in-
variant subspace, but that the problem is still open for Hilbert space (see the Notes
at the end of this chapter for references and more details). Thus Exercise 8.9 would
have more significance if it were set in a Hilbert space. The following modification
does just that, replacing C[0,1] with the Hilbert space L2 = L2([0,1]) consisting of
(a.e.-equivalence classes of) measurable complex-valued functions on [0,1] whose
moduli are square integrable with respect to Lebesgue measure. The arguments are
similar to those of the exercise above, but they require a bit more work.

Exercise 8.10. Let L∞ denote the space of (a.e.-equivalence classes of) essentially bounded
complex-valued functions on [0,1]. Define multiplication operators Mϕ for ϕ ∈ L∞, and Mx,
as above. Show that if ϕ ∈ L∞\{0} then Mϕ is an operator on L2 that is not compact. Show
that if an operator T on L2 commutes with Mx, then T = Mϕ for some ϕ ∈ L∞.
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8.5 What Lomonosov Really Proved

According to Exercise 8.10 there exist operators on L2 that commute with no non-
zero compact operator. Consequently Lomonosov’s Theorem 8.11, spectacular as it
is, does not solve the Invariant Subspace Problem for Hilbert space. However the
story does not end here. At the very end of his paper [71], Lomonosov notes that the
reasoning he used to prove Theorem 8.11 yields more. In what follows, let’s agree
to call an operator “nonscalar” if it is not a scalar multiple of the identity operator.

Theorem 8.13 (Lomonosov). If a nonscalar operator T on an infinite dimensional
Banach space commutes with a non-zero compact operator, then T has a nontrivial
hyperinvariant subspace.

Our original Lomonosov Theorem implies that, on an infinite dimensional Ba-
nach space, every operator that commutes with a non-zero compact operator has a
nontrivial invariant subspace. This one implies that a nontrivial invariant subspace
exists for every operator that commutes with a nonscalar operator that commutes
with a compact one.

Proof of Theorem 8.13. Let X be our infinite dimensional Banach space. The proof
of Lemma 8.12 goes through word-for-word to establish this:

Lemma 8.12, Enhanced. Suppose A is an algebra of operators on X, and K is
a non-zero compact operator on X. Suppose there is no nontrivial closed subspace
invariant for every member of A . Then there exists an operator A ∈ A for which
KA has a fixed point in X\{0}.

Suppose T is a nonscalar operator on X that commutes with our non-zero com-
pact operator K. Let A denote the algebra of all operators that commute with T . We
wish to show that there is a closed subspace, neither the zero subspace nor the whole
space, that is invariant under every operator in A . Suppose this is not the case. Then
by the enhanced Lemma 8.12 we know that there exists A ∈A such that KA has a
fixed point in X\{0}. The eigenspace M := ker(KA− I) is, just as before: �= {0},
finite dimensional so �= X , and invariant for every operator that commutes with KA.
Since T commutes with both K and A, it commutes with KA, hence M is invariant
for T . The restriction of T to the finite dimensional invariant subspace M therefore
has an eigenvalue λ . The eigenspace Mλ := ker(T −λ I) is a closed subspace of X
that is: not the zero subspace, not X (because T is nonscalar), and invariant for every
operator that commutes with T . But we’ve assumed that A has no such subspace.
Contradiction! Therefore A does have such a subspace. 	


Notes

Schur’s Triangularization Theorem. This occurs in Schur’s paper [109, p. 490],
where it’s applied to the study of integral equations. According to Horn and Johnson
[51, p. 101], Schur’s Theorem is “perhaps the most fundamentally useful fact of
elementary matrix theory.” Exercise 8.5 is from [51], see in particular Theorems
1.3.19, pp. 63–63 and 2.3.3, p. 103.
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Compact operators. Lemma 8.8 is due to F. Riesz; it’s Lemma 1 on p. 218 of his
book [98] with Sz.-Nagy. Sections 76–80 of this book contain a nice exposition,
set in the Hilbert space L2, of the Riesz Theory of Compact Operators, a funda-
mental piece of which is—as we noted above—Proposition 8.10. The Riesz theory
shows that compact operators behave “spectrally” very much like operators on fi-
nite dimensional spaces. For a modern exposition set in Banach spaces, see [103,
Sects. 4.16–4.25, pp. 103–111]. J. H. Williamson showed in [124] that with the
proper definition of “compact operator” the Riesz theory carries over to arbitrary
(Hausdorff, but not necessarily locally convex) topological vector spaces.

Lomonosov’s Theorem: prehistory. In the early 1930s von Neumann proved that ev-
ery compact operator on Hilbert space has a nontrivial invariant subspace. He never
published this result, and it was rediscovered about thirty years later by Aronszajn
who, along with K. T. Smith, simplified the proof and in [4] generalized the result
to Banach spaces.

The work of Aronszajn and Smith suggested the question of whether or not every
operator whose square is compact has a nontrivial invariant subspace. This remained
open until 1966 when Bernstein and Robinson in [11] showed, using non-standard
analysis, that an operator has a nontrivial invariant subspace whenever some poly-
nomial (not ≡ 0) in it is compact.

Various authors refined the Bernstein–Robinson proof, replacing their polyno-
mial hypotheses with one of the form: “Some of limit of polynomials or rational
functions in the operator is compact.” Lomonosov’s results superseded most of this
earlier work. The version presented here of Lomonosov’s work closely follows his
original paper [71], as well as the exposition [92] of Pearcy and Shields.

Chains of commutation. For operators S and T on some Banach space, let’s write
T ↔ S whenever S commutes with T , and let’s write K for a generic non-zero com-
pact operator. Theorem 8.11 implies that:

T ↔ K =⇒ T has a nontrivial invariant subspace.

We’ve observed that, thanks to Exercise 8.10, the above consequence of
Lomonosov’s theorem doesn’t solve the Invariant Subspace Problem for Hilbert
space. However Theorem 8.13, the “real” Lomonosov Theorem, tells us that:

T ↔ S (nonscalar) ↔ K =⇒ T has a nontrivial invariant subspace,

so it makes sense to ask if this might solve the Invariant Subspace Problem for
Hilbert space, i.e., “Does every operator on Hilbert space commute with a nonscalar
operator that commutes with a non-zero compact?” This hope was destroyed in 1980
by Hadwin et al. [44].

One might still hope to solve the Invariant Subspace Problem by extending
Lomonosov’s method to get a result for longer “commutation chains.” Unfortunately
Troitsky in [119] showed that at least for the Banach space �1 there’s no hope for
such a result (see below for more details).
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Counterexamples for Banach spaces. Per Enflo produced the first example of an
operator on a Banach space possessing no nontrivial invariant subspace. Enflo’s
paper is [38, 1987], but his result was already circulating in preprint form over a
decade earlier. A few years after Enflo released his preprint, Charles Read produced
a much simpler counterexample, and then went on to find one set in the sequence
space �1 [95, 1986]. Read later gave examples of Banach-space operators having no
closed invariant subset [96, 1988].

In [119] Troitsky showed for Read’s operator T on �1 that there exist non-
scalar operators S1 and S2 on �1 such that T ↔ S1 ↔ S2 ↔ K, thus showing that
Lomonosov’s arguments cannot be extended to handle longer commutation chains.

In a totally different direction Argyros and Haydon [3] recently showed that there
exist Banach spaces on which every bounded operator has the form “compact plus
scalar multiple of the identity.” Thus every bounded operator on such a space has a
nontrivial invariant subspace (by the Aronszajn-Smith theorem), and even one that
is hyperinvariant (by Lomonosov’s theorem). Needless to say, such Banach spaces
do not occur in the course of every-day mathematical life.

The current state of affairs. It’s impossible to summarize quickly the many research
efforts currently under way related to the Invariant Subspace Problem. The book [24,
2011] is an up-to-date exposition of the subject, while [94, 2003] is the standard
reference for the state of the art circa 1973, and contains an outline, along with
extensive references, of subsequent results up to 2003.



Part IV
Fixed Points for Families of Maps



In these final five chapters we’ll turn our attention to fixed-point theorems in-
volving, not just a single map, but a family of them for which we aim to produce
a common fixed point. Necessarily we’ll have to place severe restrictions on our
classes of maps, but even so the results obtained will have surprising consequences
that connect topology, algebra, and measure theory.

The fixed-point theorems we’ll prove guarantee for every compact topological
group the existence of Haar measure: a Borel probability measure that is invariant
under the action of the group on itself. The model for this is arc-length measure on
the unit circle, the group-invariance of which is the basis for Fourier analysis. The
invariant measures we’ll produce in the next few chapters play a similar role for the
harmonic analysis of functions on compact groups, and we’ll say something about
how this goes in the abelian case.

An equally important thread involves the use of fixed-point theorems to produce
finitely additive “measures” that are invariant under certain groups of transforma-
tions. This will lead us into the study of “paradoxical decompositions,” the most
famous example being the Banach–Tarski Paradox, which asserts that the unit ball
of R3 can be split up into a finite number subsets that can be reassembled, using
only rigid motions, into two unit balls. We’ll spend some time understanding this
paradox, and will show, via fixed-point theorems, that nothing similar is possible
for either the unit circle or the unit disc.



Chapter 9
The Markov–Kakutani Theorem

FIXED POINTS FOR COMMUTING FAMILIES OF AFFINE MAPS

Overview. Consider the unit circle, the set T of complex numbers of modulus one.
Complex multiplication makes T into a group, and the topology inherited from the
complex plane makes it into a compact metric space. Here topology and algebra
complement each other in that the group operations of multiplication T×T → T

and inversion T→ T are continuous. Tied up with the topology and algebra of T is
arc-length measure defined on the Borel subsets of T, the salient property of which
is its rotation invariance: σ(γE) = σ(E) for each γ ∈ T and Borel subset E of T.

In this chapter we’ll study a remarkable fixed-point theorem due to Markov and
Kakutani, based on which we’ll show that not just the unit circle, but in fact every
compact abelian group, has such a “Haar measure”: a finite regular Borel probability
measure invariant under the action of the group.1 More generally, thanks again to
the Markov–Kakutani theorem, we’ll be able to produce both finitely and countably
additive set functions that are invariant under quite general families of commuting
transformations, a phenomenon that will point the way to our study in Chaps. 10–12
of the concepts of “amenability,” “solvability,” and “paradoxicality.”

Prerequisites. Some general topology: bases, compactness, product topologies,
continuity of mappings. Basic measure theory. Acquaintance with (or at least will-
ingness to believe) the Tychonoff Product Theorem and the version of the Riesz
Representation Theorem that produces measures from positive linear functionals.

9.1 Topological groups and Haar measure

Topological Groups. Suppose G is a group with its operation written multiplica-
tively. We’ll think of group multiplication as a map (x,y)→ xy that takes G×G into
G, and inversion x → x−1 as a mapping of G into itself. If G has a topology (here,

1 Haar measure is named for the Hungarian mathematician Alfred Haar (1885–1933). For further
background see the Notes at the end of Chap. 13.
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always Hausdorff) that renders these two maps continuous, we’ll call G, endowed
with this topology, a topological group. Thus the circle group T described above
is a compact topological group, and same is true of every product—both algebraic
and topological—of T with itself. Euclidean space RN with the usual topology and
addition as its operation is a topological group that is not compact. Every group is a
topological group in the discrete topology, the compact “discrete groups” being just
the finite ones.

Exercise 9.1. Prove that:

(a) The unit circle T, as described above, is a topological group.

(b) For each integer N ≥ 2 the product space T
N , consisting of N-tuples of elements of

T is, with coordinatewise multiplication and the product topology (i.e., the topology
it inherits from C

N ), a compact topological group.

(c) N-dimensional Euclidean space R
N is a topological group with its usual topology

and the operation of vector addition.

(d) GLN(R), the collection of invertible N ×N real matrices, endowed with the usual

matrix operations and the topology it inherits as a subset of R
N2

, is a (non-
commutative) topological group.

The most commonly studied topological groups are the locally compact ones, i.e.,
those for which at every point the topology has a base of compact neighborhoods.
All the examples in Exercise 9.1, indeed all the groups we’ll study from now on, are
locally compact. Except for occasional digressions, we’ll focus our attention on the
compact ones.

Exercise 9.2. Show that every infinite subgroup of the circle group T is dense. Use this
result to show that the set of points {sinn : n ∈ Z} is dense in the closed unit interval.

Borel sets and measures. In a topological space the collection of Borel sets is the
sigma algebra generated by the open sets. Since sigma algebras are closed under the
taking of complements and countable unions, each closed subset is a Borel set, as
are countable unions and intersections of Borel sets.

Exercise 9.3 (Borel sets and continuity). Show that every continuous real-valued function
on a topological space is measurable with respect to the Borel subsets of that space. Show
that, at least for metric spaces, the sigma algebra of Borel sets is the smallest one with this
property. Can you generalize this result beyond metric spaces?2

A Borel measure is simply a measure on the Borel sets of a topological space. To
say a Borel measure is regular means that for every Borel set E:

μ(E) = inf{μ(U) : U
open ⊃ E}= sup{μ(K) : K

compact ⊂ E} (9.1)

i.e., the measure of each Borel set can be approximated arbitrarily closely from the
outside by open sets and from the inside by compact ones.

2 For more on this see the Notes at the end of this chapter.



9.2 Haar Measure as a Fixed Point 103

In this chapter we’ll consider only regular Borel measures that are positive and
have total mass one, i.e., regular Borel probability measures (henceforth: RBPMs).

Definition 9.1. A Haar measure for a compact topological group G is an RBPM that
is invariant under the group action in the sense that μ(gB) = μ(B) for every g ∈ G
and Borel subset B of G (here gB is the set of elements gb as b runs through B).

It turns out that every compact group has a (unique) Haar measure. In this chapter
and the following two we’ll use fixed-point theorems to prove this, concentrating
for simplicity on the metrizable case. We’ll discuss how these arguments can be
enhanced to work in the general case, and in Chap. 12 will discuss an extension to
locally compact groups.

Some examples of Haar measure. Arc-length measure (divided by 2π) for the unit
circle T, the product of arc-length measure (over 2π) with itself N times on TN ,
Lebesgue measure on RN .

Exercise 9.4. Show that (commutative or not) every finite group, in its discrete topology,
has a unique Haar measure.

Exercise 9.5. Suppose G is a metrizable compact group with Haar measure μ . Show that if
E is a Borel subset of G with μ(E)> 0 then E ·E−1 (the set of points xy−1 with x and y in
E) contains an open ball.

Suggestion: Show that the function F : G → [0,1] defined by

F(x) =
∫

G
χE(x

−1t)χE(t)dμ(t) (x ∈ G)

is continuous on G and not identically zero (the metrizability of G is not really
needed; it’s there to simplify the proof of continuity for the integral).

Left vs. right Haar measure. For non-commutative compact groups what we’ve
been calling Haar measure should more accurately be called “left Haar measure,” to
distinguish it from “right Haar measure,” i.e., a regular Borel probability measure
μ for which μ(Bg) = μ(B) for each Borel set B and group element g. We’ll see in
Chap. 12 (Theorem 12.15) that for compact groups the two concepts are the same
and that Haar measure is unique, but that the situation for non-compact groups is
more complicated; see Exercise 12.6.

9.2 Haar Measure as a Fixed Point

Measures and Functionals. To each finite regular Borel measure μ on a compact
Hausdorff space Q there is an associated linear functional Λμ defined on C(Q) (the
space of continuous, real-valued functions on Q) by

Λμ( f ) =
∫

f dμ ( f ∈C(Q)).
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If μ is a positive measure then the linear functional Λμ is positive: it takes non-
negative values on functions having only non-negative values. Everything we do
from now on will depend upon the following famous result, which asserts that such
Λμ ’s are the only positive linear functionals on C(Q).

The Riesz Representation Theorem for Compact Spaces.3 If Q is a compact
topological space and Λ is a positive linear functional on C(Q) then there is a
unique positive regular finite Borel measure μ on Q such that Λ =Λμ .

Regularity is important here; If Q is a nasty enough compact space, a positive
linear functional on C(Q) may also be represented by a non-regular Borel probabil-
ity measure (see, for example, [101, Chap. 2, Exercise 18, p. 59]). The good news:
as shown by the exercise below, this can’t happen for the most commonly occurring
compact spaces.

Exercise 9.6. Show that for a compact metric space, every finite, positive Borel measure is
regular.

Suggestion: Show that for such a measure μ , the collection of subsets that satisfy condition
(9.1) above (i.e., the μ-regular sets) form a sigma algebra that contains all the closed sets.

Invariance via Functionals. For a compact topological group G (not necessarily
commutative) and an RBPM μ on the Borel subsets of G, what property of Λμ
corresponds to (left) G-invariance for μ?

Suppose μ is an RBPM for G. Then by the change-of-variable formula of mea-
sure theory:

∫
f (γx)dμ(x) =

∫
f (x)dμγ−1(x) (γ ∈ G, f ∈C(G)), (9.2)

where μγ−1 is the measure that gives the value μ(γ−1E) to the Borel subset E of G.
Since G-invariance for μ just means that μ = μγ−1 for each γ ∈ G, Eq. (9.2) asserts
that μ is G-invariant if and only if

∫
f (γx)dμ(x) =

∫
f (x)dμ(x) (9.3)

for every f ∈C(G) and γ ∈ G. In order to rephrase this formula in terms of the linear
functional Λμ , let’s define for each γ ∈ G the linear transformation Lγ : C(G) →
C(G) of (left) translation by γ :

(Lγ f )(x) = f (γx) ( f ∈C(G)). (9.4)

In terms of the maps Lγ , the change-of-variable formula (9.2) becomes

Λμ ◦Lγ =Λμγ−1 (γ ∈ G) (9.5)

3 See [101, Theorem 2.14, pp. 40–41], where the theorem is proved for locally compact spaces.
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for each RBPM μ for G, while the invariance characterization (9.3) emerges as

Λμ ◦Lγ =Λμ (γ ∈ G). (9.6)

With these observations we’re one step away from being able to express an invariant
measure as a fixed point. Here’s the step.

Definition 9.2 (Dual space, adjoint). Let V be a real vector space and T : V → V a
linear transformation.

(a) Denote by V � the algebraic dual of V , i.e., the vector space of all linear func-
tionals (linear transformations V →R) on V .

(b) Define the adjoint T � of T by: T �Λ =Λ ◦T for Λ ∈V �.

One checks easily that T � is a linear transformation V � → V �. With these defini-
tions the general transformation formula (9.5) becomes

L�
γ Λμ =Λμγ−1 (γ ∈ G), (9.7)

while the invariance condition (9.6) can be written

L�
γ Λμ =Λμ (γ ∈ G). (9.8)

In summary:

Proposition 9.3. An RBPM μ on a compact group G is (left) G-invariant if and
only if its associated linear functional Λμ is a fixed point for each left-translation

adjoint operator L�
γ : C(G)� →C(G)� (γ ∈ G).

9.3 The Markov–Kakutani Fixed-Point Theorem

Having translated the problem of finding Haar measure for a compact group into
one of finding a fixed point for a family of linear maps, let’s now turn our attention
to a theorem that will guarantee the existence of such a fixed point. It turns out that
some seemingly severe restrictions have to be made.

Commutativity. Our discussion of Haar measure began with the family of left-
translation maps acting on the vector space C(G) of continuous real-valued func-
tions on the compact group G, then moved on to the family of adjoints of these
maps acting on the algebraic dual space C(G)�. If G is commutative then it’s easy to
check that both families of maps—the translations and their adjoints—inherit (un-
der composition) the commutativity of G. Now commutativity is a natural condition
to impose upon a family of maps for which one hopes to find a common fixed point;
it’s an easy exercise to check that if a family of self-maps of some set commutes,
then the set of fixed points of each map gets taken into itself by all the others. In
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particular, if one of the maps has a unique fixed point (e.g., if it’s a strict contraction
of a complete metric space) then that’s a common fixed point for the whole family.

However, as the example below shows, a commutative family of maps, each of
which has a fixed point, need not have a common fixed point—even if the maps are
all continuous on a compact metric space.

Example 9.4. Let S = {1,2,3,4,5} and Φ = {ϕ ,ψ} where ϕ fixes 3, 4, and 5, and
interchanges 1 and 2, while ψ fixes 1 and 2, and takes 3 to 4, 4 to 5, and 5 to 3.
In the notation and language of permutations: ϕ is the 2-cycle [1 2] (also called
a “transposition”), ψ is the 3-cycle [3 4 5], and being “disjoint” cycles, ϕ and ψ
commute under composition. Thus S is compact in the discrete metric and Φ is a
commuting family of continuous maps, each of which has a fixed point but for which
there is no common fixed point.

Affine maps. Example 9.4 above shows that for a family of self-maps of a topo-
logical space: continuity plus commutativity plus compactness is still not enough
to insure a common fixed point. What extra condition can we add to remedy this
situation? Recall that in Sect. 9.2 above we found that the problem of existence
Haar measure on a compact group is equivalent to that of finding a common fixed
point for a family of linear maps. It turns out that if we add to the hypotheses of
continuity, compactness, and commutativity, additional conditions of convexity and
“affine-ness” then common fixed points do exist.

Definition 9.5 (Affine map). Suppose V is a real vector space, C a convex subset
of V , and f is a map taking C into V . To say f is affine means that

f (tx+(1− t)y) = t f (x)+ (1− t) f (y)

whenever x,y ∈C and 0 ≤ t ≤ 1.

Restrictions of linear maps to convex sets are affine; these are the only affine
maps we’ll consider here.

Exercise 9.7. Suppose V is a real vector space. Show that:

(a) If L is a linear map on the real vector space V and w is a vector in V , then the map
v → Lv+w is affine on V .

(b) The image of a convex subset of V under an affine map is again convex.

(c) Affine mappings of convex subsets C of V respect convex combinations, i.e., for all
n-tuples of vectors (xi : 1 ≤ i ≤ n) in C and non- negative scalars (ti : 1 ≤ i ≤ n) that
sum to 1,

f

(
n

∑
i=1

tixi

)
=

n

∑
i=1

ti f (xi) .

Vector Topology. The algebraic setting for our fixed-point theorem will be quite
restrictive: commutative families of affine maps. By contrast the topological setting
will be very general: (real) topological vector spaces, i.e., vector spaces V over the
real field on which there is a topology (which we’ll always require to be Hausdorff)
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that “respects” the vector operations. More precisely, the topology is required to
render continuous4: addition, viewed as a map from the product space V ×V into V ,
and scalar multiplication, viewed as a map R×V →V . Such a topology is called a
vector topology. For example, the norm-induced topology of a normed linear space
is a vector topology; we’ll soon discover others more suited to our purposes.

Exercise 9.8. Suppose U is a neighborhood of the zero vector in a topological vector space
V . Show that V =

⋃
n∈N nU .

Hint: For each x ∈V the map t → tx (t ∈ R) takes the real line continuously into V .

With this foundation we’re now able to state the main result of this chapter.

Theorem 9.6 (The Markov–Kakutani Theorem). Suppose V is a topological vec-
tor space inside of which K is a nonvoid compact, convex subset. Suppose A is a
commutative family of continuous affine maps taking K into itself. Then there exists
a point p ∈ K such that Ap = p for every A ∈A .

Before proving the Markov–Kakutani Theorem, let’s sketch how it might be used
to produce Haar measure for a compact abelian group G. Continuing the discussion
of Sect. 9.2: the vector space V of the theorem will be the algebraic dual C(G)� of
C(G) and the convex set K will be the set of linear functionalsΛμ on C(G), where μ
runs through the collection of RBPMs on G. The family A of affine self-maps of K
will be the collection of adjoints L�

γ : C(G)� →C(G)� of the translation operators Lγ
for γ ∈ G. As mentioned earlier: it’s easily seen that A inherits the commutativity
of G.

Equation (9.7) guarantees that each of the maps L�
γ takes K into itself, so in

order to apply the Markov–Kakutani theorem it remains to find a vector topology
on V =C(G)� rendering K compact and each L�

γ continuous. Once this topology is
found, the Markov–Kakutani Theorem will provide for A a fixed point in K and,
as pointed out in Sect. 9.2, the Riesz Representation Theorem will provide the G-
invariant RBPM corresponding to this fixed point. All this we’ll do in Sect. 9.5.
Right now, let’s prove the fixed-point theorem.

9.4 Proof of the Markov–Kakutani Theorem

We’ll break the proof into several pieces, the first being a straightforward conse-
quence of the continuity of scalar multiplication. Throughout this section, V denotes
a (real) topological vector space.

Lemma 9.7. If K is a compact subset of V with 0 ∈ K, then
⋂

n∈N n−1K = {0}.

Proof. Suppose U is a neighborhood of the zero vector in V . According to Exer-
cise 9.8 above, the sets {nU : n ∈ N} cover V , so they cover K. Since K is compact

4 “Continuity” of a map in this context means that the inverse image of any open set is open.
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there is a finite subcover. Since the sets nU increase with n there exists n ∈ N such
that K ⊂ nU , i.e., n−1K ⊂ U . Thus

⋂
n∈N n−1K ⊂ U for each neighborhood U of

zero in V . The desired result now follows from the fact that the topology of V is
Hausdorff, so the intersection of all its zero-neighborhoods is {0}. 	


The next result is the heart of the Markov–Kakutani Theorem: the special case
where the commuting family A consists of just a single map.

Proposition 9.8. Suppose K is a compact, convex subset of V and A is an affine,
continuous self-map of K. Then A has a fixed point in K. Moreover the set of all such
fixed points is compact and convex.

Proof. Let N∗ = N∪{0}, the set of non-negative integers. For n ∈N∗ let An denote
the composition of A with itself n times (with A0 denoting the identity map on K).
Then each map An is an affine, continuous self-map of K, as is each arithmetic mean
Mn defined by

Mnx =
1

n+ 1

n

∑
j=0

A jx (x ∈ K,n ∈ N
∗).

Let S =
⋂

n∈N∗ Mn(K). Being an intersection of compact, convex sets, S is also com-
pact and convex.

Claim. S is the fixed-point set of A.

Proof of Claim. Clearly every fixed point of A belongs to S. Conversely, fix y ∈ S.
We wish to show that Ay = y. By the definition of S, for each n ∈ N∗ there is a
vector xn ∈ K such that y = Mnxn. The map A, being affine, respects convex sums;
in particular, AMn = MnA for each n. Thus

Ay− y = AMnxn −Mnxn = MnAxn −Mnxn,

i.e.,

Ay− y =
1

n+ 1

n

∑
j=0

(
A j+1xn −A jxn

)
=

1
n+ 1

(
An+1xn − xn

) ∈ 1
n+ 1

(K −K),

where K −K is the set of all algebraic differences of pairs of elements of K. Since
V is a topological vector space, the map V ×V →V defined by (v,w)→ v+(−1)w,
is continuous, so K−K, the image under this map of the compact set K, is compact.
In the above calculation n is an arbitrary non-negative integer, so Ay− y belongs
to

⋂
n∈N∗ 1

n+1(K −K) which, by Lemma 9.7 above (and the fact that 0 ∈ K −K),
consists only of the zero vector. Thus Ay = y, as promised by the Claim.

So Far. We know that the compact, convex subset S =
⋂

n∈N∗ Mn(K) of K is the
fixed-point set of A.

Remains to show. S is nonempty. To this end, let M = {Mn : n ∈ N∗}, so
M (K) = {M(K) : M ∈ M } is a family of closed subsets of the compact set K,
with

⋂
M (K) = S. If we can show that each finite subfamily of M (K) has nonvoid
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intersection, then by the finite intersection property of compact sets, the same will
be true of M (K) itself, thus finishing the proof.

Let F be a finite subfamily of M and let F be the composition of the maps
F , each map occurring exactly once in the composition. Since all the maps in M
commute under composition (exercise), in the definition of F they can occur in any
order. Thus for each M ∈F we have F = M ◦H where H is a self-map of K, hence
M(K)⊃ M(H(K)) = F(K). Conclusion:

⋂
M∈F M(K)⊃ F(K) �= /0. 	


Finally, we complete the proof of (the full-strength version of) the Markov–
Kakutani Theorem.

Proof of Theorem 9.6. We’re given a compact, convex subset K of the topological
vector space V , and a family A of affine, continuous self-maps of K that commute
under composition. Our goal is to show that there is a common fixed point for all
the maps in A .

For A ∈ A let SA = {x ∈ K : Ax = x}, the fixed-point set of A. From Proposi-
tion 9.8 we know that SA is a convex, compact subset of K that is not empty. We
desire to show that

⋂
A∈A SA, the common fixed-point set for A , is nonempty. For

this it’s enough—again by the finite intersection property of compact sets—to show
that ⋂

A∈F
SA �= /0 (*)

for each finite subfamily F of A .
We proceed by induction on the number n of elements of F , the case n = 1

being just Proposition 9.8. Suppose (*) is true for some n ≥ 1, and that F is a
subfamily of A consisting of n+1 maps. Pick a map A out of F and let S denote the
common fixed-point set of the n maps that remain. Then S, being the intersection of
n compact, convex subsets of K, is again compact and convex in K; by our induction
hypothesis S �= /0. By commutativity, A(ST ) ⊂ ST for each T ∈ F\{A}, hence A
maps S, the intersection of these sets, into itself. By Proposition 9.8, A has a fixed
point in S, which is therefore a common fixed point for F . Conclusion: (*) holds
for each subfamily F consisting of n+ 1 maps, so by induction it holds for every
finite subfamily of A . 	
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In order to enlist the Markov–Kakutani theorem in the production of invariant mea-
sures we need to find an appropriate vector topology for C(G)�, the algebraic dual
space of C(G). For this it’s best to think of C(G) as just a set, say S, and to view
C(G)� as a subspace of RS, the vector space of all real-valued functions on S. It’s on
this larger space that we’ll define our vector topology.

Let ω(S) be the topology on R
S for which each f ∈ R

S has a base of neighbor-
hoods defined as follows. For ε > 0 and F a finite subset of S, let
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N( f ,F,ε) = {g ∈R
S : |g(s)− f (s)|< ε ∀s ∈ F}. (9.9)

The following exercise shows that the collection of sets (9.9) really is a base for a
topology on RS.

Exercise 9.9. Show that if two sets N( f j,Fj,ε j) ( j = 1,2) have nonempty intersection, then
that intersection contains a third set N( f3,F3,ε3).

ω(S) is the product topology (general definition given in the paragraph after Ex-
ercise 9.11 below) one obtains by viewing RS as the topological product ∏s∈S Rs,
where Rs = R for each s ∈ S. It is often called the “topology of pointwise conver-
gence on S.” The next exercise explains why.

Exercise 9.10. Show that a sequence of real-valued functions on S converges in the topology
ω(S) if and only if it converges pointwise on S.

Proposition 9.9. ω(S) is a vector topology on RS.

Proof. The first order of business is to show that the topology ω(S) is Hausdorff.
Given f1 and f2, distinct functions in RS, we want to find neighborhoods Nj of
f j ( j = 1,2) with N1 ∩N2 = /0. Since f1 �= f2 there exists s ∈ S for which | f1(s)−
f2(s)|= ε > 0. Then f j ∈ Nj = N( f j ,{s},ε/2) for ( j = 1,2), and N1 ∩N2 = /0.

It remains to establish continuity for the mappings σ : RS ×RS → RS and ρ :
R×RS → RS of vector addition and scalar multiplication, defined respectively by

σ( f ,g) = f + g and ρ(t, f ) = t f ( f ,g ∈ R
S, t ∈ R).

Continuity of σ . Suppose W is an open subset of RS. We need to show that
σ−1(W ) = {( f1, f2) ∈ RS ×RS : f1 + f2 ∈ W} is open in RS ×RS. Fix ( f1, f2) ∈
σ−1(W ) and choose ε > 0 and a finite subset F of RS so that N( f1 + f2,F,ε)⊂W .
Then U := N( f1,F,ε/2)×N( f2,F,ε/2) is an open subset of RS ×RS that contains
( f1, f2). One checks easily that σ(U)⊂ N( f1 + f2,F,ε)⊂W , hence U ⊂ σ−1(W ).
Thus σ−1(W ) is open in V , as desired.

Continuity of ρ . Fix f0 ∈ RS and t0 ∈ R. Suppose we’re given ε > 0 and a finite
subset F of RS. Our goal is to find an open interval N1 about t0 and an ω(S)-
neighborhood N2 of f0 such that ρ(N1×N2)⊂N(t0 f0,F,ε). In plain language, we’re
looking for positive numbers δ1 and δ2, and a finite subset of RS—which can only
be F itself—such that:

|t − t0|< δ1 and | f − f0|< δ2 on F =⇒ |t f − t0 f0|< ε on F.

An “epsilon-halves” argument (exercise) shows that we can get the desired result by
setting M = maxs∈F | f0(s)|, then taking δ1 =

ε
2M and δ2 =

ε
2(|t0|+δ1)

. 	


From Now on: We’ll always assume RS to be endowed with the topology ω(S).
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Points as Functions. We can view each point s of a set S as a function ŝ : RS → R,
where ŝ( f ) = f (s) for f ∈ RS. In the language of product spaces we can think of ŝ
as the “projection” of RS onto its “s-th coordinate.”

Proposition 9.10. For each s ∈ S the function ŝ : RS → R is continuous on R
S; the

topology ω(S) is the weakest one for which this is true.

Proof. For t0 ∈ R and ε > 0 let I be the open interval of radius ε centered at t0.
Then ŝ−1(I) = N( f ,{s},ε) for all f ∈ RS for which f (s) = t0. Thus the inverse
image under ŝ of each real open interval is an open subset of RS, establishing the
continuity of ŝ. Furthermore this argument shows that in every topology τ on RS for
which each of the functions ŝ is continuous, N( f ,{s},ε) has to be an open set, and
since the basic open sets for ω(S) are finite intersections of these, every ω(S)-open
set must be τ-open, i.e., the topology τ must be at least as strong as ω(S). 	

Compactness in RS. The Markov–Kakutani Theorem requires compact sets. For
finite dimensional normed linear spaces there are lots of these; the Heine–Borel
Theorem asserts that every bounded subset of RN has compact closure. However
we saw in Theorem 8.7 that nothing of the sort can happen once the dimension of
our normed space becomes infinite. Fortunately, our vector topology ω(S) on the
space RS turns out to be weak enough to allow the re-emergence of Heine–Borel-
like phenomena. The key to this is the Tychonoff Product Theorem, which states that
arbitrary topological products of compact spaces are compact.5 In its full generality
Tychonoff’s theorem follows from the Axiom of Choice (Appendix E.3 below); for
more on this see the Notes at the end of Appendix E.3.

Definition 9.11. To say a subset B of RS is pointwise bounded means that for every
s ∈ S, supb∈B |b(s)|< ∞ (i.e., the projection ŝ is bounded on B for each s ∈ S).

Theorem 9.12 (A Heine–Borel Theorem for RS). Let S be a set and B a subset of
R

S. Then B has compact closure in R
S if and only if it is pointwise bounded.

Proof.(a) Suppose B is pointwise bounded. For s ∈ S let ms = supb∈B |b(s)|, and
let Is denote the compact real interval [−ms,ms]. Thus B is a subset of the
product space P :=∏s∈S Is, which is compact by the Tychonoff Product Theo-
rem. Now P is a subset of RS; it’s the collection of functions on f : S →R for
which f (s) ∈ Is for each s ∈ S. By its definition, the product topology on P is
just the restriction to that set of the topology ω(S). Since P is compact in this
topology, and B ⊂P , the closure of B lies in P and so is compact.

(b) Suppose, conversely, that B has compact closure in RS. Each “projection” ŝ,
being continuous on RS (Proposition 9.10), is bounded an every compact sub-
set, and in particular on B, i.e., B is pointwise bounded. 	


Suppose now that V is a real vector space. Note that V �, the algebraic dual of V ,
is a vector subspace of RV .

5 See Exercise 9.11 below for an accessible special case of this.
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Definition 9.13. (The Weak-Star Topology.) The restriction to V � of the product
topology ω(V ) on RV is a vector topology that we’ll call the weak-star topology
induced on V � by V .

The next result is crucial to the application of our infinite dimensional version of
the Heine–Borel Theorem.

Proposition 9.14. V � is closed in R
V .

Proof. We need to show that every limit point of V � in RV belongs to V �. So suppose
Λ0 ∈RV is such a limit point; it’s a real-valued function on V that we wish to prove
is linear.

Λ0 is additive. Fix x and y in V ; we wish to show thatΛ0(x+y) =Λ0(x)+Λ0(y). To
this end let ε > 0 be given and consider the basic neighborhoodU :=N(Λ0,{x,y,x+
y},ε/3) ofΛ0. SinceΛ0 is a limit point of V � this neighborhood contains an element
Λ of V �. By the definition of U (Eq. (9.9), p. 110) we have |Λ0(w)−Λ(w)| < ε/3
for w ∈ {x,y,x+ y}. Thus

|Λ0(x+ y)−Λ0(x)−Λ0(y)|

= |Λ0(x+ y)−Λ(x+ y)+ [Λ(x)−Λ0(x)]+ [Λ(y)−Λ0(y)]|

≤ |Λ0(x+ y)−Λ(x+ y)|︸ ︷︷ ︸
<ε/3

+ |Λ(x)−Λ0(x)|︸ ︷︷ ︸
<ε/3

+ |Λ(y)−Λ0(y)|︸ ︷︷ ︸
<ε/3

< ε.

Since ε is an arbitrary positive number,Λ0(x+ y)−Λ0(x)−Λ0(y) = 0, as desired.

Λ0 Is homogeneous. Fix t ∈ R and x ∈ V ; we wish to prove that Λ0(tx) = tΛ0(x).
Let ε > 0 be given; set δ = ε/2 if |t| ≤ 1, and = ε/(2|t|) otherwise. As before,
N(Λ0,{x, tx},δ ) contains some Λ ∈V �, so

|Λ0(tx)− tΛ0(x)|= |Λ0(tx)−Λ(tx)+ tΛ(x)︸ ︷︷ ︸
=0

−tΛ0(x)|

≤ |Λ0(tx)−Λ(tx)|︸ ︷︷ ︸
<ε/2

+ |t| |Λ(x)−Λ0(x)|︸ ︷︷ ︸
<ε/2

< ε.

Thus (arbitrariness of ε once again) Λ0(tx)− tΛ0(x) = 0, as desired. 	

Corollary 9.15 (A Heine–Borel Theorem for Algebraic Duals). For each real vec-
tor space V , a subset of V � is weak-star compact if and only if it is weak-star closed
and pointwise bounded.
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Proof. Suppose E is a weak-star compact subset of V �, hence closed therein. For
each w ∈V the coordinate projection ŵ : Λ →Λ(w) is a continuous function V � →
R, and so is bounded on E . Thus E is pointwise bounded on V .

Conversely, suppose E is a weak-star closed subset of V � that is pointwise
bounded on V . By Theorem 9.12, E has compact closure in RV . By Proposition 9.14
the closure of E in RV is the same as its closure in V �, which equals E . Thus E is
weak-star compact in V �. 	


Exercise 9.11 (A “proto-Tychonoff” theorem). Suppose S is a countable set, say (without
loss of generality) S = N. Define a function R

S ×R
S → [0,1] by:

d( f ,g) =
∞

∑
n=1

1
2n

| f (n)−g(n)|
1+ | f (n)−g(n)| .

(a) Prove that d is a metric on R
S and that ω(S) is the topology it induces thereon.

(b) Use sequential arguments to prove that ω(S) is a vector topology on R
S.

(c) Use a diagonal argument to establish Theorem 9.12 for this special case.

Exercise 9.12. Suppose S is an uncountable set, and V is the set of functions in RS whose
zero-set is at most countable. Show that V is a vector subspace of RS that is sequentially
closed (i.e., every sequence in V that is ω(S)-convergent has its limit in V ), but not closed.
In particular, the topology ω(S) is not metrizable.

Recall our original motivation for the topology ω(S). Given a compact abelian
group G, we wished to apply the Markov–Kakutani Theorem to produce Haar mea-
sure for G. For this we needed to apply the theorem, not to the vector space C(G), but
rather to its algebraic dual space C(G)�. Thus we took the set S of the previous dis-
cussion to be C(G) itself, with the idea of restricting the topology ω = ω(C(G)) to
the dual space C(G)�. To complete our program we need to establish both the com-
pactness of the convex set K of functionalsΛμ where μ runs through the RBPMs on

G, and theω-continuity of the commutative family {L�
γ : γ ∈G} of adjoint self-maps

of K.

Clarity through abstraction: Our arguments will be best understood in a more gen-
eral setting. For this we’ll replace our compact abelian group G by a nonempty set
S, assumed to carry no topology at all. We’ll replace the left-translation mappings
furnished by the group operation with a commutative family Φ of self-maps of S.
Finally, the role of the space C(G) will be usurped by B(S), the vector space of all
functions f : S → R that are bounded, i.e., for which

‖ f‖ := sup{| f (s)| : s ∈ S}< ∞. (9.10)

It’s easy to check that ‖ · ‖ is a norm that makes B(S) into a Banach space, but—
perhaps surprisingly—we’ll never need this fact.

The vector space V to which we’ll apply the Markov–Kakutani Theorem will be
B(S)�, endowed with the weak-star topology ω it inherits as a subspace of RB(S).
The compact, convex subset K of the Markov–Kakutani Theorem will be the set of
“means” in B(S)�, defined as follows:
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Definition 9.16. A mean is an element of B(S)� that’s positive (takes non-negative
values on non-negative functions) and takes the value 1 at the constant function 1.

Notation. We’ll use M (S) to denote the collection of means in B(S)�.

Exercise 9.13 (Evaluation functionals are means). For a set S:

(a) Show that M (S) is a convex subset of B(S)�.

(b) Show that for each s ∈ S the evaluation functional f → f (s) is a mean (so M (S) is
nonempty).

Exercise 9.14 (Means and mean values). Each number claiming to be a “mean value” for a
bounded function should at least lie between the function’s infimum and supremum. Show
that Λ( f ) has this property for each Λ ∈M (S) and f ∈ B(S).

Exercise 9.15. Show that the convex hull of the evaluation functionals of Exercise 9.13(b)—
a subset of M (S) by that exercise—exhausts M (S) if and only if S is a finite set.

Finally, the family of commuting affine maps for which we wish to find a common
fixed point will be the adjoints of composition operators induced on B(S) by the
maps in Φ. More precisely, for each ϕ ∈Φ define Cϕ : B(S)→B(S) by Cϕ f = f ◦ϕ .
Clearly Cϕ is a linear transformation B(S)→ B(S) that preserves positivity and fixes

the constant functions. We’ll denote by CΦ the collection of all these maps, and C �
Φ

the collection of their adjoints. Once checks easily that C �
Φ is commutative, and that

each member of C �
Φ takes M (S) into itself.

So Far: We’ve assembled the cast of characters demanded by the Markov–Kakutani
Theorem, namely the vector space V = B(S)�, the commutative family of affine
maps A =C �

Φ = {C�
ϕ : ϕ ∈Φ}, the convex set K =M (S) on which these maps act,

and the vector topologyω on B(S)� that’s going to glue these actors together. What’s
left is to show that M (S) is ω-compact and each of the maps C�

ϕ is ω-continuous.

Corollary 9.17. M (S) is ω-compact.

Proof. By Corollary 9.15 it’s enough to show that M (S) is pointwise bounded on
B(S) and ω-closed in B(S)�. By Exercise 9.14 we know for each f ∈ B(S) and
Λ ∈M (S) that the valueΛ( f ) lies between infs∈S f (s) and sups∈S f (s). Thus M (S)
is a pointwise bounded subset of B(S).

To show that M (S) is ω-closed in B(S)�, suppose Λ0 ∈ B(S)� is a limit point of
M (S). We wish to show that Λ0 ∈M (S), i.e., that Λ0, which we already know is a
linear functional on B(S), is positive and “normalized” so that Λ0(1) = 1.

To establish positivity, fix f ∈ B(S) with f ≥ 0 on S. Let ε > 0 be given. Then
the basic ω-neighborhood N(Λ0,{ f},ε) of Λ0 contains a point Λ ∈M (S). Thus

Λ( f )−Λ0( f ) ≤ |Λ( f )−Λ0( f )| < ε, (9.11)

hence Λ( f ) ≤ Λ0( f ) + ε for every ε > 0 so Λ( f ) ≤ Λ0( f ). But 0 ≤ Λ( f ) since
Λ , being a member of M (S), is a positive linear functional on B(S). Conclusion:
0 ≤Λ0( f ), thus establishing the positivity of the limit functionalΛ0.
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As for “normalization,” choose f ≡ 1 on S. By the second inequality of (9.11):
for each ε > 0, |1−Λ0( f )|< ε hence Λ0( f ) = 1. 	


It remains to establish ω-continuity for the adjoint maps C�
ϕ . This follows from

something more general:

Proposition 9.18 (Adjoints Are continuous). If V is a real vector space and T a
linear transformation of V into itself, then the adjoint map T � is weak-star continu-
ous on V �.

Proof. In a topological vector space V , the map x → x+ h of translation by a fixed
vector h is a linear homeomorphism, so a linear transformation on V is continuous
if and only if it is continuous at the origin. Thus it’s enough to show that T � is
continuous at the origin of V �, and for this it’s enough to show that the T �-inverse
image of each basic zero-neighborhood in V � contains a basic zero-neighborhood.
For this, suppose ε > 0 and F is a finite subset of V . Upon chasing definitions one
sees that (T �)−1(N(0,F,ε)) = N(0,T (F),ε). 	


Thus the Markov–Kakutani Theorem applies to the triple (B(S)�,M (S),C �
Φ); it

yields the following:

Theorem 9.19 (Invariant means). Suppose Φ is a commutative family of self-maps
of a set S. Then there is a mean Λ in B(S)� such that C�

ϕΛ =Λ (i.e., Λ ◦ϕ =Λ ).

9.6 Invariant Measures for Commuting Families of Maps

Theorem 9.19 yields, as a special case, the theorem that started our quest.

Corollary 9.20 (Haar Measure for compact abelian groups). Every compact abelian
group G supports, on its Borel subsets, a G-invariant RBPM.

Proof. Apply Theorem 9.19 with S = G and Φ the collection of translation-maps
x → γ · x for γ and x in G. The resulting composition operators on B(G) are the
translation operators Lγ on B(G). For this situation Theorem 9.19 provides a mean

Λ on B(G) that’s fixed by each of the transformations L�
γ for γ ∈ G, so by the Riesz

Representation Theorem and Proposition 9.3, the restriction of this functional to
C(G) has the form Λμ , where μ is an RBPM on the Borel subsets of G. 	

The argument above gives a more general result:

Corollary 9.21. Suppose Q is a compact Hausdorff space and Φ is a commutative
family of continuous self-maps of Q. Then there is an RBPM μ on the Borel subsets
of Q that is Φ-invariant in the sense that for every f ∈C(Q) and ϕ ∈Φ,

∫
f ◦ϕ dμ =

∫
f dμ
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or equivalently, for every Borel subset B of Q,

μ(ϕ−1(B)) = μ(B).

Proof. Exercise. 	

Example 9.22. Let D denote the closed unit disc of R2, and Φ the restrictions to D
of rotations of R2 about the origin. Then Φ is a commutative family of maps, each
of which takes D continuously onto itself. Thus Corollary 9.21 guarantees for D an
RBPM invariant under each member of Φ. In fact two such measures come imme-
diately to mind: Lebesgue area measure on D and arc-length measure on ∂D, the
unit circle (both measures normalized to have total mass one). Thus the uniqueness
established above for Haar measure on compact abelian groups fails for the more
general case of RBPMs invariant under commutative families of maps.

Exercise 9.16. Show that there is an uncountable family of RBPM’s on D invariant under
the rotation group Φ defined above.

Remark 9.23 (Role of commutativity). In the arguments above, the hypothesis of
commutativity imposed upon the family of maps Φ showed up only at the very end,
where it legitimized our use of the Markov–Kakutani Theorem. In Chap. 12 we’ll
extend the Markov–Kakutani Theorem to families of maps that are “almost com-
mutative,” (e.g., to groups of maps that are solvable). Here the argument that proved
Theorem 9.19 will go through verbatim, with commutativity replaced at the final
stage by the new hypothesis on the family Φ of self-maps of S. As a corollary we’ll
obtain the existence of Haar measure for compact, solvable groups. To obtain Haar
measure for all compact groups, however, will require a new fixed-point theorem;
this we’ll explore in Chap. 13.

9.7 Harmonic Analysis on Compact Abelian Groups

The existence of Haar measure for compact abelian groups allows us to generalize
to that context the Fourier analysis that’s so important for functions that are inte-
grable on the unit circle T. Recall that Haar measure μ on T is Lebesgue arc-length
measure normalized to have unit mass. For 1 ≤ p ≤ ∞, let’s denote the (complex)
Lebesgue space of T with respect to this measure by Lp(T). Let γn(ζ ) = ζ n for
ζ ∈ T, and for f ∈ L1(T) and n ∈ Z, define the n-th Fourier coefficient of f by

f̂ (n) =
∫
T

f γ−1
n dμ =

1
2π

∫ 2π

0
f (eiθ )e−inθ dθ = 〈 f ,γn〉 ,

where dμ(eiθ ) = dθ
2π .

Now L2 = L2(T) is a Hilbert space with inner product

〈 f ,g〉=
∫

f gdμ ( f ,g ∈ L2)
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so f̂ = 〈 f ,γn〉 for f ∈ L2 and n ∈ Z. It’s easy to check that the exponential func-
tions {γn : n ∈ Z} form an orthonormal subset of L2. The linear span T of this or-
thonormal set (the set of trigonometric polynomials) is a subalgebra of C(T) that’s
closed under complex conjugation and separates points of T (a feat accomplished
single-handedly by γ1, which is the identity map on T). Thus the Stone-Weierstrass
Theorem (see, e.g., [101, Theorem 7.33, p. 165]) assures us that T is dense in the
max-norm topology of C(T), and since C(T) is dense in L2, and the L2-topology is
weaker than that of C(T)), we see that T is dense in L2.

Conclusion: The exponential functions {γn : n ∈ Z} form an orthonormal basis for
L2, hence for every function f in that space we have

‖ f‖2
2 = ∑

n∈Z
| f̂ (n)|2

from which it follows that

f = ∑
n∈Z

〈 f ,γn〉γn = ∑
n∈Z

f̂ (n)γn (9.12)

with the series convergent in L2 unconditionally in the sense that for every ε > 0
there exists a finite subset Fε of Z such that

F ⊃ Fε =⇒
∥∥∥∥∥∑n∈F

f̂ (n)γn − f

∥∥∥∥∥< ε.

The series in (9.12) is called the Fourier series of f ; it represents a decomposition
of that function into “frequencies” γn.

All this is standard, and forms the basis for the harmonic analysis of square-
integrable functions on the unit circle. In order to generalize this theory to other
compact abelian groups, we need the following observation:

Proposition 9.24. The exponential functions {γn : n ∈ Z} are precisely the contin-
uous homomorphisms of T into itself.

One checks easily that each function γn is indeed a homomorphism of T (mean-
ing: γn(ζη−1) = γn(ζ )γn(η)−1 for each ζ ,η ∈ T and n∈Z). The exercise set below
shows that the γn’s are the only continuous homomorphisms of T.

Exercise 9.17. Suppose Γ : R → T is a continuous group homomorphism, where R has
its additive structure. Thus Γ (0) = 1, Γ (x+ y) = Γ (x)Γ (y) and Γ (−x) = Γ (x)−1 for each
x,y ∈ R.

(a) Suppose in addition that Γ is differentiable at the origin. Show that Γ is differen-
tiable at every x ∈ R, with Γ ′(x) = Γ ′(0)Γ (x). Conclude that Γ (x) = eiλx for each
x ∈ R, where λ := Γ ′(0).

(b) Not assuming the differentiability of Γ , show that there exists δ ∈ (0,2π) for which
A :=

∫ δ
0 Γ (t)dt �= 0. Show that this implies AΓ (x) =

∫ x+δ
s=x Γ (s)ds. Conclude that Γ

is differentiable on R.
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(c) Show that ifΓ is 2π-periodic on R then the constant λ of part (a) must be an integer.

(d) Now use part (c) to finish the proof of Proposition 9.24.

Definition 9.25. A character of a topological group G is a continuous homomor-
phism G → T.

Notation. We’ll use Ĝ to denote the set of characters of G. Thus T̂= {γn : n ∈ Z}.

Exercise 9.18 (Dual Group). Show that Ĝ, with pointwise multiplication, is a group. It’s
called the dual group of G.

Exercise 9.19 (Some Dual Groups). For λ ∈R define the exponential function γλ (x) := eiλx

for x ∈R. Think of R as a group with its usual additive structure, and Z as a subgroup of R.
Show that:

(a) R̂ is group-isomorphic to R via the identification λ → γλ , λ ∈R .

(b) T̂ is group-isomorphic to Z via the identification n → γn, n ∈ Z.

For a compact abelian group G it’s common to denote by L2(G) the L2-space defined
for the Haar measure of G.

Exercise 9.20. If G is a compact abelian group then Ĝ is an orthonormal subset of L2(G).

Just as for the unit circle, Ĝ is an orthonormal basis for L2(G). As before, Ĝ is
closed under complex conjugation (easy), and separates points of G (not easy: see,
e.g., [100, Sect. 1.5.2, p. 24]), so its linear span—what we might think of as the
collection of trigonometric polynomials on G—is, by Stone-Weierstrass, dense in
C(G), hence also in L2(G).

If f ∈ L2(G) and γ ∈ G, we define the Fourier transform f̂ : Ĝ → C by

f̂ (γ) :=
∫

G
f γ−1 dμ (γ ∈ Ĝ),

where μ is Haar measure for G. Then, as in the circle case:

Proposition 9.26. If G is a compact abelian group then for each f ∈ L2(G),

∑
γ∈G

| f̂ (γ)|2 = ‖ f‖2 and ∑
γ∈G

f̂ (γ)γ = f .

These formulae employ the same kind of “unordered summation” used for
Fourier series on the circle group, with the term “Fourier series” once again de-
noting the character series representing f .

Remark. The characters of non-commutative groups never separate points. Indeed,
if g and h are non-commuting elements of a group G, and γ is a character on G, then
γ(gh) = γ(g)γ(h) = γ(hg). It gets worse; Exercise 13.8 (p. 178) shows that even for
compact groups it’s possible for the only character to be the trivial one γ ≡ 1!
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Notes

Commuting families of maps. Apropos to Example 9.4: A long-standing problem
asked if every commuting family of continuous self-maps of the closed unit inter-
val had to have a common fixed point. Counterexamples were published in 1969,
independently by Boyce [15] and Hunecke [52]; their constructions are nontrivial.

Exercise on Borel sets. Thanks to Urysohn’s Lemma the result of Exercise 9.3 re-
mains true for normal (Hausdorff) topological spaces. However it is not true in
general. Let X denote the space of ordinal numbers less than or equal to the first
uncountable one Ω , taken in the interval topology. Then X is a Hausdorff space,
but each continuous real-valued function on X is constant on some final segment
[α,Ω ], α a countable ordinal. From this it follows that, although the singleton {Ω}
is a Borel set (it is closed), it does not belong to C , the smallest sigma algebra ren-
dering each continuous real-valued function measurable. Thus C is strictly smaller
than the sigma algebra of Borel subsets of X .

The Markov–Kakutani Theorem. The proof of Theorem 9.6 is Kakutani’s proof
from [56]. Markov earlier gave a proof [75] for locally convex spaces, using
Tychonoff’s extension [120] to that setting of the Schauder Fixed-Point Theorem.

The Tychonoff Product Theorem. For a proof that the Axiom of Choice implies the
Tychonoff Product Theorem see [103, Theorem A2, pp. 392–393], or [55, Sect. 2.2,
p. 11] for a proof based on “filters,” or [25] for one based on “nets.”

The Tychonoff Product Theorem does not require that the factors of the prod-
uct be Hausdorff; in fact this “non-Hausdorff” version of the theorem is actually
equivalent to the Axiom of Choice (see, e.g., [55, Sect. 2.6, p. 26, Problem 8]).

The Riesz Representation Theorem. The first result of this type appeared in a 1909
paper of Frigyes Riesz [97], who proved that every continuous linear functional
on the Banach space C([0,1]) is represented by Stieltjes integration against a real-
valued function on [0,1] of bounded variation. The “positive” version we’ve been
using above follows easily from this one.



Chapter 10
The Meaning of Means

FINITELY ADDITIVE MEASURES, EXTENSIONS, AND AMENABLE GROUPS

Overview. In the last chapter we used the Markov–Kakutani Theorem to produce
for every compact abelian group G an “invariant mean”: a mean in the algebraic dual
space of B(G) fixed by the adjoint of every translation map on B(G). The Riesz Rep-
resentation Theorem then provided a G-invariant, regular, Borel probability measure
to represent this mean via integration on C(G). Thus was born Haar measure for G.

In this chapter we will scale back the role of topology and observe that for
each abelian group G this “Markov–Kakutani” mean easily provides a G-invariant,
finitely additive “probability measure” on P(G), the collection of all subsets of G.
We’ll examine the significance of such set functions. In the compact case, might one
of them extend Haar measure? Which non-abelian groups support such “measures”?
Such questions will lead (next chapter) into the study of “paradoxical decomposi-
tions,” most notably the celebrated Banach–Tarski Paradox.

Prerequisites. A little: measure theory, group theory, functional analysis.

10.1 Means and Finitely Additive Measures

We’ve previously attached to a set S the following cast of characters:

– P(S): The collection of all subsets of S.
– B(S): The vector space of all bounded, real-valued functions on S.
– B(S)�: The algebraic dual of B(S); all the linear functionals on B(S).
– M (S): The means on B(S); the collection of positive linear functionals Λ on

B(S) “normalized” so that Λ(1) = 1. We’ve noted that M (S) is a nonempty,
convex subset of B(S)� (Exercise 9.13).

– ω(S): The weak-star topology on B(S)�; the restriction to B(S)� of the product
topology of RB(S). We’ve seen that M (S) is ω(S)-compact (Corollary 9.17).
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“Measures” from Means. Each mean Λ on B(S) naturally defines a function μ on
the collection P(S) of all subsets of S:

μ(E) =Λ(χE) (E ∈P(S)), (10.1)

where χE denotes the characteristic function of E (≡ 1 on E and ≡ 0 off E).

Exercise 10.1. For μ as defined above, show that:

(a) μ(S) = 1.

(b) μ is monotone: E ⊂ F ⊂ S =⇒ μ(E)≤ μ(F).

(c) μ(E)≤ 1 for every E ⊂ S.

The linearity of Λ translates into finite additivity for μ : if {E1,E2, . . . En} is a finite,
pairwise disjoint collection of subsets of S then χ∪kEk = ∑k χEk , so

μ

(⋃
k

Ek

)
=Λ(χ∪kEk) =Λ

(
∑
k

χEk

)
=∑

k

Λ(χEk) =∑
k

μ(Ek).

Definition 10.1. A finitely additive probability measure on P(S) is a finitely addi-
tive function μ : P(S)→ [0,1] with μ(S) = 1.

In this terminology the argument above established:

Proposition 10.2. Each mean Λ on B(S) induces via Eq. (10.1) a finitely additive
probability measure μ on P(S).

The exercise below shows that conversely each finitely additive probability mea-
sure μ onP(S) gives rise to a mean on B(S), created as a sort of “Riemann integral.”

Exercise 10.2 (Means from “Measures”). Let S (S) denote the collection of “simple func-
tions” on S, i.e., the functions f : S → R that take on only finitely many values.

Given a finitely additive probability measure μ on P(S) and a simple function f on S with
distinct values {a j}n

j=1, let E j = f −1(a j) and define Λ( f ) := ∑n
j=1 a jμ(E j).

(a) Check that S is a vector space on which the functional Λ is positive and linear, and
that Λ obeys the inequality promised for means by Exercise 9.14.

(b) Show that Λ has a unique extension to a mean on B(S) [Hint: Show that Λ is con-
tinuous if S is given the “sup-norm” ‖ · ‖ defined on B(S) by Eq. (9.10)].

Invariant Means. Theorem 9.19 told us that if Φ is a commutative family of self-
maps of the set S, then B(S) has a mean Λ that is Φ-invariant in the sense that
C�
ϕΛ = Λ for every ϕ ∈ Φ, where Cϕ : B(S) → B(S) is the composition operator

f → f ◦ ϕ defined on p. 114. The finitely additive probability measure μ that Λ
induces on P(S) via Eq. (10.1) inherits this Φ-invariance:

μ(ϕ−1(E)) =Λ(χϕ−1(E)) =Λ(χE ◦ϕ)) = (C�
ϕΛ)(χE)) =Λ(χE) = μ(E)

for every E ⊂ S and ϕ ∈Φ. In summary:
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Theorem 10.3. If Φ is a commutative family of self-maps of a set S then there is a
finitely additive probability measure μ on P(S) that is Φ-invariant in the sense that
μ(ϕ−1(E)) = μ(E) for every E ∈P(S) and every ϕ ∈Φ.

Corollary 10.4. If G is a commutative group then there exists a finitely additive
probability measure μ on P(G) that is G-invariant in the sense that μ(gE) = μ(E)
for each g ∈ G and E ∈P(G).

Proof. Apply Theorem 10.3 with S = G and Φ the collection of “translation maps”
x → g−1x for g and x in G. 	


Suppose in Theorem 10.3 we take Φ to be the group of rotations of R2 about the
origin and S to be either of the following subsets of R2: the closed unit disc B2, or
its boundaryT, the unit circle. In either case Φ is a commutative family of self-maps
of S, hence Theorem 10.3 yields:

Corollary 10.5. Both P(B2) and P(T) support a rotation-invariant, finitely ad-
ditive probability measure.

The question arises for either case: can such a finitely additive, rotation-invariant
probability measure be chosen to agree, on Borel sets, with normalized Lebesgue
measure. Similarly, for every compact abelian group, must the invariant measure
promised by Corollary 10.4 agree on Borel sets with Haar measure? We’ll study
this matter of invariant extension in the next section. Not surprisingly, it will involve
the Hahn–Banach Theorem.

10.2 Extending Haar Measure

Suppose G is a compact abelian group. We now know that G has both:

– a G-invariant regular probability measure μ on its Borel sets (Haar measure:
Corollary 9.20), and

– a G-invariant finitely additive probability measure ν on its collection P(G)
of all subsets (Theorem 10.3).

Since ν arose from a G-invariant mean on B(G), and μ (via the Riesz Represen-
tation Theorem) from the restriction of that mean to C(G), one might suspect that
ν extends Haar measure from the Borel subsets of G to all of P(G), i.e., that the
restriction of ν to the Borel subsets of G is μ . Surprisingly, this need not be the case;
Banach proved in 1923 that it fails for the circle group T.

There exists a rotation-invariant, finitely additive probability measure on
P(T) that does not extend Haar measure [6, Théorème 20].

We’ll see later that for a compact group: there can be at most one Haar measure
(Chap. 12), and that there always is a Haar measure (Chap. 13). In particular, for the
unit circle T, normalized Lebesgue measure is the unique rotation-invariant regular
Borel measure. Thus Banach’s result can be restated:



124 10 The Meaning of Means

There exists a rotation-invariant, finitely additive probability measure on
P(T) whose restriction to the Borel subsets of T is not countably additive.

In view of Banach’s result, it makes sense to ask if Haar measure on G can be ex-
tended to a finitely additive G-invariant probability measure on P(G). Thanks to
the Markov–Kakutani Theorem the answer is affirmative, with the desired exten-
sion of Haar measure following from an “invariant” version of the Hahn–Banach
Theorem. First recall the usual version:

The Hahn–Banach Theorem. Suppose V is a vector space over the real field and
p : V → R is a gauge function on V , i.e.,

(a) p(u+ v)≤ p(u)+ p(v) for all u,v ∈V, and
(b) p(av) = ap(v) for every a ∈ R with a ≥ 0 and every v ∈V.

Suppose W is a linear subspace of V and Λ is a linear functional on W for which
Λ(w)≤ p(w) for all w ∈W . Then Λ has a linear extension Λ̃ to V such that

Λ̃ (v)≤ p(v) for all v ∈V.

Now consider that problem of extending Haar measure μ from the Borel subsets of
a compact abelian group G to a finitely additive measure ν on P(G). The measure
μ induces, via integration, a G-invariant linear functional Λ on C(G), where we
now view C(G) as a linear subspace of B(G). In order to make the desired extension
of μ it will be enough to extend Λ to a G-invariant mean on B(G). This will be
accomplished by:

Theorem 10.6 (The “Invariant” Hahn–Banach Theorem). Suppose V is a vector
space and G is a commutative family of linear transformations V →V. Suppose W
is a linear subspace of V that is taken into itself by every transformation in G , and
that p is a gauge function on V that is “G -subinvariant” in the sense that

p(γ(v))≤ p(v) for every v ∈V and γ ∈ G .

If Λ is a G -invariant linear functional on W that is dominated by p, i.e.,

Λ ◦ γ =Λ for all γ ∈ G and Λ(v)≤ p(v) for all v ∈W,

then Λ has a G -invariant linear extension to V that is dominated on V by p.

Proof. Endow V �, the algebraic dual of V , with the weak-star topology ω induced
on it by V . Let K be the collection of all linear extensions of Λ to V that are
dominated on V by p. Clearly K is a convex subset of V �. By the (usual) Hahn–
Banach Theorem, K is nonempty.

Claim: K is weak-star compact in V �.

Proof of Claim. By Corollary 9.15 we need only show that K is pointwise bounded
on V and weak-star closed in V �. If Λ̃ ∈K then for every x∈V we have, in addition
to the defining property Λ̃ (x)≤ p(x), also −Λ̃(x) = Λ̃(−x)≤ p(−x). Thus
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− p(−x) ≤ Λ̃(x) ≤ p(x) (x ∈V, Λ̃ ∈K ) (10.2)

so K is pointwise bounded on V .
To see that K is weak-star closed in V �, suppose Λ0 ∈ V � is a weak-star limit

point of K . We wish to show that Λ0 ∈K , i.e., that Λ0 is an extension of Λ from
W to V that’s dominated by p. To see that Λ0 extends V , fix w ∈W and ε > 0. Then
the weak-star basic neighborhood

N(Λ0,{w},ε) = {Λ ∈V � : |Λ(w)−Λ0(w)|< ε}

contains a linear functionalΛ1 ∈K . Thus |Λ0(w)−Λ(w)|= |Λ0(w)−Λ1(w)|< ε,
whereuponΛ0(w) =Λ(w) because ε is an arbitrary positive number; henceΛ0 is an
extension of Λ to V .

Similarly, fix v ∈ V and ε > 0. Choose Λ2 ∈K ∩N(Λ0,{v},ε). Then |Λ0(v)−
Λ2(v)| < ε, so Λ0(v) < Λ2(v)+ ε ≤ p(v)+ ε, hence Λ0(v) ≤ p(v), once again by
the arbitrariness of ε . This completes the proof of the Claim.

Finally, since each γ ∈ G is a linear map V → V , it has an adjoint γ� : V � → V �.
Let G � := {γ� : γ ∈ G }. One checks easily that G � is a commutative family of linear
maps on V �, each of which, thanks to the G -subinvariance of the gauge function p,
takes K into itself. By Theorem 9.18 each map γ� is ω-continuous, hence the triple
(V �,K ,G �), with V � carrying its weak-star topology, satisfies the hypotheses of the
Markov–Kakutani theorem.

Conclusion: There exists Λ̃ ∈ K fixed by G �, i.e.,

Λ̃ ◦ γ = γ�(Λ̃) = Λ̃ for every γ ∈ G .

This functional Λ̃ is the desired G -invariant extension of our original one Λ . 	

Here, stated in generality, is our application to extension of invariant measures.

Corollary 10.7. Let S be a compact Hausdorff space upon which acts a commu-
tative family Φ of continuous mappings. Suppose μ is a (countably additive) Φ-
invariant probability measure on the Borel subsets of S. Then μ extends to a Φ-
invariant, finitely additive probability measure on P(S).

Proof. LetΛ be the positive linear functional defined on C(S) by integration against
μ . By the invariance of μ and the change-of-variable formula of measure theory,
Λ is invariant for each of the composition operators Cϕ on C(S) in the sense that
Λ ◦Cϕ =Λ for each ϕ ∈Φ. Define the gauge function p on B(S) by

p( f ) = ‖ f‖= sup
s∈S

f (s) ( f ∈ B(S)).

Clearly: p is CΦ-invariant (in the sense that p◦Cϕ = p for every ϕ ∈Φ), and Λ ≤ p
on C(S).

The Invariant Hahn–Banach Theorem now supplies an extension of Λ to a linear
functional Λ̃ on B(S) that’s also dominated by p, and is invariant for each mapping
Cϕ for ϕ ∈Φ. Upon applying inequality (10.2) to our gauge function p, we see that
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inf
s∈S

f (s) ≤ Λ̃( f ) ≤ sup
s∈S

f (s) ( f ∈ B(S)),

so if f ≥ 0 on S then Λ̃( f ) ≥ 0, i.e., Λ̃ is a positive linear functional on B(S). Since
Λ̃(1) = Λ(1) = 1, the functional Λ̃ is a mean on B(S). The desired extension μ̃ of
μ to P(S) now emerges from Eq. (10.1) with Λ̃ in place of Λ , the Φ-invariance of
μ̃ following from the CΦ-invariance of Λ̃ . 	


For our original problem of extending Haar measure on a compact abelian group
G, we take in Corollary 10.7: S = G and Φ = the set of translation maps x → g−1x
for g and x in G. The result:

Corollary 10.8. For each compact abelian group G, Haar measure has an extension
to a finitely additive G-invariant measure on P(G).

Since the group of rotations of R2 about the origin is abelian, Corollary 10.7
yields

Corollary 10.9. There is a rotation-invariant, finitely additive probability measure
on the closed unit disc of R2 that extends Lebesgue area measure from the Borel sets
to all subsets. The unit circle supports a similar extension of normalized arc-length
measure.

Our final application of the invariant Hahn–Banach theorem involves the creation
of a notion of “limit” for every bounded real sequence. We’ll use the notation �∞ for
the space of all such sequences.

Corollary 10.10 (Banach limits). There exists a positive, translation-invariant lin-
ear functional Λ on �∞ such that

liminf
n→∞

f (n)≤Λ( f ) ≤ limsup
n→∞

f (n) ( f ∈ �∞).

Proof. Let c denote the space of real sequences f : N → R for which λ ( f ) =
limn→∞ f (n) exists (in R). For f ∈ �∞ let

p( f ) = limsup
n→∞

f (n).

Then p is a gauge function on �∞, and λ ≤ p on c. For k ∈ N define the “translation
map” Tk on �∞ by

Tk f (n) = f (n+ k) ( f ∈ �∞,n ∈ N).

Thus T = {Tk : k ∈ N} is a commutative family of linear transformations �∞ →
�∞ for each of which: the subspace c is taken into itself, and both λ and p are
invariant. Thus the Invariant Hahn–Banach Theorem applies and produces a T -
invariant extension Λ of λ to �∞ with Λ ≤ p on �∞. By inequality (10.2):

liminf
n→∞

f (n) = − p(− f ) ≤ Λ( f ) ≤ p( f ) = limsup
n→∞

f (n) ( f ∈ �∞). 	
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The functional Λ produced above is called a Banach limit; the usual notation is
Λ( f ) := LIMn→∞ f (n).

Exercise 10.3. Each Banach limit defines a translation-invariant finitely additive probability
measure μ on P(N) by: μ(E) := LIMn χE(n) for E ⊂N.

(a) Show that μ({n}) = 0 for every n ∈ N. Conclude that μ is not countably additive.

(b) For n0 and k in N, let E denote the arithmetic progression {n0 + kn : n ∈ N∪{0}}.
What is μ(E)?

(c) Is there an infinite subset E of N with μ(E) = 0?

This exercise points the “Jekyll and Hyde” character possessed by an infinite di-
mensional vector space’s algebraic dual. On one hand, the algebraic dual is easy to
define and work with (e.g., no worries about continuity). On the other hand, thanks
to the Axiom of Choice it has bizarre inhabitants (e.g., Banach limits).

Exercise 10.4 (“Banach limits” for Z and R). Show that analogues of “Banach Limit” exist
for the additive groups of both the integers and the real line.

10.3 Amenable Groups

Thanks to Corollary 10.4 we know that every abelian group G possesses an invariant
mean, i.e., a positive linear functional Λ on B(G) that takes value 1 on the constant
function 1 and is fixed by the adjoint of every operator of translation by a group
element. We’ve noted that such a mean gives rise to a finitely additive probability
measure μ on P(G) that’s G-invariant in the sense that μ(gE) = μ(E) for each
g ∈ G and E ∈P(G).

Definition 10.11 (Amenable group). To say a group G is amenable means that there
is a G-invariant, finitely additive probability measure on P(G), i.e., there is a G-
invariant mean on B(G).

Thus every abelian group is amenable. What about the non-abelian ones? Once
we venture into the realm of non-commutativity there arises the spectre of “left vs.
right.” For non-abelian groups the sort of invariance we’ve been considering should
more accurately be called “left-invariance.”

Question. Are there separate notions of “right-” and “left-” amenable?

We’ll see later on (Sect. 12.6) that once a group has a left-invariant mean, then it also
has a right-invariant one, and even a “bi-invariant” one. So there are not separate
concepts of “left-amenable” and “right-amenable”; it’s all just “amenable.”

Exercise 10.5. Show that every finite group is amenable.
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It turns out that not every group is amenable. Here’s an example, whose apparent
simplicity belies its importance:

The Free Group F2 on Two Generators. The elements of F2 are “reduced words”
of the form x1x2 · · ·xn for n ∈ N where each x j comes from the set of symbols
{a,a−1,b,b−1}, subject only to the restriction that no symbol occurs next to its
“inverse.” Multiplication in F2 is defined to be concatenation of words, followed
by “reduction,” e.g., aba−1 · abba = abbba. Upon allowing the “empty word” e to
belong to F2 we obtain a group.

Caveat: To render the group operation of F2 “well-defined” it must be shown that the same
reduced word results no matter how this reduction is performed. This is not completely
trivial (see, e.g., [73, Theorem 1.2, pp. 134–5]). In the next chapter we’ll resolve this matter
differently by realizing F2 as a group of rotations of R3.

Exercise 10.6. Convince yourself that (modulo the above caveat) F2 is a group, that it’s not
abelian, and that it can be visualized as the fundamental group of a figure-eight.

Theorem 10.12. F2 is not amenable.

Proof. For x ∈ {a,a−1,b,b−1} let W (x) denote the set of reduced words that begin
with x. For example, a and ab−1abb belong to W (a), while b and a−1baab−1 do not.
Thus the sets W (a),W (a−1),W (b), and W (b−1) form a pairwise disjoint family of
sets in F2 whose union is F2\{e}. Note that aW (a−1) is the set of reduced words
in F2 that don’t begin with a, so F2 is the disjoint union of W (a) and aW (a−1);
similarly it’s also the disjoint union of W (b) and bW (b−1).

Now suppose for the sake of contradiction that μ is a finitely additive probability
measure on P(F2) that is F2-invariant. Then, upon using disjointness in the third
line below and the invariance of μ in the fourth, we obtain

1 ≥ μ(F2\{e})

= μ
(
W (a)∪W(a−1)∪W (b)∪W (b−1)

)

= μ
(
W (a)

)
+ μ

(
W (a−1)

)
+ μ

(
W (b)

)
+ μ

(
W (b−1)

)

= μ
(
W (a)

)
+ μ

(
aW (a−1)

)
+ μ

(
W (b)

)
+ μ

(
bW (b−1))

= μ
(

W (a)∪aW(a−1)︸ ︷︷ ︸
= F2

)
+ μ

(
W (b)∪bW(b−1)︸ ︷︷ ︸

= F2

)

= 1+ 1 = 2,

i.e., 1 ≥ 2: a contradiction. 	

The question of which groups are amenable is a profound one. We’ll see in chapters
to come that every solvable group is amenable, but that some compact groups are
not. Amenability is intimately connected with the phenomenon of paradoxicality
which we’ll take up in the next chapter; the free group F2 will play a crucial role.
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Notes

The Hahn–Banach Theorem. See, for example, [9, Chap. II, pp. 27–29], [60,
Theorem 3.4, p. 21] or [103, Theorem 3.2, pp. 57–58] for the “non-invariant”
version. Banach proved a precursor of the Hahn–Banach Theorem in the course
of showing that there’s a rotation-invariant mean on B(T) whose resulting finitely
additive probability measure on P(T) is not an extension of arc-length measure
on the Lebesgue measurable subsets of T [6, Theorem 19–20]. Banach’s result
answered the one dimensional case of a more general problem posed by one of his
former professors, Stanisław Ruziewicz.

The Ruziewicz Problem. This problem asks if Lebesgue surface measure on the unit
sphere of Rn+1 is the unique (up to multiplication by a positive constant) finitely
additive, isometry-invariant measure on the Lebesgue measurable subsets of the
sphere. The result of Banach mentioned above shows that the answer is “no” for
n = 1. For n > 1 the problem remained open until the 1980s, when the answer was
shown to be “yes” by Drinfeld [32] for n = 2 and 3, and for n > 3 independently by
Margulis [74] and Sullivan [114].

The Invariant Hahn–Banach Theorem. This is due to Agnew and Morse [1]; the
proof given here is taken from [37, Sects. 3.3 and 3.4].

Banach limits. The result here is due (with a different proof) to Banach [9, Chap. II,
p. 34], who also noted the connection with finitely additive probability measures on
the subsets of the positive integers [9, Remarques, Sect. 3, p. 231].

Amenable groups. In the 1920s von Neumann [88] initiated the study of groups G
for which P(G) supports invariant finitely additive probability measures. He called
such groups “measurable.” The currently preferred term “amenable” was coined
by M.M. Day in the late 1950s [28], reputedly as something of a pun on the term
“mean” (see [104, p. 34], for example).



Chapter 11
Paradoxical Decompositions

SET-THEORETIC PARADOXES OF HAUSDORFF AND BANACH–TARSKI

Overview. In Chap. 10 we used the fixed-point theorem of Markov and Kakutani
to show that every abelian group G is “amenable” in the sense that there is a G-
invariant mean on the vector space B(G) of bounded, real-valued functions on G.
We observed that existence of such a “mean” is equivalent to existence of a finitely
additive probability “measure” on P(G), the algebra of all subsets of G, and we
asked if every group turns out to be amenable. We showed that the free group F2 on
two generators is not amenable by finding within F2 four pairwise disjoint subsets
that could be reassembled, using only group motions, into two copies of F2.

Now we’ll see how this “paradoxical” property of F2, along with the Axiom of
Choice, leads to astonishing results in set theory, most notably the famous Banach–
Tarski Paradox, often popularly phrased as: Each (three dimensional) ball can be
partitioned into a finite collection of subsets which can then be reassembled, using
only rigid motions, into two copies of itself. Even more striking: given two bounded
subsets of R3 with nonvoid interior, each can be partitioned into a finite collection of
subsets that can be rigidly reassembled into the other. For this result the fixed-point
theorem of Knaster and Tarski (Theorem 1.2) makes another appearance, this time
to prove a far-reaching generalization of the Schröder–Bernstein Theorem.

Prerequisites. Elementary properties of: sets, groups, matrices.

11.1 Paradoxical Sets

To establish non-amenability for the free group F2 on the two generators a and
b (Theorem 10.12) we observed that its pairwise disjoint family of subsets W =
{W (a),W (a−1),W (b),W (b−1)} could be “F2-reassembled” into two copies of F2 in
the sense that

F2 =W (a)�aW(a−1) =W (b)�bW(b−1),

© Springer International Publishing Switzerland 2016
J.H. Shapiro, A Fixed-Point Farrago, Universitext,
DOI 10.1007/978-3-319-27978-7 11
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where the symbol “�” denotes “union of pairwise disjoint sets,” and W (x) denotes
the collection of reduced words in the generators and their inverses that begin with
the letter x. Although the family of subsets W does not exhaust all of F2 (its union
omits the empty word, a.k.a. the identity element of F2), it can be easily modified to
give a more symmetric statement.

Proposition 11.1. There exists a pairwise disjoint family {E1,E2,E3,E4} of subsets
of F2 such that

F2 = E1 � . . . �E4 = E1 �aE2 = E3 �bE4. (11.1)

Proof. The provisions of (11.1) are fulfilled with E1 =W (a)\{a,a2,a3, . . .}, E2 =
W (a−1)�{e,a,a2,a3, . . .}, E3 =W (b), and E4 =W (b−1). 	


This “paradoxical” nature of F2 has far-reaching consequences. To see how it
works, assume that X is an arbitrary set and G a group of self-maps of X . Thus G is a
family of self-maps of X that is closed under composition, contains the identity map
on X , and contains the (compositional) inverse of each of its members. In particular,
each g ∈ G is a bijection of X : a one-to-one mapping taking X onto itself. To say
that a set is partitioned by a family of subsets means that the subsets of the family
are nonempty, pairwise disjoint, and that their union is the whole set. We’ll call such
a subset family a partition of the ambient set.

Definition 11.2 (Paradoxical set). To say that a subset E of X is G-paradoxical
means that there exist:

(a) A partition of E into finitely many subsets {E1,E2, . . . ,En},
(b) A collection {g1,g2, . . . gn} of elements of G, and
(c) An integer 1 ≤ m < n, such that each family {g jE j}m

1 and {g jE j}n
m+1 is a

partition of E .

Thus “E is G-paradoxical” means that E has a partition whose members can be
disjointly reassembled, via transformations in G, into two copies of E .

If the group G is understood, we’ll abbreviate “G-paradoxical” to just “paradox-
ical.” To say that G itself is paradoxical means that it’s paradoxical with respect
to the group of left-translation mappings x → gx (x,g ∈ G) it induces upon itself.
Thus Proposition 11.1 shows that F2 is paradoxical, with n = 4 and m = 2 in Defi-
nition 11.2. We closed the previous chapter by showing that F2 is not amenable. In
fact this is true of every paradoxical group, as the following exercise shows.

Exercise 11.1. Show that: if a set X is paradoxical with respect to a group G of its self-
mappings, then P(X) supports no G-invariant finitely additive probability measure. Corol-
lary. No paradoxical group is amenable.

Corollary 11.3. Neither the closed unit disc Δ of R2 nor the unit circle T is para-
doxical with respect to the group of rotations about the origin.

Proof. This follows immediately from Exercise 11.1 above, thanks to Corol-
lary 10.9, which establishes the existence of rotation-invariant finitely additive
probability measures on P(Δ) and P(T). 	
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Exercise 11.2. In Definition 11.2 let’s call the set E paradoxical using n pieces, or more
succinctly: n-paradoxical. For example, the free group F2 is 4-paradoxical.

(a) Show that the ambient set X itself cannot be n-paradoxical for n < 4.

(b) Show that a subset of X can be n-paradoxical for n < 4. (Suggestion: Show that with
respect to the bijection group of Z, the subset of natural numbers is 2-paradoxical.)

The next result asserts that paradoxicality can often be transferred from a group to
a set upon which that group acts; it is the key to all that follows.

Definition 11.4. To say such a group G of self-maps of a set X is fixed-point free
on a subset E of X means that no element of G, other than the identity map, can fix
a point of E .

Theorem 11.5 (The Transference Theorem). Suppose X is a set and G a fixed-point
free group of self-maps of X. If G is paradoxical, then X is G-paradoxical.

Proof. We’re given: a “replicator family” {E j}n
1 that partitions G, a corresponding

family {g j}n
1 of elements of G and an integer m with 1 ≤ m < n such that each

“replicant family” {g jE j}m
j=1 and {g jE j}n

j=m+1 also partitions G. We want to show
that this situation can be “lifted” to X .

For x∈X the subset Gx= {gx : g∈G} is called the G-orbit of x. It’s easy to check
(exercise) that: The G-orbits partition X . Consequence: we have X = �m∈MGm
where M ⊂ X is a “choice set” consisting of one element chosen from each G-
orbit.1 For g ∈ G let’s call the set gM = {gm : m ∈ M} the “co-orbit” of g. The key
to transference is the following:

Claim: The co-orbits partition X , i.e., X =
⊎{gM : g ∈ G}.

Proof of Claim. Observe first that the co-orbits exhaust X (proof:∪g∈GgM =GM =
X). Thus we need only show that the co-orbits are pairwise disjoint. To this end
suppose g and h belong to G and gM∩hM �= /0. Then there exist points m1,m2 ∈ M
such that gm1 = hm2, so h−1gm1 = m2, hence m2 belongs to the G-orbit of m1. By
the definition of our choice set M we must therefore have m1 = m2, which provides
a fixed point for the map h−1g ∈ G. Since G is fixed-point free on X this forces h−1g
to be the identity map on X , so h = g and therefore gM = hM. Thus, given g and h
in M with g �= h, the co-orbits gM and hM must be disjoint, as desired.

For A ⊂ G let A∗ = AM = {a(m) : m ∈ M,a ∈ A}. Then thanks to the Claim:

If the family of sets {A j}n
1 partitions G then {A∗

j}n
1 partitions X.

Figure 11.1 illustrates the situation.

1 Warning: In general we need the Axiom of Choice (Appendix E.3, p. 209) to do this.
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Fig. 11.1 G = A1 �A2 �A3 =⇒ X = A∗
1 �A∗

2 �A∗
3

Thus our replicator partition {E j}n
1 of G can be transferred to a partition {E∗

j }n
1

of X . Similarly the replicant partitions {g jE j}m
1 and {g jE j}n

m+1 of G transfer to
replicant partitions {g jE∗

j }m
1 and {g jE∗

j }n
m+1 of X , establishing the G-paradoxicality

of X . 	

Corollary 11.6. Each group with a paradoxical subgroup is itself paradoxical.

Proof. Every subgroup acts freely, by group multiplication, on its parent group.
Thus by Theorem 11.5, if the subgroup is paradoxical then so is its parent. 	


Exercise 11.3. Show that when G acts freely on X , the family of co-orbits is transverse to
the family of orbits, i.e., the intersection of each co-orbit with an orbit is a singleton.

Exercise 11.4 (Converse to Theorem 11.5). Suppose G is a group of self-maps of a set
X . Show that if X is G-paradoxical, then G is paradoxical. (For this one it’s not necessary
that G act freely on X .) Suggestion. Suppose {E∗

j }n
1, {g j}n

1, and 1 ≤ m < n “witness” the
G-paradoxicality of X . Fix x ∈ X and define E j = {g ∈ G : gx ∈ E∗

j }. Show that the E j’s,
g′j s, and m witness paradoxicality for G.

Exercise 11.5. For a group G of self-maps of a set X , let C denote the set of points of X ,
each of which is fixed by some non-identity element of G. Show each map in G takes C,
and therefore X\C, onto itself. Thus G is a set of self-maps of X\C that is fixed-point free
on that set.

11.2 The Hausdorff Paradox

In this section we’ll work on the unit sphere S2 of R3: the set of points of three
dimensional euclidean space that lie at distance 1 from the origin. Let R denote
the group of rotations of R3 about the origin. For the rest of this chapter we’ll treat
the notion of “three dimensional rotation” intuitively, taking for granted that each
rotation has a “center” through which passes an “axis,” every point of which it fixes,
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and that R is a group under composition—a group that acts on S2. All these facts are
established in Appendix D (Theorem D.7), where it’s shown that R is isomorphic
to the group SO(3) of 3× 3 orthogonal matrices with determinant 1.

Theorem 11.7 (The Hausdorff Paradox, c. 1914). S2\C is R-paradoxical for some
countable subset C of S2.

This result follows quickly from Theorem 11.5 and the following property of the
rotation group R, the proof of which we’ll defer for just a moment.

Proposition 11.8. R contains a free subgroup on two generators.

What’s being asserted here is:

There exist two rotations ρ ,σ ∈ R with the property that no nonempty re-
duced word in the “alphabet” A = {ρ ,σ ,ρ−1,σ−1} represents the identity
transformation.

A “word” in the alphabet A is a string of symbols x1x2 . . . xn with each “letter”
x j an element of A . Each such word “represents” the element of R obtained by
viewing juxtaposition of letters as group multiplication (in this case, composition
of mappings). As in the case of F2, to say a word is “reduced” means that no letter
stands next to its inverse.

Granting the above reformulation of the statement of Proposition 11.8, it’s fortu-
nate that only one reduced word can represent a given element of R. Equivalently:

Starting with a word composed of “letters” in the alphabet A , the same re-
duced word results, no matter how the reduction is performed.

Proof. Suppose v = x1x2 . . . xm and w = y1y2 . . . yn are two different reduced words in the
alphabet A . We wish to prove that they multiply out to different group elements. We may
without loss of generality assume that xm �= yn (else cancel these, and keep canceling right-
most letters until you first encounter ones that are distinct; this must happen eventually since
v �= w). Let g denote the element of R you get by interpreting v as a group product, and let
h ∈R correspond in this way to w. The word

z = vw−1 = x1x2 . . . xmy−1
n y−1

n−1 . . . y−1
2 y−1

1

corresponds to the group element gh−1.

Claim. z is a reduced word.

For this, note that since v and w are reduced, the only cancellation possible in z is at the
place where v and w−1 join up (w−1 is also reduced), i.e., at the pair xmy−1

n . But xm �= yn, so
no cancellation occurs there, either.

Since z is not the empty word, the property asserted above for the generators ρ and σ
guarantees that gh−1 is not the identity element of R, i.e., g �= h, so different reduced words
in the alphabet A must correspond to different group elements—as desired. 	


Thus we can view the subgroupF of R generated by ρ and σ as giving an alternate
construction of the free group F2 on two generators; in particular, it’s paradoxical!
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Proof of Theorem 11.7. The subgroup F of R is countable, and each of its non-
identity elements has exactly two fixed points (the points of intersection of the axis
of that rotation with S2). Thus the set C of these fixed points is countable, and by
Exercise 11.5, F is a group of self-maps of S2\C that is fixed-point free on that set.
Thus the Transference Theorem (Theorem 11.5) guarantees that S2\C is paradoxical
for F , and therefore also for R. 	

Proof of Proposition 11.8. Choose ρ ∈ R to be rotation through θ = sin−1 ( 4

5

)
radians about the z-axis and σ to be rotation through the same angle about the x-
axis. We’ll identify these maps with the matrices that represent them relative to the
standard unit-vector basis of R3:

ρ =

⎛
⎜⎜⎜⎝

3
5 − 4

5 0

4
5

3
5 0

0 0 1

⎞
⎟⎟⎟⎠ , σ =

⎛
⎜⎜⎜⎝

1 0 0

0 3
5 − 4

5

0 4
5

3
5

⎞
⎟⎟⎟⎠ .

Since ρ and σ are orthogonal matrices their inverses are their transposes, so to say
a reduced word of length n in these matrices and their inverses does not multiply
out to the identity matrix is to say that the corresponding word in 5ρ , 5σ , and their
transposes does not multiply out to 5n times the identity matrix. For this it’s enough
to show that no such word multiplies out to a matrix all of whose entries are divisible
by 5, i.e., that over the field Z5 of integers modulo 5, no such word multiplies out to
the zero-matrix!

Over the field Z5 our matrices 5ρ , 5σ , and their transposes become

r =

⎛
⎜⎜⎝

3 1 0

4 3 0

0 0 0

⎞
⎟⎟⎠ , r′ =

⎛
⎜⎜⎝

3 4 0

1 3 0

0 0 0

⎞
⎟⎟⎠ , s =

⎛
⎜⎜⎝

0 0 0

0 3 1

0 4 3

⎞
⎟⎟⎠ , s′ =

⎛
⎜⎜⎝

0 0 0

0 3 4

0 1 3

⎞
⎟⎟⎠ .

Let’s call a word in the letters r,r′,s,s′ admissible2 if r never stands next to r′, and s
never next to s′.

Our job now is to show that no admissible word in these new matrices multi-
plies out to the zero-matrix. We’ll do this by identifying each matrix with the linear
transformation it induces by left-multiplication on the (column) vector space Z3

5,
and proving something more precise:

CLAIM. The kernel of each admissible word in the letters r,r′,s,s′ is the kernel of its
last letter.

Proof of Claim. Each of the matrices r,r′,s,s′ has one dimensional range (i.e., col-
umn space) and two dimensional kernel. Upon calculating these ranges and kernels
explicitly we find that the ranges of the “r-matrices” intersect the kernels of “s-

2 We eschew the term “reduced” because, while in our original setup we had, e.g., ρρ−1 = ρ−1ρ =
I, now we have rr′ = r′r = 0.
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matrices” in {0}, and the same is true of the way the kernels of r-matrices intersect
the ranges of s-matrices.

Now proceed by induction on word-length. The result is trivial for words of
length one. Suppose n ≥ 1 and that the kernel of each admissible word of length
n in r,r′,s,s′ equals the kernel of that word’s last letter. We wish to prove that the
same is true of every admissible word of length n+ 1. Let w be such a word, so
w = va where v is an admissible word of length n and a ∈ {r,r′,s,s′}. Then x ∈ kerw
means that vax = 0, i.e., that ax ∈ kerv∩ rana. Since w is an admissible word, the
last letter of v, call it b, is not a′, and by the induction hypothesis kerv = kerb. Thus
ax ∈ kerb∩ rana = {0}, so x ∈ kera. We’ve shown that kerw ⊂ kera. The opposite
inclusion is trivial, so kerw = kera, as we wished to show. 	

Corollary 11.9. The group R of rotations of R3 about the origin is paradoxical,
hence not amenable.

Proof. R inherits the paradoxicality of its subgroup F (Corollary 11.6, p. 134),
hence it’s not amenable (Exercise 11.1, p. 132). 	


11.3 Equidecomposability

According to Hausdorff’s Paradox, if we remove a certain countable subset from S2

then what remains is paradoxical with respect to R, the group of rotations of R3

about the origin. In the next section we’ll show, using an “absorption” technique
similar the one used to prove Proposition 11.1, that S2 itself is paradoxical with
respect to R. To do this efficiently it will help to have some new terminology.

For the rest of this section, G will denote a group of self-maps of a set X .

Definition 11.10 (Equidecomposability). For subsets E and F of X : To say E is G-
equidecomposable with F means that there exists a partition {Ei}n

1 of E , a partition
{Fi}n

i of F , and mappings {gi}n
1 ⊂ G such that Fi = giEi (1 ≤ i ≤ n).

Since the inverse of each map in G also belongs to G, it’s clear that this no-
tion of “equidecomposable” is symmetric: E is G-equidecomposable with F if and
only if F is G-equidecomposable with E . In this case we’ll just say “E and F are
G-equidecomposable,” and use the notation “E ∼G F” to abbreviate the situation.
Usually the group G is understood, in which case we’ll just say “E and F are equide-
composable,” and write E ∼ F . If we wish to be more precise we’ll say “E and F
are equidecomposable using n pieces,” and write E ∼n F .

The notion of “equidecomposability” allows an efficient restatement of the defi-
nition of paradoxicality (Definition 11.2):

Proposition 11.11 (Definition of “Paradoxical” revisited). A subset E of X is G-
paradoxical if and only if there exists a partition of E into subsets A and B such that
A ∼ E ∼ B.



138 11 Paradoxical Decompositions

It’s an easy exercise to show the relation “∼” on P(X) is reflexive (E ∼ E for every
E ⊂ X) and symmetric (E ∼ F =⇒ F ∼ E). In fact:

Theorem 11.12. Equidecomposability is an equivalence relation.

Proof. We need only prove transitivity. Suppose E ∼ F and F ∼ H for subsets
E,F,H of X . Thus there exist partitions {Ei}n

1 and {Fi}n
1 of E and F , respectively,

and transformations {gi}n
1 ⊂G such that giEi =Fi for 1≤ i≤ n. There also exist par-

titions {F ′
j}m

1 and {Hj}m
1 of F and H, respectively, and transformations {h j}m

1 ⊂ G

such that h jF ′
j = Hj. Let Ei, j = Ei ∩ g−1

i (Fi ∩F ′
j ), and set γi, j = h jgi on Ei, j. Thus

each γi, j ∈ G, and one checks easily that (after removing empty sets, if necessary)
{Ei, j : 1 ≤ i ≤ n,1 ≤ j ≤ m} and {γi, jEi, j : 1 ≤ i ≤ n,1 ≤ j ≤ m} partition E and H,
respectively. Thus E ∼ H, as desired. 	


The notion of “same cardinality” is defined in terms of arbitrary bijections. In
this vein, “equidecomposable” is a refinement of that concept, defined in terms of
special bijections. More precisely:

Definition 11.13 (Puzzle Map). For subsets E and F of X , to say a bijection ϕ of
E onto F is a puzzle map (more precisely: a “G-puzzle map”) means that there is a
partition {Ei}n

1 of E and transformations {gi}n
1 ⊂ G such that ϕ ≡ gi on Ei.

The terminology suggests that we think of E as a jigsaw puzzle assembled from
some finite collection of pieces, which the puzzle map ϕ reassembles into another
jigsaw puzzle F . With this definition we have the following equivalent formulation
of the notion of equidecomposability:

Proposition 11.14 (Equidecomposability via Puzzle Maps). Subsets E and F of X
are G-equidecomposable if and only if there is a G-puzzle map taking E onto F.

The fact that G-equidecomposability is an equivalence relation can be explained
in terms of puzzle maps: reflexivity means that the identity map is a puzzle map,
symmetry means that the inverse of a puzzle map is a puzzle map, and the just-
proved transitivity means that compositions of puzzle maps are puzzle maps.

The usefulness of equidecomposability stems from the next result, which asserts
that paradoxicality is a property, not just of subsets of X , but actually of ∼G equiv-
alence classes of subsets.

Corollary 11.15. Suppose E and F are G-equidecomposable subsets of X. Then E
is G-paradoxical if and only if F is G-paradoxical.

Proof. By symmetry we need only prove one direction. Suppose E is G-paradoxical.
Proposition 11.11 provides us with disjoint subsets A and B of E such that A ∼ E ∼
B. Since E ∼ F we’re given a puzzle map ϕ mapping E onto F . Since ϕ is one-to-
one, A′ = ϕ(A) and B′ = ϕ(B) are disjoint subsets of F , and since the restriction
of a puzzle map is clearly a puzzle map we know that A′ ∼ A and B′ ∼ B. Thus
by transitivity: A′ ∼ A ∼ E ∼ F and B′ ∼ B ∼ E ∼ F , hence A′ ∼ F ∼ B′, so F is
G-paradoxical by Proposition 11.11. 	
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11.4 The Banach–Tarski Paradox for S2 and B3

We know so far that if we remove a certain countable subset C from S2, then the
remainder S2\C is paradoxical for the group R of rotations of R3 about the origin.
Aided by our work on equidecomposability, we can now give an efficient proof that
S2 itself is paradoxical. For this we’ll build on the “absorption” idea that established
the paradoxicality of the free group F2 (Proposition 11.1). Here is the main tool:

Lemma 11.16 (The Absorption Lemma). Suppose X is a set, E is a subset of X,
and C is a countable subset of E. Suppose G is an uncountable group of self-maps
of X that takes C into E and is fixed-point free on C. Then E and E\C are G-
equidecomposable.

Proof. The key here is to establish the following:

CLAIM. There exists g ∈ G such that the family of sets {gn(C) : n ∈ N∪{0}} is
pairwise disjoint.

Granting this: Let C∞ =
⊎∞

n=0 gn(C). Then C∞ ⊂ E and, since the sets gn(C) are
pairwise disjoint, g(C∞) =C∞\C. Thus

E\C = (E\C∞)� (C∞\C) = (E\C∞)�g(C∞)∼G (E\C∞)�C∞ = E

which establishes the theorem, showing in addition that only two pieces suffice.

Proof of Claim. It’s enough to show that for some g ∈ G we have gn(C)∩C = /0 for
each n ∈ N. Indeed, once this has been established then given positive integers m
and n with n > m we’ll have

gn(C)∩gm(C) = gm(gn−m(C)∩C) = gm( /0) = /0.

Thus to finish the proof it’s enough to show that the subset H of G, consisting of
maps g for which gn(C)∩C �= /0 for some n ∈N, is at most countable; the existence
of the desired g ∈ G will then follow from the uncountability of G.

To this end, note that given c and c′ in C there is at most one h∈ G with h(c) = c′.
For if h′ ∈ G also takes c to c′ then h−1h′ fixes c, hence (because the action of G
is fixed-point free on C) h−1h′ is the identity map on X , i.e., h = h′. Now h ∈ H
if and only if there exist points c and c′ in C and n ∈ N such that hn(c) = c′. By
the uniqueness just established, if k ∈ G has the property that km(c) = c′ for some
non-negative integer m, then k = hn−m. Thus given the pair (c,c′), there’s at worst a
countable family of maps h ∈ G for which some (integer) power of h takes c to c′.
Since there are only countably many such pairs (c,c′), the set of all such maps h,
i.e., the set H, is countable. 	


Theorem 11.17 (Banach–Tarski for S2). The unit sphere S2 of R3 is R-paradoxical.

Proof. We know from the Hausdorff Paradox (Theorem 11.7) that S2 contains a
countable subset C such that S2\C is paradoxical. Choose a line L through the origin
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that does not intersect C, and let G denote the subgroup of R consisting of rotations
with axis L. Thus G is an uncountable group that is fixed-point free on C, so the
Absorption Lemma with X = E = S2, tells us that S2 is G-equidecomposable (hence
also is R-decomposable) with S2\C. Corollary 11.15 now guarantees that S2 inherits
the R-paradoxicality of S2\C. 	


Theorem 11.17 gives an embryonic Banach–Tarski Paradox for the closed unit
ball B3, i.e., the set of vectors in R3 of that lie at distance at most 1 from the origin.

Corollary 11.18. B3\{0} is R-paradoxical.

Proof. The R-paradoxicality of S2 means that it contains disjoint subsets A and B
such that

A ∼ S2 ∼ B (11.2)

(Proposition 11.11). Let A∗ =
⋃

a∈A{ra : 0 < r ≤ 1}, and similarly define B∗. Thus
{A∗,B∗} is a partition of B3\{0}, and A∗ ∼ B3\{0} ∼ B∗ via the rotations respon-
sible for (11.2). Thus B3\{0} is R-paradoxical. 	


Exercise 11.6. Show that both R
3\B3 and R

3\{0} are R-paradoxical.

The next exercise gives a nontrivial instance of the failure of the Transference The-
orem (Theorem 11.5) if the action of the group G is not fixed-point free.

Exercise 11.7. Show that, with respect to the group R of rotations of R3 about the origin,
B3 is not paradoxical.

Exercise 11.7 also shows that in order to establish the full Banach–Tarski Paradox
for B3 we’ll need to go beyond the group of rotations about the origin. Let G denote
the group of rigid motions of R3 (i.e., the collection of isometric mappings taking
R3 onto itself). In particular, every rotation, whether centered at the origin or not,
belongs to G .

Theorem 11.19 (Banach–Tarski for B3). The three dimensional unit ball is a G -
paradoxical subset of R3.

Proof. Let L be the line through the point (0,0, 1
2 ) parallel to the x-axis. Let GL

denote the subgroup of G consisting of rotations with axis L. Trivially GL is fixed-
point free on the singleton {0}, which it takes into B3. Upon setting X = R3, E =
B3, and C = {0} in the Absorption Lemma we see that B3 and B3\{0} are GL-
equidecomposable, henceG -equidecomposable (using two pieces). ThusB3 inherits
the G -paradoxicality of B3\{0}. 	


Thus each closed ball can be thought of as a three dimensional jigsaw puzzle that
can be reassembled, using only rotations (not all of them about the ball’s center), into
two closed balls of the same radius. This raises further questions: Is every ball G -
equidecomposable with every other ball? With a cube? We’ll take up these matters
in the next section.
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Exercise 11.8. Continuing in the spirit of Exercise 11.2: in Definition 11.10 let’s say that
the sets E and F are n-equidecomposable, and write E ∼n F .

(a) Show that E ∼m F and F ∼n H imply E ∼mn H.

(b) Show that S2 is 8-paradoxical with respect to the rotation group R.

(c) Show that B3 is 16-paradoxical with respect to the isometry group G .

11.5 Banach–Tarski beyond B3

Galileo in 1638 discussed the paradox one encounters in comparing the sizes of
infinite sets. Using the notation “A ∼ B” for “there exists a bijection of set A onto
set B” (i.e., “A and B have the same cardinality”) Galileo’s Paradox can be expressed
as follows:

If N is the set of natural numbers, S the subset of squares, and T the subset of nonsquares,
then, even though N is the disjoint union of S and T , it’s nonetheless true that S ∼ N∼ T .

Proposition 11.11 phrases the notion of paradoxicality in similar terms, but now
using the more sophisticated equivalence relation of “equidecomposability.” Like
the notion of “same cardinality,” equidecomposability can be defined in terms of
bijections, but now the bijections are “piecewise congruences,” i.e., puzzle maps
(Proposition 11.14).

The deepest elementary result about “same cardinality” is the Schröder–
Bernstein Theorem: if set A has the same cardinality as a subset of set B, and
B has the same cardinality as a subset of A, then A and B have the same cardinal-
ity. The same is true for equidecomposability; the two results even have a common
proof! In this section we’ll give this proof and examine its astonishing consequences
for the notion of paradoxicality.

We’ll assume as usual that G is a group of self-maps of a set X , and we’ll continue
to write A ∼G B for “A and B are G-equidecomposable.”

Notation 11.20. By “A �G B” we mean “A is G-equidecomposable with a subset of
B,” i.e., “There is a puzzle map taking A onto a subset of B.”

Thus the relation �G is reflexive since the identity map is a puzzle map, and
transitive since the composition of puzzle maps is a puzzle map. To proceed further
we’ll need a simple observation about the ordering �G.

Lemma 11.21. Suppose {A j}n
1 and {B j}n

1 are families of subsets of X, each of which
is pairwise disjoint.

(a) If A j �G B j for each index j, then
⊎n

j=1 A j �G
⊎n

j=1 A j.
(b) If A j ∼G B j for each index j, then

⊎n
j=1 A j ∼G �n

j=1A j.

Proof. (a) Our hypothesis is that for each j there is a puzzle map ϕ j taking A j into
B j. Then it’s easy to check that the map ϕ defined by setting ϕ = ϕ j on A j is a
puzzle map taking the union of the A j’s onto the union of the B j’s.
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(b) Same as (a), except now the puzzle map ϕ j takes A j onto B j (1 ≤ j ≤ n), and
therefore ϕ takes

⊎n
1 A j onto

⊎n
1 B j. 	


The key to the rest of this section is the fact that �G, in addition to being reflexive
and transitive, is also antisymmetric, and so induces a partial order on P(X). This
is the content of:

Theorem 11.22 (The Banach–Schröder–Bernstein Theorem). If A and B are subsets
of X with A �G B and B �G A, then A ∼G B.

Proof. The hypotheses assert that there are puzzle maps f and g with f taking A
onto a subset B1 of B and g taking B onto a subset A1 of A. By the Banach Mapping
Theorem (Theorem 1.1, p. 8) there is a subset C of A such that g takes B\ f (C)
onto A\C. Since g is a puzzle map, and since the restriction of a puzzle map is
again a puzzle map, this equation asserts that B\ f (C) ∼ A\C, where here—and in
the arguments to follow—we allow ourselves to omit the subscript G . Since f is a
puzzle map we know that f (C) ∼C. Thus Lemma 11.21 insures that

B = (B\ f (C))∪ f (C) ∼ (A\C)∪C = A

as desired. 	

Previously we noted that for subsets A and B of X :

A ⊂ B =⇒ A �G B.

Recall the notation G for the group of all isometric self-maps of R3.

Corollary 11.23. Suppose {B j}n
1 is a pairwise disjoint family of subsets of R3, each

of which is G -equidecomposable with B3. Then �n
j=1B j ∼G B3.

Proof. We proceed by induction on n; if n = 1 there is nothing to prove, so suppose
n > 1 and that the result is true for n− 1. Let C1 = �n−1

j=1B j and C2 = C1 �Bn; our

goal is to show that C2 ∼ B3. Now both C1 (induction hypothesis) and Bn are ∼ B3

and by the Banach–Tarski Theorem there exists a partition {E1,E2} of B3 such
that E1 and E2 are each ∼ B3. Thus E1 ∼ C1 and E2 ∼ Bn, so by Lemma 11.21,
B3 = E1 �E2 ∼C1 �Bn =C2. 	

Corollary 11.24. Every closed ball in R3 is G -equidecomposable with every other
closed ball.

Proof. Fix a closed ball B in R3. It’s enough to prove that B is equidecomposable
with the closed unit ball B3.

Suppose first that the radius of B is > 1. Cover B by balls {B j}n
1 of radius equal

to one, and “disjointify” this collection of B j’s by setting

B′
j = B j\∪n

k= j+1 Bk.
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Then B′
j ⊂ B j for each index j and the new collection {B′

j}n
1 has the same union as

the original one; in particular it still covers B. Now let {Cj}n
1 be a pairwise disjoint

collection of closed balls of radius 1 in R3. Then

B
3 � B �

n⊎
j=1

B′
j �

n⊎
j=1

Cj ∼ B
3

where the first “inequality” comes from the containment of B3 in a translate of B,
the second one from the containment of B in the union of the B′

j s and the third one
from Lemma 11.21 above along with the containment of each B′

j in a translate of the

corresponding Cj. Corollary 11.23 provides the final “equality.” Thus B3 � B � B3,
so B ∼ B3 by the Banach–Schröder–Bernstein Theorem.

If the radius of B is < 1, repeat the above argument with the roles of B and B3

reversed. If the radius of B is equal to 1 then B, being a translate of B3, is trivially
G -equidecomposable with that set. 	


Corollary 11.25 (The “Ultimate” Banach–Tarski Theorem). Every two bounded
subsets of R3 with nonempty interior are G -equidecomposable.

Proof. Let E be a bounded subset of R3 with nonempty interior. It’s enough to
show that E ∼ B

3. Since E contains a closed ball B we know from Corollary 11.24
that B3 ∼ B � E . Since E is bounded it is contained in a closed ball B′, so again
by Corollary 11.24: E � B′ ∼ B3, hence B3 � E � B3. Thus E ∼ B3 by Banach–
Schröder–Bernstein. 	


Exercise 11.9 (Paradoxicality revisited). In many expositions of the Banach–Tarski paradox
the definition of ”paradoxical” is taken to be somewhat less restrictive than the one we’ve
used here (Definition 11.2). Specifically: the “replicator family” {En}n

1 of that definition is
often required only to be pairwise disjoint (not necessarily with union equal to E), while
the “replicant families,” although still required to exhaust all of E, no longer need to be
pairwise disjoint. Show that in this revised definition:

(a) The replicant families can, without loss of generality, be assumed to be pairwise dis-
joint. Thus we can rephrase the new definition as follows: There exist disjoint subsets
A0 and B contained in E with A0 ∼ E ∼ B.

(b) Let A = A0 �E\(A0 ∩B), so that E = A�B. Show that A ∼ E. Thus the new “weak-
ened” definition of paradoxicality is equivalent to the original one.

Notes

A free group of rotations. The idea to consider the two matrices used in the proof
of Proposition 11.8, and to transfer the argument to the field Z5, comes from Terry
Tao’s intriguing preprint [115].
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The Hausdorff Paradox. The original version of Hausdorff’s Paradox occurs in
[48]; it asserts that there exists a countable subset C of S2 such that S2\C can be
partitioned into three subsets A, B, and C such that each is congruent via rotations to
the others, and also to B∪C. Hausdorff’s motivation here was to show that P(S2)
does not support a rotation-invariant finitely additive probability measure.

References for the Banach–Tarski Paradox. The results of Sects. 11.3–11.5 all
come from Banach and Tarski’s famous paper [10]. See Chap. 3 of Stan Wagon’s
book [121] (the gold standard for exposition on the Banach–Tarski Paradox and the
research it has inspired up through 1992) for more on the material we’ve covered
here. See also [104, Chap. 1] for another exposition of the Banach–Tarski Paradox
and for more recent developments, with the emphasis on amenability. A more pop-
ularized exposition of the Banach–Tarski paradox is Leonard Wapner’s delightful
book [122], which provides much interesting biographical information about the
personalities involved, as well as commentary on the foundational issues raised by
this amazing theorem.

“n-Paradoxicality.” Regarding Exercises 11.2 and 11.8: Raphael Robinson proved
in the 1940s that S2 is 4-paradoxical with respect to the rotation groupR and that B3

is 5-paradoxical (but not 4-paradoxical) with respect to the full isometry group G .
Wagon discusses these matters, with appropriate references, in Chap. 4 of [121].

Amenability and paradoxicality. We’ve seen that paradoxical groups are not
amenable (Exercise 11.1). In the late 1920s Tarski proved that the converse is
true: If a group is not amenable, then it is paradoxical. See [121, Chap. 9, pp.
125–129] for an exposition of this remarkable theorem.

Galileo’s Paradox. In his treatise [41] (pp. 31–33) Galileo observes that the set of
squares in N is in one-to-one correspondence with N itself, and so has the same size
as N. He concludes that size comparisons between infinite sets are impossible.



Chapter 12
Fixed Points for Non-commuting Map Families

MARKOV–KAKUTANI FOR SOLVABLE FAMILIES

Overview. Here we’ll generalize the Markov–Kakutani Theorem (Theorem 9.6, p.
107) to collections of affine, continuous maps that obey a generalized notion of com-
mutativity inspired by the group-theoretic concept of solvability. This will enable us
to show, for example, that the unit disc is not paradoxical even with respect to its
full isometry group, and that solvable groups are amenable, hence not paradoxical.
We’ll prove that compact solvable groups possess Haar measure, and will show how
to extend this result to solvable groups that are just locally compact.

12.1 The “Solvable” Markov–Kakutani Theorem

We know from the Banach–Tarski Paradox (Theorem 11.19) that B3 is paradoxi-
cal with respect to the full isometry group of R3. Thanks to the Markov–Kakutani
Fixed-Point Theorem and the commutativity of the group of origin-centered rota-
tions of R2, we also know (Corollary 10.5, p. 123) that there is defined, for all
subsets of the unit disc B2, a finitely additive probability measure that is rotation-
invariant. Consequently (Exercise 11.1) B2 is not paradoxical with respect to the
group of rotations of R2 about the origin. This raises the question:

Is B2 paradoxical with respect to its full group of isometries?

The isometry group of B2 allows, in addition to rotations about the origin, reflections
in a line through the origin; this creates non-commutativity. Indeed, we know from
linear algebra that the rotations of R2 about the origin are the linear transformations
represented (with respect to the standard unit-vector basis of R2) by matrices of
the form

[
cosθ −sinθ
sinθ cosθ

]
, where θ ∈ [0,2π) is the angle of rotation. These rotation

matrices form the subgroup SO(2) of O(2), the group of all 2× 2 matrices whose
columns form an orthonormal set in R2. Each matrix in O(2) has determinant ±1 (a
consequence of column-orthonormality, which can be rephrased: “The transpose of
each matrix in O(2) is its inverse”), those with determinant −1 being the reflections
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about lines through the origin, and those with determinant +1 constituting the ro-
tation group SO(2). The isometries of R2 that fix the origin are precisely the linear
transformations represented by matrices in O(2). More generally the same is true
for RN , with O(N) in place of O(2) (see Appendix D for the full story). Now the
matrix group O(2) (hence its alter ego, the isometry group of the unit disc) is not
commutative, as witnessed by the pair of matrices:

⎡
⎣ 1√

2
− 1√

2
1√
2

1√
2

⎤
⎦ and

⎡
⎣1 0

0 − 1

⎤
⎦ ,

the first of which induces rotation through an angle of 45 degrees about the origin,
while the second induces reflection about the horizontal axis.

In this chapter we’ll generalize the Markov–Kakutani Theorem in a way that
applies to non-commutative groups like O(2); in so doing we’ll be able to extend
the disc’s non-paradoxicality from rotations to all its isometries.

Theorem 12.1 (The “Solvable” Markov–Kakutani Theorem). Suppose K is a non-
void compact, convex subset of a Hausdorff topological vector space. Then every
solvable family of continuous, affine self-maps of K has a common fixed point.

We’ll devote the next section to understanding the meaning of “solvable,” after
which we’ll prove Theorem 12.1 and show how to apply it.

12.2 Solvable Families of Maps

Our notion of solvability is inspired by group theory (see Appendix E).

Definition 12.2. Suppose A is a family of self-maps of some set.

(a) Solvable family of maps. This is what we’ll call A whenever there is a finite
chain of subfamilies

{Identity map} = A0 ⊂ A1 ⊂ A2 ⊂ ·· · ⊂ An = A (12.1)

such that for each 1 ≤ k ≤ n and each pair A,B of maps in Ak there exists a
“commutator” C ∈Ak−1 such that AB = BAC.

(b) Solvability degree. More precisely, we may call A as above “n-solvable.”
(c) Solvable group. This is what we’ll call the family A whenever it satisfies

condition (a) above, and each of the subfamilies Ak in (12.1) is a group under
composition. For more precision we may use the term “n-solvable group.”

Remarks 12.3. Suppose A denotes a family of self-maps that is solvable in the
sense of Definition 12.2 (a).

(a) Solvability and commutativity. A1 is commutative, so A is “1-solvable” if and
only if it is commutative. “2-solvable” is the next-best thing, . . . .
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(b) Semigroups and groups of self-maps. For a family of self-maps of a set, the
collection of common fixed points is not changed if one replaces the original
family of self-maps by the “unital semigroup” it generates, i.e., the set of all
possible finite compositions of the original maps, along with the identity map.
If each map of the original family is a bijection, we can even add all the inverses
to the original family without changing the common fixed-point set, in which
case the new “inverse-enhanced” family generates a group under composition
having the same common fixed-point set as the original family. Here we’ll only
consider self-map families that are groups.

(c) Solvable groups. Suppose G is a group with identity element e. We can consider
G to be a group of self-maps, acting itself by (say) left multiplication. Each pair
of elements a,b ∈ G has a unique commutator [a;b] := (ba)−1ab = a−1b−1ab.
Thus, according to Definition 12.2(c) above: G is a solvable group if and only
if there is a chain of subgroups

{e}= G0 ⊂ G1 ⊂ G2 . . . Gn = G (12.2)

such that for each index k between 1 and n the subgroup Gk−1 contains all the
commutators of Gk.

The usual definition of “solvable” for groups stipulates that for 1≤ k ≤ n the sub-
group Gk−1 must to be a normal subgroup of Gk, and that furthermore each quotient
group Gk/Gk−1 must be abelian. These requirements of normality plus commuta-
tivity turn out to be equivalent to the single commutator-containment condition of
the last paragraph; see Appendix E for the details.

Example 12.4. The matrix group O(2) is solvable. We’ve noted that the family of
isometric self-maps of B2 can be identified with O(2) acting by left-multiplication
of column vectors. Consider the chain of subgroups

{I} ⊂ SO(2)⊂ O(2), (12.3)

noting that SO(2), the group of 2× 2 rotation matrices, is commutative. The mul-
tiplicative property of determinants now takes over; each matrix in O(2) has deter-
minant either +1 or −1, and so has the same determinant as its inverse. Thus given
matrices A and B in O(2) the commutator [A;B] belongs to O(2) and has determinant
+1; it therefore belongs to SO(2).

Conclusion: O(2) is a 2-solvable group in the sense of Definition 12.2.

Example 12.5. The affine group of R is solvable. Let A(R) denote the collection of
affine transformations of the real line, i.e., the transformations γr,t : x → rx+ t (x ∈
R) for t ∈ R and r ∈ R\{0}. Then, with composition as the binary operation in
A(R):

(a) γr,t ◦ γρ ,τ = γrρ ,rτ+t , so A(R) is a group, with γ−1
r,t = γ1/r,−t/r .

(b) A(R) is generated by two commutative subgroups: the dilation group con-
sisting of maps γr,0 where r �= 0, and the translation group T (R) consisting of
maps γ1,t for t ∈ R.
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(c) The commutator [γr,t ;γρ ,τ ] = γ1,s ∈ T (R), where s = (1−ρ)t−(1−r)τ
rρ .

Thus we have the chain of groups: {identity map} ⊂ T (R) ⊂ A(R), where T (R) is
commutative and contains all the commutators of A(R).

Conclusion: A(R) is a 2-solvable group.

Exercise 12.1. Show that the map γr,t → [ r t
0 1 ] is a homomorphism taking A(R) onto a group

of invertible 2× 2 real matrices, and that all the calculations in the example above can be
done “matricially.”

The exercises below give two more examples of solvable matrix groups, the sec-
ond of which is 3-solvable, but not 2-solvable.

Exercise 12.2 (The Heisenberg group is solvable). The Heisenberg group is the collection
H = H3(R) of 3× 3 real matrices that are upper triangular and whose main diagonal
consists entirely of 1’s.

(a) Show that H is a group under matrix multiplication.

(b) Let K denote the subset of H consisting of matrices of the form
(

1 0 a
0 1 0
0 0 1

)
. Show that

K is a commutative subgroup of H .

(c) Show that if A,B ∈ H , then the commutator A−1B−1AB belongs to K . Conclude
that H is 2-solvable.

Exercise 12.3 (The Upper-Triangular group is 3-solvable, but not 2-solvable). Let U denote
the collection of 3× 3 matrices that are upper triangular, i.e., have all entries zero below
the main diagonal.

(a) Show that U is a group under matrix multiplication.

(b) Show that the Heisenberg group contains every U -commutator. Conclude that U is
3-solvable.

(c) Show that the U is not 2-solvable.

(d) Suggestion: By considering, e.g., matrices of the form A =
(

1 1 0
0 1 1
0 0 a

)
and B =

(
b 0 c
0 1 0
0 0 d

)
,

show that the collection of commutators of U exhausts the entire Heisenberg group.
Argue that if U were 2-solvable, then the Heisenberg group would have to be com-
mutative, which it is not.

The next exercise concerns a famous class of finite groups that are not solvable.

Exercise 12.4. Sn is not solvable for n ≥ 5. Here Sn denotes the set of permutations (1-to-1
onto maps) of a set of n elements, which we might as well take to be [1,n] := {1,2, . . . n}.
With composition as its binary operation, Sn is a group (the symbol “S” stands for “sym-
metric”). We assume here that n ≥ 5.

Of particular interest to us are the 3-cycles in Sn, i.e., the maps that permute a triple {a,b,c}
of distinct elements of [1,n] cyclically: a → b → c → a and leave everything else alone.
Notation for such a 3-cycle: (a,b,c). In the exercises below we assume n ≥ 5.

(a) Show that the 3-cycle (1,4,3) is the commutator [σ ,τ ] where σ = (1,2,3) and τ =
(3,4,5).
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(b) By making appropriate substitutions in part (a) show that every 3-cycle in Sn is a
commutator of other 3-cycles.

(c) Use part (b) to show that Sn is not solvable.

12.3 Proof of the solvable Markov–Kakutani Theorem

The argument proceeds by induction on the “solvability index” n in (12.1). Since
A1 is commutative, the case n = 1 is just the original Markov–Kakutani Theorem
(Theorem 9.6, p. 107).

For the induction step suppose n ≥ 2 and the result is true for all (n−1)-solvable
families, of which An−1 in (12.1) is one. The set Kn−1 of common fixed points
for An−1 is nonempty (induction hypothesis), compact (continuity of the maps in
An−1), and convex (affine-ness of the maps in An−1).

Claim: Each map A ∈A =An takes Kn−1 into itself.

Proof of Claim. Given A ∈A and p ∈ Kn−1 we’re claiming that A(p) ∈ Kn−1, i.e.,
that BA(p) = A(p) for every B ∈ An−1. Given A ∈ A and B ∈ An−1 there exists
C ∈ An−1 such that BA = ABC. Thus for p ∈ Kn−1 we have (since both B and C
belong to An−1): BA(p) = ABC(p) = AB(p) = A(p), as desired.

To finish the proof of Theorem 12.1 we’re going to show that ˜A , the collection of
restrictions to Kn−1 of maps in A , is commutative. This, along with the just-proved
Claim, will establish ˜A as a commutative family of continuous, affine self-maps of
Kn−1. The original Markov–Kakutani Theorem will then provide for ˜A a common
fixed point p ∈ Kn−1, a fortiori a fixed point for every map in A .

It remains to establish the desired commutativity for ˜A . For this, suppose A and
B belong to A and choose C ∈An−1 so that AB = BAC. Then for p ∈ Kn−1 (hence a
fixed point for C): A(B(p)) = B(A(C(p))) = B(A(p)), i.e., AB = BA on Kn−1. 	


12.4 Applying the solvable M–K Theorem

Recall the cast of characters that emerged in Chaps. 9 and 10 when we applied the
original the Markov–Kakutani Theorem.

(a) There was a set S and a commutative family Φ of self-maps of S.
(b) Each ϕ ∈ Φ gave rise to the (linear) composition operator Cϕ : f → f ◦ ϕ

acting on B(S) (the vector space of bounded, real-valued functions on S). We
denoted the collection of all such composition operators by CΦ.

These actors will return in this chapter, except that now we’ll allow Φ to be “solv-
able” in the sense of Definition 12.2. The Markov–Kakutani triple (X ,K,A ) of
Sects. 9.5 and 10.1 will return unchanged:

(c) X = B(S)�, the algebraic dual of B(S), taken in its weak-star topology.
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(d) K =M (S), the set of “means” on B(S), i.e., those positive linear functionals
on B(S) that take value 1 on the function ≡ 1 on S.

(e) A =C�
Φ, the collection of adjoints of composition operators belonging to the

family CΦ.

To apply our enhanced Markov–Kakutani Theorem we need only to show that the
solvability assumed for the original family Φ of self-maps of S is inherited by the
family C�

Φ of affine self-maps of M (S). For this one need only check that the map
ϕ →Cϕ reverses composition (Cϕ◦ψ =CψCϕ ), and that the same is true of the map
T → T � that associates to each linear transformation on a vector space its adjoint.
Thus the map ϕ →C�

ϕ preserves the order of composition; in particular, if ϕ ,ψ ,γ ∈
Φ and γ is a commutator of the pair (ϕ ,ψ) in the sense that ϕ ◦ψ = ψ ◦ ϕ ◦ γ ,
then C�

γ is a commutator of the pair (C�
ϕ ,C

�
ψ). Consequently, if the original family of

maps Φ is solvable, then so is C�
Φ. Theorem 12.1 can therefore be applied to yield

Theorem 12.6 (Invariant means for solvable families of maps). Suppose Φ is a
solvable family of self-maps of a set S. Then:

(a) There is a meanΛ on B(S) that is invariant for C�
Φ, i.e., Λ ◦Cϕ =Λ for every

ϕ ∈Φ (cf. Theorem 9.19).
(b) There is a finitely additive Φ-invariant probability measure on P(S) (cf. The-

orem 10.3).
(c) S is not Φ-paradoxical (see Exercise 11.1).

Since Φ= O(2) is a solvable family of self-maps of B2 and S1, we see in particular:

Corollary 12.7. B
2 and S1 are not O(2)-paradoxical.

Corollary 12.8. Solvable groups are amenable, hence not paradoxical.

In the other direction we have

Corollary 12.9. The following groups are not solvable:

(a) The free group F2 on two letters.
(b) The compact group SO(3) of 3×3 orthogonal matrices with determinant one.

Proof. Both groups are not amenable (Theorem 10.12 for F2 and Corollary 11.9 for
SO(3) in its guise as the rotation group R), hence not solvable. 	


If our basic set S is a compact topological space, then we have the following
extension of Corollaries 9.20 and 9.21:

Corollary 12.10. If Φ is a solvable family of continuous affine self-maps of a com-
pact topological space S, then there exists a regular Borel probability measure μ for
S such that ∫

f ◦ϕ dμ =

∫
f dμ

for every f ∈C(S) and ϕ ∈Φ.

Corollary 12.11. Every solvable compact topological group has a Haar measure.
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12.5 The (solvable) Invariant Hahn–Banach Theorem

Given a solvable family Φ of continuous self-maps of a compact Hausdorff space S,
our solvably enhanced version of the Markov–Kakutani Theorem produces—just as
did the original version in Sect. 10.2—two important Φ-invariant set functions for
S: A regular probability measure μ on the Borel sets of S (Corollary 12.10), and a
finitely additive probability measure ν defined for all subsets of S (Theorem 12.6).
This brings up the same question we faced in Sect. 10.2: “Can ν be realized as
an extension of μ?” Once again the answer is “yes,” with the heavy lifting done
by a “solvable” extension of the Invariant Hahn–Banach Theorem (Theorem 10.6,
p. 124).

Theorem 12.12 (The “solvable” Invariant Hahn–Banach Theorem). Suppose V is a
vector space and G is a solvable family of linear transformations V →V . Suppose
W is a linear subspace of V that is taken into itself by every transformation in G ,
and that p is a gauge function on V that is “G -subinvariant” in the sense that

p(γ(v))≤ p(v) for every v ∈V and γ ∈ G .

SupposeΛ is a G -invariant functional on W that is dominated by p, i.e.,

Λ ◦ γ =Λ for all γ ∈ G and λ (v)≤ p(v) for all v ∈W.

Then Λ has a G -invariant linear extension to V that is dominated on V by p.

Corollary 12.13. If S is a compact Hausdorff space upon which acts a solvable
family Φ of continuous self-maps, then each regular Φ-invariant probability mea-
sure on the Borel sets of S extends to a finitely additive probability measure defined
for all subsets of S.

The proofs of these two results are identical to those of their commutative ana-
logues (Theorem 10.6 and Corollary 10.7, pp. 124–125), except that the solvable
Markov–Kakutani Theorem replaces the original one.

We saw in Corollary 10.5 that for the closed unit disc B2 there is a finitely addi-
tive, rotation-invariant probability measure on P(B2). Thanks to Example 12.4 and
Theorem 12.1 we now know there exists a finitely additive probability measure on
P(B2) invariant for the full isometry group O(2) of B2. Corollary 12.13 shows that
this isometry-invariant finitely additive probability measure can be chosen to extend
normalized Lebesgue area measure; similar results hold for the unit circle.

Invariant extension of Lebesgue measure on R. Lebesgue measure m on the
Borel subsets of the real line is invariant under translations, and “scales properly”
under dilations. More precisely: for each pair (r, t) of real numbers, and each Borel
subset E of R, we have m(rE + t) = |r|m(E). Thanks to the solvability of the affine
group A(R) of the real line (Exercise 12.5), our “solvable” Invariant Hahn–Banach
Theorem provides an extension of Lebesgue measure to a finitely additive measure
on P(R) that preserves the translation-invariance and scaling properties of the orig-
inal. More precisely:
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Theorem 12.14. There is an extension of Lebesgue measure to a finitely additive
measure μ on all subsets of R such that for each E ⊂ R:

μ(rE + t) = |r|μ(E) (0 �= r ∈ R, t ∈R) (12.4)

and
m∗(E)≤ μ(E)≤ m∗(E), (12.5)

where m∗(E) and m∗(E) denote, respectively, the inner and outer measures of E.

Proof. Let V be the collection of real-valued functions f on R for which the upper
integral ∫ ∗

| f | = inf

{∫
s : s ∈S , | f | ≤ s

}

of | f | overR is finite; here S denotes the collection of Borel-measurable, integrable
functions on R that are simple, i.e., take only finitely many values, and the integrals
are taken with respect to Lebesgue measure on the line. For f ∈V let p( f ) =

∫ ∗ | f |.

Exercise 12.5. Prove that p is a gauge function on V , as defined in the statement of the
Hahn–Banach Theorem on p. 124.

For γ = γr,t ∈ A(R) (notation as in Example 12.5), define the linear transformation
Lγ on V as the “weighted” composition operator:

(Lγ f )(x) = r f (γ(x)) ( f ∈V, x ∈ R),

and let A denote the collection of all such transformations. With composition as
its binary operation, A is a group that inherits the 2-solvability of A(R), and so
satisfies the hypotheses of the “solvable” Invariant Hahn–Banach Theorem.

Thanks to the change-of-variable formula for Lebesgue integrals, the functional
p is invariant for each Lγ ∈A :

p(Lγ f ) = p( f ) ( f ∈V, γ ∈ A(R)).

Let W denote the subspace of V consisting of functions whose absolute value is
Lebesgue measurable, and so Lebesgue integrable. On W let λ be the linear func-
tional of integration with respect to Lebesgue measure m. Then λ , too, is A -
invariant so Theorem 12.12 provides a A -invariant linear functional Λ on V that
extends λ and is dominated on V by p.

Now for the desired finitely additive measure: if E is a subset of R with finite
outer measure then its characteristic function χE is in V (its upper integral is pre-
cisely m∗(E)), so we can set μ(E) =Λ(χE). The A -invariance of Λ translates into
property (12.4) for μ , while the fact that Λ ≤ p on V shows us that

∫
∗

f =−p(− f )≤Λ( f ) ≤ p( f ) =
∫ ∗

f ( f ∈V ),
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where on the right we see the lower integral of f , i.e., the supremum of the integrals
of integrable simple functions that are ≤ f at each point of R. In particular, for
f = χE with m∗(E)< ∞ we obtain (12.5).

It remains only to extend μ to all subsets of R, which we do by defining μ(E) =
∞ whenever m∗(E) = ∞. With the usual conventions involving arithmetic with ∞,
the result is still a finitely additive measure that preserves the desired properties. 	

Higher dimensional extensions? Does the above result extend to affine maps of RN

for N > 1? In this case the maps are γA,v : x→Ax+v with A in the group of invertible
n× n real matrices and v a vector in RN . The change of variable formula now tells
us that λ (γA,v(E)) = det(A)λ (E) for each Borel subset E of RN , where λ denotes
Lebesgue measure on R

N , so the question is: For n > 1 does there exist a finitely
additive extension of Lebesgue measure to all the subsets of RN that satisfies the
above transformation formula.

The answer is “No!” For N = 3 the Banach–Tarski Paradox tells us that no such
measure exists, even for the subgroup of A(R3) consisting of isometries of R3. The
Banach–Tarski Paradox extends to RN with N > 3 (the proof is an adaptation—
not entirely trivial—of the three dimensional one; see, for example, [121, Chap. 5]),
with the same result for extensions of Lebesgue measure. For N = 2 there is no
Banach–Tarski Paradox to help us out here. In its place, however, is the von Neu-
mann Paradox, according to which any two bounded subsets of R2 with nonvoid in-
terior are equidecomposable with respect to the group of affine maps γA,v for which
det(A) = 1, i.e., the group of area-preserving affine maps. Thus, once again there is
no hope for a two dimensional extension of Theorem 12.14.

Countably additive extensions? The usual construction of a subset of R that’s not
Lebesgue measurable shows that (assuming the Axiom of Choice) there is no count-
ably additive extension of Lebesgue measure to all subsets of the real line.

12.6 Right vs. Left

Having left the friendly confines of commutativity, we need to address the question
of “rightness vs. leftness” for invariant Borel measures on topological groups, and
more generally for means on “non-topological” groups (recall Definition 9.16, p.
114). To this point “invariant,” for a group G and a mean Λ on B(G) has meant
that L�

γ Λ : =Λ ◦Lγ =Λ for each of the “left-translation maps” Lγ : B(G)→ B(G)
defined for γ ∈ G by

Lγ ( f )(x) = f (γx) (x ∈ G, f ∈ B(G)). (12.6)

If a compact group G has such an invariant mean (e.g., if G is abelian, or more
generally, solvable) then the Riesz Representation Theorem (Sect. 9.2, p. 104) asso-
ciates with the restriction of this mean to C(G) a similarly invariant regular Borel
probability measure—a Haar measure.
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For non-commutative groups we need to address the corresponding idea of
“right-invariance” that utilizes the transformations Rγ : B(G)→ B(G) defined by

Rγ( f )(x) = f (xγ) (x ∈ G, f ∈ B(G)). (12.7)

The question arises: “Is right-invariance the same as left invariance?”

Right vs. left Haar measure. We’ll see in the next chapter that every compact
topological group has a left-invariant regular Borel probability measure; we know
right now (Corollary 12.11 above) that such a measure exists if the group is solvable.
For the time being, however, let’s just assume the existence of such a measure for a
given compact group and see where this leads.

Theorem 12.15. Suppose G is a compact topological group and μ is a left-invariant
regular Borel probability measure for G. Then:

(a) μ is also right-invariant, hence “bi-invariant.”
(b) There is no other invariant regular probability measure for G.
(c) μ is “inversion invariant”:

∫
f (x−1)dμ(x) =

∫
f dμ ( f ∈C(G)),

i.e., μ(B) = μ(B−1) for every Borel subset B of G.

Proof. Suppose ν is a right-invariant regular probability measure for G. Then for
each f ∈C(G) the left-invariance of μ demands that

∫
f dμ =

∫
f (xy)dμ(y) (x ∈ G),

hence
∫

f dμ =

∫ (∫
f (xy)dμ(y)

)
dν(x) [ν(G) = 1]

=

∫ (∫
f (xy)dν(x)

)
dμ(y) [Fubini]

=

∫ (∫
f (x)dν(x)

)
dμ(y) [ν right invariant]

=

∫
f dν [μ(G) = 1].

Thus μ = ν , which establishes (a) and (b).
As for (c), note that μ has a natural right-invariant companion μ̃ defined, thanks

to the Riesz Representation Theorem, by∫
f dμ̃ =

∫
f (x−1)dμ(x) ( f ∈C(G)).

By (b) we must have μ̃ = μ , thus establishing the inversion-invariance of μ . 	
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Summary: For compact topological groups there’s no distinction between left- and
right-invariant Borel probability measures. Such a “bi-invariant” measure (whose
existence we’ll prove in the next chapter) is unique, and even “inversion-invariant.”

In the next section we’ll discuss topological groups that are not compact. The
following exercise shows that in this generality there may be left-invariant Borel
measures that are not right-invariant.

Exercise 12.6 (Haar measure(s) on a non-compact group). Let G = {(x,y) ∈R
2 : x > 0} be

the open right-half plane of R2 with the binary operation:

(a,b) · (x,y) := (ax,ay+b) ((a,b), (x,y) ∈ G).

(a) Show that G, in the operation described above, is a topological group that is solvable.

Suggestion: Examine the map (x,y)→ [ x y
0 1

]
(cf. Example 12.5 and Exercise 12.1).

(b) Use the change-of-variable formula for double integrals to show that the measure
dxdy/x2 is left-invariant on G, but not right-invariant.

(c) Show that the measure dxdy/x is right-invariant on G, but not left-invariant.

Right- vs. left-invariant means. For non-abelian groups the situation of left- vs.
right-invariance of means is more subtle than the one described above for measures.
It turns out that left-invariant means need not be right-invariant (and vice versa), but
once there is a left- or right-invariant mean, there is a “bi-invariant one.” Thus there
is no “left vs. right” problem with the notion of “amenable.”

In addition to the notions of left and right invariance for means, there is a notion
of inversion-invariance that mirrors the property observed for invariant measures in
Theorem 12.15. Define the linear transformation J : B(G)→ B(G) by

(J f )(x) = f (x−1) ( f ∈ B(G), x ∈ G) (12.8)

and call a mean Λ on B(G) inversion invariant if J�Λ =Λ , i.e., if Λ ◦ J =Λ .

Theorem 12.16. Suppose G is a group for which B(G) has a left-invariant mean.
Then B(G) has a mean that is both bi-invariant and inversion invariant.

Proof. We’ll first show that every left-invariant mean has a right-invariant counter-
part. To this end note that for the inversion operator J defined by (12.8),

RγJ = JLγ−1 and LγJ = JRγ−1 . (12.9)

Thus if λ is a left-invariant mean for B(G) then the calculation below shows that
ρ = J�λ is right invariant. For every γ ∈ G:

R�
γρ = R�

γJ
�λ = (JRγ)

�λ = (Lγ−1 J)�λ = J�L�

γ−1λ = J�λ = ρ ,

where the middle equality above comes from the first identity of (12.9) and the next-
to-last one from the left-invariance of λ . Clearly ρ(1) = 1, and it’s easy to check
that ρ is a positive linear functional on B(G), hence a right-invariant mean.
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From a left-invariant mean λ on B(G) and a right-invariant one ρ , the definition
below provides a bi-invariant one: a mean ν on B(G) with L�

γν = R�
γν = ν for every

γ ∈ G:

ν( f ) = λ ( f̃ ) where f̃ (γ) = ρ(Lγ f ) ( f ∈ B(G),γ ∈ G).

One checks easily that ν is a mean on B(G). As for its bi-invariance, a little calcula-
tion (using the identity Lγβ = LβLγ , and the fact that every left translation commutes
with every right translation) shows that for each γ ∈ G and f ∈ B(G):

R̃γ f = f̃ and L̃γ f = Lγ f̃ ,

whereupon
ν(Rγ f ) = λ (R̃γ f ) = λ ( f̃ ) = ν( f )

and
ν(Lγ f ) = λ (L̃γ f ) = λ (Lγ f̃ ) = λ ( f̃ ) = ν( f )

as desired.
Finally, from the bi-invariant mean ν we form an inversion-invariant one η =

(ν+ J�ν)/2 that is easily to inherit the bi-invariance of ν . 	

Example 12.17 (A left-invariant mean that’s not right-invariant). Let G be the group
of Exercise 12.6; the identity of this group is the point (1,0), and the inverse of
(x,y) ∈ G is (1/x,−y/x).

By part (a) of Exercise 12.6 we know that G is solvable, hence Corollary 12.12,
our “solvable” Invariant Hahn–Banach Theorem, applies to B(G)�. In particular, let
p denote the gauge function on B(G) defined by the iterated upper limits

p( f ) = limsup
y→∞

[
limsup

x→∞
f (x,y)

]
( f ∈ B(G)).

Let W denote the set of all functions f ∈ B(G) for which the iterated limit

λ ( f ) = lim
y→∞

[
lim
x→∞

f (x,y)
]

exists (finitely). One checks easily that:

(a) p is left-invariant on B(G): p ◦Lγ = p for every γ ∈ G.
(b) W is a linear subspace of B(G) with Lγ (W )⊂W for each γ ∈ G, and
(c) λ is a linear functional on W that is left-invariant for G.

Since G is solvable, our extended Invariant Hahn–Banach Theorem applies to pro-
duce an extension of λ to a left-invariant linear functional Λ on B(G).

However Λ is not right-invariant for G. For example, if g(x,y) := xy/(x2 + y2)
then g ∈W with λ (g) = 0. For (a,b) ∈ G we have for each y ∈ R:
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lim
x→∞

R(a,b)g(x,y) = lim
x→∞

ax(bx+ y)
(ax)2 +(bx+ y)2 =

ab
a2 + b2 = g(a,b).

Thus λ (R(a,b)g)= g(a,b) which is �= 0 if b �= 0. However λ (g)= 0, so the functional
λ , and therefore its extension Λ , is not right-invariant.

Exercise 12.7. Show that the mean Λ of Example 12.17 is not inversion-invariant.

Exercise 12.8 (Banach limits for solvable groups). Suppose G is an infinite group that is
solvable. For a function f : G →R and c ∈R define “limγ→∞ f (γ) = c” to mean: “For every
ε > 0 there exists a finite subset Fε of G such that | f (γ)−c|< ε for every γ ∈ G\Fε .” Make
similar definitions for upper and lower limits. Use Corollary 12.12 to show that there exists
a mean Λ on B(G) that is both bi-invariant and inversion-invariant for G, and for which

liminf
γ→∞

f (γ)≤Λ( f )≤ limsup
γ→∞

f (γ)

for each f ∈ B(G).

12.7 The Locally Compact Case

To say a topological space X is locally compact means that for each point x ∈ X ,
every neighborhood of x contains a compact neighborhood of x. In other words, at
each point the topology of the space has a local base of compact neighborhoods. As
we’ve mentioned previously (but will not prove here), every locally compact group
has a left—and therefore a right—Haar measure. Under appropriate regularity con-
ditions left Haar measure is unique up to positive scalar multiples, as is right Haar
measure, but we’ve already seen (Exercise 12.6) that left and right Haar measures
need not be scalar multiples of each other. Detailed proofs of the existence and
uniqueness of Haar measure on locally compact groups exist in many places; see,
for example, [39, Chap. 2] or [29, Chap. 7]. There does not, however, seem to be a
neat functional-analysis proof of this result. The purpose of this section is to show
how our “Markov–Kakutani method” can be modified to provide Haar measure, at
least for locally compact groups that are solvable.

Throughout this discussion it will help to keep in mind three examples: Lebesgue
measure on Euclidean space, and the left and right Haar measures on the group G of
Exercise 12.6. All three measures are unbounded, and the last two show that, even
in the solvable case, left and right Haar measures can be essentially different.

Regular and Radon measures. Suppose μ is a Borel measure for a locally com-
pact (Hausdorff) space X . To say that a Borel set E ⊂ X is:

– μ-outer regular means that μ(E) = inf{μ(U) : U is open and U ⊃ E}.
– μ-inner regular means μ(E) = sup{μ(K) : K is compact and K ⊂ E}.

To say that μ itself is

– Regular means that every Borel set is both inner and outer regular (similarly
we can attach to μ the terms “inner regular” or “outer regular”).
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– Locally finite means that every point of the space has a neighborhood of finite
measure.

– A Radon measure means that it is locally finite, outer regular, and every open
set is μ-inner regular.

We’ll see below (Exercise 12.10) that in general not every Radon measure is regular.
This is not something to worry about, especially in the compact case:

Exercise 12.9. Show that for compact spaces every Radon measure is regular.

Haar Measure To say that μ is a left Haar measure for a locally compact group
G means that μ is a Radon measure for G that is invariant for left-translation on the
group, i.e., μ(E) = μ(gE) for every Borel subset E of G and every g ∈ G. Right
Haar measure is defined similarly.

We’ll need the full-strength version of the Riesz Representation Theorem. If X is
a locally compact space that is not compact, the space C(X) of all continuous real-
valued functions on X is no longer an appropriate setting for the Riesz theorem;
non-compact spaces raise the spectre of unbounded functions and infinite measures,
creating problems for the integration of arbitrary continuous functions against arbi-
trary Borel measures. The resolution is to replace C(X) by its subspace Cc(X): those
continuous functions on X that have compact support, i.e., that vanish off some com-
pact set. Each such function is bounded and can be integrated against every locally
finite Borel measure. Such measures therefore induce linear functionals on Cc(X),
the positive ones inducing positive functionals. The Riesz Representation Theorem
says that each positive linear functional on Cc(X) is given by integration against
such a measure and, with the appropriate conditions of regularity, this representing
measure is unique. More precisely (see, e.g., [102, Theorem 2.14, pp. 40–41]):

The Riesz Representation Theorem for locally compact spaces. Suppose X is a
locally compact space and Λ a positive linear functional on Cc(X). Then there is a
unique Radon measure for X such that Λ( f ) =

∫
f dμ for every f ∈Cc(X).

The exercise below shows that Haar measure—even for a commutative locally
compact group—need not always be regular. The group G in question is the additive
group R2 endowed with the product topology it gets when viewed as Rd ×R, where
Rd denotes the real line with the discrete topology.

Exercise 12.10 (A non-regular Haar measure). For the group G described above:

(a) Show that G is locally compact, and even metrizable (for p j = (x j ,y j) ∈ G( j = 1,2)
take d(p1 , p2) equal to |y1 − y2| if x1 = x2, and 1+ |y1 − y2| otherwise).

(b) Let δ denote the counting measure for Rd and let λ denote Lebesgue measure on
the Borel subsets of R. Show that each of these is a Haar measure for its respective
topological group.

(c) Show that Rd ×{0} (the “discrete x-axis” has μ-measure ∞, whereas each of its
compact subsets has μ-measure zero. Thus μ is not regular. Show that μ is, never-
theless, a Radon measure.

(d) Show that μ is a Haar measure for G.
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Here is the main result of this section.

Theorem 12.18. Every locally compact solvable topological group has a Haar
measure.

Strategy of proof. Assume G is solvable and locally compact, but not compact. Let
e denote the identity element of G. We seek to produce left Haar measure for G by
applying our “solvable” Markov–Kakutani theorem to an appropriate subset of the
algebraic dual Cc(G)� of Cc(G). Since non-zero constant functions no longer belong
to Cc(G), the space of “means” that worked so well in the compact situation no
longer exists. Our argument will hinge on finding a substitute.

Simplifying assumptions. To keep the argument as transparent as possible we’ll
assume G is metrizable and that its metric d is G-invariant in the sense that
d(γx,γy) = d(x,y) for all x,y,γ ∈ G (i.e., for each γ ∈ G the left-translation map
Lγ : x → γx (x ∈ G) is an isometry). See the Notes at the end of this chapter for some
discussion of these assumptions.

Notation. Let Br(x) denote the open d-ball of radius r > 0, centered at x ∈ G. The
G-invariance of d insures that γBr(x) = Br(γx) for all x,γ ∈ G. For f ∈Cc(G) we’ll
define ‖ f‖=max{| f (x)| : x ∈ G}, where compactness of support insures the (finite)
existence of the maximum.

Small and large functions. Since G is locally compact it has, at each point, a base of
compact neighborhoods. In particular, there exists r > 0 such that Br(e) has compact
closure. Thus Br(x) = xBr(e) has compact closure for each x ∈ G. Fix this radius r
for the rest of the proof.

Let C+
c (G) denote the collection of non-negative functions in Cc(G). To say that

f ∈C+
c (G) is:

– Small means that its values are all ≤ 1 on G and its support lies in Br/2(x) for
some x ∈ G.

– Large means that its values are all ≥ 1 on Br(x) for some x ∈ G.

Quasimeans. We’ll call a positive linear functional on Cc(G) a quasimean if it takes
values ≤ 1 on small functions in C+

c (G) and ≥ 1 on large ones. Let Q denote the
collection of quasimeans. We’ll prove the existence of Haar measure for G by show-
ing that Q is a nonempty, convex, weak-star compact subset of Cc(G)� that is taken
into itself by each translation-adjoint L�

γ . The usual argument involving the (solv-
able) Markov–Kakutani Theorem and the Riesz Representation Theorem will then
lead to the desired Haar measure.

It’s easy to check that Q is convex and, thanks to the fact that γBr(x) = Br(γx),
is also invariant under L�

γ for each γ ∈ G.

Q is weak-star closed. Suppose Λ ∈ Cc(G)� is a weak-star limit point of Q. We
wish to show that Λ ∈Q. For each ε > 0 and finite subset F of Cc(G), the weak-
star neighborhood of Λ

N(Λ ,F,ε) = {Γ ∈Cc(G)� : |Γ ( f )−Λ( f )|< ε ∀ f ∈ F}
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contains a point of Q. Suppose, then, that f ,g ∈ C+
c (G) with f small and g large.

Fix ε > 0, and choose Γ ∈ N(Λ ,{ f ,g},ε)∩Q. Then

Λ( f ) ≤ Γ ( f )+ ε ≤ 1+ ε and Λ(g)≥ Γ (g)− ε ≥ 1− ε.

Since ε is an arbitrary positive number, Λ( f ) ≤ 1 and Λ(g) ≥ 1, hence Λ ∈Q, as
desired.

Q is weak-star compact. Since we now know that Q is weak-star closed, to show
it’s compact we need only prove that it’s pointwise bounded on Cc(G) (Corol-
lary 9.15, p. 112). To this end fix Λ ∈ G and note that, thanks to the definition
of “small” function: for every f ∈ C+

c (G) with support contained in some ball of
radius r/2 we have Λ( f ) ≤ ‖ f‖. Now for arbitrary f ∈ C+

c (G) we can cover its
(compact) support by a finite number of open d-balls of radius r/2. Lemma B.6 (p.
190) provides a partition of unity

{p1, p2, . . . , pn} subordinate to that cover. Thus f = ∑n
j=1 p j f where each func-

tion p j f belongs to C+
c (G) and has support contained in a ball of radius r/2. It

follows that

Λ( f ) =
n

∑
j=1

Λ(p j f )≤
n

∑
j=1

‖p j f‖ ≤ n‖ f‖,

where the integer n depends on f , but not on Λ . Thus Q is pointwise bounded on
C+

c (G).
Now suppose f ∈ Cc(G). Then f = f+− f−, the difference of two functions in

C+
c (G), each of which has norm ≤ ‖ f‖ and support contained in that of f . Thus

|Λ( f )| ≤Λ( f+)+Λ( f−)≤ n‖ f+‖+ n‖ f−‖ ≤ 2n‖ f‖,

where n does not depend on Λ . Thus Q is pointwise bounded on Cc(G), hence
weak-star compact in Cc(G)�.

Q is nonempty. For most proofs this sort of statement is a triviality. Not so here!
None of the “usual suspects” (the point evaluations) belong to Q. (Exercise: Why
not?) What’s needed is a subset S of G having the following properties:

(S1) S has at least one point in each open d-ball of radius r, and
(S2) S has no more than one point in each open ball of radius r/2.

Example 12.19. G = R and r = 1. Then S = Z has the desired properties. Note: S
is maximal with respect to the property that any pair of its distinct elements lies at
least 1 unit apart.

We’re going to show that such a set S exists in every group G of the sort we’re
considering. Assuming this for the moment, define the functional Λ on Cc(G) by

Λ( f ) :=∑
s∈S

f (s) ( f ∈Cc(G)). (12.10)

Since we can cover each compact subset of G by finitely many open balls of radius
r/2, each such set can contain at most finitely many points of S, hence for each
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f ∈Cc(G) only finitely many summands on the right-hand side of (12.10) are non-
zero. The right-hand side of (12.10) therefore makes sense and provides a positive
linear functional on Cc(G).

Suppose f ∈ C+
c (G) is “small,” i.e., has support in a ball of radius r/2 and all

values ≤ 1. Each such ball contains no more than one point of S, so Λ( f ) = 0 or
1. Thus Λ( f ) ≤ 1 on “small” functions in C+

c (G). Suppose on the other hand that
f ∈ C+

c (G) is “large,” i.e., takes only values ≥ 1 on some ball of radius r. Then
Λ( f ) ≥ 1 since this ball must contain a point of S. Thus Λ ∈Q, proving that Q is
not empty.

The proof that G harbors the desired set S is inspired by Example 12.19.

Claim. Suppose S ⊂ G is maximal with respect to the property

s, t ∈ S with s �= t =⇒ d(s, t)≥ r. (*)

Then S satisfies conditions (S1) and (S2) above.

Proof of Claim. To check S has property (S1), note that if this were not the case
there would be a point x ∈ G at distance ≥ r from each point of S. Then S∪{x},
which properly contains S, would obey (*) thus contradicting the maximality of S.
As for (S2), suppose s, t ∈ S lie in the ball Br/2(x). Then by the triangle inequality
d(s, t)< r, hence s = t, thus establishing the Claim.

It remains to prove the existence of our maximal S. Let T denote the family of
subsets T of G with the property (*).

T is nonempty. Since we’re assuming the closure of Br(e) is compact, while G is
not, there must exist x ∈ G with d(e,x) > r. Thus {e,x} ∈ T , so the family T is
nonempty.

Enter Zorn’s Lemma. If C is a subfamily of T that is totally ordered by inclusion
(i.e., given two members of C , one of them is contained in the other), then the union
of the sets that are elements of C belongs to T (exercise). Thus each subfamily of
T that is totally ordered has an upper bound, so by Zorn’s Lemma (Appendix E.3)
T has a maximal element S (note that this argument used only the fact that G is a
metric space and r < supx,y∈G d(x,y)).

Concluding the proof. We now have Q, our nonempty, convex, weak-star compact
subset of Cc(G)�, and the family L � of continuous affine (in fact linear) self-maps
L�
γ of Q (γ ∈ G). The argument in the paragraph preceding Theorem 12.6 shows that

the family of maps L � inherits the solvability of G, hence our extended Markov–
Kakutani Theorem (Theorem 12.1) guarantees that L � has a fixed point Λ in Q.
The measure provided for Λ by Riesz Representation Theorem is, by a familiar
argument, the Haar measure we seek. 	
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Notes

Solvable families of maps. The original source for this is Day’s paper [27, p. 285];
see also [37, Theorem 3.2.1, pp. 155–156].

The symmetric group. Exercise 12.4 is from [108, p. 253]. The fact that Sn is not
solvable for n ≥ 5 is a crucial step in the proof of Abel’s Theorem: For each n ≥ 5
there is a polynomial of degree n whose roots can not all be found by radicals. See,
for example, Hadlock’s Carus Monograph [43, Chap. 3].

Corollary 12.8. The amenability of solvable groups is due to von Neumann [88].

Right vs. left. Theorem 12.16, showing that each left-invariant mean gives rise to a
bi-invariant one, is due to M.M. Day [27, Lemma 7, p. 285].

von Neumann’s Paradox. The original source is [88]. For a modern exposition in
English, see [121, Theorem 7.3, p. 99].

Exercise 12.10. This is taken directly from [102, Chap. 2, Exercise 17, p. 59].

Haar measure for solvable locally compact groups: Those simplifying assumptions.
Every metrizable topological group has an invariant metric. In fact the Birkhoff–
Kakutani Theorem asserts that every first countable group is metrizable and has
such a metric. See [29, Corollary 3.10, p. 53] or [80, Sect. 1.22, pp. 34–36] for a
proof, and [13, 57] for the original papers. With a bit more care the entire proof
given above for the existence of Haar measure can be carried out for every solvable
locally compact group. See Izzo [54] for how to do this in the commutative case;
the solvable one being no different. The argument given above is just a translation
of Izzo’s proof to the solvable, invariantly metrizable case.



Chapter 13
Beyond Markov–Kakutani

THE RYLL–NARDZEWSKI FIXED-POINT THEOREM

Overview. In the last chapter we extended the Markov–Kakutani Theorem—origi-
nally proved only for commuting families of continuous affine maps—to “solvable”
families of such maps. We used our enhanced theorem to show that every solvable
group is amenable and that Haar measure exists for every topological group that is
both solvable and compact. By contrast, we’ve seen (Chap. 11) that the group R of
origin-centric rotations of R3 is paradoxical, hence not amenable, and therefore not
solvable. Now R is naturally isomorphic to the group SO(3) of 3× 3 orthogonal
real matrices with determinant 1 (Appendix D), a group easily seen to be compact.
Thus not every compact group is amenable.

Conclusion: Fixed-point theorems that produce invariant means cannot prove the
existence of Haar measure for every compact group.

In this chapter we’ll turn to a fixed-point theorem in which the Markov–Kakutani
hypothesis of solvability is replaced by a topological condition of “uniform injectiv-
ity.” This result, due to the Polish mathematician Czesław Ryll–Nardzewski, works
with an appropriate modification of our previous duality method to provide Haar
measure for all compact topological groups. For ease of exposition we’ll focus on
compact groups that are metrizable, sketching afterwards how to make the argu-
ments work in general. Finally, we’ll identify the Haar measure for SO(3).

Throughout this chapter we’ll be working in vector spaces over the real numbers.

13.1 Introduction to the Ryll–Nardzewski Theorem

Theorem 13.1 (Ryll–Nardzewski [105]). Suppose X is a locally convex topological
vector space in which K is a nonvoid, compact, convex subset. Suppose S is a
semigroup of continuous, affine self-maps of K that is uniformly injective. Then S
has a fixed point in K.
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We’ll first seek to understand the hypotheses of the Ryll–Nardzewski Theorem after
which we’ll prove it for the duals of separable Banach spaces, a special case that’s
still general enough to provide the existence of Haar measure for compact, metriz-
able groups, and which gives an accurate guide to the proof of the general theorem.
Let’s start with the undefined terms in the Theorem’s statement, taking them in the
order in which they occur.

Semigroup. A set with an associative binary operation. If F is a family of self-
maps of some set S, then the semigroup generated by F (its operation being com-
position of maps) consists of all possible finite compositions of maps in F . This
is the smallest semigroup of self-maps of S containing F ; it has the same set of
common fixed points as F , and one can even throw in the identity map without
changing the common-fixed-point set. Thus when considering fixed points for fam-
ilies of self-maps one need only consider “compositional semigroups with identity.”

Locally Convex. For a topological vector space (always assumed Hausdorff) this
property means that each point has a base of convex neighborhoods. We have al-
ready worked with several important examples of locally convex spaces:

(a) Normed linear spaces: the balls centered at a given point are convex and form
a base for the neighborhoods of that point.

(b) The space R
S of all real-valued functions on a set S, with its topology of

“pointwise convergence”: the basic neighborhoods N( f ,F,ε) for this topol-
ogy, as defined by Eq. (9.9) (p. 110), are all convex.

(c) The weak-star topology induced on the algebraic dual V � of a real or complex
vector space V .

A version of the Hahn–Banach Theorem guarantees, for each locally convex topo-
logical vector space, the existence of enough continuous linear functionals to sep-
arate distinct points of the space, and more generally, to separate disjoint closed
convex sets.1 The exercise below shows that in the absence of local convexity such
separation is not guaranteed.

Exercise 13.1 (Non locally convex pathology2). For 0 < p < 1 consider the space Lp =
Lp([0,1]) consisting of (a.e.-equivalence classes of) real-valued Lebesgue measurable func-
tions f on the unit interval for which ‖ f ‖= ∫ 1

0 | f (x)|p dx < ∞ (omission of the p-th root of
the integral on the right is deliberate). For f ,g ∈ Lp let d( f ,g) = ‖ f −g‖. Show that:

(a) ‖ · ‖ is not a norm, but d is a metric making Lp into a topological vector space.

(b) On Lp the topology induced by the metric d is not locally convex. In fact, the only
open (nonempty) convex set is the whole space!

(c) The only continuous linear functional on Lp is the zero-functional.

Uniformly Injective. “Injective” is another way of saying “one-to-one.” To say a
family of maps F taking a set S into a topological vector space X is uniformly

1 See, e.g., [103, Chap. 3, pp. 56–62].
2 For more details, see [103, Sect. 1.47, pp. 36–37].
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injective3 means that for each pair of distinct points s, t ∈ S the zero vector does not
belong to the closure of the set { f (s)− f (t) : f ∈F}. If X is a normed linear space,
then uniform injectivity for F means that for every pair s, t ∈ S with s �= t there
exists a positive number δ = δ (s, t) such that:

δ < ‖ f (s)− f (t)‖ for every f ∈F . (13.1)

Why Injectivity? Let X =R, K = [0,1], and consider the two-element compositional
semigroup S = {ϕ ,ψ}, where ϕ ≡ 0 and ψ ≡ 1. Thus X is locally convex, K is
a nonempty, compact, convex subset of X , and S is a finite semigroup of affine,
continuous self-maps of K that does not have a common fixed point. The following
prototype of the Ryll–Nardzewski Theorem shows that the culprit here is “lack of
injectivity.”

Proposition 13.2. Suppose K is a nonvoid, compact, convex subset of a topological
vector space. Then every finite semigroup of continuous, injective, affine self-maps
of K has a common fixed point.

Proof. Let S denote our finite semigroup of maps. As noted earlier, there is no loss
of generality in assuming that it contains the identity map eK on K.

Claim. S is a group.

Proof of Claim. We need only show that each map in S has an inverse. Fix A ∈S
and note that since S is finite there exist positive integers n and m with 1 ≤ m < n
such that An =Am, (where, e.g., An denotes the composition of A with itself n times).
Thus An = AmAn−m = AnAn−m, and since An is injective

eK = An−m = An−m−1A = AAn−m−1.

This exhibits An−m−1 (which exists and belongs to S because n−m ≥ 1) as the
compositional inverse of A, thus proving the Claim.

Having established that S is a group, let A1,A2, . . . ,An denote its elements, and
denote by A0 the arithmetic mean of these elements:

A0x =
1
n

n

∑
j=1

A jx (x ∈ K).

Now A0, though perhaps not a member of S , is nonetheless a continuous, affine
self-map of K. The Markov–Kakutani Theorem4 therefore guarantees that A0 has a
fixed point x0 in K.

3 Alternative terminology: “non-contracting,” or in dynamical systems: “distal.”
4 For this we need only the “single-map” version: Proposition 9.8, p. 108.
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Fix A ∈ S . Since A is affine it respects convex combinations, so AA0 =
(1/n)∑n

j=1 AA j. Since S is a group, the n-tuple (AA1,AA2, . . . ,AAn) is a per-
mutation of the original list (A1,A2, . . . ,An) of the elements of S . Conclusion:
AA0 = A0. Consequently

x0 = A0x0 = AA0x0 = Ax0

i.e., x0 is a fixed point for A, hence a common fixed point for S . 	

On the other hand, for infinite semigroups of affine, continuous maps: injectivity

alone is not enough to guarantee a common fixed point. Once again let X = R and
K = [0,1], but now consider the (infinite) semigroup S generated by the pair of
injective affine self-maps ϕ(x) = (2x+ 1)/4 and ψ(x) = (x+ 1)/2 of K. Since ϕ
and ψ have no common fixed point, neither does S . The exercise below shows
what’s wrong.

Exercise 13.2. Show that S as described above is not uniformly injective.

13.2 Extreme points of convex sets

For the proof of the Ryll–Nardzewski Theorem we’ll make frequent use of the con-
cepts of convex set, convex combination, and convex hull, as set out in Appendix C,
Sect. C.1. Here’s a crucial addition to this list.

Definition 13.3 (Extreme point). For a convex subset C of a real vector space, an
extreme point is a point of C that does not lie in the interior of the line segment
joining two distinct points of C (i.e., a point that cannot be written as tx+(1− t)y,
with 0 < t < 1 and x, y distinct points of C).

Examples of extreme points. The endpoints of a closed interval of the real line, the
vertices of a triangle in R2, or more generally a convex polygon in RN (e.g., the
standard simplex ΠN). Every point on the boundary of a closed ball in RN .

Non-examples. In a normed space: each point in the interior of a closed ball. For a
convex polygon in RN : each point that is not a vertex (e.g., for ΠN , each point that
is not one of the standard basis vectors for RN).

Exercise 13.3. Suppose C is a convex subset of a real vector space. Then p∈C is an extreme
point if and only if p cannot be represented nontrivially as a convex combination of other
points of C.

A key step in our proof of the Ryll–Nardzewski Theorem will involve the follow-
ing fundamental result about extreme points. If S is a subset of a topological vector
space, we’ll use the notation convS for the closure of its convex hull.
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Theorem 13.4 (A Krein–Milman theorem). Suppose K0 is a nonempty compact
subset of a locally convex topological vector space X and that K = convK0 is also
compact.5 Then K0 contains an extreme point of K.

This result is a consequence of two famous theorems about nonempty compact sub-
sets K of locally convex spaces. First there is The Krein–Milman Theorem, which
asserts that not only does K have extreme points, it is in fact the closed convex hull
of these extreme points. Next, the “Milman Inversion” of this theorem says that if
K is the closed-convex hull of a compact subset K0, then all of K’s extreme points
belong to K0.6 For our purposes we’ll only need a special case of Theorem 13.4
(Theorem 13.6 below).

We begin with an even more special case of Theorem 13.4.

Lemma 13.5. Suppose K0 is a nonempty compact subset of an inner-product space.
If K := convK is compact then some point of K0 is an extreme point of K.

Proof. Let’s denote the ambient inner-product space by X , its inner product by 〈·, ·〉,
and its norm by ‖ ·‖ (i.e., ‖x‖2 = 〈x,x〉 for each x ∈ X). Since K0 is compact there is
a smallest closed ball B in X that contains it, and so also contains the closure of its
convex hull. Upon making an appropriate translation and dilation we may without
loss of generality assume that B is the closed unit ball of X . The compactness of K0

insures that it intersects ∂B in some vector v. This unit vector (or, for that matter,
every unit vector in K0) will turn out to be the desired extreme point for K. This
is obvious from a picture; for an analytic proof suppose v = tx+(1− t)y for some
vectors x,y ∈ K and for some 0 < t < 1. Since ‖x‖ and ‖y‖ are both ≤ 1,

1 = ‖v‖2 = 〈v,v〉= 〈v, tx+(1− t)y〉= t〈v,x〉+(1− t)〈v,y〉

≤ t‖v‖‖x‖+(1− t)‖v‖‖y‖≤ 1,

where the next-to-last inequality follows from the Cauchy–Schwarz Inequality ap-
plied to both 〈v,x〉 and 〈v,y〉. Thus there is equality throughout, in particular

‖x‖= ‖y‖= 〈v,x〉= 〈v,y〉= 1.

By the case of equality in the Cauchy–Schwarz inequality, this requires x =±v and
y = ±v. They can’t both be −v lest v = −v, i.e., v = 0, contradicting the fact that
v is a unit vector. On the other hand if one of them is v and the other is −v, then
v = ±(2t − 1)v whereupon t is either 0 or 1, another contradiction. Thus v is an
extreme point of K. 	


The version of Theorem 13.4 that we’ll actually need is the following conse-
quence of Lemma 13.5. Recall from Sect. 9.5 that if Y is a real vector space then

5 Compactness of the closed convex hull of a compact set is automatic for Banach spaces (Propo-
sition C.6, p. 195), but not so in general; it can fail even for non-closed subspaces of Hilbert space
(Remark C.7, p. 195).
6 For proofs of these theorems see, e.g., [103], Theorems 3.23 and 3.25, respectively, pp. 75–77.
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the weak-star topology on the algebraic dual Y � of Y is just the restriction to Y � of
the product topology of RY . If Y is a topological vector space then its dual space
Y ∗ is the collection of linear functionals on Y that are continuous. Note that Y ∗ is a
linear subspace of Y �, and its weak-star topology is just the restriction of the weak-
star topology of Y �, i.e., the topology of pointwise convergence on Y . We call Y the
predual of Y ∗.

Theorem 13.6 (A Krein–Milman Theorem for separable preduals). Suppose X is
the dual of a separable Banach space, and K0 ⊂ X is nonempty and weak-star com-
pact. If convK0 is weak-star compact, then it has an extreme point that lies in K0.

Proof. We are assuming that X = Y ∗, where Y is a separable (real) Banach space.
The closed unit ball Y1 of Y has a countable dense subset {yn}∞1 (exercise). Each
element of f ∈ X , being a continuous linear functional on Y , is bounded on Y1.
Consequently the formula

〈 f ,g〉=
∞

∑
n=1

1
2n f (yn)g(yn) ( f ,g ∈ X) (13.2)

makes sense, and defines a bilinear form on X that is, in fact, an inner product.
To see why, define ‖ f‖ :=

√〈 f , f 〉 for f ∈ X . To say that 〈·, ·〉 is an inner product
is to say that the seminorm ‖ · ‖ is a norm, i.e., that ‖ f‖ = 0 only when f = 0. If
‖ f‖= 0 then by (13.2) we have f (yn) = 0 for n = 0,1,2, . . . , hence f = 0 on Y1 by
the continuity of f on Y and the density of {yn}∞0 in Y1. Since f is a linear functional
it must therefore vanish on all of Y .

CLAIM. The norm topology η induced on X by this inner product coincides on
weak-star compact sets with the weak-star topology ω .

Once we’ve proved this Claim, the desired result on extreme points will follow from
Lemma 13.5.

Proof of Claim. Let K be a weak-star compact subset of X . We need only show that
the topology η is weaker than ω . Once this is done we’ll know that the identity map
j on K is continuous from ω to η , and so takes ω-closed subsets of K (which are
ω-compact) to η-compact subsets of K (which are η-closed). Thus j is not just a
continuous map from (K,ω) to (K,η), but also a closed one, and so (upon taking
complements) an open one. Thus j is a homeomorphism, i.e., ω = η .

To show that η is weaker than ω , note that by Proposition 9.10 (p. 111) we
know that each vector y ∈ Y1 induces an ω-continuous function ŷ : K → R via the
definition ŷ( f ) = f (y) ( f ∈K). Since K is ω-compact, ŷ is bounded thereon for each
y ∈Y1. Turning things around: K is pointwise bounded on Y1, hence by the Uniform
Boundedness Principal7 there exists a positive number M such that | f | < M on Y1

for every f ∈ K.
Now fix ε > 0 and a point f0 ∈ K, and consider the relatively open subset U

of K obtained by intersecting the η-ball of radius ε and center f0 with K. Choose

7 See, e.g., [102, Theorem 5.8, pp. 98–99], where it’s called the “Banach-Steinhaus Principle.”
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a positive integer N for which ∑∞
n=N+1 2−n < ε2/(8M2). Let F = {y0,y1, . . . ,yN}

be a finite subset of Y and suppose f ∈ N( f0,F,ε/
√

2). Then, continuing with the
notation ‖ · ‖ for the norm induced by the inner product (13.2):

‖ f − f0‖2 =
∞

∑
n=1

1
2n | f (yn)− f0(yn)|2 =

N

∑
n=1

+
∞

∑
n=N+1

1
2n | f (yn)− f0(yn)|2

<
ε2

2

N

∑
n=1

1
2n + (2M)2

∞

∑
n=N+1

1
2n <

ε2

2
+ ε2 4M2

8M2

=
ε2

2
+

ε2

2
= ε2.

Thus N( f0,F,ε/
√

2) ⊂U . We’ve shown that if f0 ∈ K then every η-neighborhood
of f0 contains an ω neighborhood of f0, i.e., that the topology η induced on X
by the inner product (13.2) is weaker than—and therefore equal to—the weak-star
topology induced on X by its predual Y . 	


The metrizability argument given above produces the following useful result:

Proposition 13.7 (Weak-star metrizability). If X is the dual of a separable Banach
space, then on each compact subset of X the weak-star topology is metrizable.

In the next section we’ll prove our “separable-predual” version of the Ryll–
Nardzewski Theorem. The action will take place in the dual space of C(G), where
G is a compact, metrizable group, so we will need to know that C(G) is separable.
According to Proposition B.7 of Appendix B, this is true even if G is just a compact
metric space.

13.3 Ryll–Nardzewski: separable predual version

In this section, X will be the (topological) dual of a separable (real) Banach space
Y . Instead of considering X in its norm topology, however, we will endow it with
the weak-star topology it gets from its predual Y . Thus by Proposition 13.7, every
(weak-star) compact subset of X will be metrizable.

Theorem 13.8 (“Ryll–Nardzewski lite”). Suppose X is the dual of a separable Ba-
nach space, K is a nonempty convex, weak-star compact subset of X, and S is a
uniformly injective semigroup of continuous, affine self-maps of K. Then S has a
common fixed point in K.

Proof. The argument is best broken into several pieces.

Step I. It is enough to show:

(*) Every finite subset of S has a common fixed point.
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For suppose we’ve established (*). If A ∈S let FA denote the fixed-point set of A:

FA = {x ∈ K : Ax = x}.

We wish to show that
⋂{FA : A ∈S } is nonempty. By the continuity of each map in

S we know that each fixed-point set FA is closed in K. Now (∗) is the assertion that
the family of all these sets has the finite intersection property. Thus the compactness
of K insures the entire family has nonvoid intersection.

Step II. Fix a finite subset A = {A1,A2, . . . An} of S . By Step I we’ll be done if
we can show that A has a common fixed point, so as noted above (Sect. 13.1, p.
164), we may as well assume that S is the semigroup generated by A . Note that
even though it is finitely generated, S need not be finite—if it were, we’d be done
by Proposition 13.2. Nevertheless, as in the proof of that Proposition, we’ll pin our
hopes on the affine continuous self-map A0 =(A1+A2+ · · ·+An)/n of K, for which
the Markov–Kakutani Theorem once again guarantees a fixed point x0 ∈ K. As in
the case of finite S , we’ll show that x0 is also a fixed point for each of the maps
A1, . . . ,An. Now, however, our argument needs to be more subtle.

Step III. Let S x0 = {Ax0 : A∈S }: the S -orbit of x0, and consider its closure K0, a
compact subset of K. Since C = convK0 is a closed subset of K, it too is compact, so
by Theorem 13.6 some point e of K0 is an extreme point of C. Since K is metrizable
(Proposition 13.7) there is a sequence (Tj) of maps in S such that Tjx0 → e. Since
A0x0 = x0 we have

e = lim
j
(TjA0)x0 = lim

j
Tj

(
A1x0 +A2x0 + · · · +Anx0

n

)

= lim
j

(
(TjA1)x0 +(TjA2)x0 + · · · +(TjAn)x0

n

)
.

In the last line, which follows from the affine-ness of the maps Tj, we’re looking at
n sequences ((TjAk)x0)

∞
j=1 for k = 1,2, . . . ,n, each drawn from S x0. Thanks to the

weak-star compactness and metrizability of K we can find a single subsequence ( ji)
of indices such that the sequence ((Tji Ak)x0)

∞
i=1 converges for each k to a vector yk ∈

K0 =S x0. Thus the vector e, which we know belongs to C = convK0, is actually
the average of the vectors y1,y2, . . . ,yn ∈ K0 and so belongs to convK0. Since e is
an extreme point of convK0 the yk’s must all be equal to e.

Step IV. Recall that we’re trying to show that x0 = Akx0 for each 1 ≤ k ≤ n. Since
A0x0 = x0 it’s enough to know (definition of A0) that all the vectors Akx0 are the
same. Choose two of them, say Aμx0 and Aνx0. We know from Step III that

0 = e− e = yμ − yν = lim
i
[Tji(Aμx0)−Tji(Aνx0)],

so the zero vector belongs to the closure of the set {T (Aμx0)−T (Aνx0) : T ∈S }.
This, plus the uniform injectivity of S (at last!), guarantees that Aμx0 = Aνx0. 	
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Ryll–Nardzewski at full strength (sketch of proof). To upgrade the proof just
presented to one that establishes Theorem 13.1:

(a) In Step III: Instead of Theorem 13.6, the “separable predual” version of “A
Krein–Milman Theorem,” use the full-strength one, Theorem 13.4.

(b) In Step IV: Instead of sequences and subsequences, use “nets” and “subnets”
(see the Notes below for the definition and discussion of these concepts). The
proof just given then goes through mutatis mutandis. The reason for avoiding
this generality is that, while nets provide a straightforward generalization
of sequences, the same cannot be said for subnets vs. subsequences. In fact
subnets of sequences need not be subsequences [123, Problem 11B, p. 77].

13.4 Application to Haar Measure

In the Ryll–Nardzewski Theorem we finally have a result that allows the duality
method of Chaps. 9, 10, and 12 to establish the existence of Haar measure for every
compact topological group—commutative or not. Recall the basics of this method:
To each element γ of the group G we assign the left-translation operator Lγ defined
on either C(G) (the space of real-valued functions on G that are continuous) or
B(G) (the space of real-valued functions on G that are bounded) by Lγ f (x) = f (γx)
(x ∈ G). We implore a kind spirit to grant us a common fixed point for the collection
of algebraic adjoints of these operators. The Riesz Representation Theorem then
transforms this fixed point into Haar measure for G.

In Chap. 9 the group G was commutative and our translation adjoints lived on the
algebraic dual of C(G). In Chap. 10 we observed that the same argument worked
as well in the algebraic dual of B(G), where it produced an invariant mean which
gave rise to an invariant finitely additive “probability measure” on all subsets of G.
In Chap. 12, thanks to an enhanced Markov–Kakutani Theorem, the same method
produced both invariant means and Haar measure for solvable compact groups. By
invoking the Invariant Hahn–Banach Theorem (Theorem 12.5, p. 151) we could
even produce an invariant mean whose associated finitely additive measure extended
Haar measure from the Borel sets to all the subsets of G.

However our luck runs out if we try to extend the Markov–Kakutani Theorem
further, in the hope of providing Haar measure for all compact groups. In Chap. 11
we saw that not every compact group has an invariant mean; the group SO(3) of
rotation matrices, being paradoxical, furnishes just such an example. Thus, at least
for G = SO(3), there’s no kind spirit to provide an appropriate fixed point for trans-
lation adjoints on the algebraic dual of B(G). However the story is different for the
topological dual of C(G), thanks to the Ryll–Nardzewski Theorem.

To apply that theorem we’ll need to know that the continuity previously estab-
lished for algebraic adjoints remains true of topological ones:
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Lemma 13.9. Suppose X is a Banach space and X∗ its topological dual. If T is a
continuous linear transformation on X then its topological adjoint T ∗ is weak-star
continuous on X∗.

Proof. The key here is that T ∗ is the restriction to X∗ of the algebraic adjoint T �

acting on the algebraic dual X �. Proposition 9.18 tells us that T � is weak-star con-
tinuous on X �. Now the weak-star topology on X∗ is the restriction of the weak-star
topology on X �, so T ∗ inherits the weak-star continuity of T �. 	

Theorem 13.10. Haar measure exists for every compact topological group.

Outline of proof. Let G denote the group of left-translation operators Lγ for γ ∈ G,
and let G ∗ be the corresponding group of adjoints, operating on C(G)∗. Let K
denote the collection of positive linear functionalsΛ on C(G) with Λ(1) = 1.

By Exercise 9.14 (p. 114) we know that |Λ( f )| ≤ ‖ f‖ for each Λ ∈K , hence
K is a pointwise bounded subset of C(G)∗. By Theorem 9.12 (p. 111, our “infinite
dimensional Heine–Borel theorem”) K is therefore relatively compact in the prod-
uct topology of RC(G). Now K is the analogue for C(G) of the set M of means
on B(G), and the proof that M is closed in RB(G) works as well to show that K is
closed in R

C(G), hence K is a compact subset of RC(G). Since K is contained in
C(G)∗, and since the weak-star topology of C(G)∗ is just the restriction to that space
of the product topology of RC(G), we see that K is weak-star compact in C(G)∗.

Clearly K is convex. Each of the operators in G ∗ is a linear self-map of K that,
by Lemma 13.9, is weak-star continuous on C(G)∗. Thus if we can show that G ∗
is uniformly injective on K , the Ryll–Nardzewski Theorem will provide a fixed
point Λ ∈K for G ∗. Just as in the commutative and solvable cases, the Riesz Rep-
resentation Theorem will provide a regular Borel probability measure μ for G that
represents Λ via integration, with the G ∗-invariance of Λ translating into left G-
invariance for μ , i.e., μ will be Haar measure for G.

Proof for G metrizable. By Proposition B.7 we know that C(G) is separable, hence
Theorem 13.8, our “lite” version of the Ryll–Nardzewski Theorem, will apply to
C(G)∗ (taken in its weak-star topology) once we’ve established that G ∗ is uniformly
injective. For this we’ll need to know that:

(†) For each Λ ∈ K the map γ → L∗
γΛ takes G continuously into K (with its

weak-star topology).

Proof. Let μ denote the regular Borel probability measure for G that—thanks to the Riesz
Representation Theorem—represents Λ , i.e., Λ( f ) =

∫
G f dμ for f ∈ C(G). Since both G

and the weak-star topology on K are metrizable (the latter thanks to Propositions 13.7
and B.7) we may use sequences to establish continuity. Suppose (γn) is a sequence in G
that converges to an element γ of G. Then for f ∈C(G) we have, thanks to the Dominated
Convergence Theorem:

(L∗
γn
Λ)( f ) =Λ(Lγn f ) =

∫
f (γnx)dμ(x)→

∫
f (γx)dμ(x) = (L∗

γΛ)( f ).

Thus L∗
γn
Λ → L∗

γΛ in the weak-star topology (cf. Exercise 9.10, p.110), which establishes
the desired continuity of the map γ → L∗

γ . 	
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To show is that G ∗ is uniformly injective on K , fix Φ and Λ in C(G)∗ and suppose
the zero-functional belongs to the weak-star closure of Δ = {L∗

γΦ−L∗
γΛ : γ ∈ G}.

Our goal is to prove that Φ=Λ . Note that the set Δ is pointwise bounded on C(G),
so its closure is weak-star compact, and therefore metrizable. This, along with the
metrizability of G allows the following rephrasing of hypothesis on Δ: There exists
a sequence (γn) of elements of G such that L∗

γn
Φ−L∗

γn
Λ → 0 weak-star in C(G)∗.

Since G is compact we may, upon replacing our original sequence of group elements
by an appropriate subsequence, assume that (γn) converges to an element γ ∈ G. By
the continuity established in (†) above we have

0 = lim
n
[L∗

γn
Φ−L∗

γn
Λ ] = L∗

γΦ−L∗
γΛ =Φ◦Lγ −Λ ◦Lγ = (Φ−Λ)◦Lγ .

Since Lγ is an isomorphism of C(G) onto itself this implies Φ=Λ , as desired.
Thus the hypotheses of our “lite” version of the Ryll–Nardzewski Theorem (The-

orem 13.8) are satisfied with X =C(G)∗, K =K , and S = G ∗, so G ∗ has a fixed
point in K ; as noted above, this provides Haar measure for G. 	


Sketch of proof for arbitrary compact G. In this setting the weak-star topology on
C(G)∗ is no longer metrizable on every compact set, so we can’t use sequential
arguments. This means we must modify the continuity proof for γ → L∗

γ so as to
avoid the Dominated Convergence Theorem. Instead the idea is to first prove that for
each f ∈C(G) the map γ → Lγ f is continuous from G to C(G) in its norm topology.
This follows from the fact each continuous function on G exhibits a form of uniform
continuity that generalizes the one familiar to us from metric-space theory.8 Once
we’ve established the desired continuity of the map γ → Lγ f it’s an easy matter
to show that the map γ → L∗

γΛ is continuous for each Λ ∈ C(G)∗. The rest of the
argument then goes through almost word-for-word, with nets and subnets replacing
sequences and subsequences.

Now that we know Haar measure exists (uniquely and bi-invariantly) on every
compact group, it’s time to investigate an important example.

13.5 Haar Measure on SO(3)

SO(3) is the collection of 3×3 matrices whose determinant is 1 and whose columns
form an orthonormal subset of R3. For every real square matrix A, such column or-
thonormality expresses itself in the matrix equation AAt = I, where At denotes the
transpose of A, and I is the identity matrix of the size of A. This, along with the
multiplicative property of determinants, makes it easy to show that SO(3) is a group
under matrix multiplication; in Appendix D it’s shown that the elements of this
group are precisely the matrices (with respect to the standard basis of R3) of rota-

8 See, e.g., [103], proof of Theorem 5.13, pp. 129–130.
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tions of R3 about the origin. For topological purposes we’ll regard SO(3) as a subset
of the sphere of radius

√
3 in R9. It’s easy to check that the Euclidean topology of

R9 makes SO(3) into a compact group (exercise), which therefore possesses Haar
measure. What is this measure? How does one integrate respect to it?

What is Haar Measure on SO(3)? Since we can regard SO(3) as the group of
rotations of the unit sphere S2 of R3, one might suspect that its Haar measure should
somehow involve surface area measure on that sphere. A natural way of connecting
group with sphere is to define the map ϕ : SO(3) → S2 which takes a matrix x ∈
SO(3) to its last column. Thus ϕ(x) = xe3, where we regardR3 as a space of column
vectors, and e3 = [0,0,1]t is the unit vector in R3 “along the z-axis.”

Since matrix entries are continuous functions of their matrices, the map ϕ is
continuous. It is surjective (each unit vector can be the third column of a matrix in
SO(3)), but not one-to-one (it’s constant on subsets of SO(3) whose elements share
the same third column).

More precisely, let K denote the subgroup of matrices in SO(3) that fix the vector
e3 (i.e., which have third column equal to e3). Then the coset modulo K of a matrix
x ∈ SO(3) is xK = {xk : k ∈ K}, namely all matrices in SO(3) with third column
the same as that of x. If x and y in SO(3) have different third columns (i.e., belong
to different cosets mod K), then ϕ(x) �= ϕ(y). Thus ϕ is a one-to-one mapping of
cosets mod K onto S2.9

Now suppose f ∈C
(
SO(3)

)
. The subgroup K, being compact, has its own Haar

measure which we’ll denote by dk. Define fK on C
(
SO(3)

)
by:

fK(x) :=
∫

K
f (xk)dk

(
x ∈ SO(3)

)
.

Clearly fK is continuous; by the invariance of dk it is constant on cosets of SO(3)
modulo K.

To make the definition of fK more concrete, observe that each element of K has
the form

k(θ ) =

⎛
⎜⎜⎜⎝

cosθ −sinθ 0

sinθ cosθ 0

0 0 1

⎞
⎟⎟⎟⎠ (0 ≤ θ < 2π),

so the map that takes k(θ ) to its upper left-hand 2×2 submatrix, and then to the uni-
modular complex number cosθ + isinθ , establishes a homeomorphic isomorphism
between K and the unit circle, now viewed as the group of rotations of R2. This
allows Haar measure on K to be concretely represented by the Haar measure of the
circle group, i.e., normalized Lebesgue arc-length measure:

∫
K

g(k)dk =
1

2π

∫ 2π

0
g(k(θ ))dθ

(
g ∈C(K)

)
.

9 As such, ϕ can be regarded as a map taking SO(3) onto the quotient space SO(3)/K, but right
now we’ll avoid the notion of “quotient space.”
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Thus for f ∈C
(
SO(3)

)
,

fK(x) =
1

2π

∫ 2π

0
f
(
xk(θ )

)
dθ

(
x ∈ SO(3)

)
. (13.3)

Exercise 13.4. Define f : SO(3)→ [−1,1] by f (x) = (x2,2)
2. Show that

fK(x) =
1− (x2,3)

2

2

for each x ∈ SO(3).

The function fK , being constant on cosets mod K, may be viewed via the map ϕ
as a function on S2. More precisely, let

f̂ (p) = fK
(
ϕ−1(p)

)
(p ∈ S2).

Theorem 13.11. Haar measure dx on SO(3) is given by
∫

SO(3)
f (x)dx =

∫
S2

f̂ (p)dσ(p)
(

f ∈C
(
SO(3)

))
,

where σ denotes surface area measure on S2, normalized to have unit mass.

Proof. Define the linear functionalΛ on C
(
SO(3)

)
by

Λ( f ) =
∫

S2
f̂ (p)dσ(p)

(
f ∈C

(
SO(3)

))
.

Then Λ is a positive linear functional on C
(
SO(3)

)
, so the Riesz Representa-

tion Theorem provides a regular Borel probability measure μ for SO(3) such that
Λ( f ) =

∫
f dμ for all f ∈C

(
SO(3)

)
. One checks easily that if f ≡ 1 on SO(3) then

Λ( f ) = 1, i.e., that μ
(
SO(3)

)
= 1; thus μ is a probability measure.

To show that μ is Haar measure on SO(3) we need only check is that it is left-
invariant, i.e., that if Ly is the “left-translation” operator on C

(
SO(3)

)
:

(Ly f )(x) = f (yx)
(

f ∈C
(
SO(3)

)
, x,y ∈ SO(3)

)
,

then Λ(Ly f ) =Λ( f ) for f ∈C
(
SO(3)

)
and y ∈ SO(3).

The proof of this hinges on the identity

(̂Ly f ) = Ly( f̂ ) for each f ∈C
(
SO(3)

)
, (13.4)

where on the right-hand side we have Ly operating in the obvious way on C(S2),
namely: Lyg(p) = g(yp) for p ∈ S2 and g ∈C(S2). Granting this: for f ∈C

(
SO(3)

)
and y ∈ SO(3):

Λ(Ly f ) =
∫

S2
L̂y f dσ =

∫
S2

Ly( f̂ )dσ =

∫
S2

f̂ dσ =Λ( f ),
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where the second equality uses (13.4), and the third one follows from the rotation-
invariance of surface area measure on S2.

The proof of (13.4) involves nothing more than chasing definitions. Fix p ∈ S2

and choose x ∈ SO(3) with ϕ(x) = p (so that p is the third column of the matrix x).
Fix the “translator” y ∈ SO(3). Note that

ϕ(yx) := yxe3 = yϕ(x) = yp (13.5)

so for f ∈C
(
SO(3)

)
,

(̂Ly f )(p) = (Ly f )K
(
ϕ−1(p)

)
=

∫
K
(Ly f )(xk)dk

=

∫
K

f (yxk)dk = fK(yx)

= fK(ϕ−1(yp)) (by (13.5))

= f̂ (yp) = (Ly f̂ )(p)

which completes the proof of the theorem. 	

It’s tempting to think of Theorem 13.11 as somehow expressing Haar measure on

SO(3) as the product of normalized surface area on the sphere S2 and Haar measure
on the subgroup K. Not so! One must instead regard Theorem 13.11 as “disintegrat-
ing” Haar measure on SO(3) into a family of translates of dk—one for each coset
mod K of SO(3)—which are “glued together” by the surface area measure dσ .

More precisely, denote left-multiplication by x on SO(3) by λx (i.e., λx(y) = xy
for y ∈ SO(3)), and Haar measure on K by ν . Then for x ∈ SO(3) can use the
change-of-variable formula of measure theory to rewrite the definition of fK(x) as:

fK(x) =
∫

K
f
(
λx(k)

)
dν(k) =

∫
xK

f d(νλ−1
x )

(
f ∈C

(
SO(3)

))
.

We have xK = ϕ−1(p), where p is the third column of the matrix x. Since fK(x)
is constant on ϕ−1(p), the formula above shows that the probability measure νλ−1

x
depends only on the point p ∈ S2. Upon writing νp for this measure we can rewrite
the conclusion of Theorem 13.11 as:

∫
SO(3)

f (x)dx =
∫

S2

(∫
ϕ−1(p)

f dνp

)
dσ(p)

(
f ∈C

(
SO(3)

))
, (13.6)

which exhibits how Haar measure on SO(3) “disintegrates” into the measures νp.

Exercise 13.5. Express the familiar formula from Calculus by which one integrates a con-
tinuous real-valued function over the plane triangle Δ= {0 ≤ y ≤ x,0 ≤ x ≤ 1} as a similar
“disintegration” of Lebesgue area measure on Δ into a family of one dimensional measures
on vertical (or, if you wish, the horizontal) cross-sections of that triangle.
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Exercise 13.6. Identify Haar measure on O(3), the group of all orthogonal 3×3 matrices.

13.6 Computation of some Haar integrals over SO(3)

Let’s use the usual subscript notion xi, j to denote the entry in the i-th row and j-th
column of a matrix x. Suppose g is a real-valued continuous function on the closed
real interval [−1,1]. What is

∫
SO(3) g(xi, j)dx ? For i = j = 3 the answer is easy to

find, since in this case the function g(x) = g(x3,3) is already constant on cosets of
SO(3) mod K, hence in our characterization of Haar measure on SO(3), g = gK , and
therefore ∫

SO(3)
g(x3,3)dx =

∫
S2

g(p3)dσ(p). (13.7)

Let (θ ,ϕ) be the usual spherical coordinates of a point of p ∈ S2, i.e., ϕ is the
angle from the z-axis to the line from the origin to p, and θ is the angle from the x-
axis to that line. Thus p = [cosθ sinϕ ,sinθ sinϕ ,cosϕ ]t . In particular, p3 = cosϕ ,
and we know from multivariable calculus that (normalized) area measure on S2 is
given by dσ(p) = 1

4π sinϕ dϕ dθ . Thus the right-hand side of (13.7) is

1
4π

∫ 2π

θ=0

(∫ π

ϕ=0
g(cosϕ)sinϕ dϕ

)
dθ ,

so upon setting t =−cosϕ in the inner integral we obtain

∫
SO(3)

g(x3,3)dx =
1
2

∫ 1

−1
g(t)dt . (13.8)

The same reasoning could be used to integrate g(xi,3) for i = 1,2, but there’s no
reason to do so; the bi-invariance of Haar measure reduces all such integrals to the
one we just worked out, yielding

Proposition 13.12. Suppose g ∈C([−1,1]) and 1 ≤ i, j ≤ 3. Then

∫
SO(3)

g(xi, j)dx =
1
2

∫ 1

−1
g(t)dt .

Proof. One can find matrices a,b∈SO(3) such that xi, j =(axb)3,3 (exercise) where-
upon the bi-invariance of Haar measure on SO(3) yields

∫
SO(3)

g(xi, j)dx =
∫

SO(3)
g
(
(axb)3,3

)
dx =

∫
SO(3)

g(x3,3)dx .

This, along with (13.8), above gives the promised result. 	

Corollary 13.13.

∫
SO(3) xi, j dx = 0 for all (i, j) with 1 ≤ i, j ≤ 3.



178 13 Beyond Markov–Kakutani

Exercise 13.7. Show that the “normalized” matrix entries {xi, j/
√

3 : 1 ≤ i, j ≤ 3} form an
orthonormal set in L2

(
SO(3)

)
(with respect to Haar measure).

Suggestion. To prove orthogonality, use the bi-invariance of Haar measure to reduce the
problem to showing that xi, j ⊥ x3,3 whenever (i, j) �= (3,3). For this you’ll need to show
that if f (x) = xi, j then fK(x) = 0 whenever j �= 3, and = xi,3 otherwise.

Characters again. Recall from Sect. 9.7 the notion of character for a topological
group: a continuous homomorphism of that group into the circle group T. We saw
in that section that characters form the basis of an extension to compact abelian
groups of Fourier analysis on the circle. The exercise below shows that the situation
is much different for non-commutative groups.

Exercise 13.8 (The character group of SO(3) is trivial). This exercise requires only the
fact that matrices in SO(3) are in one-to-one correspondence with rotations of R3 about the
origin, that rotations preserve lengths of vectors and angles between vectors, and that each
such rotation is uniquely determined by its axis (a line through the origin, each point of
which is fixed) and its angle of rotation about that axis. For full details see Appendix D.

Let Ru(θ ) denote the rotation having axis in the direction of the unit vector u and rotation
angle θ ∈ [−π ,π), where the sign of the angle is determined by the “right-hand rule.” If u is
the unit vector along the x-axis, we’ll write Rx(θ ) instead of Ru(θ ), and similarly for Rz(θ ).

(a) Suppose u,v is a pair of unit vectors in R3, and M ∈ SO(3) maps u on to v. Then
for each angle θ we have the (unitary) similarity Rv(θ ) = MRu(θ )M−1 (see Ap-
pendix D, p. 205 for a more detailed version of this). Conclude that for each char-
acter γ on SO(3), the value at each matrix in SO(3) depends only on the angle of
rotation and not on the axis.

(b) Let M(θ ) = Rz(θ )Rx(−θ ). Show that if γ is a character of SO(3) then γ(M(θ )) = 1
for every θ ∈ [−π ,π). Thus one need only prove that every α ∈ [−π ,π) is the angle
of rotation of some M(θ ) or its inverse.

(c) Prove that cosθ =
(
trace

(
Ru(θ )

)−1
)
/2. Use this to show that if f (θ ) is the cosine

of the angle of rotation of M(θ ) then

f (θ ) =−1/4+ cos(t)+ cos(2t)/4.

Show that f maps the interval (−π ,π ] onto [−1,1]. Conclude that if β ∈ (−π ,π ]
then there exists θ ∈ (−π ,π ] such that either M(θ ) or its inverse is a rotation through
angle β .Thus SO(3) has only the trivial character γ ≡ 1.

13.7 Kakutani’s Equicontinuity Theorem

The Ryll–Nardzewski Theorem generalizes:

Corollary 13.14 (Kakutani). Suppose K is a nonvoid, compact, convex subset of a
normed linear space, and G is an equicontinuous group of affine self-maps of K.
Then G has a fixed point in K.
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Proof. By Ryll–Nardzewski’s Theorem it’s enough to prove that the group G is
uniformly injective. To this end suppose x and y are vectors in K with x �= y. Let
ε = ‖x− y‖. By equicontinuity there exists δ > 0 such that if v and w are vectors in
K with ‖v−w‖ < δ then ‖A(v)−A(w)‖ < ε for every A ∈ G . Now fix A ∈ G , so
A−1 also belongs to G and ε = ‖A−1A(x)−A−1A(y)‖, hence ‖A(x)−A(y)‖ must be
≥ δ . Thus the zero vector does not belong to the closure of {A(x)−A(y) : A ∈ G },
which establishes the uniform injectivity of G . 	


This proof, with the notion of “equicontinuity” suitably interpreted, can be made
to work as well in every locally convex topological vector space; see, for example,
[103, Theorem 5.11, pp. 127–128]. Kakutani’s theorem can be used as the first step
of a proof (much different from the one given above) of the existence of Haar mea-
sure for every compact group. See, e.g., [103, Theorems 5.13–5.14, pp. 129–132].

Notes

The “real” Ryll–Nardzewski Theorem. Our version of Ryll–Nardzewski’s theorem
(Theorem 13.1) is due to Hahn [45]; it’s a special case of what Ryll–Nardzewski
actually proved. The “real” result, proved in [105], assumes compactness of the
convex set K and continuity for the affine semigroup of maps S for the weak topol-
ogy induced on the locally convex space X by its dual space. The notion of “uni-
form injectivity” however still refers to the original topology of X . Shorter proofs
were subsequently given by Namioka and Asplund [82], and later by Dugundji and
Granas [35].

Nets. A sequence (xn)
∞
1 from a set X is just a function x from the set N of natural

numbers to X , with xn denoting the value x(n). More generally, suppose D is a set on
which there is a relation ≺ that is both reflexive and transitive, and for which every
pair of elements in A has an upper bound. The pair (A,≺) is called a directed set,
and a function x : A → X is called a net from X , often abbreviated (xδ )δ∈D. If X is a
topological space then to say such a net converges to an element x0 ∈ X means that
for every neighborhood U of x0 there exists δ0 ∈ D such that δ0 ≺ δ =⇒ xδ ∈ U .
With this definition, the sequential arguments that establish the properties of closure
and continuity for metric spaces can be carried over directly to general topological
spaces simply by replacing sequences with nets. The subsequential characterization
of compactness for metric spaces even has an analogue for nets in general topolog-
ical spaces, but for this to happen the proper definition of “subnet” must be a lot
more subtle than that of “subsequence.” For the details see, e.g., [123, Chap. 4].

Haar Measure is named for the Hungarian mathematician Alfred Haar (1885–
1933) whose landmark paper [42, 1933] proved its existence for metrizable locally
compact groups. Subsequently Banach [8, 1937] modified Haar’s argument to pro-
vide measures invariant for the action of compact transformation groups acting con-
tinuously on compact metric spaces. The existence of an invariant measure for each
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locally compact (Hausdorff) topological group was proved in 1940 by André Weil.
Predating all of this, in 1897 Adolph Hurwitz defined the notion of invariant inte-
gral for SO(n), essentially identifying Haar measure for that group. For this, and
further historical background and references, see Hawkins’ exposition [49, 1999]
(especially p. 185 for Hurwitz’s result, and pp. 194–196 for the rest). Diestel and
Spalsbury in [29, 2014] provide a recent and accessible account of Haar measure,
its history, and many of its applications including a nice introduction to its role in
harmonic analysis on compact groups as well as some recent applications to Banach
space theory.

Disintegration of Haar Measure with respect to a subgroup. The argument that
proved Theorem 13.11 goes through almost verbatim to prove the same result with
SO(3) replaced by a compact group G, K by a closed subgroup, S2 by G/K, and
σ by μπ−1, where π : G → G/K is the “quotient map” x → xK (x ∈ G). The point
is that the quotient space G/K has a natural topology that renders it compact and
Hausdorff (namely: the strongest topology that makes π continuous); in the case of
SO(3) this is just the topology induced on G/K by its identification with S2. One
also needs to note that the natural action of G on G/K (xK → gxK for g,x ∈ K) is
continuous in this topology. With these substitutions Theorem 13.11 remains true,
and signals a disintegration of μ with respect to the family of translates νp of ν to
the cosets p that make up G/K.

Exercise 13.8. The argument outlined for this exercise expands on that of [36,
Sect. 4.8.4, p. 232].
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These appendices are intended to provide a convenient reference for some pre-
requisite background material. Use only as needed!



Appendix A
Advanced Calculus

A.1 Differentiation in R
N

Here we’ll review those parts of the theory of differentiation of vector-valued func-
tions of several variables needed for our proof of the Brouwer Fixed-Point Theorem.
For more details see, e.g., [101, Chap. 9], [2, Chap. 6] or the freely available online
textbooks [110] and [118].

Definition and Basic Properties. We’ll think of RN as a space of column vectors,
with RN-valued functions on a subset V of RN to be thought of as column vectors
with each component a real-valued function on V . If V is an open subset of RN , to
say that a function f : V →RN is differentiable at a point x0 ∈V means that there is
a linear transformation on RN (which we denote by f ′(x0)) such that

lim
h→0

| f (x0 + h)− f (x0)− f ′(x0)h|
|h| = 0. (A.1)

Suppose f is differentiable at x0. Then it’s clear from the definition that f is con-
tinuous at x0. Furthermore, upon letting h = te j where e j is the j-th standard basis
vector for RN (the vector with 1 in the j-th position and zeros elsewhere) and t is
real, we have from the definition above:

lim
t→0

f (x0 + te j)− f (x0)

t
= f ′(x0)e j .

Thus f ′(x0)e j, the j-th column of our matrix, is the partial derivative (∂ f/∂x j)(x0)
of the vector-valued function f with respect to the j-th variable. Consequently the
derivative f ′(x0) is uniquely defined by (A.1), each coordinate function fi is dif-
ferentiable at x0, and with respect to the standard basis of RN the matrix of f ′(x0)
has:

• As its j-th column the partial derivative of f with respect to its j-th variable,
• As its i-th row the gradient of the coordinate function fi, and
• As its (i, j)-th element the partial derivative (∂ fi/∂x j)(x0).
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There is a partial converse1:

Suppose f is an RN-valued function defined on a neighborhood V of a
point x0 ∈ R

N , and that each partial derivative (∂ fi/∂x j)(x0) exists (i, j =
1,2, . . . ,N) and is continuous on V . Then f is differentiable at x0, and f ′ is
continuous on V .

Here the continuity of f ′ at a point x ∈ V can be interpreted in several equivalent
ways. Perhaps easiest is to demand for every vector h ∈ RN that f ′(xk)h → f ′(x)h
in RN whenever xk → x in V . Equivalently, we may, for x ∈ V , identify f ′(x) with
its matrix with respect to the standard basis and demand that each matrix entry
be continuous on V , or equivalently that f ′, viewed as a mapping V → RN2

, be
continuous.

The Chain Rule and Some Consequences

Theorem A.1 (The Chain Rule). Suppose f and g are RN-valued functions, with f
defined on a neighborhood of x0 ∈ RN and g defined on a neighborhood of f (x0).
If f is differentiable at x0 and g is differentiable at f (x0) then g ◦ f is differentiable
at x0 and (g ◦ f )′(x0) = g′( f (x0)) f ′(x0), where on the right-hand side we see a
composition of linear transformations.

The proof is almost identical with that of the one-variable case. For the details see
[101, Theorem 9.15, p. 214].

Theorem A.2 (The Mean-Value Inequality). Suppose f is an RN-valued function
defined on an open subset V of RN, that f ∈C1(V ), and that K is a compact, convex
subset of V . Then there exists a positive constant M such that

| f (y)− f (x)| ≤ M|y− x|

for every pair x,y of points of K.

Proof. Let M = maxx∈K ‖ f ′(x)‖, where the norm of f ′(x) is defined to be

‖ f ′(x)‖ =
[
∑
i, j

(
∂ fi

∂x j
(x)

)2
] 1

2

,

the norm that results when the matrix of f ′(x) is viewed as a vector in RN2
.

Define γ : [0,1]→RN by γ(t) = (1− t)x+ ty for 0 ≤ t ≤ 1. Thus γ(0) = x,γ(1) =
y, and γ ′ ≡ y− x. The convexity of K insures that γ([0,1]) ⊂ K, so g = f ◦ γ maps
[0,1] into K, hence

1 See, e.g., [101, Theorem 9.21, p. 219].
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| f (y)− f (x)|= |g(1)− g(0)|=
∣∣∣∣
∫ 1

0
g′(t)dt

∣∣∣∣

≤
∫ 1

0
|g′(t)|dt =

∫ 1

0
| f ′(γ(t))γ ′(t)|dt

≤
∫ 1

0
| f ′(γ(t))| |γ ′(t)|dt ≤ M|y− x| 	


Some explanation is needed in the calculation above. In the first line the func-
tions being integrated are RN-valued; the integrals are vectors obtained by integrat-
ing each coordinate of the integrand. In the second line the inequality obtained by
passing the norm through the integral sign is Exercise A.1 below, while the fol-
lowing equality comes from the Chain Rule. The first inequality in the third line
follows from our definition of matrix norm and the Cauchy–Schwarz inequality,
while the final inequality comes from the definition of the constant M and the fact
that γ ′ ≡ y− x.

Exercise A.1. Suppose h : [0,1]→ RN is continuous. Show that
∣∣∣∫ 1

0 h(t)dt
∣∣∣≤ ∫ 1

0 |h(t)|dt .

Suggestion: For each vector x ∈ R
N\{0} we have (trivially) that |x|= 〈x,w〉 where w = x

|x| .

Use this with x =
∫ 1

0 h(t)dt , which can be assumed to be non-zero.

Theorem A.3 (The Inverse-Function Theorem). Suppose V is an open subset of
RN, x0 ∈V, and f : V →RN is a C1-map for which the derivative f ′(x0) is invertible
(i.e., for which det f ′(x0) �= 0). Then there is a neighborhood of x0 upon which the
restriction of f is a homeomorphism with C1 inverse.

For the proof, see, e.g., [101, Theorem 9.24, p. 221].

A.2 Approximation by Smooth Functions

In Sect. 4.3 our proof of the Brouwer Fixed-Point Theorem required that continu-
ous, real-valued functions on the unit ball B of RN be uniformly approximated by
functions having continuous derivatives. Here is a proof of this fact.

Suppose f : B → R is continuous. By Exercise A.2 below it’s enough to assume
that f extends to a function continuous on all of RN , with compact support.

The rest of the proof begins with a C1 “bump function.” Let ϕ be a non-negative
C1 function on RN supported in B, with

∫
ϕ = 1 (here unadorned integrals extend

over all of RN). For example, take ϕ(x) to be 2
vol(B) cos2(π2 |x|) when |x| ≤ 1, and 0

when |x|> 1.
Now fix δ > 0 (to be later specified precisely) and set ϕδ (x) = δ−Nϕ(x/δ ).Then

ϕδ has the same properties as ϕ (C1, non-negative, compact support, integral = 1),
but now its support lies in δB = {x ∈RN : |x| ≤ δ}. Define

g(x) =
∫

f (t)ϕδ (x− t)dt (x ∈ R
N), (A.2)



186 A Advanced Calculus

where the integral on the right (and all further integrals in this proof) are understood
to extend over all of RN . “Differentiation under the integral sign” (cf. [101, Theorem
9.42, pp. 236–237]) shows that g is a C1 function on RN . Since

∫
ϕδ = 1 the same

is true of the t-integral of ϕδ (x− t), so we have for x ∈ K:

| f (x)− g(x)|=
∣∣∣∣
∫
[ f (x)− f (t)]ϕδ (x− t)dt

∣∣∣∣≤
∫

| f (x)− f (t)|ϕδ (x− t)dt (A.3)

In the estimate above the integrands are supported in the ball

Bx,δ := x+ δB = {t ∈ R
N : |x− t|< δ}

so the integrals extend only over that ball, hence
∫

| f (x)− f (t)|ϕδ (x− t)dt ≤ ω( f ,δ ) := max{| f (x)− f (t)| : x, t ∈ R
N}. (A.4)

Because f has compact support it is uniformly continuous on RN , so ω( f ,δ ) is
finite for each δ > 0 and → 0 as δ → 0. Thus for each x ∈ RN we obtain from the
estimates (A.3) and (A.4) above:

| f (x)− g(x)| ≤ ω( f ,δ )
∫
ϕδ (x− t)dt = ω( f ,δ )

which, upon choosing δ so that ω( f ,δ ) < ε , insures that g provides the desired
uniform approximation to f , even on all of RN . 	


Exercise A.2. Show that: given f : B → R continuous and ε > 0, there exists a continuous,
compactly supported function f0 on RN such that | f (x)− f0(x)| < ε for every x ∈ B.

Suggestion: First show that for r > 1, but sufficiently close to 1, the function f1 : x → f (x/r)
approximates f to within ε and is continuous on the ball rB. Next, create a function ψ ,
continuous on RN and supported on rB such thatψ ≡ 1 on B and ψ ≡ 0 off rB. Let f0 =ψ f1.

A.3 Change-of-Variables in Integrals

Here is the fundamental result about changing variables in Riemann integration of
functions of several variables.

Theorem A.4 (The Change-of-Variable Theorem). Suppose ϕ is an RN-valued C1

mapping of an open subset of RN that contains a compact, connected subset K
whose boundary has volume zero. Suppose further that on K the mapping ϕ is one-
to-one and that detϕ ′ is never zero. Then for every continuous, real-valued function
f defined on ϕ(K):

∫
ϕ(K)

f (y)dy =
∫

K
f (ϕ(x))|detϕ ′(x)|dx
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The “volume-zero” condition in the hypotheses means that for every ε > 0 the
boundary of K can be covered by open “boxes” with sides parallel to the coordinate
axes (i.e., N-fold cartesian products of intervals), the sum of whose volumes is < ε .
This is precisely the condition needed to insure that every real-valued continuous
function on K is Riemann integrable.

Notes

Approximation by smooth functions. The integral defining the smooth approxima-
tion g in (A.2) is called the convolution of f and ϕδ , written g= f ∗ϕδ . Exercise 9.5
also featured a convolution integral in the context of topological groups.

Regarding Exercise A.2. Thanks to the Tietze Extension Theorem (see, e.g., [102,
Sect. 20.4, p. 389]) the extension promised by this exercise exists with B replaced
by any compact subset of RN .

The change-of-variable formula. A proof of the theorem as stated above can be
found in many places, e.g., Apostol’s classic text [2, Theorem 10.30, p. 271], or
the textbooks of Shurman [110, Theorem 6.7.1, p. 313], and Trench [118, Theorem
7.3.8, p. 496], which are freely available online.

Some authors finesse the hypothesis of zero boundary-volume by demanding
that the function f have compact support and that the integrals on both sides of the
formula extend over all of RN ; see, e.g., [101, Theorem 10.9, p. 252] for this point
of view.



Appendix B
Compact Metric Spaces

We introduced the definition of metric space in Sect. 3.1, p. 27. In what follows we’ll
be working in a metric space (X ,d), which we’ll usually just call “X”.

Notation. For a point x0 ∈ X , and a positive real number r, let B(x0,r) denote the
open ball of radius r in X centered at x0, i.e., B(x0,r) = {x ∈ X : d(x,x0)< r}.

B.1 ε-Nets and Total Boundedness

Definition B.1 (ε-net). For ε > 0 and E ⊂ X , an ε-net is a finite subset F of X with
the property that E ⊂⋃

c∈F B(c,ε).

In other words: An ε-net is a finite subset F ⊂ X that is “ε-dense” in E in the
sense that each point of E lies within ε of some point of F .

Definition B.2. To say a subset E of a metric space is relatively compact means that
its closure is compact.

Proposition B.3. If a subset of a metric space is relatively compact then it has, for
every ε > 0, an ε-net.

Proof. Suppose E is a relatively compact subset of X , so that E , the closure of E in
X , is compact. Let ε > 0 be given. Each point of E lies within ε of some point of E ,
i.e., the collection of balls {B(e,ε) : e∈E} is an open cover of E , so by compactness
there is a finite subcover. The centers of the balls in this subcover form the desired
ε-net for E . 	

Definition B.4. To say a metric space is totally bounded means that it has an ε-net
for every ε > 0.

With this definition Proposition B.3 can be rephrased:

If a subset of a metric space is relatively compact then it is totally bounded.
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The converse of Corollary B.3 is not true in general. Example: the set of rationals
in the closed unit interval is closed in itself, not compact, but still totally bounded.
However, as the Exercise below shows, the converse does hold for complete metric
spaces.

Exercise B.1. In a complete metric space, if a subset is totally bounded, then it is relatively
compact.

Suggestion: Suppose our subset S is totally bounded, so that for each positive integer n
there is a 1/n-net Sn in S. Fix a sequence of elements in S; we wish to find a subsequence
that is convergent in the ambient metric space X . Show by a diagonal argument that there is
a subsequence of the original which, for each n, lies eventually within 1/n of some element
of Sn. Show that this subsequence is Cauchy, hence by completeness, convergent.

B.2 Continuous Functions on Compact Spaces

Definition B.5 (Partition of unity). For an n-tuple U = (U1,U2, . . .Un) of open
sets that cover a metric space X , a partition of unity subordinate to U is an n-tuple
(p1, p2, . . . pn) of continuous functions X → [0,1], the j-th one vanishing off Uj, for
which the totality sums to 1 on X .

Proposition B.6. Every finite open cover of a compact metric space has a subordi-
nate partition of unity.

Proof. As usual, denote our metric space by X , and its metric by d. Note that d : X×
X → [0,∞) is continuous, and—because of the compactness of X—bounded (this is
our only use of compactness here). Suppose U = (U1,U2, . . .Un) is our finite open
cover of X . Define d j : X → [0,∞] by

d j(x) = dist (x,X\Uj) := inf
ξ /∈Uj

d(x,ξ ) (x ∈ X)

The boundedness and continuity of d insures that d j is a continuous function X →
[0,∞), and d j vanishes on Uj (note that if we’re working with intervals of the real
line, then the graph of d j is a “tent” over Uj). Thus the collection of functions

p j :=
d j

∑n
k=1 dk

( j = 1,2, . . . n)

is easily seen to have the desired properties (the denominator above never vanishes
because dk > 0 on Vk, and the Vk’s cover X). 	

Proposition B.7 (Separability). If X is a compact metric space then both X and
C(X) are separable.
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Proof. To see that X is separable, for each positive integer n cover X by the col-
lection of all open balls of radius 1/n; by compactness this open cover has a finite
subcover Bn. Let Sn be the collection of centers of the balls in Bn; this is a finite
set with the property that each point of X lies within 1/n of one of its points. Thus
∪nSn is a countable dense subset of X .

As for the separability of C(X), we know from Proposition B.6 that there is a
partition of unity Pn = {p1, p2, . . . , pN} on X subordinate to the covering Bn. The
countable dense subset of C(X) we seek is going to be the collection of rational
linear combinations of vectors in

⋃
nPn. To see why this is true, fix f ∈C(X) and let

ε > 0 be given. Since f is continuous on the compact metric space G it is uniformly
continuous so there exists δ > 0 such that if x,y ∈ X with d(x,y) < δ then | f (x)−
f (y)| < ε . Choose a positive integer n > 1/δ and let x j be the center of the ball
Uj ∈Bn. Define g ∈C(G) by g = ∑N

j=1 f (x j)p j. Then for x ∈ G

| f (x)− g(x)| =
∣∣∣∣∣

N

∑
j=1

[ f (x)− f (x j)]p j(x)

∣∣∣∣∣ ≤
N

∑
j=1

| f (x)− f (x j)|︸ ︷︷ ︸
<ε on Uj

p j(x)︸ ︷︷ ︸
≡0 off Uj

< ε,

i.e., ‖ f − g‖ < ε . To finish the proof, go back to the linear combination defining g
and replace each coefficient f (x j) by a rational number sufficiently close that the
new g still lies within ε of f in C(X). 	

Equicontinuity. Suppose X is a metric space with metric d. To say a subset E
of C(X) is equicontinuous means that: for every ε > 0 there exists δ > 0 (which
depends only on ε) such that for x,y ∈ X :

d(x,y)< δ =⇒ | f (x)− f (y)| < ε ∀ f ∈ E.

Theorem B.8 (Arzela–Ascoli, 1883–1885). If X is a compact metric space then
every bounded, equicontinuous subset of C(X) is relatively compact.

Proof. Let X be a compact metric space and B a bounded, equicontinuous subset of
C(X). Suppose ( fn)

∞
1 is a sequence in B. We desire to show that there is a subse-

quence that converges in C(X), i.e., uniformly on X .
To this end let S be a countable dense subset of X (which we know exists by

Proposition B.7) and enumerate its elements as (s1,s2, . . . ). The first order of busi-
ness is to find a subsequence of ( fn) that converges pointwise on S. This follows
from a standard diagonal argument. By the boundedness of B in C(I) the numer-
ical sequence ( fn(s1))

∞
n=1 is bounded, so by Bolzano-Weierstrass it has a conver-

gent subsequence, which we’ll write using double subscripts: ( f1,n(s1))
∞
n=1. Now

the numerical sequence ( f1,n(s2))
∞
n=1 is bounded, so it has a convergent subsequence

( f2,n(s2))
∞
n=1. Note that the sequence of functions ( f2,n)

∞
n=1, since it is a subsequence

of ( f1,n)
∞
n=1, converges at both s1 and s2. Proceeding in this fashion we obtain a

countable collection of subsequences of our original sequence:
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f1,1 f1,2 f1,3 · · ·
f2,1 f2,2 f2,3 · · ·
f3,1 f3,2 f3,3 · · ·
...

...
...

. . .

where the sequence in the nth row converges at the points s1, . . . ,sn, and each row
is a subsequence of the one above it. Thus the diagonal sequence ( fn,n) is a subse-
quence of the original sequence ( fn), and it converges at each point of S.

For simplicity of notation let gn = fn,n. Let ε > 0 be given, and choose δ > 0
by the equicontinuity of the set B to which these functions belong. Thus d(x,y)< δ
implies |gn(x)− gn(y)| < ε/3 for each x,y ∈ X and each positive integer n. Since
the sequence (gn) converges at every point of S there exists for each s ∈ S a positive
integer N(s) such that

m,n > N(s) =⇒ |gn(s)− gm(s)|< ε/3. (*)

The open balls in X with centers in S and radius δ cover X , so there is a finite
subcover with centers in a finite subset Sδ of S. Let N = max{N(s) : s ∈ Sδ}. Fix
x ∈ X . Then x lies within δ of some s ∈ Sδ , so if n,m > N:

|gn(x)− gm(x)| ≤ |gn(x)− gn(s)|+ |gn(s)− gm(s)|+ |gm(s)− gm(x)| .

The first and last terms on the right are < ε/3 by our choice of δ (which was possible
because of the equicontinuity of the original sequence), and the same estimate holds
for the middle term by our choice of N in (*). In summary: given ε > 0 we have
produced N so that for each x ∈ X ,

m,n > N =⇒ |gn(x)− gm(x)|< ε/3+ ε/3+ ε/3= ε.

Thus the subsequence (gn) of ( fn) is Cauchy in C(X), hence convergent there. 	


Notes

Arzela–Ascoli converse. If X is a compact metric space and B is a relatively com-
pact subset of C(X) then B is bounded and equicontinuous (exercise).



Appendix C
Convex Sets and Normed Spaces

C.1 Convex Sets

Suppose V is a real vector space. In Sect. 1.6 we defined a subset C of V to be convex
provided that whenever x and y are points of C then so is tx+(1− t)y for each real
number t with 0 ≤ t ≤ 1 (Definition 1.4, p. 10). The empty set is trivially convex, as
is every singleton. It’s an easy exercise to check that the intersection of a family of
convex sets is convex.

Definition C.1. A convex combination of vectors x1,x2, . . . ,xN in V is a linear com-
bination ∑N

j=1λ jx j where (λ1,λ2, . . . ,λN) is an N-tuple of non-negative real num-
bers that sum to 1 (i.e., a vector the standard simplex ΠN of R

N , introduced in
Sect. 1.7).

Proposition C.2. A subset of V is convex if and only if it contains every convex
combination of its vectors.

Proof. Since for 0 ≤ t ≤ 1 the sum tx+ (1− t)y is a convex combination of the
vectors x and y, a set that contains every convex combination of its vectors is surely
convex. Conversely, suppose C is a convex subset of V and x1,x2, . . . ,xN ∈C. Con-
sider a convex combination x = ∑N

j=1λ jx j of these vectors. To show: x ∈C.
We’ll prove this by induction on N. It’s trivial for N = 1, and the case N = 2

follows from the definition of convexity. So suppose N > 2 and we know that every
convex combination of N − 1 vectors in C also belongs to C. Let t = ∑N−1

j=1 λ j so
that 0 ≤ t ≤ 1 and λN = 1− t. Suppose t �= 0 (else x = xN , so trivially x ∈C). Then
x= ty+(1−t)xN where y=∑N−1

j=1 (λ j/t)x j is a convex combination of N−1 vectors
in C, hence belongs to C by our induction hypothesis. Thus x ∈C. 	

Definition C.3 (Convex Hull). If S is a subset of V then the convex hull of S, denoted
convS, is the intersection of all the convex sets that contains S.

The collection of such convex sets contains V itself, so is nonempty, and we’ve
noted above that the intersection of convex sets is convex. Thus convS is the smallest
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convex subset of V that contains S. With this definition, Proposition C.2 can be
rephrased: A subset C of V is convex if and only if C = convC.

Proposition C.4. The convex hull of a subset S of V is the collection of all convex
combinations of vectors in S.

Proof. Let Ŝ denote the collection of all convex combinations of vectors in S.
Clearly Ŝ contains S. To see why Ŝ is convex, suppose x and y are vectors therein.
We may assume each is a convex combination of vectors x1,x2, . . . ,xN in S, say
x=∑N

j=1λ jx j and y=∑N
j=1 μ jx j. Suppose 0< t < 1. Then tx+(1− t)y=∑N

j=1η jx j

where for each index j we have η j = tλ j +(1− t)μ j. Thus (η1,η2, . . . ,ηn)∈ΠN so
tx+(1− t)y ∈ Ŝ, proving the convexity of Ŝ. To prove that Ŝ is the smallest convex
set containing S, suppose C is convex and C ⊃ S. Then by Proposition C.2 we know
that C contains all the convex combinations of its vectors, hence in particular all the
vectors in convS. 	

Example. The standard simplex ΠN (see Definition 1.7, page 11) is the convex hull
of the standard unit vectors e1, . . . ,eN in RN .

C.2 Normed Linear Spaces

Norms. A normed linear space is a real or complex vector space X upon which is
defined a function ‖ · ‖ : X → [0,∞) that is

(a) Subadditive: ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x,y ∈ X ,
(b) Positively homogeneous: ‖tx‖ = |t|‖x‖ for every x ∈ X and scalar t, and for

which
(c) ‖x‖= 0 if and only if x = 0.

Examples of norms are:

• The Euclidean norm on RN or CN .
• More generally, the norm induced on any real or complex vector space by an

inner product 〈·, ·〉: ‖x‖=√〈x,x〉.
• The one-norm introduced on RN by Eq. (1.5) of Sect. 1.7 (p. 11).

Norm-Induced Metric. Any norm ‖ · ‖ on a vector space X induces a metric d
thereon via the equation: d(x,y) := ‖x− y‖, (x,y ∈ X). The metric d so defined is
translation-invariant:

d(x+ h,y+ h) = d(x,y) (x,y,h ∈ X).

If X is complete in this metric it’s called a Banach space.
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Convex Sets in Normed Linear Spaces

Proposition C.5. In any normed linear space the convex hull of a finite set of vectors
is compact.

Proof. Suppose E := {x1,x2, . . . ,xN} is our finite set of vectors. By Proposition C.4,
convE is the set of convex combinations of these vectors, i.e., the set of vectors xλ =
∑N

1 λ jx j where λ = (λ j)
N
1 is a vector in the standard simplex ΠN of RN . Suppose

(yn)
∞
1 is a sequence of vectors in convE . Then yn = xηn for some sequence (ηn)

∞
1 of

vectors in ΠN . Since ΠN is a compact subset of RN we can extract a subsequence of
(ηn) that converges to an element η ∈ΠN . The corresponding subsequence of (yn)
therefore converges to xη ∈ convE , thus establishing the compactness of convE . 	


Recall that a subset of a metric (or topological) space is called relatively compact
if its closure is compact. With this terminology we have the following generalization
of the previous result:

Proposition C.6. The convex hull of a relatively compact subset of a Banach space
is relatively compact.

Proof. In our Banach space X let Br denote the open ball of radius r centered at the
origin. Given subsets A and B of that space, we’ll denote by A+B the collection of
sums a+b where a ranges through A and b through B. Thanks to the completeness of
X , a subset is relatively compact if and only if it is totally bounded (Proposition B.3
and Exercise B.1 of Appendix B). Thus if A⊂X is totally bounded, we wish to show
that conv(A) is totally bounded. To this end, fix ε > 0. Then A has an ε/2-net F ,
i.e., A ⊂ F +Bε/2. Then conv(F), being the convex hull of a finite set, is compact,
hence totally bounded, and so possesses an ε/2-net G, i.e., conv(F) ⊂ G+Bε/2.
Thus

A ⊂ F +Bε/2 ⊂ conv(F)+Bε/2

and since the latter set, being the algebraic sum of two convex sets, is convex, we
have conv(A)⊂ conv(F)+Bε/2. Putting it all together:

conv(A) ⊂ conv(F)+Bε/2 ⊂ G+Bε/2+Bε/2 = G+Bε .

Thus G is an ε-net for conv(A), so conv(A) is totally bounded. 	

Remark C.7. Proposition C.6 is not true in the generality of normed linear spaces.
For an example, in the sequence space �2 let X be the dense subspace that consists
of real sequences with only finitely many non-zero terms. This is an incomplete
normed linear space. Let (en)

∞
1 be the standard orthonormal basis of �2, and for

each positive integer n set xn = n−1en. Let E = {xn}∞1 ∪{0}, a compact subset of X .
However convE is not compact; it contains each partial sum of the series ∑∞

1 2−nxn,
which converges in �2 to a sum that does not belong to X . 	


The proof of Proposition C.6 really shows that in a normed linear space, convex
hulls inherit total boundedness. The example just presented shows that one needs to
assume completeness in order to assert that convex hulls inherit compactness.
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Operators on Normed Spaces. Let X and Y denote normed linear spaces. We’ll
denote the norm in either space by ‖ · ‖, letting context will determine the space to
which the notation applies.

Proposition C.8. Suppose X and Y are normed linear spaces and T : X → Y is a
linear map. Then T is continuous on X if and only if it is bounded on some (equiva-
lently: on every) ball therein.

Proof. Let B(x0,r) denote the open ball in X of radius r > 0, with center x0. Let
B = B(0,1), the open unit ball of X . Suppose T is bounded on some ball in X , say
with center x0. Then T is bounded on some open ball B(x0,r), i.e., there exists R > 0
such that T (B(x0,r))⊂ B(0,R). Thus by the linearity of T :

RB = B(0,R)⊃ T (B(x0,r)) = T (rB+ x0) = rT (B)+Tx0

hence T (B)⊂ (R/r)B−(1/r)Tx0 which implies, upon letting M = R
r +

1
r ‖Tx0‖ and

using the triangle inequality that T (B) ⊂ MB, i.e., that ‖Tx‖ ≤ M whenever x ∈ B.
If x ∈ X\{0} then ξ = x/(‖x‖) ∈ B, so ‖Tξ‖ ≤ M‖ξ‖, which translates—thanks
to the linearity of T—into the inequality ‖Tx‖ ≤ M‖x‖, now valid for every x ∈ X .
The continuity of T on X follows from this and the fact that if x,y ∈ X then

‖Tx−Ty‖= ‖T (x− y)‖ ≤ M‖x− y‖.

Conversely, if T is continuous on X then the inverse image of the open unit ball
in Y is an open subset of X that contains the origin, and so contains, for some r > 0,
the open ball of radius r in X centered at the origin. Thus the values of T on this ball
are bounded in norm by 1. By an argument similar to the one of the last paragraph,
the linearity of T insures its boundedness on any ball in X . 	

Terminology. Continuous linear maps between normed spaces are often called op-
erators or, thanks to the above Proposition, bounded operators. Here’s an applica-
tion of the previous results to convex sets.

Another proof of Proposition C.5. Suppose F = {x1, . . . xN} is a finite set of points
in the normed linear space X . Define the linear transformation T : RN → X by

Tx =
N

∑
j=1

ξ jx j where x := (ξ1,ξ2, . . . ,ξN) ∈ R
N .

By the Cauchy–Schwarz inequality:

‖Tx‖ ≤∑
j

|ξ j|‖x j‖ ≤ M

(
∑

j

ξ 2
j

)1/2

= M‖x‖,

where M = (∑ j ‖x j‖2)1/2. This shows that T is bounded on the (euclidean) unit ball
of RN , and so by Proposition C.8 is continuous on RN .
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Let C denote the convex hull of the original set F . Then C = T (ΠN), where ΠN

is the standard N-simplex. Since ΠN is compact in RN and T is continuous there, C
is compact. 	


Exercise C.1. For a normed linear space X let L (X) denote collection of continuous linear
transformations X → X .

(a) Show that L (X) is an algebra under the usual algebraic operations on linear trans-
formations.

(b) Define the norm of T ∈L (X) to be: ‖T‖ := sup{‖T x‖ : x ∈ X ,‖x‖ ≤ 1} (‖T‖ < ∞
by Proposition C.8). Show that ‖ · ‖ is a norm on L (X) that makes it into a Banach
space (note that it’s not required here that X itself be complete).

(c) Show that L (X), in the norm defined above, is a Banach algebra, i.e., that operator
multiplication is a continuous map L (X)×L (X)→L (X).

C.3 Finite Dimensional Normed Linear Spaces

Here we’ll work in normed linear spaces over the complex field C. However every-
thing we do will apply equally well to normed spaces over the reals.

Proposition C.9. If X is a normed linear space and dim(X) = N < ∞, then X is
linearly homeomorphic to CN.

Proof. Let (e j)
N
1 be the standard unit vector basis in CN (so e j is the vector with 1

in the j-th coordinate and zeros elsewhere), and let (x j)
N
1 be any basis for X . Define

the map T : CN → X by T v = ∑ j λ j(v)x j where λ j(v) is the j-th coordinate of the
vector v ∈CN (i.e., T is the linear map that takes e j to x j for 1 ≤ j ≤ N). Thus T is a
linear isomorphism taking CN onto X . We’ve already seen in the course of proving
Theorem C.5 (page 195) that T is continuous on CN (actually, this proof was carried
there out for RN , but it’s the same for CN). Left to prove is the continuity of T−1.
If X were a Banach space this would follow immediately from the Open Mapping
Theorem (see [103, Theorem 2.11, pp. 48–49], for example).

Here is a more elementary argument that does not require X to be complete.
Let B denote the closed unit ball of CN and ∂B its boundary—the unit sphere, a
compact subset of CN that does not contain the origin. Thus T (∂B) is, thanks to
the continuity and injectivity of T , a compact subset of X that does not contain the
origin. Consequently T (∂B) is disjoint from some open ball W in X that is centered
at the origin.

Claim. Ω := T−1(W ) is contained in B◦, the open unit ball of CN.

This will show that T−1 is bounded on W , hence continuous on X (Proposition C.8).
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Proof of Claim. Note that:

(a) Ω is convex (thanks to the linearity of T−1), hence arcwise connected.
(b) Ω contains the origin, and
(c) Ω does not intersect ∂B (thanks to the injectivity of T−1).

That does it! If Ω were not contained entirely in B◦ its connectedness would force
it to pass through ∂B, which it does not. 	

Corollary C.10. Every finite dimensional normed linear space is complete.

Proof. Suppose X is a finite dimensional normed linear space. By Proposition C.9,
for some positive integer N there is a linear homeomorphism T taking X ontoCN . To
see that X inherits the completeness of CN recall from the proof of Proposition C.8
that the continuity of T is equivalent to the existence of a positive constant M such
that ‖Tx‖ ≤ M‖x‖ for every x ∈ X . Thus if (xn) is a Cauchy sequence in X :

‖Txn −Txm‖= ‖T (xn − xm)‖ ≤ M‖xn − xm‖,

so the image sequence (T xn) is Cauchy in CN , hence convergent there. Thus (xn) is
the image of a convergent sequence under the continuous map T−1, so it converges
in X . 	


Warning: It’s crucial here that our homeomorphism of X onto CN is linear. In general,
a metric space homeomorphic to a complete one need not be complete. For an example,
consider the arctangent function, which effects a homeomorphism of the (complete) real
line onto the (incomplete) open interval (π/2,π/2).

Thanks to Proposition C.9 and the exercise below: Every linear transformation on
a finite dimensional normed linear space is continuous.

Exercise C.2. Show that every linear transformation on C
N is continuous.

Consequently, when working on a finite dimensional normed linear space one often
uses the words ”operator” and “linear transformation” interchangeably, and assumes
as familiar the connection between operators and matrices.

Notes

Proposition C.9. The proof given here is taken from [103, Theorem 1.21, pp. 17–
18], where it is proved in the setting of topological vector spaces. Consequently,
every N dimensional subspace of a topological vector space is linearly homeomor-
phic to Euclidean space N-space.

Proposition C.5. The two proofs given for this result work as well for topological
vector spaces.



Appendix D
Euclidean Isometries

This appendix concerns the group of isometric transformations of RN with particular
emphasis on the case N = 3, for which we’ll show that the subgroup of rotations
about the origin is isomorphic to the matrix group SO(3) of 3×3 real matrices with
columns orthonormal in R3 and determinant 1.

D.1 Isometries and Orthogonal Matrices

By an isometry of a metric space we mean a mapping of the space into itself that pre-
serves distances. In Euclidean space, translations and rotations are isometries. For
RN the isometries are easily characterized in terms of orthogonal matrices, whose
definition and basic properties we’ll now review.

Notation. For RN we will denote the inner product by 〈·, ·〉 and the standard unit
vector basis by (e j : 1 ≤ j ≤ N); e j is the vector with 1 in the j-th coordinate and
zeros elsewhere. We’ll think of RN as a space of column vectors. For any matrix A
we’ll denote its transpose by At .

There is a fundamental connection between the inner product in RN and the ma-
trix transpose.

Proposition D.1. For any N ×N real matrix A,

〈Av,w〉= 〈v,Atw〉 (v,w ∈ R
N).

Proof. It’s enough to prove the result for vectors in the standard basis, so let v = ei

and w = e j. Then the left-hand side of the identity is just the (i, j)-element of the
matrix A, while the right-hand side is, by the symmetry of the real inner product,
〈Ate j,ei〉, the ( j, i)-element of the transpose of A. Thus the right-hand side equals
the left-hand side for these vectors hence, by the bilinearity of the inner product, for
all vectors. 	
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Definition D.2 (Orthogonal Matrices). To say a square matrix with real entries is
orthogonal means that its transpose is its inverse.

More precisely: an N×N matrix A orthogonal if and only if AAt = AtA= I where
I is the n× n identity matrix. We’ll use O(N) to denote the collection of all N ×N
orthogonal matrices.

Exercise D.1. O(N) is, for each positive integer N, a group under matrix multiplication.

Proposition D.3. An N×N real matrix is orthogonal if and only if its columns form
an orthonormal basis for RN.

Proof. For an N-tuple of vectors in R
N , orthonormality implies linear independence,

and hence “basis-ness.” Suppose A is an n×n real matrix. Its j-th column is Ae j, so
by Proposition D.1 the inner product of the j-th and k-th columns is

〈Ae j,Aek〉= 〈AtAe j,ek〉= the (k, j)-element of AtA

Thus the N-tuple of vectors ( f j : 1 ≤ j ≤ N) is orthonormal if and only if AtA =
I. Linear algebra (or the argument above, with A replaced by At) shows that this
happens if and only if At and A are inverse to each other, i.e., if and only if A is
orthogonal. 	

Proposition D.4. If A is an N ×N orthogonal matrix, then:

(a) 〈Av,Aw〉 = 〈v,w〉 for any pair v,w of vectors in RN.
(b) The linear transformation v → Av is an isometry taking RN onto itself.

Proof.(a) Using successively Proposition D.1 and the definition of orthogonality:

〈Av,Aw〉= 〈AtAv,w〉= 〈v,w〉.

(b) Upon setting v = w in part (a) we obtain

‖Av‖2 = 〈Av,Av〉= 〈v,v〉= ‖v‖2,

so the mapping induced on RN by A is an isometry of RN into itself. Being
an isometry this map is one-to-one, hence the matrix A is nonsingular, thus the
induced map itself is surjective. 	

Now for the converse direction: “isometry implies linearity.”

Lemma D.5. If T : RN →RN is an isometry with T (0) = 0, then

〈T (u),T (v)〉= 〈u,v〉

for every pair u,v of vectors in RN.
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Proof. This follows immediately from the relationship between norms of differ-
ences and inner products. For u,v ∈ RN :

‖u− v‖2 = 〈u− v,u− v〉= ‖u‖2 − 2〈u,v〉+ ‖v‖2. (D.1)

Upon replacing u and v in the above calculation with T (u) and T (v), respectively
(being careful not to inadvertently assume linearity for T ):

‖T (u)−T(v)‖2 = ‖T (u)‖2 − 2〈T(u),T (v)〉+ ‖T(v)‖2

= ‖u‖2 − 2〈T(u),T (v)〉+ ‖v‖2
(D.2)

where the second equality arises from the fact that the distance from the vector 0 to
v is the same as that from 0 = T (0) to Tv. Similarly the distance from u to v is the
same as that from Tu to Tv, so the left-hand sides of Eqs. (D.1) and (D.2) are equal,
hence so are the right-hand sides, and this yields the desired identity. 	

Proposition D.6. If T is an isometry taking RN into RN with T (0) = 0, then there
exists A ∈ O(N) for which T (v) = Av for every v ∈RN.

Proof. Let (e1,e2, . . . eN) denote the standard orthonormal basis for RN . Let f j =
Te j for 1 ≤ j ≤ N. Since T preserves inner products (Lemma D.5 above) there
results another orthonormal basis ( f1, f2, . . . fN) for RN . Let A be the matrix that
has as its j-th column the coefficients of f j with respect to the original basis (e j).
Then A ∈ O(N) by Proposition D.3, and T (e j) = Ae j for each index j. Thus for
every v ∈ R

N :

T (v) =
N

∑
j=1

〈T (v), f j〉 f j =
N

∑
j=1

〈T (v),T (e j)〉T (e j) =
N

∑
j=1

〈v,e j〉Ae j = Av,

as desired. 	

Theorem D.7. A mapping T : RN → RN is an isometry if and only if there exists
A ∈ O(N) such that

T (v) = Av+T(0) (D.3)

for each v ∈ RN. The matrix A is uniquely determined by T .

Proof. Proposition D.4 provides one direction. For the other one note that if T is an
isometry RN → RN then T −T (0) is also an isometry RN → RN that additionally
fixes the origin. Thus by Proposition D.6 there is an orthogonal matrix A such that
T (v) = Av+T (0) for each v ∈RN . The matrix A is unique since its columns are the
images of the standard basis vectors for RN under the action of T −T (0). 	


Let BN denote the closed unit ball of RN .

Corollary D.8. T : BN → BN is an isometry if and only if there exists A ∈ O(N)
such that T v = Av for every v ∈ BN.
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Proof. The proof of Theorem D.7 actually showed that:

An isometry T : BN → RN must have the form (D.3) for each v ∈ BN.

Suppose, in addition, that T maps BN into itself. It seems obvious that the translation
vector T (0) must then equal 0; for a picture-free argument let’s suppose this is not
the case. Let x0 = T (0) and u= A−1(x0/‖x0‖). Since A−1 = At is also an orthogonal
matrix, u is a unit vector (Proposition D.4), so belongs to BN . However

Tu =
x0

‖x0‖ + x0 = (1+ ‖x0‖) x0

‖x0‖ ,

so ‖Tu‖> 1, contradicting our assumption that T (BN)⊂ BN . Thus x0 = 0. 	

Corollary D.9. Isometries RN →RN and BN → BN must be surjective.

Corollary D.10. For N ≥ 2 the isometry groups of RN and BN are not commutative.

Proof. In view of Theorem D.7 and Corollary D.8 it’s enough to note that:

If N ≥ 2 then the matrix group O(N) is not commutative.

Indeed, here are two matrices in O(2) that do not commute:

⎛
⎝ 1√

2
− 1√

2
1√
2

1√
2

⎞
⎠ and

⎛
⎝1 0

0 −1

⎞
⎠

the first of which induces rotation through an angle of 45 degrees, while the second
induces reflection about the horizontal axis. To get an example in O(N) for N > 2
just put each of the above matrices in the upper left-hand corner of an N×N matrix,
and fill in the remaining entries with ones on the main diagonal and zeros off it. 	


D.2 Rotations of R2 and R3

Every orthogonal matrix has determinant ±1; those with determinant 1 are called
special-orthogonal. The special-orthogonal matrices of a given size form a subgroup
of all the invertible matrices of that size. Here we’ll be concerned with SO(2) and
SO(3), the special-orthogonal matrices respectively of sizes 2× 2 and 3× 3.

Proposition D.11. Each matrix in SO(2) induces on R
2 a rotation about the origin.

If a matrix in O(2) has determinant −1, then it induces on R2 a reflection in a line
through the origin.

Proof. Each A ∈ O(2) takes the pair of unit vectors (e1,e2) (respectively along the
horizontal and vertical axes) to an orthogonal pair (u,v) of unit vectors, where u is
the rotate of e1 through some angle θ , and v is either the rotate of e2 through that



D.2 Rotations of R2 and R3 203

angle—in which case the determinant of A is 1 and A is the mapping of “rotation by
θ ”—or v is the negative of that vector. In this latter case detA = −1, and A effects
the mapping of reflection in the line through the origin parallel to u. 	

Proposition D.12. If A∈ SO(3) then the map x→Ax is a rotation of R3, with center
at the origin.

We’re saying that for each A ∈ SO(3) the associated linear transformation fixes
a line through the origin, and acts as a rotation about this line (the so-called axis of
rotation).

Proof. Suppose A ∈ SO(3). To find the axis of rotation we need to show that Av = v
for some unit vector v ∈ R3, i.e., that 1 is an eigenvalue of A, or equivalently that
det(A− I) = 0. For this, note that since AAt = I we have

(A− I)At = AAt −At = I −At =−(A− I)t

hence, since detA = detAt = 1:

det(A− I) = det(A− I)det(At) = det[(A− I)At ]

= det[−(A− I)t ] = (−1)3 det(A− I)t

= −det(A− I)

so det(A− I) = 0, as desired.
Let v1 ∈ R3 be the unit vector promised by the last paragraph: Av1 = v1. Let

(v2,v3) be an orthonormal basis for the subspace E of R3 orthogonal to v1. Then
(v1,v2,v3) is an orthonormal basis for R3, relative to which the matrix of the trans-
formation x → Ax has block diagonal form

⎡
⎣1 0

0 B

⎤
⎦ (D.4)

where B is a 2× 2 orthogonal matrix. Thus A and B have the same determinant, so
detB = 1, i.e., B ∈ SO(2), so by the previous proposition B induces on E either the
identity map or a rotation about the origin. 	

Corollary D.13. A map T : R3 → R3 is a rotation about the origin if and only if
there exists a matrix A ∈ SO(3) such that T (v) = Av for every v ∈ R3.

Proof. We already know (Proposition D.12) that maps of R3 represented by matri-
ces in SO(3) are rotations about the origin. For the converse, suppose T is a rotation
of R3 about the origin, i.e., an isometry of R3 that fixes a line through the origin
about which it acts as a two dimensional rotation. By Corollary D.8 we know that
T is represented as left multiplication by an orthogonal matrix A. Thus A must have
the block-diagonal form (D.4) with B ∈ SO(2), i.e., A ∈ SO(3). 	
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It’s easy to see that the rotation group of the ball does not share the commutativity
of that of the disc; take, for an example, a pair of 45◦ rotations about different
orthogonal axes. Thus, while the matrix group SO(2) is commutative, SO(3) is not.

Exercise D.2. SO(N) is not commutative for every N ≥ 3.

The matrix of a rotation in space. Rotations about the origin in three-space are
linear transformations, and linear transformations have matrix representations. Let
Ru(ρ) denote the matrix (with respect to the standard basis of R3) of the transfor-
mation of rotation about the origin through angle ρ with axis the unit vector u ∈ R3

(the “right-hand rule” determining the positive direction of ρ). Although somewhat
complicated, this matrix factors readily as a product of simpler matrices. We start
with the three “elementary” rotation matrices; the ones that represent rotations about
the coordinate axes:

1. Rotation through angle ρ about the z-axis

Rz :=

⎡
⎢⎢⎢⎣

cosρ − sinρ 0

sinρ cosρ 0

0 0 1

⎤
⎥⎥⎥⎦

2. Rotation through angle ρ about the x-axis

Rx :=

⎡
⎢⎢⎢⎣

1 0 0

0 cosρ − sinρ

0 sinρ cosρ

⎤
⎥⎥⎥⎦

3. Rotation through angle ρ about the y-axis

Ry :=

⎡
⎢⎢⎢⎣

cosρ 0 sinρ

0 1 0

−sinρ 0 cosρ

⎤
⎥⎥⎥⎦

Now fix the unit vector u ∈ R3 and the angle ρ ∈ [−π ,π), and let Lu denote the
oriented line through the origin in the direction of u. We’re going to understand the
transformation Ru(ρ) of rotation about Lu through angle ρ by factoring it into a
product of several elementary ones. For this let (ϕ ,θ ) be the spherical coordinates
of u, i.e.,

u = [sinϕ cosθ ,sinϕ sinθ ,cosϕ ]t

where ϕ ∈ [0,π ] is the angle between u and the z-axis, and θ ∈ [−π ,π ] is the angle
between the x-axis and the projection of the u into the x,y-plane.
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Let T = Ry(−ϕ)Rz(−θ ), so that T rotates u through angle −θ about the z-axis,
depositing it into the x,z-plane, then in that plane (i.e., about the y-axis) rotates the
resulting vector through angle ρ so that it ends up at the “north pole” e3 := [0,0,1]t .
Thus T−1Rz(ρ)T fixes u and, since T belongs to SO(3), and therefore preserves
both distances and angles, it rotates points of R3 about Lu through angle ρ , i.e., it’s
none other than Ru(ρ). Explicitly:

Ru(ρ) = Rz(θ )Ry(ϕ)Rz(ρ)Ry(−ϕ)Rz(−θ ). (D.5)

To find the matrix of Ru(ρ) (with respect to the standard unit vector basis of R3)
one “need only” multiply the elementary matrices for the five transformations on
the right-hand side of (D.5). This is best done with your favorite computer-algebra
program; the result is nevertheless quite a mess. To bring it into some kind of rea-
sonable form it helps to invert the spherical coordinate representation of u, not-
ing that cosϕ = z, sinϕ =

√
x2 + y2 =

√
1− z2 (non-negative square root because

0 ≤ ϕ ≤ π), cosθ = x/
√

1− z2, and sinθ = y/
√

1− z2.
Again with the help of your computer-algebra program, most likely aided by

some paper and pencil algebraic simplifications, there will result the following ma-
trix representation of Ru(ρ):

⎡
⎢⎢⎢⎣

x2 +(1− x2)cosρ xy(1− cosρ)− zsinρ xz(1− cosρ)+ ysinρ

xy(1− cosρ)+ zsinρ y2 +(1− y2)cosρ yz(1− cosρ)− xsinρ

xz(1− cosρ)− ysinρ yz(1− cosρ)+ xsinρ z2 +(1− z2)cosρ

⎤
⎥⎥⎥⎦ .

Notes

Rotations in R3 and beyond. Proposition D.12 (or more accurately, the statement
that each rotation in R3 about the origin has a fixed axis), was first proved by Euler
in 1775–1776; it’s called “Euler’s Rotation Theorem.” For a lively article that gives
much more detail about this result, see [90]. The results above on SO(2) and SO(3)
generalize to higher dimensions, but now reflections can be present. For O(N) the
full story is this (see, e.g., [14, Theorem 10.12, p. 152]):

For A ∈ O(N) there exists an orthonormal basis for RN relative to which the
transformation x → Ax has block diagonal matrix (Ip,−Iq,B1, . . . ,Br) where
the I’s are identity matrices of orders p and q respectively, the B’s are 2× 2
orthogonal matrices, and p+ q+ 2r = n.



Appendix E
A Little Group Theory, a Little Set Theory

We’ll write groups multiplicatively, denoting the identity element by “e”. For sub-
sets A and B of a group G we’ll write AB for the collection of all products ab with
a ∈ A and b ∈ B, using the abbreviation aB for the product {a}B. If H is a subgroup
of G (i.e., a group in the operation inherited from G, whose identity is the identity
element of G), and g ∈ G, then gH is the left coset of G modulo H, and Hg is the
corresponding right coset.

E.1 Normal Subgroups

Definition E.1 (Normal Subgroup). Suppose G is a group and H a subgroup (no-
tation: H < G). To say H is a normal subgroup of G (notation: H �G) means that
gH = Hg for any g ∈ G, i.e., there is no distinction between left and right cosets. In
this case we’ll use G/H to denote the collection of all cosets of G modulo H.

Proposition E.2. Suppose H is a subgroup of G. Then H �G if and only if G/H
forms a group under the multiplication

(g1H)(g2H) = g1g2H (g1,g2 ∈ G).

Proof. If H �G and g1,g2 ∈ G, then

(g1H)(g2H) = g1(Hg2)H = g1g2HH = g1g2H

and from this we have for each g ∈ G:

(gH)(g−1H) = gg−1H = eH = H.

Thus G/H is a group under the inherited multiplication, with H being the identity
and (gH)−1 = g−1H.

© Springer International Publishing Switzerland 2016
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Conversely, if G/H is a group under the multiplication (g1H)(g2H) = g1g2H
(where it’s being assumed that the multiplication is well defined), then H is the
identity, and for any g ∈ G:

gHg−1 ⊂ gHg−1H = gg−1H = eH = H

so gH ⊂ Hg. For the opposite inclusion just replace g by its inverse in this one and
take inverses of both sides of the resulting inclusion. 	


E.2 Solvable Groups

Let G be a group. For each pair a,b of elements of G let [a,b] denote the commutator
a−1b−1ab (so named because if c = [a,b] then ab = bac). To think about solvability
for G let’s consider chains of subgroups

{e}= G0 < G1 < .. . < Gn = G . (E.1)

Here’s a restatement of Definition 12.2(c) of “solvable group.”

Definition E.3. To say that G is a solvable group means that there is a chain of
subgroups (E.1) with each subgroup Gk containing all the commutators of Gk+1

(0 ≤ k < n).

Good things happen whenever a subgroup contains all the commutators of its
parent group.

Proposition E.4. Suppose G is a group and H a subgroup of G. Then the following
are equivalent:

(a) H contains all the commutators of G.
(b) H is a normal subgroup of G and the quotient group G/H is abelian.

Proof. (a) → (b): Suppose H contains all the commutators of G, i.e., for every pair
a,b of elements of G there is an element h ∈ H (namely h = [a,b] = a−1b−1ab) such
that ab = bah. In particular, for any a ∈ G and h1 ∈ H there exists h ∈ H such that

a−1(h1a) = a−1(ah1h) = h1h ∈ H.

Thus for each a∈ G we have a−1Ha⊂H, so Ha⊂ aH, hence—as we’ve seen above
(last part of proof of Proposition E.2)—this implies Ha = aH, i.e., H is a normal
subgroup of G. As for the commutativity of the quotient group G/H, note that if
a,b ∈ G then, as noted above, ab = bah for h = [a,b]∈ H hence abH ⊂ baH and so
abH = baH.

(b) → (a): Consider the statement

(*) H < G and abH = baH for each pair a,b of elements of G.
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Then for all a,b ∈ G and h1 ∈ H there exists h2 ∈ H such that abh1 = bah2, i.e.,
[a,b] = h2h−1

1 ∈ H. Thus statement (*) implies that each commutator of G belongs
to H, which by the first part of our proof is enough to guarantee normality for H,
and hence—again by (*)—commutativity for G/H. 	


E.3 The Axiom of Choice and Zorn’s Lemma

If we are given a family of sets, the Axiom of Choice allows us to choose one
element from each member of the family. More precisely:

The Axiom of Choice. Suppose X is a set and E is a family of nonempty subsets of
X. Then there is a “choice function” f : E → X such that f (E) ∈ E for each E ∈ E .

Definition. A partial order on a set X is a binary relation “≤” such that for all
x,y,z ∈ X :

x ≤ x (reflexivity),
x ≤ y and y ≤ x =⇒ x = y (antisymmetry), and
x ≤ y and y ≤ z =⇒ x ≤ z (transitivity).

Suppose “≤” is a partial order on X and S ⊂ X . An element b ∈ X for which each
s ∈ S is ≤ b is called an upper bound for S. An element m ∈ X is called maximal if
no other element of X “exceeds” m, i.e., if x ∈ X and m ≤ x then x = m. S ⊂ X is
said to be totally ordered if for every pair of elements s, t ∈ S either s ≤ t or t ≤ s.

Zorn’s Lemma. If X is a partially ordered set in which every totally ordered subset
has an upper bound, then X has a maximal element.

Zorn’s Lemma and the Axiom of Choice are equivalent in the sense that each one
can be derived from the other. Halmos [46, Sects. 15 and 16] gives an delightful in-
troduction to these two principles of mathematics, with a proof of their equivalence.

Notes

Non-normal pathology. The following exercise, taken from taken from Milne’s
freely downloadable introduction to group theory [77], shows that we can’t expect
to extend the definition used to multiply cosets modulo normal subgroups to cosets
modulo arbitrary subgroups.

Exercise E.1. Let G denote the collection of all 2 × 2 invertible matrices with rational
entries, and let H denote the set of 2× 2 matrices of the form

[
1 n
0 1

]
where n runs through

the integers. Then G is a group under matrix multiplication and H is a subgroup (isomorphic
to the group of integers under addition).
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(a) Show that H is not a normal subgroup of G. In fact, if g =
[

5 0
0 1

]
then g ∈ G and gH

is a proper subset of Hg. Moreover, g−1H is not even contained in Hg−1.

(b) Show that for g as in part (a), g−1HgH �= H.

The usual definition of “solvable.” Proposition E.4 shows that our definition of
“solvable group” can be restated

G is a solvable group if and only if there exists a chain (E.1) of normal sub-
groups such that each group Gk/Gk−1 is commutative.

This is the usual definition of “solvable” for groups.

The Axiom of Choice. Consequences such as the existence of non-measurable sub-
sets of the real line, and more spectacularly the Banach-Tarski Paradox, initially
gave the Axiom of Choice something of a bad reputation. To quote Halmos [46,
Sect. 15, p. 60]:

It used to be considered important to examine, for each consequence of the axiom of choice,
the extent to which the axiom is needed in the proof of the consequence. An alternative proof
without the axiom of choice spelled victory; a converse proof, showing that the consequence
is equivalent to the axiom . . . meant honorable defeat. Anything in between was considered
exasperating.

The Axiom of Choice is now much better understood. In Chap. 13 of Wagon’s
book [121] there is a detailed discussion of the role it plays in set theory. On page
214 (Fig. 13.1) of that chapter there is a useful diagram showing the logical con-
nections between the Axiom of Choice and various well-known theorems of math-
ematics that follow from it (e.g., the Tychonoff Product Theorem, the Hahn-Banach
Theorem). Jech’s monograph [55] provides an in-depth treatment of such matters.
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Bernstein, 142

Brouwer Fixed-Point, 10
Change-of-Variable, 186
Contraction-Mapping, 28
Convex Brouwer

Fixed-Point, 10, 48
Euler’s Rotation, 205
Hahn–Banach, 124, 129,

164
Invariant, 124

Heine–Borel for RS, 111
Kakutani Equicontinuity,

178
Kakutani-Schauder, 81
Knaster–Tarski, 16
Krein–Milman, 166, 168
Lomonosov, 92
Markov–Kakutani, 105,

107
solvable, 146, 159

Minimax, 63
No-Retraction, 42
Peano’s, 79
Perron, 13
Picard–Lindelöf, 79
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