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1 Introduction

The necessity to move towards a bio-based economy creates many challenges for industry
and academia. Industries dedicated to supplying the population with food, feed, deter-
gents, textile and other products collaborate with researchers to develop efficient biotech-
nological tools. This includes the development of optimal enzyme sets to convert plant
biomass into valuable products. Recently there has been a strong increase in the demand of
these enzymes due to their growing biotechnological significance (Harris et al. 2014).

Fungi play an important role in plant biomass degradation; therefore improving
the production of fungal enzymes is of great interest for biotechnology. Fungal
enzymes have been mainly studied in saprobic ascomycetes, and much less exten-
sively in basidiomycetes. This is largely caused by the better manageability of
ascomycetes in industrial fermentations and the availability of transformation
systems for many ascomycetes, while these aspects are still a major challenge in
basidiomycetes. Despite this, basidiomycetes form a promising source of novel
enzymes with different biochemical properties than ascomycete enzymes.

Plant biomass consists mainly of polysaccharides, proteins and lignin (Pauly and
Keegstra 2010). Ascomycete enzyme systems focus largely on the polysaccharide
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fraction but they rarely modify the aromatic lignin polymer, due to the absence of
lignin-modifying peroxidases in their genomes (Floudas et al. 2012). They do
produce laccases, which have been implicated to potentially modify lignin (Xie
et al. 2014). In contrast, basidiomycetes include the most efficient lignin decompos-
ers, but they also degrade polysaccharides. The lignin-modifying enzymes of basid-
iomycetes are of fundamental importance for efficient bioconversion of plant
residues that are rich in lignin, such as wheat straw. They are therefore highly
relevant for various biotechnological applications, for example pulp and paper, and
textile industries, bioremediation, and the production of biofuels and biochemicals
(Jolivalt et al. 2005; Raghukumar et al. 2008). With respect to plant biomass degra-
dation, basidiomycetes are classified either as white-rot, brown-rot or litter-
decomposing fungi. White- and brown-rot refer to the appearance of wood after
fungal decomposition. Brown-rot fungi efficiently degrade wood polysaccharides
but are only slightly capable of modifying lignin, resulting in a brownish residue of
partly decayed wood. In contrast, white-rot fungi are able to decompose all wood
polymers, including lignin, resulting in a white residue, consisting mainly of cellulose
(Lee et al. 2014; Ruiz-Duenas et al. 2013; Rytioja et al. 2014).

1.1 Plant Polysaccharide Degrading Enzymes

Cellulose is the most abundant polysaccharide in plant biomass. This polymer gives
rigidity to the plant cell wall and is formed by chains of f-1,4-linked p-glucose
molecules that create linear crystalline structures (microfibrils) and less crystalline,
amorphous regions (Kolpak and Blackwell 1976).

Several types of hemicelluloses are present in plant biomass: xyloglucan, xylan,
mannan, glucomannan, and p-1,3/1,4-glucans. They are named after the monosac-
charides that form their backbone (de Vries and Visser 2001). In addition, they
contain various branches consisting of monomers and short oligomers.

Pectin is a heteropolysaccharide mainly composed of three principal structures
(Caffal and Mohnen 2009). The simplest one is homogalacturonan, a galacturonic
acid based linear polysaccharide. Xylogalacturonan is modified form of homogalac-
turonan in that it contains xylose branches. Rhamnogalacturonan I has a backbone
of alternating galacturonic acid and rhamnose residues, with arabinan and (ara-
bino-)galactan side chains attached to the rhamnose residues.

Each plant polysaccharide degrading fungus has a specific set of carbohydrate-
active enzymes involved in the degradation of the backbone and branching structures
(Culleton et al. 2013; van den Brink and de Vries 2011). The different enzymes
involved in this process with their CAZy family (Lombard et al. 2014), EC number and
substrate are listed in Table 1. While some enzymes act only on a single polysaccharide
(e.g. cellobiohydrolase on cellulose), others are involved in the degradation of several
polysaccharides (e.g. f-galactosidase for xylan, pectin, xyloglucan and galactomannan).
An overview of the available knowledge on plant polysaccharide degrading enzymes
from basidiomycetes was recently presented (Rytioja et al. 2014).
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1.2 Lignin-Modifying Enzymes

Lignin is a complex heterogenous aromatic polymer that is among the most abun-
dant natural materials on earth (Martinez et al. 2004). Lignin is present in all layers
of woody cell walls and is composed of three monomers: coniferyl alcohol, sinapyl
alcohol and p-coumaryl alcohol. Plant laccases and peroxidases polymerize these
monomers to guaiacyl-, syringyl- and hydroxyphenyl-type of lignin subunits
(Higuchi 2006). The most common linkage between the subunits is a f-aryl-ether
linkage (Adler 1977), but other linkages also occur (Brunow et al. 1998). The struc-
ture and composition of lignin varies significantly depending on the plant species
(Martinez et al. 2008; Ralph et al. 2004). Lignin is an undesirable component e.g. in
the conversion of wood into pulp and paper and removal of lignin is a major step in
the paper making process (Campbell and Sederoff 1996). White-rot basidiomycetes
are studied due to their efficient and complete degradation of woody plant cell walls
(Ruiz-Dueiias et al. 2008). In contrast to other fungi and bacteria they are capable of
mineralising lignin to carbon dioxide and water by producing extracellular, oxida-
tive lignin-modifying enzymes. These include class II heme-containing peroxidases
(AA2 in CAZy database), i.e. manganese peroxidases (MnPs), lignin peroxidases
(LiPs) and versatile peroxidases (VPs), which catalyse H,0O,-dependent unspecific
reactions (Table 1) (Mékeld et al. 2014). Various phenolic compounds are oxidised
to organic radicals via the action of MnPs, while LiPs are able to oxidise non-phenolic
lignin substructures. VP is a hybrid type of peroxidase combining the activities of
both MnP and LiP (Kamitsuji et al. 2005; Ruiz-Dueiias et al. 2001).

Fungal laccases (AA1_1 in CAZy database) belong to the widely distributed
family of multicopper oxidases and participate in many processes from fungal
morphogenesis to melanin synthesis (Giardina et al. 2010; Kiies and Riihl 2011).
Laccases catalyse the oxidation of phenolic compounds and aromatic amines
coupled to the reduction of molecular oxygen to water (Giardina et al. 2010). In the
presence of small molecular weight mediator molecules laccases can also oxidise
non-phenolic compounds. Although the role of laccases in lignin degradation is still
debatable, they are usually regarded as lignin-modifying enzymes (Lundell et al.
2010). Laccases can be used in various biotechnological processes. For example the
white-rot fungus Trametes pubescens is considered an excellent producer of indus-
trial laccases (Galhaup et al. 2002). Applications of laccases include bleaching of
textiles (Vinod 2001) and wood pulp (Widsten and Kandelbauer 2008), clearing of
fruit juice, beer and wine (Minussi et al. 2002), biosensors (Kulys and Vidziunaite
2003), hair dyes, degradation of plastics and decontamination of soils (Kunamneni
et al. 2008).

Despite the huge biotechnological potential of fungal lignin-modifying enzymes,
the production of both laccases and peroxidases to levels required by industry using
homologous and heterologous expression remains a challenge and has been the
topic of numerous research projects.
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2 Homologous and Heterologous Expression
of Basidiomycete Genes in Basidiomycetes

Overexpression of genes in basidiomycetes is less commonly performed than in
ascomycetes. This is largely due to the availability of transformation systems for
many ascomycetes, while only a relatively small number of basidiomycetes can be
transformed. A well-developed transformation system based on auxotrophic
mutants was generated for the white-rot fungus Phanerochaete chrysosporium that
is the best studied basidiomycete with respect to plant biomass degradation
(Mayfield et al. 1994). Transformation systems are also being developed for other
basidiomycete species and significant progress has been made (e.g. Burns et al.
2005, 2006; Eastwood et al. 2008; Salame et al. 2012; Sharma and Kuhad 2010;
Shi et al. 2012; Wang et al. 2008), but their efficiency is still significantly less than
those of ascomycetes.

2.1 Homologous Expression

Homologous transformation of plant cell wall degradation related genes is limited to
a small number of basidiomycete species and this involves mainly genes related to
lignin degradation. The advantage of homologous overexpression is that the genes
do not need to be modified to accommodate optimal codon usage or gene structure as
is sometimes the case for heterologous overexpression (Kajita et al. 2004).
Homologous expression in basidiomycetes has been reported for several genes (Irie
etal. 2001; Li et al. 2000; Ma et al. 2003; Mayfield et al. 1994; Sollewijn Gelpke et al.
1999), and some examples are discussed in more detail below and listed in Table 2.

Laccases have been overproduced in some basidiomycete species. The genome
of the white-rot fungus Trametes (Coriolus) versicolor contains several laccases but
the highest secretion level was observed for laccase III (CVL3, Kajita et al. 2004).
Improved production of this enzyme was achieved by transformation using a chime-
ric gene for laccase III under glyceraldehyde-3-phosphate dehydrogenase (GPD)
promoter of 7. versicolor and hygromycin B phosphotransferase (hph) gene that
encodes resistance to phleomycin and hygromycin B as a selection marker. In
addition, a further improvement was made by the addition of copper (II) sulphate to
the growth medium (Kajita et al. 2004).

Overexpression of laccase genes in the white-rot species Polyporus brumalis
resulted in a three to fourfold increase in laccase activity (Ryu et al. 2008b). In this
case, transformants were generated using the restriction enzyme mediated
integration (REMI) method (Leem et al. 1999) and using hygromycin resistance
selection. The lccl gene of the coprophilic fungus Coprinopsis cinerea has been
homologously expressed using different homologous and heterologous promoters.
The highest activity of one of the C. cinerea transformants was reached under
control of gpd II promoter from the litter-decomposing fungus Agaricus bisporus
and with addition of copper to the medium (Kilaru et al. 2006).
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The production of a laccase of the white-rot fungus Pycnoporus cinnabarinus
was significantly increased by overexpression under control of its own promoter,
and Schizophyllum commune GPD and hydrophobin (SC3) promoters (Alves et al.
2004). The maximum levels (4660 nkat mL-!') are the highest reported so far,
highlighting the potential of this species for enzyme production.

As mentioned above, P. chrysosporium has been the most extensively studied
white-rot basidiomycete and a transformation system for this fungus was already
developed many years ago (Mayfield et al. 1994). The P. chrysosporium genome
does not have laccase encoding genes, but this species produces a number of lignin-
modifying heme peroxidases (Martinez et al. 2004).

Homologous production of lignin peroxidase (LiPHS8) of P. chrysosporium has
been successful (Sollewijn Gelpke et al. 1999). LiPs are major extracellular compo-
nents of the lignin-degrading system of P. chrysosporium, but there are still open
questions about their mechanisms of action, like the presumptive role of veratryl
alcohol as a mediator in LiP-catalysed reactions.

Another species of the genus Phanerochaete, Phanerochaete sordida, exhibits
greater ligninolytic selectivity during growth on beech wood than either P. chryso-
sporium or T. versicolor, and produces two LiPs (YK-LiP1 and YK-LiP2) under
manganese-deficient conditions. Cloning and homologous expression of the YK-
LiP1 and YK-LiP2 encoding genes in P. sordida YK-624 were carried out to obtain
higher levels of these enzymes allowing characterization of the recombinant protein
(Sugiura et al. 2009).

A manganese peroxidase (MnP3) from the white-rot fungus Pleutorus ostreatus
was also homologously overproduced using a drug-resistant selection marker. This
marker was based on a nucleotide substitution in P. ostreatus sdil, encoding an iron
sulfur protein that confers dominant resistance to the fungicide carboxin (Honda
et al. 2000). The recombinant mnp3 was expressed under control of the P. ostreatus
sdil promoter and terminator (Irie et al. 2001).

Due to the lower transformation efficiency of (filamentous) basidiomycetes com-
pared to ascomycetes, relatively few studies have been reported on gene disruption
of plant biomass degradation related genes in basidiomycetes. However, a homolo-
gous gene-replacement system was developed for P. ostreatus (Salame et al. 2012).
This highlighted the limitations of homologous recombination in basidiomycetes
due to the low frequency (2.3 %) of site-specific recombination of DNA integration
and the low transformation efficiency using protoplast-mediated transformation.

2.2 Heterologous Expression in Other Basidiomycetes

Because of the limited number of easily transformable basidiomycete species only few
basidiomycete genes encoding plant biomass degrading enzymes have been heterolo-
gously expressed in other basidiomycetes (Table 3). One example is the expression of a
MnP encoding gene from the white-rot fungus Dichomitus squalens in P. chryso-
sporium. Most (82 %) of the transformants exhibited MnP activity and further analysis
demonstrated that the recombinant protein was fully functional (Li et al. 2001)
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Glucuronoyl esterases are suggested to break the linkage between lignin and
xylan through glucuronic acid. Two genes (gel and ge2) from P. chrysosporium
encoding these enzymes were successfully expressed in P. cinnabarinus under
control of the S. commune GPD promoter and in S. commune under control of the
S. commune SC3 promoter to produce the recombinant protein (Duranovd et al.
2009). The highest glucoronoyl esterase activity was found in the transformants of
ge2 in S. commune.

3 Heterologous Expression of Basidiomycete Genes
in Ascomycetes

3.1 Expression in Yeasts

Pichia pastoris and Saccharomyces cerevisiae are the most commonly used yeast
hosts for heterologous expression of plant biomass modifying enzyme encoding
genes from basidiomycetes. This is because of the various production strains and
vectors that are available for these species. In few cases, Kluyveromyces lactis,
Pichia methanolica and Yarrowia lipolytica have been employed as hosts for the
production of basidiomycete plant biomass modifying enzymes. K. lactis, S. cerevi-
siae and Y. lipolytica are generally regarded as safe (GRAS) organisms, which is
beneficial when producing food or medical related proteins. The methylotrophic
yeasts P. pastoris and P. methanolica both have two alcohol oxidase (AOX, AUG)
encoding genes and can utilize methanol as a sole carbon source (Cregg et al. 1989;
Raymond et al. 1998). The strong and regulated AOX (or AUG) promoter regions of
these yeasts are widely employed for the heterologous expression of recombinant
proteins.

In contrast to the other eukaryotic heterologous protein production systems, the
yeast systems are fast and inexpensive ways to achieve recombinant proteins. One
of the main advantages is also the availability of a wide variety of well-developed
tools for genetic manipulation of yeasts. In addition, unicellular yeasts are easy to
cultivate in bioreactors, unlike filamentous fungi. Yeasts can be cultivated on a com-
paratively simple and inexpensive medium at a relatively fast growth rate (Daly and
Hearn 2005). As eukaryotic organisms, yeasts are more suitable for the production
of eukaryotic proteins than bacteria, since yeasts are able to perform several post-
translational modifications, which are often crucial for the biochemical properties
of the target proteins. These include e.g. phosphorylation, glycosylation, formation
of disulfide bonds and proteolytic processing of the signal sequence (Cregg et al.
2000; Gasser et al. 2008; Huang et al. 2012).

Although yeasts are able to perform these modifications, the patterns of O- and
N-linked sugar units added to the synthesized proteins by yeasts differ from those of
other eukaryotes (Berends et al. 2009; Cereghino and Cregg 2000; Gasser et al.
2008; Gellissen et al. 2005; Hamilton and Gerngross 2007; Herscovics and Orlean
1993). This can be a drawback when using yeasts as production hosts since the
different glycosylation patterns may alter the folding of the recombinant protein and
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@ Mannose
B N-acetylglucosamine
a b c

Fig.1 Simplified structure of N-linked glycosylation pattern of (a) Saccharomyces cerevisiae, (b)
Pichia pastoris, and (c) basidiomycete fungi (Berends et al. 2009; Hamilton and Gerngross 2007;
Herscovics and Orlean 1993)

by that change its biochemical and functional properties (Berends et al. 2009; Bohlin
et al. 2006; Hamilton and Gerngross 2007; Herscovics and Orlean 1993). The O-linked
glycosylation of the proteins produced by yeasts consist only of mannose subunits. In
contrast, higher eukaryotes, including basidiomycete fungi, add also other O-linked
sugar units, such as galactose, N-acetylgalactosamine and N-acetylglucosamine, to
the proteins (Lengeler et al. 2008). Yeasts may also attach excess N-linked mannose
subunits to the recombinant proteins (Fig. 1) (Berends et al. 2009; Hamilton and
Gerngross 2007; Herscovics and Orlean 1993). Especially, S. cerevisiae is known to
hyperglycosylate secreted proteins (Mattanovich et al. 2009).

Yeast can produce intracellular recombinant proteins or secrete proteins out of the
cells (Macauley-Patrick et al. 2005). However, secretion of the recombinant proteins
is usually preferred, since targeting of the recombinant protein into the yeast eukaryotic
secretory pathway is necessary especially when the recombinant protein requires
post-translational modifications. Yeasts also secrete relatively low levels of native
proteins, thus simplifying the recovery and purification of the target protein from the
extracellular culture medium (Cregg et al. 2000; Huang et al. 2011a).

3.1.1 Yeast Expression Systems Used for the Heterologous Production
of Plant Biomass Modifying Enzymes from Basidiomycetes

Recombinant Protein Production in Saccharomyces Cerevisiae

Multiple S. cerevisiae strains (such as CEN.PK2-1C, CEN.PK113-17A, W303-1A,
INVScl, Y294, BJ5465 and BJ3505) have been used for the heterologous expression
of basidiomycete plant cell wall modifying enzymes (Table 4). From these strains,
BJ5465 and BJ3505 are protease deficient, thus making the recombinant proteins
less susceptible to degradation by extracellular proteases. All the previously men-
tioned S. cerevisiae strains are auxotrophic mutants which are unable to synthetize
uracil or uridine, indispensable compounds for ribonucleic acids, or one of the
essential amino acids tryptophan or leucine. These features have been exploited as
selection markers in the S. cerevisiae expression vectors (Table 5). Most of the
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vectors applied for the expression of the basidiomycete lignocellulose modifying
genes contain the ura3 gene enabling the uracil auxotrophic strain to grow on a
medium that lacks uracil or uridine.

The S. cerevisiae expression vectors employ both constitutive and inducible
promoter regions of the yeast. The constitutive promoters applied are alcohol dehy-
drogenase I (ADHI) and phosphoglycerate kinase (PGK) (Derynck et al. 1983;
Hitzeman et al. 1981; Romanos et al. 1992). These promotes are active in the pres-
ence of glucose and the genes cloned downstream of them are then expressed. The
inducible promoters include galactokinase (GALI), UDP galactose-4-epimerase
(GALI0), alcohol dehydrogenase II (ADH2) and copper-metallothionein (CUPI)
(Butt et al. 1984; Johnston and Davis 1984; Mascorro-Gallardo et al. 1996; Romanos
et al. 1992; West et al. 1984). The GALI and GALIO promoters are activated by
galactose and repressed by glucose. The expression of ADH?2 promoter is activated
by a non-fermentable carbon source such as ethanol or glycerol, whereas the
addition of Cu?* ions activates the expression of CUPI promoter region.

Recombinant Protein Production in Pichia Pastoris

All P. pastoris strains are derivatives of the wild type strain Y-11430 from Northern
Regional Research Laboratories (NRRL, Peoria, IL, USA). Both wild type and
auxotrophic strains of P. pastoris have been applied for the production of lignocel-
lulose converting basidiomycete enzymes (Table 4). X-33 is a wild type strain,
whereas GS115, KM71 and SMD1168 have a mutated histidinol dehydrogenase
(his4) gene and are unable to grow without histidine supplementation. In addition,
SMD1168 and SMAD1168H are protease deficient strains that lack protease A
activity, thus often improving the yield of recombinant proteins. The strains KM71
and KM71H contain a mutated AOX! promoter. The remaining AOX2 promoter is
weaker and therefore the cells exhibit a slower growth rate with decreased
consumption of toxic methanol (Chiruvolu et al. 1997; Cregg et al. 1989). The his4
gene of P. pastoris and a gene encoding resistance against the antibiotic zeocin have
been employed as selection markers in the expression vectors (Table 5). In these
vectors, alcohol oxidase (AOX) and glyceraldehyde-3-phosphate dehydrogenase
(GAP) promoter regions of P. pastoris are used. The AOXI promoter is induced
when methanol is used as the sole carbon source (Cregg et al. 1989) while the
constitutive GAP promoter is active in the presence of glucose (Waterham et al.
1997). P. pastoris vectors pPIC3.5, pHIL-D2, pPICZ and pGAPZ use the native
signal sequence of the heterologously produced protein for the secretion, whereas in
the vectors pPIC9, pPICZa and pGAPZa the signal sequence of S. cerevisiae mating
type a-factor is included (Cregg and Higgins 1995).

Compared to other yeasts, P. pastoris is capable of growing at higher cell density
(ODgpp 500) therefore often resulting in elevated yield of recombinant protein
(Cereghino and Cregg 2000; Jahic et al. 2002). In fact, the amount of the target
protein can be up to 30 % of all the extracellular proteins secreted by P. pastoris
(Cregg and Higgins 1995; Gellissen 2000).
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Other Recombinant Protein Production Systems

K. lactis, P. methanolica and Y. lipolytica are yeast species more rarely applied for
the production of plant biomass modifying proteins from basidiomycetes. K. lactis
CMKS strain is a uracil auxotroph and possess only one functional alcohol dehydro-
genase (KIADH) encoding gene (Table 4) (Saliola et al. 1999). K. lactis expression
vectors include the inducible KIADH4 promoter region (Table 5), which is activated
in the presence of ethanol (Saliola et al. 1991). In K. lactis expression vectors, ura3
and a gene encoding antibiotic resistance against geneticin are used as selection
markers (Van Ooyen et al. 2006).

The P. methanolica PMADI1 and PMADI6 strains are adenine auxotrophic
mutants. In addition, PMADI16 strain is protease deficient. In the P. methanolica
expression vector, the ade2 gene from S. cerevisiae has been used to complement
adenine auxotrophy in the host strain (Table 5) (Raymond et al. 1998). Similarly
with P. pastoris, the methanol inducible promoter region of alcohol oxidase (AUG)
has been applied for the production of recombinant proteins in P. methanolica
(Raymond et al. 1998). The pMETa vector utilizes the signal sequence of S. cerevi-
siae mating type a-factor for the secretion of the recombinant protein.

The protease deficient and leucine auxotrophic strain of Y. lipolytica, Polg, has
been used for the production of recombinant plant cell wall degrading enzymes
from basidiomycetes (Table 4) (Madzak et al. 2004). The expression vectors
pINA1267 and pINA1296 both contain the inducible leucine promoter region
(pLEU2) of Y. lipolytica which is activated by the presence of leucine precursors
(Table 5) (Madzak et al. 2000, 2004). These vectors complement leu2 deficiency
providing a wild type phenotype. Recombinant proteins are secreted by employ-
ing the signal sequence of extracellular protease (XPR2) of Y. lipolytica (Madzak
et al. 2000).

3.1.2 [Examples of Recombinant Proteins Involved in Plant Biomass
Degradation Produced in Yeasts

Biochemically active plant biomass modifying enzymes including hydrolases, oxi-
dases and lyases from various basidiomycete species has been successfully pro-
duced in S. cerevisiae and P. pastoris (Table 6). Most of these enzymes originate
from wood-decaying white-rot fungal species. Recently, the P. pastoris expression
system has gained an increasing interest when compared to S. cerevisiae and other
yeast systems.

Laccases (AA1_1) are the most commonly produced basidiomycete lignin modi-
fying enzymes in yeasts (Table 6). From lignin modifying oxidoreductases, the
highest activity levels, up to 7200 U/L, have been achieved with laccase from
the saprobic fungus Cyathus bulleri produced in P. pastoris (Garg et al. 2012). The
highest protein yield, up to 340 mg/L, has been reported when laccase of the white-
rot fungus Trametes trogii has been produced in P. pastoris (Colao et al. 2009).
Laccase production in P. pastoris has been significantly optimized. Supplementation
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of copper ions and lowered growth temperature (15-25 °C) has resulted in increased
laccase activity (Cassland and Jonsson 1999; Hildén et al. 2013; Liu et al. 2003;
O’Callaghan et al. 2002). While copper ions are indispensable for laccase activity
by forming the enzyme catalytic site (Baldrian 2006), lower temperature may
prevent denaturation and aggregation of the native proteins which decreases the
need for protein folding mechanisms resulting in higher and more efficient secretion
capacity (Dragosits et al. 2009). In addition, improved production of two laccase
isoenzymes of Coprinus comatus has been obtained by using an N-terminal fusion
of 10 amino acids from a Volvariella volvacea xylanase (Gu et al. 2014).

Different class II heme peroxidases (AA2), lignin peroxidases (LiPs), manga-
nese peroxidases (MnPs) and versatile peroxidases (VPs) have been produced in S.
cerevisiae and P. pastoris (Garcia-Ruiz et al. 2012; Gu et al. 2003; Jiang et al. 2008;
Ryu et al. 2008a; Wang and Wen 2009). The highest production level, 21 mg/L, has
been described for the white-rot fungus Pleurotus eryngii VP produced in S. cerevi-
siae (Garcia-Ruiz et al. 2012). Recombinant production of class II heme peroxi-
dases has been challenging in yeasts (Conesa et al. 2002). However, they have been
produced successfully in Escherichia coli and Aspergillus species (Conesa et al.
2002; Ferndndez-Fueyo et al. 2012, see 3.2.1). The main obstacle in producing
recombinant class II heme peroxidases is the availability and incorporation of
iron-containing heme as the prosthetic group (Franken et al. 2011; Gu et al. 2003).
While the production of heme peroxidases increased by supplementation of hemo-
globin or hemin to the medium (Conesa et al. 2000; Gu et al. 2003), the mechanism
of heme uptake is poorly understood. Better knowledge of the heme biosynthetic
pathway and its regulation is needed to overcome the limiting effect of heme.

The production of active oxalate metabolizing enzymes, oxalate decarboxylase
(ODC) and oxalate oxidase (OXO), from the white-rot fungi Dichomitus squalens
(Sieti6 et al. 2015) and Ceriporiopsis subvermispora (Moomaw et al. 2013;
Moussatche et al. 2011), respectively, has been successful in P. pastoris (Table 6).
In wood-decaying fungi these enzymes have been associated with the regulation of
intra- and extracellular concentrations of oxalic acid, which is one of the key
components in biological decomposition of wood. The production level of C.
subvermispora OXO was 4 mg/L (Moussatche et al. 2011).

In addition to the lignin modifying oxidoreductases, plant cell wall polysaccha-
ride degrading enzymes of basidiomycetes have been produced in S. cerevisiae and
P. pastoris. The production of cellulose hydrolysing enzymes such as cellobiohy-
drolase I (GH7), cellobiohydrolase II (GH6), endoglucanases (GHS, GH45) and
B-glucosidase (GH1) have been described (Table 6). From those, the highest yield
(100 mg/L) was obtained for endoglucanase from the straw-degrading basidiomy-
cete V. volvacea produced in P. pastoris (Ding et al. 2002). Oxidative cellobiose
dehydrogenases (CDH; AA3 and AAS8) have been produced only in P. pastoris (Bey
et al. 2011; Stapleton et al. 2004; Yoshida et al. 2001), and the highest yield
(350 mg/L) was achieved for CDH from the white-rot fungus P. cinnabarinus (Bey
etal. 2011).

Some hemicellulose degrading enzymes, such as }-mannanase (GH5), endo-p-1,4-
xylanase (GH10), p-galactanase (GH43), arabinanase (GH43), an enzyme possessing
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both xylosidase and arabinofuranosidase activities (GH43), and acetyl xylan
esterase (CEl) have also been produced in yeasts (Table 6). The best production
level, up to 440 mg/L, in P. pastoris has been reported for a f-mannanase from the
plant pathogen Armillariella tabescens (Wang et al. 2009).

3.2 Expression in Filamentous Ascomycetes

The limitations of overexpression of genes in basidiomycetes has stimulated
attempts to heterologously express basidiomycete genes in filamentous ascomyce-
tes, in particular those species used in industry, due to their high secretion capacity
and good fermentation properties. However, production levels of basidiomycete
enzymes in these ascomycetes are often very low. In this section we will provide
examples of successful expression and the production levels that were reached.

Many yeasts and filamentous fungi have been used as hosts to develop different
heterologous protein production systems for basidiomycete enzymes (Hoshida et al.
2005). Particular emphasis has been on lignin-modifying enzymes, as they are
largely absent in ascomycete fungi. However, most lignin-modifying enzymes are
generally difficult to overproduce heterologously in an active form (Hoshida et al.
2005). Heterologous production of active lignin-modifying peroxidases has been
reported in several species (Eibes et al. 2009; Montiel-Gonzdlez et al. 2009; Stewart
et al. 1996), but in no cases the levels have been satisfactory enough taking into
account the amount of enzyme required for its biotechnological application. One of
the reasons of this setback is factors related to the hemoprotein nature of the
peroxidases.

3.2.1 Heterologous Expression in Aspergillus and Penicillium

Aspergillus niger is a well-known fungal host that produces high levels of recombi-
nant enzymes for many industrial applications. It is therefore not surprising that it
has also been used for the expression of basidiomycete genes.

The enzyme that has received the most attention for heterologous production in
ascomycetes is laccase, due to its potential in a variety of industrial applications
(Kunamneni et al. 2008). While overall expression of basidiomycete laccases in
Aspergillus and Penicillium is regularly successful, the production levels vary
strongly (Table 3). Expression of a laccase from P. cinnabarinus in P. pastoris
resulted in a protein that differed in some biochemical properties (e.g. molecular
mass, isoelectric point, optimal temperature and pH) from the native enzyme
(Otterbein et al. 2000). However, expression of this laccase in A. niger demonstrated
highly similar properties to the native enzyme, suggesting that A. niger is a more
suitable production host for this enzyme (Record et al. 2002). When comparing the
production of the P. cinnabarinus laccase in A. niger and Aspergillus oryzae, higher
protein yields were obtained for A. oryzae (Sigoillot et al. 2004). While the
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biochemical properties were similar between the native and the recombinant
enzymes, the recombinant enzymes had a higher K, value than the native enzyme.
Also, in the presence of a redox mediator, 1-hydroxybenzotriazole, both the native
enzyme and the recombinant enzyme produced in A. niger were able to delignify
Kraft pulp almost to 75 %, while no delignification was observed with the A. oryzae
produced enzyme (Sigoillot et al. 2004). Other basidiomycete laccases were also
expressed in A. niger, such as one from P. eryngii (pel3), although the activity level
obtained was low (Rodriguez et al. 2008). The best result was obtained when the
native signal peptide was replaced by the signal peptide from A. niger glucoamylase
and a protease deficient A. niger strain was used, suggesting that the native signal
sequence was not well recognized and/or processed by A. niger. Expression in a
low-protease producing A. niger strain also resulted in high production levels for a
laccase from P. ostreatus and a variant thereof that was obtained through directed
evolution (Macellaro et al. 2014). Using a low protease strain was also beneficial for
the production of a laccase from S. commune. Several ascomycete strains were
tested in this study, but the best production was achieved with Aspergillus sojae
1860, which has low extracellular protease levels (Hatamoto et al. 1999). These
results indicate that ascomycete proteases can significantly reduce the production of
basidiomycete enzymes.

The fermentation approach also affects the production of laccases, as was
demonstrated for the production of a T. versicolor laccase in A. niger. Solid state
fermentation resulted in a much higher yield of laccase than submerged fermenta-
tion (Téllez-Jurado et al. 2006). In a different study, expression of two laccase genes
from T. versicolor in A. niger under control of the gpdA promoter demonstrated
much higher yield compared to expression of these genes in P. pastoris (Bohlin
et al. 2006), confirming the high potential of A. niger for industrial enzyme production,
while P. pastoris is more suitable for academic studies.

A Trametes villosa laccase (Iccl) was successfully expressed in another industrial
Aspergillus species, A. oryzae and the properties of the recombinant enzyme were
the same as those of the native enzyme (Yaver and Golightly 1996). This demon-
strates that while there are differences in the glycosylation patterns of ascomycetes
and basidiomycetes (Berends et al. 2009), these do not necessarily affect the
biochemical properties of the heterologously produced enzymes. A. oryzae was also
used for the heterologous production of a laccase from the white-rot fungus
Pycnoporus coccineus using the maltose inducible promoter of a-amylase encoding
amyB gene (Taka promoter) (Hoshida et al. 2005). The activity of this laccase was
highly copper-dependent, even if the expression of the gene under control of the
amyB promoter was not. When three laccase genes from the plant pathogenic basid-
iomycete Rhizoctonia solani were expressed in A. oryzae under control of the Taka
amylase promoter, good production levels were only obtained for two of the
enzymes (Wahleithner et al. 1996). For the third gene an initial activity level could
be detected, but this disappeared in time, suggesting that this enzyme was not stable
in A. oryzae cultures.

Penicillium is a sister genus of Aspergillus and species of this genus are more
commonly used for the production of secondary metabolites than of enzymes.
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However, heterologous production of a laccase from Trametes hirsuta in Penicillium
canescens resulted in a high level of secreted protein (Abianova et al. 2010),
indicating that species of this genus could be good alternatives for Aspergillus
species with respect to enzyme production.

Heterologous expression of genes encoding lignin-modifying peroxidases from
P. chrysosporium has been performed in several Aspergilli (Cortés-Espinosa et al.
2011). Stewart et al. (1996) were able to successfully produce active MnP and LiP
from P. chrysosporium in A. oryzae under control of the Taka amylase promoter. To
achieve this hemin was added to the culture medium. The same mnp containing
expression vector was also introduced in A. niger where active protein was similarly
detected when the culture medium contained hemoglobin (Cortés-Espinosa et al.
2011). However, the best A. niger transformant had less activity than the native P.
chrysosporium strain.

The importance of temperature during bioreactor cultivation for the improve-
ment of the recombinant proteins was demonstrated in a recent study using a versatile
peroxidase from Pleurotus eryngii. The production of this enzyme in A. nidulans
and A. niger was performed under different temperatures and the highest activity
was obtained at 19 °C, which is significantly below the optimum growth temperature
for A. niger (Eibes et al. 2009). Also in these cultures, hemin was added to the
media.

Production levels of the flavoenzyme aryl-alcohol oxidase (AAO), also involved
in lignin degradation, in P. eryngii are quite low and unsuitable for industrial
applications. Heterologous production of the P. eryngii AAO encoding gene in A.
nidulans was performed using the strong inducible alcohol dehydrogenase promoter
(alcA). The recombinant protein had the same molecular mass and isoelectric point
as the native protein, suggesting no significant modifications. In addition, the
production of the recombinant enzyme was 10-50 times higher than in the original
fungus, indicating that this strategy is highly promising for obtaining industrially
relevant levels of lignin-related enzymes (Varela et al. 2001).

Cellobiose dehydrogenases (CDHs) are produced by many plant biomass degrading
and phytopathogenic fungi, but the function of these enzymes are not fully deciphered.
A putative cdh gene from Coprinopsis cinerea as well as one from the ascomycete
Podospora anserina were successfully expressed in A. niger to enable comparison of
their enzymatic properties (Turbe-Doan et al. 2013). Interestingly a much higher activity
was observed for the transformant carrying the C. cinerea cdh and taking into account
the specific activity of the enzymes, a fivefold higher enzyme production was observed
for the basidiomycete protein (Turbe-Doan et al. 2013).

In many studies, the main purpose of heterologous expression of the gene is to
allow the detailed characterization of the enzyme, since the production level in the
original species is too low or the purification is too complicated to obtain sufficient
amounts of pure enzyme. This was the case for the CDH described above, but for
instance also for the heterologous expression of a cellobiohydrolase gene (cbhl)
from the plant pathogen Athelia rolfsii (synonym Corticium rolfsii) in A. oryzae



Homologous and Heterologous Expression of Basidiomycete Genes Related to Plant... 147

under control of the phosphoglycerate kinase promoter pgkA (Yasokawa et al.
2003). The same motivation resulted in the expression of the UeBgl3A gene encoding
a P-glucosidase from the plant pathogen Ustilago esculenta, in A. oryzae under
control of the amyB promoter (Nakajima et al. 2012). The production levels are
highly variable though (Table 3), and reflect the problems associated with the heter-
ologous production of basidiomycete proteins in ascomycetes. While some are
produced at high levels, others result in only minor amounts of protein that is barely
sufficient for extensive characterization.

The major pyranose dehydrogenase (PDH) from the litter-decomposing fungus
Agaricus meleagris was heterologously expressed in A. nidulans and A. niger under
control of the glucoamylase promoter of the respective species (Pisanelli et al.
2010). Two versions were introduced in A. nidulans, one with its native signal
sequence and one with the signal sequence of the A. nidulans glucoamylase, with
the native signal sequence resulting in the highest extracellular activity. This is the
opposite results as that obtained for the P. eryngii laccase (pel3, see above), where
the glucoamylase signal peptide improved the production of the enzyme (Rodriguez
et al. 2008). Introduction of this modified version of PDH in A. niger resulted in
yields that were 10 times lower than those obtained for the best A. nidulans trans-
formant (Pisanelli et al. 2010). As expression of P. eryngii pel3 was also performed
in A. niger, this could imply that A. nidulans is more capable to processing basidio-
mycete signal peptides.

Expression of a P. cinnabarinus glucuronoyl esterase encoding gene was
attempted in A. niger and Aspergillus vadensis under control of the A. niger
glucoamylase promoter (Duranovd et al. 2009). Activity was only detected in trans-
formants of A. vadensis, although 10-20-fold lower than in transformants of S.
commune and P. cinnabarinus (see 2.2). The better result for A. vadensis compared
to A. niger could be due to the very low extracellular protease production in A.
vadensis and the absence of acidification of the medium (de Vries et al. 2004),
which may be the main reasons why no active protein was detected in A. niger
transformants.

3.2.2 Heterologous Expression in Trichoderma reesei

Trichoderma reesei is with Aspergillus the most commonly used fungus for indus-
trial production of heterologous and homologous proteins, in particular cellulases.
Some successful examples of heterologous production of basidiomycete enzymes
in T. reesei have been reported (Table 3). One example is the expression of a laccase
gene (lacA) from Trametes sp. The gene was placed under control of the strong and
constitutive gpdA promoter from A. nidulans and its native signal peptide was
replaced by the signal peptide of T. reesei cellobiohydrolase I (CBHI). The production
levels obtained for this construct were higher than those of most other studies
(Zhang et al. 2012).
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Dong et al. (2012) obtained a 28.6-fold higher production of a P. ostreatus
laccase by producing it heterologously in 7. reesei. The gene was codon optimized
for T. reesei and expressed under control of the cbhl promoter. When this promoter
and species was used for the heterologous production of a Phlebia radiata laccase,
three additional isoforms were detected, suggesting variable phosphorylation or
glycosylation of the recombinant enzyme (Saloheimo and Niku-Paavola 1991).
Fusion of heterologous proteins of interest to homologous proteins of the expres-
sion host can improve the production of the target protein. To test this, a native form
of a laccase from an ascomycete fungus Melanocarpus albomyces and one fused to
a hydrophobin were expressed in 7. reesei under control of the chhl promoter
(Macellaro et al. 2014). In this case, the fusion protein was accumulating intracel-
lularly, likely due to the difficulties in secretion, and higher production of the native
form was observed.

3.2.3 Promoters Used for Heterologous Expression of Basidiomycete
Genes in Ascomycetes

The promoters used for expression of heterologous genes in filamentous ascomyce-
tes can be divided in constitutive and inducible promoters, but all originate from
genes that are highly expressed in the intended hosts. The constitutive promoters
have the advantage that they result in high expression under most culture condi-
tions, allowing more flexibility in the enzyme production. In contrast, inducible
promoters require specific inducing conditions, but often result in higher enzyme
production than the constitutive promoters. In addition, inducible promoters can be
used for production of proteins that have a negative effect on the production hosts.
In such a case, the production strain can initially be grown under non-inducing
conditions and when sufficient growth has occurred the inducer can be added to
result in a short period of high protein production.

Both types of promoters have been used for heterologous expression of
basidiomycete genes encoding plant biomass degrading enzymes (Table 7). The
most commonly used inducible promoters are the glucoamylase promoter from
A. niger (Conesa et al. 2000) and the Taka amylase promoter from A. oryzae (Stewart
et al. 1996), which both respond to the presence of maltose or starch. The most
commonly used constitutive promoter is the glyceraldehyde-3-phosphate dehydro-
genase (gpdA) promoter from A. nidulans (Punt and van den Hondel 1992), although
this promoter has also been used from other species. Recently, a new set of constitutive
promoters from A. niger and A. vadensis were tested for enzyme production,
resulting in several with a higher production levels than gpdA (Culleton et al. 2014),
but these have not yet been tested for the expression of basidiomycete genes.
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4 Heterologous Expression in Zygomycetes

Only one example of heterologous expression of basidiomycete genes in zygomy-
cetes has been described (Montiel-Gonzdlez et al. 2009) (Table 3). Amylomyces
rouxii was used as a cell factory for heterologous expression of a LiP and a MnP
encoding genes from P. chrysosporium under control of the Taka amylase promoter
of A. oryzae. A. rouxii is an efficient degrader of organopollutants such as penta-
chlorophenol (PCP) through its ability to produce phenoloxidases. As no heme
peroxidases were found in cultures of this fungus, the introduction of heterologous
peroxidases was believed to further improve its ability to degrade PCP, which was
confirmed in this study. Interestingly, no exogenous heme or hemoglobin was added
to the media to ensure active forms of the heme-containing lignin-modifying
peroxidases, as has been used in filamentous ascomycetes.

5 Conclusions and Outlook

Homologous and heterologous overexpression of basidiomycete genes is a chal-
lenging research field. The low number of transformable basidiomycete species
strongly limits the options for homologous overexpression, as well as heterologous
expression in basidiomycete hosts. Development of better transformation systems
for a larger number of basidiomycetes will be required to develop them as an
enzyme production platform.

In contrast, ascomycete expression systems are well established and cover both
yeasts and filamentous fungi as described in this chapter. However, the levels of
basidiomycete enzymes produced in these systems are often much lower than those
of ascomycete enzymes. No systematic studies into the reasons behind this have
been performed, but it is likely that differences in basidiomycete and ascomycete
gene models (basidiomycete genes often have more introns with less conserved start
and stop sequences) or sensitivity to ascomycete proteases contribute to this. A
better understanding of the factors affecting the production of basidiomycete
enzymes in ascomycete hosts is required to reach the levels that are suitable for
industrial applications.
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