
Dynamic JChoc: A Distributed Constraints
Reasoning Platform for Dynamically

Changing Environments

Imade Benelallam1,2, Zakarya Erraji1(B), Ghizlane EL Khattabi1,
and El Houssine Bouyakhf1

1 LIMIARF FSR, University Mohammed V, Rabat, Morocco
imade.benelallam@ieee.org,

{zakarya.erraji,elkhattabi.ghizlane}@gmail.com, bouyakhf@mtds.com
2 INSEA, Rabat, Morocco

Abstract. In Artificial Intelligence, a large number of problems (i.e.
distributed resource management, distributed air traffic management,
Distributed Sensor Network [1]) can be modeled and solved as Distrib-
uted Constraint Satisfaction Problems (DisCSPs). As many real world
problems change continuously and incessantly over time, some methods
have been developed (e.g. DynABT), for solving problems which exhibit
this dynamic behavior. Meanwhile, there was no available framework
that helped users to develope intelligent multi-agent systems based on
Dynamic and Distributed Constraints Reasoning (DCR) techniques.

In this paper, we propose a new platform, called JChoc, supporting
the dynamic aspect for DisCSPs. JChoc is an easy to use platform, based
on an elegant Multi-agent communication sub-platform (e.i JADE). It
deals with agents with local complex problems and allows a realistic use
of agents on a real distributed and dynamic framework.

A real distributed problem is addressed to illustrate how the plat-
form can be used to solve dynamically changing problems. However, the
experimental results show the defectiveness of our platform.

Keywords: Dynamically changing environments · Constraint program-
ming (CP) · Multi-agent systems · Distributed problem solving · Agent
models and architectures · Distributed constraints reasoning · Realistic
use · Constraint satisfaction problem (CSP) · Distributed CSP (DisCSP)

1 Introduction

Since the onset of real time electronic devices, mobiles, ubiquitous, and
intelligent computing, new combinatorial problems have emerged in the AI com-
munity such as: distributed resource management, distributed air traffic man-
agement, Distributed Sensor Network [1], disaster rescue [2] and distributed
Meeting Scheduling Problems (SMP), for which it is not suitable to collect all
data of problem in one site, to solve it by a centralized algorithm. The rea-
sons are communication time and cost of translation of each sub-problem in a
c© Springer International Publishing Switzerland 2015
B. Duval et al. (Eds.): ICAART 2015, LNAI 9494, pp. 20–36, 2015.
DOI: 10.1007/978-3-319-27947-3 2



Dynamic JChoc: A Distributed Constraints Reasoning Platform 21

common format. In addition, to give a single agent all data of the problem can
also be excluded for reasons of security and confidentiality. Therefore, some of
the AI communities are motivated to take an interest in Distributed Constraint
Reasoning (DCR), giving birth to other distributed formalism [5], whose work
focused on developing techniques for modeling and solving distributed combina-
torial problems with or without optimization criterion. Distributed Constraint
Satisfaction Problems (DisCSP), Distributed Constraint Optimization Problems
(DCOP) and Dynamic Distributed Constraints Satisfaction Problems provide a
useful framework of multiagent systems for distributed and dynamic resolution
of combinatorial problems [3–5,16,17].

In this context, an agent must have a communication platform that allows
the exchange of information or dialogue to coordinate their decision-making.
This reliable communication tool allows agents to send and receive messages
according to a given distributed protocol. However, various sophisticated solvers
have been developed: DisChoco [18], Disolver [6], MELY [7], Frodo [8]. Those
solvers rely on several algorithms for solving DisCSP problems such as Asynchro-
nous Backtracking (ABT [4], ABT Family [9]), Asynchronous Forward Checking
(AFC) [10] and Nogood-based Asynchronous Forward-Checking (AFC-ng) [11].
Asynchronous Distributed Constraints Optimization (ADOPT) [12], Asynchro-
nous Forward Bounding (AFB) [13], Asynchronous Branch-and-Bound (BnB-
ADOPT) [14] and Dynamic Backtracking for distributed constraint optimiza-
tion (DyBop) [15] were developed to solve DCOP problems. As well as the
authors recognise that most of these tools are specially developed for simulation
context. This fact can be clearly observed from its experimental setups. Given the
difficulty that researchers are facing, they often make many simplifying assump-
tions (i.e. simple agent (one variable per agent), agents as multi-thread, single
physical platform, communication via simulated perfect FIFO channels, etc.)
about the underlying distributed problem, which might affect the predictions
obtained from the simulation in non-trivial ways. Switching from the simulation
to the actual development practice often leads to loss of accuracy. Hence, bridg-
ing the gap between simulation and actual development and deployment within
distributed constraints solvers and include dynamic aspect are the motivations
for presenting the different ideas discussed in the present paper.

In this paper we focus on the development of a Multi-agent platform for
Distributed Constraint Reasoning and Dynamic Distributed Constraints Prob-
lems, namely JChoc DisSolver. This proposed platform allows non-expert user
to address and solve easily, not only distributed constraint satisfaction problems,
but also real Dynamic Distributed Constraint Satisfaction Problems.

This document is organized as follows. Section 2 presents a brief definition
of Distributed Constraint Satisfaction Problem (DisCSP) and Dynamic and
Distributed Constraint Satisfaction Problem (DDisCSP) with an example. In
Sect. 3, we present related work. Section 4 presents the global architecture of
JChoc platform. In Sect. 5, we show how use this platform in a distributed envi-
ronment even if it changes dynamically. And finally, in Sect. 6 we conclude the
paper by experiment this platform within a real Distributed and Dynamic Con-
straints Satisfaction Problems.



22 I. Benelallam et al.

2 Preliminaries

2.1 Distributed Constraint Satisfaction Problems

Constraint Programming distinguishes between the description of the constraints
involved in a problem on the one hand, and the algorithms and heuristics used to
solve the problem on the other hand. Modeling and solving problems is through
a very elegant mathematical formalism, called the Constraint Satisfaction Prob-
lems CSPs.

The Distributed Constraint Satisfaction Problem (DisCSP) is represented
by a constraint network where variables and constraints are distributed among
multiple automated agents.

Definition: A finite DisCSP is defined by a 5-tuple(A,X,D,C, ψ), where:

• A = {A1, ..., Ap} is a set of p agents.
• X = {x1, ..., xn} is a set of n variables such that each variable xi is controlled

by one agent in A.
• D = {D(x1), ...,D(x2)} is a set of current domains, where D(xi) is a finite

set of possible values for variable xi.
• C = {c1, ..., cm} is a set of m constraints that specify the combinations of

values allowed for the variables they involve. We note that the constraints are
distributed among the automated agents. Hence, constraints divide into two
broad classes: inter-agent and intra-agent.

• ψ : X �−→ A is a function that maps each variable to its agent.

A solution to a DisCSP is an assignment of a value from its domain to every
variable of the distributed constraint network, in such a way that every constraint
is satisfied. Solutions to DisCSPs can be found by searching through the possible
assignments of values to variables such as ABT algorithm [4].

Many hard practical problems can be seen as DisCSPs. Most Distributed
Reasoning platform however assume that problem are static. This has a lim-
itation for dynamic problems that change over time, for example timetabling
shifts in a large hospital where availability staff change over time. Also in a
dynamic environment a DisCSP may change over time, these changes could be
due to addition/deletion of variables, constraints, or agents. The Distributed and
Dynamic Constraint Satisfaction Problems (DDisCSPs) can be described as a
five tuple (A, X, D, C, δ) where:

• A, X, D and C remain as described in DisCSP.
• δ is the change function which introduces changes.

Many DDisCSPs approaches (e.i : DynABT [25], DynBDA [26]) are proposed
to solve such problems, and can be easily implemented in This platform.

2.2 Meeting Scheduling Problem as a DisCSP

The Distributed Meeting Scheduling Problem (MSP) is a real distributed prob-
lem where agents may not desire to deliver their personal information to a cen-
tralized agent to solve the whole problem [20,21].



Dynamic JChoc: A Distributed Constraints Reasoning Platform 23

The MSP involves a set of n agents having a personal private calendar and a
set of m meetings each taking place in a specified location. Each agent, Ai ∈ A,
knows the set of the ki among m meetings he/she must attend. It is assumed
that each agent knows the traveling time between the locations where his/her
meetings will be held. The traveling time between locations where two meetings
mi and mj will be hold is denoted by TravellingT ime(mi,mj). Solving the
problem consists in satisfying the following constraints: (i) all agents attending
a meeting must agree on when it will occur, (ii) an agent cannot attend two
meetings at same time, (iii) an agent must have enough time to travel from the
location where he/she is to the location where the next meeting will be held.

We illustrate in Fig. 1 the encoding of the instance of the meeting scheduling
problem in the distributed constraint network formalism. This figure shows 4
agents where each agent has a personal private calendar and a set of meetings
each taking place in a specified location. Thus, we get the following DisCSP:

• A = {A1, A2, A3, A4} each agent Ai corresponds to a real agent,
• For each agent Ai ∈ A there is a variable mik, for every meeting mk that Ai

attends,
• X = {m11,m13,m14,m21,m22,m32,m33,m34,m44}.
• D = {D(mik)|mik ∈ X} where,

∗ D(m11) = D(m13) = D(m14) = {s | s is a slot in calendar(A1)}.
∗ D(m21) = D(m22) = {s | s is a slot in calendar(A2)}.
∗ D(m32) = D(m33) = D(m34) = {s | s is a slot in calendar(A3)}.
∗ D(m44) = {s | s is a slot in calendar(A4)}.

• For each agent Ai, there is a private arrival-time constraint (cikl intra-agent
constraint) between every pair of its local variables (mik,mil) (e.g. Omar
must attend tree meetings m1, m2 and m3). For each two agents Ai, Aj that
attend the same meeting mk there is an equality inter-agent constraint (cijk )
between the variables mik and mjk, corresponding to the meeting mk on agent
Ai and Aj (e.g. Omar and Jean participate in the same meeting m1). Then,
C = {cikl, c

ij
k }.

Given this example, a Distributed Constraint Reasoning (DCR) platform
must allow agents to have a reliable communication tool that allows sending
and receiving messages, in order to find the feasible solutions.

3 Related Work

Recently, B. Lutati and et al. [23] have proposed a MAS platform, called
AgentZero. This tool can be considered as a new addition to the available MAS
tools in general and to the DCR research field in particular. The authors claim
that AgentZero is generic and applicable to many domains, specifically introduc-
ing benefits for the DCR simulation domain. However, the platform has been
designed only for simulation use and used only by researchers in Distributed Con-
straint Reasoning. So developing and setting computer software for real problems
based on DCR is not simple and remains a difficult task for users in general.



24 I. Benelallam et al.

Fig. 1. Meeting scheduling problem modeled as DisCSP.

In [8] A. Petcu. Proposes a Framework for Open Distributed Optimization
(FRODO). The framework is implemented in Java, and simulates a multiagent
environment in a single Java virtual machine. Each agent in the environment
is executed asynchronously in a separate execution thread, and communicates
with its peers through message exchange. FRODO comes with several built in
algorithms and a suite of problem generators for benchmarking.

The authors of [24] proposed a open-source tool for solving DCR, called
DCOPolis. DCOPolis is an open-source framework designed to abstract algo-
rithm implementation from the underlying platform (i.e. hardware, network,
operating system). This allows a single implementation of an algorithm to be run
in simulation (i.e. on top of the NS2 network simulator with AgentJ). DCOPolis
differs from existing DCR frameworks and simulators, however, it supports a
novel type of simulation in which the runtime of any distributed algorithm can
be accurately estimated on a single physical computer.

Researchers in DCR are concerned with developing new algorithms, and com-
paring their performance with existing algorithms. Therefore, in [18] the authors
present an open source Java library, called DisChoco which aims at implementing
DCR algorithms from an abstract model of agent. DisChoco allows to represent
both DisCSPs and DCOPs, as opposed to other platforms. A single implemen-
tation of a DCR algorithm can run as simulation on a single machine. DisChoco
is a elegant platform, but all the different issues of realistic uses and actual
deployment have not been addressed.

Developing intelligent software applications based on DCR algorithms is a
difficult task, because the programmer must explicitly juggle between many very
different concerns, including centralized programming, distributed programming,
asynchronous and concurrent management of distributed structures, communi-
cation concerns and others. In addition, there are very few open-source tools for
solving DCR problems in a physically distributed environment. In this paper we
have been looking for a singular platform that would possess not only simula-
tion qualities, but especially designed for realistic and actual deployment. JChoc



Dynamic JChoc: A Distributed Constraints Reasoning Platform 25

platform is a new added value which allows bridging the gap between simulation
and realistic use. To our knowledge, this is the first DCR platform respecting
FIPA standards and specifications.

4 JChoc Platform

4.1 JChoc Description

The best way to prove the effectiveness of a proposed distributed constraint
reasoning algorithm, is to use it in a realistic multi-platform agent. This is how
we can reduce the gap between theory and practice. JChoc is a distributed
constraints multiagent platform proposed for solving combinatorial problems
within a specific distributed environment. It can also be used to analyze and test
the algorithms proposed by constraints programming community. This platform
is presented in the form of programming environment (API) and applications to
help different types of users. Hence, JChoc can be easily appropriated by two
main actors:

• Developers to design and develop applications (e.i. client application, web
application, mobile application, etc.) within distributed constraints program-
ming based on JChoc API;

• Non-expert user to interact directly with applications based on distributed
constraints programming.

This proposed platform has several advantages:

• A distributed constraints problem can be easily addressed and solved in a
realistic environment by unsophisticated users;

• The performances of the proposed protocols (i.e. ABT, AFC, Adopt, etc.)
can be actually tested and proved in a realistic communication channel (i.e.
WLAN WPAN WMAN WWAN);

• It offers a modular software architecture which accepts extensions easily (i.e.
security, confidentiality, cryptography, etc.);

• Thanks to the extensibility of JADE communication model [19], JChoc allows
the development of multiagent systems and applications consistent with Foun-
dation for Intelligent Physical Agents (FIPA)1 standards and specifications;

• Thanks to the robustness of Choco platform [22], complex agent (i.e. multiple
variables per agent) can easily address and solve its local sub-problem and
use solutions as a compiled domain.

This platform consists of several modules presented as services. The main con-
straint programming services offered are based Distributed Constraint Reasoning
Protocols (DCRP) and Choco Solver (CS). Choco is a platform for research in
centralized constraint programming and combinatorial optimization. This choice
of Choco enabled us to benefit from the modules already implemented in it. In
the next section, we will study the different elements of JChoc platform.
1 http://www.fipa.org/.

http://www.fipa.org/


26 I. Benelallam et al.

Fig. 2. The JChoc architecture.

4.2 JChoc Architecture

JChoc architecture is motivated by FIPA specifications, it allows the develop-
ment of multiagent systems and applications conforming to MAS standards. It
is implemented in JAVA and provides classes that implement and inherit from
JADE and Choco platforms to define the behavior of specific agents. Figure 2
represents the main JChoc architectural elements. This platform has five main
modules.

• DCRP �Distributed Constraint Reasoning Protocols� provides distributed
constraints protocols as service. This element defines new types of messages
and implements the behavior of the agent when receiving and sending a spe-
cific type of information (e.i. ABT, AFC, Adopt, etc.);

• CS �Choco Solver� provides the ability to address and resolve local CSP
sub-problem;

• DF �Director Facilitator� provides a service of “yellow pages” to the plat-
form;

• ACC �Agent Communication Channel� manages the communication
between agents;

• AMS �Agent Management System� oversees the registration of agents, their
authentication, their access and the use of the system.

These five modules are activated at each time the platform is started.
The JADE agent is also a key player in our platform. Thanks to JADE an

Agent Identifier (AID) identifies an agent uniquely.



Dynamic JChoc: A Distributed Constraints Reasoning Platform 27

JChoc uses extensively a sniffing tool for debugging, or simply documenting
conversations between agents. The sniffer subscribes to AMS agent to be notified
of all platform events and of all message exchanges between a set of specified
agents. When the user decides to monitor an agent or a group of agents, every
message directed to, or coming from, that agent/group is tracked and displayed
in the sniffer GUI. The user can select and view the details of every individual
message, save the message or serialize an entire conversation as a binary file.

5 Using Dynamic JChoc

5.1 Using JChoc in Distributed Environment

In this section we present how to use the JChoc platform in real distributed
environment. The MSP problem depicted in Fig. 1 is used to illustrate this pro-
posed platform. Initially we generate a sub-problem for each agent involved in
the global DisCSP problem, modeled by an expert as an XML file, which allows
standardizing the syntactic structure of the sub-problems. A sub-problem con-
taining only the information necessary for a single agent, so he can participate
in solving the global problem in a real distributed environment.

Figure 3 shows an example of representation of the MSP sub-problem defined
above in the XDisCSP format. Each variable has a unique ID, which is the
concatenation of the ID of its owner agent and index of the variable in the
agent. This is necessary when defining constraints (scope of constraints). For
constraints, we used two types of constraints: TKC for Totally Known Con-
straint and PKC for Partially Known Constraint. Constraints can be defined
in extension or as a Boolean function. Different types of constraints are pre-
defined: equal to eq(Mi,Mj), different from ne(Mi,Mj), greater than or equal
ge(Mi,Mj), greater than gt(Mi;Mj),etc. In this sub-problem there is 1 complex
agent A3 which controls exactly 3 variables. The domain of A3 contain 14 values
D3 = {1...14}. There are three constraints of Arrival time ge(abs(sub(Mi,Mj)):
the first constraint is between M3.2 and M3.3 the second one is between M3.3

and M3.4 and the third is between M3.2 and M3.4, three constraints of equality
eq(Mi,Mj): between M1.4 and M3.4, between M1.3 and M3.3, between M2.2 and
M3.2 after defining our sub-problem we can configure our solver.

Once the sub-problem is generated, we can test the functioning of the plat-
form in a physically distributed environment. So we chose machines that simulate
the different agents of the problem, and filed each sub-problem in a machine,
before launching it.

Figure 4 shows how the master launches its communication interface listening
on the network. We start with instantiate the dissolver object (line 7), This class
models the distributed problem when JChoc is used to solve a problem in a real
distributed environment. All information on distributed problem is encapsulated
in this object (identities of agents, inter-agent constraints, protocol, etc.). Then,
we define the type of master (line 8) (ABT in this case). Finally, we trigger the
container and we launch the master (lines 10–11).



28 I. Benelallam et al.

Fig. 3. Definition of DMS sub-problem in XDisCSP format.

Figures 5, 6, 7 and 8 show how to launch JChoc agents. We start with instan-
tiate the DisSolver object (line 7), followed by the agent and distributed sub-
problem declaration which specifies the resolution algorithm to be used (line
8–9). Next, the declaration of the container containing the master with its IP
address (line 10). Eventually, we launch the agent (line 11).

The master waits for the confirmation of creation of all agents before order-
ing the start of the search. Thus, the problem can be solved using a specified
implemented protocol (ABT for example).



Dynamic JChoc: A Distributed Constraints Reasoning Platform 29

Fig. 4. How the master launches its communication interface.

Fig. 5. How to implement and launch JChoc DisSolver in Omar agent (A1).

Fig. 6. How to implement and launch JChoc DisSolver in Jean agent (A2).

Fig. 7. How to implement and launch JChoc DisSolver in Yun agent (A3).



30 I. Benelallam et al.

Fig. 8. How to implement and launch JChoc DisSolver in Mamadou agent (A4).

Fig. 9. Definition of dynamic sub-problem in XDisCSP format.



Dynamic JChoc: A Distributed Constraints Reasoning Platform 31

5.2 Using JChoc in Dynamic Distributed Environment

The use of JChoc platform in a dynamic environment is not very different to
that in the case of distributed static problems. The difference is seen in the xml
file that defines the sub-problem of each agent.

To see the platform’s exploitation in the Dynamic case of Distributed Sat-
isfaction Problems, we take a random example composed of five agents, each
agent has one variable. Figure 9, shows a model of representation of a dynamic
sub-problem of an agent that has two constraints with two other agents, 3 s after
launching, one of the constraints is going to be removed, then after 4 s, another
link with a third agent will be added.

In addition of the definition of variables, domains and constraints, we define
the constraints that will be either added or removed.

After the generation of the dynamic sub-problem, we can launch the resolu-
tion following the same approach as before, but instead to insert the name of an
XML file of a static sub-problem as argument, we insert the name of dynamic
sub-problem XML.

6 Experimental Results

6.1 Configuration Example

To experiment the JChoc platform in a physically distributed environment, we
chose five machines with features 2.93GHz, CORE(TM) 2 duo with 2GB
RAM that simulate agents. These machines are connected via the WLAN
of our laboratory. We also chose ABT algorithm to solve Meeting Scheduling
problems (MSP). In Fig. 1 above, we depict an example of problem solved by
this platform in a live distributed environment network. This figure illustrates
an instance of MSP viewed as DisCSP where each agent has a personal private
calendar and a set of meetings each taking place in a specified location. In that
example, there are four agents, A1, A2, A3 and A4, and four meetings, m1, m2,
m3 and m4. Each agent has its own calendar divided into 14 slots. The time
required for traveling among places where meetings can be scheduled is 2 slots.

We have intentionally limited the number of agents to 4 for this problem
needs, but the number of the agents can be easily extended to N�4 for the
neediest problems.

Figures 10 and 11 show the GUI of the sniffer agent at the start and the
end of ABT resolution. The canvas provides a graphical representation of the
messages exchanged between sniffed ABTagents, where each arrow represents
a message and each color identifies a type of conversation. For example agent
A1 sends an OK? message to informs A2 that he has done a new assignment
m1.1:1 (line 5).

If no new consistent value is found (line 10), A3 generates a new nogood
m1.3:3 ∧ m1.4:5 ⇒ m2.2 
= 5 by the resolution of existing nogoods. Eventually,
the system can stabilize in a state where each agent has a value and no constraint
is violated. This state is a global solution and the network has reached quiescence,



32 I. Benelallam et al.

meaning that no message is traveling through it (lines 37, 40, 43, 46). Once the
solution is found, the master should be advised to spread the stop order to all
agents (lines 49–52) (Fig. 11).

A solution to this example is:
A1−→(m1.1 : 3; m1.3 : 7; m1.4 : 1), A2−→(m2.1 : 3; m2.2 : 5), A3−→(m3.2 : 5;

m3.3 : 7; m3.4 : 1), A4−→(m4.4 : 1).

6.2 Platform Scalability

The scalability of JChoc is the ability of the system, network, and process to
handle a growing amount of work in a capable manner and its ability to be
enlarged to accommodate that growth. In order to experiment our platform, we
consider a large number of MSP instances. These Meeting Scheduling Problem
are characterized by < m, p, n, d, h, t, a >, where m is the number of meetings,
p is the number of participants, n is the number of inter-agent constraints d
determines the number of days. Different time slots are available for each meet-
ing, and h is the number of hours per day, t is a duration of the meeting and a
is the percentage of availability for each participant. We present our results for
the class < m, p, n, 5, 10, 1, 90% > and we vary three parameters: m, p, n (each
agent has 2 meetings):

As shown in experimental results, in Fig. 7, the performance of our platform is
measured in terms of network load (number of messages) and run-time execution.
From these preliminary results we see that JChoc platform performs rapidly in
small instances (#p ∈ [4, 14]). The number of messages increases for #p ∈ [15, 18]
and reduces for #p > 18. This scalability behavior is due to complexity of MSP
problems. When the instance is hard the problem can be solved rapidly (Fig. 12).

Fig. 10. The start on sniffer agent GUI. Fig. 11. The finish on sniffer agent GUI.



Dynamic JChoc: A Distributed Constraints Reasoning Platform 33

#p #m #n #messages Time (ms)
4 8 3 11 17070
5 10 5 11 17204
6 12 6 14 16144
7 14 7 14 17073
8 16 8 19 19180
9 18 9 24 20210
10 20 10 22 18294
11 22 11 32 20197
12 24 12 27 18516
13 26 15 30 20370
14 28 33 51 26073
15 30 35 105 31103
16 32 29 69 28914
17 34 33 175 38324
18 36 35 139 43172
19 38 38 141 37121
20 40 43 94 33457

Fig. 12. Performance of JChoc platform using ABT protocol on the Meeting Schedul-
ing Problem (MSP).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

220

240

260

280

300

320

340

p2

N
br

of
M
es
sa
ge
s

ABT
DynABT

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

1.5

2

·105

p2

C
PU

T
im

e
(m

s)

ABT
DynABT

Fig. 13. ABT vs DynABT.

6.3 Platform Scalability in a Dynamic Changed Environement

To compare the performance of the DDisCSPs with a platform that supports
dynamic aspect and an other that doesn’t. We made our experiments using ABT
that cant solve such problem dynamically and resolve the problem when changes
are available, and DynABT that can adapt changes and continuous problem’s
solving. We have introduced a rate change δ as a percentage of the total con-
straints in the problem (δ = 20 %). In these experiments we generated problems
randomly, with parameters (a, i, n, d, p1, p2) using the platform generator, where:
a is the number of agents = 20, i: the number of instances = 10, n: the number



34 I. Benelallam et al.

of variables = 20, p1: the density of constraints = 20 %, and p2: the tightness
of constraints with value 10 %–90 % step 10 %, the range of tightness 10 %–40 %
contains solvable problems, 50 % contains both solvable and unsolvable prob-
lems, and 60 %–90 % problems are unsolvable.

The Fig. 13 shows the number of messages sent and CPU Time, measured
for both ABT and DynABT implemented on JChoc platform and using our
laboratory’s wireless network, that allows the communication between Agents
in the same environment and conditions. All results obtained show that Dyn-
ABT significantly outperforms ABT in a dynamic changed environment. This
comparison shows the benefits of solving dynamic distributed problems in a real
distributed changed environment with an algorithm that support dynamic aspect
implemented in a suitable Platform. The platform is user friendly and lets users
implement their Multi-agents applications for dynamic environment.

7 Conclusion

In this paper, we have proposed a modular, reliable, deployable and distrib-
uted software architecture, called JChoc DisSolver, which can be used easily for
several real dynamic combinatorial problems. The main purpose of our platform
is to break down the barriers to building new and innovative applications. The
possibility of combining the expressiveness of Choco, the extensibility of JADE
and our powerful Dynamic Distributed Constraint Reasoning Add-On bring a
strong added value in the development of innovative applications based on Con-
straints Programming paradigm. The JChoc platform presented in this paper
has been designed to support extensions: security, cryptography. In our experi-
ments, We have implemented ABT protocol and solved the Meeting Scheduling
problem (MSP) in a real distributed environment. In a dynamic environment,
we have solved dynamic problems with DynABT, to show the benefits of our
platform that supports the dynamic aspect. We found that, by using this plat-
form, we can adopt easily any proposed protocol for solving distributed con-
straint problem even if environment changes dynamically. Future investigations
are focusing on enhancing the platform, by adding other layers that will allow
users to implement their multi-robots applications easily. The platform will allow
the communication between robots in a dynamically changing environment.

References

1. Béjar, R., Domshlak, C., Fernández, C., Gomes, C., Krishnamachari, B., Selman,
B., Valls, M.: Sensor networks and distributed csp: communication, computation
and complexity. Artif. Intell. 161(1–2), 117–148 (2005)

2. Kitano, H., Tadokoro, S., Noda, I., Matsubara, H., Takahashi, T., Shinjou, A.,
Shimada, S.: Robocup rescue: search and rescue in large-scale disaster as a domain
for autonomous agents research. In: IEEE International Conference on System,
Man, and Cybernetics (1999)



Dynamic JChoc: A Distributed Constraints Reasoning Platform 35

3. Yokoo, M., Hirayama, K.: Distributed breakout algorithm for solving distributed
constraint satisfaction problems. In: Proceedings of the First International Confer-
ence on MultiAgent Systems. MIT Press (1995)

4. Yokoo, M., Durfee, E., Ishida, T., Kuwabara, K.: Distributed constraint satisfac-
tion for formalizing distributed problem solving. In: International Conference on
Distributed Computing Systems, pp. 614–621 (1992)

5. Yokoo, M.: Distributed constraint satisfaction. In: Foundation of Cooperation in
multiagent Systems (2001)

6. Hamadi, Y.: Disolver : a distributed constraint solver. In Technical Report MSR-
TR-2003-91, Microsoft Research (2003)

7. Galley, M.: Distributed constraint programming platform using sjavap (2000).
http://cs.fit.edu/Projects/asl/#MELY

8. Petcu, A.: Frodo: a framework for open/distributed optimization. In Technical
Report EPFL:2006/001, LIA, EPFL, CH-1015 Lausanne (2006). http://liawww.
epfl.ch/frodo/

9. Bessiere, C., Brito, I., Maestre, A., Meseguer, P.: Asynchronous backtracking with-
out adding links: a new member in the abt family. Artif. Intell. 161, 7–24 (2005)

10. Meisels, A., Zivan, R.: Asynchronous forward-checking for discsps. Constraints 12,
131–150 (2007)

11. Ezzahir, R., Bessiere, C., Wahbi, M., Benelallam, I., Bouyakhf, E.: Asynchronous
interlevel forward-checking for discsps. In: Principles and Practice of Constraint
Programming (CP 2009) (2009)

12. Modi, P., Shen, W., Tambe, M., Yokoo, M.: Adopt: asynchronous distributed
constraints optimization with quality guarantees. Artif. Intell. 161(1–2), 149–180
(2005)

13. Gershman, A., Meisels, A., Zivan, R.: Asynchronous forward bounding for distrib-
uted cops. J. Artif. Intell. Res. 34, 61–88 (2009)

14. Yeoh, W., Felner, A., Koenig, S.: Bnb-adopt: an asynchronous branch and bound
dcop algorithm. In: AAMAS08: Proceedings of the 7th International Joint Confer-
ence on Autonomous Agents and Multiagent Systems, pp. 591–598 (2008)

15. Ezzahir, R., Bessiere, C., Benelallam, I., Bouyakhf, E., Belaissaoui, M.: Dynamic
backtracking for distributed constraint optimization. Proceeding of the 2008 confer-
ence on ECAI 2008, pp. 901–902. The Netherlands, IOS Press, Amsterdam (2008)

16. Yokoo, M.: Algorithms for distributed constraint satisfaction problems: a review.
Auton. Agents Multiagent Syst. 3, 185–207 (2000)

17. Yokoo, M., Durfee, E., Ishida, T., Kuwabara, K.: The distributed constraint sat-
isfaction problem: formalization and algorithms. IEEE Trans. Knowl. Data Eng.
10(5), 673–685 (1998)

18. Wahbi, M., Ezzahir, R., Bessiere, C., Bouyakhf, E.: Dischoco 2: a platform for
distributed constraint reasoning. In: DCR 2011, pp. 112–121 (2011). http://www.
lirmm.fr/coconut/dischoco/

19. JADE Java agent developpement framework (2013). http://jade.tilab.com/
20. Meisels, A., Lavee, O.: Using additional information in discsp search. In: DCR 2004

5th Workshop on Distributed Constraints Reasoning (2004)
21. Wallace, J.R., Freuder, C.E.: Constraintbased multi-agent meeting scheduling:

effects of agent heterogeneity on performance and privacy loss. In: DCR 2002 3rd
Workshop on Distributed Constrait Reasoning, pp. 176–182 (2002)

22. Jussien, N., Rochart, G., Lorcal, X.: Choco: an open source java constraint pro-
gramming library. In: CPAIOR 2008 Workshop on Open-Source Software for Inte-
ger and Contraint Programming (OSSICP 2008), France, Paris (2008)

http://cs.fit.edu/Projects/asl/#MELY
http://liawww.epfl.ch/frodo/
http://liawww.epfl.ch/frodo/
http://www.lirmm.fr/coconut/dischoco/
http://www.lirmm.fr/coconut/dischoco/
http://jade.tilab.com/


36 I. Benelallam et al.

23. Lutati, B., Levit, V., Meisels, A.: Agentzero: a framework for simulating and eval-
uating multiagent algorithms. In: Shehory, O., Sturm, A. (eds.) In Agent-oriented
Software Engineering, pp. 309–327. Springer, Heidelberg (2014)

24. Sultanik, E., Lass, R., Regli, W.: Dcopolis: a framework for simulating and deploy-
ing distributed constraint optimization algorithms. In: CP-DCR (2007)

25. Omomowo, Bayo, Arana, Inés, Ahriz, Hatem: DynABT: dynamic asynchronous
backtracking for dynamic DisCSPs. In: Dochev, Danail, Pistore, Marco, Tra-
verso, Paolo (eds.) AIMSA 2008. LNCS (LNAI), vol. 5253, pp. 285–296. Springer,
Heidelberg (2008)

26. Mailler, R.: Comparing two approaches to dynamic, distributed constraint satisfac-
tion. In: Proceedings of the Fourth International Joint Conference on Autonomous
Agents and Multiagent Systems, pp. 1049–1056. ACM (2005)


	Dynamic JChoc: A Distributed Constraints Reasoning Platform for Dynamically Changing Environments
	1 Introduction
	2 Preliminaries
	2.1 Distributed Constraint Satisfaction Problems
	2.2 Meeting Scheduling Problem as a DisCSP

	3 Related Work
	4 JChoc Platform
	4.1 JChoc Description
	4.2 JChoc Architecture

	5 Using Dynamic JChoc
	5.1 Using JChoc in Distributed Environment
	5.2 Using JChoc in Dynamic Distributed Environment

	6 Experimental Results
	6.1 Configuration Example
	6.2 Platform Scalability
	6.3 Platform Scalability in a Dynamic Changed Environement

	7 Conclusion
	References


