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Abstract. An approach to the pre-runtime design of normative systems
for a class of problem-solving norm-regulated multi-agent systems is sug-
gested. The basic idea is to employ evolutionary mechanisms to evolve
efficient normative systems for so-called norm-regulated Dalmases, as
part of the design process. The Dalmas architecture uses an algebraic
approach to normative systems, in which normative consequences are
based on an extended set of one-agent types of normative positions,
which is given a semantics in terms of prohibition of certain types of
state transitions. To illustrate the approach, a genetic algorithm is used
to evolve norms for an example system. Furthermore, some approaches
to reducing the algorithm’s search space, including to employ a notion of
‘operational equivalence’ of norms, are discussed. It is demonstrated that
an evolutionary algorithm may be a useful tool when designing norms
for problem-solving multi-agent systems.
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1 Introduction

Agent-based modelling and simulation is an active field of study which, for exam-
ple, may offer methods for solving complex optimization problems. In this set-
ting, agents are required to cooperate to solve the problem at hand. In complex
systems with adjustable agent autonomy, sophisticated planning can often be
replaced by norms; see for example [21]. The study of norm-regulated multi-
agent systems, often referred to as normative MAS, has also attracted a lot of
attention. The NorMAS roadmap [3] is a comprehensive introduction to and
overview of the field. The combination of agent-based modelling and simulation
and normative MAS is a promising field of study [4].

It is often desirable to replace planning (and replanning), since it may be a
complex and time-consuming task, especially in collaborative environments. On
the other hand, designing good normative systems is also a challenge. The app-
roach suggested here, whose basic ideas were outlined in [20, pp. 164f], is to use
evolutionary mechanisms, employed in a genetic algorithm, to aid the ‘off-line’
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Table 1. One-agent types of normative positions.

T1(x, F ) : May Do(x, F ) & May[¬Do(x, F ) & ¬Do(x, ¬F )]& May Do(x, ¬F )

T2(x, F ) : May Do(x, F ) & May[¬Do(x, F ) & ¬Do(x, ¬F )]& ¬May Do(x, ¬F )

T3(x, F ) : May Do(x, F ) & ¬May[¬Do(x, F ) & ¬Do(x, ¬F )] & May Do(x, ¬F )

T4(x, F ) : ¬May Do(x, F ) & May[¬Do(x, F ) & ¬Do(x, ¬F )] & May Do(x, ¬F )

T5(x, F ) : May Do(x, F ) & ¬May[¬Do(x, F ) & ¬Do(x, ¬F )] & ¬May Do(x, ¬F )

T6(x, F ) : ¬May Do(x, F ) & May[¬Do(x, F ) & ¬Do(x, ¬F )] & ¬May Do(x, ¬F )

T7(x, F ) : ¬May Do(x, F ) & ¬May[¬Do(x, F )& ¬Do(x, ¬F )] & May Do(x, ¬F )

(i.e., pre-runtime) design of normative systems for problem-solving multi-agent
systems based on the Dalmas architecture for norm-regulated MAS. The nor-
mative framework of a Dalmas is based on an algebraic version of the Kanger-
Lindahl theory of normative positions, which is well suited as the logical foun-
dation for normative systems in a MAS context, since the types of normative
positions are mutually exclusive and jointly exhaustive in the logical sense.

The paper is structured as follows. Section 1.2 briefly introduces the algebraic
version of the theory of normative positions, and in Sect. 1.3, previous work on
the Dalmas architecture is presented. Section 2 introduces an example Dalmas
which will be used in Sect. 3 to demonstrate how to employ evolutionary mecha-
nisms in the process of designing norms, by applying an evolutionary algorithm
to this example. Section 4 concludes and suggests some lines of future work.

1.1 Related Work

The runtime emergence of norms within artificial social systems has attracted the
attention of many researchers; see, e.g., [2]. However, evolving normative systems
as part of the process of designing norm-regulated MAS is not as well studied,
although evolutionary approaches for learning behaviour patterns or strategies
for coordination have been successfully used in, e.g., the RoboCup1 domain; see
for example [6,17,18] . In fact, the simple decision policies evolved by Di Pietro
et al. for the RoboCup Keepaway game can be regarded as simple normative
systems consisting of production rules which prescribe certain behaviours in
certain situations.

1.2 One-Agent Types of Normative Positions

The Kanger-Lindahl theory of normative positions is based on Kanger’s ‘deon-
tic action-logic’; see for example [14]. The theory, further developed by Lin-
dahl [15], contains three systems of types of normative positions, based on the
logic of the action operator Do and the deontic operator Shall. The simplest
of these systems is a system of seven ‘one-agent types’ of normative positions.

1 http://www.robocup.org.

http://www.robocup.org
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Do(x, F ) is commonly read as ‘x sees to it that F ’ or ‘x brings it about that F ’,
where F is a proposition regarding some state of affairs. The logical properties
assumed for Do is that it is the smallest system containing propositional logic,
closed under logical equivalence and containing the axiom schema Do(x, F ) → F ,
which tries to capture the notion of successful action; if x ‘sees to it’ or ‘brings
about’ that F , then F is indeed the case.

Each of the three statements

(i) Do(x, F ),
(ii) Do(x,¬F ), and
(iii) ¬Do(x, F )&¬Do(x,¬F ),

implies the negation of each of the others, and the disjunction of all three is a
tautology. Each of (i) – (iii) can be prefixed with either May or ¬May, where
May F is defined as ¬Shall¬F , and basic conjunctions containing one statement
from each such pair can be formed. By iterated construction of basic conjunc-
tions, a set of eight conjunctions (of which one is self-contradictory) is obtained.
The consistent ‘maxi-conjunctions’ are listed in Table 1.

In a series of papers, comprehensively summarized in [16], Lindahl and
Odelstad have combined the theory of normative positions with an algebraic
approach to normative systems. Their idea is to use the one-agent types of nor-
mative positions as operators on descriptive conditions to get deontic conditions.
A ν-ary condition d can be true or false of ν agents x1, ..., xν . Thus, d(x1, ..., xν)
is a state of affairs which may be true or false. (To facilitate the presentation,
Xν will often be used as an abbreviation for the argument sequence x1, ..., xν .)
In the special case when the sequence of agents is empty, i.e. ν = 0, d represents
a proposition which may be true or false. Note that negations d′, conjunctions
(c ∧ d), and disjunctions (c ∨ d) can be formed in the following way:

d′(Xν) iff ¬d(Xν),
(c ∧ d)(Xν) iff [c(Xp) and d(Xq)], and
(c ∨ d)(Xν) iff [c(Xp) or d(Xq)],

where ν = max(p, q).2 Therefore, it is possible to construct Boolean algebras of
conditions. A Boolean algebra together with an implicative relation R fulfilling
certain conditions, forms a so-called Boolean quasiordering (Bqo). As an appli-
cation of their Theory of Joining-Systems (TJS), Lindahl and Odelstad define
the notion of a normative position condition-implication structure, abbreviated
np-cis, which is based on Bqo’s on descriptive and deontic conditions, so-called
cis-Bqo’s. For details on Boolean quasiorderings, condition implication struc-
tures and np-cis’es, see for example [16] or [20].

2 The free variables in c(x1, ..., xp) must be the same, and in the same order, as the
free variables in d(x1, ..., xq), but it is not necessary that c and d have the same arity.
Cf. [20, p.146].
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Table 2. ‘Reduced extended’ types of one-agent normative positions.

P1(x, F ) : MayDo(x, F ) & MayΛ(x, F ) & MayΩ(x, F )&MayDo(x, ¬F )

P2Λ(x, F ) : MayDo(x, F ) & MayΛ(x, F ) & ¬MayΩ(x, F ) & ¬MayDo(x, ¬F )

P2Ω(x, F ) : MayDo(x, F ) & ¬MayΛ(x, F ) & MayΩ(x, F ) & ¬MayDo(x, ¬F )

P4Λ(x, F ) : ¬MayDo(x, F ) & MayΛ(x, F ) & ¬MayΩ(x, F ) & MayDo(x, ¬F )

P4Ω(x, F ) : ¬MayDo(x, F ) & ¬MayΛ(x, F ) & MayΩ(x, F ) & MayDo(x, ¬F )

P5(x, F ) : Shall Do(x, F )

P6Λ(x, F ) : Shall Λ(x, F )

P6Ω(x, F ) : Shall Ω(x, F )

P7(x, F ) : Shall Do(x, ¬F )

1.3 Previous Work

Dalmas [20] is an abstract architecture for a class of norm-regulated multi-
agent systems. A deterministic Dalmas is a simple multi-agent system in which
the actions of an agent are connected to transitions between system states.
In a deterministic Dalmas the agents take turns to act; only one agent at a
time may perform an action. By allowing ‘do nothing’ actions and accelerating
the turn-taking, systems with close to asynchronous behaviour can be obtained.
A special kind of Dalmas is the norm-regulated simple deterministic Dalmas,
which employs what is often referred to as ‘negative permission’, by letting its
deontic structure (i.e., the set of permissible acts) consist of all acts that are
not explicitly prohibited by a normative system N . The Dalmas’s preference
structure consists of the most preferable (according to the agent’s utility func-
tion) of the acts in the deontic structure. In short, a Dalmas agent’s behaviour
is regulated by the combination of a normative system and a utility function;
this ‘agent oeconomicus norma’3 chooses the most desirable act, according to
the utility function, within the ‘room for manouver’ determined by the norms.
The Dalmas’s normative framework is based on an algebraic version of the
Kanger-Lindahl theory of normative positions, in which normative consequences
are formulated by applying normative operators to descriptive conditions. (See
Sect. 1.2.) From these general normative conditions follow normative sentences
regarding specific states of affairs, which in turn result in permission or prohi-
bition of individual actions in specific situations. (See for example [19,20] for
an introduction.) Hence, the norms in the Dalmas architecture play a different
role, and is represented in a fundamentally different way, than, e.g., the decision
rules in the RoboCup setting (see Sect. 1.1).

Since the agents in a deterministic Dalmas take turns to act, each individual
step in a run of a Dalmas may be characterized by an ordered 5-tuple S =
〈x, s,A,Ω, S〉 whose components are a set of states S, a state s, an agent-set Ω =
{x1, ..., xn}, the acting (‘moving’) agent x, and an action-set A = {a1, ..., am}.4

3 Cf. [19, Sect. 1.8.3].
4 In [9], such a tuple is called a transition system situation.
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Table 3. Basic transition types.

I. d(Xν ; s) & d(Xν ; s+)

II. ¬d(Xν ; s) & d(Xν ; s+)

III. d(Xν ; s) & ¬d(Xν ; s+)

IV. ¬d(Xν ; s) & ¬d(Xν ; s+)

In this setting, a may be regarded as a function such that a(x, s) = s+ means
that s+ is the resulting state when x performs act a in state s. In the following,
the abbreviation s+ will be used for a(x, s) when there is no need for an explicit
reference to the action a and the acting agent x. As already mentioned, there is
no simultaneous action by other agents (including the ‘environment’, which may
be regarded as a special kind of agent). Furthermore, we assume that a ν-ary
condition d is true or false on ν agents x1, ..., xν ∈ Ω in s; with the abbreviation
Xν for the agent sequence, this will be written d(Xν ; s).

Let the situation 〈x, s〉 be characterized by the moving agent x and the state s
in a norm-regulated simple deterministic Dalmas . It is possible in the Dalmas
architecture to distinguish between the moving agent and the agent to which
normative condition applies5, but to facilitate the presentation it is assumed in
the sequel that norms always apply to the moving agent x in a situation 〈x, s〉.
A norm in N is represented by an ordered pair 〈c,Nd〉, where the (descriptive)
condition c on a situation 〈x, s〉 is the ground of the norm and the (normative)
condition Nd on 〈x, s〉 is its consequence; see, e.g., [20]. Nd is formed by applying
a ‘norm-creating’ operator N to the descriptive condition d.

In the following, the normative framework of the Dalmases employed is
based on the notion of an np9-cis [12, Sect. 2.2.1], a structure similar to the
np-cis defined by Lindahl and Odelstad, but based on the ‘reduced extended’
set of types of normative positions shown in Table 2. It is argued in [12] that a
semantics for the normative framework of a Dalmas can be formed by defining a
set of ‘transition type operators’ Ca

k , k ∈ {1, 2Λ, 2Ω, 4Λ, 4Ω, 5, 6Λ, 6Ω, 7}, based
on Table 4, and a set of corresponding ‘transition type prohibition operators’ Pk,
such that Pkd(Xν ;x, s) is intended to mean that if Ca

kd(Xν ;x, s) holds, then a
is prohibited for x in 〈x, s〉. In effect, Pkd(Xν ;x, s) implies a prohibition of zero,
one or two of the four ‘basic transition types’ (see Table 3, where s+ refers to
the resulting state when the acting agent performs its act) with regard to the
state of affairs d(Xν). For example, 〈c, Pkd〉, where c and d can have different
arity, represents the sentence

∀x1, x2, ..., xν ∈ Ω : c(x1, x2, ..., xp;x, s) → Pkd(x1, x2, ..., xq;x, s)

where Ω is the set of agents, x is the acting agent (to which the norm applies) in
the situation 〈x, s〉, and ν = max(p, q). If the condition specified by the ground
of a norm for some agents in some situation, then the (normative) consequence

5 Cf. the remark in [10, p. 84].
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Table 4. Transition type prohibition operators and transition type conditions.

Operators Prohibiteda(x, s) if

P1 - -

P2Λ Ca
2Λ d(Xν ; s) & ¬d(Xν ; a(x, s))

P2Ω Ca
2Ω ¬d(Xν ; s) & ¬d(Xν ; a(x, s))

P4Λ Ca
4Λ ¬d(Xν ; s) & d(Xν ; a(x, s))

P4Ω Ca
4Ω d(Xν ; s) & d(Xν ; a(x, s))

P5 Ca
5 ¬d(Xν ; a(x, s))

P6Λ Ca
6Λ ¬(d(Xν ; s) ↔ d(Xν ; a(x, s)))

P6Ω Ca
6Ω d(Xν ; s) ↔ d(Xν ; a(x, s))

P7 Ca
7 d(Xν ; a(x, s))

Table 5. Possible changes of Lapn.

State of affairs Possible state of affairs in next state

Lap0(x1, x2) Lap0(x1, x2), Lap1(x1, x2), Lap2(x1, x2), Lap3(x1, x2)

Lap1(x1, x2) Lap0(x1, x2), Lap1(x1, x2), Lap2(x1, x2)

Lap2(x1, x2) Lap0(x1, x2), Lap1(x1, x2), Lap2(x1, x2), Lap3(x1, x2), Lap4(x1, x2)

Lap3(x1, x2) Lap0(x1, x2), Lap2(x1, x2), Lap3(x1, x2), Lap4(x1, x2), Lap6(x1, x2)

Lap4(x1, x2) Lap2(x1, x2), Lap4(x1, x2), Lap6(x1, x2)

Lap6(x1, x2) Lap3(x1, x2), Lap4(x1, x2), Lap6(x1, x2), Lap9(x1, x2)

x1 =′ x2 &Lap9(x1, x2) Lap6(x1, x2), Lap9(x1, x2)

of the norm is in effect in that situation. If the normative system N contains a
norm whose ground holds in the situation 〈x, s〉 and whose consequence prohibits
the type of transition represented by x performing action a, then a is prohibited
for x in 〈x, s〉:

Prohibitedx,s(a) according to N
if there is a p-ary condition c

and a q-ary condition d
and a k ∈ {1, 2Λ, 2Ω, 4Λ, 4Ω, 5, 6Λ, 6Ω, 7},

such that 〈c, Pkd〉 is a norm in N ,
and there arex1, ..., xν such that

c(x1, ..., xp;x, s)&Ca
kd(x1, ..., xq;x, s),

where ν = max(p, q).

Hence, if c(x1, ..., xp;x, s) for some sequence of agents x1, ..., xν , then the
normative condition Pkd(x1, ..., xq;x, s) is ‘in effect’. Thus, if Ca

kd(x1, ..., xq;x, s)
holds, then a is prohibited for x in s. (Cf. the examples in Sect. 3.1.) Table 4
contains the nine norm-building operators Pk, together with the corresponding
Ca

k operators and the result of applying them to d(x1, ..., xq; s); cf. Table VI
in [11].
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A general-level Java/Prolog implementation of the Dalmas architecture has
been developed, to facilitate the implementation of specific systems. The Colour
& Form system, the Waste-collector system and the Forest Cleaner system are
three specific systems that have been implemented using this framework. The
reader is referred to [7,8,13,20] for a description of these systems and their
instrumentalizations.

The approach to normative systems employed in this framework is ideally
suited for evolution of normative systems, since the nine ‘reduced extended’
types of normative positions are mutually exclusive and jointly exhaustive in
the logical sense. Therefore each conceivable normative system, consisting of
conditional norms based on descriptive conditions selected from a set of potential
grounds and normative conditions selected from a set of potential consequences,
could become a candidate for evaluation in the execution of an evolutionary
algorithm. This idea will be further explored in the following sections.

2 Example: Explorer DALMAS

Let us consider a class of systems of agents operating in an environment con-
sisting of a grid of squares ordered in rows and columns, in which each square is
assigned a pair of integer coordinates. Let us assume that the joint goal of the
agents is to explore as much as possible of the grid using a fixed number of moves.
An agent can stay in the current square, i.e., do nothing, or move one square
in one of four directions (east, north, west, south) as long as it stays within the
boundaries of the grid. In other words, in a given situation, an action is feasible
if and only if it does not move the agent off limits. It should of course be noted
that these simple systems (in the following referred to as Explorer Dalmases)
in themselves are of limited interest, but the idea here is to illustrate how evolu-
tionary mechanisms could be used in the process of designing normative systems
for problem-solving MAS.

Fig. 1. Overlap of the protected spheres for three agents.
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To simulate a situation with limited possibilites for communication between
agents and only local knowledge of the environment, we further assume that an
agent only knows the status (visited or unvisited) of the immediately surround-
ing squares, and the location of other agents within two squares. An agent’s
preference is represented by a very simple utility function such that moving to
an unvisited square is preferred over moving to a visited square, and stay is the
least preferred action. In the case of a tie between equally preferred actions, one
of them is randomly selected. This means that all agents have the same utility
function.

To make the situation more concrete, let us assume that the size of the grid is
c × r squares and place three agents at square (1, 1), the leftmost lowest square.
Note that this system can be considered as an instance of the Waste-collector
system [13,20], in which visited (resp., unvisited) squares are represented by 0
(resp., 1) units of ‘waste’. The higher number of ‘waste’ carried by an agent, the
higher number of unvisited squares have been entered by that agent. It would
not be a very difficult task to design a plan where the agents take turns to act
in such a way that all remaining cr − 1 squares are visited in cr − 1 moves. But
if the environment gets changed, e.g., is resized or reshaped, the plan must be
recalculated. What if we let norms replace plans in this class of environments?
Let us investigate the interplay between the agents’ utility functions, represent-
ing their ‘desires’, and a normative system which determines their ‘room for
manouvre’. One idea is to base norms on the spatial relationship between the
agents, potentially restricting how the agents may move in the proximity of other
agents. We define the condition Lapn, n ∈ {0, 1, 2, 3, 4, 6, 9}, with the intended
meaning that Lapn(xi, xj ; s) holds if and only if the protected spheres of agents
xi and xj overlap with n squares in a state s. The protected sphere consists of the
agent’s square plus the eight surrounding squares; see Fig. 1, which illustrates a
state in which Lap2(x1, x2), Lap1(x2, x3), and Lap0(x1, x3) holds. Table 5 shows
how the overlap can change from one state to another, given the five available
actions. Note that Lapn(xi, xj) implies xi =′ xj for n < 9, and xi = xj implies
Lap9(xi, xj). Furthermore, Lapn(xi, xj) implies ¬Lapm(xi, xj) for n 	= m. In
other words, Lapn R =′ for n < 9, = R Lap9, and Lapn R Lap′

m for n 	= m,
where d′ is the negation of the condition d and R is the implicative relation
on conditions which defines the cis-Bqo’s of grounds and consequences of the
normative system.

Now let the ‘elementary’ conditions Lap0, Lap1, Lap2, Lap3, Lap4, Lap6,
together with the ‘non-elementary’ condition (=′ ∧Lap9), form a set of poten-
tial descriptive grounds for conditional norms. The set of potential normative
consequences corresponding to each ground is constructed by applying the norm-
building operators P1, P2Λ, ..., P7 (see Sect. 1.3) to the conditions listed in the
corresponding rows in Table 5. Thus, the potential consequences for, e.g., Lap1
are P1Lap0,..., P7Lap0, P1Lap1,..., P7Lap1, and P1Lap2,..., P7Lap2. Note that
it would be meaningless to, e.g., let PiLap4 be a potential consequence for Lap0,
since none of the available acts can change the state of the system in such a way
that Lap0(xi, xj) holds in one state and Lap4(xi, xj) holds in the next state.
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With these building blocks available, normative systems for Explorer
Dalmases can be constructed. Let us employ the following scheme: For each con-
dition c in the leftmost column of Table 5, one norm 〈M1c, Pid〉 is added to the nor-
mative system for each condition d in the rightmost column.6 E.g., for Lap0 we add
four norms: 〈M1Lap0, Pk0Lap0〉, 〈M1Lap0, Pk1Lap1〉, 〈M1Lap0, Pk2Lap2〉, and
〈M1Lap0, Pk3Lap3〉. Note that, as regards the ground (=′ ∧Lap9), one of 〈M1(=′

∧Lap9), Pk0Lap9〉 and 〈M1(=′ ∧Lap9), Pk1Lap6〉 is redundant, and can therefore
be removed.7 This gives a total of 24 norms. Note, however, that not all norma-
tive systems formed in this way are coherent. To begin with, some sets of rules
may be contradictory, according to the intended meaning of the Pi operators, but
the problem of coherence (sometimes referred to as ‘absence of conflicts’) cannot
simply be reduced to logical consistency; see for example [1]. We will return to this
issue in Sect. 3.1.

We would now like to find the best normative system, i.e., the normative sys-
tem that, together with the simple utility function described earlier, on average
makes the Explorer system most efficient. The following measure of efficiency
will be employed: the normative system is applied to three different Explorer
Dalmases, operating on grids of (almost) equal sizes but different shapes: 6 × 8
squares, 7×7 squares, and 10×5 squares, respectively. On each grid, three agents
are initially placed on square (1, 1). A k-event run of each of these three systems
will be performed, where k is the number of unvisited squares from the begin-
ning, i.e., k = cr −1. For each run, the ratio between the total number of visited
squares and the total number of unvisited squares in the beginning is calculated.
If the normative system is not coherent, in the sense that, at some point during
the run, all actions (including stay) become prohibited for the acting agent, then
the evaluation score is set to 0. The score of the normative system under eval-
uation is then the average of the three ratios obtained. We have now obtained
an optimization problem which may be solved with the help of an evolutionary
algorithm.

3 Evolution of Explorer Norms

Evolutionary algorithms (EA), being a subfield of evolutionary computation, use
the principles of biological evolution (such as reproduction, mutation, recombi-
nation, and selection) to solve problems on computers. For a comprehensive
introduction to this field the reader is referred to, e.g., [22]. In the Explorer

6 The ‘move operator’ Mκ, where κ is less than or equal to the arity of the condition
to which it is applied, identifies the agent to which the normative condition applies
with the moving agent x in the situation 〈x, s〉, as well as with the κth agent in
the argument sequence Xν . For example, M1Lap0(x1, x2, x3; x, s) holds if and only
if Lap0(x1, x2; s) holds, and x1 = x3, and x3 = x. See, e.g., [9] for an explanation.

7 This is due to the fact that Lap6 R Lap′
9 and Lap9 R Lap′

6. Thus, if a certain type of
normative position holds regarding Lap9, then this completely determines the type
of normative position regarding Lap6, or vice versa. For example, when Lap9 holds,
if P7Lap6, then it must follow that P5Lap9.
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Dalmas setting, there is some randomness in the agents’ choices of actions, and
in such ‘noisy’ domains, evolutionary algorithms are known to work well [5]. We
thus implement a basic genetic algorithm (one of the most common forms of
EAs) for Explorer Dalmas norms:

1. Genesis. Create an initial population of n candidate normative systems,
half of which are entirely randomly generated and half of which consist of
P1-consequences (the most permissive consequences) only. Each candidate is
represented by a character string consisting of 24 characters, one for each
norm, from {‘1’, ...,‘9’}, where ‘1’ represents P1, ‘2’ represents P2Λ, ‘3’ repre-
sents P2Ω , ‘4’ represents P4Λ, etc.

2. Evaluation. Evaluate each member of the population, by translating the
character string to a normative system according to the scheme presented in
Sect. 2, running three different systems regulated by this normative system
and using as fitness function the average of the evaluation scores of the three
runs. For example, a ‘chromosome’ starting with “371529...” is translated to
the following normative system:
{〈M1(=′∧Lap9), P2ΩLap9〉, 〈M1Lap6, P6ΛLap9〉, 〈M1Lap6, P1Lap6〉,
〈M1Lap6, P4ΩLap4〉, 〈M1Lap6, P2ΛLap3〉, 〈M1Lap4, P7Lap6〉, . . .}

3. Survival of the Fittest. Select a number of members of the evaluated
population, favouring those with higher fitness scores, to be the parents of
the next generation.

4. Evolution. Generate a new population of offspring by randomly altering and
combining elements of the parent candidates. The evolution is performed by
the two basic evolutionary operators cross-over and mutation.

5. Iteration. Repeat steps 2–4 until the termination condition (see Table 6)
is met.

The evolutionary algorithm was implemented using the Java-based Watch-
maker framework for evolutionary computation8 together with a slightly adapted
Java/Prolog implementation of the Waste-collector system [7,13].9 The latter
was used in step 2 to perform the k-event runs of Explorer systems to be
evaluated.

3.1 Result

The algorithm was run with the parameter values shown in Table 6; the execution
time on an ordinary laptop was 5–6 h. The graph in Fig. 2 shows the fitness values
(evaluation scores) of the best normative system, as well as the average fitness
values, in each generation. We can see that, initially, the best fitness (which is
obtained by a normative system with P1-consequences only, i.e., a normative
system which allows everything) is around 0.78. Up to around generation 25, we
can see a slow but quite steady improvement in the best fitness values, although
8 http://watchmaker.uncommons.org/.
9 The source code is available for download via http://drpa.se/norms/nrtssit, together

with a log of a run of the algorithm.

http://watchmaker.uncommons.org/
http://drpa.se/norms/nrtssit


326 M. Hjelmblom

Fig. 2. Evolution progress. Upper curve shows fitness of best individual, lower curve
shows mean fitness. Algorithm parameter values are shown in Table 6. A log of the run
is available for download via http://drpa.se/norms/nrtssit/.

the impact of the slight randomness in the agents’ choices of actions is clear. The
highest scores, just above 0.86, which roughly corresponds to three more visited
squares per run, are obtained in generations 41 and 78. After 25 generations
there seems to be no significant improvement.

According to the log, the best normative system in generation 41 (with P1-
norms omitted for brevity) is translated to

〈M1(=′ ∧Lap9), P2ΩLap9〉, 〈M1Lap6, P6ΛLap9〉, 〈M1Lap4, P6ΩLap4〉,
〈M1Lap3, P2ΛLap6〉, 〈M1Lap2, P6ΛLap4〉, 〈M1Lap2, P4ΩLap3〉,

〈M1Lap1, P4ΩLap2〉, 〈M1Lap0, P4ΛLap1〉.
A closer look at the log reveals that, of the best candidates with a fitness

over 0.85,

(1) all but one (13 out of 14) contain either 〈M1Lap6, P6ΛLap9〉 or 〈M1Lap6, P4Λ

Lap9〉, and
(2) all but three contain 〈M1Lap2, P6ΛLap4〉 or 〈M1Lap2, P4ΛLap4〉.
Let us first consider (1). The intended meaning of 〈M1Lap6, P6ΛLap9〉 is that if
Lap6(x1, x2; s) for some agents x1, x2, and x3 such that x1 = x3 and x1 is the
moving agent x, then the normative condition P6ΛLap9(x1, x2, x3;x, s) holds,
and thus, according to the definition of Ca

6Λ (see row 7 in Table 4) action a is
prohibited for x if

http://drpa.se/norms/nrtssit/


Offline Norm Evolution 327

Table 6. Choice of parameter values.

Parameter Value

Population size 100 individuals

Termination condition 100 generations evolved

Level of elitism 25 %

Crossover probability 0.7

Crossover points 6

Mutation probability 0.05

Selection strategy Roulette wheel selection

¬Lap9(x, x2; s)&Lap9(x, x2; a(x, s))

or
Lap9(x, x2; s)&¬Lap9(x, x2; a(x, s)).

Now, when Lap6(x, x2; s), the second disjunct never becomes true, since
Lap6 R Lap′

9 (i.e., Lap6 implies Lap′
9); hence a is prohibited for x if

¬Lap9(x, x2; s)&Lap9(x, x2; a(x, s)).

Since ¬Lap9(x, x2; s) follows from Lap6(x, x2; s), a is prohibited for x if
Lap9(x, x2; a(x, s)). Similarly, the meaning of 〈M1Lap6, P4ΛLap9〉 is that if Lap6
(x1, x2; s) for some agents x1, x2, and x3, such that x1 = x3 and x3 = x, then
P4ΛLap9(x1, x2, x3;x, s) holds, and thus (see Table 4, row 4) a is prohibited for
x if

¬Lap9(x, x2; s)&Lap9(x, x2; a(x, s));

i.e., when Lap6(x, x2; s), it follows that ¬Lap9(x, x2; s), and thus a is prohibited
for x if Lap9(x, x2; a(x, s)). Hence, 〈M1Lap6, P6ΛLap9〉 and 〈M1Lap6, P4ΛLap9〉
are ‘operationally equivalent’ in the Explorer Dalmas setting, in the sense that
they prohibit the same actions in the same situation. Furthermore, both are oper-
ationally equivalent to 〈M1Lap6, P7Lap9〉 with the intended interpretation that
if Lap6 then the moving agent shall see to it that not Lap9. A similar case can be
made for (2); 〈M1Lap2, P6ΛLap4〉, 〈M1Lap2, P4ΛLap4〉 and 〈M1Lap2, P7Lap4〉
are operationally equivalent and thus interchangeable in this setting. The notion
of operational equivalence of norms is further discussed in Sect. 3.2.

It is showed by (1) and (2) that, in some settings, the set of consequences
may contain redundancy. This is an effect of the fact that, in this particular
setting, the set of grounds and the set of consequences are constructed from the
same set of conditions. Whether this is a problem or not is probably dependent
on the particular setting. We may also note that, for example, the meaning of
〈M1Lap0, P4ΩLap2〉 would be that if Lap0(x1, x2; s) for some agents x1, x2, and
x3, such that x1 = x3 and x3 = x, then P4ΩLap2(x1, x2, x3;x, s) holds, and thus
(see Table 2, row 5) a is prohibited for x if

Lap2(x, x2; s)&Lap2(x, x2; a(x, s)).
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Now, Lap2(x1, x2; s)&Lap2(x1, x2; a(x, s)) can never become true when Lap0
(x1, x2; s), since Lap0 R Lap′

2. Hence, 〈M1Lap0, P4ΩLap2〉 will never prohibit
any actions, and is thus operationally equivalent to, 〈M1Lap0, P1Lap2〉 in this
setting. This illustrates another kind of redundancy. Another consequence of
employing negative permission is that normative systems may evolve which are
incoherent (see Sect. 1.3) according to the underlying logic of the Pk operators,
but still meaningful in an ‘operational’ sense. A discussion of these matters is
beyond the scope of this paper, but a more precise representation of genes and
a more careful design of the genetic operators could avoid or at least reduce
logical incoherence and redundancy in the setting at hand. This could, poten-
tially, significantly reduce the search space for the evolutionary algorithm. For
this purpose, the mechanisms for norm addition and subtraction described in
[16, Sect. 4.3] might be very useful, as well as a more thorough analysis of the
relationships between potential grounds and consequences, in order to exploit
the possibility of operational equivalence of norms (Sect. 3.2).

Based on the above analysis, the following set of Explorer norms (again, P1-
norms are omitted) is suggested: {〈M1Lap6, P7Lap9〉,〈M1Lap2, P7Lap4〉}. The
intended interpretation is

(1) ∀x, y : Lap6(x, y; s) → P7Lap9(x, y, x;x, s)); and
(2) ∀x, y : Lap2(x, y; s) → P7Lap4(x, y, x;x, s)).

Using the deontic operator Shall and the action operator Do, these norms
are expressed as follows: (1) For all x, y: if Lap6(x, y), and x is the moving
agent, then Shall Do(x,¬Lap9(x, y)); and (2) For all x, y: if Lap2(x, y), and x
is the moving agent, then Shall Do(x,¬Lap4(x, y)); cf. [11,20]. This represents
the following simple set of ‘rules of thumb’: (1) If you stand in the square next
to another agent’s square, you shall act so that you do not end up in the same
location as the other agent, and (2) if your protected sphere overlaps another
agent’s protected sphere with two squares, you shall act so that the overlap does
not increase to four.

Test runs indicate that the average improvement with this very simple nor-
mative system compared with a system with no restrictions is two to three addi-
tional squares visited. As the Explorer Dalmas example was chosen primarily
for demonstration purposes, we shall be content with the simple analysis per-
formed here. In more complex scenarios, other more powerful (e.g., statistical)
methods could be useful.

3.2 Discussion

Validation of the suggested approach to the design of normative systems for
problem-solving MAS is, of course, a non-trivial problem. One aspect of this
problem is the difficulty of applying this approach, but most important is prob-
ably to focus on the quality of the results it produces, i.e., to validate the systems
obtained by applying the approach. The performance of norm-regulated MAS
designed in this way could, for example, be compared with the performance of
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systems (norm-regulated systems as well as, e.g., planning systems) designed by
hand. Such comparisons require domain-specific performance measures, which
makes a general-level (i.e., domain independent) validation very difficult, if not
impossible. Even within a specific domain, validation is non-trivial and sensitiv-
ity analyses are required. A good starting-point is to consider every tool in the
evolutionary toolbox, together with a thorough analysis of the domain at hand,
to increase the chance of evolving the optimal normative system. First, the para-
meters controlling the evolutionary algorithm may be varied: the population size,
the number of evolved generations, the level of elitism (i.e., the portion of the best
candidates which are allowed to survive into the next generation), the probabil-
ity of crossover, the number of crossover points, and the selection strategy (e.g.,
tournament selection instead of roulette wheel). Other ideas include using other
representations of chromosomes, such as tree-based representations to allow for
normative systems with a variable number of norms, or (as has already been
mentioned) more carefully designed evolutionary operators that exclude redun-
dant and/or incoherent candidates from evaluation. More advanced schemes,
such as island evolution (where several populations are evolved in parallel, with
a small probability of ‘migration’ between such ‘islands’) or cooling (where the
crossover and mutation probabilities gradually decrease), could also be tried.
One example of a more careful design of an evolutionary operator is to restrict
the mutation operator by the notion of ‘deontic paths’ [15, pp. 110ff] between
types of normative positions. In short, the deontic path follows the edges in the
Hasse diagram of the relation ‘less free than’ on types of normative positions; cf.
[15, p. 105] and [12, Fig. 1]. The restriction could be that a gene which represents
a type operator Pi applied to a descriptive condition d, may only be changed by
mutation to represent a new operator Pj in such a way that Pj lies immediately
above or below Pi on the deontic path between them. This could bring more
stability into the evolution process, since the effects of mutations would be less
dramatic.

Furthermore, the parameters for the particular setting may also be varied.
For example, one might want to consider grounds and consequences based on
other conditions. In the Explorer Dalmas domain one could try, e.g., Lapn con-
ditions based on larger protected spheres (since it seems reasonable to expect
that a normative system based on small protected spheres will be most ‘effec-
tive’ when the agents are relatively close to each other), or generalized versions
of Lapn conditions involving three or more agents. Other ideas are to allow
individual utility functions for each agent, or evolving the utility function and
the normative system in parallel. In general, special treatment is required for
domains such as the Explorer Dalmas where the fitness evaluations are ‘noisy’,
i.e., subject to some degree of randomness. To deal with noisy fitness evaluations,
a number of techniques are available, for example increasing the population
size, and resampling and averaging the fitness. [6, Sect. 3.3] As described in
Sect. 2, a variant of the latter technique is used in the Explorer Dalmas fitness
evaluations. Another option regarding the evaluation function is to allow more
or less variation regarding, e.g., grid sizes or shapes, number of agents, number
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of events per run and number of runs per normative system. However, large pop-
ulations, in combination with expensive fitness calculations in each generation,
are computationally challenging. The moving average approach by Di Pietro et
al. can be used to reduce the number of samples needed per generation, and
thus allow for running more generations in a given run-time. When a candidate
is generated for the first time, its ‘fitness array’ is initialized with n fitness evalu-
ations. For each new generation, the evaluation score is calculated only once, and
the oldest score in the fitness array is replaced with the new score. A candidate’s
fitness is then the average of the evaluation scores in the fitness array.

Operational Equivalence of Norms. It was observed in Sect. 3.1 that norms
where grounds and consequences are based on the same set of descriptive condi-
tions can become equivalent in the sense that they have exactly the same effect
in the same situations. Let us investigate this further. First, recall the definitions
of the Ca

i operators in Table 4, and note the following:

Ca
5 c(Xν , xν+1;x, s) iff [c(Xν ; s)&¬c(Xν ; a(x, s))] or [¬c(Xν ; s)&¬c(Xν ; a(x, s))]

Ca
6Λc(Xν , xν+1;x, s) iff [c(Xν ; s)&¬c(Xν ; a(x, s))] or [¬c(Xν ; s)& c(Xν ; a(x, s))]

Ca
6Ωc(Xν , xν+1;x, s) iff [c(Xν ; s)& c(Xν ; a(x, s))] or [¬c(Xν ; s)&¬c(Xν ; a(x, s))]

Ca
7 c(Xν , xν+1;x, s) iff [c(Xν ; s)& c(Xν ; a(x, s))] or [¬c(Xν ; s)& c(Xν ; a(x, s))]

Now suppose for example that c ∈ C, the set of potential grounds, but also
c ∈ D, the set of descriptive conditions underlying the set of potential normative
consequences. Let Mκ be a ‘move operator’, for example M1, such that κ ≤ ν,
and suppose that c is true of some agents x1, ..., xν in a state s. We may then
note the following:

(1) Ca
2Ωc(Xν , xν+1;x, s), and Ca

4Λc(Xν , xν+1;x, s) are false whenever c(Xν ; s).
Hence, the set of actions a that would be prohibited by 〈Mκc, P2Ωc〉, resp.
〈Mκc, P4Λc〉, is exactly the same as the set of actions that would be prohib-
ited by 〈Mκc, P1c〉, viz. the empty set.

(2) The second disjunct of Ca
6Λc(Xν , xν+1;x, s) and the second disjunct of Ca

5 c
(Xν , xν+1;x, s) must be false. Hence, if c(Xν ; s), then Ca

6Λc(Xν , xν+1;x, s)
iff Ca

2Λc(Xν , xν+1;x, s) iff Ca
5 c(Xν , xν+1;x, s), which means that the actions

that would be prohibited by 〈Mκc, P2Λc〉, 〈Mκc, P5c〉, and 〈Mκc, P6Λc〉, are
exactly the same.

(3) The second disjunct of Ca
6Ωc(Xν , xν+1;x, s) and the second disjunct of Ca

7 c
(Xν , xν+1;x, s) must be false. Hence, if c(Xν ; s), then Ca

6Ωc(Xν , xν+1;x, s)
iff Ca

4Ωc(Xν , xν+1;x, s) iff Ca
7 c(Xν , xν+1;x, s); so the actions that would be

prohibited by 〈Mκc, P4Ωc〉, 〈Mκc, P6Ωc〉, and 〈Mκc, P7c〉, are exactly the
same. In other words, given that c(Xν) holds, P2Ω, P4Λ, and P1 are ‘equally
prohibitive’, and the same holds for P2Λ, P4Ω , and P5, resp. P2Λ, P6Ω , and
P7. Now suppose that ¬c(Xν) holds for some agents x1, ..., xν and some act
a in s:

(4) Since Ca
2Λc(Xν , xν+1;x, s) and Ca

4Ωc(Xν , xν+1;x, s) are false whenever ¬c
(Xν ; s), the set of actions that would be prohibited by 〈Mκc′, P2Λc〉, resp.
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〈Mc′, P4Ωc〉, is exactly the same as the set of actions that would be prohib-
ited by 〈Mκc′, P1c〉, viz. the empty set.

(5) The second disjunct of Ca
6Λc(Xν , xν+1;x, s) and the first disjunct of Ca

7 c(Xν ,
xν+1;x, s) must be false. Hence, if ¬c(Xν ; s), then Ca

6Λc(Xν , xν+1;x, s) iff
Ca

4Λc(Xν , xν+1;x, s) iff Ca
7 c(Xν , xν+1;x, s), which means that the actions

that would be prohibited by 〈Mκc′, P4Λc〉, and 〈Mκc′, P6Λc〉, and 〈Mκc′, P7c〉,
are exactly the same.

(6) The first disjunct of Ca
6Ωc(Xν , xν+1;x, s) and the first disjunct of Ca

5 c(Xν ,
xν+1;x, s) must be false. Hence, if ¬c(Xν ; s), then Ca

6Ωc(Xν , xν+1;x, s) iff
Ca

2Ωc(Xν , xν+1;x, s) iff Ca
5 c(Xν , xν+1;x, s); therefore, the actions that would

be prohibited by 〈Mκc′, P2Ωc〉, 〈Mκc′, P6Ωc〉, and 〈Mκc′, P5c〉 are exactly the
same.

Thus, if ¬c(Xν) holds, then P2Λ, P4Ω , and P1 are equally prohibitive, and
the same holds for P4Λ, P6Λ, and P7, resp. P2Λ, P5, and P6Ω . It seems plau-
sible that ‘equally prohibitive’ could be a suitable foundation for a notion
of operational equivalence of norms. It is straightforward to generalize the
above arguments to cases where cR d or cR d′, i.e., where c implies d, resp.,
c implies d′.

4 Conclusion and Future Work

Concrete advice on how to use evolutionary mechanisms as part of the pre-
runtime design of normative systems for problem-solving MAS were presented.
The idea behind the methodology sketched here is to use a top-down approach of
selecting (a subset of) the most ‘efficient’ norms from an evolved normative sys-
tem, rather than a bottom-up approach of designing a normative system entirely
from scratch. To illustrate the idea, a simple system, based on the Dalmas archi-
tecture for norm-regulated MAS was employed as part of the evaluation step
of an evolutionary algorithm. The results show that an evolutionary algorithm
has the potential of being a useful tool when designing normative systems for
problem-solving MAS.

Ideas for future work include trying to formalize and further investigate the
notion of operational equivalence of norms, which was introduced in Sect. 3.2.
Also left for future work is further validation of the suggested methodology, for
example by applying the methodology in other domains in which the grounds of
the norms and the consequences are based on different sets of descriptive con-
ditions, or by further validating the evolved normative system for the Explorer
Dalmas. One could experiment with different domain-specific parameters as
well as evolutionary algorithm parameters, as suggested in Sect. 3.2, to see if
better solutions can be found and thus gain more support for the ideas sug-
gested here. It could be interesting to, e.g., explore normative systems of vari-
able size and evaluation functions which impose a penalty for large normative
systems, since in many cases it could be desirable to rely on a small number of
‘rules of thumb’ and avoid overly complex normative systems which may become
expensive in terms of calculations. Investigating the possibility to design more
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accurate evolutionary operators, for example by exploiting the fact that certain
norms are operationally equivalent in the Explorer Dalmas setting, also seems
like a promising idea.
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