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Abstract. We propose an agent architecture which combines Par-
tially observable Markov decision processes (POMDPs) and the belief-
desire-intention (BDI) framework to capitalize on their complimentary
strengths. Our architecture introduces the notion of intensity of the
desire for a goal’s achievement. We also define an update rule for goals’
desire levels. When to select a new goal to focus on is also defined. To ver-
ify that the proposed architecture works, experiments were run with an
agent based on the architecture, in a domain where multiple goals must
continually be achieved. The results show that (i) while the agent is pur-
suing goals, it can concurrently perform rewarding actions not directly
related to its goals, (ii) the trade-off between goals and preferences can
be set effectively and (iii) goals and preferences can be satisfied even
while dealing with stochastic actions and perceptions. We believe that
the proposed architecture furthers the theory of high-level autonomous
agent reasoning.

Keywords: POMDP · BDI · Online planning · Desire intensity ·
Preference

1 Introduction

Imagine a scenario where a planetary rover has four main tasks and one task
it can do when it does not interfere with performing the main tasks. The main
tasks could be, for instance, collecting gas (for industrial use) from a natural vent
at the base of a hill, taking a temperature measurement at the top of the hill,
performing self-diagnostics and repairs, and reloading its batteries at the solar
charging station. The less important task is to collect soil samples wherever the
rover is. The rover is programmed to know the relative importance of collecting
soil samples. The rover also has a model of the probabilities with which its
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various actuators fail and the probabilistic noise-profile of its various sensors.
The rover must be able to reason (plan) in real-time to pursue the right task
at the right time while considering its resources and dealing with unforeseen
events, all while considering the uncertainties about its actions (actuators) and
perceptions (sensors).

We propose an architecture for the proper control of an agent in a complex
environment such as the scenario described above. The architecture combines
belief-desire-intention (BDI) theory [1,2] and partially observable Markov deci-
sion processes (POMDPs) [3,4]. Traditional BDI architectures (BDIAs) cannot
deal with probabilistic uncertainties and they do not generate plans in real-time.
A traditional POMDP cannot manage goals (major and minor tasks) as well as
BDIAs can. Next, we analyse the POMDPs and BDIAs in a little more detail.

One of the benefits of agents based on BDI theory, is that they need not gen-
erate plans from scratch; their plans are already (partially) compiled, and they
can act quickly once a goal is focused on. Furthermore, the BDI framework can
deal with multiple goals. However, their plans are usually not optimal, and it may
be difficult to find a plan which is applicable to the current situation. That is, the
agent may not have a plan in its library which exactly ‘matches’ what it ideally
wants to achieve. On the other hand, POMDPs can generate optimal policies
on the spot to be highly applicable to the current situation. Moreover, policies
account for stochastic actions and partially observable environments. Unfortu-
nately, generating optimal POMDP policies is usually intractable. One solution
to the intractability of POMDP policy generation is to employ a continuous
planning strategy, or agent-centred search [5]. Aligned with agent-centred search
is the forward-search approach or online planning approach in POMDPs [6].

The traditional BDIA maintains goals as desires; there is no reward for per-
forming some action in some state. The reward function provided by POMDP
theory is useful for modeling certain kinds of behavior or preferences. For
instance, an agent based on a POMDP may want to avoid moist areas to pre-
vent its parts becoming rusty. Moreover, a POMDP agent can generate plans
which can optimally avoid moist areas. But one would not say that avoiding
moist areas is the agent’s goal. And POMDP theory maintains a single reward
function; there is no possibility of weighing alternative reward functions and
pursuing one at a time for a fixed period—all objectives must be considered
simultaneously, in one reward function. Reasoning about objectives in POMDP
theory is not as sophisticated as in BDI theory. A BDI agent cannot, however,
simultaneously avoid moist areas and collect gold; it has to switch between the
two or combine the desire to avoid moist areas with every other goal.

We argue that maintenance goals like avoiding moist areas (or collecting soil
samples) should rather be viewed as a preference and modeled as a POMDP
reward function. And specific tasks to complete (like collecting gas or keeping
its battery charged) should be modeled as BDI desires.

Given the advantages of POMDP theoretic reasoning and the potentially
sophisticated means-ends reasoning of BDI theory, we propose to combine the
best features of these two theories in a coherent agent architecture. We call it
the Hybrid POMDP-BDI agent architecture (or HPB architecture, for short).
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In BDI theory, one of the big challenges is to know when the agent should
switch its current goal and what its new goal should be [7]. To address this
challenge with an intuitive explanation, we propose that an agent should main-
tain intensity levels of desire for every goal. (This intensity of desire could be
interpreted as a kind of emotion.) The goal most intensely desired should be the
current goal sought (the intention). We also define the notion of how much an
intention is satisfied in the agent’s current belief-state.

Typically, BDI agents do not deal with stochastic uncertainty. Integrating
POMDP notions into a BDIA addresses this. For instance, an HPB agent will
maintain a (subjective) belief-state representing its probabilistic (uncertain)
belief about its current state. Planning with models of stochastic actions and
perceptions is thus possible in the proposed architecture. The tight integration
of POMDPs and BDIAs is novel, especially in combination with desires with
changing intensity levels.

Section 2 briefly reviews the necessary theory. The proposed agent architec-
ture is presented in Sect. 3 and formally defined. Section 4 shows an implemen-
tation of the architecture on an example domain and evaluates the performance
on various dimensions, confirming that the approach may be useful in some
domains. In Sect. 5, we propose one approach to making the specification of
goals and preferences more general or flexible. The last section discusses some
related work and points out some future directions for research in this area.

2 Preliminaries

The basic components of a BDI architecture [8,9] are

– a set or knowledge-base B of beliefs;
– an option generation function ‘wish’, generating the objectives the agent would

ideally like to pursue (its desires);
– a set of desires D (goals to be achieved);
– a ‘focus’ function which selects intentions from the set of desires;
– a structure of intentions I of the most desirable options/desires returned by

the focus function;
– a library of plans and subplans;
– a ‘reconsideration’ function which decides whether to call the focus function;
– an execution procedure, which affects the world according to the plan associ-

ated with the intention;
– a sensing or perception procedure, which gathers information about the state

of the environment; and
– a belief update function, which updates the agent’s beliefs according to its

latest observations and actions.

Exactly how these components are implemented result in a particular BDI archi-
tecture.

Algorithm 1 (adapted from [10, Fig. 2.3]) is a basic BDI agent control loop.
π is the current plan to be executed. getPercept(·) senses the environment and
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Algorithm 1. Basic BDI agent control loop.

Input: B0: initial beliefs
Input: I0: initial intentions

1 B ← B0;
2 I ← I0;
3 π ← null ;
4 while alive do
5 p ← getPercept();
6 B ← update(B, p);
7 D ← wish(B, I);
8 I ← focus(B, D, I);
9 π ← plan(B, I);

10 execute(π);

Algorithm 2. Control loop for an agent with reconsideration.

Input: B0: initial beliefs
Input: I0: initial intentions

1 B ← B0 ;
2 I ← I0 ;
3 π ← null ;
4 while alive do
5 p ← getPercept() ;
6 B ← update(B, p) ;
7 if reconsider(B, I) then
8 D ← wish(B, I) ;
9 I ← focus(B, D, I) ;

10 if not sound(π, I, B) then π ← plan(B, I)

11 if not empty(π) then
12 α ← head(π) ;
13 execute(α) ;
14 π ← tail(π) ;

15 I ← succeeded(I, B) ;
16 I ← impossible(I, B) ;

returns a percept (processed sensor data) which is an input to update(·). plan(·)
returns a plan from the plan library to achieve the agent’s current intentions.
wish : B × I → D generates a set of desires, given the agent’s beliefs, current
intentions and possibly its innate motives. It is usually impractical for an agent to
pursue the achievement of all its desires. It must thus filter out the most valuable
and achievable desires. This is the function of focus : B × D × I → I, taking
beliefs, desires and current intentions as parameters. Together, the processes
performed by wish and focus may be called deliberation, formally encapsulated
by the deliberate procedure.
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Algorithm 2 (adapted from [11]) has some more sophisticated controls. It con-
trols when the agent would consider whether to re-deliberate, with the reconsider
function (line 7) placed just before deliberation would take place. reconsider(·)
is a Boolean function which tells the agent whether to reconsider its intentions
(every time line 7 is reached).

The agent tests at every iteration through the main loop whether the cur-
rently pursued intention is still possibly achievable, using impossible(·). In the
algorithm, serendipity is also taken advantage of by periodically testing—using
succeeded(·)—whether the intention has been achieved, without the plan being
fully executed. This agent is considered ‘reactive’ because it executes one action
per loop iteration; this allows for deliberation between executions. The sound-
ness (or applicability) of the plan to achieve the current intention is checked at
every iteration of the loop.

There are various mechanisms which an agent might use to decide when to
reconsider its intentions. See, for instance, [1,7,12–16].

In a partially observable Markov decision process (POMDP), the actions the
agent performs have non-deterministic effects in the sense that the agent can
only predict with a likelihood in which state it will end up after performing an
action. Furthermore, its perception is noisy. That is, when the agent uses its
sensors to determine in which state it is, it will have a probability distribution
over a set of possible states to reflect its conviction for being in each state.

Formally [17], a POMDP is a tuple 〈S,A, T,R,Z, P, b0〉 with

– S, a finite set of states of the world (that the agent can be in),
– A a finite set of actions (that the agent can choose to execute),
– a transition function T (s, a, s′), the probability of being in s′ after performing

action a in state s,
– R(a, s), the immediate reward gained for executing action a while in state s,
– Z, a finite set of observations the agent can perceive in its world,
– a perception function P (s′, a, z), the probability of observing z in state s′

resulting from performing action a in some other state, and
– b0 the initial probability distribution over all states in S.

A belief-state b is a set of pairs 〈s, p〉 where each state s in b is associated
with a probability p. All probabilities must sum up to one, hence, b forms a
probability distribution over the set S of all states. To update the agent’s beliefs
about the world, a special function SE (z, a, b) = bn is defined as

bn(s′) =
P (s′, a, z)

∑
s∈S T (s, a, s′)b(s)

Pr(z|a, b)
, (1)

where a is an action performed in ‘current’ belief-state b, z is the resultant
observation and bn(s′) denotes the probability of the agent being in state s′ in
‘new’ belief-state bn. Note that Pr(z | a, b) is a normalizing constant.

Let the planning horizon h (also called the look-ahead depth) be the number
of future steps the agent plans ahead each time it plans. V ∗(b, h) is the optimal
value of future courses of actions the agent can take with respect to a finite
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horizon h starting in belief-state b. This function assumes that at each step the
action that will maximize the state’s value will be selected.

Because the reward function R(a, s) provides feedback about the utility of
a particular state s (due to a executed in it), an agent who does not know in
which state it is in cannot use this reward function directly. The agent must
consider, for each state s, the probability b(s) of being in s, according to its
current belief-state b. Hence, a belief reward function ρ(a, b) is defined, which

takes a belief-state as argument. Let ρ(a, b)
def
=

∑
s∈S R(a, s)b(s).

The optimal state-value function is define by

V ∗(b, h)
def
= max

a∈A

[
ρ(a, b) + γ

∑

z∈Z

Pr(z | a, b)V ∗(SE (z, a, b), h − 1)
]
,

where 0 ≤ γ < 1 is a factor to discount the value of future rewards and
Pr(z | a, b) denotes the probability of reaching belief-state bn = SE (z, a, b). While
V ∗ denotes the optimal value of a belief-state, function Q∗ denotes the optimal
action-value:

Q∗(a, b, h)
def
= ρ(a, b) + γ

∑

z∈Z

Pr(z | a, b)V ∗(SE (z, a, b), h − 1)

is the value of executing a in the current belief-state, plus the total expected
value of belief-states reached thereafter.

3 The HPB Architecture

A hybrid POMDP-BDI (HPB) agent maintains (i) a belief-state which is peri-
odically updated, (ii) a mapping from goals to numbers representing the level
of desire to achieve the goals, and (iii) the current intention, the goal with the
highest desire level. As the agent acts, its desire levels are updated and it may
consider choosing a new intention based on new desire levels.

The state of an HPB agent is defined by the tuple 〈B,D, I〉, where B is
the agent’s current belief-state (i.e., a probability distribution over the states
S, defined below), D is the agent’s current desire function and I is the agent’s
current intention. We’ll have more to say about D and I a little later.

An HPB agent could be defined by the tuple 〈Atrb, G,A,Z, T, P,Util〉, where

• Atrb is a set of attribute-sort pairs (for short, the attribute set). For every
(atrb : sort) ∈ Atrb, atrb is the name or identifier of an attribute of interest
in the domain of interest, like BattryLevel or Direction, and sort is the set
from which atrb can take a value, for instance, real numbers in the range
[0, 55] or a list of values like {North, East , West , South}. So {(BattryLevel :
[0, 55]), (Direction : {North,East ,West ,South})} could be an attribute set.

Let N = {atrb | (atrb : sort) ∈ Atrb} be the set of all attribute names.
We define a state s induced from Atrb as one possible way of assigning values
to attributes: s = {(atrb : v) | atrb ∈ N , (atrb : sort) ∈ Atrb, v ∈ sort} such
that if (atrb : v), (atrb′ : v′) ∈ s and atrb = atrb′, then v = v′. The set of all
possible states is denoted S.
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• G is a set of goals. A goal g ∈ G is a subset of some state s ∈ S. For
instance, {(BattryLevel : 13), (Direction : South)} is a goal, and so are
{(BattryLevel : 33)} and {(Direction : West)}. It is even possible to have
one goal overlap or be a subset of another goal. For instance, one is allowed
to have {(BattryLevel : 13), (Direction : South)} ∈ G and simultaneously
{(BattryLevel : 13)}, {(BattryLevel : 14), (Direction : South)} ∈ G. In this
architecture, it is assumed that the set of goals is given.

• A is a finite set of actions.
• Z is a finite set of observations.
• T is the transition function of POMDPs.
• P is the perception function of POMDPs.
• Util consists of two functions Pref and Satf which allow an agent to determine

the utilities of alternative sequences of actions. Util = 〈Pref ,Satf 〉.
Pref is the preference function with a range in R ∩ [0, 1]. It takes an action

a and a state s, and returns a value reflecting the preference for performing a in
s. That is, Pref (a, s) ∈ [0, 1]. Numbers closer to 1 imply greater preference and
numbers closer to 0 imply less preference. Except for the range restriction of [0, 1],
it has the same definition as a POMDP reward function, but its name indicates
that it models the agent’s preferences and not what is typically thought of as
rewards. An HPB agent gets ‘rewarded’ by achieving its goals. The preference
function is especially important to model action costs; the agent should prefer
‘inexpensive’ actions. Pref has a local flavor. Designing the preference function
to have a value lying in [0,1] may sometimes be challenging, but we believe it is
always possible.

Satf is the satisfaction function with a range in R ∩ [0, 1]. It takes a state
s and an intention I, and returns a value representing the degree to which the
state satisfies the intention. That is, Satf (I, s) ∈ [0, 1]. It is completely up to
the agent designer to decide how the satisfaction function is defined, as long as
numbers closer to 1 mean more satisfaction and numbers closer to 0 mean less
satisfaction. Satf has a global flavor.

The desire function D is a total function from goals in G into the positive
real numbers R

+. The real number represents the intensity or level of desire of
the goal. For instance, ({(BattryLevel : 13), (Direction : South)}, 2.2) could be
in D, meaning that the goal of having the battery level at 13 and moving in a
southerly direction is desired with a level of 2.2. ({(BattryLevel : 33)}, 56) and
({(Direction : West)}, 444) are also examples of desires in D.

I is the agent’s current intention; an element of G; the goal with the high-
est desire level. This goal will be actively pursued by the agent, shifting the
importance of the other goals to the background. The fact that only one inten-
tion is maintained makes the HPB agent architecture quite different to standard
BDIAs.

Figure 1 shows a flow diagram representing the operational semantics of the
HPB architecture.



10 G. Rens and T. Meyer

The satisfaction an agent gets for an intention in its current belief-state is
defined as

Satf β(I,B)
def
=

∑

s∈S

Satf (I, s)B(s),

where Satf (I, s) is defined above and B(s) is the probability of being in state
s. The definition of Pref β has the same form as the reward function ρ over
belief-states in POMDP theory:

Pref β(a,B)
def
=

∑

s∈S

Pref (a, s)B(s),

where Pref (a, s) was discussed above.
We propose the following desire update rule.

D(g) ← D(g) + 1 − Satf β(g,B) (2)

Rule 2 is defined so that as Satf β(g,B) tends to one (total satisfaction), the
intensity with which the incumbent goal is desired does not increase. On the
other hand, as Satf β(g,B) becomes smaller (more dissatisfaction), the goal’s
intensity is incremented. The rule transforms D with respect to B and g. A
goal’s intensity should drop the more it is being satisfied. The update rule thus
defines how a goal’s intensity changes over time with respect to satisfaction.

Note that desire levels never decrease. This does not reflect reality. It is
however convenient to represent the intensity of desires like this: only relative
differences in desire levels matter in our approach and we want to avoid unnec-
essarily complicating the architecture.

An HPB agent controls its behaviour according to the policies it generates.
Plan is a procedure which generates a POMDP policy π of depth h. Essentially,
we want to consider all action sequences of length h and the belief-states in which
the agent would find itself if it followed the sequences. Then we want to choose
the sequence (or at least its first action) which yields the highest preference and
which ends in the belief-state most satisfying with respect to the intention.

During planning, preferences and intention satisfaction must be maximized.
The main function used in the Plan procedure is the HPB action-value function
Q∗

HPB , giving the value of some action a, conditioned on the current belief-state
B, intention I and look-ahead depth h:

Q∗
HPB (a,B, I, h)

def
= αSatf β(I,B) + (1 − α)Pref β(a,B)

+ γ
∑

z∈Z

Pr(z | a,B)max
a′∈A

Q∗
HPB (a′, B′, I, h − 1),

Q∗
HPB (a,B, I, 1)

def
= αSatf β(I,B) + (1 − α)Pref β(a,B),

where B′ = SE (a, z,B), 0 ≤ α ≤ 1 is the goal/preference ‘trade-off’ factor,
γ is the normal POMDP discount factor and SE is the normal POMDP state
estimation function. To keep things simple for this introductory paper, we define



A Hybrid POMDP-BDI Agent Architecture and Desires 11

Focus

Plan

Replan

Execute

Sense

Refocus

Belief Update

G

I

pi

B

action

observation

yes

no

no

yes

information flow

control flow

Desire Update
D

SL

Fig. 1. Operational semantics of the HPB architecture. SL stands for Satf levels. Note
that Satf levels depends on the current belief-state and intention, but not on desire
levels. Planning is also independent of desire levels. The focus function depends on
desire levels, but not on satisfaction. Whether to refocus depends on satisfaction levels,
but not on desire levels.
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Plan to return arg maxa∈A Q∗
HPB (a,B, I, h), the trivial policy of a single action.

In general, Plan could return a policy of depth h, that is, a sequence of h actions,
where the choice of exactly which action to take at each step depends on the
observation received just prior.

Focus is a function which returns one member of G called the (current)
intention I. Presently, we define it simply as selecting the goal with the highest
desire level. After every execution of an action in the real-world, Refocus is called
to decide whether to call Focus to select a new intention. Refocus is a meta-
reasoning function analogous to the reconsider function discussed in Sect. 2. It
is important to keep the agent focused on one goal long enough to give it a
reasonable chance of achieving it. It is the job of Refocus to recognize when the
current intention seems impossible or too expensive to achieve.

Let Satf levels be the sequence of satisfaction levels of the current inten-
tion since it became active and let MEMORY be a designer-specified number
representing the length of a sub-sequence of Satf levels—the MEMORY last
satisfaction levels. One possible definition of Refocus is

Refocus(c, θ)
def
=

⎧
⎨

⎩

‘no’ if |Satf levels| < MEMORY
‘yes’ if c < θ
‘no’ otherwise,

where c is the average change from one satisfaction level to the next in the
agent’s ‘MEMORY’, and θ is some threshold chosen by the agent designer. If
the agent is expected to increase its satisfaction by at least, say, 0.1 on average
for the current intention, then θ should be set to 0.1. With this approach, if the
agent ‘gets stuck’ trying to achieve its current intention, it will not blindly keep
on trying to achieve it, but will start pursuing another goal (with the highest
desire level). Note that if an intention was not well satisfied, its desire level still
increases at a relatively high rate. So whenever the agent focuses again, a goal
not well satisfied in the past will be a top contender to become the intention
(again).

4 Evaluation

We performed some tests on an HPB agent in a six-by-six grid-world. In this
world, the agent’s task is to visit each of the four corners, while collecting items
on the way. That is, the agent’s goals are the states representing the four corners,
but the collecting of items is regarded as a preferred behavior, not a goal to be
pursued.

States are quadruples 〈x, y, d, t〉, with x, y ∈ {1, · · · , 6} being the coordinates
of the agent’s position in the world, d ∈ {North,East ,West ,South} the direction
it is facing, and t ∈ {0, 1}, t = 1 if an item is present in the cell with the agent,
else t = 0. The agent can perform five actions {left , right , forward , see, collect},
meaning, turn left, turn right, move one cell forward, see whether an item is
present and collect an item. The only observation possible when executing one
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of the physical actions is obsNil , the null observation, and see has possible obser-
vations from the set {0, 1} for whether the agent sees the presence of an item
(1) or not (0).

Next, we define the possible outcomes for each action: When the agent turns
left or right, it can get stuck in the same direction, turn 90◦ or overshoots by
90◦. When the agent moves forward, it moves one cell in the direction it is facing
or it gets stuck and does not move. The agent can see an item or see nothing (no
item in the cell), and collecting is deterministic (if there is an item present, it
will be collected with certainty, if the agent executes collect). All actions except
collect are designed so that the correct outcome is achieved 95% of the time and
incorrect outcomes are achieved 5% of the time.

So that the agent does not get lost too quickly, we have included an automatic
localization action, that is, a sensing action returns information about the agent’s
approximate location. The action is automatic because the agent cannot choose
whether to perform it; the agent localizes itself after every regular/chosen action
is executed. However, just as with regular actions, the localization sensor is noisy,
and it correctly reports the agent’s location with probability 0.95, else the sensor
reports a location adjacent to the agent with probability uniformly distributed
over 0.05.

Errors in the agent’s actions and perceptions are thus modeled, not ignored.
In the experiments which follow, the threshold θ is set to 0.05, MEMORY

is set to 5 and h = 4. Desire levels are initially set to zero for all goals. Four
experiments were performed. First, collecting items but not intentionally vis-
iting corners, second and third, visiting corners while collecting items (with
different values for the goal/preference ‘trade-off’ factor), and fourth, visiting
corners but not collecting items. For each experiment, 10 trials were run with
the agent starting in random locations and performing 100 actions per trial.
We let Satf (I, s) = 1 − dist/10 where 10 is the maximum Manhattan distance
between two cells in the world and dist is the Manhattan distance between the
cells represented by I and s, and we let

Pref (a, s) = (1 − dist/10 + collUtil + sensUtil)/100,

where dist is the Manhattan distance between the cell representing s and the
closest cell containing an item, collUtil is 98 if a is collect and there is actually
an item in the cell represented by s, else 0, and sensUtil is 1 if the agent tries
to see, else 0.1 The division by 100 is to bring the value of Pref (·) within the
limits of 0 and 1.

First, we see how an HPB agent behaves when it has no goal state (α = 0),
but continually only ‘prefers’ to collect items. That is, we let

Q∗
HPB (a,B, I, h)

def
= Pref β(a,B) + γ

∑

z∈Z

Pr(z | a,B)max
a′∈A

Q∗
HPB (a′, B′, I, h − 1).

1 Pref (·) is designed such that the agent collects a maximum number of items (ignoring
goals). The agent collects more when it is encouraged to sense where items are, hence
sensUtil is 1 if the agent tries to see.
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On average, it collects 7.4 of 12 possible items. The left-most results column of
Table 1 shows how often corners are (unintentionally) visited.

Next, if the HPB agent prefers to collect items while equally trying to reach
corners (α = 0.5), it collects 4.3 of 12 possible items and the corners it visits is
summarized in the second-from-left results column of Table 1.

Table 1. The average number of times each corner was visited (on separate occa-
sions), percentage of times all corners were visited, and percentage of items (out of 12)
collected.

Corner Times visited

α = 0 α = 0.5 α = 0.75 α = 1

(1,1) 2.2 2.8 2.7 2.9

(1,6) 2.1 2.6 2.7 3.2

(6,1) 2.0 2.7 2.6 3.0

(6,6) 1.7 2.6 2.9 3.0

All 8.0 % 10.7 % 10.9 % 12.1 %

Items coll’ed 62 % 36 % 29 % 0 %

Then, we observe the agent’s behavior if we set α = 0.75. In this case, the
agent collects 3.5 items on average, and its corner-visiting behavior—as given in
the second-from-right column of Table 1—is proportional to the value of α, as
expected.

Finally, we ignore the collection of items by setting α = 1. That is, we let

Q∗
HPB (a,B, I, h)

def
= Satf β(I,B) + γ

∑

z∈Z

Pr(z | a,B)max
a′∈A

Q∗
HPB (a′, B′, I, h − 1).

The right-most results column of Table 1 shows the average number of times
each corner was visited when collecting items is not a preference. No items were
collected.

These experiments highlight five important features of an HPB agent:
(1) While the agent is pursuing goals, it can concurrently perform rewarding
actions not directly related to its goals. (2) Each of several goals can be pur-
sued individually until satisfactorily achieved. (3) Goals must periodically be re-
achieved. (4) The trade-off between goals and preferences can be set effectively.
(5) Goals and preferences can be satisfied even while dealing with stochastic
actions and perceptions.

5 Towards Generalizing Goals

Considering exactly one preference, and pursuing exactly one goal at a time does
not leave the agent designer with much flexibility. Moreover, are we justified in
making such an absolute distinction between preferences and goals?
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In an attempt to generalize the specification of goals and preferences, one
might define I ⊆ G to be the agent’s current set of intentions. So here, there is
not necessarily a single goal assigned the status of intention, but a set of goals
are intentions; every goal (intention) in I is simultaneously pursued.

Instead of the agent having a particular preference, the design process could
be made more flexible if the agent may be designed to exhibit preferential
behavior—as loosely defined earlier via Pref (·)—with respect to one or more
goals.

And we let Util = 〈κ,Satf 〉, where κ is a cost function in R ∩ [0, 1] and Satf
is a set of satisfaction functions {Satf g | g ∈ G}. κ has the same definition as
a POMDP reward function, but models the agent’s action costs and not what
is typically thought of as rewards. Rewards are gained to the degree the agent’s
goals are satisfied: Every Satf g is a satisfaction function with domain in S and
range in R ∩ [0, 1], that is, Satf g(s) ∈ [0, 1]. Satf g measures the degree to which
g is satisfied.

Every goal gi ∈ G will be weighted by αgi
according to the importance

of gi to the agent. Let {αg1 , αg2 , . . . , αgn
} be the weights of the goals in G =

{g1, g2, . . . , gn} such that αgi
is the weight of gi, αgi

> 0 for all i, and
∑n

i=1 αgi
=

1. Then the generalized action-value function can be defined as

Q∗
HPB (a,B, I, h)

def
= i(I, 1)αg1Satf

g1
β (B) + · · · + i(I, n)αgn

Satf gn

β (B) − κβ(a,B)

+ γ
∑

z∈Z

Pr(z | a,B)max
a′∈A

Q∗
HPB (a′, B′, I, h − 1),

Q∗
HPB (a,B, I, 1)

def
= i(I, 1)αg1Satf

g1
β (B) + · · · + i(I, 1)αgn

Satf gn

β (B) − κβ(a,B),

where

– Satf g
β(·) and κβ(·) are the expected (w.r.t. a belief-state) values of Satf g(·),

respectively, κ(·),
– i(I, j) = 1 if j ∈ I, else i(I, j) = 0 if j 
∈ I,
– B′ = SE (a, z,B),
– γ is the normal POMDP discount factor and
– SE is the normal POMDP state estimation function.

Focus could now be defined as follows. If g 
∈ I and for all g′ ∈ I, D(g) >
D(g′), then add g to I. And for every g ∈ I, if Remove(g, I) returns ‘yes’,
then remove g from I. It is the job of Remove(g, I) to recognize when g seems
impossible or too expensive to achieve, and thus needs to be removed from I.

Let Satf levels(g) be the sequence of satisfaction levels of some goal g ∈ I
since g became active (i.e., was added to I). For every goal, its satisfaction levels
are maintained if and only if the goal is currently an intention.

From preliminary simulations, it seems that the definition of Focus, just
given, is inadequate for the proposed generalization. It does, however, provide a
stepping-stone in the ongoing research.
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6 Related Work and Conclusion

Our work focuses on providing high-level decision-making capabilities for robots
and agents who live in dynamic stochastic environments, where multiple goals
and goal types must be pursued. We introduced a hybrid POMDP-BDI agent
architecture, which may display emergent behavior, driven by the intensities
of their desires. In the past decade, several BDIAs have been augmented with
capabilities to deal with uncertainty. The HPB architecture is novel in that,
while the agent is pursuing goals, it can concurrently perform rewarding actions
not directly related to its goals, and goals must periodically be re-achieved,
depending on the goals’ desire levels, which change over time and in proportion
to how close the goals are to being satisfied.

The ideas presented in Sect. 5 and the associated preliminary simulations
indicate that generalizing our agent architecture will be an interesting and chal-
lenging endeavour.

[18,19] have incorporated online plan generation into BDI systems, however
the planners deal only with deterministic actions and observations.

[20] use POMDP theory to coordinate teams of agents. However, their frame-
work is very different to our architecture. They use POMDP theory to determine
good role assignments of team members, not for generating policies online.

[21] provide a rather sophisticated architecture for controlling the behavior of
an emotional agent. Their agents reason with several classes of emotion and their
agents are supposed to portray emotional behavior, not simply to solve problems,
but to look believable to humans. Their architecture has a “continuous planner
[...] that is capable of partial order planning and includes emotion-focused coping
[...]” Their work has a different application to ours, however, we could take
inspiration from them to improve the HPB architecture.

[22] take a different approach to use POMDPs to improve BDI agents. By
leveraging the relationship between POMDP and BDI models, as discussed by
[23], they devised an algorithm to extract BDI plans from optimal POMDP
policies. The main difference to our work is that their policies are pre-generated
and BDI-style rules are extracted for all contingencies. The advantage is that no
(time-consuming) online plan/policy generation is necessary. The disadvantage
of their approach is that all the BDI plans must be stores and every time the
domain model changes, a new POMDP must be solved and the policy-to-BDI-
plan algorithm must be run. It is not exactly clear from their paper [22] how or
when intentions are chosen. Although it is interesting to know the relationship
between POMDPs and BDI models [23,24], we did not use any of these insights
in developing our architecture. However, the fact that the HPB architecture does
integrate the two frameworks, is probably due to the existence of the relationship.

[25] also introduced a hybrid POMDP-BDI architecture, but without a notion
of desire levels or satisfaction levels. Although their basic approaches to combine
the POMDP and BDI frameworks is the same as ours, there are at least two
major differences: Firstly, they define their architecture in terms of the GOLOG
agent language [26]. Secondly, their approach uses a computationally intensive
method for deciding whether to refocus; performing short policy look-aheads to
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ascertain the most valuable goal to pursue.2 Our approach seems much more
efficient.

[27] incorporate probabilistic graphical models into the BDI framework for
plan selection in stochastic environments. An agent maintains epistemic states
(with random variables) to model the uncertainty about the stochastic envi-
ronment, and corresponding belief sets of the epistemic state are defined. The
possible states of the environment, according to sensory observations, and their
relationships are modeled using probabilistic graphical models: The uncertainty
propagation is carried out by Bayesian Networks, and belief sets derived from
the epistemic states trigger the selection of relevant plans from a plan library.
For cases when more than one plan is applicable due to uncertainty in an agent’s
beliefs, they propose a utility-driven approach for plan selection, where utilities
of actions are modeled in influence diagrams. Our architecture is different in
that it does not have a library of pre-supplied plans; in our architecture, policies
(plans) are generated online.

None of the approaches mentioned maintain desire levels for selecting inten-
tions. The benefit of maintaining desire levels is that intentions are not selected
only according what they offer with respect to their current expected reward,
but also according to when last they were achieved.

Although [20,27] call their approaches hybrid, our architecture can arguably
more confidently be called hybrid because of its more intimate integration of
POMDP and BDI concepts.

We could take some advice from [28]. They provide a systematic methodology
to incorporate emotion into a decision-theoretic framework, and also provide “a
principled, domain-independent methodology for generating heuristics in novel
situations”.

Policies returned by Plan as defined in this paper are optimal. A major benefit
of a POMDP-based architecture is that the literature on POMDP planning
optimization [6,29–35] (for instance) can be drawn upon to improve the speed
with which policies can be generated.

Our architecture cannot yet control how often one goal is sought relative to
other goals. It would be advantageous to be able to do this.

Evaluating the proposed architecture in richer domains would highlight prob-
lems in the architecture and indicate new directions for research and development
in the area of hybrid POMDP-BDI architectures.
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