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Preface

The present book includes extended and revised versions of a set of selected papers from
the 7th International Conference on Agents and Artificial Intelligence (ICAART 2015),
held in Lisbon, Portugal, during January 10–12, 2015, which was sponsored by the
Institute for Systems and Technologies of Information, Control and Communication
(INSTICC) in cooperation with the ACM Special Interest Group on Artificial Intelli-
gence (ACM SIGAI), the Association for the Advancement of Artificial Intelligence
(AAAI), the Spanish Association for Artificial Intelligence (AEPIA), the European
Society for Fuzzy Logic and Technology (EUSFLAT), the European Coordinating
Committee for Artificial Intelligence (ECCAI), the Italian Association for Artificial
Intelligence, and the Portuguese Association for Artificial Intelligence (APPIA).
ICAART 2015 was also technically co-sponsored by the IEEE Computer Society.

The purpose of the International Conference on Agents and Artificial Intelligence is
to bring together researchers, engineers, and practitioners interested in the theory and
applications in the areas of agents and artificial intelligence. Two related tracks were
held simultaneously, covering both applications and current research work. One track
focused on agents, multi-agent systems and software platforms, distributed problem
solving and distributed AI in general. The other track focused mainly on artificial
intelligence, knowledge representation, planning, learning, scheduling, perception,
reactive AI systems, and evolutionary computing.

ICAART 2015 received 187 paper submissions from 45 countries in all continents,
of which 19 % were presented at the conference as full papers, and their authors were
invited to submit extended versions of their papers for this book. In order to evaluate
each submission, a double-blind review was performed by the Program Committee.
Finally, only the 19 best papers were included in this book.

We would like to highlight that ICAART 2015 also included four plenary keynote
lectures, given by internationally distinguished researchers, namely: Chris Reed
(University of Dundee, UK), Joseph Halpern (Cornell University, USA), Nick Jennings
(University of Southampton, UK), and Robert Kowalski (Imperial College London,
UK). We must acknowledge the invaluable contribution of all keynote speakers who,
as renowned researchers in their areas, presented cutting-edge work and thus enriched
the scientific content of the conference.

We especially thank the authors, whose research and development efforts are
recorded here. The knowledge and diligence of the reviewers were essential to ensure
the quality of the papers presented at the conference and published in this book.
Finally, a special thanks to all members of the INSTICC team, whose involvement was
fundamental for organizing a smooth and successful conference.

September 2015 Béatrice Duval
Jaap van den Herik

Joaquim Filipe
Stephane Loiseau
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A Hybrid POMDP-BDI Agent Architecture
with Online Stochastic Planning and Desires

with Changing Intensity Levels

Gavin Rens1,2(B) and Thomas Meyer2,3

1 School of Mathematics, Statistics and Computer Science,
University of KwaZulu-Natal, Durban, South Africa

grens@csir.co.za
2 Centre for Artificial Intelligence Research, CSIR Meraka, Pretoria, South Africa

3 Department of Computer Science, University of Cape Town,
Cape Town, South Africa
tmeyer@cs.uct.ac.za

Abstract. We propose an agent architecture which combines Par-
tially observable Markov decision processes (POMDPs) and the belief-
desire-intention (BDI) framework to capitalize on their complimentary
strengths. Our architecture introduces the notion of intensity of the
desire for a goal’s achievement. We also define an update rule for goals’
desire levels. When to select a new goal to focus on is also defined. To ver-
ify that the proposed architecture works, experiments were run with an
agent based on the architecture, in a domain where multiple goals must
continually be achieved. The results show that (i) while the agent is pur-
suing goals, it can concurrently perform rewarding actions not directly
related to its goals, (ii) the trade-off between goals and preferences can
be set effectively and (iii) goals and preferences can be satisfied even
while dealing with stochastic actions and perceptions. We believe that
the proposed architecture furthers the theory of high-level autonomous
agent reasoning.

Keywords: POMDP · BDI · Online planning · Desire intensity ·
Preference

1 Introduction

Imagine a scenario where a planetary rover has four main tasks and one task
it can do when it does not interfere with performing the main tasks. The main
tasks could be, for instance, collecting gas (for industrial use) from a natural vent
at the base of a hill, taking a temperature measurement at the top of the hill,
performing self-diagnostics and repairs, and reloading its batteries at the solar
charging station. The less important task is to collect soil samples wherever the
rover is. The rover is programmed to know the relative importance of collecting
soil samples. The rover also has a model of the probabilities with which its
c© Springer International Publishing Switzerland 2015
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various actuators fail and the probabilistic noise-profile of its various sensors.
The rover must be able to reason (plan) in real-time to pursue the right task
at the right time while considering its resources and dealing with unforeseen
events, all while considering the uncertainties about its actions (actuators) and
perceptions (sensors).

We propose an architecture for the proper control of an agent in a complex
environment such as the scenario described above. The architecture combines
belief-desire-intention (BDI) theory [1,2] and partially observable Markov deci-
sion processes (POMDPs) [3,4]. Traditional BDI architectures (BDIAs) cannot
deal with probabilistic uncertainties and they do not generate plans in real-time.
A traditional POMDP cannot manage goals (major and minor tasks) as well as
BDIAs can. Next, we analyse the POMDPs and BDIAs in a little more detail.

One of the benefits of agents based on BDI theory, is that they need not gen-
erate plans from scratch; their plans are already (partially) compiled, and they
can act quickly once a goal is focused on. Furthermore, the BDI framework can
deal with multiple goals. However, their plans are usually not optimal, and it may
be difficult to find a plan which is applicable to the current situation. That is, the
agent may not have a plan in its library which exactly ‘matches’ what it ideally
wants to achieve. On the other hand, POMDPs can generate optimal policies
on the spot to be highly applicable to the current situation. Moreover, policies
account for stochastic actions and partially observable environments. Unfortu-
nately, generating optimal POMDP policies is usually intractable. One solution
to the intractability of POMDP policy generation is to employ a continuous
planning strategy, or agent-centred search [5]. Aligned with agent-centred search
is the forward-search approach or online planning approach in POMDPs [6].

The traditional BDIA maintains goals as desires; there is no reward for per-
forming some action in some state. The reward function provided by POMDP
theory is useful for modeling certain kinds of behavior or preferences. For
instance, an agent based on a POMDP may want to avoid moist areas to pre-
vent its parts becoming rusty. Moreover, a POMDP agent can generate plans
which can optimally avoid moist areas. But one would not say that avoiding
moist areas is the agent’s goal. And POMDP theory maintains a single reward
function; there is no possibility of weighing alternative reward functions and
pursuing one at a time for a fixed period—all objectives must be considered
simultaneously, in one reward function. Reasoning about objectives in POMDP
theory is not as sophisticated as in BDI theory. A BDI agent cannot, however,
simultaneously avoid moist areas and collect gold; it has to switch between the
two or combine the desire to avoid moist areas with every other goal.

We argue that maintenance goals like avoiding moist areas (or collecting soil
samples) should rather be viewed as a preference and modeled as a POMDP
reward function. And specific tasks to complete (like collecting gas or keeping
its battery charged) should be modeled as BDI desires.

Given the advantages of POMDP theoretic reasoning and the potentially
sophisticated means-ends reasoning of BDI theory, we propose to combine the
best features of these two theories in a coherent agent architecture. We call it
the Hybrid POMDP-BDI agent architecture (or HPB architecture, for short).
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In BDI theory, one of the big challenges is to know when the agent should
switch its current goal and what its new goal should be [7]. To address this
challenge with an intuitive explanation, we propose that an agent should main-
tain intensity levels of desire for every goal. (This intensity of desire could be
interpreted as a kind of emotion.) The goal most intensely desired should be the
current goal sought (the intention). We also define the notion of how much an
intention is satisfied in the agent’s current belief-state.

Typically, BDI agents do not deal with stochastic uncertainty. Integrating
POMDP notions into a BDIA addresses this. For instance, an HPB agent will
maintain a (subjective) belief-state representing its probabilistic (uncertain)
belief about its current state. Planning with models of stochastic actions and
perceptions is thus possible in the proposed architecture. The tight integration
of POMDPs and BDIAs is novel, especially in combination with desires with
changing intensity levels.

Section 2 briefly reviews the necessary theory. The proposed agent architec-
ture is presented in Sect. 3 and formally defined. Section 4 shows an implemen-
tation of the architecture on an example domain and evaluates the performance
on various dimensions, confirming that the approach may be useful in some
domains. In Sect. 5, we propose one approach to making the specification of
goals and preferences more general or flexible. The last section discusses some
related work and points out some future directions for research in this area.

2 Preliminaries

The basic components of a BDI architecture [8,9] are

– a set or knowledge-base B of beliefs;
– an option generation function ‘wish’, generating the objectives the agent would

ideally like to pursue (its desires);
– a set of desires D (goals to be achieved);
– a ‘focus’ function which selects intentions from the set of desires;
– a structure of intentions I of the most desirable options/desires returned by

the focus function;
– a library of plans and subplans;
– a ‘reconsideration’ function which decides whether to call the focus function;
– an execution procedure, which affects the world according to the plan associ-

ated with the intention;
– a sensing or perception procedure, which gathers information about the state

of the environment; and
– a belief update function, which updates the agent’s beliefs according to its

latest observations and actions.

Exactly how these components are implemented result in a particular BDI archi-
tecture.

Algorithm 1 (adapted from [10, Fig. 2.3]) is a basic BDI agent control loop.
π is the current plan to be executed. getPercept(·) senses the environment and



6 G. Rens and T. Meyer

Algorithm 1. Basic BDI agent control loop.

Input: B0: initial beliefs
Input: I0: initial intentions

1 B ← B0;
2 I ← I0;
3 π ← null ;
4 while alive do
5 p ← getPercept();
6 B ← update(B, p);
7 D ← wish(B, I);
8 I ← focus(B, D, I);
9 π ← plan(B, I);

10 execute(π);

Algorithm 2. Control loop for an agent with reconsideration.

Input: B0: initial beliefs
Input: I0: initial intentions

1 B ← B0 ;
2 I ← I0 ;
3 π ← null ;
4 while alive do
5 p ← getPercept() ;
6 B ← update(B, p) ;
7 if reconsider(B, I) then
8 D ← wish(B, I) ;
9 I ← focus(B, D, I) ;

10 if not sound(π, I, B) then π ← plan(B, I)

11 if not empty(π) then
12 α ← head(π) ;
13 execute(α) ;
14 π ← tail(π) ;

15 I ← succeeded(I, B) ;
16 I ← impossible(I, B) ;

returns a percept (processed sensor data) which is an input to update(·). plan(·)
returns a plan from the plan library to achieve the agent’s current intentions.
wish : B × I → D generates a set of desires, given the agent’s beliefs, current
intentions and possibly its innate motives. It is usually impractical for an agent to
pursue the achievement of all its desires. It must thus filter out the most valuable
and achievable desires. This is the function of focus : B × D × I → I, taking
beliefs, desires and current intentions as parameters. Together, the processes
performed by wish and focus may be called deliberation, formally encapsulated
by the deliberate procedure.
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Algorithm 2 (adapted from [11]) has some more sophisticated controls. It con-
trols when the agent would consider whether to re-deliberate, with the reconsider
function (line 7) placed just before deliberation would take place. reconsider(·)
is a Boolean function which tells the agent whether to reconsider its intentions
(every time line 7 is reached).

The agent tests at every iteration through the main loop whether the cur-
rently pursued intention is still possibly achievable, using impossible(·). In the
algorithm, serendipity is also taken advantage of by periodically testing—using
succeeded(·)—whether the intention has been achieved, without the plan being
fully executed. This agent is considered ‘reactive’ because it executes one action
per loop iteration; this allows for deliberation between executions. The sound-
ness (or applicability) of the plan to achieve the current intention is checked at
every iteration of the loop.

There are various mechanisms which an agent might use to decide when to
reconsider its intentions. See, for instance, [1,7,12–16].

In a partially observable Markov decision process (POMDP), the actions the
agent performs have non-deterministic effects in the sense that the agent can
only predict with a likelihood in which state it will end up after performing an
action. Furthermore, its perception is noisy. That is, when the agent uses its
sensors to determine in which state it is, it will have a probability distribution
over a set of possible states to reflect its conviction for being in each state.

Formally [17], a POMDP is a tuple 〈S,A, T,R,Z, P, b0〉 with

– S, a finite set of states of the world (that the agent can be in),
– A a finite set of actions (that the agent can choose to execute),
– a transition function T (s, a, s′), the probability of being in s′ after performing

action a in state s,
– R(a, s), the immediate reward gained for executing action a while in state s,
– Z, a finite set of observations the agent can perceive in its world,
– a perception function P (s′, a, z), the probability of observing z in state s′

resulting from performing action a in some other state, and
– b0 the initial probability distribution over all states in S.

A belief-state b is a set of pairs 〈s, p〉 where each state s in b is associated
with a probability p. All probabilities must sum up to one, hence, b forms a
probability distribution over the set S of all states. To update the agent’s beliefs
about the world, a special function SE (z, a, b) = bn is defined as

bn(s′) =
P (s′, a, z)

∑
s∈S T (s, a, s′)b(s)

Pr(z|a, b)
, (1)

where a is an action performed in ‘current’ belief-state b, z is the resultant
observation and bn(s′) denotes the probability of the agent being in state s′ in
‘new’ belief-state bn. Note that Pr(z | a, b) is a normalizing constant.

Let the planning horizon h (also called the look-ahead depth) be the number
of future steps the agent plans ahead each time it plans. V ∗(b, h) is the optimal
value of future courses of actions the agent can take with respect to a finite



8 G. Rens and T. Meyer

horizon h starting in belief-state b. This function assumes that at each step the
action that will maximize the state’s value will be selected.

Because the reward function R(a, s) provides feedback about the utility of
a particular state s (due to a executed in it), an agent who does not know in
which state it is in cannot use this reward function directly. The agent must
consider, for each state s, the probability b(s) of being in s, according to its
current belief-state b. Hence, a belief reward function ρ(a, b) is defined, which

takes a belief-state as argument. Let ρ(a, b)
def
=

∑
s∈S R(a, s)b(s).

The optimal state-value function is define by

V ∗(b, h)
def
= max

a∈A

[
ρ(a, b) + γ

∑

z∈Z

Pr(z | a, b)V ∗(SE (z, a, b), h − 1)
]
,

where 0 ≤ γ < 1 is a factor to discount the value of future rewards and
Pr(z | a, b) denotes the probability of reaching belief-state bn = SE (z, a, b). While
V ∗ denotes the optimal value of a belief-state, function Q∗ denotes the optimal
action-value:

Q∗(a, b, h)
def
= ρ(a, b) + γ

∑

z∈Z

Pr(z | a, b)V ∗(SE (z, a, b), h − 1)

is the value of executing a in the current belief-state, plus the total expected
value of belief-states reached thereafter.

3 The HPB Architecture

A hybrid POMDP-BDI (HPB) agent maintains (i) a belief-state which is peri-
odically updated, (ii) a mapping from goals to numbers representing the level
of desire to achieve the goals, and (iii) the current intention, the goal with the
highest desire level. As the agent acts, its desire levels are updated and it may
consider choosing a new intention based on new desire levels.

The state of an HPB agent is defined by the tuple 〈B,D, I〉, where B is
the agent’s current belief-state (i.e., a probability distribution over the states
S, defined below), D is the agent’s current desire function and I is the agent’s
current intention. We’ll have more to say about D and I a little later.

An HPB agent could be defined by the tuple 〈Atrb, G,A,Z, T, P,Util〉, where

• Atrb is a set of attribute-sort pairs (for short, the attribute set). For every
(atrb : sort) ∈ Atrb, atrb is the name or identifier of an attribute of interest
in the domain of interest, like BattryLevel or Direction, and sort is the set
from which atrb can take a value, for instance, real numbers in the range
[0, 55] or a list of values like {North, East , West , South}. So {(BattryLevel :
[0, 55]), (Direction : {North,East ,West ,South})} could be an attribute set.

Let N = {atrb | (atrb : sort) ∈ Atrb} be the set of all attribute names.
We define a state s induced from Atrb as one possible way of assigning values
to attributes: s = {(atrb : v) | atrb ∈ N , (atrb : sort) ∈ Atrb, v ∈ sort} such
that if (atrb : v), (atrb′ : v′) ∈ s and atrb = atrb′, then v = v′. The set of all
possible states is denoted S.



A Hybrid POMDP-BDI Agent Architecture and Desires 9

• G is a set of goals. A goal g ∈ G is a subset of some state s ∈ S. For
instance, {(BattryLevel : 13), (Direction : South)} is a goal, and so are
{(BattryLevel : 33)} and {(Direction : West)}. It is even possible to have
one goal overlap or be a subset of another goal. For instance, one is allowed
to have {(BattryLevel : 13), (Direction : South)} ∈ G and simultaneously
{(BattryLevel : 13)}, {(BattryLevel : 14), (Direction : South)} ∈ G. In this
architecture, it is assumed that the set of goals is given.

• A is a finite set of actions.
• Z is a finite set of observations.
• T is the transition function of POMDPs.
• P is the perception function of POMDPs.
• Util consists of two functions Pref and Satf which allow an agent to determine

the utilities of alternative sequences of actions. Util = 〈Pref ,Satf 〉.
Pref is the preference function with a range in R ∩ [0, 1]. It takes an action

a and a state s, and returns a value reflecting the preference for performing a in
s. That is, Pref (a, s) ∈ [0, 1]. Numbers closer to 1 imply greater preference and
numbers closer to 0 imply less preference. Except for the range restriction of [0, 1],
it has the same definition as a POMDP reward function, but its name indicates
that it models the agent’s preferences and not what is typically thought of as
rewards. An HPB agent gets ‘rewarded’ by achieving its goals. The preference
function is especially important to model action costs; the agent should prefer
‘inexpensive’ actions. Pref has a local flavor. Designing the preference function
to have a value lying in [0,1] may sometimes be challenging, but we believe it is
always possible.

Satf is the satisfaction function with a range in R ∩ [0, 1]. It takes a state
s and an intention I, and returns a value representing the degree to which the
state satisfies the intention. That is, Satf (I, s) ∈ [0, 1]. It is completely up to
the agent designer to decide how the satisfaction function is defined, as long as
numbers closer to 1 mean more satisfaction and numbers closer to 0 mean less
satisfaction. Satf has a global flavor.

The desire function D is a total function from goals in G into the positive
real numbers R

+. The real number represents the intensity or level of desire of
the goal. For instance, ({(BattryLevel : 13), (Direction : South)}, 2.2) could be
in D, meaning that the goal of having the battery level at 13 and moving in a
southerly direction is desired with a level of 2.2. ({(BattryLevel : 33)}, 56) and
({(Direction : West)}, 444) are also examples of desires in D.

I is the agent’s current intention; an element of G; the goal with the high-
est desire level. This goal will be actively pursued by the agent, shifting the
importance of the other goals to the background. The fact that only one inten-
tion is maintained makes the HPB agent architecture quite different to standard
BDIAs.

Figure 1 shows a flow diagram representing the operational semantics of the
HPB architecture.
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The satisfaction an agent gets for an intention in its current belief-state is
defined as

Satf β(I,B)
def
=

∑

s∈S

Satf (I, s)B(s),

where Satf (I, s) is defined above and B(s) is the probability of being in state
s. The definition of Pref β has the same form as the reward function ρ over
belief-states in POMDP theory:

Pref β(a,B)
def
=

∑

s∈S

Pref (a, s)B(s),

where Pref (a, s) was discussed above.
We propose the following desire update rule.

D(g) ← D(g) + 1 − Satf β(g,B) (2)

Rule 2 is defined so that as Satf β(g,B) tends to one (total satisfaction), the
intensity with which the incumbent goal is desired does not increase. On the
other hand, as Satf β(g,B) becomes smaller (more dissatisfaction), the goal’s
intensity is incremented. The rule transforms D with respect to B and g. A
goal’s intensity should drop the more it is being satisfied. The update rule thus
defines how a goal’s intensity changes over time with respect to satisfaction.

Note that desire levels never decrease. This does not reflect reality. It is
however convenient to represent the intensity of desires like this: only relative
differences in desire levels matter in our approach and we want to avoid unnec-
essarily complicating the architecture.

An HPB agent controls its behaviour according to the policies it generates.
Plan is a procedure which generates a POMDP policy π of depth h. Essentially,
we want to consider all action sequences of length h and the belief-states in which
the agent would find itself if it followed the sequences. Then we want to choose
the sequence (or at least its first action) which yields the highest preference and
which ends in the belief-state most satisfying with respect to the intention.

During planning, preferences and intention satisfaction must be maximized.
The main function used in the Plan procedure is the HPB action-value function
Q∗

HPB , giving the value of some action a, conditioned on the current belief-state
B, intention I and look-ahead depth h:

Q∗
HPB (a,B, I, h)

def
= αSatf β(I,B) + (1 − α)Pref β(a,B)

+ γ
∑

z∈Z

Pr(z | a,B)max
a′∈A

Q∗
HPB (a′, B′, I, h − 1),

Q∗
HPB (a,B, I, 1)

def
= αSatf β(I,B) + (1 − α)Pref β(a,B),

where B′ = SE (a, z,B), 0 ≤ α ≤ 1 is the goal/preference ‘trade-off’ factor,
γ is the normal POMDP discount factor and SE is the normal POMDP state
estimation function. To keep things simple for this introductory paper, we define
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Fig. 1. Operational semantics of the HPB architecture. SL stands for Satf levels. Note
that Satf levels depends on the current belief-state and intention, but not on desire
levels. Planning is also independent of desire levels. The focus function depends on
desire levels, but not on satisfaction. Whether to refocus depends on satisfaction levels,
but not on desire levels.
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Plan to return arg maxa∈A Q∗
HPB (a,B, I, h), the trivial policy of a single action.

In general, Plan could return a policy of depth h, that is, a sequence of h actions,
where the choice of exactly which action to take at each step depends on the
observation received just prior.

Focus is a function which returns one member of G called the (current)
intention I. Presently, we define it simply as selecting the goal with the highest
desire level. After every execution of an action in the real-world, Refocus is called
to decide whether to call Focus to select a new intention. Refocus is a meta-
reasoning function analogous to the reconsider function discussed in Sect. 2. It
is important to keep the agent focused on one goal long enough to give it a
reasonable chance of achieving it. It is the job of Refocus to recognize when the
current intention seems impossible or too expensive to achieve.

Let Satf levels be the sequence of satisfaction levels of the current inten-
tion since it became active and let MEMORY be a designer-specified number
representing the length of a sub-sequence of Satf levels—the MEMORY last
satisfaction levels. One possible definition of Refocus is

Refocus(c, θ)
def
=

⎧
⎨

⎩

‘no’ if |Satf levels| < MEMORY
‘yes’ if c < θ
‘no’ otherwise,

where c is the average change from one satisfaction level to the next in the
agent’s ‘MEMORY’, and θ is some threshold chosen by the agent designer. If
the agent is expected to increase its satisfaction by at least, say, 0.1 on average
for the current intention, then θ should be set to 0.1. With this approach, if the
agent ‘gets stuck’ trying to achieve its current intention, it will not blindly keep
on trying to achieve it, but will start pursuing another goal (with the highest
desire level). Note that if an intention was not well satisfied, its desire level still
increases at a relatively high rate. So whenever the agent focuses again, a goal
not well satisfied in the past will be a top contender to become the intention
(again).

4 Evaluation

We performed some tests on an HPB agent in a six-by-six grid-world. In this
world, the agent’s task is to visit each of the four corners, while collecting items
on the way. That is, the agent’s goals are the states representing the four corners,
but the collecting of items is regarded as a preferred behavior, not a goal to be
pursued.

States are quadruples 〈x, y, d, t〉, with x, y ∈ {1, · · · , 6} being the coordinates
of the agent’s position in the world, d ∈ {North,East ,West ,South} the direction
it is facing, and t ∈ {0, 1}, t = 1 if an item is present in the cell with the agent,
else t = 0. The agent can perform five actions {left , right , forward , see, collect},
meaning, turn left, turn right, move one cell forward, see whether an item is
present and collect an item. The only observation possible when executing one
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of the physical actions is obsNil , the null observation, and see has possible obser-
vations from the set {0, 1} for whether the agent sees the presence of an item
(1) or not (0).

Next, we define the possible outcomes for each action: When the agent turns
left or right, it can get stuck in the same direction, turn 90◦ or overshoots by
90◦. When the agent moves forward, it moves one cell in the direction it is facing
or it gets stuck and does not move. The agent can see an item or see nothing (no
item in the cell), and collecting is deterministic (if there is an item present, it
will be collected with certainty, if the agent executes collect). All actions except
collect are designed so that the correct outcome is achieved 95% of the time and
incorrect outcomes are achieved 5% of the time.

So that the agent does not get lost too quickly, we have included an automatic
localization action, that is, a sensing action returns information about the agent’s
approximate location. The action is automatic because the agent cannot choose
whether to perform it; the agent localizes itself after every regular/chosen action
is executed. However, just as with regular actions, the localization sensor is noisy,
and it correctly reports the agent’s location with probability 0.95, else the sensor
reports a location adjacent to the agent with probability uniformly distributed
over 0.05.

Errors in the agent’s actions and perceptions are thus modeled, not ignored.
In the experiments which follow, the threshold θ is set to 0.05, MEMORY

is set to 5 and h = 4. Desire levels are initially set to zero for all goals. Four
experiments were performed. First, collecting items but not intentionally vis-
iting corners, second and third, visiting corners while collecting items (with
different values for the goal/preference ‘trade-off’ factor), and fourth, visiting
corners but not collecting items. For each experiment, 10 trials were run with
the agent starting in random locations and performing 100 actions per trial.
We let Satf (I, s) = 1 − dist/10 where 10 is the maximum Manhattan distance
between two cells in the world and dist is the Manhattan distance between the
cells represented by I and s, and we let

Pref (a, s) = (1 − dist/10 + collUtil + sensUtil)/100,

where dist is the Manhattan distance between the cell representing s and the
closest cell containing an item, collUtil is 98 if a is collect and there is actually
an item in the cell represented by s, else 0, and sensUtil is 1 if the agent tries
to see, else 0.1 The division by 100 is to bring the value of Pref (·) within the
limits of 0 and 1.

First, we see how an HPB agent behaves when it has no goal state (α = 0),
but continually only ‘prefers’ to collect items. That is, we let

Q∗
HPB (a,B, I, h)

def
= Pref β(a,B) + γ

∑

z∈Z

Pr(z | a,B)max
a′∈A

Q∗
HPB (a′, B′, I, h − 1).

1 Pref (·) is designed such that the agent collects a maximum number of items (ignoring
goals). The agent collects more when it is encouraged to sense where items are, hence
sensUtil is 1 if the agent tries to see.
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On average, it collects 7.4 of 12 possible items. The left-most results column of
Table 1 shows how often corners are (unintentionally) visited.

Next, if the HPB agent prefers to collect items while equally trying to reach
corners (α = 0.5), it collects 4.3 of 12 possible items and the corners it visits is
summarized in the second-from-left results column of Table 1.

Table 1. The average number of times each corner was visited (on separate occa-
sions), percentage of times all corners were visited, and percentage of items (out of 12)
collected.

Corner Times visited

α = 0 α = 0.5 α = 0.75 α = 1

(1,1) 2.2 2.8 2.7 2.9

(1,6) 2.1 2.6 2.7 3.2

(6,1) 2.0 2.7 2.6 3.0

(6,6) 1.7 2.6 2.9 3.0

All 8.0 % 10.7 % 10.9 % 12.1 %

Items coll’ed 62 % 36 % 29 % 0 %

Then, we observe the agent’s behavior if we set α = 0.75. In this case, the
agent collects 3.5 items on average, and its corner-visiting behavior—as given in
the second-from-right column of Table 1—is proportional to the value of α, as
expected.

Finally, we ignore the collection of items by setting α = 1. That is, we let

Q∗
HPB (a,B, I, h)

def
= Satf β(I,B) + γ

∑

z∈Z

Pr(z | a,B)max
a′∈A

Q∗
HPB (a′, B′, I, h − 1).

The right-most results column of Table 1 shows the average number of times
each corner was visited when collecting items is not a preference. No items were
collected.

These experiments highlight five important features of an HPB agent:
(1) While the agent is pursuing goals, it can concurrently perform rewarding
actions not directly related to its goals. (2) Each of several goals can be pur-
sued individually until satisfactorily achieved. (3) Goals must periodically be re-
achieved. (4) The trade-off between goals and preferences can be set effectively.
(5) Goals and preferences can be satisfied even while dealing with stochastic
actions and perceptions.

5 Towards Generalizing Goals

Considering exactly one preference, and pursuing exactly one goal at a time does
not leave the agent designer with much flexibility. Moreover, are we justified in
making such an absolute distinction between preferences and goals?
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In an attempt to generalize the specification of goals and preferences, one
might define I ⊆ G to be the agent’s current set of intentions. So here, there is
not necessarily a single goal assigned the status of intention, but a set of goals
are intentions; every goal (intention) in I is simultaneously pursued.

Instead of the agent having a particular preference, the design process could
be made more flexible if the agent may be designed to exhibit preferential
behavior—as loosely defined earlier via Pref (·)—with respect to one or more
goals.

And we let Util = 〈κ,Satf 〉, where κ is a cost function in R ∩ [0, 1] and Satf
is a set of satisfaction functions {Satf g | g ∈ G}. κ has the same definition as
a POMDP reward function, but models the agent’s action costs and not what
is typically thought of as rewards. Rewards are gained to the degree the agent’s
goals are satisfied: Every Satf g is a satisfaction function with domain in S and
range in R ∩ [0, 1], that is, Satf g(s) ∈ [0, 1]. Satf g measures the degree to which
g is satisfied.

Every goal gi ∈ G will be weighted by αgi
according to the importance

of gi to the agent. Let {αg1 , αg2 , . . . , αgn
} be the weights of the goals in G =

{g1, g2, . . . , gn} such that αgi
is the weight of gi, αgi

> 0 for all i, and
∑n

i=1 αgi
=

1. Then the generalized action-value function can be defined as

Q∗
HPB (a,B, I, h)

def
= i(I, 1)αg1Satf

g1
β (B) + · · · + i(I, n)αgn

Satf gn

β (B) − κβ(a,B)

+ γ
∑

z∈Z

Pr(z | a,B)max
a′∈A

Q∗
HPB (a′, B′, I, h − 1),

Q∗
HPB (a,B, I, 1)

def
= i(I, 1)αg1Satf

g1
β (B) + · · · + i(I, 1)αgn

Satf gn

β (B) − κβ(a,B),

where

– Satf g
β(·) and κβ(·) are the expected (w.r.t. a belief-state) values of Satf g(·),

respectively, κ(·),
– i(I, j) = 1 if j ∈ I, else i(I, j) = 0 if j 
∈ I,
– B′ = SE (a, z,B),
– γ is the normal POMDP discount factor and
– SE is the normal POMDP state estimation function.

Focus could now be defined as follows. If g 
∈ I and for all g′ ∈ I, D(g) >
D(g′), then add g to I. And for every g ∈ I, if Remove(g, I) returns ‘yes’,
then remove g from I. It is the job of Remove(g, I) to recognize when g seems
impossible or too expensive to achieve, and thus needs to be removed from I.

Let Satf levels(g) be the sequence of satisfaction levels of some goal g ∈ I
since g became active (i.e., was added to I). For every goal, its satisfaction levels
are maintained if and only if the goal is currently an intention.

From preliminary simulations, it seems that the definition of Focus, just
given, is inadequate for the proposed generalization. It does, however, provide a
stepping-stone in the ongoing research.
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6 Related Work and Conclusion

Our work focuses on providing high-level decision-making capabilities for robots
and agents who live in dynamic stochastic environments, where multiple goals
and goal types must be pursued. We introduced a hybrid POMDP-BDI agent
architecture, which may display emergent behavior, driven by the intensities
of their desires. In the past decade, several BDIAs have been augmented with
capabilities to deal with uncertainty. The HPB architecture is novel in that,
while the agent is pursuing goals, it can concurrently perform rewarding actions
not directly related to its goals, and goals must periodically be re-achieved,
depending on the goals’ desire levels, which change over time and in proportion
to how close the goals are to being satisfied.

The ideas presented in Sect. 5 and the associated preliminary simulations
indicate that generalizing our agent architecture will be an interesting and chal-
lenging endeavour.

[18,19] have incorporated online plan generation into BDI systems, however
the planners deal only with deterministic actions and observations.

[20] use POMDP theory to coordinate teams of agents. However, their frame-
work is very different to our architecture. They use POMDP theory to determine
good role assignments of team members, not for generating policies online.

[21] provide a rather sophisticated architecture for controlling the behavior of
an emotional agent. Their agents reason with several classes of emotion and their
agents are supposed to portray emotional behavior, not simply to solve problems,
but to look believable to humans. Their architecture has a “continuous planner
[...] that is capable of partial order planning and includes emotion-focused coping
[...]” Their work has a different application to ours, however, we could take
inspiration from them to improve the HPB architecture.

[22] take a different approach to use POMDPs to improve BDI agents. By
leveraging the relationship between POMDP and BDI models, as discussed by
[23], they devised an algorithm to extract BDI plans from optimal POMDP
policies. The main difference to our work is that their policies are pre-generated
and BDI-style rules are extracted for all contingencies. The advantage is that no
(time-consuming) online plan/policy generation is necessary. The disadvantage
of their approach is that all the BDI plans must be stores and every time the
domain model changes, a new POMDP must be solved and the policy-to-BDI-
plan algorithm must be run. It is not exactly clear from their paper [22] how or
when intentions are chosen. Although it is interesting to know the relationship
between POMDPs and BDI models [23,24], we did not use any of these insights
in developing our architecture. However, the fact that the HPB architecture does
integrate the two frameworks, is probably due to the existence of the relationship.

[25] also introduced a hybrid POMDP-BDI architecture, but without a notion
of desire levels or satisfaction levels. Although their basic approaches to combine
the POMDP and BDI frameworks is the same as ours, there are at least two
major differences: Firstly, they define their architecture in terms of the GOLOG
agent language [26]. Secondly, their approach uses a computationally intensive
method for deciding whether to refocus; performing short policy look-aheads to
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ascertain the most valuable goal to pursue.2 Our approach seems much more
efficient.

[27] incorporate probabilistic graphical models into the BDI framework for
plan selection in stochastic environments. An agent maintains epistemic states
(with random variables) to model the uncertainty about the stochastic envi-
ronment, and corresponding belief sets of the epistemic state are defined. The
possible states of the environment, according to sensory observations, and their
relationships are modeled using probabilistic graphical models: The uncertainty
propagation is carried out by Bayesian Networks, and belief sets derived from
the epistemic states trigger the selection of relevant plans from a plan library.
For cases when more than one plan is applicable due to uncertainty in an agent’s
beliefs, they propose a utility-driven approach for plan selection, where utilities
of actions are modeled in influence diagrams. Our architecture is different in
that it does not have a library of pre-supplied plans; in our architecture, policies
(plans) are generated online.

None of the approaches mentioned maintain desire levels for selecting inten-
tions. The benefit of maintaining desire levels is that intentions are not selected
only according what they offer with respect to their current expected reward,
but also according to when last they were achieved.

Although [20,27] call their approaches hybrid, our architecture can arguably
more confidently be called hybrid because of its more intimate integration of
POMDP and BDI concepts.

We could take some advice from [28]. They provide a systematic methodology
to incorporate emotion into a decision-theoretic framework, and also provide “a
principled, domain-independent methodology for generating heuristics in novel
situations”.

Policies returned by Plan as defined in this paper are optimal. A major benefit
of a POMDP-based architecture is that the literature on POMDP planning
optimization [6,29–35] (for instance) can be drawn upon to improve the speed
with which policies can be generated.

Our architecture cannot yet control how often one goal is sought relative to
other goals. It would be advantageous to be able to do this.

Evaluating the proposed architecture in richer domains would highlight prob-
lems in the architecture and indicate new directions for research and development
in the area of hybrid POMDP-BDI architectures.
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Abstract. In Artificial Intelligence, a large number of problems (i.e.
distributed resource management, distributed air traffic management,
Distributed Sensor Network [1]) can be modeled and solved as Distrib-
uted Constraint Satisfaction Problems (DisCSPs). As many real world
problems change continuously and incessantly over time, some methods
have been developed (e.g. DynABT), for solving problems which exhibit
this dynamic behavior. Meanwhile, there was no available framework
that helped users to develope intelligent multi-agent systems based on
Dynamic and Distributed Constraints Reasoning (DCR) techniques.

In this paper, we propose a new platform, called JChoc, supporting
the dynamic aspect for DisCSPs. JChoc is an easy to use platform, based
on an elegant Multi-agent communication sub-platform (e.i JADE). It
deals with agents with local complex problems and allows a realistic use
of agents on a real distributed and dynamic framework.

A real distributed problem is addressed to illustrate how the plat-
form can be used to solve dynamically changing problems. However, the
experimental results show the defectiveness of our platform.

Keywords: Dynamically changing environments · Constraint program-
ming (CP) · Multi-agent systems · Distributed problem solving · Agent
models and architectures · Distributed constraints reasoning · Realistic
use · Constraint satisfaction problem (CSP) · Distributed CSP (DisCSP)

1 Introduction

Since the onset of real time electronic devices, mobiles, ubiquitous, and
intelligent computing, new combinatorial problems have emerged in the AI com-
munity such as: distributed resource management, distributed air traffic man-
agement, Distributed Sensor Network [1], disaster rescue [2] and distributed
Meeting Scheduling Problems (SMP), for which it is not suitable to collect all
data of problem in one site, to solve it by a centralized algorithm. The rea-
sons are communication time and cost of translation of each sub-problem in a
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common format. In addition, to give a single agent all data of the problem can
also be excluded for reasons of security and confidentiality. Therefore, some of
the AI communities are motivated to take an interest in Distributed Constraint
Reasoning (DCR), giving birth to other distributed formalism [5], whose work
focused on developing techniques for modeling and solving distributed combina-
torial problems with or without optimization criterion. Distributed Constraint
Satisfaction Problems (DisCSP), Distributed Constraint Optimization Problems
(DCOP) and Dynamic Distributed Constraints Satisfaction Problems provide a
useful framework of multiagent systems for distributed and dynamic resolution
of combinatorial problems [3–5,16,17].

In this context, an agent must have a communication platform that allows
the exchange of information or dialogue to coordinate their decision-making.
This reliable communication tool allows agents to send and receive messages
according to a given distributed protocol. However, various sophisticated solvers
have been developed: DisChoco [18], Disolver [6], MELY [7], Frodo [8]. Those
solvers rely on several algorithms for solving DisCSP problems such as Asynchro-
nous Backtracking (ABT [4], ABT Family [9]), Asynchronous Forward Checking
(AFC) [10] and Nogood-based Asynchronous Forward-Checking (AFC-ng) [11].
Asynchronous Distributed Constraints Optimization (ADOPT) [12], Asynchro-
nous Forward Bounding (AFB) [13], Asynchronous Branch-and-Bound (BnB-
ADOPT) [14] and Dynamic Backtracking for distributed constraint optimiza-
tion (DyBop) [15] were developed to solve DCOP problems. As well as the
authors recognise that most of these tools are specially developed for simulation
context. This fact can be clearly observed from its experimental setups. Given the
difficulty that researchers are facing, they often make many simplifying assump-
tions (i.e. simple agent (one variable per agent), agents as multi-thread, single
physical platform, communication via simulated perfect FIFO channels, etc.)
about the underlying distributed problem, which might affect the predictions
obtained from the simulation in non-trivial ways. Switching from the simulation
to the actual development practice often leads to loss of accuracy. Hence, bridg-
ing the gap between simulation and actual development and deployment within
distributed constraints solvers and include dynamic aspect are the motivations
for presenting the different ideas discussed in the present paper.

In this paper we focus on the development of a Multi-agent platform for
Distributed Constraint Reasoning and Dynamic Distributed Constraints Prob-
lems, namely JChoc DisSolver. This proposed platform allows non-expert user
to address and solve easily, not only distributed constraint satisfaction problems,
but also real Dynamic Distributed Constraint Satisfaction Problems.

This document is organized as follows. Section 2 presents a brief definition
of Distributed Constraint Satisfaction Problem (DisCSP) and Dynamic and
Distributed Constraint Satisfaction Problem (DDisCSP) with an example. In
Sect. 3, we present related work. Section 4 presents the global architecture of
JChoc platform. In Sect. 5, we show how use this platform in a distributed envi-
ronment even if it changes dynamically. And finally, in Sect. 6 we conclude the
paper by experiment this platform within a real Distributed and Dynamic Con-
straints Satisfaction Problems.
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2 Preliminaries

2.1 Distributed Constraint Satisfaction Problems

Constraint Programming distinguishes between the description of the constraints
involved in a problem on the one hand, and the algorithms and heuristics used to
solve the problem on the other hand. Modeling and solving problems is through
a very elegant mathematical formalism, called the Constraint Satisfaction Prob-
lems CSPs.

The Distributed Constraint Satisfaction Problem (DisCSP) is represented
by a constraint network where variables and constraints are distributed among
multiple automated agents.

Definition: A finite DisCSP is defined by a 5-tuple(A,X,D,C, ψ), where:

• A = {A1, ..., Ap} is a set of p agents.
• X = {x1, ..., xn} is a set of n variables such that each variable xi is controlled

by one agent in A.
• D = {D(x1), ...,D(x2)} is a set of current domains, where D(xi) is a finite

set of possible values for variable xi.
• C = {c1, ..., cm} is a set of m constraints that specify the combinations of

values allowed for the variables they involve. We note that the constraints are
distributed among the automated agents. Hence, constraints divide into two
broad classes: inter-agent and intra-agent.

• ψ : X �−→ A is a function that maps each variable to its agent.

A solution to a DisCSP is an assignment of a value from its domain to every
variable of the distributed constraint network, in such a way that every constraint
is satisfied. Solutions to DisCSPs can be found by searching through the possible
assignments of values to variables such as ABT algorithm [4].

Many hard practical problems can be seen as DisCSPs. Most Distributed
Reasoning platform however assume that problem are static. This has a lim-
itation for dynamic problems that change over time, for example timetabling
shifts in a large hospital where availability staff change over time. Also in a
dynamic environment a DisCSP may change over time, these changes could be
due to addition/deletion of variables, constraints, or agents. The Distributed and
Dynamic Constraint Satisfaction Problems (DDisCSPs) can be described as a
five tuple (A, X, D, C, δ) where:

• A, X, D and C remain as described in DisCSP.
• δ is the change function which introduces changes.

Many DDisCSPs approaches (e.i : DynABT [25], DynBDA [26]) are proposed
to solve such problems, and can be easily implemented in This platform.

2.2 Meeting Scheduling Problem as a DisCSP

The Distributed Meeting Scheduling Problem (MSP) is a real distributed prob-
lem where agents may not desire to deliver their personal information to a cen-
tralized agent to solve the whole problem [20,21].
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The MSP involves a set of n agents having a personal private calendar and a
set of m meetings each taking place in a specified location. Each agent, Ai ∈ A,
knows the set of the ki among m meetings he/she must attend. It is assumed
that each agent knows the traveling time between the locations where his/her
meetings will be held. The traveling time between locations where two meetings
mi and mj will be hold is denoted by TravellingT ime(mi,mj). Solving the
problem consists in satisfying the following constraints: (i) all agents attending
a meeting must agree on when it will occur, (ii) an agent cannot attend two
meetings at same time, (iii) an agent must have enough time to travel from the
location where he/she is to the location where the next meeting will be held.

We illustrate in Fig. 1 the encoding of the instance of the meeting scheduling
problem in the distributed constraint network formalism. This figure shows 4
agents where each agent has a personal private calendar and a set of meetings
each taking place in a specified location. Thus, we get the following DisCSP:

• A = {A1, A2, A3, A4} each agent Ai corresponds to a real agent,
• For each agent Ai ∈ A there is a variable mik, for every meeting mk that Ai

attends,
• X = {m11,m13,m14,m21,m22,m32,m33,m34,m44}.
• D = {D(mik)|mik ∈ X} where,

∗ D(m11) = D(m13) = D(m14) = {s | s is a slot in calendar(A1)}.
∗ D(m21) = D(m22) = {s | s is a slot in calendar(A2)}.
∗ D(m32) = D(m33) = D(m34) = {s | s is a slot in calendar(A3)}.
∗ D(m44) = {s | s is a slot in calendar(A4)}.

• For each agent Ai, there is a private arrival-time constraint (cikl intra-agent
constraint) between every pair of its local variables (mik,mil) (e.g. Omar
must attend tree meetings m1, m2 and m3). For each two agents Ai, Aj that
attend the same meeting mk there is an equality inter-agent constraint (cijk )
between the variables mik and mjk, corresponding to the meeting mk on agent
Ai and Aj (e.g. Omar and Jean participate in the same meeting m1). Then,
C = {cikl, c

ij
k }.

Given this example, a Distributed Constraint Reasoning (DCR) platform
must allow agents to have a reliable communication tool that allows sending
and receiving messages, in order to find the feasible solutions.

3 Related Work

Recently, B. Lutati and et al. [23] have proposed a MAS platform, called
AgentZero. This tool can be considered as a new addition to the available MAS
tools in general and to the DCR research field in particular. The authors claim
that AgentZero is generic and applicable to many domains, specifically introduc-
ing benefits for the DCR simulation domain. However, the platform has been
designed only for simulation use and used only by researchers in Distributed Con-
straint Reasoning. So developing and setting computer software for real problems
based on DCR is not simple and remains a difficult task for users in general.
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Fig. 1. Meeting scheduling problem modeled as DisCSP.

In [8] A. Petcu. Proposes a Framework for Open Distributed Optimization
(FRODO). The framework is implemented in Java, and simulates a multiagent
environment in a single Java virtual machine. Each agent in the environment
is executed asynchronously in a separate execution thread, and communicates
with its peers through message exchange. FRODO comes with several built in
algorithms and a suite of problem generators for benchmarking.

The authors of [24] proposed a open-source tool for solving DCR, called
DCOPolis. DCOPolis is an open-source framework designed to abstract algo-
rithm implementation from the underlying platform (i.e. hardware, network,
operating system). This allows a single implementation of an algorithm to be run
in simulation (i.e. on top of the NS2 network simulator with AgentJ). DCOPolis
differs from existing DCR frameworks and simulators, however, it supports a
novel type of simulation in which the runtime of any distributed algorithm can
be accurately estimated on a single physical computer.

Researchers in DCR are concerned with developing new algorithms, and com-
paring their performance with existing algorithms. Therefore, in [18] the authors
present an open source Java library, called DisChoco which aims at implementing
DCR algorithms from an abstract model of agent. DisChoco allows to represent
both DisCSPs and DCOPs, as opposed to other platforms. A single implemen-
tation of a DCR algorithm can run as simulation on a single machine. DisChoco
is a elegant platform, but all the different issues of realistic uses and actual
deployment have not been addressed.

Developing intelligent software applications based on DCR algorithms is a
difficult task, because the programmer must explicitly juggle between many very
different concerns, including centralized programming, distributed programming,
asynchronous and concurrent management of distributed structures, communi-
cation concerns and others. In addition, there are very few open-source tools for
solving DCR problems in a physically distributed environment. In this paper we
have been looking for a singular platform that would possess not only simula-
tion qualities, but especially designed for realistic and actual deployment. JChoc
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platform is a new added value which allows bridging the gap between simulation
and realistic use. To our knowledge, this is the first DCR platform respecting
FIPA standards and specifications.

4 JChoc Platform

4.1 JChoc Description

The best way to prove the effectiveness of a proposed distributed constraint
reasoning algorithm, is to use it in a realistic multi-platform agent. This is how
we can reduce the gap between theory and practice. JChoc is a distributed
constraints multiagent platform proposed for solving combinatorial problems
within a specific distributed environment. It can also be used to analyze and test
the algorithms proposed by constraints programming community. This platform
is presented in the form of programming environment (API) and applications to
help different types of users. Hence, JChoc can be easily appropriated by two
main actors:

• Developers to design and develop applications (e.i. client application, web
application, mobile application, etc.) within distributed constraints program-
ming based on JChoc API;

• Non-expert user to interact directly with applications based on distributed
constraints programming.

This proposed platform has several advantages:

• A distributed constraints problem can be easily addressed and solved in a
realistic environment by unsophisticated users;

• The performances of the proposed protocols (i.e. ABT, AFC, Adopt, etc.)
can be actually tested and proved in a realistic communication channel (i.e.
WLAN WPAN WMAN WWAN);

• It offers a modular software architecture which accepts extensions easily (i.e.
security, confidentiality, cryptography, etc.);

• Thanks to the extensibility of JADE communication model [19], JChoc allows
the development of multiagent systems and applications consistent with Foun-
dation for Intelligent Physical Agents (FIPA)1 standards and specifications;

• Thanks to the robustness of Choco platform [22], complex agent (i.e. multiple
variables per agent) can easily address and solve its local sub-problem and
use solutions as a compiled domain.

This platform consists of several modules presented as services. The main con-
straint programming services offered are based Distributed Constraint Reasoning
Protocols (DCRP) and Choco Solver (CS). Choco is a platform for research in
centralized constraint programming and combinatorial optimization. This choice
of Choco enabled us to benefit from the modules already implemented in it. In
the next section, we will study the different elements of JChoc platform.
1 http://www.fipa.org/.

http://www.fipa.org/
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Fig. 2. The JChoc architecture.

4.2 JChoc Architecture

JChoc architecture is motivated by FIPA specifications, it allows the develop-
ment of multiagent systems and applications conforming to MAS standards. It
is implemented in JAVA and provides classes that implement and inherit from
JADE and Choco platforms to define the behavior of specific agents. Figure 2
represents the main JChoc architectural elements. This platform has five main
modules.

• DCRP �Distributed Constraint Reasoning Protocols� provides distributed
constraints protocols as service. This element defines new types of messages
and implements the behavior of the agent when receiving and sending a spe-
cific type of information (e.i. ABT, AFC, Adopt, etc.);

• CS �Choco Solver� provides the ability to address and resolve local CSP
sub-problem;

• DF �Director Facilitator� provides a service of “yellow pages” to the plat-
form;

• ACC �Agent Communication Channel� manages the communication
between agents;

• AMS �Agent Management System� oversees the registration of agents, their
authentication, their access and the use of the system.

These five modules are activated at each time the platform is started.
The JADE agent is also a key player in our platform. Thanks to JADE an

Agent Identifier (AID) identifies an agent uniquely.
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JChoc uses extensively a sniffing tool for debugging, or simply documenting
conversations between agents. The sniffer subscribes to AMS agent to be notified
of all platform events and of all message exchanges between a set of specified
agents. When the user decides to monitor an agent or a group of agents, every
message directed to, or coming from, that agent/group is tracked and displayed
in the sniffer GUI. The user can select and view the details of every individual
message, save the message or serialize an entire conversation as a binary file.

5 Using Dynamic JChoc

5.1 Using JChoc in Distributed Environment

In this section we present how to use the JChoc platform in real distributed
environment. The MSP problem depicted in Fig. 1 is used to illustrate this pro-
posed platform. Initially we generate a sub-problem for each agent involved in
the global DisCSP problem, modeled by an expert as an XML file, which allows
standardizing the syntactic structure of the sub-problems. A sub-problem con-
taining only the information necessary for a single agent, so he can participate
in solving the global problem in a real distributed environment.

Figure 3 shows an example of representation of the MSP sub-problem defined
above in the XDisCSP format. Each variable has a unique ID, which is the
concatenation of the ID of its owner agent and index of the variable in the
agent. This is necessary when defining constraints (scope of constraints). For
constraints, we used two types of constraints: TKC for Totally Known Con-
straint and PKC for Partially Known Constraint. Constraints can be defined
in extension or as a Boolean function. Different types of constraints are pre-
defined: equal to eq(Mi,Mj), different from ne(Mi,Mj), greater than or equal
ge(Mi,Mj), greater than gt(Mi;Mj),etc. In this sub-problem there is 1 complex
agent A3 which controls exactly 3 variables. The domain of A3 contain 14 values
D3 = {1...14}. There are three constraints of Arrival time ge(abs(sub(Mi,Mj)):
the first constraint is between M3.2 and M3.3 the second one is between M3.3

and M3.4 and the third is between M3.2 and M3.4, three constraints of equality
eq(Mi,Mj): between M1.4 and M3.4, between M1.3 and M3.3, between M2.2 and
M3.2 after defining our sub-problem we can configure our solver.

Once the sub-problem is generated, we can test the functioning of the plat-
form in a physically distributed environment. So we chose machines that simulate
the different agents of the problem, and filed each sub-problem in a machine,
before launching it.

Figure 4 shows how the master launches its communication interface listening
on the network. We start with instantiate the dissolver object (line 7), This class
models the distributed problem when JChoc is used to solve a problem in a real
distributed environment. All information on distributed problem is encapsulated
in this object (identities of agents, inter-agent constraints, protocol, etc.). Then,
we define the type of master (line 8) (ABT in this case). Finally, we trigger the
container and we launch the master (lines 10–11).
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Fig. 3. Definition of DMS sub-problem in XDisCSP format.

Figures 5, 6, 7 and 8 show how to launch JChoc agents. We start with instan-
tiate the DisSolver object (line 7), followed by the agent and distributed sub-
problem declaration which specifies the resolution algorithm to be used (line
8–9). Next, the declaration of the container containing the master with its IP
address (line 10). Eventually, we launch the agent (line 11).

The master waits for the confirmation of creation of all agents before order-
ing the start of the search. Thus, the problem can be solved using a specified
implemented protocol (ABT for example).
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Fig. 4. How the master launches its communication interface.

Fig. 5. How to implement and launch JChoc DisSolver in Omar agent (A1).

Fig. 6. How to implement and launch JChoc DisSolver in Jean agent (A2).

Fig. 7. How to implement and launch JChoc DisSolver in Yun agent (A3).
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Fig. 8. How to implement and launch JChoc DisSolver in Mamadou agent (A4).

Fig. 9. Definition of dynamic sub-problem in XDisCSP format.
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5.2 Using JChoc in Dynamic Distributed Environment

The use of JChoc platform in a dynamic environment is not very different to
that in the case of distributed static problems. The difference is seen in the xml
file that defines the sub-problem of each agent.

To see the platform’s exploitation in the Dynamic case of Distributed Sat-
isfaction Problems, we take a random example composed of five agents, each
agent has one variable. Figure 9, shows a model of representation of a dynamic
sub-problem of an agent that has two constraints with two other agents, 3 s after
launching, one of the constraints is going to be removed, then after 4 s, another
link with a third agent will be added.

In addition of the definition of variables, domains and constraints, we define
the constraints that will be either added or removed.

After the generation of the dynamic sub-problem, we can launch the resolu-
tion following the same approach as before, but instead to insert the name of an
XML file of a static sub-problem as argument, we insert the name of dynamic
sub-problem XML.

6 Experimental Results

6.1 Configuration Example

To experiment the JChoc platform in a physically distributed environment, we
chose five machines with features 2.93GHz, CORE(TM) 2 duo with 2GB
RAM that simulate agents. These machines are connected via the WLAN
of our laboratory. We also chose ABT algorithm to solve Meeting Scheduling
problems (MSP). In Fig. 1 above, we depict an example of problem solved by
this platform in a live distributed environment network. This figure illustrates
an instance of MSP viewed as DisCSP where each agent has a personal private
calendar and a set of meetings each taking place in a specified location. In that
example, there are four agents, A1, A2, A3 and A4, and four meetings, m1, m2,
m3 and m4. Each agent has its own calendar divided into 14 slots. The time
required for traveling among places where meetings can be scheduled is 2 slots.

We have intentionally limited the number of agents to 4 for this problem
needs, but the number of the agents can be easily extended to N�4 for the
neediest problems.

Figures 10 and 11 show the GUI of the sniffer agent at the start and the
end of ABT resolution. The canvas provides a graphical representation of the
messages exchanged between sniffed ABTagents, where each arrow represents
a message and each color identifies a type of conversation. For example agent
A1 sends an OK? message to informs A2 that he has done a new assignment
m1.1:1 (line 5).

If no new consistent value is found (line 10), A3 generates a new nogood
m1.3:3 ∧ m1.4:5 ⇒ m2.2 
= 5 by the resolution of existing nogoods. Eventually,
the system can stabilize in a state where each agent has a value and no constraint
is violated. This state is a global solution and the network has reached quiescence,
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meaning that no message is traveling through it (lines 37, 40, 43, 46). Once the
solution is found, the master should be advised to spread the stop order to all
agents (lines 49–52) (Fig. 11).

A solution to this example is:
A1−→(m1.1 : 3; m1.3 : 7; m1.4 : 1), A2−→(m2.1 : 3; m2.2 : 5), A3−→(m3.2 : 5;

m3.3 : 7; m3.4 : 1), A4−→(m4.4 : 1).

6.2 Platform Scalability

The scalability of JChoc is the ability of the system, network, and process to
handle a growing amount of work in a capable manner and its ability to be
enlarged to accommodate that growth. In order to experiment our platform, we
consider a large number of MSP instances. These Meeting Scheduling Problem
are characterized by < m, p, n, d, h, t, a >, where m is the number of meetings,
p is the number of participants, n is the number of inter-agent constraints d
determines the number of days. Different time slots are available for each meet-
ing, and h is the number of hours per day, t is a duration of the meeting and a
is the percentage of availability for each participant. We present our results for
the class < m, p, n, 5, 10, 1, 90% > and we vary three parameters: m, p, n (each
agent has 2 meetings):

As shown in experimental results, in Fig. 7, the performance of our platform is
measured in terms of network load (number of messages) and run-time execution.
From these preliminary results we see that JChoc platform performs rapidly in
small instances (#p ∈ [4, 14]). The number of messages increases for #p ∈ [15, 18]
and reduces for #p > 18. This scalability behavior is due to complexity of MSP
problems. When the instance is hard the problem can be solved rapidly (Fig. 12).

Fig. 10. The start on sniffer agent GUI. Fig. 11. The finish on sniffer agent GUI.
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#p #m #n #messages Time (ms)
4 8 3 11 17070
5 10 5 11 17204
6 12 6 14 16144
7 14 7 14 17073
8 16 8 19 19180
9 18 9 24 20210
10 20 10 22 18294
11 22 11 32 20197
12 24 12 27 18516
13 26 15 30 20370
14 28 33 51 26073
15 30 35 105 31103
16 32 29 69 28914
17 34 33 175 38324
18 36 35 139 43172
19 38 38 141 37121
20 40 43 94 33457

Fig. 12. Performance of JChoc platform using ABT protocol on the Meeting Schedul-
ing Problem (MSP).
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Fig. 13. ABT vs DynABT.

6.3 Platform Scalability in a Dynamic Changed Environement

To compare the performance of the DDisCSPs with a platform that supports
dynamic aspect and an other that doesn’t. We made our experiments using ABT
that cant solve such problem dynamically and resolve the problem when changes
are available, and DynABT that can adapt changes and continuous problem’s
solving. We have introduced a rate change δ as a percentage of the total con-
straints in the problem (δ = 20 %). In these experiments we generated problems
randomly, with parameters (a, i, n, d, p1, p2) using the platform generator, where:
a is the number of agents = 20, i: the number of instances = 10, n: the number
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of variables = 20, p1: the density of constraints = 20 %, and p2: the tightness
of constraints with value 10 %–90 % step 10 %, the range of tightness 10 %–40 %
contains solvable problems, 50 % contains both solvable and unsolvable prob-
lems, and 60 %–90 % problems are unsolvable.

The Fig. 13 shows the number of messages sent and CPU Time, measured
for both ABT and DynABT implemented on JChoc platform and using our
laboratory’s wireless network, that allows the communication between Agents
in the same environment and conditions. All results obtained show that Dyn-
ABT significantly outperforms ABT in a dynamic changed environment. This
comparison shows the benefits of solving dynamic distributed problems in a real
distributed changed environment with an algorithm that support dynamic aspect
implemented in a suitable Platform. The platform is user friendly and lets users
implement their Multi-agents applications for dynamic environment.

7 Conclusion

In this paper, we have proposed a modular, reliable, deployable and distrib-
uted software architecture, called JChoc DisSolver, which can be used easily for
several real dynamic combinatorial problems. The main purpose of our platform
is to break down the barriers to building new and innovative applications. The
possibility of combining the expressiveness of Choco, the extensibility of JADE
and our powerful Dynamic Distributed Constraint Reasoning Add-On bring a
strong added value in the development of innovative applications based on Con-
straints Programming paradigm. The JChoc platform presented in this paper
has been designed to support extensions: security, cryptography. In our experi-
ments, We have implemented ABT protocol and solved the Meeting Scheduling
problem (MSP) in a real distributed environment. In a dynamic environment,
we have solved dynamic problems with DynABT, to show the benefits of our
platform that supports the dynamic aspect. We found that, by using this plat-
form, we can adopt easily any proposed protocol for solving distributed con-
straint problem even if environment changes dynamically. Future investigations
are focusing on enhancing the platform, by adding other layers that will allow
users to implement their multi-robots applications easily. The platform will allow
the communication between robots in a dynamically changing environment.

References
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Abstract. Applying the Stream X-Machine formal method in the devel-
opment of multi-agent simulations has a number of significant advan-
tages, since it combines the power of executable specifications and test
case generation. The present work supports this argument by report-
ing on the combined use of two tools that involve Stream X-Machines
(SXM): the first is a domain specific language for effortlessly encoding
agent behaviour using SXMs in a well known agent simulation platform.
The second tool, supports among other things, automated test case gen-
eration using SXMs. The main benefits of using the specific formal app-
roach in such a practical setting is that it offers a clear intuitive way
of specifying agent behaviour and the automated generation of “agent
simulation test scenarios” that can be used for validation.

Keywords: Formal methods · NetLogo · Agent based simulation · Test
case generation

1 Introduction

Agent based simulation has been applied to a wide range of scientific fields, such
as biology, pedestrian simulations, and economics [9]. This explosive interest has
resulted to the proposal in the literature of a large number of agent simulation
platforms [1,18] and development methodologies.

However, the work concerning approaches that combine various aspects of
the standard software engineering process in building simulations is rather lim-
ited. One important issue when developing any system is systematic testing, i.e.
the generation of an (ideally) exhaustive set of test cases that will allow check-
ing the conformance of a system to its specification. Another important aspect
is validation, i.e. checking whether the system exhibits the intended behaviour.
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Validation could be performed by executing the system with some representa-
tive scenarios, thus allowing the developer to investigate the simulation system
behaviour.

Towards this direction, this paper advocates the use of Stream X-Machines
(SXM) to develop agent simulations. SXMs extend finite state machines by aug-
menting them with memory and by labelling the transitions with partial func-
tions instead of simple input symbols. One of the main benefits in using the
specific formalism is that SXMs offer a testing method that under certain design-
for-test conditions ensures the conformance of a system to its specification [14].
Furthermore, there exist tools that allow encoding of executable SXM specifica-
tions of agents in simulation environments, and most importantly, in the current
context, tools that allow automated test case generation.

This work reports on the combined use of two SXM related software arte-
facts on the same agent model: one that supports direct simulation execution of
agents defined as SXMs (TXStates) and a tool for automated test case generation
(JSXM).

TXStates is a domain specific language (DSL) that acts as a layer for speci-
fying and executing agents represented as SXMs in NetLogo [25]. The TXStates
DSL has evolved for a number of years and earlier versions of it have been used to
develop medium to large scale simulations, including some that concern behav-
iour under the influence of emotions [22]. The current work presents in full the
latest complete version of TXStates.

The model developed in TXStates can then be transformed to a JSXM model.
JSXM [11] is a tool, supporting modelling and execution of SXMs and most
importantly automated test case generation, based on the SXM testing theory.

The approach (and not yet a methodology) this work proposes, is to use
TXStates to develop a simulation based on an SXM model through the usual
iterative development process, and then use JSXM to produce test cases for the
same model. The generated test case scenarios can (a) be used to show that the
JSXM and the TXStates model are equivalent and (b) act as input scenarios
to the simulation environment, providing visual output that the user can use in
order to visually validate the modelled agents. The latter presents a complete
set of “simulation scenarios” that can assist the user in finding inconsistencies
between the system the modeller intended to represent and the implemented
model, thus performing validation.

This paper is an extension of the paper [21] presenting in more detail the
approach and reporting on advances regarding the integration of the JSXM and
TXStates tools. The rest of the paper is organised as follows. Section 2 outlines
our approach. Section 3 provides an overview of the SXM formal modelling tech-
nique, how SXM concepts are mapped to agent concepts and an introduction to
SXM testing. The TXStates DSL is presented in Sect. 4. Section 5 describes the
model used as a working example in the current paper. The process of moving
from specification to testing using the JSXM tool is described in Sect. 6. Related
work is presented in Sect. 7. Finally, Sect. 8 concludes the work and presents
future work.
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2 The SXM Approach

Developing a complex agent simulation is a challenging task, mainly due to
the fact that the modeller has to consider all possible interactions between the
modelled agent and the environment, and ensure that these are dealt with in the
model. In many cases, and especially in simulation environments where execution
is usually cheap, discovering the set of interactions and ensuring that the agent
behaves correctly relies on developing the simulation in an iterative manner,
i.e. an implement—visualise—revise cycle. However, when agents become com-
plex, such a cycle demands tools that would facilitate code changes and at the
same time provide a clear, intuitive representation of the behaviour. The TXS-
tates DSL aims at exactly that. Offering the ability of encoding agent behaviour
as stream X-Machines maintains clarity and allows users to easily modify the
encoded behaviour. The execution layer provided by the DSL allows to “run”
the simulation and detect any inconsistencies at an initial level.

To ensure that the simulated agent behaves correctly, testing the model has
to be performed in a systematic manner. For this purpose, the modeller expresses
the corresponding model in JSXM in order to produce test cases. We refer to this
as a corresponding model since the modeller has to include in the former various
environment conditions in order to compensate for the functionality provided
by the simulation environment. The model expressed in JSXM is used to gen-
erate test cases that serve two purposes. The first concerns that of ensuring
that the two models are equivalent [14]. Secondly, the generated test cases are
used as “simulation scenarios” that allow the systematic validation of the agent
by visualizing the agent behaviour with TXStates. Thus model developers can
confirm that the simulated agent behaves as the modeller expected, i.e. validate
the model.

Fig. 1. The SXM approach to simulation development.

Figure 1, depicts the approach taken by this work. The intended model that
the user aims at, is modelled in TXStates. This model acts as a guide for devel-
oping the JSXM model that is used for generating test cases. The test cases
then are executed by the TXStates DSL in order to prove equivalence of the two
models. When this is achieved, the same test cases act as simulation scenarios,
which, when visualized by TXStates, allow the user to observe the behaviour of
the developed simulation in a range of situations and thus validate the model.
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3 Modelling and Testing Agents as SXMs

State machines have been used extensively to derive agent simulation imple-
mentations since they provide a rather intuitive way to model agent behaviour.
SXMs extend finite state machines with a memory structure and transitions
labelled with functions and thus allow more powerful modelling of a system. For
completeness, the definition of SXMs is presented below.

Definition 1. A stream X-machine [13] is an 8-tuple Z = (Σ, Γ, Q, M, Φ, F, q0,
m0), where:

– Σ and Γ are the input and output alphabets, respectively.
– Q is the finite set of states.
– M is the (possibly) infinite set called memory.
– Φ is a set of partial functions ϕ, called processing functions; each such function

maps an input and a memory value to an output and a possibly different
memory value, ϕ : M × Σ → Γ × M .

– F is the next state partial function, F : Q×Φ → Q, which given a state and a
processing function determines the next state. F is often described as a state
transition diagram.

– q0 and m0 are the initial state and initial memory respectively.

Intuitively, an SXM Z can be thought as a finite automaton with the arcs
labelled by functions from the set Φ. The automaton AZ = (Φ,Q, F, q0) over the
alphabet Φ is called the associated automaton of Z and is usually described by
a state-transition diagram.

Definition 2. A computation state is defined as the tuple (q,m), with q ∈ Q and

m ∈ M . The computation step is defined as (q,m)
ϕ

� (q′,m′) with q, q′ ∈ Q and
m,m′ ∈ M such that ϕ(m,σ) = (γ,m′) and F (q, ϕ) = q′. The computation is the
series of computation steps when all inputs are applied to the initial computation
state (q0,m0).

An agent can be considered as an entity that maps its current percepts and
state to an action. Thus, in order to model the behaviour of an agent using SXMs,
a mapping of the concepts of the former to the latter is necessary. However, due
to the structure of SXMs this mapping is rather clear and straightforward:

– The input alphabet Σ forms the agent percepts.
– The agent’s internal world representation and all parameters that affect its

behaviour are mapped to the SXM memory M and current state. In other
words, M holds the agent beliefs, while with appropriate encoding of states,
it can also hold the agent’s current goal.

– Agent behaviour is modelled as a set of functions Φ and the transition dia-
gram F .

– Finally, agent actions are mapped to the output Γ .
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3.1 Background on Testing with SXM

SXMs have the significant advantage of offering a testing method that, under
certain design-for-test conditions, ensures the conformance of a system under
test (SUT) to a specification. This section provides details regarding test case
generation to ensure completeness of the paper.

The goal of the testing method is to devise a finite test set X ⊂ Σ∗ of input
sequences that produce identical results when applied to the specification and
the SUT only if they both compute identical functions. The main assumption
that needs to be made for the SUT is that it consists of correct elementary com-
ponents, i.e. the processing functions are correctly implemented. Furthermore,
it is estimated that the number of states in the SUT is n′ ≥ n, where n is the
number of states of the specification. Let k = n′ − n.

Input sequences attempt to drive the SUT to all the states, then exercise from
those states paths of transitions of length k + 1 and finally uniquely identify the
reached states. If the output sequences produced by the SUT are different than
the ones produced by the specification faults are revealed.

The SXM testing method [13,14] relies on the following design-for-test con-
dition:

– Output-distinguishability: Processing functions should be distinguishable
by their different outputs on some memory-input pair, i.e. for every φ1, φ2 ∈ Φ,
m ∈ M and σ ∈ Σ such that (m,σ) ∈ dom φ1 and (m,σ) ∈ dom φ2, if
φ1(m,σ) = (γ,m1) and φ2(m,σ) = (γ,m2) then φ1 = φ2.

The testing method for SXMs is an extension of the W -method for finite
state machines. The test generation is a two stage process: (1) the W method [5]
is applied on the associated automaton AZ to produce a set T ⊂ Φ∗ of sequences
of processing functions, which are then (2) translated into sequences of inputs
for Z using a so-called test function t : Φ∗ → Σ∗.

T is obtained by constructing a state cover set S and a characterization set
W of AZ . S ⊂ Φ∗ contains sequences to reach all states of AZ , while W ⊂ Φ∗

contains sequences to distinguish between any two distinct states of AZ . Each
sequence t ∈ T consists of three sub-sequences, i.e., t = syw, where s ∈ S drives
the automaton to a specific state, y ∈ Φ∗ attempts to exercise transition-paths
up to length of k+1 and w distinguishes the resulting state from any other state.
Thus T = SΦ[k + 1]W = S(

⋃
0≤i≤k+1 Φi)W .

Based on [14], the maximum number of test sequences, i.e., card(T ), is less
than n2 · rk+2/(r − 1), where n = card(Q), r = card(Φ). The total length l of
the test set is less than card(T ) · n′, where n′ = k + n.

Since SXMs have memory, there may exist sequences of processing functions
that are accepted by the associated automaton AZ but they cannot be driven
by any input sequence. These sequences are called non-realizable.

Definition 3. A sequence p ∈ Φ∗ is called realizable in q and m if p ∈ LAZ
(q)

and ∃s ∈ Σ∗ such that (m, s) ∈ dom ‖p‖. The set of realizable sequences of Z in
q and m is notated as LRZ(q,m). Let LRZ be defined as LRZ(q0,m0).
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The definitions of the state cover and the characterization sets are extended
to handle realizable sequences of processing functions.

A state is r-reachable if it can be reached by a realizable sequence p ∈ LRZ .

Definition 4. A set Sr ⊆ LRZ is called a r-state cover of Z if for every
r-reachable state q of Z there exists a unique p ∈ Sr that reaches the state q.

The set of memory values that can be attained at a state q is notated as
MAtt(q) and it consists of all memory values that are the result of realizable
sequences that end at state q, i.e. MAtt(q) = {m ∈ M | ∃p ∈ LRZ ∧ ∃s ∈
Σ∗, ‖p‖(m0, s) = (g,m)}.

Any two states have to be separable, i.e. distinguished by two realizable
sequences with overlapping domains.

Definition 5. A pair of states (q1, q2) is separable if there exists a finite set of
sequences Y such that ∀m1 ∈ MAtt(q1), there exists p1 ∈ LR(q1,m1) ∩ Y and
p2 ∈ LR(q2,m2) ∩ Y such that dom p1 ∩ dom p2 = ∅.

Essentially, at each state the same sequence of inputs will trigger one of the
two sequences of processing functions. By the observed outputs we can tell which
sequence of processing functions has been triggered and thus identify the state.

Definition 6. A set Ws ⊆ Φ∗ is called a separating set of Z if it separates
(distinguishes) between every pair of separable states of Z.

If Sr reaches all states of Z and Ws separates all pairs of states in Z. the
testing method reduces to a variant of the W -method:

T = UWs = ((SrΦ[k + 1]) ∩ LAZ
)Ws

Furthermore, the testing method requires that all sequences of U = (SrΦ[k+
1])∩LAZ

are realizable, i.e. it is required that U ⊆ LRZ . Note that the sequences
of processing functions of maximum length k + 1 that follow the r-state cover
are limited to those that are accepted by the associated automaton.

The final test suite for checking functional equivalence is:

X = t(T ) = t(UWs)

The sequences of inputs in X ⊂ Σ∗ are fed to the SXM in order to produce
the corresponding expected sequences of outputs Y ⊂ Γ∗.

4 MAS Simulation with TXStates

TXStates is an internal DSL for the NetLogo Agent Simulation environment,
that allows encoding SXM agent specifications in a natural manner. NetLogo [25]
is “a cross-platform multi-agent programmable modelling environment” aiming
at MAS simulation. In NetLogo, the environment consists of a static grid of
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patches, useful for describing the environment, since they are capable of inter-
acting with other entities. This “world” is inhabited by turtles that are entities
that “live” and interact within it. They are organised in groups called breeds,
i.e. user defined teams sharing some characteristics. Agent behaviour is speci-
fied by the domain specific NetLogo programming language, supports two main
programming constructs: functions (called reporters) and procedures. The lan-
guage includes a large set of primitives for turtles motion, environment inspec-
tion, standard program control, etc. NetLogo v5 introduced tasks, the version of
anonymous functions or closures of NetLogo.

Although a powerful modelling tool, as indicated by the constantly increasing
number of publications that use NetLogo as the platform of choice, NetLogo
has been criticised for not providing modelling constructs that allow encoding
of more complex agents. The TXStates DSL provides an answer to this and
contributes to the list of tools to support complex agent behaviour encoding,
such as BOD [2] and IODA [17], adding the dimension of automatic test case
generation for agents.

4.1 TXStates Models SXMs

The TXStates supports encoding all modelling constructs of SXM definition
presented in Sect. 3. Since the emergent phenomena that manifest in multi-agent
simulations demand a trial and error approach and constant changes in the
model, an iterative modelling approach is recommended and ease of encoding
becomes a very important requirement.

In essence, TXStates extends the NetLogo programming language with the
necessary constructs to build executable SXM models. The DSL is internal since
it relies on the syntax of NetLogo and all the code is implemented using the Net-
Logo language, possibly at the cost of execution speed, but offering tight coupling
with the underlying language and without interrupting the normal development
cycle a modeller follows in the specific platform. We decided not to implement
an external DSL, since in order to arrive to an executable simulation, apart from
the SXM model, the developer has to provide other parts of the simulation, such
as environment setup, visualization and agent perception mechanisms. Having
an external DSL would mean that the developer would have to work on two
different platforms simultaneously, thus complicating the development process.

The implementation relies on storing agent specific information on turtle-own
variables, since each agent must carry its own agent (execution) state. Thus,
memory M is mapped to a data structure stored in a turtle-own variable called
memory that consists of attribute - value pairs. The DSL provides special care for
its management to facilitate model development (Table 1). Table 1 the procedure
x-mem-set <V> <Val> is a destructive update with value <Val> for attribute
(or memory element) <V>.

In a similar manner, percepts that correspond to SXM input Σ are stored
in a variable percept and although percepts is a relatively simple data structure,
the library provides a set of programming constructs (Table 1) to access/add
percepts depending on environment changes.
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Table 1. TXStates primitives for X-Machine memory handling and percept updates.

Memory primitives Percept primitives

x-init-memory x-add-percept <P>

x-mem-initial-var <V> <Val> x-percept-add-value <P> <Val>

x-mem-set <V> <Val> x-has-percept? <P>

x-mem-value <V> x-percept-value <P>

x-oneof-percept-value <P>

x-all-percept-values <P>

Probably the most interesting features of the DSL are encoding the set of
processing functions Φ, output Γ , states Q and the transition diagram F . These
are described in the sections that follow.

4.2 Encoding Agent Actions

Processing functions of the set Φ are encoded as NetLogo reporters (NetLogo
jargon for functions), that return results in a specific format, the latter being
handled by the TXStates meta-interpreter. There are no arguments to these
reporters since by SXM definition, functions operate on input and memory and
produce output and memory updates and thus all these functions are assumed
to work on the memory structures described in the previous section.

Since, processing functions are partial functions, they must return (report
in NetLogo terms) either output and memory updates, prefixed by a special
success token or a special failure token. These special tokens are used by the
TXStates meta-interpreter to determine possible transitions. Thus, each such
NetLogo reporter should return:

– x-false, a keyword handled by the meta-interpreter, indicating that the func-
tion is not applicable (failure token),

– x-true <xmOutput> <xmMemUpdates>, indicating that the function is
applicable success token and will produce <xmOutput> output and change
memory according to the <xmMemUpdates>.

The <xmOutput> corresponds to the SXM output Γ and in the simulation
context defines the list of actions that the agent has to perform. This list consists
of NetLogo tasks, prefixed by the keyword x-action, included in delimiters #<
and >#. Thus, <xmOutput> has the form:

#< x-action task [...] x-action task [...] ... >#

The second “argument” <xmMemUpdates> is a list of memory updates, i.e. invo-
cations of x-mem-set commands described in Table 1, again delimited by #<
and >#. Thus, <xmMemUpdates> has the following form:

#< x-mem-set <Memory Var> <Value> x-mem-set ... >#
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Empty <xmOutput> and <xmMemUpdates> are denoted as #< >#. It should
be mentioned that the above are lists, and not sets, i.e. the changes described
either as environment effects or memory updates will be performed in the order
they appear.

There are no limitations regarding the code that a processing function can
include, as long (a) it returns results in the form indicated above (b) does not
include side-effects, i.e. changes in the simulation environment and agent state,
outside those explicitly encoded as return values of an x-true function result.
Since the meta-interpreter evaluates all functions, producing candidate memory
and output results and then decides on which function to apply, the presence of
side-effects outside x-true lists would produce unexpected behaviour. Allowing
arbitrary NetLogo code in a processing function contributes towards the tight
integration to the TXStates DSL to the underlying platform.

A processing function encoded in TXStates is presented in Fig. 2. The func-
tion checks whether the agent has certain percepts, executes the NetLogo proce-
dure bee-move and updates the memory variable “position” to reflect the change
in the “beliefs” of the agent that it has moved. The condition that appears in the
ifelse is known as a “guard” and defines the domain of the partial function.

Fig. 2. Example of a processing function demonstrating the use of TXStates primitives.

4.3 State and Transition Diagram Specification

SXM states Q and the transition diagram F are encoded quite naturally in the
TXStates DSL. A single transition labelled by a processing function, is rep-
resented as # x-func <XMFunc> goto <StateName>, where <XMFunc> is a
NetLogo reporter as described in Sect. 4.2 and <StateName> is the name of a
state, i.e. a simple string. An SXM that consists of multiple states each state
being a set of transitions and can be defined as follows:

x-diagram

state <StateNameA>

# x-func <XMFunc A1> goto <StateName A1>

...

# x-func <XMFunc An> goto <StateName An>

end-state

...
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state <StateNameK>

# x-func <XMFunc K1> goto <StateName K1>

...

end-state

end-x-diagram

In such a specification, the first state that appears in the definition of the
x-diagram is considered to be the initial state q0.

4.4 Executing the Agent Specification

Executing the agent specifications presented in the previous sections is the
responsibility of the TXStates meta-interpreter. The latter is invoked by call-
ing the execute-state-machines command, usually in each simulation cycle.
Before invocation, the user must ensure that the agent percepts been updated,
through appropriate calls of the corresponding primitives in Table 1.

The meta-interpreter is responsible for handling state transitions and action
execution and implements the computation described in Definition 2, with each
invocation of the execute-state-machines command corresponding to a single
computation step of Definition 2. Thus at each cycle, the meta-interpreter:

1. Forms the list of functions Φstate ⊆ Φ that label transitions in the current
SXM state q, i.e. Φstate = φ ∈ Φ : (q, φ, q′′) ∈ F , in the order they appear in
the agent specification.

2. Form the list Φtrig ⊆ Φ that contains all functions from Φstate whose guards
are satisfied. In the case that the trigger list is empty, execution ends with
an error message.

3. Select the first function φi from the list Φtrig .
4. Execute actions specified by φi.
5. Apply memory updates specified by φi.
6. Perform a transition to state q′ that corresponds to function (q, φi, q

′) ∈ F .

In order to simplify the encoding of guards, an ordering is imposed to the
function application; currently the selection function chooses the first function
in the state definition that triggers in step 3. This imposes a priority ordering
on the transitions in a state, with the transitions that appear higher in the state
definition having a larger priority. Imposing a priority ordering ensures that the
model is always deterministic, i.e. it is always clear which state transition will
occur, an issue that is very important when dealing with simulation environ-
ments, since it maintains reproducibility. In the corresponding JSXM model, the
same behaviour is achieved by having a richer set of guards in the functions.

The TXStates DSL1 is provided as a NetLogo library that users can include
in their models and specify behaviour. The major advantage of using TXStates
is that developers can develop models in an iterative fashion, modifying the
X-Machine model quite easily and viewing directly the results of their changes.
Thus, complex model development can be greatly facilitated.
1 http://users.uom.gr/∼iliass/projects/TXStates/.

http://users.uom.gr/~iliass/projects/TXStates/
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5 Case Study: Modelling the Japanese Bee

The working example we selected in the present work concerns the behaviour of
Japanese bees under the presence of a giant Asian Hornet scout in the hive [19].
The phenomenon is an excellent example of collective behaviour under attack in
insects, since bees form the so called “bee ball” around the scout hornet, and by
doing so increase the temperature inside the ball to a level non tolerable by the
hornet, but tolerable by the bee itself.

We have implemented a simulation using SXMs that mimic the behaviour of
both the hornet and the bees during this phenomenon. Rather informally, bees
that do not perceive any danger, are in a non-alert state, i.e. they keep working
as usual. Upon perception of a hornet in the hive, bees start moving towards the
hornet in order to form the attack assemblage. However, since the perception
radius of bees is limited and in order to engage as large a population as possible,
bees become aware (“inAlert”) when perceiving another bee approaching the
hornet, or another bee alerted. Bees in alert that do not directly perceive the
hornet try to follow an approaching bee or move randomly. While approaching,
the bee has to detect when it reached the attack formation: this case occurs
either when it is close to the bee, or when there is a bee in its adjacent patches
(neighbourhood) is an attacking bee. Upon reaching the attack formation, the
bee starts the attack, i.e. produces heat if the environment temperature is below
49 oC, and does nothing otherwise. Obviously, since the hornet moves and pos-
sibly kills other bees, bees attacking have to understand whether the hornet has
been relocated, in order to adjust their position.

Modelling such a phenomenon in an agent based simulation is rather straight-
forward, having bees and the scout hornet modelled as a single agent. The model
has been studied before in [15] and we closely follow the approach authors have
taken in that paper, although providing a different implementation and a mod-
ified state diagram.

The behaviour of the bee is modelled as a set of states, as for example work-
InHive, inAlert, attacking, etc. reflecting the state of the bee under the presence
of a hornet in the hive, or other bees in alert. The state transition diagram is
shown in Fig. 3. This diagram was encoded in the TXStates DSL quite naturally
as shown in Fig. 4.

As shown in the diagram of Fig. 3, state transitions are labelled by functions.
For instance, the function in Fig. 2 implemented in TXStates labels the self
transition of the state “approachingHornet”. Input reflects information the agent
perceives from the environment. For example, when the agent perceives a hornet,
the tuple (hornet, true) is member of the input of the agent and this becomes
true when the hornet is positioned inside the radius of perception of the bee.

The NetLogo implementation of the Bee model using TXStates is approx-
imately 290 lines of code including the state diagram and the SXM functions,
while the code for the hornet and the set up of the environment is approximately
170 lines.
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Fig. 3. The state diagram representing the Japanese bee. Labels in transitions represent
processing functions that based on percepts and memory are triggered to alter the
environment and the agent’s internal memory.

Fig. 4. Encoding the state transition diagram of the Japanese Bee in TXStates. Due
to space limitations, part of this encoding is shown below.

6 Generating the Test Cases

JSXM [11] is a tool, developed in Java, that allows the specification of SXM
models, their animation and most importantly automated test case generation.
The test cases that are generated by JSXM are in XML format and they are
independent of the technology or programming language of the implementation.
In the following sections we briefly describe the JSXM modelling language and
the associated tool suite.2

2 The tool can be downloaded from http://www.jsxm.org.

http://www.jsxm.org
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6.1 The Model in JSXM

The JSXM modelling language is an XML-based language with Java in-line code.
An extract of the JSXM code for representing the model of Fig. 3 is shown in
Fig. 5. Information regarding states, transitions and input/output is included in
the corresponding XML elements. Memory elements are specified with in-line
Java code, that allows the definition of any complex Java data structure as the

Fig. 5. JSXM model of the Japanese Bee.
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memory of the system. The same applies for the definition of processing functions,
that are specified by defining their inputs, outputs, preconditions (specifying the
domain of the function) and effects on the memory. Due to space limitations only
one processing function (arrivedCloseToHornet) is shown in Fig. 5.

As mentioned in Sect. 2, the JSXM model implemented is the corresponding
model of the one implemented in TXStates. There are two issues that have to
be considered:

– The SXM testing method requires that the model is deterministic i.e. in each
state, the choice of a processing function is performed deterministically. It
should be noted, that deterministic choice in function application to a state
is imposed in the TXStates model by introducing to the meta-interpreter a
priority ordering (Sect. 4.4).

– The simulation environment imposes constraints on inputs. For instance,
although hornetPosX is of type byte (Fig. 4), the simulation environment size
could constrain this to a smaller range of values.

Thus, functions in the JSXM model require a richer set of guards to
deal with the above two cases. As an example, Fig. 6 depicts the seeHor-
net function in TXStates and in the corresponding JSXM Model. The TXS-
tates and JSXM guards regarding the perception of a hornet that is still alive
(!percept.get deadHornet()) are equivalent, the JSXM function contains two
sets of additional guards:

Fig. 6. The see-hornet function in TXStates and JSXM.

– The guard !percept.get lethalBite() that is required for ensuring that the
JSXM model is deterministic, in order to distinguish the seeHornet function
from the attackedByHornet function in the same state. In TXStates this is
done by placing the latter function before the former in the state description.
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– The guard abs(positionX-percept.get hornetPosX()) + abs(positionY
– percept.get hornetPosY())<10 that states that the hornet must be in the
perception radius (10 units) of the bee in order for the latter to perceive it.
This is constraint imposed by the simulation environment, since the perception
mechanisms of the agent implemented ensure this and thus there is no need
to encoded it the corresponding TXStates function.

The environment constraint stated above is applicable only in the case of the
specific function. Naturally there exist a number of constraints that are global i.e.
applicable to all function. A classic example is the size of the simulation world
that constraints inputs regarding the positions of agents, free positions that the
bee can move to in a single move, that have to be in the close neighbourhood
of the bee, etc. To avoid repeating these global constraints on every function
specification in JSXM, these are encoded once and applied to all processing
functions.

6.2 Test Generation

The JSXM tool implements the SXM testing method (Sect. 3.1) for the gen-
eration of the test set. For the test generation process the modeller needs to
provide:
– a JSXM specification of the SXM model Z.
– an r-state cover Sr and a separating set Ws

– the estimated difference k of states between the SUT and the specification.

The r-state cover for the specific case study consists of the following
sequences of processing functions: 〈〉, 〈attackedByHornet〉, 〈perceiveDanger〉,
〈seeHornet〉, 〈seeHornet, arrivedCloseToHornet〉. All states of the state dia-
gram are reached by these sequences. It should be noted that the r-state cover
is computed automatically by the JSXM tool.

The separating set Ws consists of the following sequences: 〈attackedBy
Hornet〉, 〈beeDying〉, 〈keepWorking〉, 〈seeDeadHornet〉, 〈lostHornet〉, 〈search
ingHornet〉, 〈followApproachingBee〉, 〈moveTowardsAttackFormation〉, 〈hor
netRelocated〉, 〈produceHeat〉, 〈maintainTemp〉. At each reached state the
execution of these processing functions produces outputs that uniquely separate
the reached state by all the other states. Automatically computing the separating
set Ws is still an open research issue.

For the input-output test cases to be produced, all the input sequences are
fed to the JSXM animator, which acts as an oracle, and the resulting out-
put sequences are recorded. The resulting test cases (pairs of input and output
sequences) are stored in an XML file in a programming language independent
format. For the specific case study the JSXM tool has generated 62 test cases
for k = 0.

6.3 From Test Cases to Simulation Scenarios

The test cases produced by the JSXM tool are then processed in order to
prove that (a) the TXStates and JSXM models are equivalent, and (b) produce
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simulation scenarios for validation. Since the sequences of test cases are in XML,
XSLT transformations are applied in order to obtain the NetLogo code necessary
for performing both these tasks. In the case of proving equivalence, the XSLT
transformations produce a sequence of x-add-percepts calls, as NetLogo tasks,
that “inject” the input values as percepts in the usual cycle of the agent with
no other changes in the environment. Then the output of the NetLogo model is
checked against the expected output recorded in the sequence.

In the specific case, all tests but one succeeded completely proving the two
models equivalent. The test that partially failed regarded the sequence of func-
tions 〈attackedByHornet, beeDying, beeDying〉, where the last two function
calls are self-transitions on the final state. However, since in the simulation envi-
ronment, when a bee “Dies” it is removed from the simulation, the second call
to BeeDying failed, simply because there was no bee to execute the function.

A similar process is used to produce the simulation scenarios used for valida-
tion. Since the input to each JSXM function actually describes the state of the

Fig. 7. Part of a test sequence generated by the JSXM tool. In the specific setting,
the bee is expected to follow the transition guarded by the “seeHornet” function and
output that it has perceived a hornet.

Fig. 8. Two snapshots of the scenario case obtained by the function call of Fig. 7. Bees
are labelled with their current SXM state.
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environment, appropriate XSLT transformations produce the necessary NetLogo
code to set up the exact state of the environment described. For instance, in the
case of the test generated by JSXM shown in Fig. 7, execution of the code places
the bee at position (0, 0), sets the temperature to 30, and places a live hornet at
position (0,−9). Then the agent TXStates implementation is executed and the
resulting actions are matched against the output of the test case, while visually
providing feedback to the modeller involving the state change of the bee. Thus
the modeller can validate that this is the expected behaviour of the bee in the
specific scenario. Figure 8, presents an example of the visual output that the
modeller sees, that corresponds to the function call seeHornet. The image on
the left presents how the environment is set up for the function to be applicable
and the one on the right the state of the world after a single run.

7 Related Work

From the various Multi-Agent Systems (MAS) design methodologies that exist,
relatively few deal explicitly with simulation design, and among these even
fewer are applicable for producing NetLogo code. The Behavior Oriented Design
(BOD) [2] and the Interaction-Oriented Design of Agent simulations (IODA) [17]
are examples of such methodologies that are also currently supported by cor-
responding NetLogo tools. Going into the specifics of both these methodologies
exceeds the scope of this section work, however, they both lack support for any
automated test generation process.

A number of DSL and DMSL approaches to programming MAS have been
reported in the literature. For instance, [4,12] present approaches to domain
specific modelling languages (DSML), for developing multi agent systems. These
approaches differ from TXStates since they focus on describing MAS models
using high level concepts such as agent roles and interactions, and provide and
model transformations to code. The present work addresses mainly and problem
of modelling and validating a single agent in a MAS simulation setting, and
provide what could be considered as unit testing/validation of that agent model.
To the best of our knowledge, these modelling frameworks do not address this
problem.

A number of diverse approaches for testing agent based systems are found in
the literature. As mentioned, our focus lies mainly on two aspects. On one hand,
whilst testing the communication and coordination in a society of agents is of
interest when developing MAS, testing a single agent against its specification is
of paramount importance. Under this scope, a number of unit testing frameworks
have been proposed. However, there is a variety of views as to what constitutes a
unit to be tested. On the other hand, tools that offer automated test generation
and execution capabilities are limited.

Caire et al. [3] present a testing framework that offers a skeleton code for the
developer to build test cases, considering as a testable unit either a single agent
or any of its internal behaviours as a black box. The framework was developed
as part of the PASSI [8] development methodology. An agent system’s behav-
iour was initially captured in a Multi-Agent Zoomable Behaviour Description
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diagram - introduced by the authors - which is in essence an Activity Diagram
extended with Agent UML notations. The tool also provides a test agent for
automatic test case execution.

SUnit [24] is a framework that is built on top of the Seagent [10] MAS devel-
opment platform. The tool allows for testing of agent interactions and plans,
which are considered as the units to be tested. SUnit extends the JUnit3 test-
ing framework, and was developed with the purpose of facilitating test driven
development of MAS. SUnit provides a mock agent infrastructure, which the
developer uses to automatically run the manually written tests.

Coelho et al. [7] suggest that the modular unit in a MAS is a single agent, and
thus, propose the notion of a Mock Agent that is built specifically for testing the
agent under test. Therefore, each Mock Agent is a manual fake implementation
of an actual agent that interacts with the agent (role) under test. Coehlo et al.
in [6] later proposed JAT (Jade Agent Testing Framework), a test automation
framework built on top of the JADE4 MAS development platform, and is aimed
to facilitate the developer in creating the Mock Agent code and automatically
executing the test scenarios.

The above work focuses on automating the execution rather than the gen-
eration of test cases. The latter capability is provided in the work of Zhang
et al. [27] who proposed a model-based testing framework that allows for auto-
matic test generation and execution. The framework uses the design artefacts
produced with the Prometheus [20] agent development methodology. The frame-
work was integrated [28] in the Prometheus Design Tool5 (PDT). In this case,
an agent consists of events, plans and belief-sets, and each of these were consid-
ered as a unit to be tested by the authors, in contrast to our work that tests the
dynamic internal behaviour of a single agent as a whole rather than its individual
components.

A different approach on model based test generation is provided by Seo
et al. [23] and Zheng and Alagar [29]. The former used Statecharts extended
with roles descriptions, event types and memory to model a MAS. Based on the
diagram, all possible transitions to all concrete events were manually calculated,
and then fed to a tool developed by Seo et al. that generated the test sequences.
The latter used Extended State Machines (ESM) to formally model an agent and
then used this model to generate a set of unit test cases. Each test set consisted
of a set of state cover sequences and a set of transition cover sequences. However,
in both these cases, no further discussion exists on automating the test execu-
tion process. More importantly, in our case, the SXM testing theory provides
for more coverage than state and transition coverage, additionally allowing for
proof of functional equivalence of the models.

Automated test case generation and execution are useful in supporting model
verification to some significant extend. Visualization on the other hand is con-
sidered as one of the most predominant validation techniques for simulations.

3 http://junit.org/.
4 http://jade.tilab.com/.
5 http://www.cs.rmit.edu.au/agents/pdt/.

http://junit.org/
http://jade.tilab.com/
http://www.cs.rmit.edu.au/agents/pdt/
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A validation framework proposed by [16] identifies animation assessment as one
of the basic methodological elements. To further support a preliminary model
validation, Xiang et al. [26] applied a model-to-model comparison technique.
They initially built a conceptual model of the Natural Organic Matter (NOM)
evolution, and then implemented a corresponding simulation. By using various
verification methods and by visualizing 450 simulation runs of their model with
different random seeds, they validated their model against the conceptual one.
They subsequently compared their results with another existing implementa-
tion of the same conceptual model. The authors argue that the good agreement
between the results of these two different implementation supports the validity
of their implementation. In our case, the generated test cases facilitate the vali-
dation via visualization process, by providing the developer with an easy way of
selecting specific test scenarios of interest.

8 Conclusions

This work presents a systematic approach to the problem of developing, testing
and validating agent simulations. Towards this direction, the current work:

– describes a DSL that can be used to specify and execute an SXM model, that
encodes the behaviour of an agent in the simulation, and

– shows how an existing tool for automated test case generation that employs
the same formal modelling approach can be used for generating a set of “sim-
ulation scenarios.”

– reports on the necessary changes in the TXStates model needed to obtain the
JSXM model in order to produce the test cases.

Thus, this paper demonstrates how the SXM formal modelling technique is
employed in a practical setting to develop simulations.

The XSLT transformations provide a way to automatically test equivalence
of the two models developed models. These are general and can be applied to
any model with minor changes, thus removing the need of manually crafted code
as reported in [21]. Although the necessary changes of the transformations are
minimal we are planning to extend the tool in order to fully automated the
process.

One of our immediate aims is to provide a way to semi-automatically trans-
late large parts of the TXStates model to the JSXM modelling language, includ-
ing both the generation of the richer set of guards for processing functions, and
the set of global constraints related to the simulation world that are applied in
all functions. The task has also a theoretical interest, since it demands a sys-
tematic way of imposing mutual exclusiveness of guards on a set of processing
functions, by modifying the former.

Finally, it is our intention to extend this approach to other agents simulation
and agent programming platforms. One future direction is to investigate whether
BDI agents can be modelled as SXMs and apply the specific testing approach
to such systems.
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Abstract. Adopting patterns, i.e. reusable solutions to generic prob-
lems, turns out to be useful to rely on tested solutions and to avoid
reinventing the wheel. To this aim, we proposed to use adaptation pat-
terns to build systems that exhibit self-adaptive features. However, these
patterns would be more usable if integrated in a methodology exploited
to develop a system. In this paper we show how our Catalogue of adapta-
tion patterns can be integrated into methodologies for adaptive systems;
more in detail, we consider methodologies which support the develop-
ment of multi-agent systems that can be considered good examples of
adaptive systems. The paper, in particular, shows the integration of our
Catalogue of adaptive patterns into the PASSI methodology, together
with the graphical tool that we developed to support it.

Keywords: Multi-agent system · Adaptation pattern · Methodology

1 Introduction

Intelligent software systems are playing an important role in many fields, but
they are becoming more and more complex, requiring appropriate approaches
for their development and maintenance. In particular, their complexity and the
fact that they often cannot be stopped, introduce the need for some form of
adaptation to the changes in the surrounding environment or in general in the
execution conditions. So, self-adaptation is more and more a required feature of
the complex intelligent systems, and must be carefully taken into consideration
during the development, from a software engineering point of view, becoming
one of the challenges for the discipline [14].

We define Self-adaptation as the ability of a software system or an applica-
tion to automatically modify its structure and behaviour at runtime in order to
ensure, maintain or recover some functional or non-functional properties, even
in the case of unexpected changes to operating conditions or user requirements.
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In the literature, we can find two approaches to develop self-adaptive sys-
tems: parameter adaptation and compositional adaptation [21]. Parameter adap-
tation means adapting the system’s behaviour through changing parameters,
while compositional adaptation is meant as a change of components (in terms of
behaviour or whole structure). In our work, we focus on compositional adapta-
tion, but in a more specific way: we do not aim to simply change the components
in a system, but we aim to modify their behaviour (defined as the pattern that
describes it) inside the system. This leads to conceive the adaptation of a system
as the capability of changing its internal structure in order to make it behave
differently, not only as the possibility of changing the system’s components.

Anyway, there is a lack of support for designing and implementing self-
adaptive systems, in terms of reusable and well-defined components and how
composing them, so designers often start from scratch the development of a self-
adaptive system. From this point of view, the availability of adaptation patterns
is considered as useful means to introduce adaptation into a system. Further,
the integration of adaptation patterns into a more general framework not only
will help suggesting developers how to include adaptivity in their systems, but
also this would take advantage of the methodologies and the tools exploited in
the framework, leading to a fast and less error-prone development.

The general aim of our work is to propose a comprehensive approach that will
guide developers during the development phases, from the system’s specification
to the system’s implementation, in a complete framework for developing self-
adaptive systems. To this purpose, we have defined four general steps for our
work:

1. analysis of existing methodologies, choice of few of them and integration of
our Catalogue of adaptation patterns into the chosen ones;

2. modification of the tools that support the chosen methodologies, for the cre-
ation of adaptive systems;

3. creation of a middleware that will merge the concepts coming from method-
ologies’ tools, by means of Java classes;

4. evaluation of the framework, experimenting the creation of self-adaptive
systems.

In a previous work [27], we have presented a preliminary result of the first
step. In this paper, we extend the presentation of the results of the first step and
add some results of the second and of the third steps, in particular related to a
specific methodology.

With regard to the first step, we will show how our Catalogue of adapta-
tion patterns can be integrated, in particular, into one existing methodology,
PASSI; we will exploit the SPEM notation [34] to specify when and how our
Catalogue can be considered in the development process proposed by a specific
methodology.

With regard to the second step, we will present the graphical tool we have
developed in order to support the previously mentioned integration.

With regard to the third step, we will show how the graphical tool produces
a set of Java classes.
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The reminder of this paper is as follows: in Sect. 2, we present the Catalogue
of adaptation patterns, explaining its importance in connection with adaptive
systems and methodologies. Further on, in Sect. 3 we introduce agent-oriented
methodologies, along with the criteria we used to select a few of them, and we
show how and where our Catalogue of adaptation patterns can be included into
one of the chosen methodology, PASSI (Sect. 4); moreover, we present the devel-
oped graphical tool to exploit adaptation patterns in the PASSI methodology
and to produce the needed Java classes. In Sect. 5, we present some work related
to our approach and at the end, in Sect. 6 we conclude the paper and present
some future works.

2 The Catalogue of Adaptation Patterns

Closed to self-adaptation are Service-based systems and Agent-based systems.
In literature, design patterns (or simply patterns) are defined as reusable

solutions to recurring design problems and are a mainstream of software reuse
practice [15,22]. They crystallize a general solution to a common problem, so
software developers can benefit from their reuse to develop systems. An adapta-
tion pattern is a conceptual scheme that describes a specific adaptation mecha-
nism. It specifies how the component/system architecture can express adaptivity.

An important task to develop a well performing self-adaptive system, is to
understand which pattern to choose. In order to define how a pattern works
in a self-adaptive system and which kind of systems is covered by a specific
pattern, we wrote a Catalogue of adaptation patterns [28]. In this Catalogue,
the different patterns are presented, and each of them describes the features of
a specific adaptive system.

The adaptive behaviour inside a component or an ensemble is described in
terms of feedback loops. In the Catalogue, the patterns are proposed with a
specific description by means of a template, and with examples of use of the
patterns in real systems, in order to simplify the selection of the right pattern
to use. The use of a pattern permits the developer to be guided to make the
system exhibit the required behaviour, even when unexpected situations occur.

The use of adaptation patterns to create self-adaptive systems has been tested
in different fields and in many applications [20,29], and guarantees correct results
in systems that are frequently changing, not only in their internal conditions,
but also in the environment where they are operating.

The use of a methodology could be very useful to develop self-adaptive sys-
tems. However, the current methodologies consider adaptation only at level of
single components, instead of at the system’s level. That is the reason why
we consider necessary to introduce our Catalogue of adaptation patterns into
methodologies: in fact, this will enact adaptivity at the level both of single com-
ponent and of the entire system. By this integration, our Catalogue of adaptation
patterns will support the methodologies in the creation of an adaptive system
where the structural adaptation of the whole system is considered very relevant.
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3 Agent-Oriented Methodologies for Adaptive Systems

In order to support application developers during the creation of an adaptive
system, it is necessary to provide a methodology that support adaptation mech-
anisms starting from the system requirements. The initial idea is not to propose
a methodology from scratch, but to have as a base a stable and well known
methodology.

Moreover, we consider that “agents” are one of the most useful paradigms to
build intelligence distributed systems, so we would like to use that paradigm to
create adaptive systems. To do that, we started from the study of agent-oriented
methodologies as a starting point to introduce adaptation features while building
a system.

Considering MASs (Multi Agent Systems), it is generally accepted that
analysis and design of agent-based systems require an Agent-Oriented Soft-
ware Engineering (AOSE) methodology. There are now many mature AOSE
methodologies [4,19], including MaSE [13], Tropos [6], Gaia [36], Prometheus
[24], INGENIAS [25], ADEM1, ADELFE [5], SODA [1] and PASSI [11].

After different studies [32], we found out that to create a unified methodology
that may have the most powerful features of every of the starting ones, is very
difficult. For example, we are not able to prove if a new unified methodology
covers all the possible scenarios, as happened for MAR&A [7], that is a com-
posed methodology, but is not applicable to adaptive systems. Moreover, not
all the composing methodologies use the same language or the same concepts,
and translating them into unified terms will not be always easy. Furthermore,
creating a new methodology for adaptive systems from scratch will not be easy
as well. It may be yet another methodology, and there is no guarantee that it
will be able to build all the adaptive systems.

All these reasons suggested us to not create a methodology dedicated to self-
adaptive system, or to compose a methodology, but to start from well known and
well defined methodologies, and to insert our Catalogue of adaptation patterns
into them in order to have self-adaptive features.

Starting from our previous work [30], we found out that some AOSE method-
ologies, even if they are well known, are not up to date, or no more utilised to
develop intelligent complex agents systems. So we selected only few methodolo-
gies that we consider suitable to build a self-adaptive system. The methodologies
that we selected have some common features:

– they are updated (e.g. a new version of the methodology has been released in
the last years);

– they have been tested in different distributed systems;
– they use well known paradigms like UML and the SPEM approach [31,34]

that will be very useful in order to introduce adaptation patterns;
– they use the concept of “role” to define adaptation patterns in a system;
– they have a supporting tool, or specific indication for the development of a

system.
1 http://www.whitestein.com/adem.

http://www.whitestein.com/adem
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The methodologies we selected for our work are: ADELFE, PASSI2 and
SODA. For space reasons, in this paper we describe only PASSI2, along with
explaining where introducing our Catalogue of adaptation patterns.

As said before, an common point of these methodologies is that all of them
have been described using the SPEM (Software Process Engineering Meta-model)
approach [23]. This will be useful in order to insert our Catalogue of adaptation
patterns in terms of SPEM fragments. In this way, it will be possible to better
define the concepts presented in patterns and to insert them into the different
methodologies.

To improve reading of the paper, in Fig. 1 we report the definitions of some
common notations used by SPEM.

Fig. 1. SPEM notations.

4 Integrating Catalogue of Adaptation Patterns
into Methodologies

In this section we present how to integrate our Catalogue of the adaptation
patterns, in particular, in the PASSI methodology. Moreover, the last subsec-
tion sketches the interfaces of the graphical tool we developed to support the
exploitation of the patterns in that methodology.

4.1 Integration in PASSI2

PASSI2 (Process for Agent Society Specification and Implementation) [12] is
the evolution of PASSI [11], a methodology that aims at covering all the phases
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of a system development from the requirements’ analysis to the deployment
configuration, coding, and testing.

It is based on a meta-model describing the elements that constitute the sys-
tem to be designed (agents, tasks, communications, roles) and what are the
relationships among them. The importance of this description is in the lack of
a universally accepted meta-model of MASs (differently from object-oriented
systems) that makes unclear any agent design process that does not precisely
define the structure of the system it aims to produce. PASSI2 has been designed
keeping in mind the possibility of designing systems with the following peculiar-
ities: (i) highly distributed, (ii) subject to a (relatively) low rate of requirements
changes, (iii) openness (at runtime external systems and agents that are unknown
at design time will interact with the system to be built). Robotics, workflow man-
agement, and information systems are the specific application areas where it has
been wildly applied.

PASSI2 is composed of three models that address different design concerns
and several phases, as we can see in Fig. 2. An important aspect of PASSI2 is that
it uses standards as UML and adapts it to the need of representing agent systems
through its extension mechanisms (constraints, tagged values and stereotypes).

Fig. 2. PASSI2 models and phases.

Synthetically, the models and phases of PASSI2 are:

1. System Requirements Model. A model of the system requirements in terms
of agency and purpose. Developing this model involves:
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– Domain req. Description (DD). A functional description of the system using
conventional use-case diagrams.

– Agents Identification (AId). Separation of responsibility concerns
into agents, represented as UML packages.

– Roles Identification (RId). Use of sequence diagrams to represent each
agent’s responsibilities through role-specific scenarios.

– Agent Structure Exploration (ASE). An analysis-level description of the
agent structure in terms of tasks required for accomplishing the agent’s
functionalities.

– Tasks Specification (TSp). Specification through state/activity diagrams
of the capabilities of each agent.

2. Agent Society Model. A model of the social interactions and dependencies
among the agents involved in the solution. Developing this model involves
five phases:
– Domain Ontology Description (DOD). Use of class diagrams to describe

domain categories (concepts), actions that could affect their state and
propositions about values of categories.

– Communication Ontology Description (COD). Use of class diagrams to
describe agents’ communications in terms of referred ontology, interaction
protocol and message content language.

– Roles Description (RD). Use of class diagrams to show distinct roles played
by agents, the tasks involved what the roles involve, communication capa-
bilities and inter-agent dependencies in terms of services.

– Multi-Agent Structure Definition (MASD). Use of conventional class dia-
grams to describe the structure of solution agent classes at the social level
of abstraction.

– Multi-Agent Behavior Description (MABD). Use of activity diagrams or
state-charts to describe the behaviour of individual agents at the social
level of abstraction.

3. Implementation Model. A model of the solution architecture in terms of
classes, methods, deployment configuration, code and testing directives; it
is composed of seven phases, the first two are performed at both the multi-
agent (whole agent society) and single-agent abstraction level:
– Single-Agent Structure Definition (SASD). Use of conventional class dia-

grams to describe the structure of solution agent classes at the implemen-
tation level of abstraction.

– Single-Agent Behavior Description (SABD). Use of activity diagrams or
state-charts to describe the behaviour of individual agents at the imple-
mentation level of abstraction.

– Deployment Configuration (DC). Use of deployment diagrams to describe
the allocation of agents to the available processing units and any constraints
on migration, mobility and configuration of hosts and agent-running plat-
forms.

– Code Reuse (CR). A library of patterns with associated reusable code to
allow the automatic generation of significant portions of code.
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– Code Production (CP). Source code of the target system that is manually
completed.

– Agent Test. Verification of the single behaviour with regards to the original
requirements of the system solved by the specific agent.

– Society Test. Validation of the correct interaction of the agents, performed
in order to verify that they actually concur in solving problems that need
cooperation. This test is done in the most real situation that can be simu-
lated in the development environment.

The Iteration Planning phase is positioned at a higher level of abstraction,
above the logical sequence of models and phases. It is at the base of every iterative
incremental process and in our case consists of the analysis of the Problem
Statement and all the other available documents (for instance outputs of previous
iterations) in order to identify the requirements (and related risks) that should
be faced in the next iteration (that is considered as the nineteen phase).

An important concept in PASSI2 is that of “role”. A role is defined by the set
of responsibilities defining the subjective behaviour of an agent in an interaction
(conversation) with another one or in providing some service in one or more
scenarios; an agent may play one or more roles at the same time. Roles are very
important because they are considered a useful paradigm that can used to define
the different patterns in a system [26].

Two are the main phases that involved roles: the Role Identification phase,
into the System Requirements Model (Fig. 3), and the Role Description phase
into the Agent Society Model (Fig. 4).

Fig. 3. PASSI2: System Requirements Model activities and resulting work products.

The Roles Identification phase produces a set of sequence diagrams that
specify scenarios from the agents’ identification use case diagram. In this phase,
our Catalogue of adaptation patterns is added as input, in order to create specific
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Fig. 4. PASSI2: Agent Society Model activities and resulting work products.

roles able to describe an adaptive system. In that phase, roles are identified in
the sense that agents’ external manifestations are captured in sequence diagrams
where agents participate playing one or more roles concurring to the evolution
of the system dynamic.

Our Catalogue of adaptation patterns is also introduced in the Roles Descrip-
tion phase. This phase consists in modelling the lifecycle of each agent, looking
at the roles it can play, the collaboration it needs, the communications in which
it participates and, with the inclusion of the Catalogue of adaptation patterns,
the adaptive system to develop. In the RD diagram all the rules of the society,
laws of the society and the domain in which the agent operates are introduced.
They could be expressed in plain text or OCL (Object Constraint Language) in
order to have a more precise, formal description.

In PASSI2, the defined RD diagram is a class diagram where roles are classes
grouped in packages representing agents. Roles can be connected by relationships
representing changes of role, by dependencies for a service or the availability of
a resource and by communications.

Specifically, in the Agent Society Model, the Catalogue of adaptation patterns
is introduced for the Multi-Agent Behaviour Description (MABD), where agents
are described in terms of their behaviour both from the social-exterior point of
view and the internal flow of control, as we can see in Fig. 4. Here the Catalogue
is necessary to identify which role to choose to obtain the system adaptation in
the considered environment.

PASSI2 does not have a real Code Production Phase, but each programmer
has to complete the code of the application starting from the design of the
skeletons produced by the methodology.
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The PASSI2 design methodology is supported by a specific design tool, grant-
ing a large number of automatisms during the design, and a pattern repository
for the reuse practice; these are determinant in cutting down the time and cost
for developing systems [10]. The toolkit is PTK (PASSI ToolKit). The PTK
add-in can generate the code for all the skeletons of the agents, tasks and other
classes included in the project. The pattern repository consists of a series of
reusable portions of agents and tasks. The repository also includes a list of tasks
that can be applied to existing agents.

4.2 The Graphical Tool

We developed a graphical tool to be used as a complementary extension for
PTK, with the purpose of allowing the designer of adaptive system to rapidly
prototype different patterns to be applied to the same sets of tasks within the
considered adaptive system. Our contribution aims to extend the concept of
Agent-Structure Exploration as defined by the PASSI methodology (see Fig. 2),
hence to focus the necessary design aspects needed to foster the dynamic cre-
ation of hierarchical structures of autonomic components. The word component
is from now on used a substitute of agent, so that we are now able to oper-
ate a first distinction on the concept of Agent-Structure by dividing the agents
of the considered population into two mutually exclusive categories: Autonomic
Managers and Service Components (resp. AMs and SCs).

From the role description, the following phase of the PASSI methodology
deals with “Behaviour Description”, hence implying an unspecified relation
between roles and behaviours. In our implementation, we detailed the relation
between these two concepts, by proposing a logic that is consistent with the
taxonomy of adaptation patterns as proposed in [28]. We defined a role as a
collection of sequential and/or parallel behaviours and the concept of behaviour
is an (implementation-wise) extension of the concept of Behaviour as intended in
the JADE agent platform [3]. We therefore extended the definition of PTK so to
support the definition of roles, behaviours, components and adaptive patterns
so to have a tool able to generate the necessary artifacts for describing more
complete adaptive systems.

As presented in Sect. 2, an adaptation pattern is a conceptual scheme that
describes a specific adaptation mechanism. It specifies how the component/
system architecture can express adaptivity.

In [28], a taxonomy of adaptation patterns is defined in such a level of detail
that we are able to translate most of the relevant aspects in an Object Oriented
Programming point of view, with Java as our language of choice. In particular, we
are now able to design abstract classes, interfaces and basic implementations of
them (called default implementations) so to have re-usable structures of classes
that the designer of adaptive systems can rely on.

According to [28] a clear definition of the components interfaces helps us in
understanding the mechanism of components’ composition. The interfaces of a
component can be described as a tuple of six elements:
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– Input, used to receive information (e.g. service’s request);
– Output, used to send information (e.g. service’s reply);
– Sensor, that makes the component able to achieve information from the exter-

nal (e.g. others components and/or the environment);
– Effector, that makes the component be able to manage the external (e.g. to

act on the environment and manage other components);
– Emitter, used to emit status information to an external manager. This inter-

face permits also to share information taken from the environment (using
sensors) or other components;

– Controller, that makes it possible to an external adaptation manager to change
and adapt the component’s internal state.

According to our implementation, these elements refer to the generic concept
of Component, hence the class Component is subsequently sub-classed into the
classes Service Component and Autonomic Manager, with the latter one having
the implicit role of adaptation manager. Service Components have a list of dif-
ferent sensors and actuators and those are mainly used for reading or applying
modifications to the environment in which the ensemble is inserted. The list
of sensors and actuators belonging to an Autonomic Manager is used to create
connections with SCs or other AMs. Other important lists, associated with the

Fig. 5. UML Class diagram of the concept of Component.
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component, are related to active roles, components attached to the emitter and
components attached to the controller. Trivially, all the methods that allow us
to modify these lists are accessible through the class hierarchy. The concept of
component is an extension of the class Agent from the Jade agent platform,
hence the component inherits methods such as setup and takeDown that refer to
standard agent operations to be executed just after their creation or just before
their removal from the considered context (i.e. registering to or de-registering
from a directory facilitator or other user-implemented yellow pages services).

A summarizing class diagram is in Fig. 5.
As shown in Fig. 5, components have the possibility to actively participate

into a change of pattern. A pattern is a description of which component is con-
nected to which other components inside the same adaptive system. More specif-
ically, we can define a pattern by specifying for each component (AMs and SCs),
which components are attached to the their emitters and controllers. By doing so
we are able to re-create any combination of adaptation pattern that are referred
as taxonomies in [28]. A pattern may or may not have an associated role, but is
always bounded to a context. A context is an attribute of the environment and it
is characterized by a list of rules and a list of laws. The difference between these
latter ones is mostly case specific; however, as rule of thumb, we can specify that
rules are used to regulate the single behaviour within a role, while laws deal with
regulating the inter-component interactions (e.g.: negotiations, elections etc.).
As previously specified, roles are collections of behaviours: this implies being
able to use existing classes from the JADE package for defining behaviours as
dynamically activated local computation within the agents/components: these
computations can be sequential, parallel, cyclic or (using a JADE terminology)
one-shot.

These considerations have been summarized in Fig. 6.
Now that we have a more detailed view on the concept of pattern and com-

ponent, we were able to proceed in creating the extension for the PTK. We
called this extension Component Hierarchy Builder (CHB). Both these toolkits
use tree structures as a mean of representing the considered system: a screen
shot of both of them is in Fig. 7.

The PASSI toolkit (PTK) allows the designer to describe agent structures
in terms of agents, tasks (as behaviours) and their relations. Agents can be
characterized in low level implementation details: therefore for each agent we can
specify which interfaces implements as well as defining attributes and methods’
prototypes. Our extension of this PTK feature does not capture this level of
details, instead it complements it in order to have generic and reusable agents in
the form of components. During the creation of a component in CHB, the user
can decide to insert a new Autonomic Manager or a new Service Component
and, for each, can specify which sensor and effectors are going to be used.

In PTK, tasks are behaviour and viceversa. In our implementation, tasks are
not directly defined: instead roles are collection of behaviours and components
can add scheduled roles by picking from all the roles that the user inserted in
the CHB tree (Fig. 8).
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Fig. 6. UML Class diagram of the concept of Context, Pattern and Role.

In the example scenario depicted in Fig. 8, we can see a generic Service Com-
ponent that is representing a mobile robot: it has proximity sensors and an
effector constituted by a differential wheeled motor. As far as its scheduled roles
are concerned, it has the task to explore an area and to operate the role of
Listener. In order to know more about the listener role we have to open the cor-
responding CHB panel regarding roles and behaviours (see Fig. 9). The listener
role is composed of two parallel behaviours that basically describe how the Ser-
vice Component listens to its connected autonomic managers and (if necessary)
enacts the requested state changes.

In Fig. 9, we can see how for each behaviour composing the role, we can
specify the sub-class of JADE’s Behaviour class that better suits the component’s
needs.

Using CHB, the user can specify adaptation pattern by indicating the con-
nection topology among components, as specified as list of attached components
in both controllers and emitters. This can be seen in Fig. 10, in which an example
master-slave pattern is implemented and from the screen shot we can see how a
generic Autonomic Manager is connected to both the Service Components that
were previously inserted in the designed component structure.

Instead of generating code, CHB is able to serialize all the inserted infor-
mation (components, patterns, context, roles etc.) inside a macro object that is
called adaptive system. Such macro object can be serialized and deserialized so
to allow the operations of modifications, export and import of previously saved
component structures.
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Fig. 7. Tree views of both PTK (left) and our proposed CHB (right).

Fig. 8. A screen shot for the creation of a Service Component.
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Fig. 9. A screen shot for the creation of a roles as collection of behaviours.

Fig. 10. A screen shot for the creation of a pattern: point of view of the Autonomic
Manager.
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5 Related Work

In literature, many approaches on patterns for self-adaptation exist, like the one
of [8,33,35]. However, in this paper we do not focus on the use of adaptation
patterns to create self-adaptive systems, but on the definition of a useful method-
ology to create this kind of systems, with the aid of the patterns’ approach.

In the last years, engineering research has tackled a well-defined problem
and has carefully selected and combined existing solutions into a comprehensive
development framework for self-adaptive systems.

A lot of projects like MADAM project2 and the MUSIC project3 tried to
address adaptation in different scenarios, from both the theoretical and the prac-
tical perspective. For example, the MUSIC project [18] would like to introduce
a model-driven development methodology [17] for self-adaptive context-aware
applications. Different from us, this approach was to write a new methodology
instead of exploiting the power of existing ones.

Other approaches as CARISMA [9] and RAINBOW [16] propose self-
adaptation middleware or architectural styles to develop self-adaptive software,
but they do not propose any methodology that will guide developers from the col-
lection of requirements to implementation. Moreover, MOCAS (Model of Com-
ponents for Adaptive Systems) propose a generic state-based component model
which enables the self-adaptation of software components along with their coor-
dination [2]; but like the other approaches, there are not concrete guidelines,
considered as a methodology.

6 Conclusions

In this paper, we have proposed an approach to enrich methodologies for address-
ing adaptation in building self-adaptive systems. We considered, in specific,
agent-oriented methodologies and we introduced in some of them our Cata-
logue of adaptation patterns that help in defining self-adaptive systems. In this
paper we have shown how the patterns can be integrated in PASSI2, but our
approach can be exploited in any methodologies for building adaptive systems.
The possibility of easily inserting our Catalogue of adaptation patterns inside a
methodology is based on the SPEM approach and permits harnessing the power
of the chosen methodologies. Moreover, we have completed the methodologies
process introducing our Catalogue of adaptation patterns also in the supporting
tools, in order to have all the steps completed. Then we have created a framework
that permits matching the methodologies’ concepts into agents’ infrastructures.

As an ongoing work we are testing these modified methodologies in different
scenarios, to have quantitative and qualitative results of the effectiveness of the
methodologies.
2 Mobility and Adaptation-enabling Middleware, supported by the European Union

under research grant 004159 lasting from September 2004 to March 2007.
3 Self-Adapting Applications for Mobile Users in Ubiquitous Computing Environ-

ments, supported by the European Union under research grant IST-035166 lasting
from October 2006 to March 2010.
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Abstract. A decidable logic is presented, in which queries can be posed
about (i) the degree of belief in a propositional sentence after an arbitrary
finite number of actions and observations and (ii) the utility of a finite
sequence of actions after a number of actions and observations. The
main contribution of this work is that a POMDP model specification
is allowed to be partial or incomplete with no restriction on the lack
of information specified for the model. The model may even contain
information about non-initial beliefs. Essentially, entailment of arbitrary
queries (expressible in the language) can be answered. A sound, complete
and terminating decision procedure is provided.

Keywords: Logic · POMDP · Projection · Decision-theory

1 Introduction

Symbolic logic is good for representing information compactly and it is good for
reasoning with that information. However, only in the last two or three decades
has research gone into developing ways to employ logic for representing stochas-
tic information. One formalism for modelling agents in stochastic domains and
for determining ‘good’ sequences of actions is the partially observable Markov
decision process (POMDP) [1,2]. The popularity of the POMDP approach is,
arguably, due to its relative simplicity and intuitiveness, and its general applica-
bility to a wide range of stochastic domains. In this paper, we propose the
Stochastic Decision Logic (SDL), a modal logic with a POMDP semantics. It
combines the benefits of POMDP theory and logic for posing entailment queries
about stochastic domains.

In POMDPs, actions have nondeterministic results and observations are
uncertain. In other words, the effect of some chosen action is somewhat unpre-
dictable, yet may be predicted with a probability of occurrence, and the world
c© Springer International Publishing Switzerland 2015
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is not directly observable: some data are observable and the agent infers how
likely it is that the world is in some particular state. The agent may thus believe
to some degree—for each possible state—that it is in that state, but it is never
certain exactly which state it is in. In fact, the agent typically maintains a proba-
bility distribution over the states, reflecting its conviction of being in each state.

Traditionally, to make any deductions in POMDP theory, a domain model
must be completely specified. Another contribution of this work is that it allows
the user to determine whether or not a set of sentences is entailed by an arbitrar-
ily precise specification of a POMDP model. By “arbitrarily precise specifica-
tion” we mean that the transition function, the perception function, the reward
function or the initial belief-state might not be completely defined by the logical
specification provided. Another view is that the logic allows for the (precise)
specification of and reasoning over classes of POMDP models.

This work is not meant to be a logic-based version of all POMDP theory; it
is meant to be a logic with POMDP semantics for online reasoning in stochastic
domains.

Full-scale planning will not be considered here. However, as a preliminary
step, projections concerning epistemic situations and expected rewards will be
possible. That is, at this stage, we have not developed a procedure to produce a
reward-maximizing policy conditioned on observations. There is, however, a pro-
cedure to determine whether some hypothesised situation follows from a knowl-
edge base of the system and some beliefs about the system state. More precisely,
with the SDL, an agent can (i) determine the degree of belief in a propositional
sentence after an arbitrary finite number of actions and observations and (ii) the
utility of a finite sequence of actions after a number of actions and observations.1

Imagine a robot that is in need of an oil refill. There is an open can of oil
on the floor within reach of its gripper. If there is nothing else in the robot’s
gripper, it can grab the can (or miss it, or knock it over) and it can drink the
oil by lifting the can to its ‘mouth’ and pouring the contents in (or miss its
mouth and spill). The robot may also want to confirm whether there is anything
left in the oil-can by weighing its contents with its ‘weight’ sensor. And once
holding the can, the robot may wish to replace it on the floor. There are also
rewards and costs involved, which are explained in the Examples section of the
paper. The domain is (partially) formalized as follows. The robot has the set of
(intended) actions A = {grab, drink, weigh, replace} with expected intuitive
meanings. The robot can perceive observations only from the set Ω = {Nil,
Light, Medium, Heavy}. Intuitively, when the robot performs a weigh action
(i.e., it activates its ‘weight’ sensor) it will perceive either Light, Medium or
Heavy; for other actions, it will perceive Nil. The robot experiences its world
(domain) through two Boolean features: F = {full, holding} meaning that
the robot believes the oil-can is full and respectively that it is currently holding
something in its gripper.

In the following informal examples, several syntactic elements are mentioned
which are formally defined in Sect. 2.1. Bϕ ≥ p is read ‘The degree of belief in ϕ

1 By “utility”, we mean ‘expected rewards’.
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is greater than or equal to p’. UΛ > r is read ‘The utility of performing action
sequence Λ is greater than r’. Given a complete formalization K of the scenario
sketched here, a robot may have the following queries:

– Is the degree of belief that I’ll have the oil-can in my gripper greater than
or equal to 0.9, after I attempt grabbing it twice in a row? That is, does
�grab + obsNil� �grab + obsNil �B holding ≥ 0.9 follow from K?

– After grabbing the can, then perceiving that it has medium weight, is the
utility of drinking the contents of the oil-can, then placing it on the floor,
more than 6 units? That is, does �grab + obsNil� �weigh + obsMedium�
U�drink��replace� > 6 follow from K?

Related Work: Recently, some researchers have investigated formal languages
for compactly representing POMDPs [3–9]. They also mention that with a log-
ical language for specifying models, decision-making algorithms can exploit the
structure found in these logical specifications. They are not presented as logics,
though, and logical theorem proving is thus not possible for them.

[10] present a modal logic to deal with imprecision in robot actions and
sensors. Their models do not contain an accessibility relation, which makes it
hard to understand what it means for an action to be executed. They cannot
deal with utilities of actions, and no system for determining truth of statements
is provided.

[11] supply a theory for reasoning with noisy sensors and effectors, with
graded belief. They use the situation calculus [12] to specify their approach but
some elements fall outside the logical language. They do not address utilities of
actions.

ESP [13] is closely related to Bacchus et al.’s approach with some improve-
ments. It is founded on ES [14], which is a fragment of the situation calculus.
The semantics of SDL is arguably simpler than that of ESP, because SDL fixes
its semantics on POMDPs. In the long-run, this may be a disadvantage of SDL,
though. With any logic based on the situation calculus or first-order logic, decid-
ability of entailment comes into question. The SDL’s entailment procedure is
decidable.

[15] states “The representation in this paper can be seen as a representation
for POMDPs” about his Independent Choice Logic using the situation calcu-
lus (ICLSC ). Belief-states can be expressed and belief update can be performed
(but maintenance of belief-states is not a necessary component of the system).
Even programs that are sequences of actions conditioned on observations can be
expressed for agents to adopt. The ICLSC is a relatively rich framework, with
acyclic logic programs which may contain variables, quantification and function
symbols. For certain applications, the SDL may be preferred due to its com-
parative simplicity, and it may be easier to understand by people familiar with
POMDPs. Finally, decidability of inferences made in the ICLSC are, in general,
not guaranteed.

[16] present a logic called E+ for reasoning about agents with sensing, qualita-
tive nondeterminism and probabilistic uncertainty in action outcomes. Planning
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with sensing and uncertain actions is also dealt with. The application area is
plan generation for agents with nondeterministic and probabilistic uncertainty.
Noisy sensing is not dealt with, that is, sensing actions are deterministic. They
mention that although they would like to be able to represent action rewards
and costs as in POMDPs, E+ does not yet provide the facilities.

PRISM is a framework for model-checking representations of systems with
a probabilistic character [17]. [17] show how MDPs can be represented with
an extension of Probabilistic Computation Tree Logic [18]. PRISM can then
determine whether the occurrence of some event satisfies a given probability
bound. To our knowledge, PRISM has not been extended to represent POMDPs.
Moreover, by definition, model-checking requires full specification of a system.
However, we could learn something from the implementation of PRISM (www.
prismmodelchecker.org) for the future development of the SDL, or PRISM could
be extended with ideas from the SDL.

There is another sense in which an incomplete model can be dealt with; it can
be learnt. [19] outline the Bayes-Adaptive POMDP framework to reinforcement
learning, which allows them to “explicitly target the exploration-exploitation
problem in a coherent mathematical framework.” Our work is different in that
we do not tackle the learning problem; our work suggests a way for an agent to
make decisions with incomplete models without considering whether its actions
will also help it explore wisely. There are problems for which an agent should
explore its environment and learn while working on its task. But there may also
be problems for which the agent should not explore (anymore?) and simply work
on the task at hand with the given information (domain model).

When it comes to the projection task (in the first-order setting), work by
[20] concerning “filtering” in the incremental update of the belief-state, may be
important to look at.

Next, our logic is defined. Then in Sect. 3, we describe a decision procedure
for checking entailment queries. In Sect. 4, a framework for domain specification
is described and some practical examples of the logic are provided.

2 The Stochastic Decision Logic

The SDL’s foundations are in the Specification Logic of Actions with Probability
[21] and the Specification Logic of Actions and Observations with Probability [22].

2.1 Syntax

The syntax is carefully designed to provide the required expressiveness, and no
more.

The vocabulary of our language contains six sorts of objects:

1. a finite set of fluents F = {f1, . . . , fn},
2. a finite set of names of atomic actions A = {α1, . . . , αn},
3. a countable set of action variables VA = {va

1 , va
2 , . . .},

www.prismmodelchecker.org
www.prismmodelchecker.org
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4. a finite set of names of atomic observations Ω = {ς1, . . . , ςn},
5. a countable set of observation variables VΩ = {vo

1, v
o
2, . . .}.

6. all real numbers R,

We refer to elements of A ∪ Ω as constants. We work in a multi-modal setting,
in which we have modal operators [α], one for each α ∈ A. And �α+ ς� is a belief
update operator (or update operator for short). Intuitively, �α + ς�Θ means ‘Θ
holds in the belief-state resulting from performing action α and then perceiving
observation ς’. For instance, �α1+ς1� �α2+ς2� expresses that the agent executes
α1 then perceives ς1 then executes α2 then perceives ς2. B is a modal operator
for belief and U is a modal operator for utility.

We first define a language L, then a useful sublanguage LSDL ⊂ L. The
reason why we define L is because it is easier to define the truth conditions for
L; the truth conditions for LSDL then follow directly.

Definition 1. First the propositional fragment: ϕ ::= f | � | ¬ϕ | ϕ ∧ ϕ, where
f ∈ F .

Then the fragment Φ used in formulae of the form ϕ ⇒ Φ (see the definition
of Θ below). Let α ∈ (VA ∪A), va ∈ VA, ς ∈ (VΩ ∪Ω), vo ∈ VΩ, p ∈ [0, 1], r ∈ R

and 	
 ∈ {<,≤,=, ≥, >}.2

Φ ::=ϕ | α = α | ς = ς | Reward(r) | Cost(α, r) |
[α]ϕ 	
 p | (ς|α) 	
 p | (∀va)Φ | (∀vo)Φ | ¬Φ | Φ ∧ Φ.

where ϕ is defined above.
[α]ϕ 	
 p is read ‘The probability x of reaching a ϕ-world after executing

α is such that x 	
 p’. Whereas [α] is a modal operator, (ς|α) is a predicate;
(ς|α) 	
 p is read ‘The probability x of perceiving ς, given α was performed is
such that x 	
 p’.

The language of L is defined as Θ:

Λ ::= �α� | Λ�α�

Θ ::= � | α = α | ς = ς | Cont(α, ς) | Bϕ 	
 p | UΛ 	
 r | ϕ ⇒ Φ |
�α + ς�Θ | (∀va)Θ | (∀vo)Θ | ¬Θ | Θ ∧ Θ | Θ ∨ Θ,

where ϕ and Φ are defined above.
The scope of quantifier (∀v′) is determined in the same way as is done in

first-order logic. A variable v appearing in a formula Θ is said to be bound by
quantifier (∀v′) if and only if v is the same variable as v′ and is in the scope of
(∀v′). If a variable is not bound by any quantifier, it is free. In L, variables are
not allowed to be free; they are always bound.

Cont(α, ς) is read ‘Consciousness continues after executing α and then per-
ceiving ς’. Bϕ 	
 p is read ‘The degree of belief x in ϕ is such that x 	
 p’.
Performing Λ = �α1��α2� · · · �αz� means that α1 is performed, then α2 then . . .

2 [0,1] denotes R ∩ [0, 1].
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then αz. UΛ 	
 r is thus read ‘The utility x of performing Λ is such that x 	
 r’.
Evaluating some sentence Ψ after a sequence of z update operations, means that
Ψ will be evaluated after the agent’s belief-state has been updated according to
the sequence

�α + ς� · · · �α′ + ς ′�
︸ ︷︷ ︸

z times

of actions and observations. ϕ ⇒ Φ is read ‘It is a general law of the domain
that Φ holds in all situations (worlds) which satisfy ϕ’.

Definition 2. The language of SDL, denoted LSDL, is the subset of formulae
of L excluding formulae containing subformulae of the form ¬(ϕ ⇒ Φ).

For instance, sentences of the form ¬(ϕ ⇒ Φ) ∧ (ϕ′ ⇒ Φ′) ∧ Θ �∈ LSDL, but
(ϕ ⇒ Φ) ∧ (ϕ′ ⇒ Φ′) ∧ Θ ∈ LSDL. And, for instance, ¬(∀v′)(ϕ ⇒ Φ) ∨ (ϕ′ ⇒
Φ′) ∨ Θ �∈ LSDL, but (∀v′)(ϕ ⇒ Φ) ∨ (ϕ′ ⇒ Φ′) ∨ Θ ∈ LSDL. The reason
why LSDL is defined to exclude ¬(ϕ ⇒ Φ) is because such sentences cause
unnecessary technical difficulties in the decision procedure. Rens’s doctoral thesis
[23, Chap. 8] contains a detailed explanation.

⊥ abbreviates ¬�, θ → θ′ abbreviates ¬θ ∨ θ′ and ↔ abbreviates (θ →
θ′) ∧ (θ′ → θ). In grammars ϕ and Φ, φ ∨ φ′ abbreviates ¬(¬φ ∧ ¬φ′), but in
grammar Θ, ∨ is defined directly, because otherwise its definition in terms of
¬ and ∧ would involve formulae of the form ¬(ϕ ⇒ Φ), which are precluded in
LSDL. → and ↔ have the weakest bindings, with ⇒ just stronger; and ¬ the
strongest. Parentheses enforce or clarify the scope of operators conventionally.

c = c′ is an equality literal, Reward(r) is a reward literal, Cost(α, r) is a cost
literal, [α]ϕ 	
 p is a dynamic literal, (ς|α) 	
 p is a perception literal, and ϕ ⇒ Φ
is a law literal. Cont(α, ς) is a continuity literal, Bϕ 	
 p is a belief literal and
UΛ 	
 r is a utility literal. The negation of all these literals are also literals
with the associated names.

2.2 Semantics

Formally, a partially observable Markov decision process (POMDP) is a tuple
〈S, A, T , R, Z, P, b0〉: a finite set of states S = {s1, s2, . . . , sn}; a finite set
of actions A = {a1, a2, . . . , ak}; the state-transition function, where T (s, a, s′)
is the probability of being in s′ after performing action a in state s; the reward
function, where R(a, s) is the reward gained for executing a while in state s; a
finite set of observations Z = {z1, z2, . . . , zm}; the observation function, where
P(s′, a, z) is the probability of observing z in state s′ resulting from performing
action a in some other state; and b0 is the initial probability distribution over
all states in S.

Let b be a total function from S into R. Each state s is associated with a
probability b(s) = p ∈ R, such that b is a probability distribution over the set S
of all states. b can be called a belief-state.

An important function in POMDP theory is the function that updates the
agent’s belief-state, or the state estimation function SE . SE (a, z, b) = bn,
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where bn(s′) is the probability of the agent being in state s′ in the ‘new’ belief-
state bn, relative to a, z and the ‘old’ belief-state b. Notice that SE (·) requires
an action, an observation and a belief-state as inputs to determine the new
belief-state.

When the states an agent can be in are belief-states (as opposed to objective,
single states in S), the reward function R must be lifted to operate over belief-
states. The expected reward ρ(a, b) for performing an action a in a belief-state b
is defined as

∑
s∈S R(a, s)b(s).

Let w : F → {0, 1} be a total function assigning a truth value to each fluent.
We call w a world. Let C be the set of 2|F| conceivable worlds, that is, all possible
functions w.

Definition 3. An SDL structure is a tuple D = 〈T, P, U〉 such that

– T : A → {Tα | α ∈ A}, where Tα : (C × C) → [0, 1] is a total function from
pairs of worlds into the reals. That is, T provides a transition (accessibility)
relation Tα for each action in A. For every w− ∈ C, it is required that either∑

w+∈C Tα(w−, w+) = 1 or
∑

w+∈C Tα(w−, w+) = 0.3

– P : A → {Pα | α ∈ A}, where Pα : (C × Ω) → [0, 1] is a total function from
pairs in C × Ω into the reals. That is, P provides a perceivability relation Pα

for each action in A. For all w+ ∈ C, if there exists a w− ∈ C such that
Tα(w−, w+) > 0, then

∑
ς∈Ω Pα(w+, ς) = 1, else

∑
ς∈Ω Pα(w+, ς) = 0;

– U is a pair 〈Re,Co〉, where Re : C → R is a reward function and Co is a
mapping that provides a cost function Coα : C → R for each α ∈ A.

As in POMDPs, in the SDL, an agent typically does not know in which world
w ∈ C it actually is, but for each w it has a degree of belief that it is in that
world. From now on, let b : C → [0, 1] be a probability distribution over C,
still referred to as a belief-state. The degree of belief in w is denoted by the
probability measure b(w).

Definition 4. The probability of reaching the next belief-state b′ from the cur-
rent belief-state b, given α and ς, is PrNB (α, ς, b) =

∑
w′∈C Pα(ς, w′)

∑
w∈C Tα

(w,w′)b(w).

The above definition is from standard POMDP theory.

Definition 5. We define a belief update function BU(α, ς, b) = b′:

b′(w′) =
Pα(w′, ς)

∑
w∈C Tα(w,w′)b(w)

PrNB (α, ς, b)
,

for PrNB (α, ς, b) �= 0.

3 Either the action is executable and there is a probability distribution (the summation
is 1) or the action is inexecutable (the summation is 0). Letting the sum equal a
number not 1 or 0 would lead to badly defined semantics.
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BU(·) has the same intuitive meaning as the state estimation function SE (·) of
POMDP theory.

Given the opportunity to be slightly more clear about the specification of
rewards in the SDL, we interpret R(a, s) of POMDPs as R(s) − C(a, s), where
R(s) provides the positive reward portion of R(a, s) and C(a, s) provides the
punishment or cost portion. By this interpretation, we assume that simply being
in a state has an intrinsic reward (independent of an action), however, that
punishment is conditional on actions and the states in which they are executed.
There are many other ways to interpret R(a, s), and R(a, s) is not even the
most general reward function possible; a more general function is R(s, a, s′)
meaning that rewards depend on a state s, an action executed in s and a state
s′ reached due to performing a in s. The SDL adopts one of several reasonable
approaches. In the semantics of the SDL, we equate a state s with a world
w and an action a as α ∈ A, and interpret R(a, s) as Re(w) − Coα(w). We
derive a reward function over belief-states for the SDL in a similar fashion as
we did with ρ(a, b) of POMDP theory, however, including the notion of cost:
RC (α, b) =

∑
w∈C(Re(w) − Coα(w))b(w).

Let α, α′ ∈ A, ς, ς ′ ∈ Ω, p ∈ [0, 1] and r ∈ R. Let f ∈ F and let Θ be any
sentence in L. Let 	
 ∈ {<,≤,=,≥, >}. If Θ ∈ L is satisfied at world w and
belief-state b in SDL structure D, we write Dbw |= Θ. Some of the conditions
for satisfaction are reproduced below.

Dbw |= α = α′ ⇐⇒ α and α′ are the same element;
Dbw |= ς = ς ′ ⇐⇒ ς and ς ′ are the same element;
Dbw |= Reward(r) ⇐⇒ Re(w) = r;
Dbw |= Cost(α, c) ⇐⇒ Coα(w) = c;
Dbw |= [α]ϕ �� p ⇐⇒ ∑

w′∈C,
Dbw′|=ϕ

Tα(w, w′) �� p;

Dbw |= (ς|α) �� p ⇐⇒ Pα(w, ς) �� p;
Dbw |= Cont(α, ς) ⇐⇒ PrNB (α, ς, b) �= 0;
Dbw |= Bϕ �� p ⇐⇒ ∑

w′∈C,
Dbw′|=ϕ

b(w′) �� p;

Dbw |= U�α� �� r ⇐⇒ RC(α, b) �� r;

Dbw |= U�α�Λ �� r ⇐⇒
(
RC(α, b) +

∑
ς∈Ω PrNB (α, ς, b) · r′

)
�� r, where

Db′w |= UΛ = r′ for b′ = BU(α, ς, b);
Dbw |= ϕ ⇒ Θ ⇐⇒ for all w′ ∈ C, if Dbw′ |= ϕ then Dbw′ |= Θ;
Dbw |= �α + ς�Θ ⇐⇒ PrNB (α, ς, b) �= 0 and Db′w |= Θ, where b′ = BU(α, ς, b);
Dbw |= (∀va)Υ ⇐⇒ Dbw |= Υ |va

α1 ∧ . . . ∧ Υ |va

αn
;

Dbw |= (∀vo)Υ ⇐⇒ Dbw |= Υ |vo

ς1 ∧ . . . ∧ Υ |vo

ςn ,

where Υ is a formula from the grammar Φ or Θ, and we write Υ |vc to mean
the formula Υ with all occurrences of variables v ∈ (VA ∪ VΩ) appearing in it
replaced by constant c ∈ A ∪ Ω of the right sort.

A sentence Θ ∈ L is satisfiable if there exists a structure D, a belief-state b
and a world w such that Dbw |= Θ, else Θ is unsatisfiable. Let K ⊂ L. We say
that K entails Θ (denoted K |= Θ) if for all structures D, all belief-states b, all
w ∈ C: if Dbw |= κ for every κ ∈ K, then Dbw |= Θ. When K is a finite subset
of LSDL and Ψ ∈ LSDL, it is easy to show that K |= Ψ ⇐⇒ ∧

κ∈K κ ∧ ¬Ψ is
unsatisfiable. The SDL decision procedure for entailment is based on this latter
correspondence.
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3 The Decision Procedure for SDL Entailment

Informally, a query is satisfiable if there exists a way of filling in missing domain
information about rewards, transitions, perceptions, etcetera, so that the query
is true. And a query should be valid if all ways of extending the supplied model
information makes the query true.

We provide a sketch of the (formal) decision procedure for checking whether
entailments of the form K |= Ψ hold. Our strategy is to set up a tableau tree for∧

κ∈K κ ∧ ¬Ψ , and then check whether or not every leaf node of the tree after
full expansion implies a contradiction. If every leaf node implies a contradiction,
then

∧
κ∈K κ ∧ ¬Ψ is unsatisfiable and K |= Ψ holds.

There are two phases in the decision procedure. The first phase uses a tableau
approach to (i) catch ‘traditional’ contradictions, (ii) separate formulae into
literals and (iii) prepare the literals for processing in the second phases. We
shall call this the tableau phase. The second phase creates systems of inequalities,
checking their feasibility. We shall call this the systems of inequalities (SI) phase.

An activity sequence is either 0 or a sequence of the form 0
α1,ς1−→ e1

α2,ς2−→
e2 · · · αz,ςz−→ ez. Intuitively, an activity sequence represents a hypothetical
sequence of actions and associated perceptions. The ei represent belief-states;
ez is an integer which uniquely identifies the belief-state reached after the occur-
rence of the sequence α1, ς1, α2, ς2, · · · αz, ςz of actions and observations. The ei

are called activity points—because they represent an agent’s state of mind at
some point after a sequence of activities.

In the following discussion, and also later, we employ some abbreviations: The
set of fluents F = {full, holding} is abbreviated to {f, h}. The set of actions
A = {grab, drink, weigh} is abbreviated to {g, d, w}. The set of observations
Ω = {Nil, Light, Medium, Heavy} is abbreviated to {N,L,M,H}.

Given some initial belief-state, every clause of a sentence specifies a final
belief-state/activity point. For instance, B(f ∧ h) = 0.35 ∧ B(f ∧ ¬h) = 0.35 ∧
B(¬f ∧ h) = 0.2 ∧ B(¬f ∧ ¬h) = 0.1 specifies the belief-state {(w1, 0.35),
(w2, 0.35), (w3, 0.2), (w4, 0.1)}, where w1 |= f ∧ h, . . . , w4 |= ¬f ∧ ¬h. And
�g + N��w + M�Bh > 0.85 specifies belief-state BU(w,M,BU(g,N, b0)), where
b0 is some initial belief-state. Now it is obvious that

B(f ∧ h) = 0.35 ∧ B(f ∧ ¬h) = 0.35 ∧ B(¬f ∧ h) = 0.2 ∧ B(¬f ∧ ¬h) = 0.1

→ �g + N��w + M�Bh > 0.85 ∧ �g + N��w + M�Bh ≤ 0.85

is a contradiction, because in the belief-state reached after the sequence g,N,w,
M , an agent cannot have a degree of belief in h both greater-than and less-than-
or-equal-to 0.85. This is a very simple example, but the need for the maintenance
of activity sequences and activity points becomes much more apparent when one
understands that an activity point plays a part in identifying the variables rep-
resenting the probabilities of being in the different possible worlds at that point.

3.1 The Tableau Phase

A labeled formula is a pair (Σ,Ψ), where Ψ ∈ LSDL is any formula, and Σ is an
activity sequence. If Σ is 0

α1,ς1−→ e1 · · · αz,ςz−→ ez, then the concatenation of Σ
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and
α′,ς′
−→ e′, denoted as Σ

α′,ς′
−→ e′ is the sequence 0

α1,ς1−→ e1 · · · αz,ςz−→ ez
α′,ς′
−→ e′. A

node Γ is a set of labeled formulae. The initial node to which the tableau rules
must be applied, is called the trunk. A tree T is a set of nodes. A tree must
include the trunk and only nodes resulting from the application of tableau rules
to the trunk and subsequent nodes. If one has a tree with trunk {(0, Ψ)}, we
shall say one has a tree for Ψ .

A node Γ is a leaf node of tree T if no tableau rule has been applied to Γ in
T . A node Γ is closed if (Σ,⊥) ∈ Γ for any Σ. It is open if it is not closed. A
tree is closed if all of its leaf nodes are closed, else it is open. A rule may not be
applied to (i) a closed leaf node or (ii) a formula to which it has been applied
higher in the tree.

Some of the tableau rules follow. Let Γ be a leaf node.

– rule ∧: If Γ contains (Σ, Ψ ∧ Ψ ′) or (Σ, ¬(Ψ ∨ Ψ ′)), then create child node Γ ′ =
Γ ∪ {(Σ, Ψ), (Σ, Ψ ′)}, respectively, Γ ′ = Γ ∪ {(Σ, ¬Ψ), (Σ, ¬Ψ ′)}.

– rule ∨: If Γ contains (Σ, Ψ ∨ Ψ ′)) or (Σ, ¬(Ψ ∧ Ψ ′)), then create child nodes Γ ′ =
Γ ∪ {(Σ, Ψ)} and Γ ′′ = Γ ∪ {(Σ, Ψ ′)}, respectively, child nodes Γ ′ = Γ ∪ {(Σ, ¬Ψ)}
and Γ ′′ = Γ ∪ {(Σ, ¬Ψ ′)}.

– rule ⇒ ∧: If Γ contains (Σ, ϕ ⇒ Φ ∧ Φ′), then create child node Γ ′ = Γ ∪ {(Σ, ϕ ⇒
Φ), (Σ, ϕ ⇒ Φ′)}.

– rule Ξ: If Γ contains (Σ, �α+ς�Ψ), then: if Γ contains (Σ′, Ψ ′) such that Σ′ = Σ
α,ς−→

e, then create node Γ ′ = Γ ∪ {(Σ′, Ψ)}, else create child node Γ ′ = Γ ∪ {(Σ
α,ς−→

e′, Ψ)}, where e′ is a fresh integer.

– rule ¬Ξ: If Γ contains (Σ, ¬�α + ς�Ψ), then create child node Γ ′ = Γ ∪ {(Σ, ¬Cont
(α, ς) ∨ �α + ς�¬Ψ)}.

Definition 6. A branch is saturated if and only if every rule that can be applied
to its leaf node has been applied. A tree is saturated if and only all its branches
are saturated.

3.2 The SI Phase

Let Γ be an open leaf node of a saturated tree T . SI(Γ ) is the system of inequal-
ities generated from the formulae in Γ (as explained below). After the tableau
phase is completed, the SI phase begins.

For each open leaf node Γ j
k of T , do the following. If SI (Γ j

k ) is infeasible,
then create new leaf node Γ j

k+1 = Γ j
k ∪ {(0,⊥)}.

Definition 7. A tree is called finished after the SI phase is completed.

Definition 8. If a tree for ¬Ψ is closed, we write � Ψ . If there is a finished
open tree for ¬Ψ , we write �� Ψ .

The generation of SI(Γ ) from the formulae in Γ is explained in the rest of this
section. All variables are assumed implicitly non-negative.
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Let C# = {w1, w2, . . . , wn} be an ordering of the worlds in C. Let ωe
k be

a variable representing the probability of being in world wk at activity point e
(after a number of activity updates). The equation

ω0
1 + ω0

2 + · · · + ω0
n = 1

is in SI(Γ ) and represents the initial probability distribution over the worlds in
C. We may denote an activity sequence as Σ

α,ς−→ e to refer to the last action
α, observation ς and activity point e in the sequence. We may also denote an
activity sequence as Σe to refer only to the last activity point in the sequence;
if Σ is the empty sequence, then e is the initial activity point 0.

In the next four subsections, we deal with (i) law literals involving dynamic
and perception literals, (ii) activity sequences, (iii) belief literals and (iv) laws
involving reward and cost literals, and utility literals.

Action and Perception Laws. For every formula of the form (Σ,φ ⇒ [α]ϕ 	

q) ∈ Γ and (Σ,φ ⇒ ¬[α]ϕ 	
 q) ∈ Γ , for every j such that wj |= φ (where j
represents the world in which α is executed),

c1prα
j,1+c2prα

j,2+· · ·+cnprα
j,n 	
 q, respectively, c1prα

j,1+c2prα
j,2+· · ·+cnprα

j,n �	
 q

is in SI(Γ ), such that ck = 1 if wk |= ϕ, else ck = 0, and the prα
j,k are variables.

Adding an equation

prα
j,1 + prα

j,2 + · · · + prα
j,n = �prα

j,1 + prα
j,2 + · · · + prα

j,n�
for every j such that wj |= φ, will ensure that either

∑
w′∈W Rα(wj , w

′) = 1 or∑
w′∈W Rα(wj , w

′) = 0, for every wj ∈ C, as stated in Definition 3.
Let m = |Ω|. Let Ω# = (ς1, ς2, . . . , ςm) be an ordering of the observations

in Ω. With each observation in ς ∈ Ω#, we associate a variable prς
j , where j

represents the world in which ς is perceived. For every formulae of the form
(Σ,φ ⇒ (ς|α) 	
 q) ∈ Γ and (Σ,φ ⇒ ¬(ς|α) 	
 q) ∈ Γ , for every j such that
wj |= φ,

pr
ς|α
j 	
 q, respectively, pr

ς|α
j �	
 q

is in SI(Γ ). Adding an equation

pr
ς1|α
j + pr

ς2|α
j + · · · + pr

ςm|α
j = �(prα

1,j + prα
2,j + · · · + prα

n,j)/n�
for every j such that wj |= φ, ensures that for all wj ∈ C, if there exists a wi ∈ C
such that Rα(wi, wj) > 0, then

∑
ς∈Ω Qα(wj , ς) = 1, else

∑
ς∈Ω Qα(wj , ς) = 0,

as stated in Definition 3.

Belief Update. Let Π(eh, α, ς) be the abbreviation for the term

n∑

j=1

pr
ς|α
j

n∑

i=1

prα
i,jω

eh
i ,
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which is the probability of reaching the belief-state after performing belief update
�α + ς� at activity point eh. And let BT (eh, k, α, ς) be the abbreviation for the
term

pr
ς|α
k

∑n
i=1 prα

i,kωeh
i

Π(eh, α, ς)
,

which is the probability of being in world wk after performing belief update
�α + ς� at activity point eh, where n = |C|.

Suppose Σ is 0
α0,ς0−→ e1

α1,ς1−→ e2 · · · αz−1,ςz−1−→ ez and Σ �= 0. For every formulae
of the form (Σ,Ψ) ∈ Γ , the following equations are in SI(Γ ).

ω
eh+1
k = BT (eh, k, αh, ςh) for k = 1, 2, . . . , n and h = 0, 1, . . . , z − 1,

Π(eh, αh, ςh) �= 0 for h = 0, 1, . . . , z − 1 and
ωeh
1 + ωeh

2 + · · · + ωeh
n = 1 for h = 0, 1, . . . , z, where e0 is 0.

Observe that the eh are integers and we enforce the constraint that ei < ej iff
i < j.

Continuity andBelief Literals. For every formula of the form (Σe,Cont(α, ς))
∈ Γ or (Σe,¬Cont(α, ς)) ∈ Γ ,

Π(e, α, ς) �= 0, respectively, Π(e, α, ς) = 0

is in SI(Γ ).
For every formula of the form (Σe,Bϕ 	
 p) ∈ Γ ,

c1ω
e
1 + c2ω

e
2 + · · · + cnωe

n 	
 p,

is in SI(Γ ), where ck = 1 if wk |= ϕ, else ck = 0.

Rewards, Costs and Utilities. For every formula of the form (Σ,φ ⇒
Reward(r)) ∈ Γ and (Σ,φ ⇒ ¬Reward(r)) ∈ Γ , for every j such that wj |= φ,

Rj = r, respectively, Rj �= r

is in SI (Γ ).
For every formula of the form (Σ,φ ⇒ Cost(α, r)) ∈ Γ and

(Σ,φ ⇒ ¬Cost(α, r)) ∈ Γ , for every j such that wj |= φ,

Cα
j = r, respectively, Cα

j �= r

is in SI (Γ ).

Let RC (α, e)
def
= ωe

1(R1 −Cα
1 )+ωe

2(R2 −Cα
2 )+ · · ·+ωe

n(Rn −Cα
n ). For every

formula of the form (Σe,U�α� 	
 q) ∈ Γ ,

RC (α, e) 	
 q

is in SI (Γ ).
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To keep track of dependencies between variables in inequalities derived from
utility literals of the form (Σ,U�α�Λ 	
 q), we define a utility tree. A set of
utility trees is induced from a set Δ which is defined as follows (examples follow
the formal description). For every formula of the form (Σe,U�α�Λ 	
 q) ∈ Γ ,
let (e

α,ς−→ eς , Λ) ∈ Δ, for every ς ∈ Ω, where eς is a fresh integer. Then, for
every (ξ, �α�Λ) ∈ Δ (where Λ is not empty), for every ς ∈ Ω, if (ξ′, Ψ) ∈ Δ such
that ξ′ = ξ

α,ς−→ eς′
, then (ξ′, Λ) ∈ Δ, else (ξ

α,ς−→ eς , Λ) ∈ Δ, where eς is a fresh
integer. This finishes the definition of Δ. The following example should clarify
the meaning Δ and utility trees.

Suppose Ω = {ς1, ς2} and

(Σ
α′,ς′
−→ 13,U�α5� = 88),

(Σ
α′,ς′
−→ 13,U�α1��α2� > 61),

(Σ
α′,ς′
−→ 13,U�α1��α3��α2� < 62),

(Σ
α′,ς′
−→ 13,U�α1��α4� = 63),

(Σ
α′,ς′
−→ 23,U�α1��α2� ≥ 64) and

(Σ
α′,ς′
−→ 23,U�α2��α1� = 65)

are in some leaf node Γ ′. Then (Σ
α′,ς′
−→ 13,U�α5� = 88) is not involved in the

definition of Δ′, nevertheless, RC(α5, 13) = 88 is in SI (Γ ′).
With respect to the other utility literals,

(13
α1,ς1−→ 24, �α2�), (13

α1,ς2−→ 25, �α2�),

(13
α1,ς1−→ 24, �α3��α2�), (13

α1,ς2−→ 25, �α3��α2�),

(13
α1,ς1−→ 24, �α4�), (13

α1,ς2−→ 25, �α4�),

(23
α1,ς1−→ 26, �α2�), (23

α1,ς2−→ 27, �α2�),

(23
α2,ς1−→ 28, �α1�) and (23

α2,ς2−→ 29, �α1�)

are in Δ′. And due to (13
α1,ς1−→ 24, �α3��α2�), (13

α1,ς2−→ 25, �α3��α2�) ∈ Δ′, the
following are also in Δ′.

(13
α1,ς1−→ 24

α3,ς1−→ 30, �α2�),

(13
α1,ς1−→ 24

α3,ς2−→ 31, �α2�),

(13
α1,ς2−→ 25

α3,ς1−→ 32, �α2�) and

(13
α1,ς2−→ 25

α3,ς2−→ 33, �α2�).

Note how an activity point is represented by the same integer (for instance,
24) if and only if it is reached via the same sequence of actions and observations
(for instance, 13

α1,ς1−→).
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The set of utility trees is generated from Δ as follows. Δ is partitioned such

that (e
α,ς−→ e′, Λ), (e′′ α′,ς′

−→ e′′′, Λ′) ∈ Δ are in the same partitioning if and only if
e = e′′. Each partitioning represents a unique utility tree with the first activity
point as the root of the tree. For example, one can generate two utility trees
from Δ′; one with root 13 and one with root 23. Each activity sequence of the
members of Δ represents a (sub)path starting at the root of its corresponding
tree. Figure 1 depicts the two utility trees generated from Δ′.

Fig. 1. The two utility trees generated from Δ′.

Before considering the general case, we illustrate the method of generating,
from the utility trees in Fig. 1, the required inequalities which must be in SI (Γ ′).

The formula (Σ
α′,ς′
−→ 13,U�α1��α2� > 61) ∈ Γ ′ is represented by

RC (α1, 13) + Π(13, α1, ς1)RC (α2, 24) + Π(13, α1, ς2)RC (α2, 25) > 61

in SI (Γ ′). To generate this inequality, the utility tree rooted at 13 is used: See
that α1 is executed at activity point 13, α2 is executed at activity point 24 if ς1
is perceived and α2 is executed at activity point 25 if ς2 is perceived. Moreover,
the latter two rewards must be weighted by the probabilities of reaching the
respective new belief-states/activity points.

The formula (Σ
α′,ς′
−→ 13,U�α1��α4� = 63) ∈ Γ ′ is represented by

RC (α1, 13) + Π(13, α1, ς1)RC (α4, 24) + Π(13, α1, ς2)RC (α4, 25) = 63.

in SI (Γ ′). This time, α4 is executed at the activity points 24 and 25.

Next, the utility tree rooted at 23 is used to find the representation of (Σ
α′,ς′
−→

23, U�α1��α2� ≥ 64) ∈ Γ ′. Looking at the utility tree, one can work out that

RC (α1, 23) + Π(23, α1, ς1)RC(α2, 26) + Π(23, α1, ς2)RC (α2, 27) ≥ 64

must be in SI (Γ ′).

For (Σ
α′,ς′
−→ 23,U�α2��α1� = 65) ∈ Γ ′,
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RC (α2, 23) + Π(23, α2, ς1)RC (α1, 28) + Π(23, α1, ς2)RC(α1, 29) ≥ 64

is in SI (Γ ′).
Formula

(Σ
α′,ς′
−→ 13,U�α1��α3��α2� < 62) ∈ Γ ′, (1)

is represented by the inequality shown in Fig. 2. The size of the utility tree rooted
at 13 is due to (1). Hence, the whole tree is employed to generate the inequality.

Fig. 2. The inequality representing (Σ
α′,ς′
−→ 13,U�α1��α3��α2� < 62) ∈ Γ ′.

In general, for every utility literal of the form

(Σez,U�α1��α2� · · · �αy� 	
 q)

in leaf node Γ , an inequality can be generated from an associated utility tree and
the inequality must be in SI (Γ ). We do not have space to go into the details,
but please see the thesis [23, Chap. 8] for details.

Theorem 1. The decision procedure is sound, complete and terminating. The
SDL is thus decidable with respect to entailment as defined above.

Proof. Please refer to the thesis [23, Chap. 8] for the proof.

Although the SDL vocabulary is finite, the need to deal with probabilistic infor-
mation makes the above decidability result non-trivial.

4 Domain Specification

First we present a framework for domain specification with the logic, then we
look at some examples of SDL entailment in use.

4.1 The Framework

The framework presented here should be viewed as providing guidance; the
knowledge engineer should adapt the framework as necessary for the particu-
lar domain being modeled. On the practical side, in the context of the SDL, the
domain of interest can be divided into five parts:
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Static laws (denoted as the set SL) have the form φ ⇒ ϕ, where φ and ϕ are
propositional sentences, and φ is the condition under which ϕ is always satisfied.
They are the basic laws and facts of the domain. For instance, “A full battery
allows me at most four hours of operation”, “I sink in liquids” and “The charging
station is in sector 14”. Such static laws cannot be explicitly stated in traditional
POMDPs.

Action rules (denoted as the set AR) must be specified. In this paper, we
ignore the frame problem [24]; a solution in the current setting requires careful
machinery and space prohibits giving it the attention it deserves. We have made
preliminary progress in this direction [25]. For this paper, we identify two kinds
of action rules.

The basic kind is the effect axiom. For every action α, effect axioms take the
form

φ1 ⇒ [α]ϕ11 = p11 ∧ · · · ∧ [α]ϕ1n = p1n

φ2 ⇒ [α]ϕ21 = p21 ∧ · · · ∧ [α]ϕ2n = p2n

...
φj ⇒ [α]ϕj1 = pj1 ∧ · · · ∧ [α]ϕjn = pjn,

where (i) for every rule i, the sum of transition probabilities pi1, . . . , pin must
lie in the range [0, 1] (preferably 1), (ii) for every rule i, for any pair of effects
ϕik and ϕik′ , ϕik ∧ ϕik′ ≡ ⊥ and (iii) for any pair of conditions φi and φi′ ,
φi ∧ φi′ ≡ ⊥.

The knowledge engineer must keep in mind that if the transition probabilities
do not sum to 1, the specification is incomplete. Suppose, for instance, that for
rule i, pi1 + · · · + pin < 1. Then one or more transitions from a φi-world has not
been mentioned and some logical inferences will not be possible.

The second kind of action rule is the inexecutability axiom. We shall assume
that the set of effect axioms for an action is complete, that is, that the knowledge
engineer intends that the conditions of these axioms are the only conditions
under which the actions can be executed. Note that [α]� > 0 implies that α is
executable. Therefore, if there is an effect axiom for α with condition φ, then
one can assume the presence of an executability axiom φ ⇒ [α]� > 0. However,
we must still specify that an action is inexecutable when none of the effect
axiom conditions is met. Hence, the following inexecutability axiom is assumed
present.4

¬(φ1 ∨ · · · ∨ φj) ⇒ [α]� = 0

where φ1, . . . , φj are the conditions of the effect axioms for α.
Perception rules (denoted as the set PR) must be specified. Let E(α) = {ϕ11,

ϕ12, . . . , ϕ21, ϕ22, . . . , ϕjn} be the set of all effects of action α executed under
all executable conditions. For every action α, perception rules typically take the
form

4 Inexecutability axioms are also called condition closure axioms.
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φ1 ⇒ (ς11 | α) = p11 ∧ · · · ∧ (ς1m | α) = p1m

φ2 ⇒ (ς21 | α) = p21 ∧ · · · ∧ (ς2m | α) = p2m

...
φk ⇒ (ςk1 | α) = pk1 ∧ · · · ∧ (ςkm | α) = pkm,

where (i) the sum of perception probabilities pi1, . . . , pim of any rule i must
lie in the range [0, 1] (preferably 1), (ii) for any pair of conditions φi and φi′ ,
φi ∧ φi′ ≡ ⊥ and (iii) φ1 ∨ φ2 ∨ · · · ∨ φk ≡ ∨

ϕ∈E(α) ϕ. If the sum of perception
probabilities pi1, . . . , pim of any rule i is 1, then any observations not mentioned
in rule i are automatically unperceivable in a φi-world. However, in the case that
the sum is not 1, this deduction about unperceivability cannot be made. Then
the knowledge engineer should keep in mind that a perception rule of the form

φi → · · · ∧ (ς | α) = 0 ∧ · · ·

implies that ς is unperceivable in a φi-world given that the world is reachable
via α. Hence, if pi1 + · · ·+pim �= 1 and unperceivability information is available,
it should be included with a subformula of the form (ς | α) = 0.

Utility rules (denoted as the set UR) must be specified. Utility rules typically
take the form

φ1 ⇒ Reward(r1), . . . , φj ⇒ Reward(rj),

meaning that in all worlds where φi is satisfied, the agent gets ri units of reward.
And for every action α,

φ1 ⇒ Cost(α, r1), . . . , φj ⇒ Cost(α, rj),

meaning that the cost for performing α in a world where φi is satisfied is ri

units. The conditions are disjoint as for action and perception rules.
The fifth part of the domain specification is the agent’s initial belief-state

IB . That is, a specification of the worlds the agent should believe it is in when
it becomes active, and probabilities associated with those worlds should be pro-
vided. In general, an initial belief-state specification should have the form

Bϕ1 	
 p1 ∧ Bϕ2 	
 p2 ∧ · · · ∧ Bϕn 	
 pn,

where (i) 	
 ∈ {<,≤,=,≥, >} and (ii) the ϕi are mutually exclusive propositional
sentences (i.e., for all 1 ≤ i, j ≤ n s.t. i �= j, ϕi ∧ ϕj ≡ ⊥). For a full/complete
specification of a particular initial belief-state, all the 	
 must be = and p1 +
p2 + . . . + pn must equal 1.

The union of SL, AR, PR and UR is referred to as an agent’s background
knowledge and is denoted BK . In practical terms, the question to be answered
in the SDL is whether BK |= IB → Θ− holds, where BK ⊂ LSDL, IB is as
described above, and Θ− ∈ L�⇒

SDL is some sentence of interest, where L�⇒
SDL is the

subset of formulae of LSDL excluding law literals.
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4.2 Examples

This section states three entailment queries based on the oil-drinking scenario.
Except for the initial belief-state, the following is a full specification of the
POMDP model.5

Action Rules.
¬h ⇒ [g](f ∧ h) = 0.8 ∧ [g](¬f ∧ h) = 0.1 ∧ [g](¬f ∧ ¬h) = 0.1; h ⇒ [g] = 0.
h ⇒ [d](¬f ∧ h) = 0.95 ∧ [d](¬f ∧ ¬h) = 0.05; ¬h ⇒ [d] = 0.
f ∧ h ⇒ [w](f ∧ h) = 1; f ∧ ¬h ⇒ [w](f ∧ ¬h) = 1;
¬f ∧ h ⇒ [w](¬f ∧ h) = 1; ¬f ∧ ¬h ⇒ [w](¬f ∧ ¬h) = 1.

Perception Rules.
 ⇒ (N | g) = 1 ∧ (N | d) = 1.
f ∧ h ⇒ (L | w) = 0.1 ∧ (M | w) = 0.2 ∧ (H | w) = 0.7.
¬f ∧ h ⇒ (L | w) = 0.5 ∧ (M | w) = 0.3 ∧ (H | w) = 0.2.
¬h ⇒ (∀vς)¬(vς = N) → (vς | w) = 1

3
.

Utility Rules.

f ⇒ Reward(0); ¬f ∧ h ⇒ Reward(10); ¬f ∧ ¬h ⇒ Reward(−5).

 ⇒ (∀vα)(vα = g ∨ vα = d) → Cost(vα, 1); f ⇒ Cost(w, 2); ¬f ⇒ Cost(w, 0.8).

The robot gets 10 units of reward for holding the can while it is not full
(implying the robot drank the oil), and it gets −5 units of reward for not holding
the can while it is not full. Otherwise, the robot gets no rewards. It costs two
units to weigh the can when the can is full, else it costs 0.8 units. Grabbing and
drinking always costs one unit.

Suppose that the initial belief-state is specified as

Bf = 0.7 ∧ B(¬f ∧ h) = 0.2 ∧ B(¬f ∧ ¬h) = 0.1.

Note that it is not fully specified. We determined that BK entails

Bf = 0.7 ∧ B(¬f ∧ h) = 0.2 ∧ B(¬f ∧ ¬h) = 0.1 → �g + N��w + M�Bh > 0.85.

That is, the agent’s degree of belief that it is holding the can is greater than
0.85 after grabbing the can and then weighing and perceiving that it has medium
weight follows from BK , given an initial belief-state Bf = 0.7 ∧ · · · = 0.1. We
draw the reader’s attention to the fact that sensible entailments can be queried,
even with a partially specified initial belief-state.

In the next example, we provide a complete specification of the initial belief-
state, but we under-specify the perception probabilities. Suppose that instead of
perception rule f ∧ h ⇒ (L | w) = 0.1 ∧ (M | w) = 0.2 ∧ (H | w) = 0.7 ∈ BK ,
we have only f ∧ h ⇒ (H | w) = 0.7 ∈ BK ′. Also assume the perception rule
f ∧ h ⇒ (M | w) ≥ 0.2 ∈ BK ′. (That is, we modify BK to become BK ′.) Then

5 Probabilities used for specifying the initial belief-state are assumed given by a knowl-
edge engineer or computed in an earlier process.
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B(f ∧ h) = 0.35 ∧ B(f ∧ ¬h) = 0.35 ∧ B(¬f ∧ h) = 0.2 ∧ B(¬f ∧ ¬h)
= 0.1 → �g + N��w + M�Bh > 0.85

is entailed by BK ′.
Finally, we have shown that BK entails

Bf = 0.7 ∧ B(¬f ∧ h) = 0.2 ∧ B(¬f ∧ ¬h) = 0.1 → �g + N�U�d��d� ≤ 7,

where, the initial belief-state is under-specified. This example shows that non-
trivial entailments about the utility of sequences of actions can be confirmed,
even without full knowledge about the initial belief-state.

5 Concluding Remarks

We presented a modal logic with a POMDP semantics for representing stochastic
domains and reasoning about noisy actions and observations. Entailment queries
can be answered as a solution to certain kinds of projection problems, even
with incomplete domain specifications. The procedure for deciding entailment is
proved sound, complete and terminating. As a corollary, the entailment question
for the SDL is decidable.

Our work can likely be enhanced in several dimensions by further studying
the ongoing research in the field of probabilistic logics, stochastic/probabilistic
satisfiability, relational (PO)MDPs and symbolic dynamic programming [7–9,
20,26]. As espoused by [27], for instance, there are advantages to being able to
model a domain with relational predicates and not only propositions. We could
thus consider lifting the SDL to a first-order fragment.

Automatic plan generation is highly desirable in cognitive robotics and for
autonomous systems modeled as POMDPs. In future work, we would like to take
the SDL as the basis for developing a language or framework with which plans
can be generated, in the fashion of DTGolog [28].

POMDP methods do not deal with the problem of belief maintenance over
incomplete models, and this is why the problem is interesting, provided that
the solution can lead to methods that are at least, minimally effective. [29]’s
article seems like a good starting point for the investigation to determining the
computational complexity of the procedure, our next task.
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Abstract. Research in two-player perfect information games has been
one of the focuses of computer-game related studies in the domain of
artificial intelligence. However, focus on an effective search program is
insufficient to give the “taste” of actual entertainment in the gaming
industry. Instead of focusing on effective search algorithm, we dedicate
our study in realizing the possibility of applying strategy changing tech-
nique. However, quantifying and determining this possibility is the main
challenge imposed in this study. For this purpose, the Conspiracy Num-
ber Search algorithm is considered where the maximum and minimum
conspiracy numbers are recorded in the test bed of simple Tic-Tac-Toe
and Othello game application. We analysed these numbers as the mea-
sures of critical position identifier which determines the right moment
for possibility of applying strategy changing technique. For Tic-Tac-Toe
game, the conspiracy numbers are analysed through operators formally
defined in this article as ↑ tactic and ↓ tactic while variance of the con-
spiracy numbers are analysed in Othello game. Interesting results are
obtained with convincing evidences but future works are still needed in
order to further strengthen our hypothesis.
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1 Introduction

In the domain of speculative play, understanding the game or mastering the game
intricacy is the most important aspect for achieving successful outcome in the
respective competitive combat [1]. However, the main challenge in the domain
of speculative play is to identify a (critical) position for applying a speculative
play. The opponent-model search [2–4] is such a speculative play, but without
the knowledge of when is the most optimum position to apply it during a game.
In other words, determining when one should change his strategy from minimax
to any speculative way is the puzzling issue.
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The mechanics of computer-games in two-player perfect information games or
two-player games in short, such as board games (e.g. tic-tac-toe, othello, checkers,
chess, etc.), involve using a tree searching algorithm to evaluate and decide the
possible moves to take. However, even in the best known search algorithms, the
search space possesses exponential time complexity with the growing depth of
the tree [5]. Innovative search algorithms, search enhancements, and learning
ideas have been applied by ample research efforts towards creating a computer
program that dominates the games against their opponents with better strength
and performance [6], as well as overcoming the time complexity limitation of the
tree search [7]. In order to better understand the nature of any computer-game,
studying the progress of the games is important for improving the game’s value
as a form of entertainment.

When progressing on the board game, different positions made by a player
throughout the game’s time horizon can effect the outcome of the endgame.
Usually, playing well throughout the game when competing against top human
players is not enough but playing optimally during the endgame (or certain parts
of the games) is very important [8,9]. Focusing on a certain stage of the game
is essential in order to apply different speculative play to boost its excitement.
However, the outcome of the computer-games (lose, win, or draw) is unclear until
the game ends. Predicting this outcome during the progress of computer-games
is mainly dependent on the likeliness of a position to result in either winning,
losing, or draw. This situation is formally defined as critical position, where
at a certain point of the game progress, the game outcome is measurable and
eventually becomes certain and inevitable.

Identifying critical position of a progressing computer game involve compre-
hending the computer players tendency of changing its strategy during a par-
ticular moment of the game play. In other words, knowing the right moment of
based on this critical position at a certain state of the game enables the possibil-
ity of applying speculative play which essentially produces interesting outcome
of the game [10]. Thus, identifying this critical position is highly dependent on
the quantifying capabilities of the indicator. Therefore, a suitable search algo-
rithm that acts as an indicator during the games progress is necessary in order
to identify its critical position.

A well-known search indicators studied by several researchers in the late-80s
is the Conspiracy-Number Search (CNS). Introduced by McAllester [11,12], CNS
is a best-first search algorithm for minimax tree framework, which determines the
cardinality of the smallest set of leaf nodes which have to “conspire” to change
their values in order to change the minimax value of the root. This present
a suitable opportunity for determining the moments for applying speculative
play (e.g. opponent model), thus acts as the motivating factor of selecting CNS
for this study. One of the ideas underlying CNS is that the distribution of the
values over the leaf nodes of the tree, and the shape of the tree, should influence
the selection of the next node to be investigated [7]. However, focus on CNS
as a search algorithm in computer-games research was faced with discouraging
results [5,13–16]. Later, Allis et al. [17] derived and specialized CNS concepts
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to the AND/OR tree framework where the study matured into Proof-Number
Search (PNS). Although CNS is different compared to PNS, CNS’s conceptual
frameworks bear certain correlation to PNS.

This study concerns a matter of critical position identification, not a matter
of program strength improvement in games (See some approaches, e.g., done
by Jonathan Schaeffer). Hence, we have chosen a game as simple as possible
in order to clearly explain the proposed idea. Further investigation would be,
as suggested, to implement the proposed idea in more complicated games such
as chess. To our best knowledge, no other research has been done with CNs to
identify critical positions instead of using as game-tree search heuristics (stability
of the root node’s minimax value). In this paper, any part of speculative play is
not described. However, the relation between CN and strategic change at critical
position (in case where the position is going to be disadvantageous position)
should be very important in the context of speculative play.

2 Conspiracy-Number Search

In the minimax tree framework, the first player tries to maximize his or her
advantage, while the second player tries to minimize it [18,19]. CNS searches
the tree in a manner that at least c > 1 of the leaf values have to change in order
to change the decision at the root [5]. Intuitively, when expanding a minimax
tree further, the accuracy and stability of the root value depend on how much
it changes. Major changes on the root value make it unreliable [12]. Therefore,
the concept of conspiracy is used to measure the root value’s stability and its
likelihood to change by narrowing the range of the plausible values of the root
[13]. The likelihood of the root taking a particular value is reflected in that value’s
associated conspiracy number. This conspiracy number measures the size of the
“conspirators” needed to bring about a certain change in root value; the more
conspirators needed for a given change, the less likely the change [12]. This is
done by keeping track so the number of leaf nodes whose value must be changed
(when searched deeper) to change the root’s node value by a certain amount or
taking on that new value. A change in the value of a certain set of leaf nodes is
called conspiracy between those leaf nodes.

The algorithm is a probabilistic search in nature where there is no guarantee
that the correct solution will be found when it terminates, but the most likely
one instead. The conceptual framework behind the CNS is to grow search trees
for which one has confidence by measuring the number of value through the
conspiracy numbers. The search is guided in a best first manner, where the
tree searched so far is kept in memory. An example is probably the best way
to illustrate the function of a conspiracy number. The following is taken from
[5,13]: Assume that the branching factor is 2, the range of values are from 1 to
6, the root node is the MAX node, inside the nodes are their names and their
minimax values, and the simple tabular for storing conspiracy numbers of the
root. From Fig. 1, it can be observed that the leaves or terminal node have to at
least change their value to cause the value of the root to become 1, 2, 4, 5, or 6.
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A=3

D=5 E=2 F=3 G=4

B=2 C=3

Root

Interior Node

Terminal Node

value cn conspirators

1 2 (D or E) and (F or G)
2 1 F or G
3 0
4 1 E or F
5 1 E
6 2 (D and E) or (F and G)

Fig. 1. Illustration of a minimax tree adopting CNS algorithm.

For example, only leaf E has to change its value to 5 in order for the root value
to become 5.

As described by Schaeffer [13], there is a simple method of computing the
conspiracy numbers. At the terminal node t, the conspiracy number associated
with node t value is 0 and for all other values is 1. For the interior node, if the
value x of a MAX node is to be increased to x′ > x, only one of the successor
nodes need to change its value to x’. It is clear that the conspiracy number for
x’ is the minimum amongst all other successors. This is denoted as ↑ neededi.
If the value x is to be decreased to x′ < x, all successors with values greater
than x’ must change their value to one lower than x’. That is the reason why the
number of conspirators for these nodes are summed. This is denoted as ↓ neededi.
The rules of calculating conspiracy numbers are given as the following (v is the
associated conspiracy number of the node and m is the minimax value of the
node):

CN(v) = 0, if v = m,

At MAX node:

CN(v) =
∑

all sons i

↓ neededi(v), for all v < m,

CN(v) = min
all sons i

↑ neededi(v), for all v > m.

At MIN node:

CN(v) = min
all sons i

↓ neededi(v), for all v < m,

CN(v) =
∑

all sons i

↑ neededi(v), for all v > m.

Since its introduction, variants of CNS have been proposed by several
researchers. α − β Conspiracy Search proposed by McAllester and Yuret [20]
establishes lower and upper bound of the search. The MAX strategy establishes
a lower bound and the MIN strategy establishes an upper bound. Thus, the
conspiracy numbers can be used to measure the “safety” of these two strate-
gies. Lorenz et al. [5] proposed a Controlled-Conspiracy Number Search where
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instead of variable depth, an α−β quiescence search is used and search bound is
provided. The conspiracy number vectors are compressed into 3-tuples, allowing
the CCNS to be independent of the granularity of the evaluation function (e.g.
positional play in chess).

3 Conspiracy-Number Search as Critical Position
Identifier

Determining critical position is vitals due to the following reasons: First, the
specific outcome of the game can be estimated in advance (e.g. resignation) and
this estimation can be utilized for game outcome prediction. Second, the critical
positions are expected to expose the possibilities of tactic changes, denoted as
↑ tactics or ↓ tactics, respectively. The ↑ tactics implies that the computer
player tries to force a draw when it’s losing, while ↓ tactics implies that the
computer player tries to force a draw when achieving a win is impossible. Third,
critical positions can be used to estimate the moment for computer player to
apply speculative play and change the outcome of the game.

However, why do we use CNS instead of the positional scoring (evaluation
function) alone during the game’s progression? The positional scoring act as a
guiding function for an individual player to determine his/her state in the game’s
progress [21]. Although it might be suitable for identifying critical positions,
it still lack of the probabilistic element in abstracting the player’s decision to
determine the next game state. Basically, positional scoring shows how the game
progresses (i.e. which player is leading the game) but the CN-values potentially
show its probable changes. Thus, the goal of critical position is to determine
the possibility of improving or deteriorating the positional score value of a move
(evaluate for probable impact of next moves), while positional scoring makes
use of the evaluation features of a move (evaluate for probable gain of next
moves) [21].

3.1 Tic-Tac-Toe: Experimental Results and Discussion

CNS requires two types of conspiracy numbers needed to maintain, ↑ needed
and ↓ needed. We consider this as a scalar measures in the computer-game’s
search progress to analyze and justify the rationale of the hypothesis mentioned
earlier. A simple Tic-Tac-Toe game is used as the test bed of our study.

This experiment is tested with fixed-depth minimax algorithm applying CNS
as a scalar measures for recording the conspiracy numbers of the root values for
each game moves. For every player X with search depth i there is an opposing
player O with search depth j, where 2 ≤ i ≤ 6 and 2 ≤ j ≤ 6. Therefore, there
are 25 total game sets (both player X and player O have five depths). Player X
is assumed to be the first player to start the game in every case, since if player O
starts the results will be just the reverse. The rules of the games are as follows:
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– For player O, the score is negative. For player X, the score is positive.
– Player X tries to maximize the score, while player O tries to minimize the

score.
– For each row, if there are both X and O, then the score for the row is 0.
– If the whole row is empty, then the score is 1.
– If there is only one X, then the score is 10. If there is only one O, then the

score is −10.
– If there are two X, then the score is 100. If there are two O, then the score is

−100.
– If there are 3 X, then the score is 1000. If there are three O, then the score is

−1000.

Tables 1 and 2 shows the recorded maximum conspiracy numbers (MaxCN )
and minimum conspiracy numbers (MinCN ) for every game sets, respectively.
The odd and even numbers (highlighted in light gray) of the game’s progress
are relevant to player X and player O, respectively. In all cases of game sets,
the game outcomes is a draw. To counter this, we consider the final score of
any player as win, lose, or draw as final score of 100, −100, and 0, respectively.
Table 3 shows the final scores of every game of player X versus player O.

Observing Tables 1 and 2, the MaxCN of player X decreases steadily (in most
cases) while the MaxCN for player O decreases abruptly. To simplify the results
interpretation, the following rules are adopted: The MaxCN of current player p
is considered abruptly decreased if |MaxCNpi+1 − MaxCNpi

| > |MaxCNpi+1 |,
where i equals to the game progress (e.g. moves). The value of MaxCN implies
instability and changes in the root value is more likely. In other words, possibility
of losing or winning is high since the likeliness of the root value to change is high.
However, the fact that the outcome is inevitable (either win or lose) but not
known, this stage simulates the critical position which is highly recommended
for applying speculative play.

For MinCN, however, a different interpretation is needed. The abruptly
decreased MinCN utilizes the same rule as MaxCN: The MinCN of current player
p is considered abruptly decreased if |MinCNpi+1 −MinCNpi

| > |MinCNpi+1 |,
where i equals to the game’s progress (e.g. moves). This situation is the critical
position for tactic changes (↑ tactic or ↓ tactic). In the case of abrupt inclining
of MaxCN, the root value stabilizes and tactic change of the current player from
better to worst (from winning to a draw or a draw to losing) is more likely. This
particular situation is when the ↓ tactic occurs. In the case of abrupt inclining of
MinCN, the root value is limited to the available MinCN value only. Thus, this
situation implies the likelihood of identifying the tactic change of the current
player from worst to better (from losing to a draw or from a draw to winning).
This particular situation is when the ↑ tactic occurred.

For instance, consider player X with search depth 2 against player O with
search depth 3. Generally, player O can be regarded to outperform player X
due to lookahead superiority. Figures 2 and 4(a) simulates the mentioned game’s
progress situation. During the first move, player X chooses the middle position
of the board leaving player O with limited options. The MaxCN and MinCN of
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Table 1. Maximum Conspiracy num-
bers of player X against player O with
depth variations.

Table 2. Minimum Conspiracy num-
bers of player X against player O with
depth variations.

player X is currently 8 and 1 respectively. After considering the vertical, diagonal,
and horizontal spaces, player O chooses the upper left corner of the board and
currently possess MaxCN and MinCN of 22 and 4 respectively. Consequently,
player X chose the upper middle side of the board, which effects MaxCN to
decrease steadily, while MinCN remain the same. Next, player O chooses the
lower middle of the board which abruptly reduces player O’s MaxCN to 8 while
MinCN remains the same. This situation imposes that player O is in a critical
position, even if its intent is to prevent player X from winning. Therefore, player
O is in the state of ↓ tactic and is advised to apply different tactic. In the next
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Table 3. Final scores based on depths of player X against player O

Final Score Player O

2 3 4 5 6

Player X 2 0 0 0 0 0

3 0 0 0 0 0

4 −100 −100 −100 −100 −100

5 −100 −100 −100 −100 −100

6 −100 −100 −100 −100 −100

move, player X chooses the lower left corner of the board which has forced player
O into another bad position. During the consequent move, player O’s MaxCN
reduces steadily while MinCN is abruptly reduced to 1, which implies that player
O has applied ↑ tactic where, instead of losing, it tries to force player X into a
draw. Thus, the final outcome of the game is a draw.

Another example is the case of player X with search depth 5 against player
O with search depth 4 which is given in Figs. 3 and 4(b). During the first move,
player X chooses the middle position of the board leaving player O with limited
options. The MaxCN and MinCN of player X is currently 360 and 4 respectively.
The high value of MaxCN is because of the deeper search depths. In the next
move, player O chooses the upper left corner of the board and obtains a MaxCN
and MinCN of 62 and 13 respectively. Consequently, player X chooses the upper
middle side of the board, making MaxCN and MinCN decreases steadily. During
the rest of the moves, the evolution of MaxCN of both player X and player O
abruptly reduces, forcing both players into “dilemmas” where both ↓ tactic and
↑ tactic occur. This situation can be hypothetically defined as the state where
both players are able to apply different tactics. On the other hand, observing
the MinCN of both player X and player O during fifth and sixth moves implies
that both player adopted the ↓ tactic. However, player O’s leading score plays
its part and forces player X to lose the game (assumed final score is winning).

The challenge in the study of speculative play is to identify critical positions
at which one should consider to apply a kind of speculative strategy such as
opponent-model search in order to change the situation: from behind to even
or better. Another challenge in GM-level man-machine matches is to identify
(no more promising) positions to resign. Therefore, the experiments suggested
in this study provide the main foundation for identifying the critical positions,
although further investigation is expected.

3.2 Othello: Experimental Results and Discussion

Othello takes place between two players, White player and Black player. The
default board used in this experiment is 8 × 8 board of 64 squares which is
set up by two black discs and two white discs initially as shown as Fig. 8. Black
player is always assumed to be the first player to start first and both players must
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1 2 3 4 5
0

2

4

6

8

10

8

6

4

2
11 1 1

0 0

Moves

Player X with search depth 2

Max Min

1 2 3 4
0

10

20

22

8

4
1

4 4
1 0

Moves

Player O with search depth 3

Max Min

Fig. 2. MaxCN and MinCN for player X with search depth 2 against player O with
search depth 3.

1 2 3 4 5
0

200

400 360

206

17 2 113 5 0 0 0

Moves

Player X with search depth 5

Max Min

1 2 3 4
0

20

40

60

80

62

16

3 1

13
8

0 0

Moves

Player O with search depth 4

Max Min

Fig. 3. MaxCN and MinCN for player X with search depth 5 against player O with
search depth 4.

not pass or skip turn unless there are no legal moves available [22]. The game
continues until neither players are able to move nor all the 64 squares have been
played. The Othello program developed in this study is a novice player program
with weighted squares strategy [22] that computed the numeric difference of
the discs ownership with a given fitness value on certain significant squares on
board. These significant squares (usually corners) are given with special names
and assigned with evaluation fitness. Each of these squares are assigned with an
evaluation fitness value. This fitness value behaves as a penalty to the position
scoring function. The penalty calculation is clearly explained in the AppendixA.
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Fig. 4. Simulation of Tic-Tac-Toe games.

The main purpose of adopting an evaluation function in Othello is to apply a
scheme that prefers good positions and avoids bad positions to the players. The
player’s position scoring, S can be obtained with Eq. 1.

S = B − W (1)

where B: sum of the black discs on board W: sum of the white discs on board
Penalty, P is applied differently to the maximizing (Black) and minimizing
(White) players.

Pfinal =

{
S + P Black player
S − P White player

(2)

where Pfinal: final position score. The position scoring function of the Othello
game are as follows:

– A positive Pfinal value refers to Black player who is leading in the game
whereas negative Pfinal value referring to White player who is winning in
the game. Draw position of Black and White player can be denoted as zero
Pfinal value.

– Black player favours larger positive position scores (maximizing current node’s
score) while White player favours larger negative position scores (minimizing
current node’s score).

– Zero position score means that Black and White player are in draw position.

Othello game ends in 60 moves with 64 squares on board deducted with 4 initial
discs positions [22]. The game progress of Othello is divided into three phases
with approximating dividing lines [23] in this study. The first 20 game progresses
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are the opening phase following by next 20 game progress of middle phase. The
last 20 game progresses are in endgame phase.

In order to analyse the flow of conspiracy numbers changed with the game,
the variance of MaxCN and MinCN is calculated as Eq. 3.

CNvariance = MaxCN − MinCN (3)

The variance of MaxCN and MinCN represents the difference of these two con-
spiracy numbers over the game progress. The idea of analysing the conspiracy
numbers variance is to ease the observation of the conspiracy number values
changed. By identifying MaxCN and MinCN itself, it is hard to observe the
change especially when the Othello program developed in this study is much
weaker than the Tic-Tac-Toe program in the previous section. The Tic-Tac-
Toe program has the perfect evaluation function which has made the change of
MaxCn and MinCN values easier to observe. Moreover, the critical positions can
be identified through as describe as following. There are four possible outcomes
which can be obtained from the variance which is as follows:

– CNvariance is a positive value. The value of MaxCN is larger than the value
of MinCN, this represents that the current player has to check many nodes in
order to obtain higher position score than current nodes. Therefore, the diffi-
culties of current player to obtain higher position score than current position
score is high whereas it is easy to obtain a lower position score. If the current
player is a minimizing player (White player), it has higher advantage to make
a good move and vice versa.

– CNvariance is a negative value. The value of MaxCN is lower than the value
of MinCN. In this case the current player just has to check few nodes to
obtain higher position score than current nodes. Thus, the difficulties of cur-
rent player to obtain higher position score than current position score is low
while obtaining lower position score became hard. If the current player is a
maximizing player (Black player), it has higher advantage to choose a better
move and vice versa.

– CNvariance is a zero value. The zero value ratio represents that the MaxCn is
equal with MinCN which both MaxCn and MinCN can be in either equally
large or small values. The players have equal number of nodes to be searched
for higher or lower position score than current position score. These uncer-
tainties have led to the high possibilities of winning or losing. Therefore, the
outcome is inevitable (either win or lose) but not known. In contrast to pre-
vious Tic-Tac-Toe experiment, this stage simulates the critical position which
is highly recommended for applying strategy changing technique.

– CNvariance is infinity value. Infinity value indicates that the game has reached
to a terminal node where there are no available next move to be played.
Positive refers to MaxCN returned infinity value whereas negative CNvariance

refers to MinCN returned infinity value. When an infinity CNvariance value is
obtained, it means that the players have to search infinity nodes to get higher
or lower position score and the players have no available or valid moves to
play next.
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In contrast with the Tic-Tac-Toe study, four game set is selected to be eval-
uated in this section. The opening position in this study is the default opening
position as shown as Fig. 8 at the Appendix A. This Othello study is conducted
on 3 and 4 search depth for Black player with 3 and 4 search depth for White
player under three conditions. They are separately evaluated at the next sub-
sections. The Othello is analysed in the first subsection study by the CNvariance

value and position scoring. The strategy changing technique is applied to either
Black or White player in the next subsection which is followed by applying the
technique to both Black and White players. The possible timing for resignation
can be identified from first or second subsections and they are discussed in the
third subsection. The strategy changing technique in this study is defined by
deepening the current search depth by two for both players. This technique is
applied to the computer program that has lower search depth than its opponent
player.

Game Analysis using CNvariance and Position Scoring. Four game set
have conducted with different search depth for each player without any strategy
changing technique as listed in Table 4.

Table 4. Game set.

Game set Search depth

Black player White player

1 3 3

2 3 4

3 4 3

4 4 4

The conspiracy numbers and position scoring results of both players from Game
set 1 are shown in Figs. 5 and 6. The situations of ↑ tactic and ↓ tactic are
analysed before the endgame phase (40th game progress and following) of the
game.

Fig. 5. Game set 1: Black player with search depth 3.
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Fig. 6. Game set 1: White player with search depth 3.

Black player’s MaxCN abruptly decreases from 3 to 1 at 17th game progress.
At this stage, the position scores of Black player have decrease from 3 to 1
where ↓ tactic occurs. Next, Black players MinCN reduces abruptly at 5th game
progress from 8 to 2 and its position scores remain the same as 3. ↑ tactic occurs
at this situation by keeping the position scores stable. In contract to the Tic-Tac-
Toe study, abruptly decreased MinCN in this study does not always represent
↑ tactic. Black players MinCN at 33rd game progress abruptly decreases from 8
to 1 but Black player has lost from 9 discs to 15 discs to White player. White
players MaxCN abruptly decreases from 3 to 1 at 16th and 38th game progress.
Its position scores change from 0 to −4 (draw to winning) and from −28 to
−24 (wining more discs to winning lesser discs). This might be due to the Oth-
ello program developed in this study which is a weak program without perfect
evaluation function comparing to the Tic-Tac-Toe program that has the perfect
evaluation function.

Figures 10, 11, 12 and 13 at AppendixB show the CNvariance for the game and
the position scoring of Black and White players. A trend line is presented in each
figure with the second order polynomial equation of y = ax2 +bx+c. Observing
the CNvariance of Black player from Figs. 10(a), 11(a) and 13(a), Black player
has increasing trend at the game progress from 1st to 20th in the opening phase.
This increasing trend represents that MaxCN value is slowly increasing which
means that many nodes have to be searched by Black player for higher position
score than current position score. Hence, it is difficult to obtain higher position
score than current position score. As a maximizing player, Black player has
lost its advantage to choose better moves and headed towards a losing position.
This assumption can be predicted at the middle phase of the game as shown as
Figs. 10(b), 11(b) and 13(b). Next, the CNvariance of Black player from Fig. 12(a)
shows a decreasing trend at the opening phase that have led the Black player
slowly winning against White player at the middle phase as shown as Fig. 12(b).
In contract to Black player, increasing CNvariance trend at opening phase predicts
that White player is getting advantages at the middle phase.

Next, future outcome at the next few game progress can be predicted by
examining current CNvariance. High positive CNvariance denotes high difficulty
in acquiring higher position score than current score whereas high negative
CNvariance denotes high difficulty in acquiring lower position score than cur-
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rent score. A conclusion can be drawn that players with a high CNvariance value
have higher disadvantages in obtaining a better position score.

To summarize, short-term (next few game progress) outcome prediction can
be made by observing current CNvariance as listed at Eq. 4.

Outcome =

{
Disadvantages If CNvariance is high
Advantages If CNvariance is zero

(4)

While the trend at the opening phase is used to predict long-term (future trend)
outcome as shown at Eqs. 5 and 6.

Increasing CNvariance trend,

Outcome =

{
Advantages If White player
Disadvantages If Black player

(5)

Decreasing CNvariance trend,

Outcome =

{
Advantages If Black player
Disadvantages If White player

(6)

Critical positions are identified from both players before the endgame phase.
These critical positions indicate a situation where the player has high uncertain-
ties in predicting the future short-term or long-term outcome of the move played.
Table 5 shows the number of critical positions identified in each game set.

Table 5. Position Scoring and Number of Critical Positions in each game set.

Game set Num. of Critical Pos.
(Position Scores — Search depth)

Black player White player

1 7 (20—3) 5 (44—3)

2 5 (8—3) 2 (56—4)

3 1 (43—4) 11 (21—3)

4 4 (17—4) 0 (46—4)

Second player (White player) always has advantages in winning when both play-
ers have equal search depth. Based on the results shown at Table 5, the winning
player has lower number of critical positions which means that player has lower
uncertainties in predicting the future trend of the moves played and vice versa.
Therefore, large numbers of critical positions encountered will led that player
into a situation where the future trend of the move played is unpredictable.
Based on above experiment, the player with higher number of conspiracy num-
bers lost the game. For example, Fig. 10(c) shows that the move is played on
critical position at 13th game progress which has led Black player into a worst
situation and slowly losing until the endgame phase.
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Incorporating Strategy Changing for Black or White Player only. Gen-
erally, human expert players require longer time to think carefully at a harder
position and vice versa. As for computer players, a strategy needs to be changed
at a hard position. In this study, the strategy changing is closely related to
the player’s search depth. Player with deeper search depth is a stronger player.
At a critical position, not only the search depth will be deepened; the trend
of CNvariance also needs to be concerned as well. According to Eq. 5, increas-
ing CNvariance benefits White player while decreasing CNvariance benefits Black
player. When a critical position is identified, the trend of CNvariance before the
critical position has to be examined. If it is an increasing trend, Black player’s
search depth will increase (strategy changing technique) else the search depth
will remain or change to the initial search depth. On the other hand, White
player’s search depth will increase on a decreasing trend and remain or change
to the initial search depth on an increasing trend.

To examine the results of the assumption whether deeper search depth is
required at a critical position, the strategy changing technique is applied to
Black player in game set 1, 2 and 4 (where Black player loses at previous exper-
iments) and to White player in game set 3 when a critical position is identified.
The experimental results are shown in Tables 6 and 7. The grey shaded area indi-
cates that the strategy changing technique is applied on that player. The grey
shaded numbers of critical positions of Table 7 only record the total number
of critical positions that applied strategy changing whereas Table 6 and white
shaded players recorded the total numbers of critical positions. The player that
does not involve in the strategy change at that game set is shaded as white.

Table 6. Position Scoring and Number of Critical Positions (before endgame phase)
in each game set.

Figures 14, 15, 16 and 17 at AppendixC show the CNvariance for the game
and the position scoring of Black and White players with a trend line. By observ-
ing the result and CNvariance trend of Game set 1, changing the strategy at the
critical positions is a beneficial method. Black player increases its search depth
by 2 (initial search depth 3) at each identified critical position that has increas-
ing CNvariance trend before the critical position, and it slowly moved to better
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Table 7. Position Scoring and Number of Critical Positions (before endgame phase)
that apply strategy changing technique in each game set.

position at the middle phase. At the end, the game has turned into a more
balancing game (final position scoring from 20–44 to 35–29). In this game set,
Black player is able to find and play a better move with deeper search depth.
Therefore, bad moves that will lead to hard situations can be avoided.

Game set 2 is a unique condition where the game ended at the middle phase.
White player wins the game although the strategy changing technique is applied
to Black player. In this game set, Black player has encounter a positive infinity
CNvariance at 29th game progress before endgame phase which means that Black
player has to search infinity node in order to find larger position scores. This
situation represents that Black player has searched to a terminal node. Therefore,
Black player has lost its advantage since a terminal node indicates no available
moves.

Game set 3 and 4 does not have any changes in terms of the position scoring.
However, the numbers of critical positions identified are reduced. For exam-
ple, the number of critical positions of White player had reduced from 11 to 8
(Game set 3), Black player’s from 4 to 3 (Game set 4). In this case, strategy
changing technique does not help the player in winning the game as Game set
1. However, by increasing the search depth, Black player in game set 4 that
has increased search depth are able to search to a terminal node with positive
infinity CNvariance value (stage 13th), 2 stages earlier than Game set 4 that has
no strategy changing technique (stage 15th). Due to Black player had identified
a positive infinity CNvariance value before endgame phase, Black player has lost
its advantages and White player wins the game at the end. Out of the 3 critical
positions identified by Black player, the search depth is increased at the second
critical position but it changed back the initial search depth at the third critical
position before endgame phase. Therefore, the position score does not improve.
On the other hand, the significant difference between Game set 3’s Figs. 12(b)
(without strategy changing) and 15(b) (with strategy changing) is the observa-
tion of negative infinity CNvariance value before endgame phase. The negative
infinity CNvariance value is identified at 44th stage in Fig. 12(b) whereas it is
identified in Fig. 16(b) at 34th stage. By applying strategy changing technique,



116 M.N.A. Khalid et al.

White player is able to observe a negative infinity CNvariance value before the
endgame phase.

The main idea of changing the strategy at critical positions is to keep game
balance. This can be done by increasing the search depth on the weaker player
in observing the CNvariance value. However, the results of changing the strategy
on weaker player do not always help in winning the game. It may lead to a
losing position as shown as Game set 2, 3 and 4 in this section where positive
or negative infinity CNvariance can be observed at the earlier stage.

Resignation. Infinity the CNvariance values indicates that the player that
observed the values have no available moves and have high disadvantages. There-
fore, this stage might be the stage where that particular player can resign.
Figure 15(a) and (b) of Game set 1 with strategy changing has spotted continu-
ously positive infinity CNvariance values which are 29th to 35th stage in Fig. 15(a)
and 28th to 36th stage in Fig. 15(b). After that, Fig. 15(c) and (d) show that the
position scoring is decreasing starting at 28th stage towards the endgame and
White player wins the game. According to Game set 3 with strategy changing
technique, negative infinity CNvariance values are identified at 33rd to 43rd stage
in Fig. 16(a) and 34th to 40th stage in Fig. 16(b). The continuous negative infinity
CNvariance values represent that White player has losing its advantages continu-
ously. This situation was proved by Fig. 16(c) and (d) where the position scoring
is slowly increasing at 33rd stage towards the endgame. Game set 4 also shows
the similar situation where positive infinity CNvariance values are identified and
the position scoring is decreasing towards the endgame with White player wins
the game. Therefore, a conclusion can be drawn that when continuously positive
(negative) infinity CNvariance values are observed, Black (White) player has lost
its advantages due to there are no available moves. Hence, this might be the
time for Black (White) player to resign.

As summary, the resignation timing is highly dependent to the strength of the
players where stronger player has deeper search depth and vice versa. Stronger
player is able to foresee the future of the move played by analysing CNvariance

values which the outcome of the moves played can be either winning or losing.
With deeper search depth, the players are able to identify the timing to resign
where continuous positive or negative infinity CNvariance values are observed.

Weak program (Othello program in this study) that has poor evaluation
function will lead to low position scoring accuracy. Therefore, the Othello studies
might be affected when its evaluation function is strong. Changing strategy when
CNvariance is equal to zero might be too aggressive. According to Tables 1 and
2, Player O with search depth 2 (and Player X’s search depths are 2, 4, 5 and 6)
encountered four critical positions where CNvariance is equal to zero throughout
25 game set. Therefore, changing search depth at critical positions defined as
CNvariance is equal to zero might be hard to be applied on strong program like
the Tic-Tac-Toe program in this study due to there might be no or very less
number of critical positions can be identified in a game. In this case, changing
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strategy when CNvariance is equal to zero might need to be revised in order to
fit both strong and weak game programs.

4 CNS Correlations to PNS

Application of PNS in the previous work such as [24] raised questions whether
any correlations exists in the application of CNS as a critical position identifier.
Theoretically, experimental results obtained from the previous section empow-
ered the possibility of correlation between CNS and PNS as indicators in their
respective tree search framework. This section attempts to identify that corre-
lation and give a better picture on the importance of these two indicators. The
following section will give a short description on the basis of PNS.

4.1 The Basis of PNS

PNS, like its ancestor CNS, is a best-first search algorithm in which the tree
searched so far is stored in memory. The main difference is that PNS aims at
proving the true value of root, where the interim minimax values are not con-
sidered [17]. The PNS heuristic determines the most promising leaf by selecting
a most-proving node or most-promising node (MPN), which can contribute to
either a proof or a disproof of the root if a leaf node is solved. The MPN can
be formally defined as the node which, with the least possible effort, potentially
contributes most to the establishment of the minimax value of the root. The
MPN can be found by manipulating two criteria of the search tree: (1) its shape
(determined by the branching factor of every internal node), and (2) the values
of the leaves. The basic and un-enhanced PNS is an uninformed search method
that does not require any game-specific knowledge beyond its rules [7].

The PNS produces two special values for each node n in order to find MPN.
First, the proof number (denoted as pn(n) where pn is the proof number of node
n) which is the smallest number of leaf nodes in the subtree starting with n
that have to be proven in order to prove that n is a win. Second, the disproof
number (denoted as dn(n) where dn is the disproof number of node n) which is
the minimum number of leaf nodes that have to be disproved in order to prove
that n is a loss.

Calculating the values of pn and dn for each node in the tree is performed
in a bottom-up manner. Usually, In a terminal node t, the game-theoretic value
is known or the corresponding position has no legal moves. If t is a win, then
pn(t) = 0 and dn(t) = 1. If t is a loss, then pn(t) = 1 and dn(t) = 0. If t is
unknown, then pn(t) = dn(t) = 1. In this case, the terminal node t is called a
temporary terminal node. For the internal MAX node, it is sufficient to have one
child that proves the value of v. The pn of a MAX node is equal to the minimum
of the pn of its children. For dn, the only way to disprove v is to disprove v for
all its children. So, the dn for MAX node is equal to the sum of the dn of all its
children. It is the reverse for the internal MIN node.
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However, PNS is famously known for searching the AND/OR tree framework
instead of the minimax tree framework. The AND/OR tree is a type of tree where
the nodes have only three possible values: true, false, and unknown [24]. Using
PNS, the pn for an AND/OR tree represents the minimum number of unsolved
leaf nodes that need to be solved in order to win in the root. Similarly, the dn
for an AND/OR tree represents the minimum number of unsolved leaf nodes
that need to be solved in order to lose in the root. The PNS always considers
the MPN in which the internal nodes can be decided recursively if the terminal
node value was decided. Thus, PNS can be used to decide the value of the root
node by deciding values of other nodes as soon as possible [24].

4.2 General Correlation of the Elements of CNS and PNS

As described by Ishitobi et al. [24], pn is related to the difficulty, which relates
to the minimum number of unsolved nodes that need to be solved. So, maximum
pn shows the complexity to solve these unsolved nodes. On the other hand, dn
is related to the minimum number of unsolved nodes that need to be disproved.
Therefore, maximum dn shows the complexity to disprove. In other word, both
the maximum pn and maximum dn are an effective measures of difficulty to
solve nodes as soon as possible for the AND/OR tree framework.

The MaxCN and MinCN show a correlation to maximum pn and maximum
dn in the minimax tree framework. In the CNS context, MaxCN and MinCN
identify the critical position in the game’s progress for an expected outcome.
MaxCN indicates the unlikeliness of root value in achieving a value. Therefore,
high value of MaxCN implies the high likeliness of winning or losing. MinCN
indicates that the likeliness of root value to achieve a value is limited to the value
of MinCN. So, high value of MinCN implies the possibility of target change of
the possible estimated outcome. Considering the relation to maximum pn and
maximum dn, we find that high values of MaxCN and MinCN are an effective
measures of difficulty of a particular value to be likely. Figure 7 depicts the
correlation of CNS and PNS.
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5 Concluding Remarks

In this article, we presented four main contributions:

– The application of conspiracy numbers as the critical position identifier in
the context of tic-tac-toe game (two-players perfect information games) and
Othello game (two-players weak information games).

– The theoretical correlation of maximum and minimum conspiracy numbers to
maximum proof numbers and maximum disproof numbers.

– The application of conspiracy numbers variance in critical positions with strat-
egy changing technique that defined by increasing search depth by two.

– The timing of players resignation at a worst situation that the players are not
able to change the situation.

In the results presented, we successfully identified the critical positions
through maximum and minimum conspiracy numbers in most cases of game sets.
However, not all game sets support the findings anticipated from the value of
the conspiracy numbers variance especially in the Tic-Tac-Toe game. Therefore,
further revisions on conspiracy numbers variance are needed in order to identify
the perfect timing to change the players strategy. However, Othello game results
returned valuable information where the timing of players resignation is able
to identify by conspiracy numbers variance. By determining this critical posi-
tion and resignation timing, possible application of strategy changing technique
can be explored and exploited to improve the overall game excitement. Further
explorations on larger and more perfect game searches (Othello with perfect
evaluation function, chess, and endgames of difficult positional chess) is the out-
look which we will focuses in future studies in order to give a more accurate and
extensive understanding on the role of CNS as critical position identifier. Simi-
larly, future work on CNS as critical position identifier will potentially reinforce
claims made on its correlation to PNS.

Acknowledgement. This research is funded by a grant from the Japan Society
for the Promotion of Science, in the framework of the Grant-in-Aid for Challenging
Exploratory Research (grant number26540189).

A Appendix

Experiment Design
This Othello study is conducted by the default opening position on 8× 8 board
with 64 squares as shown in Fig. 7. Figure 8 denotes the significant squares that
are given special names.

C-squares are adjacent to the corner D while X-squares are diagonally adja-
cent to the corner D. A-squares and B-squares are the edges of the board [23].
E-squares are adjacent to A-squares and B-squares. The evaluation function is
defined as follows (Fig. 9):
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Fig. 8. Othello opening position.

Fig. 9. Significant squares on board.

Table 8. Fitness value of each significant square.

Squares on board Fitness value

Corner D 40

C-squares −40

X-squares −40

A-squares −30

B-squares −30

E-squares −20

*d+2: the initial search depth
deepens by 2 on a critical position
by referring to Eqs. 5 and 6.
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– D-squares are good and high priority positions.
– C-squares and X-squares are bad positions which may give chances to the

opponent player accessing corner D.
– A-squares are good positions if there exist no opponent’s discs at the adjacent

squares.
– B-squares are bad positions where the opponent player might has chances to

access to A-squares.

Table 8 shows the fitness values that have been assigned to each significant
square on board.

B Appendix

Game Analysis using CN Variance and Position Scoring
*Applicable to all the figures
The trend line drawn in position scoring Figs. 10(c), 11(c), 12(c) and 13(c) is
closely related to the CNvariance trend line at Figs. 10(a), 11(a), 12(a) and 13(a)
whereas the trend line drawn in position scoring Figs. 10(d), 11(d), 12(d) and
13(d) is closely related to the CNvariance trend line at Figs. 10(b), 11(b), 12(b)
and 13(b). CNvariance trend line in Figs. 10(a), (b), 11(a), (b), 12(a), (b) and

(a) (b)

(c) (d)

Fig. 10. Game set 1 (a) Black player’s Conspiracy numbers variance (b) White player’s
Conspiracy numbers variance (c) Black player’s position scoring (d) White player’s
position scoring. A trend line is drawn in each figure.
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(a) (b)

(c) (d)

Fig. 11. Game set 2 (a) Black player’s Conspiracy numbers variance (b) White player’s
Conspiracy numbers variance (c) Black player’s position scoring (d) White player’s
position scoring. A trend line is drawn in each figure.

(a) (b)

(c) (d)

Fig. 12. Game set 3 (a) Black player’s Conspiracy numbers variance (b) White player’s
Conspiracy numbers variance (c) Black player’s position scoring (d) White player’s
position scoring. A trend line is drawn in each figure.



Identifying Critical Positions Based on Conspiracy Numbers 123

(a) (b)

(c) (d)

Fig. 13. Game set 4 (a) Black player’s Conspiracy numbers variance (b) White player’s
Conspiracy numbers variance (c) Black player’s position scoring (d) White player’s
position scoring. A trend line is drawn in each figure.

13(a), (b) can be used to predict the trend of position scoring in Figs. 10(c), (d),
11(c), (d), 12(c), (d) and 13(c), (d).

Increasing CNvariance trend line in Figs. 10(a), (b), 11(a), (b), 12(a), (b) and
13(a), (b) will lead to decreasing trend in position scoring which can be observed
by Figs. 10(c), (d), 11(c), (d), 12(c), (d) and 13(c), (d). However, trend line
observation is not applicable when there are infinity CNvariance values.

C Appendix

Incorporating Strategy Changing for Black or White Player Only
*Applicable to all the figures
The trend line drawn in position scoring Figs. 14(c), 15(c), 16(c) and 17(c) is
closely related to the CNvariance trend line at Figs. 14(a), 15(a), 16(a) and 17(a)
whereas the trend line drawn in position scoring Figs. 14(d), 15(d), 16(d) and
17(d) is closely related to the CNvariance trend line at Figs. 14(b), 15(b), 16(b)
and 17(b). CNvariance trend line in Figs. 14(a), (b), 15(a), (b), 16(a), (b) and
17(a), (b) can be used to predict the trend of position scoring in Figs. 14(c), (d),
15(c), (d), 16(c), (d) and 17(c), (d).

Increasing CNvariance trend line in Figs. 14(a), (b), 15(a), (b), 16(a), (b) and
17(a), (b) will lead to decreasing trend in position scoring which can be observed
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(a) (b)

(c) (d)

Fig. 14. Game set 1 (a) Black player’s Conspiracy numbers variance (b) White player’s
Conspiracy numbers variance (c) Black player’s position scoring (d) White player’s
position scoring. A trend line is drawn in each figure.

(a) (b)

(c) (d)

Fig. 15. Game set 2 (a) Black player’s Conspiracy numbers variance (b) White player’s
Conspiracy numbers variance (c) Black player’s position scoring (d) White player’s
position scoring. A trend line is drawn in each figure.
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(a) (b)

(c) (d)

Fig. 16. Game set 3 (a) Black player’s Conspiracy numbers variance (b) White player’s
Conspiracy numbers variance (c) Black player’s position scoring (d) White player’s
position scoring. A trend line is drawn in each figure.

(a) (b)

(c) (d)

Fig. 17. Game set 4 (a) Black player’s Conspiracy numbers variance (b) White player’s
Conspiracy numbers variance (c) Black player’s position scoring (d) White player’s
position scoring. A trend line is drawn in each figure.
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by Figs. 14(c), (d), 15(c), (d), 16(c), (d) and 17(c), (d). However, trend line
observation is not applicable when there are infinity CNvariance values.
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Abstract. We focus on the effect of the exploration/exploitation trade-
off strategies on the algorithmic design off multi-armed bandits (MAB)
with reward vectors. Pareto dominance relation assesses the quality of
reward vectors in infinite horizon MABs, like the UCB1 and UCB2 algo-
rithms. In single objective MABs, there is a trade-off between the explo-
ration of the suboptimal arms, and exploitation of a single optimal arm.
Pareto dominance based MABs fairly exploit all Pareto optimal arms,
and explore suboptimal arms. We study the exploration vs exploitation
trade-off for two UCB like algorithms for reward vectors. We analyse
the properties of the proposed MAB algorithms in terms of upper regret
bounds and we experimentally compare their exploration vs exploitation
trade-off on a bi-objective Bernoulli environment coming from control
theory.

Keywords: Multi-armed bandits · Multi-objective optimisation · Pareto
dominance relation · Infinite horizon policies

1 Introduction

Multi-armed bandits (MAB) is a machine learning paradigm used to study and
analyse resource allocation in stochastic and noisy environments. The multi-
objective multi-armed bandits (MOMAB) problem is an extension of MAB to
reward vectors and imports techniques from multi-objective optimisation for an
efficient exploration/exploitation mechanism. Some of these techniques were also
imported in other related learning paradigms: multi-objective Markov Decision
Processes [1,2], and multi-objective reinforcement learning [3,4].

Multi-objective MAB with stochastic reward vectors with finite set of arms,
let A the set of these K arms, where K ≤ 2, receive for one arm pull a random
vector of rewards, one component per objective. The random vectors have a
stationary distribution with support in the D-dimensional hypercube [0, 1]D, and
the vector of true expected rewards μi = (μ1

i , . . . , μ
D
i ) is unknown, where D is the

number of objectives. All rewards Xi
t obtained from any arm i are independently
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and identically distributed according to an an unknown law. Reward vectors
obtained from different arms are also assumed to be independent.

MOMAB algorithm chooses the next machine to play based on the sequence
of past plays and obtained reward vectors. Pareto dominance relation [5] is a
partial order relation for (reward) vectors that considers that a reward vector can
be optimal one objective and sub-optimal in other objectives, leading to many
vector rewards of the same quality. There could be several arms considered to
be the best according to their reward vectors. Pareto front is the set of optimal
arms of the same quality. An adequate performance indicator for MOMABs is
the regret of pulling suboptimal arms and it measures the distance between a
suboptimal reward vector and the Pareto front [6]. An alternative measure of
performance for MOMABs is a regret function that indicates the variance in
using each Pareto optimal arm. Similarly with multi-objective optimization, all
Pareto optimal arms are considered equally important and the variance in using
all these arms should be minimized. Section 2 gives background information on
MOMABs.

Exploration/exploitation trade-off is an essential mechanism in MABs: explo-
ration means pulling the suboptimal arms that might have been unlucky, whereas
exploitation means pulling as much as possible the optimal arms. The two mech-
anisms are not trivial and their balance means an efficient MABs that explore
enough the suboptimal arms to ensure that they are not erroneously classified
as such, and exploit very often the optimal arm to minimize the regret in pulling
suboptimal arms. In this paper, we study the exploration vs exploitation trade-
off in two infinite horizon MOMABs with the goal of minimizing the regret.
The exploration vs exploitation trade-off is different for single objective MABs
and for MOMABs. In MOMABs, by design, we should pull equally often all the
arms in the Pareto front. Thus, the exploitation now means the fair usage of
Pareto optimal arms, and furthermore, the quality of each suboptimal arm is
now assessed using all the Pareto optimal arms.

We propose several MOMAB algorithms that are an extension of the classical
single objective MAB algorithms, i.e. UCB1 and UCB2 [7], to reward vectors. We
consider the Pareto UCB1 [6] to be an exploratory variant of UCB1 because each
round only one Pareto optimal arm is pulled. In Sect. 3, we propose an exploita-
tive variant of the Pareto UCB1 algorithm where, each round, all the Pareto
optimal arms are pulled. We show that the analytical properties, i.e. upper con-
fidence bound of the Pareto projection regret, for the exploitative Pareto UCB1
are improved when compared with the exploratory variant of the same algorithm
because this bound is independent of the cardinality of the Pareto front.

Section 4 proposes two multi-objective variants of UCB2 for reward vectors
corresponding to the two exploitation vs exploration mechanisms. The exploita-
tive Pareto UCB2 introduced in Sect. 4.1 is an extension of UCB2 where, each
epoch, all the Pareto optimal arms are pulled equally often. The exploratory
Pareto UCB2 algorithm, see Sect. 4.2, pulls each epoch a single Pareto opti-
mal arm. We compute the upper bound of the Pareto projection regret for the
exploitative Pareto UCB2 algorithm.
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Section 5 experimentally compares the proposed MOMAB algorithms on a
stochastic bi-objective environments showing the superior performance of UCB2
based MOMABs but no practical advantage in using explorative or exploitative
variants of the same MOMAB. Section 6 concludes the paper.

2 Multi-objective Multi-armed Bandits Paradigm

We consider the general case where a reward vector can be better than another
reward vector in one objective, and worse in another objective. Expected reward
vectors are compared according to the Pareto dominance relation [5]. A
vector μ is dominating, another vector ν, ν ≺ μ, iff there exists at least one
objective o for which νo < μo and for all other objectives j, j �= i, we have
νj ≤ μj . The vector μ is non-dominated by ν, ν �≺ μ, iff there exists at least one
objective o for which νo < μo. Let A∗ be the Pareto front, i.e. non-dominated
by any arm in A.

The goal of a MOMAB algorithm is to simultaneously minimise the regret
of not selecting the Pareto optimal arms by fairly playing all the arms in the
Pareto front. In order to measure the performance of these algorithms, we define
two Pareto regret metrics. The first regret metric measures the loss in pulling
arms that are not Pareto optimal and is called the Pareto projection regret. The
second metric, the Pareto variance regret, measures the variance in pulling each
arm from the Pareto front A∗.

The Pareto Projection Regret expresses the expected loss due to the play of
suboptimal arms. For this purpose, it uses the Euclidean distance between the
mean reward vector μi of an arm i and its projection νi into the Pareto front. A
vector εi with equal components εi, i.e. εi = (εi, εi, · · · , εi), is added to μi such
that εi is the smallest value for which νi = μi +εi becomes Pareto optimal. The
Euclidean distance Δi between μi and its projection νi into the Pareto front
equals:

Δi = ‖νi − μi‖2 = ‖εi‖2 =
√

Dεi (1)

where the last equality holds because we have D objectives and all components
of εi are the same.

Since by definition Δi is always non-negative, the resulting regret is also
non-negative. Note that the for a Pareto optimal arm νi = μi and Δi = 0.

Let Ti(n) be the number of times that arm i has been played after n plays
in total. Then the Pareto projection regret Rp(n) after n plays is defined as:

Rp(n) =
∑

i�∈A∗
ΔiE[Ti(n)] (2)

where Δi is defined in Eq. 1 and where E is the expectation operator. A similar
regret metric was introduced in [6].

The Pareto Variance Regret Metric measures the variance of a Pareto-
MAB algorithm in pulling all optimal arms. We use the superscript ∗ when we
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mean a Pareto optimal arm. Let T ∗
i (n) be the number of times an optimal arm

i is pulled during n total arm pulls. Let E[T ∗
i (n)] the expected number of times

the Pareto optimal arm i is pulled. The Pareto variance regret is defined as

Rv(n) =
1

|A∗|
∑

i∈A∗

(

E[T ∗
i (n)] − E[T ∗(n)]

|A∗|
)2

(3)

where E[T ∗(n)] is the expected number of times that any Pareto optimal arm is
selected, and |A∗| is the cardinality of the Pareto front A.

If all Pareto optimal arms are played in a fair way, i.e. an equal number of
times, then Rv(n) is minimized. For a perfect fair, or equal, usage of the Pareto
optimal arms, we have Rv(n) ← 0. If a Pareto MAB-algorithm identifies only
a subset of A∗, then Rv(n) is large. A similar measure, called unfairness, was
proposed in [6] to measure variance of a Pareto-MAB algorithm in pulling all
Pareto optimal arms.

3 Exploration vs Exploitation Trade-off in Pareto UCB1

The Pareto UCB1 algorithm [6] is an UCB1 algorithm using the Pareto domi-
nance relation to partially order the reward vectors. The index of Pareto UCB1
has two terms: the mean reward vector, and the second term related to the size of
a one-sided confidence interval of the average reward according to the Chernoff-
Hoeffding bounds. In this section, we propose a Pareto UCB1 algorithm with
a theoretical improved exploration vs exploitation trade-off because its perfor-
mance does not depend on the size of Pareto front. In each round, all the Pareto
optimal arms are pulled instead of pulling only one arm. This means that the
proposed Pareto UCB1 algorithm has an aggressive exploitation mechanism of
Pareto optimal arms to improve it upper regret bound. We call this algorithm
exploitative Pareto UCB1, as opposite with the Pareto UCB1 algorithm from
[6], here called exploratory Pareto UCB1.

Algorithm 1. Exploitative Pareto UCB1.

1: Play each arm i once
2: t ← 0; n ← K; ni ← 1, ∀i
3: while the stopping criteria is NOT met do
4: t ← t + 1
5: Select the Pareto front at the round t, A∗(t), such that ∀i ∈ A∗(t) the index

μ̂i +

√
2 ln(n

4√
D)

ni
is non-dominated

6: Pull each arm i once, where i ∈ A∗(t)

7: ∀i ∈ A∗(t), update μ̂i, and ni ← ni + 1
8: n ← n + |A∗(t)|
9: end while
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3.1 Exploitative Pareto UCB1

The pseudo-code for exploitative Pareto UCB1 is given in Algorithm 1. At ini-
tialization, each arm is played once. Let μ̂i be the estimation of the true but
unknown expected reward vector μi of an arm i. In each iteration, we compute
for each arm i its index, i.e. the sum of the estimated reward vector μ̂i and the
associated confidence value of arm i

μ̂i +

√

2 ln(n 4
√

D)
ni

=

⎛

⎝μ̂1
i +

√

2 ln(n 4
√

D)
ni

, . . . , μ̂D
i +

√

2 ln(n 4
√

D)
ni

⎞

⎠

At each time step t, the Pareto front A∗(t) is determined using the indexes

μ̂i +
√

2 ln(n
4√

D)
ni

. Thus, for all arms not in the Pareto front i �∈ A∗(t), there
exists a Pareto optimal arm h ∈ A∗(t) that dominates arm i:

μ̂h +

√

2 ln(n 4
√

D)
nh


 μ̂i +

√

2 ln(n 4
√

D)
ni

Each iteration, exploitative Pareto UCB1 selects all Pareto optimal arm from
A∗(t) and pull them for an equal number of iterations. Thus, by design, this
algorithm is fair in selecting Pareto optimal arms. Next, the estimated vector
of the selected arm μ̂h and the corresponding counters are updated. A possible
stopping criteria is a given fix number of iterations.

The following theorem provides an upper bound for the Pareto regret of the
efficient Pareto UCB1 strategy. The only difference is that a suboptimal arm
is pulled |A∗| times less often than in the exploratory Pareto UCB1 algorithm.
This fact is reflected by the multiplicative constant, 4

√
D, in the index of the

algorithm.

Theorem 1. Let exploitative Pareto UCB1 from Algorithm 1 be run on a K-
armed D-objective bandit problem, K > 1, having arbitrary reward distributions
P1, . . .PK with support in [0, 1]D. Consider the Pareto regret defined in Eq. 1.
The expected Pareto projection regret of after any number of n plays is at most

∑

i�∈A∗

8 · ln(n 4
√

D)
Δi

+ (1 +
π2

3
) ·

∑

i�∈A∗
Δi

Proof. This prove follows closely the prove from [6]. Let Xi,1,. . .,Xi,n be random
D-dimensional variables generated for arm i with common range [0, 1]D. The
expected reward vector for the arm i after n pulls is X̄i,n = 1/n · ∑n

t=1 Xi,t,
where ∀j, X̄j

i,n = 1/n · ∑n
t=1 Xj

i,t.
Chernoff-Hoeffding bound. We use a straightforward generalization of the

standard Chernoff-Hoeffding bound to D objectives environments. Consider that
∀j, 1 ≤ j ≤ D, IE[Xj

i,t | Xj
i,1, . . . ,X

j
i,t−1] = μj

i . There, X̄i,n �≺ μi + a if there
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exists at least a dimension j for which X̄j
i,n > μj

i + a. Translated in Chernoff-
Hoeffding bound, using union bound, we have for all a ≥ 0

IP{(
X̄i,n �≺ μi + a

)} = IP{(X̄1
i,n > μ1

i + a
) ∨ . . . ∨ (

X̄D
i,n > μD

i + a
)} ≤ De−2na2

(4)
Following the same line of reasoning

IP{(
X̄1

i,n < μ1
i − a

) ∨ . . . ∨ (
X̄D

i,n < μD
i − a

)} ≤ De−2na2
(5)

Let � > 0 an arbitrary number. We take ct,s =
√

2 · ln (t 4
√

D)/s, and we upper
bound Ti(n) on any sequence of plays by bounding for each t ≥ 1 the indicator
(It = i). We have (It = i) = 1 if arm i is played at time t and (It = i) = 0
otherwise. Then,

Ti(n) = 1 +
n∑

t=K+1

{It = i} ≤ � +
n∑

t=K+1

{It = i, Ti(t − 1) ≥ �}

≤ � +
n∑

t=K+1

1
|A∗| ·

|A∗|∑

h=1

{X̄∗
h,T ∗

h (t−1) + ct−1,T ∗
h (t−1) �
 X̄i,Ti(t−1) + ct−1,Ti(t−1)}

≤s∗
h ← T ∗

h (t − 1)
si ← Ti(t − 1)

�+
∞∑

t=1

t−1∑

s=1

t−1∑

si=�

1
|A∗|

|A∗|∑

h=1

{X̄∗
h,s∗

h
+ct−1,s∗

h
�
 X̄i,si

+ct−1,si
} (6)

From the straightforward generalization of Chernoff-Hoeffding bound to D
objectives, we have that

IP{X̄(t)
i �≺ μi + c(t)s } ≤ D

D
· t−4 = t−4

and
IP{X̄∗(t)

h �
 μ∗
h − c

(t)
s∗

h
} ≤ t−4

For si ≥ 8·ln(n 4√
D)

Δ2
i

, we have that

ν∗
i − μi − 2 · ct,si

= ν∗
i − μi − 2 ·

√

2 · ln(n 4
√

D)
si

≥ ν∗
i − μi − Δi

Thus, we take � = � 8·ln(n 4√
D)

Δ2
i

�, and we have

IE[Ti(n)] ≤ �8 · ln(n 4
√

D)
Δ2

i

�+

∞∑

t=1

t−1∑

s=1

∑

si=� 8·ln (n
4√

D)
Δ2

i

	

|A∗|∑

h=1

(IP{X̄∗(t)
h �
 μ∗

h − c
(t)
s∗

h
} + IP{X̄(t)

i �≺ μi + c(t)si
})
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≤ 8 · ln (n · 4
√

D)
Δ2

i

+ 1 +
∞∑

t=1

t∑

s=1

t∑

si=1

|A∗|∑

h=1

t−4 t−4

|A∗| ≤

8 · ln (n 4
√

D)
Δ2

i

+ 1 + 2 ·
∞∑

t=1

t2 · |A∗| t−4

|A∗| =
8 · ln (n 4

√
D)

Δ2
i

+ 1 + 2 ·
∞∑

t=1

t−2

Approximating the last term with the Riemann zeta function ζ(2) =
∑∞

t=1 t−2

≈ π2

6 we obtain the bound from the theorem. �
For a suboptimal arm i, we have IE[Ti(n)] ≤ 8

Δ2
i

ln(n 4
√

D) plus a small con-
stant. Like for the standard UCB1, the leading constant is 8/Δ2

i and the expected
upper bound of the Pareto regret for the exploitative Pareto UCB1 is logarith-
mic in the number of plays n. Unlike exploratory Pareto UCB1 [6], the expected
regret bound for exploitative Pareto UCB1 does not depend on the cardinality
of the Pareto front A∗ which is usually not known beforehand, and it increases
with the number of objectives.

Note that for D = 1 the algorithm reduces to the standard UCB1. Thus,
exploitative Pareto UCB1 performs similarly with the standard UCB1 for small
number of objectives. However, for large Pareto front where all almost all the
arms K are Pareto optimal arms, |A|∗ ≈ K, the exploitative Pareto UCB1
algorithm pulls once (almost) all arms making the exploitative Pareto UCB1
algorithm impractical.

3.2 Exploratory Pareto UCB1

The exploratory version of Pareto UCB1 algorithm was introduced in [6] and it is
a straightforward extension of the UCB1 algorithm to reward vectors. The main
difference between the exploratory Pareto UCB1 and the exploitative Pareto
UCB1, cf Algorithm 1, is in lines 6–8 of the algorithm. For the exploratory
Pareto UCB1 algorithm, each iteration, a single Pareto optimal arm is selected
uniformly at random and pulled. The counters are updated accordingly, meaning
that n ← n + 1.

Another difference is the index associated to the mean vector that is larger
than for the exploitative Pareto UCB1. Thus, the Pareto set is now the non-

dominated vectors μ̂i +

√
2 ln(n 4

√
D|A∗|)

ni
.

The regret bound for the exploratory Pareto UCB1 algorithm using Pareto
regrets is logarithmic in the number of plays for a suboptimal arm and in the size
of the reward vectors, D. In addition, this confidence bound is also logarithmic
in the cardinality of Pareto front, |A∗|.

4 Exploration vs Exploitation Trade-Off in Pareto UCB2

In this section, we propose Pareto MAB algorithms that extend of the standard
UCB2 algorithm to reward vectors. Pareto UCB2 algorithms play the optimal
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arms in epochs with a length that exponentially increase with the number of
pulls to play good arms longer each epoch. In single objective MABs, the UCB2
algorithm is acknowledged to have a better upper regret bound than the UCB1
algorithm [7]. We show that Pareto UCB2 algorithms have a better upper Pareto
projection regret bound than the Pareto UCB1 algorithms.

The first proposed Pareto UCB2 algorithm, see Sect. 4.1, plays in an epoch all
Pareto optimal arms equally often. We call this algorithm exploitative Pareto
UCB2. The second Pareto UCB2 algorithm introduced in Sect. 4.2 plays only
one Pareto optimal arm per epoch. We call this algorithm exploratory Pareto
UCB2.

Algorithm 2. Exploitative Pareto UCB2.

Require: 0 < α < 1; the length of a epoch r is an exponential function τ(r) =
�(1 + α)r�

1: Play each arm once
2: n ← K; ri ← 1, ∀i
3: while the stopping condition is NOT met do
4: Select the Pareto front at the epoch r, A∗(r), such that ∀i ∈ A∗(r), the index

μ̂i + a
τ(ri)
n is non-dominated

5: for all i ∈ A∗(t) do
6: Pull the arm i exactly τ(ri + 1) − τ(ri)
7: Update μ̂i, and ri ← ri + 1
8: r ← r + 1 and n ← n + τ(r + 1) − τ(r)
9: end for

10: end while

4.1 Exploitative Pareto UCB2

In this section, we present the exploitative Pareto UCB2 algorithm and we
analyse its upper confidence bound. The pseudo-code for this algorithm is given
in Algorithm 2.

As an initial step, we play each arm once. The plays are divided in epochs, r,
of exponential length until a stopping criteria is met a fix number of arm’ pulls.
The length of an epoch is an exponential function τ(r) = �(1 + α)r�. In each
epoch, we compute for each arm i an index given by with the sum of expected
rewards plus a second term for the confidence value

μ̂i + aτ(ri)
n ←

(
μ̂1

i + aτ(ri)
n , . . . , μ̂D

i + aτ(ri)
n

)

where a
τ(ri)
n =

√
(1+α)·ln(e·n/(D·τ(ri)))

2·τ(ri)
, and ri is the number of epochs played by

the arm i. A Pareto front A∗(r) is selected from all vectors μ̂i + a
τ(ri)
n . Thus,

∀i ∈ A, exists h ∈ A∗(t), such that we have

μ̂h + aτ(rh)
n 
 μ̂i + aτ(ri)

n



136 M.M. Drugan

Each arm i ∈ A∗(t) is selected and played τ(ri + 1) − τ(ri) consecutive times.
The mean value and the epoch counter for all Pareto optimal arms are updated
accordingly, meaning that ri ← ri + 1. The total epoch counter, r, and the total
number of arms’ pulls n are also updated.

The following theorem bounds the expected regret for the Pareto UCB2
strategy from Algorithm 2.

Theorem 2. Let exploitative Pareto UCB2 from Algorithm 2 be run on K-
armed bandit, K > 1, having arbitrary reward distributions P1, . . .PK with sup-
port in [0, 1]D. Consider the regret defined in Eq. 1.

The expected regret of a strategy π after any number of n ≥ maxµ̂i /∈A∗ D
2·Δ2

i

plays is at most

∑

i:µ̂i /∈A∗

(

D · (1 + α) · (1 + 4 · α) · ln (2 · e · Δ2
i · n/D)

2 · Δi
+

cα

Δi

)

where

cα = 1 +
D2 · (1 + α) · e

α2
+ Dα+2 ·

(
α + 1

α

)(1+α)

·
(

1 +
11 · D · (1 + α)
5 · α2 · ln(1 + α)

)

Proof. This prove is based on the homologue prove of [7]. We consider n ≥ D
2·Δ2

i
,

for all i. From the definition of τ(r) we can deduce that τ(r) ≤ τ(r−1)·(1−α)+1.
Let τ(r̃i) be the largest integer such that

τ(r̃i − 1) ≤ D · (1 + 4 · α) · ln(2 · e · n · Δ2
i /D)

2 · Δ2
i

We have that for an suboptimal arm i

Ti(n) ≤ 1 +
1

|A∗| ·
∑

r≥1

(τ(r) − τ(r − 1)) · {arm i finished its r-th epoch}

≤ τ(r̃i) +
1

|A∗| ·
∑

r>r̃i

(τ(r) − τ(r − 1)) · {arm i finished its r-th epoch}

The assumption n ≤ D/(2 · Δ2
i ) implies ln(2e · nΔ2

i /D) ≥ 1. Therefore, for
r > r̃i, we have

τ(r − 1) >
D · (1 + 4α) · ln(2e · nΔ2

i /D)
2 · Δ2

i

(7)

and

a
τ(r−1)
n =

√
(1 + α) ln(e · n/(D · τ(r − 1)))

2τ(r − 1)
≤Eq 7

Δi√
D

·
√

(1 + α) ln(e · n/(D · τ(r − 1)))

(1 + 4α) ln(2e · nΔ2
i /D)

≤ Δi√
D

·
√

(1 + α) ln(2e · nΔ2
i /D))

(1 + 4α) ln(2e · nΔ2
i /D)

≤ Δi√
D

·
√

1 + α

1 + 4α
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Because a
τ(r)
t is increasing in t, by definition, if the suboptimal arm j finishes

to play the r-th epoch then ∀h, 1 ≤ h ≤ |A∗(r)|, ∃sh ≥ 0, ∃t ≥ τ(r − 1) + τ(sh)
such that arm i is non-dominated by any of the Pareto optimal arms in |A∗(r)|.
This means that

X̄∗τ(sh)
h + ash

t �
 X̄τ(r−1)
i + a

τ(r−1)
t

implies that one of the following conditions holds

X̄τ(r−1)
i + aτ(r−1)

n �≺ ν∗
i − α · Δi√

D · 2
or

X̄∗τ(sh)
h + a

τ(sh)
τ(r−1)+τ(sh)

�
 μ∗
h − α · Δi√

D · 2
Then,

IE[Ti(n)] ≤ τ(r̃i)+
∑

r≥r̃i

τ(r) − τ(r − 1)

|A∗| ·
|A∗|∑

h=1

IP{X̄τ(r−1)
i +aτ(r−1)

n �≺ ν∗
i − α · Δi√

D · 2
}+ (8)

∑

i≥0

∑

r≥1

τ(r) − τ(r − 1)
|A∗| ·

|A∗|∑

h=1

IP{X̄τ(r−1)
sh

+ a
τ(sh)
τ(r−1)−τ(sh)

�
 μ∗
h − α · Δi√

D · 2
}

Let’s expand Eq. 8 using Chernoff and union bound. For the first term
between the parenthesis, we have that

IP{X̄τ(r−1)
i +aτ(r−1)

n �≺ ν∗
i − α · Δi√

D · 2
} =

D∑

j=1

IP{X̄
jτ(r−1)
i +aτ(r−1)

n > μj
i +Δi− α · Δi√

D · 2
} ≤

D · e
−2·τ(r−1)·Δ2

i ·(1− α
2·√D

− 1√
D

· 1+α
1+4·α )2 ≤α<1/10 D · e− τ(r−1)·Δ2

i ·α2

2·D

If g(x) = x−1
1+α and c = Δ2

i ·α2

D , and g(x) ≤ τ(r − 1) then

∑

r≥1

τ(r) − τ(r − 1)
|A∗| ·

|A∗|∑

h=1

IP{X̄τ(r−1)
i + aτ(r−1)

n �≺ ν∗
i − α · Δi√

D · 2
} ≤

∑

r≥1

∑

i≥0

τ(r) − τ(r − 1)
|A∗| ·

|A∗|∑

h=1

D · e−τ(r−1)·Δ2
i ·α2/D =

D · |A∗| ·
∑

r≥1

∑

i≥0

τ(r) − τ(r − 1)
|A∗| · e−τ(r−1)·Δ2

i ·α2/D ≤

D

|A∗| · |A∗| ·
∫ ∞

0

e−c·g(x)dx ≤ D2 · (1 + α) · e

Δ2
i · α2

Let’s now expand the second term of the parenthesis in Eq. 8

IP{X̄τ(r−1)
s + a

τ(s)
τ(r−1)−τ(s) �
 μ∗

h − α · Δi√
D · 2

} =
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D∑

j=1

IP{X̄jτ(r−1)
s + a

τ(s)
τ(r−1)−τ(s) < μj∗

h − α · Δi√
D · 2

} ≤

D · e−τ(i)· α2·Δ2
i

D·2 · e−(1+α)·ln e·(τ(r−1)+τ(i))
D·τ(i) ≤

Dα+2 · e−τ(i)· α2·Δ2
i

D·2 ·
(

τ(r − 1) + τ(i)
τ(i)

)−(1+α)

Thus,

∑

i≥0

∑

r≥1

τ(r) − τ(r − 1)
|A∗| ·

|A∗|∑

h=1

IP{X̄τ(r−1)
s + a

τ(s)
τ(r−1)−τ(s) �
 μ∗

h − α · Δi√
D · 2

} ≤

Dα+2 ·
∑

i≥0

e−τ(i)· α2·Δ2
i

D·2 ·
∫ ∞

0

(

1 +
x − 1

(1 + α) · τ(i)

)−(1+α)

dx ≤

Dα+2 · α

(1 + α) − 1
·
(

α + 1
α

)(1+α)

·
∑

i≥0

τ(i) · e−τ(i)· α2·Δ2
i

D·2

Following the rationale from the prove of Theorem 2 from [7], we can bound
further the first term of Eq. 8 to

∑

i≥0

τ(i) · e−τ(i)· α2·Δ2
i

D·2 ≤ 1 +
11 · D · (1 + α)

5α2 · Δ2
i · ln(1 + α)

Using the bounds above, we now bound the expected regret for an arm i in
Algorithm 2

IE[Ti(n)] ≤ τ(r̃i) − 1 +
cα

Δ2
i

where

cα = 1 +
D2 · (1 + α) · e

α2
+ Dα+2 ·

(
α + 1

α

)(1+α)

·
[

1 +
11 · D · (1 + α)
5 · α2 · ln(1 + α)

]

and the upper bound on τ(r̃i)

τ(r̃i) ≤ τ(r̃i − 1)(1 + α) + 1 ≤ D · (1 + α) · (1 + 4α) · ln(2enΔ2
i /D)

2 · Δ2
i

+ 1

This concludes our prove. �
The bound of the expected regret for Pareto UCB2 is similar with the bound

for the standard UCB2 within a constant that depends on the number of objec-
tives D. The intuition is that now the algorithm has to run D times longer to
achieve a similar regret bound for the Pareto UCB2. For α small, the Pareto
projection regret of this Pareto algorithm is bounded by 1

2·Δ2
i
. This is a better

bound than of the Pareto UCB1 algorithm, 8
Δ2

i
.

The difference between single objective UCB2 and Pareto UCB2 is in the
constant cα which is smaller than the same constant for the standard UCB2 for
α > 0. This means that the constant cα converges faster to infinity when α → 0.
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4.2 Exploratory Pareto UCB2

In this section, we introduce the exploratory Pareto UCB2 algorithm. In fact,
the only difference between the exploratory and exploitative variants of Pareto
UCB2 is in lines 5 from Algorithm 2. Now a single arm from the Pareto front at
epoch r, A∗(r), is selected and played the entire epoch, i.e. for τ(ri + 1) − τ(ri)
consecutive times.

Since the length of the epochs is exponential, a single Pareto optimal arm is
played longer and longer. Thus, the exploitation mechanism of Pareto optimal
arms of the exploratory Pareto UCB2 algorithm is poor, and the upper Pareto
projection regret depends on the cardinality of the Pareto front.

5 Numerical Simulations

In this section, we compare the performance of five Pareto MAB algorithms: (1) a
baseline algorithm, (2) two Pareto UCB1 algorithms and (3) two Pareto UCB2
algorithms. The five compared MOMABs are: (1) tPUCB1 is the exploitative
Pareto UCB1 algorithm introduced in Sect. 3.1, (2) rPUCB1 is the exploratory
Pareto UCB1 algorithm summarised in Sect. 3.2, (3) tPUCB2 is the exploitative
Pareto UCB2 algorithm summarised in Sect. 4.1, (4) rPUCB2 is the exploratory
Pareto UCB2 algorithm summarised in Sect. 4.2. Hoeffding race algorithm [8],
hoef, is considered a baseline algorithm for multi-armed bandits where all the
arms are pulled equally often and the arms with the non-dominated empirical
mean reward vectors are chosen.

Each algorithm runs 100 times with a fixed budged, or arm’ pulls, of N = 106.
By default, we set the α parameter for the two Pareto UCB2 algorithms to 1.

The test environment is bi-objective and contains the mean vectors of 54
points outputted with a multi-objective genetic algorithm that optimised the
functioning of the wet clutch [9]. In Fig. 1, we give 54 points generated with the
wet clutch application, each point representing a trial of the machine and the
jerk time obtained in the given time. The problem was a minimisation problem

Fig. 1. All the points generated by the bi-objective wet-clutch application.
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Table 1. Fifty-four bi-dimensional reward vectors labelled from 1 to 54 for the wet
clutch application. The first sixteen reward vectors are labelled from μ∗

1 till μ∗
16 and

are Pareto optimal, while the last thirty-four reward vectors are labelled from μ17 till
μ54 and they are suboptimal.

µ∗
1 = (0.116, 0.917) µ∗

2 = (0.218, 0.876) µ∗
3 = (0.322, 0.834) µ∗

4 = (0.336, 0.788) µ∗
5 = (0.379, 0.783)

µ∗
6 = (0.383, 0.753) µ∗

7 = (0.509, 0.742) µ∗
8 = (0.512, 0.737) µ∗

9 = (0.514, 0.711) µ∗
10 = (0.540, 0.710)

µ∗
11 = (0.597, 0.647) µ∗

12 = (0.698, 0.540) µ∗
13 = (0.753, 0.374) µ∗

14 = (0.800, 0.332) µ∗
15 = (0.869, 0.321)

µ∗
16 = (0.916, 0.083) µ17 = (0.249, 0.826) µ18 = (0.102, 0.892) µ19 = (0.497, 0.722) µ20 = (0.251, 0.824)

µ21 = (0.249, 0.826) µ22 = (0.102, 0.892) µ23 = (0.497, 0.722) µ24 = (0.251, 0.824) µ25 = (0.575, 0.596)

µ26 = (0.651, 0.448) µ27 = (0.571, 0.607) µ28 = (0.083, 0.903) µ29 = (0.696, 0.350) µ30 = (0.272, 0.784)

µ31 = (0.601, 0.521) µ32 = (0.341, 0.753) µ33 = (0.507, 0.685) µ34 = (0.526, 0.611) µ35 = (0.189, 0.857)

µ36 = (0.620, 0.454) µ37 = (0.859, 0.314) µ38 = (0.668, 0.388) µ39 = (0.334, 0.782) µ40 = (0.864, 0.290)

µ41 = (0.473, 0.722) µ42 = (0.822, 0.316) µ43 = (0.092, 0.863) µ44 = (0.234, 0.796) µ45 = (0.476, 0.709)

µ46 = (0.566, 0.596) µ47 = (0.166, 0.825) µ48 = (0.646, 0.349) µ49 = (0.137, 0.829) µ50 = (0.511, 0.611)

µ51 = (0.637, 0.410) µ52 = (0.329, 0.778) µ53 = (0.649, 0.347) µ54 = (0.857, 0.088)

that we have transformed into a maximisation problem, by first normalising
each objective with values between 0 and 1, and then transforming it into a
maximisation problem. The best set of incomparable reward vectors is called
the Pareto optimal reward set, i.e. there are 16 such reward vectors. In our
example, |A∗| is about one-third from the total number of arms, i.e. 16/54, and
is a mixture of convex and non-convex regions. In Table 1, we show the mean
values of the 54 reward vectors. In order to generate a stochastic bi-objective
environment, we have associated to each reward value a normal distribution.

The Performance of the Algorithms. We use four metrics to measure
the performance of the five tested Pareto MAB algorithms. Two of these metrics
are the Pareto projection regret, cf. Eq. 2, and the Pareto variance regret, cf.
Eq. 3, presented in Sect. 2. We also use two additional metrics two explain the
dynamics of the Pareto MAB algorithms.

The third metric measures the percentage of times each Pareto optimal arm
is pulled. Thus, for all Pareto optimal arms, i ∈ A∗, we measure E[T ∗

i (n)] the
expected number of times the arm i is pulled during n total arm pulls. Note that
E[T ∗

i (n)] is a part of Eq. 3 and it gives a detailed understanding of the Pareto
variance regret.

The last metric is a measure of the running time of each algorithm, and it is
given by the number of times each arm in A was compared against the other arms
in A in order to compute the Pareto front. Note that for the exploratory algo-
rithms, i.e. rPUCB1 and rPUCB2, each arm pull corresponds to one estimation
of the Pareto front, whereas, for the exploitative algorithms, i.e. tPUCB1 and
tPUCB2, one estimation of A∗ corresponds to the arms’ pulls of the entire set.

5.1 Comparing the Performance of MOMAB Algorithms

In Fig. 2, we compare the performance of the five MOMAB algorithms. Accord-
ing to the Pareto projection regret, cf. Figure 2(a), the best performing algorithm
is the exploitative Pareto UCB2, cf. tPUCB2, the second best algorithm is the
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Fig. 2. The performance of the five MOMAB algorithms on the wet clutch problem: (a)
the Pareto projection regret, (b) the Pareto variance regret, (c) the percentage of times
each Pareto optimal arm is pulled, and (d) the running time in terms of comparisons
between arms and Pareto front for each MOMAB algorithm.

exploratory Pareto UCB2, cf rPUCB2, and the worst algorithm is the Hoeffd-
ing race algorithm, cf. hoef. Note that the Pareto UCB1 family of algorithms
has a (almost) linear regret whereas Pareto UCB2 algorithms have a logarith-
mic regret, like the single objective UCB2 algorithm. The worst performance of
the exploitative Pareto UCB1 algorithm can be explained by the poor explo-
rative behaviour of the algorithm. The performance of the explorative Pareto
UCB1 is in-between linear and logarithmic and can be explained by the improved
exploratory technique of pulling all the Pareto optimal arms each round. Both
Pareto UCB2 algorithms perform better than Pareto UCB1 algorithms because
the Pareto optimal arms are explored longer each round.

In opposition, according to the Pareto variance regret, cf. Fig. 2(b), the worst
performing algorithms are the exploitative and exploratory Pareto UCB2 algo-
rithms and the best algorithms are the exploratory and exploitative Pareto UCB1
algorithms but also the Hoeffding race algorithm. It is interesting to note that
the difference in Pareto variance and projection regret between the exploratory
and exploitative variance of the same algorithms is small. In general, Pareto
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Fig. 3. The performance of the two version of Pareto UCB2 algorithms, i.e. exploratory
and exploitative Pareto UCB2, given for the five values of the α = {0.1, 0.5, 1.0, 2.0, 4.0}
parameter.

UCB1 algorithms have a larger Pareto projection regret then the Pareto UCB2
algorithms, but a smaller Pareto variance regret.

Figure 2(c) explains these contradictory results with the percentage of pulls
for each of the Pareto optimal arms. As noticed in Sect. 4.2, the exploratory
Pareto UCB2, cf rPUCB2, pulls the same Pareto optimal arm each epoch longer
and longer, generating the peak in the figure on one random single Pareto optimal
arm. In contrast, the exploitative Pareto UCB2, cf. tPUCB2, is fair in exploiting
the entire Pareto front. In the sequel, the exploratory Pareto UCB1 algorithm, cf
rPUCB1, has more variance in pulling Pareto optimal arms than the exploitative
Pareto UCB2 algorithm, cf. tPUCB1, and this fact is reflected also in the Pareto
variance regret measures from Fig. 2(b). The percentage of time any of the Pareto
optimal arms is pulled is: (1) 83%±8.5 for exploitative Pareto UCB2, (2) 77%±
10.9 for explorative Pareto UCB2, (3) 49% ± 4.9 for exploitative Pareto UCB1,
and (4) 49% ± 4.9 for the explorative UCB1. Note the large difference between
the efficiency of Pareto UCB2 and Pareto UCB1 algorithms.

In Fig. 2(d), we show that the running time, i.e. number of comparisons
between arms, for exploratory MOMABs, i.e. the exploratory Pareto UCB1
and the exploratory Pareto UCB2, are order of magnitude larger than the
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exploitative MOMAB algorithms, i.e. the exploitative Pareto UCB1 and the
exploitative Pareto UCB2. The running time for Pareto UCB1 algorithms which
compute the Pareto front often is larger than the running time for Pareto UCB2
algorithms that compute the Pareto front once in the beginning of an epoch. The
most computationally efficient is the exploitative Pareto UCB2 and the worst
algorithm is the exploratory Pareto UCB1.

5.2 Exploration vs Exploitation Mechanism in Pareto
UCB2 Algorithms

In our second experiment, we measure the influence of the parameter α on the
performance of Pareto UCB2 algorithms. Figure 3 considers five values for this
parameter α = {0.1, 0.5, 1.0, 2.0, 4.0} that indicates the length of an epoch. The
largest variance in performance we have for the exploratory Pareto UCB2. The
smaller is the size of an epoch, the better the performance of the exploratory
Pareto UCB2 algorithm is in terms of Pareto projection regret and Pareto vari-
ance regret. Note that for epochs’ length of 1, the performance of Pareto UCB2
resembles the perofrmance of Pareto UCB1, meaning that an arm or a set of
arms are pulled each epoch. The same parameter α has little influence on the
performance of exploitative Pareto UCB2 where all the Pareto arms are pulled
each epoch.

Our conclusion is that the exploration vs exploitation trade-off is better in
the exploitative Pareto algorithms where all the Pareto optimal arms are pulled
often. In opposition, exploratory Pareto UCB2 has a small Pareto projection
regret but a large Pareto variance regret since the algorithm pulls a single Pareto
optimal arm during exponentially large epochs.

6 Conclusions

In this paper, the classical UCB1 and UCB2 algorithms are extended to reward
vectors using Pareto dominance relation. We propose exploitative Pareto UCB1
that pulls each round all the Pareto optimal arms. The exploratory version of the
same algorithm uniform at random selects each round only one arm Pareto opti-
mal arm. We show that this difference has an important impact on the upper
Pareto projection regret bound of exploitative Pareto UCB1. Now, the upper
regret bound is independent of the cardinality of the Pareto front, which is large
for many objective environments, and, furthermore, unknown beforehand. Based
on the same line of reasoning, we propose the exploratory and exploitative Pareto
UCB2 algorithms. Exploratory Pareto UCB2 pulls each epoch a single Pareto
optimal arm selected at random. Exploitative Pareto UCB2 pulls all the Pareto
optimal arms in a single epoch. We upper bound the Pareto projection regret
of exploitative Pareto UCB2. We experimentally compare these MOMAB algo-
rithms on a bi-objective environment showing that the best performing algorithm
is Pareto UCB2, both exploitative and exploratory versions.
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Abstract. Solving a Partial Constraint Satisfaction Problem consists
in assigning values to all the variables of the problem such that a maxi-
mal subset of the constraints is satisfied. An efficient algorithm for large
instances of such problems which are NP-hard does not exist yet. Decom-
position methods enable to detect and exploit some crucial structures of
the problems like the clusters, or the cuts, and then apply that knowl-
edge to solve the problem. This is the focus of the present work which
uses the knowledge to improve an adaptive genetic algorithm proposed
in previous studies. The approach is designed to be generic in order that
any decomposition method can be used and different heuristics for the
genetic operators are possible. To prove the effectiveness of the method,
three heuristics for the crossover step are investigated.

Keywords: Optimization problems · Partial Constraint Satisfaction
Problems · Graph decomposition · Adaptive Genetic Algorithm (AGA) ·
AGA guided by decomposition

1 Introduction

A Partial Constraint Satisfaction Problem (PCSP) is a partial version of a CSP
for which only a subset of constraints called hard constraints have to be satisfied.
The rest of the constraints of the problem called soft constraints can be violated
in the condition that a penalty is involved. In other words, PCSPs are CSPs
for which penalties are assigned to soft constraints that are not satisfied. When
addressing a PCSP, the objective is to assign values to all variables such as to
minimize the total penalty, also called the cost of the solution, induced by the
violated constraints. A large class of Problems can be modeled as a PCSP includ-
ing for example Maximum Satisfiability Problems, Boolean Quadratic Problems
or Coloring Problems. In this paper, the Frequency Assignment Problem (FAP),
one of the most well known combinatorial Problems, is taken as experimental
target to validate our approach. Indeed, the focus of this work is on binary
c© Springer International Publishing Switzerland 2015
B. Duval et al. (Eds.): ICAART 2015, LNAI 9494, pp. 145–162, 2015.
DOI: 10.1007/978-3-319-27947-3 8
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PCSPs where any constraint involves two variables. When looking for a global
solution of the PCSP, generic solvers are sometimes surprisingly competitive but
other times, these solvers really fail to address large size problems because of
some difficult subproblems that lurk beneath. PCSPs (and particularly FAPs)
have been solved by a number of different exact approaches (enumerative search,
Branch & Bound for instance) and numerous heuristics or metaheuristics [1–3].
However all these approaches have often a limited success when coping with real
large instances. Nowadays solving approaches propose to explore the structure
of the associated constraint graph [4,5]. In particular, methods exploiting tree
decompositions [6] are known to be among the best techniques with regard to
theoretical time complexity. Unfortunately these methods have not shown a real
efficiency for large problems thus proving a practical interest. In [7], a generic
approach based on decomposition was introduced. The aim was to solve large
size problems in a short time but not necessarily at optimality. The compu-
tational results, using an Adapative Genetic Algorithm (AGA) were relatively
promising. In this paper, the new idea is to exploit structural knowledges coming
from the decomposition method in an innovative way. A recent study has shown
the benefits of such an approach for improving a local search method [8,9]. In
particular, the tree decomposition was explored. In this work, the approach is
more generic since any decomposition can be used. Therefore, a new generic
algorithm is proposed. It is called AGAGD x y for Adaptive Genetic Algorithm
Guided by Decomposition. AGAGD x y uses a given decomposition method to
detect crucial substructures of the problem and then applies that knowledge to
boost the performance of the AGA itself. The name of the algorithm is indexed by
x and y, where x is for the generic decomposition and y is for the generic genetic
operator. In this paper three heuristics named Crossover clus, Crossover cut and
Crossover clus cut are presented.

The paper is organized as follows. Section 2 gives a formal definition of a
PCSP. Section 3 presents the decomposition method chosen to validate this app-
roach. In Sect. 4 an efficient Adaptive Genetic Algorithm for solving PCSPs is
proposed. The proposition of an Adaptive Genetic Algorithm Guided by Decom-
position AGAGD x y is presented in Sect. 5. The first computational and promis-
ing results are presented in Sect. 6. The paper ends with a conclusion and per-
spectives for further research.

2 Partial Constraint Satisfaction Problem (PCSP)

Definition 1 (Constraint Satisfaction Problem). A Constraint Satisfac-
tion Problem (CSP) is defined as a triple P = < X,D,C > where

– X = {x1, ..., xn} is a finite set of n variables.
– D = {D1, ...,Dn} is a set of n finite domains. Each variable xi takes its value

in the domain Di.
– C = {c1, ..., cm} is a set of m constraints. Each constraint ci is defined as

a set of variables {xi, . . . , xj}, i, j = 1, . . . , n called the scope of ci. For each
constraint ci a relation Ri specifies the authorized values for the variables. This
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relation Ri can be defined as a formula or as a set of tuples, Ri ⊆ ∏
(xk∈ci)

Dk

(subset of the cartesian product).

A solution of a CSP is a complete assignment of values to each variable xi ∈ X
denoted by a vector < d1, d2, . . . , dn > (where di ∈ Di ∀i ∈ 1 . . . n) which satis-
fies all the constraints of C.

Remark 1. The cardinality of ci is called the arity of constraint ci. CSPs with
constraints involving at most two variables are named binary CSPs.

Let us recall that in this work, only binary CSPs are considered. In the rest
of the paper, a constraint c = {xi, xj} is denoted by (xi, xj).

Definition 2 (BinaryPartialConstraint SatisfactionProblem). A binary
Partial Constraint Satisfaction Problem is defined as a quadruplet P = < X,D,
C, P > where

– < X,D,C > is a binary CSP,
– P = {p1, ..., pm} is a set of m penalties. Each penalty pi is a value associated

with a constraint ci, i = 1, . . . , m.

The objective when solving a PCSP is to select an authorized value for each
variable xi ∈ X such that the sum of the penalties of the violated constraints
called also the cost of the solution s and defined as follows:

cost(s) =
m∑

i=1

pi where ci is violated

has to be minimized.

Definition 3 (Constraint Graph). Let P = < X,D,C, P > be a PCSP.
Let G = (V,E) be the undirected weighted graph associated with P as follows:
with each variable x ∈ X we associate a node vx ∈ V and for each constraint
(x1, x2) ∈ C we define an edge vx1vx2 ∈ E and a weight w associated with its
penalty defined in P .

Remark 2. Among the set of constraints, those that must not be violated are
called “hard” constraints while the others are “soft” constraints.

3 Decomposition Techniques

3.1 Generalities on Decomposition Techniques

The objective of a decomposition method is to split a large problem into a col-
lection of interconnected but easier sub-problems. The decomposition process
depends on the nature of the problem and how it is modelled [10]. In this study,
the focus is on decomposition techniques which include graph decompositions
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such as graph partitioning or graph clustering particularly adapted to optimiza-
tion problems which are modelled by graphs.

The originality of the approach proposed in this paper is the use of infor-
mation resulting from the decomposition of the problem to guide its resolution.
It is meant to be generic, thus not conditioned by any particular decomposition
method. However as the aim of this first work is rather to validate the new
AGAGD x y algorithm, the well known powerful clustering algorithm due to
Newman [11] is considered as target decomposition method.

3.2 Newman Algorithm

Many clustering algorithms have been proposed in recent years. A common prop-
erty that summarizes all these algorithms is the community structure: the nodes
of the networks are grouped into clusters with a high internal density and clus-
ters are sparsely connected. To detect structure communities in networks, an
algorithm based on an iterative removal of edges is proposed in [12]. The main
drawback of this algorithm is its computational time that limits the use of this
algorithm to problems with a few thousand nodes at most. A more efficient
algorithm for detecting community structure is presented in [11] which runs on
current computers in a reasonable time for networks of up to a million vertices.
The principle of this new algorithm (denoted Newman algorithm) is based on
the idea of modularity. The first algorithm presented in [12], [11] splits the net-
work into communities, regardless of whether the network has naturally such
a division. To define the meaningfulness of a decomposition, a quality function
denoted Q or modularity is associated. In [11] Q is simply optimized instead of
considering different iterative removals of edges. However looking for all possible
divisions for optimizing Q is infeasible for networks larger than 20 or 30 nodes.
Different heuristic or metaheuristic algorithms can be used to approximate this
problem. Newman algorithm starts by considering n clusters or communities,
for which each community contains only one node. The communities are then
repeatedly joined in pairs. The algorithm chooses at each step the join that
results in the smallest decrease of Q. The algorithm progresses like a dendro-
gram at different nodes. The cuts through this dendrogram at different levels
give the divisions of the graph into a certain number of communities of different
sizes. The best cut is chosen by looking for the maximal value for Q. This new
version of the algorithm is in O(n2) on sparse graphs.

3.3 Detected Structural Knowledge

This subsection defines the general concepts linked with decomposition tech-
niques which will be used in the rest of the paper to present the AGAGD x y
algorithm.

Definition 4 (Partition, Cluster). Given a graph G = < V,E >, a par-
tition {C1, C2, . . . , Ck} of G is a collection of subsets of V that satisfies the
following:
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–
k⋃

i=1

Ci = V

– ∀i, j = 1, . . . , k : Ci ∩ Cj = ∅
Each subset of variables Ci of the partition of G is called a cluster.

Definition 5 (Cut). Let {C1, C2, . . . , Ck} be a partition of a graph G = <
V,E >, and let Ci and Cj be two clusters. We denote by Cut(Ci, Cj) the set of
vertices {u ∈ Vi,∃v ∈ Vj and uv ∈ E} ∪ {v ∈ Vj ,∃u ∈ Vi and uv ∈ E}.
Definition 6 (Separator). LetG = < V,E > be a graph andP = {C1, C2, . . . ,
Ck} a partition of this graph. Let Ci be a cluster in P . The separator of Ci denoted
Sep(Ci) is the set of vertices defined by: Sep(Ci) = {u ∈ Vi,∃v /∈ Vi and uv ∈ E}.
In other words, Sep(Ci) is the set of the bordering nodes of Ci.

Remark 3. Let P = < X,D,C, P > be a PCSP and G = < V,E > its weighted
graph representation where V = X, E = C and |V | = n. In the rest of this paper
G[VS ] will denote the subgraph < VS , ES > induced by the subset of nodes VS

in V .

Example 1. Figure 1 illustrates the important concepts related to structural
knowledge: a constraint graph is decomposed into a partition {C1, C2, C3, C4, C5,
C6} of 6 clusters, where Cut(C1, C5) = {b, c, e, f} and Sep(C1) = {a, b, c, d}.

C6

C3

C2

C1

C4

f

e

a

b
c

d

C5

Fig. 1. Example of sep and cut notions

4 Adaptive Genetic Algorithm for PCSPs (AGA)

4.1 Motivation

This section presents an Adaptive Genetic Algorithm (AGA) specific to PCSPs.
Standard genetic algorithms of the literature fail to find the optimum in a
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reasonable time. This is generally due to the fact that crossover and mutation
probabilities are predetermined and fixed. The population becomes premature
and falls in local convergence early. To avoid this drawback, in the proposed
AGA, mutation and crossover probabilities change during the execution process,
in order to improve the exploration of the search space.

4.2 Presentation of the Adaptive Genetic Algorithm (AGA)
for PCSPs

Notations.

– pm0 : initial mutation probability
– pc0 : initial crossover probability
– pmmin

: mutation probability threshold
– pcmax

: crossover probability threshold
– Δpm: mutation probability rate
– Δpc: crossover probability rate.

AGA is formally given by Algorithm 1.
The performance of AGA is tightly dependent on its crossover and muta-

tion operators. The mutation operator is used to replace the values of a certain
number of genes, randomly chosen in the parent population, in order to improve
the fitness of the resulting chromosome. The mutation occurs with a probability
pm, named mutation probability. The crossover operation is used to generate a
new offspring by exchanging the values of some genes, to improve the fitness
of a part of the chromosome. A crossover appears only with a probability pc
called the crossover probability. A good value for pc avoids the local optima
(diversification) while pm enables the GA to improve the quality of the solutions
(intensification).

In the proposed AGA, both parameters are dynamically modified to reach
a good balance between the intensification and the diversification. More pre-
cisely, the crossover (respectively the mutation) operator is called each time pc
(respectively pm) reaches a certain threshold, setting the Boolean value pc ok
(respectively pm ok) to true. These probabilities are nevertheless bounded by
pmmin

and pcmax
, to avoid too much disruption in the population, which slows

the convergence of the algorithm. Since all chromosomes of a given population
are independent, crossover and mutation operations are processed concurrently.

Crossover in AGA. The crossover operator aims to modify the solution while
reducing the degradation of its cost. It replaces, in the current solution, the
elements and their neighborhood which have a bad fitness by ones which have a
fitness of good quality in an individual selected by the tournament method.

Mutation in AGA. Contrarily to the mutation in a classical genetic algorithm
which objective is to perturb the solution, the mutation operator in AGA aims at
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Algorithm 1. AGA(Pb: a PCSP, s: a solution).

Input:G < V, E, W >: constraint graph for a PCSP, pm0 , pc0 , pmmin , pcmax , Δpm,
Δpc, nb: mutation parameter

1: p ← Initial Population;
2: if local mimima then
3: pm ← pm − Δpm

4: pc ← pc + Δpc

5: if pm < pmmin then
6: pm ← pmmin

7: end if
8: if pc > pcmax then
9: pc ← pcmax

10: end if
11: else
12: pm ← pm0

13: pc ← pc0

14: end if
15: old p ← p
16: repeat
17: for all i=1 to size(old p) do
18: in parallel
19: parent i ← the ith chromosome in old p
20: parent j ← the selected chromosome in old p using the tournament algorithm
21: if pc ok then
22: offspring i ← Crossover(parent i, parent j), where offspring i will be the

ith chromosome in a future population.
23: else
24: offspring i ← parent i
25: end if
26: if pm ok then
27: offspring i ← Mutation(offspring i, nb)
28: end if
29: end for
30: until convergence

enhancing the solution cost. Indeed, this new mutation applies the local search
method 1 opt to several elements of the solution (randomly chosen), until it
is no more possible to enhance the cost during a certain number of successive
iterations. The aim of this operation is twofold. First, it aims to enhance the
quality of the population, for a large number of offsprings. Second, in the case
where the solution 1 opt of a good quality solution is optimum, the solution has
to converge to optimality.
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5 Adapative Genetic Algorithm Guided
by Decomposition: AGAGD x y

5.1 Presentation of AGAGD

Algorithm 2 . AGAGD x y (Pb: a PCSP, s: a solution).

1: Input: G = < V, E > is a weighted constraint graph associated with Pb
2: Decompose x(G, C = {C1, . . . , Ck})
3: AGA y(Pb, C, s )

This section aims to present the new AGAGD x y algorithm. The formal descrip-
tion of AGAGD x y is given by Algorithm 2. This algorithm consists of two major
steps, as follows:

– The first step (Procedure Decompose) partitions the constraint network cor-
responding to the initial problem Pb in order to identify some relevant struc-
tural components such as clusters, cuts, or separators. The multicut decom-
position method used in this paper has been presented in Sect. 3.

– The second step of the algorithm is related to the algorithm AGA y. It is
indexed by y, meaning that several variants can be considered. In AGA, the
crossover involves at each time, a unique variable and its neighborhood. That
explains why the number of the crossover steps needed can be very high before
obtaining a convergence state. In AGA y rather than operating a crossover
on a single variable at each step, it applies it on more crucial parts of the
problems, such that clusters, cuts, separators or any other relevant structural
knowledge. Formally AGA y corresponds to AGA for which the crossover
procedure is replaced by crossover y.

It is clear that several versions of crossover y can be studied. In the present work,
three different heuristics are introduced as described further.

5.2 Definition

Definition 7 (Fitness of a cluster). Given a PCSP P = < X,D,C, P >, its
weighted constraint graph G = < V,E > and a partition P = {C1, C2, . . . , Ck}
of G. Let s be a current solution of P and Ci a cluster in P . Let us consider
Gi[Ci] = < Vi, Ei > the subgraph induced by Ci in G. The fitness of the cluster
Ci is defined by:

Fitness[Ci, s] =
∑

(vi,vj)∈Ei

w(vi, vj)

where (vi, vj) ∈ Ei and (vi, vj) is unsatisfied in s.

Remark 4. To obtain the definition of the fitness of a cut, one should replace
the word cluster by the word cut in Definition 7.
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5.3 Crossover clus

In the heuristic Crossover clus, the operation is performed on the clusters which
are relevant structural knowledge that includes a small number of variables
tightly connected. The separator is a set of bordering variables of a given cluster,
which connects it to other clusters. This is an important structure that can give
an indication about the role of a cluster and its neighborhood. The heuristic is
described by Algorithm 3.

In the first loop (Lines 1–3), the cluster to be changed in the parent chro-
mosome is the one which has the largest fitness as compared with those of the
chromosome chosen by the tournament heuristic. To ensure that the crossover
is performed on the cluster with the worst fitness, the heuristic must take into
account both the fitness of the cluster (loop 1) and the fitness of its separator
set (see the second loop in Lines 4–11). The main advantage of this second loop
is that it avoids a deterioration of the overall fitness of the solution and then
allows the algorithm to converge faster.

5.4 Crossover cut

The cut plays a dual role with respect to the cluster. It is either lightweight
(Min weight heuristic) or has a low cardinality (Min edge heuristic). This heuris-
tic formalized by Algorithm 4 behaves globally as the previous one. The cut to
be changed by the crossover operation is the one that presents both the worst
fitness of the cut and the worst fitness of its variables in adjacent clusters.

Algorithm 3 . Crossover clus(p1, p2, {C1, C2, . . . , Ck}).

1: for all i = 1 to k do
2: Temp[i] ← Fitness[Ci,p1] - Fitness[Ci,p2]
3: end for
4: for all i = 1 to k do
5: let sep = Sep(Ci)
6: for all j = 1 to |sep| do
7: if value(sep[j], p1) �= value(sep[j], p2) then
8: Temp[i] ← Temp[i] + Fitness[(sep[j], p1)]
9: end if

10: end for
11: end for
12: Let Cj the cluster corresponding to the largest element in Temp.
13: for all i = 1 to n do
14:

offspring[i] ←
{

p2[i] if i ∈ Cj

p1[i] otherwise

15: end for
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Algorithm 4 . Crossover cut(p1, p2, {C1, C2, . . . , Ck}).

1: l ← 1
2: for all i = 1 to k do
3: for all j = i to k do
4: Let cut = Cut(Ci, Cj)
5: if cut �= ∅ then
6: Temp[l] ← Fitness(cut,p1) − Fitness(cut,p2)
7: for all h = 1 to |cut| do
8: if value(cut[h], p1) �= value(cut[h], p2) then
9: Temp[l]← Temp[l]+ Fitness (cut[h]), p1)

10: end if
11: end for
12: end if
13: l + +
14: end for
15: end for
16: Let cut be the largest cut according to Temp.
17: for all i = 1 to n do
18:

offspring[i] ←
{

p2[i] if i ∈ cut
p1[i] otherwise

19: end for

5.5 Crossover clus cut

This heuristic is a compromise between the two former primitives as described
by Algorithm 5. If the parent to be changed has a better fitness than those of the
chromosome selected by the tournament, the Crossover cut heuristic is applied,
otherwise the heuristic Crossover clus is used. Indeed, if the parent has a good
fitness, it is better not to disturb it too much by making a change only on a small
number of variables (cut). Conversely, if the parent to be changed has a worse
fitness than the parent chosen by the tournament, then the first one probably
contains good clusters while the second one contains bad clusters. In this case,
it is wise to improve its quality by changing a bad cluster into a better one.

Algorithm 5 . Crossover clus cut(p1, p2, {C1, C2, . . . , Ck}).

1: if Fitness[p1] > Fitness[p2] then
2: Crossover clus(p1, p2, {C1, C2, . . . , Ck})
3: else
4: Crossover cut(p1, p2, {C1, C2, . . . , Ck})
5: end if
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6 Experimental Results

6.1 Application Domain: MI-FAP

The Frequency Assignment Problem (FAP) and more especially the Minimum
Interference-FAP (MI-FAP) are well known hard optimization problems which
are used here as application target.

Motivation. FAP is a combinatorial problem which appeared in the sixties [13]
and, since then, several variants of the FAP differing mainly in the formulation
of their objective have attracted researchers. The FAP was proved to be NP-
hard [14]. More details on FAP can be found in [15,16].

Currently, MI-FAP is the most studied variant of FAP. It consists in assign-
ing a reduced number of frequencies to an important number of transmitters/
receivers, while minimizing the overall set of interferences in the network.

MI-FAP Modeling. MI-FAPs belong to the class of binary PCSPs (Partial
Constraint Satisfaction Problems). More formally, a MI-FAP can be designed as
the following PCSP < X,D,C, P,Q >, where:

– X = {t1, t2, . . . , tn} is the set of all transmitters.
– D = {Dt1 ,Dt2 , . . . , Dtn} is the set of domains where each Dti gathers the

possible frequencies at which a transmitter ti can transmit.
– C is the set of constraints which can be hard or soft: C = Chard ∪ Csoft.

Soft constraints can be violated at a certain cost, but hard constraints must
be satisfied. Each constraint can involve either one transmitter ti (and then
we denote it cti), or a pair of transmitters ti, tj , (in that case the constraint
is denoted ctitj ).

– P = {ptitj |i, j = 1, ..., n}, where ptitj is a penalty associated to each unsatis-
fied soft constraint ctitj .

– Q = {qti |i = 1, ..., n}, where qti is a penalty associated to each unsatisfied soft
constraint cti .

Let fi ∈ Dti and fj ∈ Dtj frequencies assigned to ti, tj ∈ X. The constraints of
a MI-FAP are as follows:

– Hard constraints: these constraints must be satisfied
1. fi = v, v ∈ Dti (hard pre-assignment).
2. |fi − fj | = l, l ∈ N (fi and fj must be separated by a distance).

– Soft constraints: a failure to meet these constraints involves penalties.
1. fi = v, v ∈ Dti (soft pre-assignment).
2. |fi − fj | > l, l ∈ N (minimum suitable distance between fi and fj).

Solving a MI-FAP consists in finding a complete assignment that satisfies all
the hard constraints and minimises the quantity:∑

ctitj ∈UC

ptitj +
∑

cti∈UC

qti where UC ∈ C is the set of Unsatisfied Soft Constraints,

∀ti, tj ∈ X.
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6.2 Experimental Protocol

All the implementations have been achieved using C++. The experiments were
run on the cluster Romeo of University of Champagne-Ardenne1. Decomposi-
tions are done with the edge.betweenness.community function of igraph package
in R language [17], available at2. This function is an implementation of the
Newman algorithm [11], presented in Sect. 3. This decomposition can be used
under several criteria. In this paper two particular criteria have been considered:
the first one aims to minimize the total number of edges of the cut while the
second one aims to minimize the global weight of the cut. In the rest of this
paper, the methods associated with these two criteria are denoted min edge and
min weight, respectively.

The tests were performed on real-life instances coming from the well known
CALMA (Combinatorial ALgorithms for Military Applications) project [18].
The characteristics of MI-FAP CALMA instances appear in Table 1. For each
instance, the characteristics of the graph and the reduced graph as well as the
best costs obtained so far are given. The set of instances consists of two parts:
the Celar instances are real-life problems from military applications while the
Graph (Generating Radio Link Frequency Assignment Problems Heuristically)
instances are similar to the Celar ones but are randomly generated. Here, only
the so-called MI-FAP instances were used.

Table 1. Benchmarks characteristics.

Instance Graph Reduced graph Best cost

|V | |E| |V | |E|
Celar06 200 1322 100 350 3389

Celar07 400 2865 200 816 343592

Celar08 916 5744 458 1655 262

Graph05 200 1134 100 416 221

Graph06 400 2170 200 843 4123

Graph11 680 3757 340 1425 3080

Graph13 916 5273 458 1877 10110

6.3 Experimental Results Obtained with AGA

This section presents the results obtained by solving the whole problem with
the AGA (Algorithm 1). The parameters, experimentally determined, are the
following: pm = 1, pc = 0.2, Δpm = Δpc = 0.1, pmmin

= 0.7, pcmax
= 0.5,

population size = 100. Three variables are calculated. The first one is the best
1 https://romeo.univ-reims.fr/.
2 http://cran.r-project.org/web/packages/igraph/igraph.pdf.

https://romeo.univ-reims.fr/
http://cran.r-project.org/web/packages/igraph/igraph.pdf
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deviation, denoted best dev, which is the standard deviation (Eq. (1)) of the
best result obtained among all executions from the optimal. The second cost is
the average deviation, denoted avg dev, which is the standard deviation of the
average cost obtained among all executions from the optimal cost. The third
column named cpu(s) is the average time needed to find the best cost. The
number of executions is fixed to 50.

standard dev(cost) =
(cost − optimal cost)
(optimal cost × 100)

(1)

Table 2 shows very clearly the efficiency of the AGA algorithm. Indeed, opti-
mal solutions are reached for the majority of the instances, while near-optimal
solutions are found for the rest of the instances. Moreover, AGA algorithm is
stable. Indeed, most of the average deviations are either null or do not exceed
7 % on the most difficult instances.

Table 2. Performances of AGA.

Instance best dev avg dev cpu(s)

Celar06 0.00 0.38 28

Celar07 0.02 0.05 212

Celar08 0.00 0.76 396

Graph05 0.00 0.00 27

Graph06 0.02 0.12 196

Graph11 1.26 3.60 1453

Graph13 3.77 6.94 2619

6.4 Experimental Results Obtained with AGAGD x y

This section presents experimental results obtained with AGAGD x y described
in Sect. 5. In order to test this generic algorithm, three variants were imple-
mented, AGAGD Newman clus, AGAGD Newman cut and AGAGD Newman
clus cut. Newman means here that the decomposition due to Newman has been
considered. More precisely, two variants have been considered namely the min
weight and min edge.

Experiments on AGAGD Newman clus. Two versions of Crossover clus
called Crossover clus1 and Crossover clus2 have been implemented. The sec-
ond version corresponds exactly to the implementation of Algorithm 3, while
the first one is a relaxed version where the crossover operator considers only
the fitness of the cluster to be changed. Tables 3 and 4 present the results
of the AGAGD Newman clus1 and AGAGD Newman clus2 heuristics both for
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min weight and min edge variants. The reported results show clearly that
AGAGD Newman clus2 outperforms particularly AGAGD Newman clus1 in
terms of average deviation (avg dev). This can be due to the fact that the clus-
ter chosen by AGAGD Newman clus1 presents certainly a bad fitness, but its
separators can have a good fitness in adjacent cuts. Then a modification of these
separators can lead to a degradation of the global fitness. For this reason, only
the second version of the heuristic is considered in the next part of this paper.

Table 3. Performances of AGAGD Newman clus1.

Instance min weight min edge

best dev avg dev cpu(s) best dev avg dev cpu(s)

Celar06 0.29 11.21 15 0.35 13.83 14

Celar07 3.11 30.33 80 3.03 21.46 80

Celar08 2.67 17.93 269 7.63 32.44 188

Graph05 0.00 14.02 24 0.00 26.69 22

Graph06 0.07 18.67 139 0.07 17.89 146

Graph11 7.11 69.93 676 5.68 80.77 1007

Graph13 17.59 70.82 2247 1.04 60.68 1905

Table 4 shows that AGAGD Newman clus2 presents in some cases an impor-
tant gain in terms of CPU time as compared with the results obtained with AGA
(Table 2). However, even though the results are quite significant with respect to
the best dev, the average performance (avg dev) is unfortunately poorer, which
qualifies this algorithm as “non stable”. This instability problem is due to a pre-
mature convergence of AGAGD Newman clus caused by the crossover operator
that modifies a large number of variables at once (clusters), which significantly
reduces the diversity of the population after a few generations (Fig. 2).

Table 4. Performances of AGAGD Newman clus2.

Instance min weight min edge

best dev avg dev cpu(s) best dev avg dev cpu(s)

Celar06 0.38 11.18 17 0.35 11.86 17

Celar07 0.11 41.49 85 0.06 15.61 111

Celar08 1.52 11.83 290 6.87 29.38 197

Graph05 0.00 2,71 24 0.00 4.52 22

Graph06 0.07 15.74 200 0.00 11.83 172

Graph11 1.62 44.96 820 0.81 30.94 957

Graph13 13.67 50.92 2004 6.73 39.61 2171
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Experiments on AGAGD Newman cut. Table 5 presents the results
obtained with the AGAGD Newman cut algorithm for both min weight and
min edge variants. These results clearly show a worse performance than the pre-
vious algorithm both in terms of CPU time and best dev and avg dev. Indeed
in this version, unlike the AGAGD Newman clus, the algorithm converges very
slowly (Fig. 2). By performing the crossover on the cuts, which are by definition
less dense regions of the problem, the cost of the solution tends to deteriorate.
When this degradation is significant, the mutation operator struggles to repair it.
Therefore, the quality of the chromosomes tends to worsen over the generations
and the convergence of the algorithm becomes very slow.

Table 5. Results of AGAGD Newman cut.

Instance min weight min edge

best dev avg dev cpu(s) best dev avg dev cpu(s)

Celar06 5.10 21.54 237 3.98 22.57 301

Celar07 50.15 426.71 812 41.66 469.29 1102

Celar08 30.53 50.01 1029 39.31 72.90 1079

Graph05 0.00 3.61 43 0.00 9.95 52

Graph06 0.02 10.57 443 0.04 27.04 337

Graph11 3.70 226.64 1807 46.20 335.55 1104

Graph13 16.22 118.82 5439 145.79 281.76 1724
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Fig. 2. Graph11 instance: comparing AGAGD Newman y.
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AGAGD Newman clus cut. Two dual methods were presented in the pre-
vious sections which both show their advantages and drawbacks. To benefit
from the two methods, an hybrid heuristic called AGAGD Newman clus cut
is tested, in which the crossover can either be performed on the cluster or
on the cut. Table 6 presents the results of this heuristic both for min weight
and min edge variants. The results obtained show that this variant presents an
important gain in terms of CPU time as compared with those obtained by using
AGA (Table 2), especially for the min edge variant. One can observe a signifi-
cant improvement of the results as compared with those obtained with the two
previous approaches. Notice that some performances in terms of best dev were
reached, while they were never obtained with AGA (Table 2) (see Celar07 and
Graph13). However, although the average performances avg dev are improved
as compared with those obtained with AGAGD Newman clus2 (Table 4) and
AGAGD Newman cut (Table 5), they still remain worse than those obtained
with AGA (Table 2). This is explained by the large number of variables
involved in the crossover. This means that AGAGD Newman clus cut offers
a good compromise between AGAGD Newman clus and AGAGD Newman cut
because the integration of the two crossover operators Crossover clus and
Crossover cut allows the algorithm to converge relatively quickly, while main-
taining some diversification level. This avoids a premature convergence, thanks
to the Crossover clus crossover (Fig. 2) while a minimum diversification is main-
tained. This has enabled to achieve almost near optimal results and even optimal
ones quickly Table 6.

Table 6. Performances of AGAGD Newman clus cut.

Instance min weight min edge

best dev(%) avg dev cpu best dev avg dev cpu

Celar06 0.14 10.50 26 0.29 9.94 23

Celar07 0.08 25.18 193 0.00 10.73 149

Celar08 1.9 8.77 357 4.19 13.74 281

Graph05 0.00 1.80 31 0.00 2.26 26

Graph06 0.00 8.82 272 0.00 1.57 219

Graph11 1.36 49.64 1036 2.56 24.48 900

Graph13 4.61 41.63 2428 1.29 41.48 1556

6.5 AGA vs AGAGD

Table 7 summarizes some selected results obtained by AGA and AGAGD algo-
rithms. While we notice the degradation of the parameter avg dev in AGAGD,
let us note nonetheless improving some best cost and reduced time resolution
especially on the most difficult instances.
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Table 7. Comparing AGA and AGAGD.

Instance AGA AGAGD

best dev(%) avg dev cpu best dev avg dev cpu

Celar06 0.00 0.38 28 0.14 10.50 26

Celar07 0.02 0.05 212 0.00 10.73 149

Celar08 0.00 0.76 396 1.9 8.77 357

Graph05 0.00 0.00 27 0.00 1.80 31

Graph06 0.02 0.12 196 0.00 1.57 219

Graph11 1.26 3.60 1435 0.81 30.94 957

Graph13 3.77 6.94 2619 1.29 41.48 1556

7 Conclusion & Perspectives

The aim of this work was to solve Partial Constraint Satisfaction Problems close
to the optimum in the shortest time possible. To this aim, an Adaptive Genetic
Algorithm Guided by Decomposition called AGAGD x y was proposed. The
name of the algorithm is indexed by x and y, where x is for the decomposition
and y is for the genetic operator. In fact, the AGAGD x y algorithm is doubly
generic because it fits several decomposition methods and can accept several
heuristics as crossover operator as well. For the decomposition step, two variants
of the well known decomposition algorithm due to Newman were used, namely
the min edge and min weight variants. As crossover operators, three heuristics
called Crossover clus, Crossover cut and Crossover clus cut were proposed.

The first results obtained on MI-FAP problems are promising. Indeed, the
execution time was everywhere significantly reduced as compared with that
obtained with the previous AGA algorithm, while a decrease of average quality
of the solutions must be accepted in some cases.

These early positive investigations encourage to follow this direction of
research and enhance the current results. In the short term, it is planned to
investigate other heuristics in order to improve the crossover operator. More-
over, a local repairing method can be associated with AGAGD x y after each
crossover step. Last, it would be also interesting to deploy this approach on other
multi-cut decomposition or tree decomposition methods as well as on other PCSP
applications.
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Abstract. Dogs are one of the most popular pets in the world, and
more than 10 million dogs are bred annually in Japan now [4]. Recently,
primitive commercial services have been started that record dogs’ activ-
ities and report them to their owners. Although it is expected that an
owner would like to know the dog’s activity in greater detail, a method
proposed in a previous study has failed to recognize some of the key
actions. The demand for their identification is highlighted in responses
to our questionnaire. In this paper, we show a method to recognize the
actions of the dog by attaching only one off-the-shelf acceleration sensor
to the neck of the dog. We apply DTW-D which is the state-of-the-art
time series data search technique for activity recognition. Application of
DTW-D to activity recognition of an animal is unprecedented according
to our knowledge, and thus is the main contribution of this study. As a
result, we were able to recognize eleven different activities with 75.1 %
classification F-measure. We also evaluate the method taking account of
real-world use cases.

Keywords: Activity recognition · Accelerometer · Time series data
mining · Sensor data mining · Acceleration sensor · Dynamic Time
Warping (DTW) · DTW-D

1 Introduction

There are services for dog owners that record dog’s activity in the form of life
logs and report it to them. Examples of the services include the one provided by
Whistle Lab’s “Whistle” [12] and NTT docomo’s “pet fit” [7]. These commer-
cial services recognize raw actions such as “walking”, “running”, “resting” and
“sleeping”. These services themselves are evidences of the demand to learn pets’
behavior when the owners are away. However, the variety of actions recognizable
by the current commercial services is limited and far from being satisfactory.
In our analysis, which will be verified in Sect. 2 by analyzing the results of a
questionnaire, there are three aspects of the demand for pet activity monitoring.
The first aspect arises from the interest in short-term healthcare. The second
c© Springer International Publishing Switzerland 2015
B. Duval et al. (Eds.): ICAART 2015, LNAI 9494, pp. 163–184, 2015.
DOI: 10.1007/978-3-319-27947-3 9
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aspect originates from the interest in long-term healthcare. The third and final
aspect is related to problematic behavior of pets.

For example, vomit reporting is desired for a pet monitoring system because
the action is directly related to internal health condition. The action should be
detected from the aspect of short-term healthcare.

Eye-scratching is an action that can lead to a serious disease if repeated
multiple times. If a pet monitoring system reports the number of times the
action is occurred, early treatment by a veterinarian is possible and a serious
condition can be avoided. Therefore the detection of the action is desirable from
the aspects of long-term healthcare.

In Japan, approximately 70 % of the dogs share the life space with human
beings. In such circumstances, the pet may exhibit problematic behavior such
as biting the furniture and entering the places where it should not, especially in
the absence of owner. The owners need to know the problematic actions in order
to take appropriate corrective measures, hence the third aspect of the demand
for pet monitoring. An action related to this aspect is jumping. It is problematic
because it could reflect pets’ intention to touch things at higher place, which are
kept there by the owners so that the pets could not play with them. Although
there is a study on monitoring the actions of a dog, the accuracy of detection
for those actions is not high.

In this article, we propose a method to monitor dog’s behavior, which is
especially effective in the recognition of those actions whose demand of detection
is high, according to our analysis of the demands of the owners. The remainder
of this paper is organized as follows. In Sect. 2, we will investigate and analyze
a questionnaire to see whether there is a background to the kind of needs. In
Sect. 3, we will write about the work related to the activity recognition of the
dog and the search technique of time series data. In Sect. 4, we will present
the algorithm for the calculation of Euclid distance, DTW distance and DTW-
D distance. Section 5 is dedicated to the description of the experiments. We
will describe the experimental environment, experimental procedure. In Sect. 6,
we will show experimental results of our approach and exsisting approach as a
base-line. In Sect. 7, we will discuss the conclusions and recommendations for
future work.

2 Questionnaire Survey for Needs

2.1 Questionnaire Result

We performed a questionnaire survey with pet owners in order to investigate
which actions of the pets should be recognized by a remote pet monitoring
system. The questionnaire listed 22 typical actions of the pets and the owners
were asked to tell if they were interested in knowing their occurrence when they
were away. Furthermore, a free-format comment field was provided to collect
the reasons why the owners were interested in knowing those actions. Figure 1
shows the questionnaire results and Table 1 shows the comments filled in the
free-format field. The action that gathered the most interest from the owners



Activity Recognition for Dogs Based on Time-series Data Analysis 165

Table 1. Comments in free-format field.

How much is my dog relaxed?

What kind of facial expression does the dog have?

When the owner is away, what kind of action does the dog often take?

I keep some cats. I am not worried about the state of my house when I am away,
because the cats usually sleep. When I had a dog before, I was worried how the
dog was doing. I think it depends on animal species

It would be nice to talk to a dog at home via a mobile device, when the owner is
away

(Dog)

Showing the stomach

Going around

Running around as energetically as possible

Shaking the tail buzzingly

Excited with the sound that promises food items even if they are invisible

(Cat)

Making rumbling sound at the throat

Putting the face into a paper or plastic bag

Climbing the curtain when excited

Waiting at the door for a family member to come home

Grooming

The reaction to the sound of phone calls and intercom during the absence of the
owner

I am concerned if the dog gets into trouble while I am away

My dog silently vomits without having a cough. That makes it difficult for me to
notice the vomiting instantly. I want to notice abnormality as early as possible

Because my dog is elderly, I am very interested in knowing the behavior of the dog
during the absence of my family. In addition, I am concerned if the dog does
some action that leads to an illness

I currently keep my cat in the room. When I go home, the room is so messy that I
can imagine what the cat has been doing

Because the dog spends the daytime alone everyday, I leash the dog. So the range
that the dog can move within is narrow. Sometimes my dog can neither jump
nor walk. But, I think if the dog spends time without doing any mischievous act,
there would be no need of the leash... [in order to realize the situation] it would
be nice if the whole of the dog’s behavior could be recognized

I want to see how the dog behaved during the earthquake

I want to know the action of the dog when it thunders during the absence of me
and my family. Because the dog comes to see me to the door when I go home, I
want to know when the dog begins to move. Is it when I open the front door, I
stop the bicycle, or I open the gate?
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is vomiting. In addition, the questionnaire result and the free-format description
suggest that many owners are concerned with the health condition of their pets.

2.2 Questionnaire Analysis

Let us focus on behaviors in which more than 70 % of the owners are interested.
“vomiting” and “shivering” directly reflect the health conditions of dogs, thus
their monitoring is desirable from the aspect of short-term healthcare. “cough-
ing” can suggest respiratory diseases if its frequency is unusually high and so
its monitoring is desirable from the aspect of long-term healthcare. “scratching”
can lead to a serious disease if done repeatedly and therefore its monitoring is
also desirable from the aspect of long-term healthcare. “barking”, “chewing”,
“drinking”, “eating”, “urinating”, “defecating” and “jumping” are potentially
problematic actions. “barking” could make the neighbors complain. “chewing”
may indicate damage to the furniture. The problem with “drinking” and “eat-
ing” is that a pet might eat or drink something that the owner does not want
it to. “urinating” and “defecating” could mean a blunder. With “jumping”, a
dog may try to take things at high places. As a result, the eleven behaviors in
which more than 70 % of owners are interested are related to the three aspects
introduced in Sect. 1.

Fig. 1. Results of questionnaire.
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3 Related Work

3.1 Activity Recognition for Dogs

There is a study on activity recognition [5]. They use PCA-based feature extrac-
tion and empirical cumulative density function (ECDF) [3]. They sample accel-
eration data at 30 Hz. The acceleration data are divided into one-second frames
and each frame is analyzed separately. A frame has 50 % overlap with its prede-
cessor and is created with sliding window procedure based on [9]. Each frame is
labeled using the movie which is recorded by one annotator. The feature vector
of each frame is trained and tested using 10-fold cross validation and is classified
in each of the 16 actions and one rejection class using k-NN (k=1). They show
the result as a confusion matrix. In their study, jumping in which 70 % of the
owners are interested is not recognizable. Furthermore, seven actions are with
less than 50 % recognition accuracies in their study, and recognition accuracy
is less than 80 % for 12 actions. Therefore, we must say that there is room for
improvement in the recognition accuracy.

3.2 Time Series Data Mining

Searching and Mining Trillions of Time Series Subsequences Under
Dynamic Time Warping. There is a problem of finding a subsequence that
is similar to a query sequence in a large scale time series data. The problem is
solved by calculating the distance between the sequences and the query using
Dynamic Time Warping (DTW). However, the computational cost of DTW is
high. As time series data, that is to be searched, becomes longer, the number
of calculations of DTW increases linearly. As a result, the computational time
for the search becomes enormous. The study proposed a method to solve the
problem by eliminating unpromising candidates at early stages.

DTW-D: Time Series Semi-supervised Learning from Single Example.
Time series data with little up-and-downs tend to become close to any data in
DTW distance. Because of this, a sequence with significant temporal change
could be classified as data without one. In order to avoid a situation like this,
Chen et al. proposed a distance measure called DTW-D.

4 Algorithm for Similarity Caluculation

Suppose there are two sequences X = 〈xi|i = 1, ..., N〉, Y = 〈yj |j = 1, ...,M〉.
We would like to measure the distance between X and Y in order to measure the
similarity of the sequences of X and Y in waveforms. The smaller the distance,
the more similar X and Y. Some distances are commonly used.
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4.1 Euclidean Distance

Euclidean Distance (ED) is the classic scale for measuring the similarity among
the time series data. It is measuring the distance between the time series data
of the same length. It is determined by summing up the distances between the
data at the same time index.

ED =

√
√
√
√

N∑

i=1

(xi − yi)2, (N = M) (1)

Figure 2 is a figure of alignment of the Euclid distance.

Fig. 2. Alignment of the Euclid distance.

4.2 Classical DTW

A weak point of the ED is that it tends to be large when the time series data are
out of phase. Dynamic Time Warping is a technique used to find distance more
flexibly between time series data than ED. Figure 3 shows alignment of the data
points that is used to calculate the DTW distance.

Fig. 3. Alignment of the DTW distance.
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Fig. 4. Cost matrix.

Fig. 5. Accumulated cost matrix.

At first, we calculate cost matrix C ∈ R
N×M which is defined by the distance

between each element using Eq. (2). An example of the cost matrix is shown in
Fig. 4.

C(i, j) := c(xi, yj) = abs(xi − yj),
(i = 1, ..., N, j = 1, ...,M) (2)
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Then, we calculate accumulated cost matrix AC using Eq. (3). An example
of the accumulated cost matrix is shown in Fig. 5.

AC(i, 1) =
i∑

k=1

c(xk, y1)

AC(1, j) =
j∑

l=1

c(x1, yl)

AC(i, j) = C(i, j) + min{AC(i − 1, j − 1),
AC(i − 1, j), AC(i, j − 1)}, (i, j ≥ 2) (3)

DTW distance is AC(N, M). We have shown the above-mentioned algorithm
in Algorithm 1.

4.3 DTW-D

Let us consider to calculate the distance between each sequence R, G, B in Fig. 6.
If we use ED measure, the alignment of data points will be similar to that in
Fig. 7. On the other hand, if we use DTW measure, the alignment will be like
that in Fig. 8. In both cases, the counter-intuitive result that G is more similar
to R than B is, will be derived, as shown in Fig. 9.

Fig. 6. Three sequences to calculate distance.

In order to avoid a situation like this, Chen et al. [2] proposed a distance
measure called DTW-D. DTW-D is calculated by Eq. (4) where ε is a small
positive constant placed in order to avoid the division by zero. As shown in
Fig. 10, based on DTW-D, B is more similar to R than G is.

DTW−D(x, y) =
DTW (x, y)
ED(x, y) + ε

(4)

Fig. 7. Alignment of the ED between R and B, R and G (Color figure online).
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Algorithm 1 . Calculate DTW Distance.

Input: sequence X = 〈xi|i = 1, ..., N〉,
Y = 〈yj |j = 1, ..., M〉

Output: DTW Distance AC(N, M)
1: /*Calculate Cost Matrix*/
2: for i = 1 to N do
3: for j = 1 to M do
4: C(i, j) ⇐ abs(xi − yj)
5: end for
6: end for
7: /*Calculate Accumulated Cost Matrix*/
8: AC(1, 1) ⇐ C(1, 1)
9: for i = 2 to N do

10: AC(i, 1) ⇐ AC(i − 1, 1) + C(i, 1)
11: end for
12: for j = 2 to M do
13: AC(1, j) ⇐ AC(1, j − 1) + C(1, j)
14: end for
15: for i = 2 to N do
16: for j = 2 to M do
17: AC(i, j) ⇐ C(i, j) + min{AC(i − 1, j − 1), AC(i − 1, j), AC(i, j − 1)}
18: end for
19: end for
20: return AC(N, M)

Fig. 8. Alignment of the DTW distance between R and B, R and G (Color figure
online).

Fig. 9. ED and DTW Distance in the three Sequence [R, G, B] (Color figure online).

Fig. 10. DTW-D distance is the distance that DTW distance divided by ED.
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Table 2. Information of the experimental subjects and environments.

Name Yuzu Gummi Cool Oreo Orfeu Shoko

Breed Pembroke welsh corgi Toy poodle

Sexuality Female Male Male Male Male Female

Age 4-year 2-year 10-month 8-month 1-year 2-year

Weight 10.7 kg 10.2 kg 7.8 kg 2.7 kg 2.6 kg 2.4 kg

Length 60 cm 60 cm 58 cm 43 cm 43 cm 40 cm

Height 30 cm 30 cm 28 cm 30 cm 30 cm 28 cm

Character Wise Friendly Selfish Obedient Active Gentle

5 Experimental Protocol

5.1 Experimental Environments

The experimental subjects and environments shown in Table 2. The conditions
of the experiment are as follows. The acceleration data was collected at sampling
frequency 25 Hz. The video was recorded in order to put the ground truth label.
We prepared the acceleration sensor shown in Fig. 12 on the left side. The sensor
was attached to the neck of the dog as shown in the Fig. 12 on the right side. The
acceleration sensor which we used for the experiment is AX3 Watch of Axivity
[1]. The sensor is equipped with 3 axes MEMS which works as an accelerometer.
Sampling frequency can be selected from several predetermined values provided
by the tool between 12.5 Hz and 800 Hz. It has a mounted NAND flash mem-
ory of 512 MB to store the data. The maximum recording time is 14 days at
100 Hz, and 30 days at 12.5 Hz. Measurement range of the acceleration is ±16 g.
This sensor has IP68-rated dust- and water-proof capability that is standardized
by International Electrotechnical Commission 60529. Acceleration data is trans-
ferred to the PC from the sensor by using USB. We have shown the definition
of the activity of the dog in Table 3.

Figure 13 shows appearance and dimension of the subjects.

5.2 Experimental Procedure

Our Approach. Using ELAN [6], which is a tool for video annotation, every
sample of the acceleration data is labeled. The label consists of one of 8 activities
shown in Table 3. “unspecified” label is given to the behavior that cannot be
judged as one of the 8 activities. Let us call a subsequence of 25 samples a frame.
A new frame is created by sliding the 25-sample window forward by one sample.
As a result, adjoining two adjoining frames shares 24 samples of each other,
that is 96 % of the frames. When the same ground truth label appears in more
than 20 samples in a frame, that is 80 % of the frame, the whole frame is given
the ground truth label. This is because, average F-measure became maximum
at 80 % in 52 % through 100 %. Otherwise, the frame is labeled “mixed” and
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used for a test, but that frame is not listed in a result. We choose one frame
from all frames and set it aside as a test frame. Remaining frames is assumed
to be training frames. The test and training frames are chosen so that there
are no shared samples. The distance between the training and test frames is
calculated using each of the Euclidean, DTW, and DTW-D methods to compare
each measure’s appropriateness for the task. We include Euclidean Distance
which is known to be prone to noises here because we are interested in how
DTW-D can improve the performance against one of its base measures. We infer
a label of a test frame from the label of the training frame nearest to the test
frame. In other words, we used the nearest neighbor method. This is because, in a
preliminary study comparing performance of k-nearest neighbor methods for the
data, average F-measure became maximum at k = 1 in k = 1, 3, 5. Recognition
accuracy is calculated through cross validation. Overview of the experimental
setting is shown in Fig. 11.

Fig. 11. Overview of the experimental setting.

Existing Approach. The existing PCA-based approach was also applied to
our data set. Each parameters were chosen to be as close as possible to the
existing study. A new frame is created by sliding the 25-sample window forward
by 13 samples. As a result, adjoining two adjoining frames shares 12 samples
of each other, that is 48 % of the frames. When the same ground truth label
appears in more than 19 samples in a frame, that is 76 % of the frame, the whole
frame is given the ground truth label. We choose one frame from all frames
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Fig. 12. The appearance of the sensor and how the dog wears it.

Fig. 13. Size of dogs. (left) Oreo, (right) Yuzu.

and set it aside as a test frame. Remaining frames is assumued to be training
frames. In some cases part of the test frame and training frames have 48 %
overlap. Each frame is normalized by inverse ECDF. We projected them into
first 25 principal components in order to reduce the dimension of the feature
of the frames. The distance between the feature vectors of the test frame and
training frames are calculated. The label of the test frame is estimated using
nearest neighbor method. Recognition accuracy is calculated through leave-one-
out cross validation.

5.3 Experimental Results and Discussion

Analyses of the Result of Our Approach. Table 4 show accuracies of our
approach obtained through the experiments using data of the six dogs. Tables 5,
6, 7, 8, 9 and 10 show accuracies obtained through the experiments using data
of each dog alone. In Tables 4, 5, 6, 7, 8, 9 and 10, a cell is marked red if the
corresponding distance measure gives the best result among the three measures.
In Tables 5, 6, 7, 8, 9 and 10, an activity is omitted if the dog did not exhibit
the activity.
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Table 3. Definition of behavior (the number of DTW-D frames & PCA-based frames
shown in parentheses, comparing existing approach).

walking: (2781 & 216 frames)

Walking. Movement of the left and right limb is alternating and not aligned.

eating: (5223 & 401 frames)

Put food in the mouth, and swallow.

sitting: (4140 & 319 frames)

Sitting quietly with buttocks on the floor or ground.

laying: (5746 & 442 frames)

Lying down and put his head against a fixed object such as a floor or ground.

sniffing: (370 & 29 frames)

Sniffing the smell of the floor or ground.

running: (961 & 74 frames)

Running. Movement of the left and right limb is almost aligned in flat.

jumping: (660 & 50 frames)

Foot of all is away from such as a floor or ground.

drinking: (1068 & 82 frames)

Drinking such as water from the dish on the floor or ground.

shaking: (670 & 50 frames)

Shaking itself to shake off the water.

scratching: (47 & 5 frames)

Scratching eyes by foreleg. Scratching the front side from the chest by hindleg.

up-stairs:

Go upstairs that movement of the left and right limb is almost aligned on the stairs.

Table 4. Precision, recall and F-measure at ED, DTW distance and DTW-D distance
of 6 dogs.

According to Table 4, the DTW-D has yielded high F-measures as compared
to the DTW and ED. Using DTW-D, subtle differences in the actions of the dog
are recognized more precisely than using the DTW and ED. With DTW-D, it is
expected that the accuracy of activity recognition will be stable even when the
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number of actions to be recognized increases. If an action appears only in a part
of a frame, such as jumping, it is difficult for a statistical method to detect the
difference in the feature value from other actions.

It can be explained that a few samples with significant feature can be
obscured by many ordinary samples in a statistical method. On the other hand,
the methods that calculate the similarity of waveforms, such as DTW, are able
to detect the difference resulting in superior accuracy.

“Scratching” has resulted an extremely low F-measure. There are only 47
frames of “scratching” in the data. The recall cannot be good simply because of
the shortage of the data. The resulted few true positives are further overwhelmed
by vast amount of false positives, yielding the poor precision. This can explain
the remarkably poor F-measure.

From Tables 5, 6, 7, 8, 9 and 10, we can see the following trends.

– Acurracy for Shoko is poorer than for other dogs. Because she was gentle, we
were unable to gather enough data from her.

– Behaviors such as drinking, eating, laying and running yield better F-measures
than other activities for most dogs, with a few exceptions for Shoko.

– Behaviors such as shaking, sniffing, sitting, walking and up-stairs have large
inter-dog variances for their F-measures.

– As we have already seen, F-measures for scratching are poor for all the dogs.
– Although F-measures for jumping are not particularly high, their inter-dog

variance is small with an exception of one from Shoko.

Table 5. Precision, recall and F-measure at ED, DTW distance and DTW-D distance
of Yuzu.

Table 6. Precision, recall and F-measure at ED, DTW distance and DTW-D distance
of Gummi.
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Table 7. Precision, recall and F-measure at ED, DTW distance and DTW-D distance
of cool.

Table 8. Precision, recall and F-measure at ED, DTW distance and DTW-D distance
of Oreo.

Table 9. Precision, recall and F-measure at ED, DTW distance and DTW-D distance
of Orfeu.

Table 10. Precision, Recall and F-measure at ED, DTW Distance and DTW-D Dis-
tance of Shoko.
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Table 11. Precision, recall and F-measure at the existing study.

PCA-based Precision Recall F-measure

Unspecified 0.2952 0.3346 0.3137

Walking 0.1232 0.1574 0.1382

Eating 0.3384 0.2793 0.3060

Sitting 0.1740 0.2351 0.2000

Laying 0.3100 0.1614 0.2123

Sniffing 0.0244 0.0345 0.0286

Running 0.0208 0.0270 0.0235

Jumping 0.0423 0.0600 0.0496

Drinking 0.1429 0.0244 0.0417

Shaking 0.0000 0.0000 0.0000

Scratching 0.0000 0.0000 0.0000

Comparison with the Existing Approach. Table 11 show accuracies of the
existing approach obtained through the experiments using data of Yuzu and
Oreo. Comparing this with Tables 4, 5 and 8, it can be said that our approach has
resulted higher F-measures than the existing approach. This could be explained
by a theory that the amount of data might be too small to perform the statistical
feature extraction. We also think that valuable information of the data could
have been lost by the interpolation used in the existing approach.

6 Evaluations Based on Real-World Use Cases

6.1 Possible Scenarios of Our Approach

We have carried out three experiments. They are corresponding to possible usage
scenarios of the virtual dog monitoring service powered by our approach.

1. The service is available for deployment immediately after the purchase by the
owner. In this case, the system uses only manufacturer-supplied data as the
training data.

2. The service is available for deployment after measurement of activities of the
target dog. In this case, the system uses the private data along with the
manufacturer-supplied data as the training data.

3. The service is available for deployment after the owner select the breed of the
target dog. In this case, the system uses some of the manufacturer-supplied
training data, which came from the same breed of the target dog.

6.2 Evaluation for Scenario 1

We perform the experiment corresponding to the scenario 1.
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In this case let us see how the recognition accuracy is affected by the amount
of data. In order to do so we calculate the average F-measure for each of these
conditions, where data of 1, 2, 3, 4 or 5 dogs are used. Figure 14 shows the results
obtained from each method. DTW performs best, then Euclidean Distance, and
DTW-D performs worst. Figure 15 is F-measures for each activity. The perfor-
mance is poor for “sniffing”, “scratching”, “drinking” and “up-stairs” with all
methods. Furthermore, DTW-D exhibits the extremely poor result for “laying”.

Fig. 14. Data amount vs. average F-measure: scenario 1.

Although we believe this is not important in real use cases, DTW-D’s poor
performance for “laying” can be explained as the following. In Fig. 16, we are
comparing two data against each other, where the data contain little movement,
as in the case of “laying”. The vertical axis represents the value of the acceler-
ation. For such cases the DTW almost equals the Euclidean Distance, meaning
that DTW-D almost equals 1 for true cases. DTW-Ds maximum is 1. Thus, this
has resulted the wrong classification.

6.3 Scenario 2

We perform the experiment corresponding to the scenario 2.
We use data from the target dog along with ones from other dogs. In the

following experiment, the data from the target dog are cross-validated, meaning
that the training data do not include test data. In this case let us see how the
recognition accuracy is affected by the amount of data from other dogs. In order
to do so we calculate the average F-measure for each of these conditions, where
data of 0, 1, 2, 3, 4 or 5 other dogs are used. Figure 17 shows the results obtained
from each method. DTW-D performs best, then DTW, and Euclidean Distance
performs worst. Interestingly, as opposed to the scenario 1, more data implies
lower F-measures. Figure 18 is F-measures for each activity. DTW-D performs
uniformly well.

We explain why the F-measure of “laying” has been improved from scenario
1. The vertical axis of Fig. 19 represents the value of the acceleration. Using the
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Fig. 15. F-measure of each activity in scenario 1.

Fig. 16. F-measure of each activity in scenario 1.

Fig. 17. Data amount vs. average F-measure: scenario 2.

private data, the DTW for true laying is sufficiently smaller than the Euclidean
Distance, typically being 0. Therefore, the DTW-D for true laying is also smaller,
yielding the better result.

6.4 Evaluation for Scenario 3

In this scenario the owner is allowed to choose a breed to select data to be
used for activity recognition. Data from the target dog are not used. In this
case let us see how the recognition accuracy is affected by choosing the right or
wrong breed. In order to do so we calculate the average F-measure for each of
these conditions, where data of two dogs of the same breed are used, and where
data of three dogs of the different breed are used. Figure 20 is the result for
the DTW-D. Although choosing the right breed has resulted the slightly better
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Fig. 18. F-measure of each activity in scenario 2.

Fig. 19. F-measure of each activity in scenario 2.

Fig. 20. Evaluation of scenario 3 in DTW-D.

F-measure, there are no statistically significant differences between the two. This
is an interesting finding. Euclidean distance and the DTW give the similar trend.

7 Conclusion and Future Works

7.1 Conclusion

As seen in the emergence of commercial services that recognize simple behaviors
of the dogs and to record them as life log, the desire to record the behavior of
the dog has been increasing. However, the activity recognition ability of the
services is limited and the need to record more detailed actions will arise in the
future. We have investigated the needs and analyzed what kind of actions of
the dog should be recognized by a pet monitoring system. As a result, we have
found that there are three aspects of the demand for pet activity monitoring,
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namely, short- and long-term healthcare and problematic behavior. The action
that the owners wanted to know the most was “vomiting”. Furthermore, we
have found that there are approximately 70 % of the owners who would like to
monitor “jumping”, whose recognition accuracy was low in the existing study
[5]. We observed that the reason behind low recognition accuracy of “jumping”
was that they used statistical technique in the study. In addition, in our data
set, our approach has higher F-measure than the existing approach. Therefore,
we focused on the waveform of time-series data. We applied DTW-D, which is a
method to measure the similarity of the waveform, to activity recognition in dogs
for the first time. As a result, recognition accuracy for “jumping” is particularly
improved as compared to the previous study.

It can be said that it is difficult for a statistical method to differentiate an
action which appears only in a part of a frame, such as jumping. On the other
hand, methods that calculate the similarity of waveforms such as DTW perform
well for the actions and result better recognition accuracy. “Vomiting” which is
the most desired action to be monitored, is also a brief action. We are optimistic
to detect it better with DTW-D.

We have evaluated our method in possible real-world settings. The evaluation
has revealed the following findings potentially valuable for practical uses. First,
as a similarity measure, DTW-D generally outperforms DTW and Euclidean
Distance. Second, in order to achieve high F-measure, data from the target dog
are required. Third, when using data from other dogs only, the more training
data of other dogs means the higher F-measure. On the other hand, when using
data from other dogs along with one from the target dog, the more training data
of other dogs means the lower F-measure. When using data from other dogs only,
aligning the breed from which the data were taken with the target dog, does not
help, if it means the decrease of the data amount. Data amount matters more
than breed.

7.2 Future Work

Measurement of Heart Rate and Respiratory Rate at Rest. By measur-
ing the respiratory rate and heart rate at rest, it is possible to detect the heart
or lungs diseases at early stages. It also makes it possible for dogs to receive the
appropriate treatment by a veterinarian. For human beings, there is a study by
Poh et al. [10]. However, because this study measures the transition of the reflec-
tion of light in the skin, application of this method to dogs with lots of hair is
difficult. Therefore, we think that the measurement of heart rate by acceleration
sensor is effective.

Pet Location Monitoring in a Room. Whether the behavior becomes prob-
lematic or not depends on the place where the pet is kept. If the detailed position
of the dog in the room was available, it would further enhance the usefulness of
the activity recognition. The research of Paasovaara et al. [8] could be a hint.
Their study proposed the concept of human-dog interaction with social media.
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They monitored the reaction of the user with a mock-up system to evaluate the
concept. They planned to use a RFID device for indoor position detection.

Improvement of Recognition Accuracy. We cannot say that our approach
has been sufficiently validated by experiments shown in this paper, both in terms
of the number of individual dogs and the variety of breeds. Ultimately we would
like to have higher F-measures for any unknown dogs. However, as the first step,
we will carry out an experiment using many dogs of the same breed and do cross
validation between individuals to verify the robustness of the approach among
the same breed.

Further Inspection of the Validity of Our Approach. The validation of
this paper, it is not sufficient to breeds, number of dogs of both. The ultimate
goal is to be higher F-measure for any unknown dogs. However, as the most
recent goal is carried out cross-validation among the same breed, whereby we
want to verify the robustness among the same breed.
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Abstract. One of the problems of real-life production scheduling is
dynamics of manufacturing environments with new production demands
coming and breaking machines during the schedule execution. Simple
rescheduling from scratch in response to unexpected events may require
excessive computation time. Moreover, the recovered schedule may devi-
ate prohibitively from the ongoing schedule. This paper studies two meth-
ods how to modify a schedule in response to a machine breakdown: right-
shift of affected activities and simple temporal network recovery. The
importance is put on the speed of the rescheduling procedures as well as
on the minimum deviation from the original schedule. In addition, this
paper models the problem as a Mixed Integer Program and compares
the proposed algorithms to the model using the mosek optimizer. The
scheduling model is motivated by the FlowOpt project, which is based
on Temporal Networks with Alternatives and supports simple temporal
constraints between the activities.

Keywords: Schedule updates · Rescheduling · Predictive-reactive
scheduling · Constraint satisfaction · Resource failure

1 Introduction

Scheduling is a decision-making process of which the aim is to allocate limited
resources to activities so as to optimize certain objectives. In a manufacturing
environment, developing a detailed schedule of the activities to be performed
helps maintain efficiency and control of operations.

In the real world, however, manufacturing systems face uncertainty due to
unexpected events occurring on the shop floor. Machines break down, operations
take longer than anticipated, personnel do not perform as expected, urgent orders
arrive, others are cancelled, etc. These disturbances render the ongoing schedule
infeasible. In such case, a simple approach is to collect the data from the shop
floor when the disruption occurs and to generate a new schedule from scratch.
Gathering the information and total rescheduling involve excessive amount of
time which may lead to failure of the scheduling mechanism and thus have far-
reaching consequences.
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For these reasons, reactive scheduling, which may be understood as the con-
tinuous correction of precomputed predictive schedules, is becoming more and
more important. On the one hand, reactive scheduling has certain things in
common with some predictive scheduling approaches, such as iterative improve-
ment of some initial schedule. On the other hand, the major difference between
reactive and predictive scheduling is the on-line nature and associated real-time
execution requirements. The schedule update must be accomplished before the
running schedule becomes invalid, and this time window may be very small in a
complex manufacturing environment.

In this work we take the scheduling model from the FlowOpt project [1].
Simply said, a schedule consists of activities, resources, and constraints. Activ-
ities require resources to process them, and all resources may perform at most
one activity at a time. Possible positions of activities in time are restricted by
simple temporal constraints.

The aim of this work is to propose a technique to recover a schedule from
machine breakdown. The intention is to find a feasible schedule as similar to
the original one as possible, and as fast as possible. The paper proposes two
methods. The Right Shift Affected algorithm reallocates activities from the failed
resource to available resources and then it keeps repairing violated constraints
until the feasible schedule is obtained. The STN-recovery algorithm retracts
a certain subset of activities from resources and then it allocates one activity
after another in suitable order in such a way that no constraints are violated.
The major innovation is support for simple temporal constraints [2] rather than
assuming precedence constraints only. Further, we propose how the problem may
be modelled as a Mixed Integer Program and solve the model using the mosek
optimizer [3].

We first survey briefly the closely related works on which our approaches are
based. Section 3 then explains the problem tackled in this work. The suggested
methods are described in Sects. 4, 5, and 6. The experimental results are given
in Sect. 7, and the final part points out possible future work.

2 Related Works

The field of rescheduling (predictive-reactive scheduling) has been addressed in
a number of works, as surveyed for instance in [4–6]. However, the algorithms
discussed in the scheduling literature deal with scheduling problems that do not
consider temporal constraints (minimal and maximal time lags) but usually only
precedences. To the best of our knowledge, there is no algorithm that could be
straightforwardly used for the problem with simple temporal constraints studied
in this paper. Hence, we suggest exploiting and integrating some known tech-
niques to tackle this type of problem.

The fundamental inspiration comes from heuristic-based approaches, which
do not guarantee to find an optimal solution, but respond in a short time. The
simplest schedule repair technique is the right shift rescheduling [7]. This tech-
nique shifts the operations globally to the right on the time axis in order to cope
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with disruptions. When it arises from machine breakdown, the method intro-
duces gaps in the schedule, during which the machines are idle. It is obvious
that this approach results in schedules of bad quality, and can be used only for
environments involving minor disruptions.

The shortcomings of total rescheduling and right shift rescheduling gave rise
to another approach: affected operation rescheduling, also referred to as partial
schedule repair [8]. The idea of this algorithm is to reschedule only the opera-
tions directly and indirectly affected by the disruption in order to minimize the
deviation from the initial schedule.

The Repair-DTP algorithm proposed in [9] tackles a problem very similar to
ours, however, it is designed to correct violated constraints in manually edited
schedules. The model involves precedence constraints and synchronization con-
straints, but excludes minimum and maximum time lags. Nonetheless, in order
to reduce searching space, the Repair-DTP algorithm employs Simple Temporal
Networks (STN) [2] and Incremental Full Path Consistency (IFPC) algorithm
[10], which incrementally maintains the All Pairs Shortest Path (APSP) prop-
erty. If a feasible correction exists, the algorithm tries to find the most similar
schedule to the initial one through only shifting activities in time. Since the
Repair-DTP algorithm does not try changes in resource selection, it cannot be
used to deal with machine failure. Moreover, the main shortcoming of the algo-
rithm is searching through disjunctions, introduced by hierarchical nature of the
model and by resource unarity. This leads to excessive (exponentially growing)
amount of temporal networks that are inspected, which requires unacceptable
amount of time.

In the methods proposed further, apart from STN and IFPC algorithm, some
widely used search techniques from the field of Constraint Satisfaction [11] are
employed, namely Conflict-directed Backjumping with Backmarking [12].

3 Problem Definition

3.1 Scheduling Problem

Scheduling problem P is a triplet of three sets: Activities, Constraints, and
Resources.

– Activities = {all activities in P}
– Constraints = {all temporal constraints in P}
– Resources = {all available resources in P}

Each activity A is specified by its start time Start(A) and end time End(A),
which we will look for, and fixed duration Duration(A), which is part of the
problem specification. All these numbers are nonnegative integers. Since we do
not allow preemptions (interruptibility of activities), Start(A)+Duration(A) =
End(A) holds.
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Temporal Constraints. Constraints determine mutual position in time of two
distinct activities. Constraint C ∈ Constraints is a triplet (Ai, Aj , w), where
Ai, Aj ∈ Activities, w ∈ Z, and the semantics is following.

Start(Aj) − Start(Ai) ≤ w (1)

Now, some terminology from the graph theory deserves to be clarified in
terms of the scheduling model. Activities Ai and Aj are called adjacent if there
exists a constraint (Ai, Aj , w) or (Aj , Ai, w) for any w ∈ Z.

Two activities Ai and Aj are connected if there exists a sequence of activities
Ai, Ai+1, ..., Aj−1, Aj such that Ai and Ai+1 are adjacent, Ai+1 and Ai+2 are
adjacent, ..., Aj−1 and Aj are adjacent. A connected component is a maximal
(in terms of inclusion) subset of activities such that all activities from the subset
are connected. Each activity as well as each constraint belongs to exactly one
connected component.

Resource Constraints. Let A ∈ Activities, then the set of resources that
may process activity A is denoted Resources(A). The set Resources(A) is often
referred to as a resource group.

Each activity needs to be allocated to exactly one resource from its resource
group. Let A ∈ Activities, then a resource R ∈ Resources(A) is selected if
resource R is scheduled to process activity A, which we denote Selected
Resource(A) = R.

Each activity must have a selected resource to make a schedule feasible.
Formally:

∀A ∈ Activities : SelectedResource(A) �= null

All resources in a schedule are unary, which means that they cannot execute
more activities simultaneously. Therefore, in a feasible schedule for all activities
Ai �= Aj the following holds.

SelectedResource(Ai) = SelectedResource(Aj)
⇒ End(Ai) ≤ Start(Aj) ∨ End(Aj) ≤ Start(Ai) (2)

A Special Case. Real-life scheduling problems are usually designed in such a
way that there are subsets of resources that share certain capabilities and which
then constitute resource groups of activities. This observation may make some
models easier to solve.

The resource groups of a scheduling problem are equivalent if one and only
one of the following conditions holds for any two resource groups Resources(A1)
and Resources(A2) of two distinct activities A1 and A2.

– Resources(A1) = Resources(A2).
– Resources(A1) ∩ Resources(A2) = ∅.

If the resource groups are not equivalent, they are called arbitrary.
Motivated by the nature of real-life scheduling problems and their need for

speed, the proposed algorithms anticipate that the resource groups are
equivalent.
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3.2 Schedule

A schedule S (sometimes referred to as a resulting schedule or a solution) is
acquired by allocating activities in time and on resources. Allocation of activities
in time means assigning particular values to the variables Start(A) for each
A ∈ Activities. Allocation of activities on resources means selecting a particular
resource (SelectedResource(A)) from the resource group (Resources(A)) of each
activity A ∈ Activities.

To make a schedule feasible, the allocation must be conducted in such a way
that all the temporal constraints (1) as well as all the resource constraints (2)
in the model are satisfied.

3.3 Rescheduling Problem

The problem we generally deal with is that we are given a particular instance of
the scheduling problem along with a feasible schedule, and also with a change
in the problem specification. The aim is to find another schedule that is feasible
in terms of the new problem definition. The feasible schedule we are given is
referred to as an original schedule or an ongoing schedule.

The machine breakdown, which is also referred to as a machine or resource
failure, may happen in the manufacturing system at any point in time, say
tf , and means that a particular resource cannot be used anymore, i.e., for all
t ≥ tf . This makes further questions arise, e.g., whether the activities that were
being processed at time tf are devastated and thus must be performed from the
beginning, whether their predecessors must be also re-executed if there are only
solutions violating temporal constraints, and many others.

For the sake of simplicity, let us assume that a resource fails at the beginning
of the time horizon (at time point t = 0), i.e., right before the schedule execution
begins. The resource that fails is in what follows also referred to as a forbidden
resource. Formally, let S0 be the schedule to be executed and Rf be the failed
resource; the aim is to find a feasible schedule S1, such that Rf is not used at
any point in time t ≥ 0. S1 is referred to as a recovered schedule. The intention
is to find S1 as fast as possible and, regardless of the initial objectives, the more
similar to S0, the better. For this purpose we need to evaluate the modification
distance.

Let us denote StartS(A) the start time of activity A in schedule S. In what
follows we distinguish the following distance functions.

f1 =
∑

A∈Activities

|StartS1(A) − StartS0(A)|

f2 = |{A ∈ Activities | StartS1(A) �= StartS0(A)}|
f3 = max

A∈Activities
|StartS1(A) − StartS0(A)|.

4 Right Shift Affected

The Right Shift Affected algorithm is a greedy algorithm to tackle the machine
breakdown disruption. For each A ∈ Activities, it is assumed throughout that
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the forbidden resource is deleted from the resource group of activity A, i.e.,
Resources(A) = Resources(A) \ {ForbiddenResource}.

The algorithm is aimed at moving as few activities as possible, i.e., optimizing
the distance function f2. The idea is to reallocate activities from the forbidden
resource and then keep reallocating activities that violate some constraint until
the schedule is feasible.

How to move (reallocate) the activities, how to repair the constraints, and
in what order to pick the activities to repair the constraints is described next.

4.1 Reallocating Activities

Activities are reallocated as follows. Suppose the algorithm wants to repair a
constraint in such a way that an activity A should be reallocated to a time
point t. The natural idea was to reallocate the activity A exactly to the time
point t even if there is no resource available for the required Duration(A). Then,
when a repair function verifies constraints, it would have to verify the resource
constraints too and then repair according to the resource constraint violation.
Unfortunately, there always turned out to be a model for which this method gets
stuck in an infinite loop, regardless of the way the constraints are repaired and
the sequence of activities to be repaired.

Consequently, the algorithm always allocates activity A in such a way that
it does not violate any resource constraint. This is achieved through seeking a
time point t∗ (which is greater or equal to time point t) where activity A can be
allocated without violating the resource constraints. Formally, when the algo-
rithm desires to allocate activity A to time point t, then activity A is allocated
to time point t∗, such that t∗ ≥ t and ∀t′ : t′ ≥ t ∧ t′ < t∗ activity A cannot
be allocated in t′ without overlapping some other activity on any resource from
Resources(A).

Checking Resource Availability. In order to express whether or not a
resource is free at a specified time interval, let us first define Impedimentary
(A,R, t) as the set of activities that preclude activity A from being allocated on
resource R at time t.

Impedimentary(A,R, t) = {A′ | A′ ∈ Activities ∧ R = SelectedResource(A′)
∧(t < End(A′) ≤ t + Duration(A) ∨ t ≤ Start(A′) < t + Duration(A))}

Now we can define a set of resources where activity A can be allocated at
time t as such:

AvailableResources(A, t) = {R | R ∈ Resources(A)
∧ Impedimentary(A,R, t) = ∅}

Another question is which resource the algorithm should select if there are
more resources available. Since the resource groups in the model are expected
to be equivalent, it seems useful to pick the resource on which the activity best
fits in terms of surrounding gaps. Therefore, the following heuristic is used.
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Earliest Succeeding Start Latest Previous End (ESSLPE) Rule. Sup-
pose activity A is about to be allocated at time t. The algorithm picks the
resource with the earliest (closest) occupied time after the time point t+Duration
(A) (= earliest succeeding start). When there are more resources with the same
earliest succeeding start, then the algorithm picks the resource with the latest
(closest) occupied time before the time point t (= latest previous end) with ties
breaking arbitrarily. Consequently, a resource that has at least some activity to
process is always preferred to an empty resource.

Reallocation. The procedure ReallocateActivity (see Algorithm 1) obtains
two parameters: an activity to allocate (A) and a time point where it is desired
to allocate the activity (t). Seeking for an available resource starts at time t,
but the activity is ultimately allocated to the time point t∗, where an available
resource is found.

Algorithm 1. Reallocating an activity.

function ReallocateActivity(Activity A, TimePoint t)
SelectedResource(A) ← null
Start(A) ← null
t∗ ← mint′≥t{t′ | AvailableResources(A, t′) �= ∅}
Start(A) ← t∗

SelectedResource(A) ← by ESSLPE rule from AvailableResources(A, t∗)
end function

4.2 Constraint Repair

The violated constraints are repaired as follows. When a temporal constraint
between activities A1 and A2 of weight w is violated, it means that the distance
between Start(A1) and Start(A2) is greater than allowed. Then the algorithm
seeks for possible allocation of A1 from the minimal time point that satisfies the
constraint rightwards.

Here is where the title of the algorithm comes from. It repairs temporal con-
straints via moving activities to the right, which, of course, may cause violation of
other temporal constraints. An important property is that when the algorithm
picks an activity to be repaired, then it iterates over all temporal constraints
associated with the activity being repaired until the activity does not violate
any associated constraint.

Regardless of the order, in which the activities are selected to be repaired, the
entire RightShiftAffected algorithm works as follows (see Algorithm 2). First,
it goes through all activities in the model and checks whether the activity uses
the forbidden resource. In the positive case, the activity is reallocated through
the ReallocateActivity procedure (seeking for an available resource starts
at the original start time of the activity), and the activity is added to the set
affected. Now, none of the activities uses the forbidden resource and the set
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affected contains activities that have been reallocated and therefore must be
checked for temporal constraint violation.

Next, the algorithm takes an activity from the set affected and proceeds to
repair all violated temporal constraints associated with the activity in question.
It repairs the constraints, as described, through moving activities to the right,
so that if another activity is moved, it is added into the set affected because it
must be then checked for constraint violation. Recall that ReallocateActivity
procedure always allocates an activity such that it does not violate any resource
constraint, so that only temporal constraints are checked here. If the activity
has been successfully healed, which means that the activity does not violate any
constraint, the algorithm proceeds to another one from affected.

As far as the order of taking activities from affected is concerned, the best
heuristic with respect to all conceivable performance measures turned out to be
picking the rightmost activity, i.e., the activity with the maximum Start(A).
The explanation is that shifting the rightmost activities rightwards makes free

Algorithm 2. Right Shift Affected.

function RightShiftAffected

affected ← ∅
for all A ∈ Activities do

if SelectedResource(A) = ForbiddenResource then
ReallocateActivity(A, Start(A))
affected ← affected ∪ {A}

end if
end for
while affected �= ∅ do

A ← PopFrom(affected)
while (A1, A2, w) ∈ V iolatedConstraints(A) do

ReallocateActivity(A1, Start(A2) − w)
if A1 �= A then

affected ← affected ∪ {A1}
end if

end while
end while

end function

space for shifting the activities allocated more on the left, which would otherwise
have to creep over one another.

Termination. The algorithm successfully found a feasible schedule recovery
for all input models that were assuredly solvable (which is guaranteed when
there are more resources in each resource group than the number of activities in
one connected component). However, the question whether the algorithm always
ends and finds the solution, provided the schedule is recoverable, is still open.
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If there is no feasible schedule recovery, the algorithm keeps repairing and
never terminates. This is obviously the main shortcoming of the algorithm. One
possible way to detect unrecoverability of the schedule is by passing and checking
a time limit. Another way is to check where an activity is being allocated, and
if the activity is allocated at a time point exceeding a certain threshold, it may
be considered as an unsuccessful finding of a schedule.

5 STN-recovery

The STN-recovery is a bit more sophisticated algorithm to tackle the machine
breakdown. This algorithm anticipates that moving a large number of activities
by small time is preferable to moving activities a lot in time. The basic idea is to
deallocate some set of already scheduled activities and then allocate them back
again. This is what is now meant by reallocation.

The point of the algorithm is to allocate connected components one after
another through Conflict-directed Backjumping. The allocation of an activity is
carried out such that the start time of an activity is continuously incremented
until an available resource at that time is found, or until the maximal possible
value of the start time (which is determined with respect to the start times of
already allocated activities) is exceeded. In the former case the algorithm pro-
ceeds to allocate the next activity, in the latter case the algorithm goes back
to reallocate some previous activity. Since this allocation process might involve
excessive computational burden, it is useful to prune the search space based on
the fact that a resource failure leads only to deterioration of the schedule in the
original optimization objective. Moreover, the group of resources where the bro-
ken down resource belongs is now likely to make a bottleneck. This assumption
is used in such a way that the activities are reallocated from the broken down
resource to available resources and then the activities are shifted so as they do
not overlap each another – thus the minimal potential start times for allocation
are obtained – and then the reallocation process can begin.

Firstly, the skeleton of the algorithm is given, and next, its particular steps
are described in more details.

Skeleton of STN-recovery

The STN (including the global predecessor) with the APSP property is supposed
to have already been computed from the temporal constraints in the model; the
resource constraints are not involved in the STN. Recall that the APSP property
of the STN provides us the two-dimensional array w, of which the values say
that Start(Aj) − Start(Ai) ≤ w[i, j], where Ai, Aj ∈ Activities.

STN-recovery itself consists of the following six steps.

1. Find activities allocated to the forbidden resource and change their resource
selection from the forbidden resource to an available resource, picking the
resource with the lowest usage, while keeping the start times of the activities
unchanged. Now some activities allocated on the same resource may overlap.
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2. For each resource (to which some activity has been added in step 1) shift the
activities that overlap (to the right) so as they do not overlap, and add them
into the set affected. Include in affected also activities that were not actually
shifted but are allocated on the right of those shifted.

3. For the sake of pruning the search space of the forthcoming allocation search,
add STN constraints between the global predecessor and each activity in
affected so as to enforce that they can only start at the time they are currently
allocated or later. Update the STN via Incremental Full Path Consistency [10]
to preserve the APSP property.

4. For each activity A in affected, acquire the connected component the activity
A belongs to, and for all activities in all acquired connected components com-
pute the values from which the allocation of the activity in the last step will
begin (= MinStart), which is the maximum of (i) its current start time and
(ii) its minimal distance from the global predecessor resulting from the STN.

5. Deallocate (retract from resources) all activities in all connected components
acquired in step 4.

6. Take the leftmost (according to the MinStart values) non-allocated com-
ponent C and allocate all activities in C starting with its leftmost activ-
ity using Conflict-directed Backjumping with Backmarking. The activities
within a connected component are allocated in the increasing order of their
MinStart values. Repeat this step until all connected components are
allocated.

The skeleton of the algorithm is depicted in Algorithm3.

Algorithm 3. STN-recovery.

Require: The STN with the APSP property
function STN-recovery

for all A ∈ Activities do
if SelectedResource(A) = ForbiddenResource then

SwapForbiddenSelection(A)
end if

end for
affected ← ShiftOnResources

for all Ai ∈ affected do
IFPC(i, 0, −Start(Ai))

end for
components ← AcquireComponents(affected)
DeallocateComponents(components)
while components �= ∅ do

C ← GetLeftmostComponent(components)
AllocateComponent(C)
components ← components \ {C}

end while
end function
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5.1 Swapping Resource Selections

In the first step, the algorithm goes through all activities in the model and checks
whether the activity is scheduled to be processed on the forbidden resource. In
the positive case, the function SwapForbiddenSelection(Activity A) changes
resource selection of activity A to some allowed resource.

It is not important which resource is selected because the activity is most
likely going to be reallocated in the later steps. Nevertheless, the algorithm
picks the resource with the lowest usage, which is the sum of the durations of
the activities that are allocated to the resource in question.

Formally, let us first denote the set of activities that use resource R as such.

ResourceActivities(R) = {A ∈ Activities | SelectedResource(A) = R}

The usage of resource R can be written as follows.

Usage(R) =
∑

A∈ResourceActivities(R)

Duration(A)

Then picking the resource with the lowest usage means this:

SelectedResource(A) = arg min
R∈Resources(A)

(Usage(R))

At this time being, some activities may violate resource constraints.

5.2 Shifting Activities

In the second step, the algorithm repairs the violated resource constraints. It
visits the resources one after another and shifts activities that overlap to the
right. Since the original schedule is supposed to have been feasible, only the
resources where some activities were added should be revised.

Procedure ShiftOnResources sweeps over the activities and conducts the
shifting as follows. If activity A0 overlaps activity A1 on a resource, the activity
with the later start time, say A1, is set its start time to the end time of A0. This
shift may cause activity A1 to overlap next activity, which is then set to start
at the end of activity A1 and so forth. The order of activities on the resource is
preserved. All activities from the first activity that has been shifted up to the
last activity (in terms of start times), even if some have not been shifted, are
added to the set affected.

Formally, let begin(R) be the start time of the first (earliest) activity that
overlaps with another activity on resource R.

begin(R) ← min
A∈ResourceActivities(R)

{Start(A) | ∃B ∈ ResourceActivities(R),

B �= A,Start(A) ≤ Start(B) < End(A)}
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Further, let us denote Ri the i-th earliest activity allocated on resource R,
which means that the following holds.

1 ≤ i < j ≤ |ResourceActivities(R)| ⇒ Start(Ri) ≤ Start(Rj)

The activities on resource R are consecutively (from the leftmost activity)
shifted such that:

Start(Ri) ← max{Start(Ri), End(Ri−1)}

Finally, the activities are added to the set affected as follows.

affected ← {A ∈ Activities | Start(A) > begin(SelectedResource(A))}

This shifting may violate a large number of temporal constraints. The activ-
ities in the set affected are going to be reallocated in the forthcoming steps. The
reason why the set affected includes the activities that have not been shifted, but
are allocated on the right of the shifted activities, is, that they would otherwise
preclude other activities from allocation.

5.3 Updating STN

In this step, the constraints determining the minimal distance of an activity
from the global predecessor are added to the STN so as to modify the MinStart
values of activities to be reallocated, according to the start time values set in the
previous shifting step. The IFPC algorithm is used because modifying the min-
imal start time of an activity affects the minimal start times of other activities
from the same connected component.

Precisely, for each Ai ∈ affected, add to the STN via IFPC algorithm the
constraint (Ai, A0,−Start(Ai)), where A0 denotes the global predecessor.

The point of adding this constraints is to reasonably maintain similarity to
the original schedule, along with adequate pruning of the search space of the
upcoming reallocation process.

5.4 Components Acquirement

There is still a question which and in what order the activities should be reallo-
cated. Because shifting one activity is likely to violate temporal constraints ema-
nating from or to the activity, it is necessary to reallocate the entire connected
component. Therefore, procedure AcquireComponents(affected) acquires the
connected component that each activity A ∈ affected belongs to, and the acquired
connected component is added to the set components. After this step,
components = {C1, ...Ck}, where Cz for z = 1, ..., k is a connected component.

In addition, for each activity, the MinStart value, which is the maximum
of the current start time and of the minimal potential start time following from
the STN (computed via IFPC in the previous step), is computed. Precisely, for
each Cz ∈ components and for each Ai ∈ Cz, assign:
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MinStart(Ai) = max{Start(Ai),−w[i, 0]}
As to the order for upcoming allocation, it is suitable to allocate activities in

the increasing order of the MinStart values. The activity in a connected compo-
nent with the lowest MinStart value is referred to as the leftmost activity. The
leftmost connected component is the connected component of which the leftmost
activity has the lowest MinStart value among all connected components. The
algorithm always selects for allocation the leftmost component that has not yet
been allocated.

5.5 Deallocation

Since the best way for allocating activities turned out to be the way without vio-
lating resource constraints, it is necessary to deallocate all activities in the con-
nected components acquired in the previous step. Otherwise they would preclude
other activities from allocation. Procedure DeallocateComponent(components)
deallocates activities from each connected component C ∈ components, which
means that for each A ∈ C: Start(A) = null and SelectedResource(A) = null.
After this (fifth) step, all activities from components are deallocated.

5.6 Allocation

Allocating an activity again means searching for the time point when there is an
available resource for the required duration. The resources are selected according
to the ESSLPE rule described in 4.1.

In order to allocate a connected component, Conflict-directed Backjumping
with Backmarking is used (see Algorithm 4). When an activity cannot be suc-
cessfully allocated, it is necessary to jump back to the activity that is causing
the conflict. For keeping the information which activity is conflicting with the
activity being allocated, the conflict set for each activity is remembered. For this
purpose, cs[i] is a set of activities conflicting with Ai.

The activities are going to be allocated in the increasing order of their indexes
that are determined according to their MinStart values. Thus we can anticipate
that the connected component to be allocated, which is passed as a parameter,
consists of activities A1, ..., An. When two activities are compared, i.e., Aj < Ai,
it means that their indexes are compared (j < i).

There are two possible causes why an activity cannot be allocated: a temporal
conflict and a resource conflict.

Temporal Conflicts. Temporal conflicts are handled in procedure Update
Bounds (Activity A) (see Algorithm 5), which is called before activity Ai is
going to be allocated (line 6). In this procedure, the bounds of possible time
allocation for activity Ai are computed according to the STN and start times of
already allocated activities.

The lower bound of an activity is initially set to the MinStart value acquired
in the previous steps. Then the procedure goes through the already allocated
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Algorithm 4. Allocating entire connected component.

1: function AllocateComponent(Activities A1, ..., An)
2: i ← 1
3: while i ≤ n do
4: newV al ← newV als[i] � initially 0
5: if newV al = 0 then
6: UpdateBounds(Ai)
7: newV al ← LowerBound(Ai)
8: end if
9: while SelectedResource(Ai) = null & newV al ≤ UpperBound(Ai) do

10: if
newV al ∈ Keys(Mark[i]) & max(Mark[i][newV al]) < BackTo[i][newV al] then

11: cs[i] ← cs[i] ∪ Mark[i][newV al]
12: newV al ← newV al + 1
13: continue
14: end if
15: BackTo[i][newV al] ← Ai

16: newConflicts ← ∅
17: for all R ∈ Resources(Ai) do
18:

newConflicts ← newConflicts ∪ Min∗(Impedimentary(Ai, R, newV al))
19: end for
20: if AvailableResources(Ai, newV al) �= ∅ then
21: SelectedResource(Ai) ← by ESSLPE rule from

AvailableResources(Ai, newV al)
22: Start(Ai) ← newV al
23: � newV al can be tried again
24: Keys(Mark[i]) ← Keys(Mark[i]) \ {newV al}
25: else
26: Keys(Mark[i]) ← Keys(Mark[i]) ∪ {newV al}
27: Mark[i][newV al] ← newConflicts
28: end if
29: cs[i] ← cs[i] ∪ newConflicts
30: newV al ← newV al + 1
31: end while
32: if SelectedResource(Ai) = null then
33: Aj ← max(cs[i])
34: cs[j] ← cs[j] ∪ cs[i] \ {Aj}
35: for k ← j + 1 to n do
36: for all key ∈ Keys(BackTo[k]) do
37: BackTo[k][key] ← min(BackTo[k][key], Aj)
38: end for
39: end for
40: while i > j do � jump back to j
41: newV als[i] ← 0
42: i ← i − 1
43: SelectedResource(Ai) ← null
44: Start(Ai) ← null
45: end while
46: else
47: newV als[i] ← newV al
48: i ← i + 1
49: end if
50: end while
51: end function
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activities within the connected component in the same order as they have been
allocated and updates bounds of Ai. Precisely, for each k < i, if Start(Ak) +
“minimal distance from Start(Ak) to Start(Ai)” is greater than the current
lower bound, then increase the lower bound, and add Ak to the conflict set of
Ai. Similarly, if Start(Ak) + “maximal distance from Start(Ak) to Start(Ai)”
is smaller than the current upper bound, then decrease the upper bound, and
add Ak to the conflict set of Ai. The reason why activity Ak is added to the
conflict set is that changing the start time of Ak creates (straight away or after
a number of steps) some new possible start time for Ai.

Resource Conflicts. As far as resource conflicts are concerned, recall that
Impedimentary(Ai, R, t), formally introduced in Sect. 4.1, is a set of activities
that preclude activity Ai from selecting resource R at time t. To make it pos-
sible to allocate activity Ai on resource R at time t, all activities from the set
Impedimentary(Ai, R, t) would have to be reallocated. Hence, among the activ-
ities in Impedimentary(Ai, R, t), the activity that has been the least recently
allocated (from the connected component being allocated) is added to the con-
flict set of activity Ai. But if there is an activity in Impedimentary(Ai, R, t)
from another connected component, which means it cannot be deallocated, then
no activity is added to the conflict set.

This is exactly what Min∗ does (at line 18). Formally, let C be the connected
component being allocated. If Impedimentary(Ai, R, t) ⊆ C, then:

Min∗(Impedimentary(Ai, R, t)) = arg min
Ak∈Impedimentary(Ai,R,t)

{k}

Otherwise Min∗(Impedimentary(Ai, R, t)) = ∅.
For illustration, when the algorithm is allocating activity A7 and there are

activities A2, A4, and A6 inhibiting on a resource, then activity A2 is added to the
conflict set. If there is an activity from different, already allocated component,
then no activity is added to the conflict set.

Further, recall AvailableResources(Ai, t) is a subset of available resources
from which the resource according to the ESSLPE rule is selected. Regardless
of the result of the search for an available resource, the conflicting activities are
merged into the conflict set of the activity being allocated (line 29).

Backjump. When the algorithm is about to conduct a backjump (starting at
line 32), which happens when all possible start times of Ai have been tried, the
most recently allocated activity from the conflict set of Ai is found (line 33).
Let us denote this activity as Aj . Next, before deallocating activities that are
jumped over, the activities from the conflict set of Ai except activity Aj are
added to the conflict set of Aj .

Backmarking. The backmarking technique is implemented as follows. Firstly,
the time horizon is infinite so that the structures BackTo and Mark cannot be
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Algorithm 5. Updating lower and upper bounds.

function UpdateBounds(Activitiy Ai)
cs[i] ← ∅ � clear conflict set
LowerBound(Ai) ← MinStart(Ai)
UpperBound(Ai) ← ∞
for k ← 1 to i − 1 do

newV alue ← Start(Ak) − w[i, k]
if LowerBound(Ai) < newV alue then

LowerBound(Ai) ← newV alue
cs[i] ← cs[i] ∪ {Ak}

end if
newV alue ← Start(Ak) + w[k, i]
if UpperBound(Ai) > newV alue then

UpperBound(Ai) ← newV alue
cs[i] ← cs[i] ∪ {Ak}

end if
end for

end function

simple two-dimensional arrays but arrays of dictionaries. Precisely, BackTo is
an array of size n, BackTo[i] is a dictionary, where keys are the (attempted)
start times of the activity, and values are activities, i.e., BackTo[i][newV al] is
the lowest-indexed activity whose instantiation has changed since activity Ai

was last tried to be allocated at time newV al.
As to the structure Mark, there is one difference. Notice that when the

algorithm cannot find an available resource for activity Ai at time newV al,
not only one, but a number of activities may be added to the conflict set of
Ai. Consequently Mark[i][newV al] is a set of activities, of which at least one
must be reallocated in order to make activity Ai allocatable at time newV al.
Therefore, when values BackTo and Mark are to be compared, it is firstly
checked, whether there is newV al among the keys of Mark[i], and in the positive
case, max(Mark[i][newV al]) and BackTo[i][newV al] are compared (see line 10).

If max(Mark[i][newV al]) < BackTo[i][newV al], it means that none of the
conflicting activities has been re-instantiated and thus it makes no sense to
look for an available resource. However, before proceeding to the next value of
newV al, it is necessary to merge the conflicting activities to the current conflict
set (line 11) as if the search for an available resource was conducted – this is the
reason why Mark[i][newV al] must store the set of activities (and not just the
most recent activity).

Oppositely, if newV al is not presented among the keys of Mark[i] or max
(Mark[i][newV al]) ≥ BackTo[i][newV al], the algorithm does look for an avail-
able resource. If activity Ai is successfully allocated, the key newV al is removed
from Mark[i] (line 24), otherwise Mark[i][newV al] stores the conflicting activ-
ities (line 27).



Machine Breakdown Recovery in Production Scheduling 201

Termination. Notice that the algorithm does not check for the recoverability of
the disrupted ongoing schedule, which means that if there is no feasible solution,
the procedure AllocateComponent(Component C) never terminates. This can
be solved by giving it a limited time (cut-off limit), or by detecting that the
method got stuck in a loop, which may be proven for example when it tries to
allocate an activity in time greater than the lower bound of makespan (which
may be the sum of the durations of all activities and of all minimal distances
between the activities in the problem).

6 Rescheduling as a Mixed Integer Program

The rescheduling problem can be modelled as a Mixed Integer Programming
(MIP) problem as follows. Let the scheduling problem have n activities and m
resources, the start time of activity i in the original schedule be denoted s̄i and
its duration pi. Then we introduce variables si > 0 (1 ≤ i ≤ n) for new start
times, and binary variables rij , 1 ≤ i ≤ n, 1 ≤ j ≤ m where value 1 means that
activity i is scheduled to resource j and value 0 is used otherwise. If activity
i cannot be processed on resource j, then rij is set to 0. The objectives are
described further because they differ for each of the defined distance functions.

For each temporal constraint (Ai1 , Ai2 , w) the following constraints are added:

si2 − si1 ≤ w

In order to enforce that each resource can perform at most one activity at
any time, the following constraints are used, for all 1 ≤ i1 < i2 ≤ n, 1 ≤ j ≤ m:

si2 + pi2 ≤ sii +bi1,i2,j · M + (1 − ri1,j) · M + (1 − ri2,j) · M
si1 + pi1 ≤ si2 +(1 − bi1,i2,j)· M + (1 − ri1,j) · M + (1 − ri2,j) · M

Note that M is some big enough constant, e.g., the lower bound of makespan,
and bi1,i2,j are binary variables ensuring that activity i1 is either followed or
preceded by activity i2, provided that ri1 = ri2 = 1. Finally, selecting exactly one
resource for each activity is achieved through adding the following constraints,
for all 1 ≤ i ≤ n:

m∑

j=1

rij = 1

In order to avoid absolute values in the objective functions, every start time
si is replaced by s̄i + shri − shli, where shri > 0 are continuous variables for the
time shift of activity i to the right and shli > 0 denotes the shift to the left.

Let us denote the model just described as MIP0. This model corresponds
to rescheduling from scratch. Now, recall that the first five steps of the STN-
recovery algorithm obtain and unschedule a set of activities that are to be allo-
cated in the last (sixth) step, while the other activities remain untouched. Sup-
pose that each activity i that is to remain untouched is fixed so that shri =
shli = 0 and rij = 1 for resource j to which activity i is allocated. Let us refer
to this model as MIP1. The last open question is how to model the objectives.
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Assume the intention is to find a recovered schedule minimizing the total
sum of shifts (distance function f1). Then the objective is the following:

min
n∑

i=1

shri + shli

If the optimization objective is the total number of moved activities (distance
function f2), then the objective is

min
n∑

i=1

ŝhi,

where ŝhi are binary variables indicating that the start time of activity i has
changed. This is modelled using the following constraints for all 1 ≤ i ≤ n:

shri + shli ≤ ŝhi · M
In case of minimizing the biggest time shift (distance function f3) the objec-

tive is minU , where U is a new continuous variable describing the maximal time
shift. Thus these constraints must be added:

shri + shli ≤ U

In the following experiments, the models are referred to as MIP0f1, MIP0
f2, and MIP0f3 (respectively MIP1f1, MIP1f2, and MIP1f3).

7 Experimental Results

The STN-recovery algorithm is designed to move a lot of activities by a small
amount of time, which means that it should not be used when minimizing the
number of shifted activities (objective f2). On the other hand, the algorithm
should perform well in minimizing the biggest shift of an activity (objective f3).
On the contrary, the Right Shift Affected algorithm intents to affect only the
necessary subset of activities, making it better when minimizing the objective
f2. Oppositely, if the alternative resources for the broken-down resource make a
bottleneck, the affected activities (and subsequently all connected components
with them) are moved to the end of the schedule horizon. This is expected to yield
a poor performance in the objective f3, which is unacceptable when the original
schedule objective is related to lateness or tardiness. The distance functions f2
and f3 are expected to grow linearly with the increasing number of activities in
the model for both the algorithms.

To support the above hypotheses we performed experiments with randomly
generated problems composed of 6 resources in each of two resource groups. Each
connected component consists of 5 activities and up to 10 temporal constraints
(some may be redundant). The values of x-axes in the following figures are the
number of connected components in the model. Having more resources in a
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group than the number of activities in a component ensures recoverability from
a resource failure.

To justify the claims from the introduction, the comparison also includes
what we refer to as STN0 that is the sixth step of STN-recovery itself and thus
corresponds to the rescheduling from scratch. The STN-recovery algorithm as
described in Sect. 5 is referred to as STN1.

Further, the MIP models are included in the comparison. The experiments
were conducted using the mosek optimizer [3] with the following settings. If an
optimal solution is not found in 10 s, the engine outputs the first integer feasible
solution found. All the algorithms were running on Intel(R) Core(TM) i7-2600K
CPU @ 3.40 GHz, 3701 Mhz, kernels: 4, logical processors: 8; RAM: 8,00 GB.

Briefly speaking, the experimental results confirmed the hypotheses. The
Right Shift Affected algorithm is better when optimizing the distance function f2
(Fig. 2), but the STN-recovery algorithm is better when optimizing the distance
function f3 (Fig. 3). The function f1 (which is the total sum of shifts) is depicted
in Fig. 1. Since the MIP models terminated only for smaller instances of the
problem, we include one figure with and one figure without the MIP models for
each of the performance measures.
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Fig. 1. Distance function f1 – the total sum of shifts.

The Right Shift Affected algorithm is somewhat faster than STN-recovery
(Fig. 4), however, STN-recovery has the following advantage. The algorithm
always allocates the leftmost connected component that has not been allocated
yet, therefore, when the algorithm is allocating the connected component with
the leftmost activity that has the MinStart value t, the schedule is not going
to be modified before time point t. This allows the system to keep executing an
ongoing schedule even if it has not been completely recovered yet.

The dependencies on the density of constraints showed no tendency. How-
ever, one might wonder how the algorithms perform as the size of connected
components increases. For this reason, we performed experiments with prob-
lems composed of 20 resources in one resource group. Each problem contains 10
connected components, and the number of activities in each component is now
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Fig. 2. Distance function f2 – the number of shifted activities.
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Fig. 3. Distance function f3 – the biggest shift of an activity.
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Fig. 4. Run times for the algorithms in milliseconds.
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Fig. 5. Run times for the algorithms in milliseconds dependent on the number of
activities in one connected component (logarithmic scale).

increasing. This is depicted in Fig. 5. The MIP models are not included in the
figure because they terminated in reasonable time only for the components of
size 4.

The experiments confirm the claims that fixing some activities may help find
more similar schedules faster, which holds for STN-recovery as well as for the
MIP models. We also observed behavior of other levels of pruning the search
space for the MIP models, namely allowing shifting of activities only to the
right and allowing shifting only beyond the MinStart values obtained from the
first five steps of STN-recovery, but the results were even worse than MIP0.
Generally speaking, the MIP models as described in Sect. 6 turned out to be
inapplicable to the type of problems tackled in this paper.

8 Conclusions

This paper proposed two different methods to handle a resource failure, i.e., a
disruption when a resource suddenly cannot be used anymore by any activity,
which may occur during a schedule execution.

The first method takes the activities that were to be processed on a broken
machine, reallocates them, and then it keeps repairing violated constraints until
it gets a feasible schedule. This approach is suitable when it is desired to move
as few activities as possible; however, the question whether the algorithm always
ends is still open. The second method deallocates a subset of activities and then it
allocates them back through Conflict-directed Backjumping with Backmarking.
This approach is useful when the intention is to shift activities by a short time
distance, regardless of the number of moved activities.

The main shortcoming is that if there is no feasible recovery of the ongoing
schedule, neither of the methods is able to quickly and securely report it. In
real-life environments, however, the schedule recoverability from the breakdown
of any particular machine is often known (for instance the minimum required



206 R. Barták and M. Vlk

number of available resources of each resource group may be obvious) or can be
computed before the schedule execution begins.

Both suggested algorithms may be easily adapted to handle the models with
arbitrary resource groups, and also to cope with another disturbance – hot order
arrival [13].

This paper also proposed how the rescheduling problem may be modelled
as a Mixed Integer Programming problem. However, solving the models using
the mosek optimizer turned out to be uncompetitive with the two suggested
algorithms.

Further investigation is needed for determining the conditions under which a
schedule is recoverable. Next, it may be of interest to generalize the algorithms
for models that involve for example interruptibility of activities, various speeds
of resources, setup times of resources or calendars of availabilities of resources.
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9. Skalický, T.: Interactive scheduling and visualisation. Master’s thesis, Charles Uni-
versity in Prague (2011)

10. Planken, L.R.: New algorithms for the simple temporal problem. Ph.D. thesis, TU
Delft, Delft University of Technology (2008)

11. Brailsford, S.C., Potts, C.N., Smith, B.M.: Constraint satisfaction problems: algo-
rithms and applications. Eur. J. Oper. Res. 119, 557–581 (1999)

12. Kondrak, G., Van Beek, P.: A theoretical evaluation of selected backtracking algo-
rithms. Artif. Intell. 89, 365–387 (1997)

13. Vlk, M.: Dynamic scheduling. Master’s thesis, Charles University in Prague (2014)



From Information Assistance to Cognitive
Automation: A Smart Assembly Use Case

Mario Aehnelt1(B) and Sebastian Bader2

1 Fraunhofer IGD, Joachim-Jungius-Str. 11, 18059 Rostock, Germany
mario.aehnelt@igd-r.fraunhofer.de

2 MMIS, University of Rostock, Albert-Einstein-Str. 22, 18059 Rostock, Germany
sebastian.bader@uni-rostock.de

Abstract. Information assistance helps in many application domains
to structure, guide and control human work processes. However, it lacks
a formalisation and automated processing of background knowledge
which vice versa is required to provide ad-hoc assistance. In this paper,
we describe our conceptual and technical work towards this cognitive
automation. We focus here on including contextual background knowl-
edge to raise the worker’s awareness, guide, and monitor assembly activ-
ities. We present cognitive architectures as missing link between highly
sophisticated manufacturing data systems and implicitly available con-
textual knowledge on work procedures and concepts of the work domain.
Our work is illustrated with examples in SWI-Prolog and the Soar cog-
nitive architecture which is part of the Plant@Hand assembly assistance
system.

1 Introduction

Evaluations show that people with a detailed work plan complete their tasks
faster than without it, even if they did not carry out the planning themselves
[12]. This is a key motivation for intelligent systems which assist the worker by
creating work plans autonomously and guide him through single work procedures
aiming to improve both efficiency and effectiveness of his work. Such intelligent
systems will help in manufacturing to ensure a high product quality even when
working with insufficiently qualified personnel. They inform the worker about
current and upcoming tasks, provide him with detailed knowledge on assembly
procedures, or monitor correct work order execution.

Although manufacturing industries already use powerful data management
systems that support the planning, execution and monitoring of production
processes, there is still a lack of methods and technologies which bring intel-
ligent assistance to the shop floor. Basically, it lacks an automated processing
of the lion’s share of domain dependent background knowledge. It is hidden in
work related standards, regulations, guidelines or simply maintained by experts,
thus not available for the average worker.

Our research specifically addresses information assistance for assembly sta-
tions at the manufacturing shop floor. Although smart factories establish digital-
isation and automation to streamline manufacturing processes and quality, there
c© Springer International Publishing Switzerland 2015
B. Duval et al. (Eds.): ICAART 2015, LNAI 9494, pp. 207–222, 2015.
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is still the need for manual assembly operations [19]. Here, it requires system-
atic information assistance in order to manage the complexity and heterogeneity
of extremely small lot sizes. This research can be understood as technical per-
spective on the cognitive automation of manual work processes as introduced
by [8].

Throughout this paper we focus on smart factories in which individually
customised products are assembled by humans. In particular, we assume a lot
size of one. This implies, that basically every product is unique and required new
construction plans. In contrast to larger lot sizes or series production, it is not
profitable to invest much into product-specific assistance systems. Therefore, we
need to derive useful assistance systems from existing information sources.

This paper is organised as follows: First, we discuss different types of assis-
tance within the focus of manual assembly processes. Sects. 3 and 4 describe
how to detect important situations and how to provide assistance, respectively.
In Sect. 5 we show how cognitive architectures can be used to formalize and
process the missing background knowledge. We conclude our work with Sect. 7.

2 Required Assistance

Below we discuss use cases in which different types of assistance are required
to support manual assembly processes. But first we give a short introduction to
assembly work activities.

The assembly of machines and technical systems is an essential part of pro-
duction. It consumes up to 40 % of costs and even 70 % of production time.
During an assembly single machine parts are joined to first-order assemblies
(pre-assembly), then to assemblies of higher order (intermediate assembly) and
finally to an end product (final assembly). The German VDI guideline 2860 [9]
further differentiates between primary assembly, which includes the main joining
operations as defined with the DIN 8580 [7], and secondary assembly, including
all additional assembly activities like handling, adjustment and control of parts,
material, tools, and machines. Assembly operations such as joining directly refer
to physical activities of the worker. A more detailed description of the manual
operations as well as of the physical work environment can, for example, be
found in [2].

Traditionally, a worker is equipped with work orders describing the work to
be done on an abstract level. It strongly depends on his individual knowledge
and experiences to interpret the given information correctly. Information assis-
tance, especially in complex and continuously changing assembly work processes,
improves the quality of work by ensuring an immediate transfer of required work
information to the workplace and back to planning systems for example. Here,
we differentiate between five general types of information assistance:

– Raising Awareness: The worker requires up-to-the-minute knowledge about
his direct and relevant work environment in order to align his own activi-
ties accordingly. Knowing early enough the malfunction or breakdown of a
machine, which produces parts for his own assembly, influences his situational
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decisions and activities. Thus, information assistance needs to make the worker
aware of relevant states, events and occurrences within the work environment
which have an influence on the planning and execution of the worker’s tasks.

– Guiding : The worker requires orientation with respect to his current and
upcoming assembly tasks. This needs to be given through operational guid-
ance which filters available information for each specific work step, in order
to reduce the parallel information load to a required minimum. Knowing the
exact joining procedure beforehand does not reduce the risk of failures, espe-
cially in complex assembly cases. Thus, information assistance needs to split
complex procedures into smaller but easier understandable parts, used to
guide the worker step-by-step through the assembly.

– Monitoring : In the first place, monitoring the assembly process has a practical
value. It allows a detailed comparison as well as re-calculation of planned and
real time figures. Additionally, it enables the early identification of quality
issues or interruptions. Information assistance needs to collect required data
from the workplace which supports the continuously production re-planning.
It also needs to control the correct execution of assembly procedures to avoid
reworking in case of wrong assembly orders, skipped parts or incorrect tool
usage.

– Documenting : When it comes to quality issues or even complaints, information
assistance needs to support tracking back these issues to their roots, which
requires a parallel documentation of assembly tasks. However, this kind of
documentation can also be helpful to evaluate assembly procedures finding
examples of best practice or expert knowledge inherited within individual
work processes.

– Guarding : The physical and cognitive loads at the assembly workplace vary
from situation to situation. Information assistance needs to guard the worker
from overload by balancing the load levels within healthy borders or by visu-
alising it.

Based on the use cases introduced above, we discuss the current state of the
art in assistance for manual assembly tasks. Smart assistance is no novelty in
manufacturing. The growing complexity of todays’ mass customized products
leads there to increased cognitive loads resulting in rising assembly error rates.
Fast-Berglund et al. [8] showed that up to 60 % of a manual assembly is based on
the worker’s own knowledge and experience. Smart assistance systems can auto-
mate here the decision making as well as information processing thus decreasing
the individual cognitive load and human failure.

Korn et al. [13] demonstrate here an interesting approach towards combining
work assistance and training when addressing physical and cognitive impaired
workers. They use the concept of gamification to steer the worker’s motivation
and control the cognitive balancing of work tasks.

However, we find there a majority of specialised and single task solutions
focussing on quality assurance and information transfer [6]. Other research deals
with concepts for smart factories which automate the planning and execution
of manufacturing processes in autonomously working factories. Focussing on the
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automation of robot cells Mayer et al. proposed the usage of intelligent systems
to resemble human decision making and problem solving for complex assembly
tasks [17]. They introduce the cognitive control unit (CCU) which ensures the
numerical planning of robot behaviour backed by a cognitive architecture. Cog-
nitive architectures can be understood as a mean to implement intelligent and
autonomous behaviour in assistance applications. They have proven capable of
supporting complex problem solving tasks. A recent example is the simulation
of mission management for unmanned aircrafts [10].

Our own work contributes to the growing demand of information assistance
for manual work operations in manufacturing which underlies human flexibility
and failures as motivated by [5]. In particular, we focus on assistance that can
be generated automatically from existing knowledge sources. This allows to use
the approach also for small lot sizes.

3 Detecting Situations

To actually provide assistance, we first need to recognize situations in which
this is necessary. We will discuss the recognition process only briefly, because
we simply utilize an approach presented at ICAART 2014. Therefore, we only
review some ideas presented in [5]. Based on a formalization of assembly tasks,
using so-called task models, a Hidden Markov Model (HMM) is synthesized.
The resulting HMM is used to filter sensor data and compute a probability
distribution over the current state of the process. As sensory inputs only the
processed building blocks are used and the accuracy is analysed with respect to
different sensor errors. Here, we use a similar approach, but instead of using the
single building blocks as sensory inputs, we also utilize the tools used for the
assembly. Figure 1 shows such an enhanced task model, stating that a wire-spool
is built from 5 wires and some tin-solder. The parts are joined by soldering them
using a soldering-iron.

wire-spool

operation = soldering

tools = [soldering-iron]

wires tin-solder
|=|

wire wire wire wire wire
>> >> >> >>

Fig. 1. A simple task model stating that a wire-spool is build from 5 wires and tin-
solder. In addition, the top-most node contains the joining operation (soldering) and
the tools to be used (soldering-iron).
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To raise awareness for important state changes in the environment as well
as for guiding the worker, the current state of the assembly process needs to be
determined. For this, we rely on the results reported in [5], indicating that this
is indeed feasible. Based on our annotated models, we believe that the results
should be even better, but a detailed analysis is subject to future work.

To detect assembly errors or deviations from the usual procedure is harder to
track. In [5], the authors describe how the system reacts with respect to different
types of sensor errors (missing and repeated readings).

But here, we need to detect actual assembly errors, which has not been
tackled before. As the task model describes valid construction paths only, the
resulting HMM will always compute a probability distribution over valid paths.
Therefore, an assembly error is not directly observable. To track assembly errors
nonetheless, we analyse the development of the probability distribution over
states. Because valid paths result in rather crisp probability distributions (i.e.,
one path has a very high probability while all others a low one), errors result in
a higher entropy of the distribution. Based on this insight, we are able to detect
situations in which an error occurred.

4 Providing Assistance

Information assistance at the assembly workplace aims at the continuous
information exchange between leading manufacturing data systems (enterprise
resource planning, manufacturing execution, etc.) and the worker in order to
support efficient working and to avoid interruptions, failures or quality related
issues.

To keep argumentation and presentation simple, we assume that the state of
the world is known exactly. The system described here, has been implemented
in SWI-Prolog1. The state of the world is described as static and dynamic facts
shown in Listings 1.1 and 1.2, respectively.

produces(’WireMachine’, wire).
task(wire−spool, % goal
soldering , % operation
[ soldering−iron], % tools
[ tin−solder, 5∗wire ]). % parts

Listing 1.1. tatic background information describing that a WireMachine produces
wires and that a wire-spool is assembled by soldering wires using a soldering-iron. The
task corresponds to the task-model shown in Fig. 1.

1 http://www.swi-prolog.org.

http://www.swi-prolog.org
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storage(wire, 3).
assembles(worker1, wire−spool).
broken(’WireMachine’, ’no copper available’).
knows(worker1, howTo(soldering)).

Listing 1.2. Dynamic background information describing that 3 wires are available,
worker1 assembles a wire-spool, and that the wire machine is broken.

Below, we work out information which helps to provide awareness on the assem-
bly situation, guides the worker through an assembly, and finally monitors his
work and results.

4.1 Raising Awareness

Situational awareness with respect to his work environment helps the worker to
orientate within complex processes and to align his own activities accordingly
[11]. It can be understood as inherent information demand of carrying out and
completing work tasks.

informationDemand(InfoType, Person, Info) :−
% Person assembles a given item ..
assembles(Person, Item),
% ... containing a Part with a given Quantity
isPartOf(Part, Item, Quantity),
% The Machine producing the Part ...
produces(Machine, Part),
% ... is broken for a given Reason
broken(Machine, Reason),
% The Quantity is larger than the StoredQuantity
storage(Part, SQ), Quantity > SQ,

InfoType = awareness(stateOf(Machine)),
Info = brokenMachine(Machine, Part, SQ).

Listing 1.3. Specification of an information demand to raise awareness with respect
to a broken machine. The predicate isPartOf allows to access sup-parts as defined
through the task model.

All changes of the virtual or physical work environment which influence the
ongoing or upcoming assembly tasks need to made aware to the worker. This
includes, for example:

– planned tasks which can change in time and priority,
– missing material, tool or information which are required but not available for

assembly, or
– deviations from normal procedures, orders and qualities.
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Fig. 2. Infomessage and explanation generated for the information demand specified
in Listing 1.3.

Depending on the information impact as well as urgency, assistance needs to
help perceiving it embedded in the ongoing work flow.

After evaluating the information demand as specified in Listing 1.3 with
respect to the current state of the world, InfoType is unified with
awareness(stateOf (‘WireMachine’)) and Info with brokenMachine(‘Wire
Machine’, wire, 3). In addition, all premisses are known. This allows to generate
the output shown in Fig. 2. A simple verbalisation engine is used to translate
the predicates (e.g., shown in bold font in Listing 1.3) instantiated while com-
puting the information demand into english sentences. Predicates corresponding
to dynamic facts are verbalised as assumptions.

4.2 Guiding

Similar to formal education processes, information assistance in form of guiding
can be understood as an informal way of mediating and learning facts (what),
procedures (how) and concepts (why) required for a specific assembly task. The
shaping and depth of guidance varies depending on a specific assistance objective
to be supported [3]. In a first step the worker is required to remember, understand
and apply the given information in order to prepare and execute his assembly
task correctly. Thus, information assistance has to collect and visualise:

– bills of material which identify the material to be used for an assembly step,
– bills of tools which lists the tools and machines to be used for joining proce-

dures,
– procedures which describe the correct handling, adjusting, joining, and con-

trolling of materials and tools including safety relevant information, and
– planned figures which detail the expected assembly times and results.

As motivated in Sect. 2, it is important to split complex assembly procedures
into smaller instructions (steps), reducing thus cognitive loads for the worker and
giving them a clear work structure [12]. Showing then the required information
parallel to the ongoing work process for each step only, helps to achieve the three
assistance objectives.

Similar to the information demand specified in Listing 1.3, it is possible to
formalise guiding knowledge. This includes for example the tool to be used for the
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current assembly operation as shown in Listing 1.4. Figure 3 shows the resulting
output after verbalising the predicates.

informationDemand(InfoType, Person, Info) :−
% Person assembles a item
assembles(Person, Item),
% get Join−Operation from task model
task(Item, JoinOp, Tools, Parts),

InfoType = guiding(JoinOp),
Info = currJoinOp(Person, Item, JoinOp, Tools).

Listing 1.4. Specification of an information demand with respect to the current type
of join operation and the tools to be used.

Fig. 3. Infomessage and explanation generated for the information demand specified
in Listing 1.4.

Similar specifications can be used to refer to the items to be used. For complex
assembly tasks, many different types of joining operations have to be performed
by the worker. Usually, not every worker has the same in-depth training for all of
them. Therefore, more background knowledge should be provided for unknown
operations. This can be formalised as shown in Listing 1.5.

informationDemand(InfoType, Person, Info) :−
% Person assembles a given part
assembles(Person, Part),
% get information from task model
task(Part, JoinOp, Tools, Children),
% if there is a description D of the op ...
bgInfo(joinOp(JoinOp), description(D)),
% ... and the person does not know it
not( knows(Person, howTo(JoinOp)) ),

InfoType = bgInfo(joinOp(JoinOp))
Info = bgInfo(joinOp(JoinOp), description(D)).

Listing 1.5. Specification of an information demand with respect to missing back-
ground knowledge.

Assuming knows(worker1, howTo(soldering)) to be true, and false for worker2,
results in different information assistance for both.
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4.3 Monitoring

Monitoring the ongoing assembly activities of the worker establishes a feedback
channel to the information assistance system. It requires a close observation of
work progress, rejects, and issues for practical reasons. Manufacturing execu-
tion systems need this information to allow a detailed planning of production
processes. For situation recognition we require more detailed knowledge from
monitoring: the material taken as well as tools picked up and their configura-
tion, which enables us to draw conclusions on the current assembly step executed
and possible deviations in comparison to the provided instructions.

5 Using Soar to Provide Assistance

The previous sections showed conceptual and technical considerations with
respect to acquiring knowledge on actual assembly situations as well as to provid-
ing information assistance at the assembly workplace. Although, a vast amount
of required information can already be found in manufacturing data manage-
ment systems, the major share of procedural and conceptual knowledge is not
yet formalised in systems which allow their automated processing (see Fig. 4).
We find work instructions, standards, or assembly guidelines normally written in
natural language within accompanying documents. However, there has already
been research to distinguish between the semantic meaning of instructions and
their visual representation [16] based on controlled vocabularies which allows
for automation. They still require a manual authoring of instructions for each
assembly process individually. What we require in contrast for guiding for exam-
ple, is an abstract formalisation of assembly procedures in general which is filled
at runtime with factual knowledge about the specific product or situation.

Cognitive architectures are a mean to bridge the gap between common assem-
bly descriptions, that we find in VDI 2860 or DIN 8580, and reusable procedural
knowledge in information assistance systems. Below, we summarize our app-
roach of utilising the cognitive architecture Soar for assisting the worker during
assembly.

5.1 Cognitive Architectures

Cognitive architectures can be traced back to Newell’s early hypothesis that any
artificial intelligence is based on a symbol system and related rules [18]. As of
today, a cognitive architecture describes the mental structure for human infor-
mation processing, the representation and organization of information within
these structures as well as the functional processing required to acquire, use,
and modify information [15]. Hence, they allow modelling and implementing
intelligent behaviour in smart applications and environments. We also need it
for providing assistance as described in Sect. 2. In our own work we use the
cognitive architecture Soar (state, operator and result) for:

– situation detection based on observations of the physical work environment
and following reasoning,
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Fig. 4. Required information is contained in different enterprise resources. Partly it is
individual expert knowledge which is not externalised in any management system.

– the formalisation and processing of contextual background knowledge (e.g.
procedures, explanations),

– interactions with the worker as well as the physical environment to provide
assistance by raising awareness and guiding for example, and for

– additionally learning assembly related practices from observation.

In general, processes in Soar are related to the gradual alternation of information
and states in working or long-term memory [14]. Here, a situation is formalized
as a state in working memory, which is modified by evaluating and applying
operators until an intended final state is reached. The operator definition con-
sists of required conditions and actions on the working memory. It inherits pro-
cedural and conceptual knowledge from the corresponding knowledge domain.
New operators can also be derived by observation of decision making processes
(chunking) and through learning processes.

First examples on how we use Soar to provide assembly assistance are illus-
trated below.

5.2 Situation Detection

In Soar we represent the individual situations of the work environment during an
assembly by states. Each state identifies a different condition of elements within
the Soar working memory, which finally holds a virtual copy of the physical
environment. Thus, we transfer the state of real objects, e.g. tools, the material
stack, or even the workplace, into logical objects and their attributes in working
memory. Soar connects then to sensors which allow the observation of individual
object states and events, e.g. the usage of a tool, in order to update attributes
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of the related working memory object. The working memory is so the basis of
all reasoning on discrete states of the work environment.

In Listing 1.6 we illustrate the usage of Soar’s state operator mechanism for a
specific soldering situation. It consists of two parts, an operator proposal rule and
an application rule. The first one defines the pre-condition of a state described
by working memory objects and their attributes. In our example it requires at
least two materials or parts and a soldering iron in order to start a soldering
operation. If the current state of the working memory matches these conditions,
the operator join-part becomes candidate in following decision making.

Soar evaluates the likelihood of each operator based on the current state of
objects in working memory and all candidate proposal rule definitions. It uses
contextual knowledge (see Sect. 5.3) to compare and select candidate operators
during decision making.

# parts can only be soldered if there are at least
# two parts taken, a soldering iron and solder to
# support the joining operation
sp {propose∗soldering−parts

(state <s> ˆname assemble)
(<s> ˆcount taken > 1)
(<s> ˆiron taken <=> yes)
(<s> ˆsolder taken <=> yes)

−−>
(<s> ˆoperator <o> + =)
(<o> ˆname soldering−parts ) }

# soldering parts reduces the taken parts to a
# single compound part and consumes solder
sp {apply∗soldering−parts

(state <s> ˆoperator.name soldering−parts)
(<s> ˆcount taken <t>)
(<s> ˆsolder taken <m>)

−−>
(<s> ˆname soldering)
(<s> ˆcount taken 1)
(<s> ˆcount taken <t> −)
(<s> ˆsolder taken <m> −) }

Listing 1.6. Definition of operator and production rules in Soar for joining assembly
step.

With applying finally the operator soldering-parts the working memory state is
changed by modifying single memory objects, e.g. by reducing the amount of
available parts.

5.3 Contextual Knowledge

One of Soar’s strengths lays in its interaction between working and long-
term memory. While the working memory holds information about the current
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condition of logical objects (see Sect. 5.2), the long-term memory represents the
contextual knowledge which is required to select and apply an operator. Here, we
find five different knowledge types in Soar: knowledge which qualifies an opera-
tor for a situation, knowledge to compare operators, knowledge to select a single
one, knowledge to change the working memory, and knowledge to elaborate a
state. All types contain contextual knowledge of the application work domain,
in our case of assembly activities as formulated in VDI 2860 and DIN 8580.

In Listing 1.7 we encode this assembly knowledge to define the sequential
order of single work steps and their requirements. In this example, we require
further solder material prior to collecting the soldering iron, which will be defined
by additional preference operators, such as +, >, <, or !.

# soldering parts requires additional solder
# material which need to be taken first
sp {propose∗take−solder

(state <s> ˆname assemble)
(<s> ˆiron taken <=> yes −ˆsolder taken)

−−>
(<s> ˆoperator <o1> + ; <o1> > <o2>)
(<o1> ˆname take−solder)
(<o2> ˆname take−iron) }

Listing 1.7. Contextual knowledge of the work domain is encoded in Soar’s production
rules.

In this way, we were able to transfer the relevant assembly process logic into Soar
operators. They help us guiding the worker with small sized assembly instruc-
tions as required for an automated information assistance.

5.4 Interaction

We also use Soar to establish an interaction between information assistance
system and the worker as well as vice versa. As described in Sect. 4 we aim to
raise the worker’s awareness with respect to relevant information on his ongoing
assembly process, guide him step by step through the assembly, and monitor his
work activities. It finally requires the interaction to inform him and collect data
from him. This can also be formalised by operator rules.

# provide information assistance once the worker
# is not informed on his following work step
sp {propose∗inform

(state <s> ˆtype state)
(<s> ˆname <n> − ˆis informed)

−−>
(<s> ˆoperator <o1> !)
(<o1> ˆname inform) }

Listing 1.8. Information assistance is modeled as operators in Soar.
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Listing 1.8 shows the proposal rule of an inform operator which will provide
the worker with instructions for his next assembly steps. In a similar manner we
define operators for raising awareness for example.

6 Industrial Application in Plant@Hand

The proposed approach is part of the continuously development of the Plant@-
Hand assembly assistance system which we already introduced in previous works
[1,4]. We used here Soar as cognitive architecture which enables us now to
analyze the specific work situation and to provide cognitive automation for the
worker. The whole system is developed to provide mobile information assistance
for the assembly part of the manufacturing shop floor.

Fig. 5. Hardware and software components of the industrial Plant@Hand smart assem-
bly trolley prototype.

The assembly of partly large and complex special units requires from the
worker a high degree of flexibility and mobility. Components need to be assem-
bled in varying complexities at different locations of the special unit. This makes
it difficult to instrument the work environment with activity recognizing sensors.
An instrumentation of the worker is also limited due to safety reasons. Because
of this challenging conditions we use a standard mobile workshop trolley (see
Fig. 5) as technical basis for our assembly assistance application. Such a unit is
normally used to store and transport tools as well as material during an assem-
bly. The trolley provides shelves and drawers for different sorts of assembly tools
or small to medium sized work materials. All hardware and software compo-
nents of the Plant@Hand assembly assistance system are built into the mobile
workshop trolley:

– Sensors: We use different sensor types to monitor the ongoing assembly activ-
ities of the worker. Force sensitive resistors (FSR), infrared sensors (IR) and
RFID sensors provide data on material and tool usage, e.g. the removal of
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screws from a material container. Inertial measurement units (IMU) give us
information on the trolley movements.

– Preprocessing and Sensor Fusion: An Arduino Uno board is used to make
a first preprocessing (filtering) and fusion of incoming sensor data. It generates
activity events for interpretation in the cognitive architecture.

– Situation Detection: For the recognition of different situations, we are cur-
rently using a simple forward filtering algorithm for HMMs.

– Cognitive Architecture: The cognitive architecture Soar provides the func-
tional subcomponents for state detection based on the previously computed
most likely work situation, followed by decision making on required assis-
tance actions and information to be provided as well as machine learning
from observed activities. It also allows the implementation of adaptive and
smart learning support.

– Information Retrieval: For the connection with external manufacturing
data systems the enterprise service bus system Mule ESB is used. Based on
information flows, data is continuously exchanged which guarantees a provi-
sion of the latest information.

– Assistance: The main implementation of assistance functions can still be
found within the Plant@Hand assembly assistance system. Functional blocks,
such as raising the workers awareness, the step-by-step guiding of assembly
works, or the documentation of work results are part of the assistance client.

– Visualisation: The mobile workplace requires also a mobile visualisation
of information for the worker. We use here mobile displays which are still
available during the assembly task execution. Provided displays are tablets
and even smartwatches.

We use the described technical setup in our experiments on integrating cognitive
automation and information assistance under industrial work conditions.

7 Conclusions

In this paper we showed how to provide information assistance for a smart assem-
bly station. After defining different types of information demands, we briefly
discussed a possibility to detect situations in which assistance is needed. Then
we showed how assistance can be provided using a crisp state of the world and
logical specifications of the information demand (using an implementation in
SWI Prolog). Even though, most information can already be found in manu-
facturing data management systems, the majority of procedural and conceptual
knowledge is not yet formalised. To bridge this gap we use the Soar architecture.

Although the concept of cognitive architectures is not new to implementing
systems with intelligent behaviour, it is still rarely used to make the contextual
background knowledge from an application domain accessible for complex prob-
lem solving tasks. Our approach shows on both, conceptual as well as technical
level, the usage of an cognitive architecture for supporting information assistance
and thus the cognitive automation on the manufacturing shop floor. It illustrates
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the role of logical modelling and the transfer of implicit and barely formalised
knowledge into predicate logic and state operators.

However, one of the next required steps is to learn new procedures and novel
connections from observation of real assembly activities. Here it is promising to
start with a basic guidance skeleton and detail the missing assembly steps by
tracking, interpreting, and learning from work procedures of assembly experts.
In addition, we are working on an experimental evaluation of the ideas. This
includes the collection of real sensor data and the formalisation of real-world
examples. And finally we will work on an automated transfer of real existing
knowledge into an assistance system.
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Abstract. The set partitioning problem (SPP) is at the heart of the
formation of several organizational structures in multi-agent systems.
Essentially, such structures can improve scalability and enable coopera-
tion between agents with limited resources and capabilities. We present
a discrete Particle Swarm Optimizer that solves the NP-hard SPP in the
presence of partitioning constraints which restrict valid partitionings in
terms of acceptable ranges for the number and the size of partitions. To
be applicable to a broad range of applications, our algorithm relies on
basic set operations to come to a solution and is thus independent of the
characteristics of a specific objective function. Among other things, it
can be used for coalition structure generation, strict partitioning cluster-
ing, anticlustering, and, combined with an additional control loop, even
for the creation of hierarchical partitionings. Our evaluation confirms
that it finds high-quality solutions in different scenarios and for various
objectives in short time.

Keywords: Set partitioning problem · Clustering · Anticlustering ·
Particle swarm optimization · Evolutionary computing

1 Introduction and Related Work

In numerous multi-agent systems (MAS), a crucial step is to establish an orga-
nizational structure that supports the agents’ and the system’s objectives [14].
Among other things, these structures allow agents to benefit from the capabili-
ties of others, thereby increasing their own value of participating in the system.
In large-scale systems, organizations are also a way of dealing with complexity
and scalability issues, which is often accomplished by hierarchy formation [28].

In many cases, these organizations are based on structures that can be
described as a partitioning. In the set partitioning problem (SPP) (cf. [10]), a
set A = {a1, . . . , an} of n > 1 agents ai is partitioned into non-empty and pair-
wise disjoint subsets, called partitions, that together constitute a partitioning
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at minimal cost. Feasible, i.e., valid, partitions B = {b1, . . . , bm} are prede-
fined and finding the optimal partitioning is NP-hard. In this paper, we assume
that feasible partitions are only constrained in terms of a minimum smin and
maximum smax size. This will often result in a very large number of feasible
partitions. The so-called complete SPP (cf. [20]) constitutes the unbounded case
in which the number of feasible partitions m grows exponentially with n since
there are m = 2n−1 partitions. In this situation, the size of the search space, i.e.,
the number of possible partitionings, is given by the nth Bell number Bn (e.g.,
B50 ≈ 1.86 · 1047), which is defined by Dobiński’s formula Bn = 1

e · ∑∞
k=0

kn

k! [8].
Note that even in a system in which the set of agents A is not subject to change
over time, it would not be suitable to pre-calculate all feasible partitions in
advance (for n = 50 and the complete SPP, this needs more than one week on
our Xeon machine), not to mention the possible partitionings. To differentiate
this specific problem from the original SPP more clearly, we will refer to it as
the partitioning problem (PP). In contrast to the SPP’s original definition – in
which the costs of having a partition bj included are additive and predefined –,
we further allow a more flexible objective function in the PP: We only presume
an application-specific metric that evaluates if a partitioning, i.e., a combination
of partitions, is fit for purpose. If the metric aims at partitions featuring similar
properties (e.g., if the agents represent real numbers, partitions with a similar
sum of their members), we speak of homogeneous partitioning. Note that many
instances of homogeneous partitioning are not supported by the original SPP
due to its restriction to additive and predefined costs of partitions. If the metric
specifies to group similar or dissimilar agents, the PP is equivalent to strict par-
titioning clustering (with outliers1) or anticlustering2 (cf. [27,29]), respectively.
If the metric defines how well agents can work together on a common task, the
PP is equivalent to coalition structure generation (cf. [26]). Of course, one can
also think of a combination of these heterogeneous objectives.

If an algorithm solves the PP by representing each agent ai ∈ A by a vector gi
of those attributes of ai that are relevant to solve the PP, it actually has to solve
a multiset partitioning problem (MPP) for the multiset G = �g1, . . . , gn�. That
is because we might have gi = gj for two agents ai �= aj . In the MPP, the
multiset sum

⊎
K∈P K of all partitions K (here, non-empty multisets) in the

partitioning P must equal G. In this paper, we assume heterogeneous agents so
that all vectors gi are different (i.e., ∀ai, aj ∈ A : ai �= aj → gi �= gj). Hence, G
is a set and the problem is reduced to a PP.

Algorithms for the solution of the PP in MAS have a broad area of applica-
tion, e.g., in sensor networks, power management systems, manufacturing sys-
tems, communication systems, or e-commerce: In [30], a highly decentralized
algorithm is used to assign each sensor node a cluster head within its commu-
nication radius and to allow all cluster heads to communicate with each other.

1 Supported by a separate partition that holds all outliers.
2 While clustering dissimilar elements leads to partitions whose mean values corre-

spond to the mean of all elements in the system, homogeneous partitioning is not
limited to this specific property and does not necessarily group dissimilar elements.
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Anders et al. [5] present a decentralized graph-based algorithm, called SPADA,
that allows power plants to self-organize into virtual power plants in order to
lower the time needed to create power plant schedules. In [3], existing organiza-
tional structures are exploited in form of input/output relations between agents
to guide a decentralized coalition formation that reconfigures a production cell.
Al Faruque et al. [1] show an agent-based clustering approach for networks on
chip that is used to map tasks to processing elements. In [9], costumers of e-
commerce websites are categorized into different profiles on the basis of global
knowledge.

Some algorithms that solve instances of the PP, e.g., those formulated and
solved as a linear programming problem, require global system knowledge but
yield optimal solutions (cf. [24]). Because of the PP’s complexity they are often
designed as anytime algorithms or distribute the entire search space among the
agents to be able to calculate the utility of all possible partitions and pick the
best one after a global announcement (cf. [26]). Other approaches, such as [5]
or [23], rely on local knowledge and solve the PP in a completely decentralized
fashion. While such strong self-organization approaches can deal with very large
systems [12], the lack of regional or global knowledge is sometimes reflected in
the solutions’ quality.

Usually, algorithms that solve the PP are either (1) specialized to a particular
problem in a certain domain, (2) depend on the properties of a specific objec-
tive function, or are (3) very restrictive with regard to the possibility to specify
mandatory characteristics of the resulting partitioning’s structure in the form
of the number and the size of partitions. These attributes limit the algorithms’
applicability. As for point (2), many algorithms – especially those addressing the
original SPP – are specialized to certain objective functions, e.g., those in which
the quality of partitions is additive and can thus be assessed independently of
each other. The well-known k-means [21] or k-medoids [16] clustering algorithms,
for instance, assign elements to clusters in a way that minimizes (or, in case of
anticlustering, maximizes) the sum of the distances between the elements and
their cluster center. These algorithms are not able to a establish certain homo-
geneous partitionings, such as our previous example of creating partitions with a
similar sum of assigned real numbers. With respect to point (3), most algorithms
either do not allow to characterize valid partitionings at all (cf. [23]) or the user
or the agents have to be very specific. Using the k-means clustering algorithm,
for example, the user has to specify the number of partitions k exactly. Because
a suitable exact number of partitions is often not known (further drawbacks of
k-means, such as the formation of partitions of similar size, are discussed in [7]),
there are different approaches that extend the k-means algorithm by the possi-
bility to automatically find a suitable number of partitions for a given data set,
such as the x-means algorithm [15]. In contrast to these approaches, we want to
allow the user or the system itself to specify suitable ranges for the number and
the size of partitions, i.e., the minimum nmin and the maximum nmax number
of partitions as well as their minimum smin and maximum smax size. These
partitioning constraints allow, e.g., to define appropriate sizes of subsystems in
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the context of compartmentalization in MAS. As mentioned at the beginning of
this section, compartmentalization is a means to decompose the complexity of
a system’s task. In [28], e.g., the partitioning of power plants into virtual power
plants decreases the time needed to calculate schedules for them, a task whose
complexity depends on the number of power plants involved. In this example, it
is required that the size of each virtual power plant is not less than two and below
a certain threshold restricting the maximum time needed for schedule creation.

In this paper, we present PSOPP, a discrete Particle Swarm Optimizer for
the Partitioning Problem. PSOPP is based on Particle Swarm Optimiza-
tion (PSO) [17], a biologically-inspired computational method and metaheuristic
for optimization in large search spaces. The application of a metaheuristic is suit-
able because of the PP’s complexity. For this reason, a plethora of metaheuristics
solving related problems can be found in the body of literature: In [10], a genetic
algorithm (GA) is used to solve the original SPP, meaning that the GA needs a
pre-calculated set of feasible partitions. As discussed before, we want to avoid this
in our approach. In theory, their GA could also be extended to respect prescribed
ranges for the number of partitions by so-called base constraints. However, since
their GA allows the generation of invalid interim solutions, it would not benefit
from a reduced search space and require additional heuristics for their correction
to valid candidate solutions. Using PSO for data clustering has been proposed
in [22], where each particle represents a complete solution of the clustering. In [2],
the authors present an evolutionary PSO algorithm in which a new generation
of particles can replace those contributing to a bad solution to be able to leave
local optima. Importantly, their particles represent partial solutions, comprising
a single centroid and assigned elements, instead of a complete solution.

As opposed to these and the other afore-mentioned approaches, PSOPP
(1) solves the PP in a general manner and (2) allows to specify and efficiently
deal with suitable ranges for the number as well as the size of partitions. Our
central idea – which could also be applied to other metaheuristics – is to use
basic set operations to come to a solution. The reason for using these operations
is that they make no assumptions about the objective function assessing the
quality of candidate solutions and steering the search for them. As this enables
optimization in the light of heterogeneous objectives, PSOPP can be customized
to a specific application by devising an appropriate fitness function. Because we
define PSOPP’s operations in a way that their application always maintains
solution correctness, it combs through a search space that only contains cor-
rect solutions, which is advantageous for its performance. Moreover, given that
PSOPP is initialized with a correct candidate solution, it is an anytime algo-
rithm. Due to these characteristics, PSOPP can be applied to many different
applications in which solving the PP is relevant and global knowledge is avail-
able. In conjunction with the control loop presented in [28], it can be used to
establish self-organizing hierarchical system structures that overcome the draw-
backs of strictly weak self-organization [12].

This paper is a substantially revised version of [4] and emphasizes PSOPP’s
ability to solve the PP in case of clustering, anticlustering, and homogeneous
partitioning. Its remainder is structured as follows: In Sect. 2, we give an
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introduction to the principle of PSO and some of its variants for combinatorial
optimization. In Sect. 3, we present our algorithm, PSOPP. Section 4 outlines
evaluation results showing that PSOPP efficiently solves the PP in various sce-
narios. Finally, we conclude the paper and give an outlook on future work in
Sect. 5.

2 Particle Swarm Optimization

PSO is a search heuristic for optimization problems. Its principle is based on
the flocking behavior of birds or schools of fish. Before we present a special form
of PSO that is applicable to discrete optimization problems, such as the PP, in
Sect. 2.2, we explain the basic idea of PSO in Sect. 2.1.

2.1 General Definition

In the original definition of PSO [17], a swarm of particles moves around in an
n-dimensional continuous search space in order to find nearly optimal solutions
by iteratively improving candidate solutions of the optimization problem. Such a
candidate solution is represented by a particle’s position in the search space. Its
quality is rated by a fitness function that corresponds to the “objective function”
and the “metric” used in the PP’s definition in Sect. 1: the higher the fitness, the
better the solution. To be able to improve the quality of its solution over time in a
target-oriented manner, each particle Πi is aware of its best found solution Bi and
the best found solution BNi

in its neighborhood Ni. If a particle’s neighborhood
consists of all particles, BNi

corresponds to the global best found solution B.
Initially, particles usually start at random positions. In each iteration, the

particles update their positions and best found solutions. The algorithm termi-
nates, e.g., after a certain amount of iterations or if the particles converge to a
(local) optimum. Its outcome is the global best found solution B. In detail, a
particle Πi determines its position xi(t + 1) for the next iteration t + 1 on the
basis of its current position xi(t) and its updated velocity vi(t + 1):

xi(t + 1) = xi(t) + vi(t + 1) (1)
vi(t + 1) = ω · vi(t) + c1 · r1 · (Bi − xi(t)) + c2 · r2 · (BNi

− xi(t)) (2)

with ω, c1, c2 ∈ R
+
0 , r1, r2 ∈ [0, 1], and ∀t : xi(t),vi(t),Bi,BNi

∈ R
n

Since vi(t + 1) depends on the current velocity vi(t), it embodies a certain
inertia for the purpose of exploration. To search in promising regions of the
search space, a particle’s motion is further influenced by its best found solution Bi

and the best found solution BNi
in its neighborhood. As there is always a trade-

off between exploration and exploitation, the constants ω, c1, and c2 allow to
establish an appropriate balance between the particle’s inertia and its attraction
towards Bi and BNi

. The random numbers r1 and r2 are regenerated in every
iteration.
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2.2 Discrete Particle Swarm Optimization

PSO as defined in Sect. 2.1 is not applicable to discrete, e.g., combinatorial,
optimization problems, such as the PP. Kennedy et al. [18] solve this dilemma
for n-dimensional binary search spaces by introducing Discrete PSO (DPSO) in
which the positions xi(t), Bi, and BNi

are values of the domain {0, 1}n. While
the domain and the definition of the velocity vi(t + 1) ∈ R

n are not modified
(see Eq. 2), the semantics of the velocity changes. In contrast to the original
definition, each component (vi(t + 1))j ∈ R of the vector vi(t + 1) represents a
probability that the jth component of the particle’s position xi(t + 1) is either
0 or 1. Equation 1 therefore becomes invalid.

Another DPSO approach, which is called Jumping PSO (JPSO) [13], omits
the concept of the velocity as defined in [17]. In simplified terms, JPSO redefines
the motion of particles by replacing the linear combinations in Eqs. 1 and 2 by
an “either-or” operation that makes them “jump” through the search space:

xi(t + 1) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

rdm(xi(t)) if ri ≤ crdm

appr(xi(t),Bi) if crdm < ri ≤ c∗
Bi

appr(xi(t),BNi
) if c∗

Bi
< ri ≤ c∗

BNi

appr(xi(t),B) otherwise

(3)

crdm , cBi
, cBNi

, cB ∈ [0, 1], crdm + cBi
+ cBNi

+ cB = 1,

ri ∈ [0, 1], c∗
Bi

= crdm + cBi
, and c∗

BNi
= crdm + cBi

+ cBNi

Equation 3 states that a particle Πi either makes a random move rdm(xi(t))
with a probability of crdm or approaches appr(xi(t), β) a specific candidate solu-
tion β ∈ {Bi,BNi

,B} with a probability of cBi
, cBNi

, or cB, respectively. In each
iteration, this direction is determined by a random number ri that is generated
individually for each particle. Similarly to Eq. 2, the constants crdm , cBi

, cBNi
,

and cB stipulate the particles’ attitude towards exploration and exploitation.
The idea of JPSO has been successfully applied to a number of high dimensional
combinatorial problems (see, e.g., [11,25]).

3 The Particle Swarm Optimizer for Solving
the Partitioning Problem

As for our algorithm, PSOPP, each particle embodies a solution of the PP, i.e.,
a partitioning of the set of elements G. PSOPP is inspired by DPSO’s derivative
JPSO (see Sect. 2.2). The motion of particles is thus not subject to inertia, i.e.,
xi(t + 1) does not depend on the modifications made to move from xi(t − 1) to
xi(t). In PSOPP, a particle’s motion is influenced by its best found solution Bi

and the best found solution BNi
in its neighborhood Ni. This complies with

the general definition of PSO outlined in Sect. 2.1. While we could easily extend
PSOPP such that its particles’ motion is additionally influenced by the global
best solution B – as is the case with JPSO (see Sect. 2.2) –, we deliberately omit
this feature for the sake of simplicity. With respect to the definition of JPSO’s
behavior in Eq. 3, this corresponds to a probability of cB = 0.
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3.1 Constraining Valid Solutions

As stated in Sect. 1, PSOPP allows to specify mandatory characteristics of a
solution, i.e., partitioning, in terms of the minimum nmin and the maximum nmax

number of partitions (1 ≤ nmin ≤ nmax ≤ |G|) as well as their minimum smin

and maximum smax size (1 ≤ smin ≤ smax ≤ |G|). These boundaries represent
hard constraints that we call partitioning constraints in the following. Obviously,
as the possible number and size of partitions are interconnected, one has to make
sure that the problem is not overconstrained. In case of G = {g1, g2, g3}, e.g.,
there is no valid solution if we set nmin and smin to 2. Either nmin or smin would
have to be relaxed, i.e., set to 1. Because we define PSOPP’s operations for the
particles’ motion in a way that always preserves the correctness of candidate
solutions with respect to the constraints, partitionings that do not meet them
are not represented in the search space. As we show in our evaluation in Sect. 4,
suitable boundaries can thus lower the time needed to find high-quality solutions.

3.2 The Algorithm’s Basic Procedure

Having defined valid partitionings by means of nmin , nmax , smin , smax as well
as the particles’ attitude towards exploration and exploitation by fixing the
constants crdm , cBi

, cBNi
, PSOPP creates a predefined and invariant number of

particles at random or predetermined positions. The latter is especially suitable
when a reorganization of an existing system structure has to take place: If the
current structure does not contradict the partitioning constraints, it can be used
as a starting point for the self-organization process. Mixing predefined and ran-
domly generated initial partitionings allows to hold up diversity. When searching
for an initial system structure, particles are created at random positions.

The position xi(t) of each particle Πi represents a partitioning P (hereinafter,
we use P synonymous for xi(t)) that consists of nmin ≤ |P| ≤ nmax partitions.
Every partition K ∈ P comprises smin ≤ |K| ≤ smax elements. All particles
concurrently explore the search space in search of better solutions by modifying
their current positions (at random or by approaching other solutions) as long as
a specific termination criterion is not met. For this purpose, in each iteration, a
particle Πi performs the following actions that are also depicted in Fig. 1:

Update Best 
Found Solution in 

Neighborhood

Apply Move 
Operation

Evaluate 
Fitness

Determine 
Move Operation

Evaluate 
Termination 

Criterion

Update 
Personal Best 
Found Solution

 [else]

 [fitness > f(personalBest)]

 [else]

 [isTermination
CriterionMet]

Fig. 1. Actions performed by particles in each iteration.
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1. Evaluate the fitness f(P) of the represented partitioning P.
2. If the particle’s fitness f(P) is higher than the fitness f(Bi) of its best found

solution Bi, set Bi to P. Further, inform all other particles Πj that contain
Πi in their neighborhood Nj about the improvement so that they can update
BNj

, i.e., the best found solution in their neighborhood.
3. Update the best found solution BNi

in the particle’s neighborhood Ni.
4. Stop if the termination criterion is met.
5. Otherwise, opt for the direction in which to move by generating the random

number ri ∈ [0, 1] on the basis of a uniform distribution (see Eq. 3), i.e.,
choose whether a random move or an approach operation should be applied.
In case of an approach operation, ri also determines whether Bi or BNi

should
be approached (see Eq. 3).

6. Determine the new position P ′ by applying the selected move operation to P.

Once all particles terminated, PSOPP returns the best found solution B. Possible
termination criteria are, e.g., a predefined amount of time, a predefined number
of iterations (i.e., moves through the search space), a predefined threshold for
the minimum fitness value, or a combination of these criteria.

3.3 Similarity of Partitionings

The purpose of an approach operation is to increase the similarity of two parti-
tionings P and Q by assimilating characteristics from Q into P. With regard to
the search space, the intention is that the particle representing P might find bet-
ter solutions in the neighborhood of Q. In this section, we define the similarity
of partitionings on the basis of a definition by [19]. Note that the similarity does
not give an indication of how many operations/moves are necessary to trans-
fer one partitioning into another (i.e., to move from one position to another).
Instead, it compares partitionings with regard to their composition. According
to [19], the similarity of two partitionings P,Q is based on the definitions of a
refinement and the intersection of two partitionings.

Definition (Refinement). Partitioning P is a refinement ref (P,Q) of parti-
tioning Q if and only if all partitions K ∈ P are subsets of partitions L ∈ Q:

ref (P,Q) :⇔ ∀K ∈ P : ∃L ∈ Q : K ⊆ L (4)

Hence, if P is a refinement of Q, P does not contain less partitions than Q
(i.e., |P| ≥ |Q|). For instance, P = {{g1, g2}, {g3}, {g4}} is a refinement of
Q = {{g1, g2, g3}, {g4}}, whereas R = {{g1, g2, g4}, {g3}} is not.

Definition (Intersection of Partitionings). The intersection P ∩Q of two par-
titionings P,Q is the set of all non-empty intersections of partitions in P and Q:

P ∩ Q :⇔ {K ∩ L | K ∈ P ∧ L ∈ Q ∧ K ∩ L �= ∅}
Note that the intersection P ∩ Q is always a refinement of P and Q. For

example, the intersection S ∩ Q = {{g1, g2}, {g3}, {g4}}, which equals P in the
example above, is a refinement of S = {{g1, g2}, {g3, g4}} and Q = {{g1, g2, g3},
{g4}}.
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Definition (Similarity of Partitionings). The similarity sim(P,Q) ∈ ]0, 1] of
two non-empty partitionings P,Q is directly proportional to the ratio of the sum
of their cardinalities to the cardinality of their intersection:

sim(P,Q) :=
|P| + |Q|
2 · |P ∩ Q| (5)

According to this definition, the similarity decreases with the cardinality
of the intersection P ∩ Q. So the more elements are in the same partitions in
P and Q (i.e., the more elements constitute the partitions’ intersection), the
smaller |P ∩ Q| and thus the more similar the partitionings. In other words, the
intersection P ∩ Q, which is a refinement of P and Q, should be as similar as
possible to P and Q. Hence, sim(P,Q) = 1 if and only if P = Q, because then
P ∩ Q = P = Q. Regarding the two examples above, sim(S,Q) = 2+2

2·3 = 4
6

is smaller than sim(P,Q) = 3+2
2·3 = 5

6 since P is a refinement of Q. While not
required, this definition of similarity does not allow to compare two similarity
values sim(P,Q) and sim(R,S) if they stem from four different partitionings.

Based on these definitions, we show that the operations enabling particles to
approach each other always increase the similarity of the represented partition-
ings (see Sect. 3.5). Before we explain these operations in detail, we introduce
the basic operations by means of random moves in the search space.

3.4 Random Moves in the Search Space

The motion of particles is a key factor in PSO because it is the only measure to
find better candidate solutions. As a solution of the PP is a partitioning (that
is a set of sets), the motion of particles in the search space can be realized by
the two set operations split and join [6]. In each iteration, each PSOPP particle
makes exactly one move, either in a random direction or by approaching a spe-
cific position in the search space in a target-oriented manner (see Sect. 3.5). The
corresponding operator is randomly selected. In this section, we concentrate on
random moves, i.e., operators that modify the represented partitioning at ran-
dom. In case the selected operator cannot be applied without violating a con-
straint, another operator is chosen. Because of the partitioning constraints, there
are situations in which neither the split nor the join operator can be applied.
For such situations, we introduce an additional exchange operation.

Unless otherwise stated, we use P∗ = {{g1, g2, g4, g5}, {g3, g6}, {g7, g8}}
with partitions K∗ = {g1, g2, g4, g5}, L∗ = {g3, g6}, and M∗ = {g7, g8}},
smin = nmin = 2, and smax = nmax = 4 to illustrate the operators’ applica-
tion.

Random Split. The split operation divides a randomly splitable partition K ∈
P into two new non-empty disjoint partitions L,M such that K = L ∪ M . For
the resulting partitioning P ′, we have P ′ = (P \ {K}) ∪ {L,M}. Note that
the split operation can only be applied if the partition K is big enough, i.e.,
if |K| ≥ 2 · smin . That is because the resulting partitions L and M both have
to fulfill the minimum size constraint, i.e., |L|, |M | ≥ smin . Furthermore, the
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split operation can only be applied if the number of partitions |P| in the original
partitioning P is below the maximum number of partitions nmax since it increases
the number of partitions |P ′| of the resulting partitioning P ′ compared to P by
one (i.e., |P ′| = |P|+1). That way, it is ensured that P ′ also complies with nmax .
Summarizing, the set of randomly splitable partitions σrdm(P) is defined as:

σrdm(P) :⇔ {K | K ∈ P ∧ |K| ≥ 2 · smin ∧ |P| < nmax}
In our example P∗, only K∗ = {g1, g2, g4, g5} is randomly splitable, resulting,

e.g., in a partitioning P∗′ = {{g1, g2}, {g4, g5}, {g3, g6}, {g7, g8}}.

Random Join. The join operation merges a randomly joinable partition K ∈ P
and a randomly joinable counterpart L ∈ P (with K �= L) into a single new
partition M such that K∪L = M . For the resulting partitioning P ′, we have P ′ =
(P \ {K,L}) ∪ {K ∪ L}. Because M has to satisfy the maximum size constraint,
L must be a partition that can be integrated into K without exceeding the
maximum allowed size, i.e., |K| + |L| ≤ smax . Since the join operator decreases
the number of partitions in the resulting partitioning P ′ by one, the operator
can only be applied if P features a sufficient number of partitions, i.e., if |P| >
nmin . Otherwise, P ′ would violate the minimum number of partitions constraint.
Summarizing, the sets of randomly joinable partitions ιrdm(P) and randomly
joinable counterparts ι�rdm(K,P) are defined as follows:

ιrdm(P) :⇔ {K | K ∈ P ∧ ι�rdm(K,P) �= ∅ ∧ |P| > nmin}
ι�rdm(K,P) :⇔ {L | L ∈ P ∧ |K| + |L| ≤ smax ∧ K �= L}

With regard to our example P∗, randomly joinable partitions are L∗ =
{g3, g6} and M∗ = {g7, g8} with randomly joinable counterparts {M∗} and {L∗},
respectively. Merging L∗ and M∗ yields P∗′ = {{g1, g2, g4, g5}, {g3, g6, g7, g8}}.

Random Exchange. Obviously, there are situations in which neither the split
nor the join operator can be applied (particles must not violate the constraints
temporarily since the search space only contains valid solutions). For example, if
smin = smax or nmin = nmax , not a single particle is able to make a move using
the split or the join operation. But even if smin �= smax and nmin �= nmax , spe-
cific combinations of smin , smax , nmin , and nmax can cause individual particles
to freeze: For instance, consider a partitioning P = {{g1, g2, g3}, {g4, g5, g6}}
with smin = 2, smax = 4, nmin = 2, and nmax = 3. To prevent the particles
from becoming jammed, we additionally introduce an exchange operator that
atomically swaps some of the elements of two partitions.

The exchange operation interchanges the proper subset K̂ ⊂ K (with K̂ �=
∅) and the subset L̂ ⊆ L (L̂ is allowed to be the empty set ∅) between a
randomly exchangeable partition K ∈ P and a randomly exchangeable coun-
terpart L ∈ P. Using the non-empty proper subset K̂ of K avoids that the
operation has no effect at all (as would be the case if all or no elements of K
were integrated into L and vice versa). We deliberately allow L̂ to be empty
in order to handle situations as given in the example above: Regarding parti-
tioning P = {{g1, g2, g3}, {g4, g5, g6}}, we can simply move K̂ = {g3} from
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K = {g1, g2, g3} into L = {g4, g5, g6}. If we did not allow L̂ = ∅, we would have
to perform multiple consecutive exchange operations to achieve the same result.
With respect to the example, we would need two operations, e.g., by exchanging
{g2, g3} and {g4}, and finally {g4} and {g2}.

Basically, the exchange operation corresponds to a join that is followed by
a split. Since K̂ is a non-empty proper subset of K, as the split operation, it
yields two non-empty partitions. Because an exchange between two partitions
of size one would contradict this characteristic or not have any effect, we define
the sets of randomly exchangeable partitions εrdm(P) and randomly exchangeable
counterparts ε�

rdm(K,P) as:

εrdm(P) :⇔ {K | K ∈ P ∧ |K| > 1}
ε�
rdm(K,P) :⇔ P \ {K}

When integrating an arbitrary non-empty proper subset K̂ ⊂ K into L, K̂ as
well as the subset L̂ ⊆ L that is integrated into K must be specified in a way that
the condition |K ′|, |L′| ∈ [smin , smax ] holds for the resulting partitions K ′, L′.
More precisely, while the size of K̂ is randomly chosen between 1 and |K| − 1
to ensure that K̂ is a non-empty proper subset of K, valid cardinalities of L̂ are
subject to |K̂|. In detail, |L̂| ≤ min{|L|,min{(|L| + |K̂|) − smin , smax − (|K| −
|K̂|)}} and |L̂| ≥ max{max{0, smin −(|K|−|K̂|)}, (|L|+ |K̂|)−smax} must hold
for the randomly determined set L̂ to guarantee that the resulting partitioning
P ′ = (P \ {K,L}) ∪ {(K \ K̂) ∪ L̂, (L \ L̂) ∪ K̂} respects smin and smax . In our
example P∗, we can, e.g., exchange K̂∗ = {g1, g2, g5} and M̂∗ = {g7} between
K∗ and M∗, resulting in P∗′ = {{g4, g7}, {g3, g6}, {g1, g2, g5, g8}}.

There are two situations that obstruct the application of the random exchange
operator: First, if all partitions are singletons (i.e., if |P| = |G|), there is no ran-
domly exchangeable partition, i.e., εrdm(P) = ∅. In such a case, a particle can
use the random join operator to change its position if nmin < |G| and smax ≥ 2.
Second, if there is only a single partition, the set of randomly exchangeable
counterparts ε�

rdm(K,P) is empty. Here, the random split operator can be used
if |G| ≥ 2 · smin and nmax ≥ 2.

The three operations split, join, and exchange allow to create new or dissolve
existing partitions or to swap elements between them while maintaining the
properties of a partitioning and complying with the partitioning constraints (see
Sect. 3.1). In this section, we focused on random moves, where we cannot make
any statement with regard to the change in similarity to another partitioning. In
the next section, we explain how particles use the basic split, join, and exchange
operators to approach a specific position in the search space.

3.5 Approach of Other Particles

When a particle Πi approaches Bi or BNi
, we ensure that the similarity of

the modified partitioning P and the approached partitioning Q ∈ {Bi,BNi
} is

increased. Recalling the definition of the similarity (see Eq. 5), this can, among
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other possibilities, be achieved by increasing |P|, i.e., the number of partitions
in P, without changing |P ∩Q| at all, or decreasing |P ∩Q| (note that a decrease
of |P ∩ Q| might come along with a decrease of |P|). The former is obtained by
splitting a partition containing elements that are members of two or more par-
titions in Q, whereas a join or exchange achieves the latter by merging elements
that reside in a single partition in Q but are spread over multiple partitions in P.
In contrast to random moves, the applicability of the approach operations does
not only depend on P’s cardinality and the size of its partitions but also on P’s
and Q’s composition. Obviously, an approach is not possible if P = Q.

Unless otherwise stated, we assume P∗ = {{g1, g2, g4, g5}, {g3, g6}, {g7, g8}}
to approach Q∗ = {{g1, g2}, {g4, g6, g7}, {g3, g5, g8}} with smin = nmin = 2 and
smax = nmax = 4 to illustrate the operators’ application in our examples.

Approach Split. Analogously to the definition of σrdm(P), this operator can
only be applied if |P| < nmax . Furthermore, a partition K must fulfill |K| ≥
2 · smin to be contained in the set of splitable partitions σ(P,Q). Here, this
property results from the definition of extractable subsets σ↑(K,P,Q):

σ(P,Q) :⇔ {K | K ∈ P ∧ σ↑(K,P,Q) �= ∅ ∧ |P| < nmax}
σ↑(K,P,Q) :⇔ {L | L ∈ (P ∩ Q) ∧ L ⊂ K ∧ |K \ L| ≥ smin ∧ |L| ≥ smin}

An extractable subset L ∈ σ↑(K,P,Q) is a proper subset of K ∈ P, i.e.,
with respect to Q, K contains further elements that are not contained in the
same partition as the elements in L. Hence, the split operator cannot be applied
to approach another particle if all partitions in P are subsets of partitions in Q,
i.e., if P is a refinement of Q (see Eq. 4). For the resulting partitioning, we have
P ′ = (P \{K})∪{K \L,L}. Extracting the set L from K increases the similarity
between P and Q because |P ′| = |P|+1, Q is not changed, and P ′ ∩Q = P ∩Q,
i.e., the intersection of the partitionings does not change either. With regard to
P∗ and Q∗, K∗ = {g1, g2, g4, g5} is the only splitable partition with extractable
subset N∗ = {g1, g2} (N∗ is the only element of σ↑(K∗,P∗,Q∗)). A split results
in P∗′ = {{g1, g2}, {g4, g5}, {g3, g6}, {g7, g8}}.

Approach Join. As before, a join can only be applied if |P| > nmin . Similarly
to the definition of randomly joinable partitions, joinable partitions ι(P,Q) are
those partitions for which joinable counterparts ι�(K,P,Q) exist:

ι(P,Q) :⇔ {K | K ∈ P ∧ ι�(K,P,Q) �= ∅ ∧ |P| > nmin}
ι�(K,P,Q) :⇔ {L | L ∈ P ∧ |K| + |L| ≤ smax

∧ K �= L ∧ ∃M ∈ Q : (M ∩ K �= ∅ ∧ M ∩ L �= ∅)
︸ ︷︷ ︸

C

}

Please note that the definition of joinable counterparts ι�(K,P,Q) is very
similar to the definition of randomly joinable counterparts ι�rdm(K,P). To ensure
that P approaches Q, we introduce an additional condition C that implies M �

K because M does not only contain elements of K but also of L (with M ∈ Q and
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K,L ∈ P). That way, we bring together elements that are in a single partition
in Q but spread over two or more partitions K,L in P. Note that Q cannot be
approached by a join if all partitions in P are supersets of partitions in Q, i.e.,
if Q is a refinement of P (see Eq. 4). In such a situation, condition C cannot be
satisfied. For the resulting partitioning, we have P ′ = (P \ {K,L}) ∪ {K ∪ L}.
The similarity between P and Q is increased because |P ′| = |P| − 1, Q is not
changed, and |P ′ ∩Q| ≤ |P ∩Q|−1. Note that we have to write “≤” since K and
L might both contain elements that are contained in a further partition M ′ ∈ Q
with M ′ �= M . With regard to P∗ and Q∗, L∗ = {g3, g6} and M∗ = {g7, g8} are
joinable partitions with counterparts M∗ and L∗, respectively. A join results in
P∗′ = {{g1, g2, g4, g5}, {g3, g6, g7, g8}}.

Approach Exchange. If neither a split nor a join can be used to approach a
partitioning Q �= P, PSOPP falls back on the exchange operator that swaps one
or more elements between a partition K contained in the set of exchangeable
partitions ε(P,Q) and one of K’s exchangeable counterparts ε�(K,P,Q):

ε(P,Q) :⇔ {K | K ∈ P ∧ ε�(K,P,Q) �= ∅}
ε�(K,P,Q) :⇔

{
L | L ∈ P ∧ K �= L ∧ ∃M ∈ Q : ∃K̂ ⊂ K : (6)

(
K̂ ∩ M �= ∅ ∧ L ∩ M �= ∅ ∧ K̂ ∈ 2P∩Q ∧

(
∃L̂ ⊂ L : L̂ ∩ M = ∅ ∧ L̂ ∈ 2P∩Q

∧ smin ≤ |(K \ K̂) ∪ L̂| ≤ smax ∧ smin ≤ |(L \ L̂) ∪ K̂| ≤ smax

))}

Note that K̂∩M �= ∅∧L∩M �= ∅ implies that K ∈ P as well as L ∈ P contain
elements that belong to the same partition M ∈ Q. The goal of the exchange
operation is to bring these elements together. Also note that L̂ ⊂ L might be
an empty set ∅, whereas K̂ ⊂ K is always non-empty. The latter causes |P| to
be left unchanged. The condition L̂ ⊂ L is implied by L ∩ M �= ∅ ∧ L̂ ∩ M = ∅.
The reader can convince herself that excluding L̂ = L does not restrict the
applicability of the operator because the forbidden exchange of K̂ and L̂ = L
can be realized by swapping K \ K̂ and L \ L̂ = ∅.

Integrating K̂ into L and L̂ into K increases the similarity of P and Q
by leaving |P| and |Q| unchanged and reducing |P ∩ Q| by ≥ 1. On the one
hand, L̂ ∩ M = ∅, K̂ ∩ M �= ∅, and K̂ ∈ 2P∩Q (2P∩Q denotes the power set of
P ∩Q) ensure that we not only merge elements of M but also reduce the number
of partitions containing elements of M by one. On the other hand, L̂ ∈ 2P∩Q

assures that we do not spread a set of elements V ∈ (P ∩Q) (V is thus contained
in a single partition in P and Q) over K and L by merging L̂ into K. This has to
be avoided because it would decrease the similarity of P and Q. The conditions
smin ≤ |(K \ K̂) ∪ L̂| ≤ smax and smin ≤ |(L \ L̂) ∪ K̂| ≤ smax restrict the size
of the resulting partitions to the allowed range.

For the resulting partitioning, we have P ′ = (P \ {K,L}) ∪ {(K \ K̂) ∪
L̂, (L\ L̂)∪ K̂}. The similarity between P and Q is increased because |P ′| = |P|,
Q is not changed, and |P ′ ∩ Q| ≤ |P ∩ Q| − 1. With regard to P∗ and Q∗,
for instance, K∗ = {g1, g2, g4, g5} is an exchangeable partition with exchange-
able counterparts L∗ = {g3, g6} and M∗ = {g7, g8}. For example, we can
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exchange K̂∗ = {g4} and L̂∗ = ∅ between K∗ and L∗ by which we obtain
P∗′ = {{g1, g2, g5}, {g3, g4, g6}, {g7, g8}}.

However, there are situations in which the exchange operator cannot be
applied: For example, consider a partitioning Q = {N,O,P}, where each par-
tition has a cardinality of 100 and smin = smax = 100. A partitioning P =
{K,L,M} cannot approach Q, e.g., if K contains 39, 27, and 34, L contains 25,
40, and 35, and M contains 36, 33, and 31 elements of N , O, and P , respec-
tively. In such situations, one might relax the constraint L̂ ∈ 2P∩Q in Eq. 6 to
L̂ = U ∪V , where U ∈ 2P∩Q and V ⊂ W ∈ (P ∩Q). While this relaxation allows
to apply the operator in each situation, it only guarantees to not decrease the
similarity of P and Q because we spread the elements of W over two partitions.

4 Evaluation

In our evaluation, we analyze PSOPP’s behavior in various scenarios: We (1)
investigate the influence of the numbers of elements |G| on its performance with
regard to the quality of the result and the number of moves particles perform,
(2) examine PSOPP’s convergence, (3) compare its behavior with less and more
constrained partitionings on the basis of the partitioning constraints introduced
in Sect. 3.1, (4) make these investigations for strict partitioning clustering (C),
anticlustering (AC), two instances of homogeneous partitioning3 (HPm, HPs),
as well as different combinations of these objectives, and (5) compare our results
to those achieved with an x-means implementation4 as, to the best of our knowl-
edge, there is no other renowned algorithm supporting more of our partitioning
constraints out of the box. For a comparison with IBM ILOG CPLEX5 demon-
strating the need for metaheuristics, we refer the interested reader to [4].

For evaluation, we used a Java implementation of PSOPP. Each particle runs
in its own thread, which allows for the parallel examination of the search space.
Because preceding evaluations in [4] showed that PSOPP achieves good results
with a relatively small number of particles, we used particle neighborhoods Ni

that contain all particles in the system. As mentioned in Sect. 2.1, BNi
thus

corresponds to B. In each setting, PSOPP solved the PP for a set of elements
G = {0, 1, 2, . . . , n − 1}, where n = |G| is the number of elements to partition.

As stated above, we performed evaluations for the objectives C, AC, HPm,
and HPs (see Sect. 1). To group similar elements in case of C, the sum of the
squared Euclidean distances between the elements and their cluster center (this
corresponds to the “classic” k-means distance measure) is to be minimized. For
AC, PSOPP maximizes, in accordance with [27], the sum of the squared Euclid-
ean distances to form partitions consisting of dissimilar elements. To establish
homogeneous partitionings in case of HPm and HPs, we calculate a value pK
for all partitions K ∈ P. As the goal is to form similar partitions, the stan-
dard deviation of the values pK should be minimized. For HPm, pK is the
3 Note that we refer to “homogeneous partitioning” as “anticlustering” in [4].
4 Weka, Version 3.6: http://weka.sourceforge.net.
5 http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/.

http://weka.sourceforge.net
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
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mean of the elements contained in K. In case of HPs, pK represents the sum
of the elements in K. Hereinafter, we call the values of the aggregated squared
Euclidean distances or standard deviations raw values v. For better compara-
bility, we normalize the raw values to the interval [0, 1]. This is achieved by the
fitness function Fo(v) = 1.0 − bo−v

bo−wo
, which yields a fitness value for a specific

raw value v. It is based on identified worst wo and best bo values of v for objec-
tive o ∈ {C,AC,HPm,HPs}.6 For all objectives, PSOPP’s goal is to maximize
the fitness since the higher the fitness, the better the solution.

Where not otherwise stated, we used a time limit of 10 s as termination
criterion and performed 500 simulation runs for each evaluation scenario. All
presented results are average values; values σ denote standard deviations. Fur-
ther, apart from smin = 2 (i.e., each partition has to be composed of more than
one element) and nmin = 2, which prevents the “grand coalition”, we did not
restrict valid partitionings (i.e., smax = n, nmax = n

2 ). As discussed in Sect. 1,
such restrictions enable hierarchical decomposition. The influence of restrictions
on PSOPP’s behavior is examined in a separate evaluation scenario.

In previous work [4], we identified suitable parameters sets crdm , cBi
, cBNi

for
C and HPm on the basis of different numbers of elements n ∈ {100, 500, 1000}.
For our extended evaluation, we used the same procedure to identify these para-
meters for AC and HPs as well. It turned out that crdm = 0.3, cBi

= 0.0, and
cB = 0.7 are useful parameters for C, AC, as well as HPs, and that crdm =
0.2, cBi

= 0.7, and cB = 0.1 are suitable parameters for HPm. For all objectives,
we observed a plateau of moderate to good fitness values for 0.0 < crdm < 0.5,
indicating the trade-off between exploration and exploitation. In particular for
C, approaching B is far more important than for HPm and especially AC. We
assume that the fitness landscapes of HPm and AC contain more spikes that are
worth to be explored by the particles individually, while C requires all particles
to work together in order to improve a specific candidate solution (less but more
prominent spikes in the fitness landscape). HPs yielded high-quality results for
almost every investigated parametrization.

We further noticed in [4] that the total no. of moves only shows slight
increases for #P > 4. In most cases, the coefficient of variation of the no. of
moves per particle increases significantly with #P > 4, meaning that some parti-
cles made many and others only few moves (the threshold of 4 can be attributed
to our 4-core Xeon machines). This characteristic together with a remarkable
drop of the average no. of moves per particle results in lower fitness values if the
problem being solved requires a systematic exploration of the search space, as is
the case with C. Summarizing, there is certainly a trade-off between the average
no. of moves per particle and the provision of diversity through a larger no. of
particles that represent and improve different candidate solutions. Due to these
observations, we used #P = 4 in our experiments.

6 For HPm and HPs, we used PSOPP to empirically identify wo/bo by minimiz-
ing/maximizing the corresponding objective’s fitness and taking the worst/best value
of v from 500 runs. For C and AC, we calculated wo and bo as described in our dis-
cussion entitled “Influence of Partitioning Constraints”.
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Table 1. Selected results for the objectives C, AC, HPm, and HPs obtained with
PSOPP and RDM using a time limit of 10 s for different values of the number of ele-
ments. All values are averages over 500 runs. Parentheses contain standard deviations.

objective C objective AC objective HPm objective HPs
#Elements 250 500 1000 2000 1000 3000 1000 4000 100 4000

wo 1.30E6 1.04E7 8.33E7 6.67E8 250.00 750.00 499.00 1998.50 3498.76 5.66E6
bo 62.50 125.00 250.00 500.00 8.33E7 2.25E9 0.00 0.00 0.00 263.60

RDM
v

4.35E5
(1.50E4)

4.08E6
(9.90E4)

3.59E7
(6.51E5)

3.08E8
(4.39E6)

7.55E7
(6.70E6)

2.04E9
(1.85E8)

82.92
(40.67)

350.73
(171.56)

26.76 (1.45) 1698.47
(32.87)

Fo
(v )

(v )

0.67 (0.01) 0.61 (0.01) 0.57 (0.01) 0.54 (0.01) 0.91 (0.08) 0.91 (0.08) 0.83 (0.08) 0.82 (0.09) 0.99 (0.00) 1.00 (0.00)

PSOPP

v
72.66 (4.15) 1423.44

(184.13)
2.51E5

(3.49E4)
7.66E7

(7.36E6)
8.33E7
(0.00)

2.25E9
(0.11)

0.00 (0.00) 75.53
(145.05)

0.66 (0.16) 1671.94
(131.18)

Fo
1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.89 (0.01) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.96 (0.07) 1.00 (0.00) 1.00 (0.00)

#Partitions
121.33
(1.43)

242.65
(2.25)

481.48
(6.01)

939.75
(23.44)

2.00 (0.00) 2.00 (0.00) 2.00 (0.09) 192.31
(351.88)

38.95 (6.08) 1716.53
(227.18)

Partition Size
2.06 (0.24) 2.06 (0.24) 2.08 (0.27) 2.13 (0.34) 500.00

(312.22)
1500.00
(879.04)

499.00
(336.64)

20.80
(198.85)

2.57 (1.47) 2.33 (0.70)

#Total Moves [in 1000] 985.52
(32.24)

482.67
(18.95)

187.05
(9.33)

52.95 (5.27) 214.15
(12.98)

78.19 (3.04) 206.20
(29.37)

39.37
(17.11)

1733.64
(216.73)

36.39
(12.08)

#Rdm. Moves [in 1000] 459.54
(14.87)

222.73
(8.72)

82.97 (4.14) 20.19 (1.90) 90.29 (4.48) 31.43 (1.14) 78.84 (7.61) 15.31 (5.83) 767.87
(95.98)

11.73 (3.84)

#Appr. Moves [in 1000] 525.98
(17.43)

259.94
(10.27)

104.08
(5.23)

32.76 (3.39) 123.87
(8.52)

46.76 (2.29) 127.36
(21.96)

24.05
(11.33)

965.77
(122.44)

24.66 (8.25)

#Moves per Particle [in1000] 246.38
(8.20)

120.67
(4.84)

46.76 (2.43) 13.24 (1.95) 53.54 (3.30) 19.55 (1.01) 51.55 (9.40) 9.84 (8.26) 433.41
(54.27)

9.10 (4.55)

To appraise PSOPP’s performance, we performed all experiments with an
additional parametrization of crdm = 1.0, cBi

= 0.0, cB = 0.0, and #P = 4,
which is similar to a random search. In the following, we refer to this procedure
as RDM.

Influence of the Number of Elements to Partition. We evaluated the influence
of n for the set of problem sizes N = {100, 250, 500, 1000, 2000, 3000, 4000}. As
shown in Table 1, an increase of n comes along with a decrease in the no. of moves
particles make in the search space in C, AC, HPm, as well as HPs. Evidently, that
is because the application of move operators (especially the approach operators)
needs more time. Because the size of the search space grows significantly with n
(see Sect. 1), it is not surprising that the achieved fitness drops with greater n:
While PSOPP obtains very convincing results for n ≤ 1000 in case of C, we
need a higher time limit (i.e., more than 10 s) for n ≥ 2000 (see convergence
evaluation). Nevertheless, PSOPP notices that it is a good idea to establish
small partitions of size two for all n. In HPm and AC, PSOPP scales much
better with n. Even for n = 4000, the obtained fitness of 0.96 (σ = 0.07) for
HPm and 1.00 (σ = 0.02) for AC is still very close to the optimum in all runs.
For n ≤ 1000, PSOPP achieves optimal results in all HPm and AC runs by
establishing an appropriate partitioning consisting of two big partitions. With
regard to RDM, the obtained fitness values are remarkably lower for n ≤ 2000
than those of PSOPP in case of C, but, although the fitness decreases, the gap
narrows clearly with increasing n (from 0.43 for n = 1000 to 0.04 for n = 4000),
which emphasizes the need for higher time limits. As for HPm and AC, RDM’s
average fitness values only show slight variations with n (on average, RDM yields
0.83 for HPm and 0.91 for AC, both with σ = 0.01) and are – while still being
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Fig. 2. PSOPP’s convergence with regard to raw values for n = 2000, #P = 4, and a
time limit of 60 s in case of objective C (average of 500 runs).

significantly smaller – closer to PSOPP’s fitness (on average, 0.99 for HPm and
1.00 for AC, both with σ = 0.01) than in case of C. Hence, C appears to be more
difficult than HPm, which, in turn, seems more difficult than AC. HPs appears
to be the easiest of our problems, which already aroused suspicion in the course
of the search for appropriate parameters: Surprisingly, not only PSOPP but also
RDM reaches a fitness of 1.00 for all n ≥ 250. With regard to raw values v,
PSOPP outperforms RDM by an average of 190.87 (σ = 147.60) over all n ∈ N.
When minimizing instead of maximizing the fitness of HPs, the problem turns
out to be much more complex: While PSOPP reaches an almost optimal average
fitness value of 0.01 (σ = 0.02), RDM only yields an average of 0.94 (σ = 0.06)
over all n ∈ N.

Convergence. For the evaluation of PSOPP’s convergence, we ran experiments
for additional time limits of 30 s and 60 s for all n ∈ N. Especially objective C
benefits from higher time limits in case of n ≥ 2000: On average, the fitness is
23.49% (σ = 8.70%) and 36.14% (16.97%) higher after 30 s and 60 s, respec-
tively, compared to a limited runtime of 10 s. The total no. of moves increased
up to an average of 361.51% (σ = 214.19%) after 60 s. In HPm and n ≥ 2000,
PSOPP already yields high-quality results after 10 s. The fitness therefore only
improves by 1.57% (σ = 1.43%) and 1.73% (σ = 1.64%) after 30 s and 60 s,
respectively, while the total no. of moves grows by 611.48% (σ = 110.75%) in
case of a maximum runtime of 60 s. After 60 s, PSOPP achieves optimal fitness
values for HPm in all runs. We observe a similar behavior in case of AC and
n ≥ 2000: The fitness can only increase by 0.12% (σ = 0.17%) until reaching
optimal values after 30 s, while the total no. of moves increases up to 456.56%
(σ = 10.15%). In case of HPs, the average increase of the total no. of moves by
509.39% (σ = 154.26%) does not have a significant effect on the fitness values
since they are already at a very high level after 10 s. Figure 2 illustrates PSOPP’s
convergence in terms of the mean development of the raw value v for objective C
over a time frame of 60 s.
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Influence of Partitioning Constraints. To examine the influence of constrained
partitionings on PSOPP’s behavior, we additionally used nmax = n

2 , nmin =
0.98 · nmax , smin = 2, and smax = n − (nmin − 1) · smin for C and HPs, and
nmin = 2, nmax = n·0.02, smin = n

nmax
, and smax = n

nmin
for AC and HPm. These

parametrizations are compatible with the average number and size of partitions
PSOPP found in the other evaluation scenarios (see Table 1): In C, it is preferred
to create partitions that contain two very similar elements (e.g., a partition
containing i and i+1), whereas it is preferred to group two dissimilar elements i
and (n−1)−i with sum n−1 in order to equalize the sum of the elements of each
partition in HPs. AC also favors to group such dissimilar elements to maximize
the sum of the squared Euclidean distances. In our experiments, AC establishes
two big partitions that contain pairs (i, (n−1)− i). Since both partitions have a
mean of n−1

2 , optimal results of HPm can be achieved analogously to AC. For n ≥
2000, we observed that the new restrictions allow PSOPP to improve the fitness
by an average of 5.66% (σ = 4.04%) in case of C, and 1.73% (σ = 1.64%) in case
of HPm. Hence, these restrictions allowed PSOPP to achieve an optimal fitness
even for n ≥ 2000 in all HPm runs. While this improvement is accompanied
by a slight average decline of the total no. of moves by 1.35% (σ = 9.17%)
in C, the total no. of moves significantly increases by 44.39% (σ = 26.19%)
in HPm. Restrictions also have a positive effect on AC: For n = 4000, the
increase of the total no. of moves by 9.93% comes along with the ability to gain
optimal fitness values in all runs. In HPs, the average raw value over all n ∈ N
can be decreased by 45.12 (σ = 76.80), although the total no. of moves drops
considerably by 19.44% (σ = 12.17%). As opposed to the other objectives, the
fitness does not change. Summarizing, this shows that PSOPP cannot only deal
with constrained partitionings but also benefits from them, especially if n is
large. While the former is not to be taken for granted (as outlined in Sect. 1, to
the best of our knowledge, there is no partitioning algorithm that supports all of
these constraints out of the box), the latter is mainly because the partitioning
constraints reduce the size of the search space. Where appropriate, restricting
the search space is thus an alternative to raising the time limit.

Comparison with x-means. Unlike PSOPP, which solves the PP in a general
manner, x-means is specialized to problems where the costs of partitions can
be assessed independently of each other. Therefore, x-means is not compatible
with our homogeneous partitioning problems HPm and HPs. Moreover, PSOPP
allows to restrict valid partition sizes, which is not possible in x-means. Because
it is not obvious how to extend x-means by this feature, we used smin = 1
to compare PSOPP to x-means. For these experiments, we used objective C
and performed 100 x-means runs for each n ∈ N. In this situation, the highly
specialized x-means obtains an average fitness of 1.00 (σ = 0.00) over all n ∈ N
(here, bC = 0.00). With regard to the fitness FC(v), PSOPP can keep up with
x-means until n = 1000. As for raw values v, after 10 s, PSOPP obtains an
average of 30.57 (σ = 1.29) for n = 100 and 101.11 (σ = 5.94) for n = 250,
compared to 38.00 (σ = 0.00) and 68.00 (σ = 0.00) in case of x-means. For
n ≥ 500, we have to admit that x-means performs much better in terms of raw
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Table 2. The avg. r̄n and the max. r̂n time PSOPP needed to find optimal solutions
in its 500 · 99 % = 495 best runs, and the avg. raw value v x-means obtained in its
100 · 99 % = 99 best runs limited by the time r̂n PSOPP needed to find the optimum
for C (smin = nmin = 1, smax = nmax = n). Parentheses contain standard deviations.

PSOPP x-means
objective HPm objective AC objective C objective C

r̄n [in s] r̂n [in s] r̄n [in s] r̂n [in s] r̄n [in s] r̂n [in s] v

#E
le

m
en

ts

100
0.02
(0.02)

0.16
0.07
(0.01)

0.09
0.01
(0.01)

0.08
18.00

(0.00)

250
0.06
(0.05)

0.36
0.02
(0.02)

0.16
0.02
(0.03)

0.27
63.43
(24.22)

500
0.21
(0.21)

0.98
0.06
(0.07)

0.31
0.08
(0.08)

0.58
604.00

(0.00)

1000
1.11
(1.10)

4.88
0.29
(0.31)

1.51
0.41
(0.31)

1.28
5040.00 (0.00)

2000
7.95
(8.39)

34.01
1.28
(1.68)

9.20
2.85
(2.22)

8.53
10080.00 (0.00)

3000
28.26
(33.64)

148.02
4.18
(5.47)

27.21
9.47
(7.78)

29.80
8420.00 (0.00)

4000
73.49
(92.60)

388.23
9.44
(14.40)

77.16
21.98
(17.31)

69.01
20160.00 (0.00)

values than PSOPP. In case of n = 500, x-means reaches a raw value of 142.00 on
average (σ = 0.00), whereas PSOPP yields 1837.05 (σ = 274.50). A comparable
value of 227.52 (σ = 12.31) is achieved after 60 s. However, we observed that
PSOPP outperforms x-means when we do not constrain valid partitionings at
all (here, smin = nmin = 1 and smax = nmax = n). Table 2 depicts the average
r̄n and the maximal r̂n time the 500 · 99% = 495 best runs of PSOPP needed
to find optimal solutions in case of C, AC, and HPm for all n ∈ N (please note
the approximately cubic growth of r̄n and r̂n with n). In contrast to PSOPP,
whose 495 best runs always yielded optimal raw values of 0.00 after r̂n seconds
in C, x-means was not able to find optimal solutions. The average raw values
obtained by x-means after r̂n seconds are also depicted in Table 2 (analogously
to PSOPP, these data are based on the 100 · 99% = 99 best runs of x-means).

Optimization of Multiple Heterogeneous Objectives. Finally, we analyzed in which
way the combination of our objectives C,AC,HPm, and HPs influences PSOPP’s
ability to obtain high-quality results. For this purpose, we regarded the two
three-dimensional combinations C-HPm-HPs and AC-HPm-HPs, as well as the
four-dimensional case C-AC-HPm-HPs. In these multi-objective optimizations,
we used an a priori prioritization by taking the average of the fitness values
of the corresponding optimization criteria to assess the quality of a candidate
solution (each criteria was thus equally weighted). Our parameter search yielded
crdm = 0.2, cBi

= 0.1, and cB = 0.7 for AC-HPm-HPs, and crdm = 0.2, cBi
= 0.0,

and cB = 0.8 for C-HPm-HPs as well as C-AC-HPm-HPs. In tune with our
previous observations, the valuation of the different parameter sets was mainly
influenced, if not dominated, by C in C-HPm-HPs and C-AC-HPm-HPs, and
by HPm in AC-HPm-HPs. In all cases, there is a conspicuous need for a sys-
tematic exploration of the search space, indicated by the high values of cB.
As for AC-HPm-HPs, the average fitness achieved for a tuple (o, n) (with o ∈
{HPm,HPs,AC} and n ∈ N) did not drop by more than 0.92%, compared to
optimizing for a single objective. Overall, PSOPP achieves an average fitness
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of 1.00 (σ = 0.01), compared to 0.90 (σ = 0.00) in case of RDM. In scenario
C-HPm-HPs, the decrease in fitness ranges between 1.55% and 12.50% for C
(with an average of 5.88% and σ = 4.17%). However, the fitness of HPm pays
tribute to this relatively small reduction, in particular for large n ≥ 2000. The
drop of HPm’s fitness ranges between 1.72% and 31.85% (with an average of
13.58% and σ = 13.36%). Again, the fitness of HPs remains at high levels and
does not diminish by more than 0.77%. Over all n ∈ N, PSOPP achieves an
average fitness of 0.89 (σ = 0.11), compared to 0.73 (σ = 0.04) in case of RDM.
Regarding the four-dimensional case C-AC-HPm-HPs, the decline in HPm’s fit-
ness is much lower and ranges between 1.13% and 8.32% (with an average of
3.73% and σ = 2.82%). We ascribe this to the related AC problem that is also
solved in this scenario. As a result, HPm and AC weigh more than C. With
respect to AC, the fitness values diminish by at least 0.34% and at most 5.25%
(with an average of 1.86% and σ = 1.92%). This comes at the price of a sig-
nificant decrease in C’s fitness, which ranges between 4.92% and 50.45% (with
an average of 21.35% and σ = 16.63%). Due to the supposed high density
of high-quality results for HPs, its maximum decline in fitness is only 0.91%.
Overall, PSOPP achieves an average fitness of 0.91 (σ = 0.08), compared to
0.72 (σ = 0.02) in case of RDM. While one might have to adjust the weights
of the different optimization criteria to the needs of a specific application, these
experiments highlight PSOPP’s ability to solve the PP in the context of multiple
heterogeneous objectives.

5 Conclusion and Future Work

In this paper, we introduced PSOPP, a discrete Particle Swarm Optimizer that
solves the partitioning problem (PP) outlined in Sect. 1. In contrast to the major-
ity of other approaches, PSOPP solves the PP in a general manner, i.e., indepen-
dently of the characteristics of a specific objective function. To this end, it uses
the basic set operations split, join, and exchange to explore the search space.
As a result, PSOPP can be applied to diverse problems in various domains (see
Sect. 1 for examples) by defining an appropriate fitness function that evaluates
the quality of candidate solutions. Possible problems comprise strict partitioning
clustering (with outliers), anticlustering, homogeneous partitioning, and coali-
tion structure generation, among others. Moreover, PSOPP allows to specify
valid partitionings in terms of a minimum and maximum number and size of
partitions. These properties clearly distinguish PSOPP from other partitioning
methods. Our evaluation shows that it finds high-quality solutions respecting
prescribed partitioning constraints in different evaluation scenarios with a low
number of particles.

In this paper, we assumed that PSOPP partitions a set of elements (see
Sect. 1). In future work, we will revise the definition of the similarity of parti-
tionings and adjust PSOPP’s approach operations so that it can solve multiset
partitioning problems. In this context, we want to examine which influence these
changes have on PSOPP’s performance. With regard to multi-objective optimiza-
tion, we will extend PSOPP to gather solutions lying on a pareto frontier.
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Abstract. Multiagent planning is a coordination technique used for
deliberative acting of a team of agents. One of vital planning tech-
niques uses declarative description of agents’ plans based on Finite State
Machines and their later coordination by intersection of such machines
with successive verification of the resulting joint plans.

In this work, we firstly introduce a method of multiagent planning
which makes use of projections of other agent actions in order to itera-
tively search for a skeleton of a multiagent plan. Secondly, we describe
integration of the static analysis provided by process calculi type systems
for approximate verification of exchanged local plans. Furthermore, we
introduce an alternative method to accomplish the above verification
by a classical planner. Finally, we compare our approach with current
state-of-the-art planner on an extensive benchmark set.

Keywords: Multiagent planning · Action landmarks · Plan verifica-
tion · Process calculi · Type systems · Delete relaxation

1 Introduction

Intelligent agents requested to act together in a team require to some extent an
ability to plan their actions in advance. If the agents prepare complete plans
towards their goals, the problem they have to solve is a form of multiagent
planning.

Similarly to classical planning, our multiagent planning approach assumes
Strips [3] actions, which are deterministic and described by precondition and
effects on the environment they are executed in. Thereby, the action state pro-
gression follows the Strips principles as well.

Although the action model is Strips, the complete multiagent planning
model is subsequent to a recent extension of Strips by Brafman & Domshlak
called MA-Strips [2]. In MA-Strips, the agents are cooperative with common
goals and the resulting multiagent plan prescribes their coordinated acting from
the initial state of the environment towards the goals. The agents are hetero-
geneous with different capabilities described by their Strips actions. Straight-
forwardly, their actions define parts of the environment they can affect and this
c© Springer International Publishing Switzerland 2015
B. Duval et al. (Eds.): ICAART 2015, LNAI 9494, pp. 245–261, 2015.
DOI: 10.1007/978-3-319-27947-3 13
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gives rise to their local planning problems. Conveniently, this (partial) “separa-
tion of concerns” helps to increase efficiency of the planning process and provides
intrinsic separation of public information the agents have to share and internal
facts, which can be kept private.

The multiagent planning approach proposed in this work extends recent
works by Tožička, et al. on representation of multiagent plans in form of Finite
State Machines and their merging [11] and plan generation using diverse plan-
ning with homotopy class constraints with testing of usability of partial plans
among the agents by compilation into planning landmarks [10].

In this work, we initially propose to use a projections of actions [7] directly
for multiagent planning, which was in the literature used so far only in relaxation
heuristic estimations [8]. The main improvement is based on integration of theory
and analysis provided by process calculi and their type systems. Concretely, we
use generic process calculi type system scheme Poly✶ [5,6] for approximate veri-
fication of foreign plans received from other agents, which prospectively increases
efficiency of search for coordinated multiagent plans. Finally, we compare our
approach with current state-of-the-art planner FMAP [9] on an extensive bench-
mark set.

2 Multiagent Planning

We consider a number of cooperative and coordinated agents featuring distinct
sets of capabilities (actions) which concurrently plan and execute their local
plans in order to achieve a joint goal. The environment wherein the agents act is
classical with deterministic actions. The following formal preliminaries restate
the MA-Strips problem [2] required for the following sections.

2.1 Planning Problem

An MA-Strips planning problem Π is a quadruple Π = 〈P, {Ai}n
i=1, I, G〉,

where P is a set of facts, Ai is the set of actions of i-th agent, I ⊆ P is an initial
state, and G ⊆ P is a set of conditions on the goal states. Given Π, we use A to
denote all the actions from Π, that is, A =

⋃n
i=1 Ai.

An action an agent can perform is a triple of subsets of P which in turn
denote the set of preconditions, the set of add effects, and the set of delete
effects. Selector functions pre(a), add(a), and del(a) are defined so that a =
〈pre(a), add(a), del(a)〉. Moreover let eff(a) = add(a) ∪ del(a).

An agent is identified with its capabilities, that is, an agent α = Ai =
{a1, . . . , am} is characterized by a finite repertoire of actions it can perform in
the environment. We use metavariables α and β to range over agents from Π.
A planning state s is a finite set of facts and we say that fact p holds in s iff
p ∈ s. When pre(a) ⊆ s then state progression function γ is defined classically
as γ(s, a) = (s \ del(a)) ∪ add(a).
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2.2 Public and Internal Classification

In multiagent planning each fact is classified either as public or as internal out
of computational or privacy concerns. MA-Strips specifies this classification as
follows. A fact is public when it is mentioned by actions of at least two different
agents. A fact is internal for α when it is not public but mentioned by some
action of α. A fact is relevant for α when it is either public or internal for α.
Relevant facts contain all the facts which agent α needs to understand, because
other facts are internal for other agents and thus not directly concerns α. Given
Π, the set pub of public facts, and sets int(α) and rel(α) of facts internal and
relevant for α are formally defined as follows. Let facts(a) = pre(a) ∪ add(a) ∪
del(a) and similarly facts(α) =

⋃
a∈α facts(a).

pub =
⋃

α�=β
(facts(α) ∩ facts(β))

int(α) = facts(α) \ pub

rel(α) = pub ∪ int(α)

It is possible to extend the set of public facts to contain additionally some
facts that would be internal by the above definition. It is common in literature [7]
to require that all the goals are public. Then pub is defined as the minimal
superset of the intersection from the definition that satisfies G ⊆ pub. In the
rest of this paper we suppose G ⊆ pub and also another simplification common
in literature [2] which says that Ai are pairwise disjoint1.

MA-Strips further extends this classification of facts to actions as follows.
An action is public when it has a public effect (that is, eff(a)∩pub �= ∅), otherwise
it is internal. Strictly speaking, MA-Strips defines an action as public whenever
it mentions a public fact even in a precondition (that is, when facts(a)∩pub �= ∅).
However, as our approach does not rely on synchronization on public precondi-
tions, we can consider actions with only public preconditions as internal. For our
approach it is enough to know that internal actions do not modify public state.

2.3 Local Planning Problems

In MA-Strips model, agent actions are supposed to manipulate a shared global
state when executed. In our approach to multiagent planning, a local planning
problem is constructed for every agent α. Each local planning problem for α is a
classical Strips problem where agent α has its own internal copy of the global
state and where each agent is equipped with information about public actions of
other agents. These local planning problems allow us to divide an MA-Strips

problem to several Strips problems which can be solved separately by a classical
planner. This paper describes a way to find a solution of an MA-Strips problem
1 These two conditions rules out private goals and joint actions. Any MA-Strips

problem which does not satisfy the two conditions can be translated to an equivalent
problem which satisfies them. However, a solution that would take advantage of
private goals and joint actions is left for future research.
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but it does not address the question of execution of a plan in some real-world
environment.

The projection F � α of an arbitrary set F ⊆ P of facts to agent α is the
restriction of F to the facts relevant for α, that is, F � α = F ∩ rel(α). Projection
removes from F facts not relevant for α and thus it represents F as understood
by agent α. The projection a � α of action a to agent α removes from a facts not
relevant for α, again representing a as seen by α.

a � α = 〈pre(a) � α, add(a) � α, del(a) � α〉
Note that a � α = a when a ∈ α. Hence projection to α alters only actions of

other agents.
In the multiagent planning approach presented in this paper, every agent α

is from the beginning equipped with projections of other agents public actions.
These projections, which we call external actions, describe how agent α sees
effects of public actions of other agents. Given Π, the set ext(α) of external
actions of agent α is defined as follows.

ext(α) = {a � α : a is a public action of β �= α}
Recall that A denotes the set of all the actions from Π. The set A � α contains

actions of α plus external actions it is defined as follows.

A � α = α ∪ ext(α)

Now it is easy to define a local planning problem Π � α of agent α also called
projection of Π to α.

Π � α = 〈P � α, A � α, I � α, G〉.

2.4 Plans and Extensibility

We would like to solve agent local problems separately and compose local solu-
tions to a global solution of Π. However, not all local solutions can be easily
composed to a solution of Π. Concepts of public plans and extensibility helps us
to recognize local solutions which are conductive to this aim.

A plan π is a sequence of actions 〈a1, . . . , ak〉. A plan π defines an order in
which the actions are executed by their unique owner agents. It is supposed that
independent actions can be executed in parallel. A solution of Π is a plan π
whose execution transforms the initial state I to subset of G. A local solution is
a solution of a local planning problem. Let sols(Π) and sols(Π � α) denote the
set of all solutions of a given problem.

A public plan σ is a plan that contains only public actions. A public plan can
be seen as a solution outline that captures execution order of public actions while
ignoring agents internal actions. In order to avoid confusions between public and
external versions of the same action, we suppose that actions are annotated with
unique ids which are preserved under projection. From now on we consider public
plans to be sequences of public action ids.
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(Γ1) (Γ2) (Γ3)

Fig. 1. Example of computing PSM public projection [11]. We suppose a context where
pn are public and in internal actions, and where a, b, c are public and x, y internal
facts.

Let operator ·� construct a public plan from plan π, that is, let π� be the
sequence of all public action ids from π preserving their order. A public plan
σ is called extensible iff it be can extended to a solution of Π by insertion of
internal actions of any agent, that is, iff there is π ∈ sols(Π) such that π� = σ.
A public plan is called α-extensible iff it can be extended to a local solution of
Π � α by insertion of internal actions of α, that is, iff there is agent α’s plan
πα ∈ sols(Π � α) such that π�

α = σ.
The following proposition states the correctness of the used approach to

multiagent planning. Its direct consequence is that to find a solution of Π it is
enough to find a local solution πα ∈ sols(Π � α) which is β-extensible for every
other agent β. A constructive proof can be found in [10].

Proposition 1. Let public plan σ of Π be given. Public plan σ is extensible if
and only if σ is α-extensible for every agent α.

3 Planning State Machines

This section briefly restates the previous work by [11] our work is based on, while
its extensions, which are the main contributions of this paper, are described in
following sections. We use nondeterministic finite state machines (NFS) [4] as
a compact representation of a set of solutions of a Strips problem. We call an
NFS that represents a set of solutions a planning state machine (PSM).

A planning state machine (PSM) of a Strips problem Π = 〈P,A, I,G〉 is a
NFS Γ = 〈A,S, I, δ, F 〉 where the alphabet A is the set of actions of Π, states
from S are subsets of P , the state transition function δ resembles the classical
Strips state progression function γ, and F ⊆ S contains all the states that
satisfies goal G. To avoid confusions, we suppose that alphabet A contains unique
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action ids rather than full actions. The only requirement2 on the state transition
function δ is that δ(s, a) = γ(s, a). It is possible to construct a complete PSM
that contains all possible states and transitions. A complete PSM of Π represents
exactly all the solutions of Π. As the computation of a complete PSM can be
inefficient, we also consider partial PSMs which represents only a subset of all
solutions.

For every PSM Γ we can construct its public projection PSM Γ � that repre-
sents public projections of the solutions. When Γ represents the set of solutions
S we want Γ � to represent exactly the set {π� : π ∈ S}. Once we have a PSM for
every agent’s local planning problem Π � α, we can compute public projections
of these PSMs and intersect them using a well-known intersection algorithm
for NFS [4]. Any public solution σ in a non-empty intersection constitutes a
public solution of the original MA-Strips problem Π. That is because σ is α-
extensible for every α (as it comes from the intersection) and thus extensible by
Proposition 1.

Figure 1 provides an example PSM Γ1 demonstrating PSM public projection
algorithm. First, PSM Γ2 is obtained from the input Γ1 by renaming internal
actions to ε-transitions and eliminating them by the intersection algorithm [4].
Second, the public projection Γ3 of Γ1 is obtained from Γ2 by projecting states
(removing internal facts) and by unification of states with equal public projec-
tion. Hence Γ �

1 = Γ3. When two states with equal public projection differ in
outgoing edges then they can not be unified and an integer mark is introduced
to distinguish them. Note that if the two states {a}-0 and {a}-1 were unified in
Γ3, then the resulting PSM would also represent a public plan 〈p1, p4, p5〉 which
does not correspond to any plan from Γ1.

Algorithm 1 provides an overview of a distributed algorithm [11] to find a
solution of an MA-Strips problem. We suppose that every agent α executes
PsmPlanDistributed in a separate process, possibly on a separate machine.
We suppose that agent processes can communicate with each other by sending
structured messages. Every agent α starts with an empty PSM Γα which contains
only the initial state of Π � α. In every loop iteration, every agent generates a
new plan of its local problem Π � α and it adds this plan to Γα. Then public
projection Γ �

α is computed and exchanged with other agents. The easiest way to
implement PSM projections exchange is when every agent sends its projection
to every other agent. The projections can also be exchanged in a round-robin
manner. The loop in the algorithm continues until the intersection

⋂
β(Γ �

β ) is not
empty. The operation written in bold italics is an optional extension described
in Sect. 5.

2 Although a PSM as defined here suggests a deterministic finite state machine, a
non-deterministic transitions can be introduced by public projection defined later.
Thus we prefer to work with non-deterministic machines from the beginning.
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By a new plan in the first step we mean a plan that was not generated
in any of the previous iterations. To achieve this we have modified an existing
planner FastDownward3 so that it is able to generate a plan which differs from
plans provided as an input. This extension is inspired by diverse planning with
homotopy class constraints [1]. Homotopy classes of plans are naturally defined
by their public projections, that is, two plans belong to same homotopy class iff
they have equal public projection.

In the last step of the loop, other agents plans are incorporated into the
local planning problem Π � α using the principle of prioritizing actions and soft-
landmarks. Prioritizing actions are implemented using action costs so that inter-
nal actions are preferred to public actions, and α’s public actions are preferred
to other agent actions. When agent α finds a new local solution it sends its
public projection to all the other agents. Other agents then extend their local
problem Π � β to contain duplicated landmark actions from the received plan.
These landmark actions have significantly decreased cost and they are inter-
linked using additional facts to ensure they are used in the order suggested by
the public plan. See [10] for details.

4 Planning Calculus

In this section we show how classical planning can be expressed as a process
calculus. Furthermore we show how to use existing process calculi type systems
for static analysis of classical planning problems and how to use this static
analysis for approximation of planning problem solvability. In the next section,
this static analysis will be incorporated into the multiagent planning algorithm
from the previous section (Algorithm 1).

3 http://www.fast-downward.org/.

http://www.fast-downward.org/
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4.1 Planning as Process Calculus

A typical process calculus is defined by a set of processes together with a binary
rewriting relation (→) on these processes. Processes describe possible system
states while the rewriting relation describes possible transitions between states.
Hence Q0 → Q1 means that the system can be transformed (in one step) from
the state described by Q0 to state Q1.

Process calculi are usually used to model concurrent environments where sev-
eral units (processes) engage in activity at the same time. Processes usually take
form of programs and thus system states are identified with programs currently
running in the system, while rewriting relation captures program evaluation.

Processes are usually constructed from atomic processes using standard oper-
ators. In this paper, we will use only the parallel composition operator (“|”).
Process “Q0 |Q1” describes a system where processes Q0 and Q1 are running in
parallel. We will also use standard null or inactive process denoted “0”. Parallel
composition is considered commutative and associative with 0 being an identity
element (that is, Q | 0 = Q).

Given a Strips problem Π with set of facts P , we use facts p ∈ P as atomic
processes. Hence our processes correspond to planning states while the rewriting
relation emulates action application by adjusting state (process) appropriately.
The set of our processes is generated by the following grammar.

Q:: = 0 | p | (Q0 | Q1)

That is, null process 0 is a process, every fact p is a process, and other
processes can be constructed using parallel composition. Function �s� encodes a
state as a process.

�{p1, p2, . . . , pn}� = p1 | p2 | · · · | pn | 0

Furthermore, to simplify the presentation we consider processes to be equal
modulo fact duplications (that is, “(p | p) = p” and so on).

The rewriting relation → is the minimal relation which satisfies the following
rules.

a ∈ A

�pre(a)� → �γ(pre(a), a)�
Q0 → Q1

Q0 | Q2 → Q1 | Q2

Recall that the state progression function γ for action a applied to the state
pre(a) is defined as follows.

γ(pre(a), a) = (pre(a) \ del(a)) ∪ add(a)

Hence the first rule says that, for every action a, the process �pre(a)� can
be rewritten to the process �pre(a)� with delete effects removed and add effects
added. The second rule is a context rule which allows us to apply rewriting in
the presence of additional facts. The following formally states that the rewriting
relation → correctly captures planning action execution.
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Proposition 2. Let Π = 〈P,A, I,G〉 be a classical Strips problem such that
del(a) ⊆ pre(a) for every action a ∈ A. For any two planning states s0 and s1
the following holds.

�s0� → �s1� iff ∃a ∈ A : γ(s0, a) = s1

The requirement that every action deletes only facts mentioned in its precon-
ditions (del(a) ⊆ pre(a)) is necessary because the right-hand side of a rewriting
rule can refer only to processes mentioned on the left-hand side. This require-
ment simplifies formal presentation while it does not restrict usability because
problems not fulfilling the requirement can be translated4 to equivalent problems
which do so. Moreover, it is usually satisfied in practice.

4.2 Planning Calculus Type System

In this section we show how to use existing process calculi type systems for
static analysis of planning problems. Type systems for processes calculi are used
to prove various properties of processes. A type system is usually handcrafted
for a specific calculus and thus we can not use an arbitrary type system for our
planning process calculus. However, there is a generic process calculi type system
scheme Poly✶ [6] which works for many calculi including ours. Furthermore,
Poly✶ has already been successfully used for static analysis [5].

A detailed description of Poly✶ is beyond the scope of this paper and thus
we provide only a necessary background. Poly✶ provides a syntax to describe
rewriting rule axioms. Here we just state that rewriting rules from the previous
section can be easily described in this syntax. Once rewriting rules are given,
Poly✶ automatically derives syntax of types together with a type system for the
given calculus. Furthermore, an effective type inference algorithm is provided to
compute a principal (most general) type of an arbitrary process.

For our purposes, it is enough to state that a Poly✶ type τ for our planning
process calculus can be understood as a set of facts. Poly✶ defines a typing
relation, written � Q : τ , which states that Q has type τ . The most important
property of the typing relation is subject reduction which ensures that types are
preserved under rewriting, that is, when � Q0 : τ and Q0 → Q1 then � Q1 : τ .
Another property that interests us is that whenever � Q : τ then τ contains all
the facts mentioned in Q. In particular, � �s� : τ implies s ⊆ τ for any state s.

The previous paragraph suggests the following procedure. Given a Strips

problem Π = 〈P,A, I,G〉, we can use Poly✶ to compute the principal type τ
of the initial state process �I�. Hence � �I� : τ . Because types are preserved
under rewriting, we know that whenever �I� rewrites using an arbitrary many
applications of → to some process Q, then also � Q : τ . In other words, whatever
state s is reachable from I, we know that s ⊆ τ . Hence when G �⊆ τ then Π is
not solvable. The opposite implication, which would also allow us to recognize
4 Briefly, for a delete effect p �∈ pre(a), we can introduce a new fact p− complementary

to p and then provide two rewriting rule axioms for a; the first applies in states
where p holds while the second in states where p− holds.
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solvable problems, does not generally hold because Poly✶ type τ only over-
approximates all reachable states.

In this way we can use Poly✶ types to recognize some unsolvable problems.
We instantiate Poly✶ by translating actions to rewriting rules, and we use
Poly✶ to compute the principal type τ of �I�. When G �⊆ τ then the problem
is clearly unsolvable. Otherwise we can not conclude anything. This is the price
we pay for effectiveness as Poly✶ types can be computed in polynomial time
while planning is PSPACE-complete.

Our experiments have shown that Poly✶ type analysis is essentially equiva-
lent to computing a planning graph with the delete effect relaxation. The Poly✶
type contains exactly the same facts as the last layer of a relaxed planning graph.
A possible extensions of Poly✶ analysis that would give more precise results
than relaxed planning graphs are left for future research. One of the advantages
of using Poly✶ over relaxed planning graphs is in that we can rely on its already
proved formal properties (subject reduction, principal typings) and that there
is no need to implement equivalent methods because an effective type inference
algorithm is already implemented.

5 PSM with Plan Analysis

This section describes improvements from the basic version of Algorithm 1
denoted in bold italics in the algorithm. We introduce two different methods
(PSM+ and PSM✶) to incorporate the static analysis from the previous section
into our PSM-based planner (Algorithm 1). The static analysis is used to analyze
plans at the second line of the loop in the algorithm. Section 5.1 describes an
encoding of an α-extensibility check into a planning problem, which is a tech-
nique shared by both the methods. It basically restates our previous work [10]
required for the understanding of the next sections. Sections 5.2 and 5.3 describe
in turn the methods PSM+ and PSM✶.

5.1 Plan Extensibility as Planning

First we describe how the static analysis from the previous section can be used to
approximate α-extensibility of public plan σ. This is done by running the static
analysis on a classical planning problem Πσ constructed as follows. Problem Πσ

is similar to Π � α but it contains only a subset of its actions. Concretely, Πσ

contains all the internal actions of α but only those public or external actions
which are mentioned in σ. Furthermore, actions from σ are interlinked using
additional facts to ensure they are executed in the order suggested by σ. For-
mally, let ai be the action from A � α which corresponds to the i-th action in
σ. Let mark0, . . . , markn be additional facts (n is the length of σ). Then Πσ

contains the following action bi.

bi = 〈 pre(ai) ∪ {marki−1},
add(ai) ∪ {marki},
del(ai) ∪ {marki−1} 〉
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Finally mark0 is added to the initial state of Πσ and markn is added to the
goal state. When action bi is used, the mark is increased which enables action
bi+1. In the end we want all bi’s to be used, possibly interleaved with some α-
internal actions which are just added to Πσ without any additional changes. It
can be proved that Πσ is solvable iff σ is α-extensible [10].

5.2 Simplified Plan Analysis (PSM+)

The previous section suggests the following plan verification procedure. When
agent α generates a new plan πα, it sends its public projection π�

α to all the
other agents. Once other agent β receives π�

α, it uses the static analysis to check
whether π�

α is β-extensible. That is, agent β constructs Πσ (for σ = π�
α) and

executes the Poly✶ analysis yielding the type τ . When G �⊆ τ then agent β
informs α that π�

α is not β-extensible. Otherwise agent β returns an unknown
status back to agent α.

Once the initiator agent α receives back results from all the other agents it
simply checks whether π�

α was rejected by, that is, found not β-extensible for,
at least one agent. When the plan is rejected by at least one agent, then agent
α simply drops the plan and directly continues with the next loop iteration by
generating another plan. Optionally, agent α can incorporate plans generated
by other agents as landmarks (last operation in the loop) provided these plans
were not rejected.

We have mentioned above that the results of Poly✶ analysis are equivalent
to computing a planning graph with delete effect relaxation. This gives us an
alternative approach to implement plan verification in the PSM+ variant. When
verifying a public plan π�

α of agent α by agent β, agent β computes Πσ as above.
However, instead of using Poly✶ to compute the principal type, agent β can
apply delete relaxation to the verification problem Πσ and launch a classical
planner to solve it. When the delete relaxation of Πσ is found unsolvable, then
agent β informs α that π�

α is not β-extensible. Otherwise agent β returns an
unknown status back to agent α. We have implemented both verification variants
of PSM+ in order to evaluate effectiveness of Poly✶ type inference engine when
compared to a state-of-the-art classical planner FastDownward. The results of
this evaluation are presented in Sect. 6.

5.3 Partial Plan Reuse (PSM✶)

Experiments with PSM+ showed that plan analysis had increased the number
of solved problems when compared to the basic variant PSM without any plan
analysis. However, there were some problems solved by PSM which were no
longer solved by PSM+. A more detailed analysis revealed that in some cases a
useful landmark was created from the beginning of a plan that was rejected in
PSM+. This is because it can happen that a rejected plan is correct up to some
point. The method introduced in this section tries to find a usable plan prefix
and use it as a landmark.
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The procedure starts as in the previous section, that is, agent α generates a
new plan πα and sends its public projection π�

α to all the other agents. Once Πσ

is constructed by other agent β, the Poly✶ analysis of Πσ is executed yielding
the type τ . When the last mark markn is not in τ , not only we know that σ
is surely not β-extensible, but the maximum mark present in τ gives us other
insight into σ. Hence type τ is examined and the maximum i such that marki ∈ τ
is found. From that we can conclude that it is not possible for β to follow the
public plan σ to a state where the (i + 1)-th action of σ can be executed. Hence
this maximum i is returned as a result of β’s analysis of σ back to agent α.

Finally, agent α collects analysis results from all the other agents and com-
putes their minimum j. Plan σ is then stripped so that only the first j actions
remain in it. This stripped plan is then sent to the other agents to be used as a
landmark and to guide future plan search.

With the previous variant PSM+, we have introduced an alternative method
of verification which uses a classical planner instead of the Poly✶ type inference
engine. This alternative verification method is not directly adaptable to variant
PSM✶ because a classical planner does not provide additional information when
a problem is found unsolvable. Hence it is not straightforward to extract the first
unreachable mark as it would require modifications in planner implementation.
Hence in the case of variant PSM✶, the results of Poly✶ analysis provide more
information than the analysis implemented using a classical planner.

6 Experimental Results

We have performed a set of experiments to evaluate an impact of plan verification
on a PSM-based planner and also to compare our planners with another state-
of-the-art multiagent planner5. We have decided to compare our approach with
FMAP [9] which uses well defined problems taken from International Planning
Competition (IPC) problems. FMAP classifies facts as public or internal using a
manual selection of public predicate names. In practice, FMAP public facts are a
superset of MA-Strips public facts and thus FMAP classification is compatible
with our algorithms. In our experiments we use exactly the same input files as
the authors of FMAP used during its evaluation6, and we also use the same time
limit of 30 min for each problem. The binary and source codes of our PSM-based
planner are available on demand. Please contact us by email in order to obtain
them.

The first four number columns in Table 1 show an overall coverage of solved
problems. We can see that the FMAP has better results in most of the domains
and also in the overall coverage. Nevertheless PSM+ performed better in two
tightly-coupled domains as it was able to solve all the Openstacks problems
and two additional Woodworking problems over FMAP. We can see that PSM✶

5 All the tests were performed on a single PC, CPU Intel i7 3.40 GHz with 8 cores,
and memory limited to 8GB RAM.

6 We would like to thank the authors of FMAP for a kind support with their planner.
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Table 1. First four number columns show the number of problems solved by the com-
pared planners. Last two columns show the percentage of time spent by plan verification
in PSM+ variant with the verification done by Poly✶ and by FastDownward (FD).

Domain FMAP PSM PSM+ PSM✶ Poly✶ FD

Blocksworld (34) 19 27 26 26 3.53 5.48

Driverlog (20) 15 10 9 14 9.24 11.87

Elevators (30) 30 1 3 4 8.93 10.41

Logistics (20) 10 0 0 0 0 0

Openstacks (30) 23 30 30 30 16.58 17.48

Rovers (20) 19 7 14 14 13.91 10.96

Satellite (20) 16 6 13 9 7.92 8.80

Woodworking (30) 22 27 27 27 9.45 10.57

Zenotravel (20) 18 17 17 17 9.33 11.73

Total (224) 172 125 139 141 10.24% 11.29 %

outperforms PSM+ in Driverlog and Elevators domains but it loses in Satel-
lite domain. Moreover, there were eight other differences in individual prob-
lems, where half of them in each domain were in favor of each method and thus
these differences are not reflected in the table. The results show that a possi-
ble enhancement of Poly✶ verification could bring even higher coverage. This
will be part of our future research. Also note that PSM✶ is strictly better in
coverage7 than the basic variant PSM.

The last two columns in Table 1 evaluate effectiveness of the two verification
methods for variant PSM+ described in Sect. 5.2. Experiments reveled, that
both the verification methods in variant PSM+ led to exactly the same sets of
solved problems and varied only in run times. The numbers show an average
percentage of runtime used for plan verification. We see that Poly✶ runs faster
than FastDownward except for the Rovers domain which is caused probably by
a great number of internal actions. As the plan verification by a classical planner
can be used only by variant PSM+, it makes Poly✶ a suitable tool for plan
verification. Furthermore, the table shows that plan verification in general is
easier than local problem solving.

For a more detailed analysis of PSM variants we have chosen three domains
with the highest coverage. The left table in Table 2 shows an average number
of iterations and run times needed to find a solution for problems which were
solved by all the three variants. Sequential times show how long it would take
if all the agents share a single CPU, while the parallel time correspond to a

7 However, there were still two individual problems which were solved by PSM but
not by PSM✶. As this happens relatively rarely, it is left for future research to find
out whether this is because of the approximation in Poly✶ analysis or whether it
can happen that in some cases a useful landmark is constructed from a rejected plan
part.
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Table 2. (Left) Performance cost of PSM extended with plan verification. The table
shows average values for all the solved problems. Run times are in seconds. (Right)
Comparison of run times on selected problems solved by all the planners. Times are in
seconds, PSM times correspond to parallel times, and PSM variants have number of
iterations in parenthesis.

situation where each agent is equipped with its own CPU. The results show
that in Driverlog domain the number of iterations decreased which also caused
a decrease in run times. PSM+ achieved the best results for this domain. All
problems of Openstacks domain have been solved during the first iteration even
by the simplest version PSM. Therefore run times needed by the other versions
are higher because of the time needed for the verification. Only a tiny decrease
of iteration count in Woodworking domain could not outweigh the price for
verification and thus the versions with plan verification are a bit slower than
PSM. A slight increase of run time in PSM✶ over PSM+ is caused by additional
landmarks which come from plans which were completely rejected by PSM+.

The right table in Table 2 compares run times needed to solve selected tasks
solvable by all the planners. We can see that PSM-variants are able to find
solution faster than FMAP in the case of complex problems.

The left graph in Fig. 2 compares times needed for planning and plan ver-
ification in PSM✶. It shows that the time needed for verification in PSM✶ is
much smaller than the time needed for agent internal planning. The graph is
constructed as follows. The x-axis in the graph shows total time needed to solve
a problem, that is, planning together with verification. For each problem, plan-
ning and verification times are depicted as two values in the same column whose



Using Process Calculi for Plan Verification in Multiagent Planning 259

Fig. 2. (Left) Verification and planning times in PSM✶. (Right) Amount of commu-
nication during solving of Driverlog05.

Fig. 3. An average number of iterations (left) and an average amount of communication
(right) for each domain in PSM, PSM+, and PSM✶ variants.

x-coordinate correspond to the total sequential time. Thus the sum of the two
values in each column is always equal to the x-coordinate of the column.

The right graph in Fig. 2 shows amount of communication among the agents
in a single selected problem (Driverlog05 ). This problem was chosen because
it was solved by all the approaches but not in a trivial manner (in the first or
second iteration). Each curve ends in the column that corresponds to the last
iteration. We can see that the verification creates communication overhead in
individual iterations but the total communication is smaller with verification
because the number of iterations is decreased.

Graphs in Fig. 3 show, for each domain, an average number of iterations and
an average amount of communication among all the agents measured in actions.
The average values are computed only for the problems solved by all PSM,
PSM+ and PSM✶ variants. The communication is measured as the number of
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actions communicated between each pair of agents. These actions are communi-
cated during the verification and during the exchange of created public PSMs.
During communication, each action is represented by its unique id and thus the
number of actions communicated directly corresponds to the number of bytes.

We can see that in some domains (e.g. Blocksworld) the communication grows
substantially in PSM✶ and PSM+, while in other domains the communication
is decreased. The reason for that is that in the first case all the plans are accepted
and thus the verification process brings no advantage. In the domains where the
verification helped, the overall communication in PSM+ and PSM✶ variants
is smaller than in PSM. The domains where the verification was useful can be
identified either from the overall results (Table 1) or from the average number
of iterations (Fig. 3, left) because the average number of iterations is decreased
by success of the verification process (see domains Driverlog, Elevators, Rovers).
In the domains where all the solved problems were solved in first few itera-
tions even by the simplest PSM variant (Blocksworld, Openstacks, Woodwork-
ing, Zenotravel), the verification can not really help to decrease the number of
iterations (as it is already small) and thus the verification only creates communi-
cation overhead. An exception is the Satellite domain where individual iteration
numbers have a higher variance (which is not apparent from the average values
in the graph).

7 Conclusions

We have shown how integration of a static analysis based on process calculi
type systems in validation phase of a planner based on merging of Planning
State Machines strictly improves coverage of solved planning problem instances.
Although the approach loses against a state-of-the-art multiagent planner, the
results are promising. Moreover usage of the static analysis can improve other
multiagent planning approaches using cooperation by coordination of partial
agents’ plans. We have argued that it is feasible to use Poly✶ for plan verifica-
tion even though the same analysis can be, in some cases, done using a classical
planner.

Furthermore, we have also extended our approach with a new heuristic with
notable improvements. This new heuristic will be part of our future research. In
future research, we want also to focus on more precise static analysis by Poly✶
and therefore hypothetically less approximate test of the extensibility of partial
plans.
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Abstract. Planning under uncertainty in multiagent settings is highly
intractable because of history and plan space complexities. Probabilistic
graphical models exploit the structure of the problem domain to mitigate
the computational burden. In this article, we introduce the first paral-
lelization of planning in multiagent settings on a CPU-GPU heteroge-
neous system. In particular, we focus on the algorithm for exactly solving
interactive dynamic influence diagrams, which is a recognized graphi-
cal models for multiagent planning. Beyond parallelizing the standard
Bayesian inference and the computation of decisions’ expected utilities,
we also solve the other agents behavioral models in a parallel manner.
The GPU-based approach provides significant speedup on two bench-
mark problems.

Keywords: GPU · Multiagent systems · Planning · Speed up

1 Introduction

Planning under uncertainty in multiagent settings is a very hard problem because
it involves reasoning about the actions and observations of multiple agents simul-
taneously. In order to formally study this problem, the approach is to generalize
single-agent planning frameworks such as the partially observable Markov deci-
sion process (POMDP) [15] to multiagent settings. This has led to the decen-
tralized POMDP [2] for multiagent planning in cooperative settings and the
interactive POMDP [7] for individual planning in cooperative or non-cooperative
multiagent settings. A measure of the involved computational complexity is avail-
able by noting that the problem of solving a decentralized POMDP exactly for
a finite number of steps is NEXP complete [1].

Some of the complexity of multiagent planning may be mitigated by exploit-
ing the structure in the problem domain. Often, the state of the problem can
be factored into random variables and the conditional independence between the
variables may be naturally exploited by representing the planning problem using
probabilistic graphical models. An example of such a model is the interactive
dynamic influence diagram (I-DID) [5] that generalizes the well-known DID [8],
which may be viewed as a graphical counterpart of POMDP, to multiagents
c© Springer International Publishing Switzerland 2015
B. Duval et al. (Eds.): ICAART 2015, LNAI 9494, pp. 262–283, 2015.
DOI: 10.1007/978-3-319-27947-3 14
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settings in the same way that an interactive POMDP generalizes the POMDP.
In addition to modeling the problem structure, graphical models provide an
intuitive language for representing the planning problem thereby serving as an
important tool to enable multiagent planning.1

Emerging applications in automated vehicles that communicate [12], integra-
tion with the belief-desire-intention framework [4], and for ad hoc teamwork [3]
motivate improved solutions of I-DIDs. While techniques exist for introducing
further efficiency into solving I-DIDs [19], we may also explore parallelizing its
solution algorithm on new high-performance computing architectures such as
those utilizing graphic processing units (GPU). A GPU consists of an array of
streaming multiprocessors (SM) connected to a shared memory. Each SM typi-
cally consists of a set of streaming processors. Consequently, a GPU supplements
the CPU by enabling massive parallelization of simple computations that do not
require excessive memory.

In addition to the usual chance, decision and utility nodes, I-DIDs include
a new type of node called the model node and a new link called the policy
link between the model node and a chance node that represents the distribution
over the other agent’s actions given its model. The algorithm for solving an
I-DID expands a given two-time slice I-DID over multiple steps and collapses the
I-DID into a flat DID. We may then use the standard sum-max-sum rule and a
generalized variable elimination algorithm for IDs [10] to compute the maximum
expected utilities of actions at each decision node to solve the I-DID. Multiple
models in the model node are recursively solved in an analogous manner.

Our contribution in this article is ways of parallelizing multiple steps of
the algorithm for exactly solving I-DIDs on CPU-GPU architectures. This pro-
motes significantly faster planning on benchmark and large multiagent problems
up to an order of magnitude in comparison to the run-time performance of the
existing algorithm. Our approach is to parallelize three steps of this algorithm:
(i) At a higher level, we distribute the solving of the multiple candidate mod-
els of the other agents among GPUs and obtain the solutions in parallel. (ii)
The four operations involved in the sum-max-sum rule: max-marginalization (of
decisions), sum-marginalization (of chance variables), factor-product (of prob-
abilities and utilities) and factor-addition (of utilities) are parallelized on the
GPU. (iii) Probability factors in the variable elimination could be large joints of
the Bayesian network at each time slice, and we parallelize the message passing
performed on a junction tree during the inference, on the GPU.

We evaluate the parallelized I-DID solution algorithm on two benchmark
planning domains, and show more than an order of magnitude in speed up on
some of the problems compared to the previous algorithm. To further speed up
the solution algorithm, the algorithm extends to use two GPUs with MPI in the
same system to solve the lower level models independently.This extension con-
siderably increased the speed up factor. We evaluate on planning domains that
differ in size of the state, action and observation spaces, and extend the planning

1 A GUI-based software application called Netus is freely available from http://tinyurl.
com/mwrtlvg for designing I-DIDs.

http://tinyurl.com/mwrtlvg
http://tinyurl.com/mwrtlvg


264 F. Adoe et al.

over longer horizons. In addition, we study the properties of our algorithm by
allocating it increasing concurrency on the GPU and show that it’s run time
improves up to a point beyond which the gains are lost.

The rest of the article is organized as follows. Section 2 provides preliminar-
ies about the I-DID and concepts of GPU-based programming. Section 3 reviews
related work. Section 4 proposes a GPU-based approach to exactly solve the
I-DID in parallel. Section 6 theoretically analyze the speed up. Section 7 demon-
strates the speed up by the proposed approach on two problems. Section 8 con-
cludes this article.

2 Background

In this section, we briefly review the probabilistic graphical model, DID, and its
generalization to multiagent settings, I-DID. General principles behind GPU-
based programming are also briefly described.

2.1 Dynamic Influence Diagram

A DID, D, is a directed acyclic graph over a set of nodes: chance nodes C
(ellipses), representing random variables; decision nodes D (rectangles), model-
ing the action choices; utility nodes U (diamonds), representing rewards based
on chance and decision node values, and a set of arcs representing dependencies.
Conditional probability distributions, P, and utility functions, R, are associated
with the chance and utility nodes, respectively. In rest of the article, nodes and
variables are used interchangeably.

The domain of a variable Q, denoted as dom(Q), contains its possible values.
The parent of Q, denoted as PaQ, is a set of variables having direct arcs incident
on Q. The domain of PaQ, dom(PaQ), is the Cartesian product of the individual
domains: dom(PaQ) =

∏
Z∈PaQ

dom(Z), and a value of this domain is denoted
as, paQ. A probability factor, φ(Q) = P (Q|PaQ), which defines conditional
probability distribution given instantiation of parent variables, is attached to
each chance variable Q ∈ C. We use ChQ to denote Q’s children. A utility
factor, ψ(U) = R(PaU ), where R returns real-valued rewards, is associated with
each utility node, U ∈ U. The variables involved in a probability or utility factor
become the domain of this factor, for example, dom(φ(Q)) = {Q} ∪ PaQ.

A policy for decision node, Di ∈ D, is a mapping, δi : dom(PaDi
) →

dom(Di), i.e., δi(paDi
) = di. A policy for the decision problem is a sequence of

policies for all the decision nodes. The solution of a DID is a strategy that maxi-
mizes the expected value MEU(D), computed using the sum-max-sum rule [10]:

∑

I0
max
D1

∑

I1
. . . max

Dn

∑

In

(
∏

Qi∈C
P (Qi|PaQi) ·

∑

C,D
R(C,D))

where I0, I1, . . ., In−1 is the set of chance variables incident on the decision
nodes, D1, D2, . . ., Dn, thereby forming the information sets.

The MEU may be computed by repeatedly eliminating variables. Let Φ and
Ψ be the set of probability and utility factors, respectively. Given variable Q,
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the probability and utility factors having Q in their domain are denoted as ΦQ

and ΨQ, respectively. After Q is eliminated, the factor sets are updated as follows:

Φ = (Φ \ ΦQ) ∪ {φ\Q} and Ψ = (Ψ \ ΨQ) ∪ {ψ\Q/φ\Q}.

Here, φ\Q =
∑

Q

∏
ΦQ and ψ\Q =

∑
Q

∏
ΦQ(

∑
ΨQ) when Q is a chance vari-

able; if Q is a decision variable, then, φ\Q = maxQ

∏
ΦQ and ψ\Q = maxQ

∏
ΦQ

(
∑

ΨQ).

2.2 Interactive DID

Interactive DID (I-DID) [5] models an individual agent’s planning (sequential
decision making) in a multiagent setting. In a I-DID, other agents’ candidate
behaviors are modeled as they impact the common states and rewards during the
subject agent’s decision-making process. Simultaneously, other agents also reason
about the subject agent’s possible actions in their decision making. This recursive
modeling is encoded in an auxiliary data item called the model node M t

j,l−1

which contains models of the other agent, say j of level l − 1 and chance node
Aj which represents the distribution over j’s actions. The link between M t

j,l−1

and At
j , named as policy link, indicates that the other agent’s predicted action

is based on its models. The models can be DIDs, I-DIDs or simply probability
distributions over actions. The link between M t

j,l−1 and M t+1
j,l−1, called model

update link, represents the update of j’s model over time.

Example 1 (Multiagent tiger problem [7]). Consider two agents standing in front
of two closed doors with a tiger or some gold behind each door. If an agent opens
a door with a tiger behind it, it receives a penalty, otherwise a reward. Agents
can listen for growls to gain information about the tiger’s location as well as hear
creaks if the other agent opens a door. But, listening is not accurate. When the
agent receives a reward or penalty, the game is reset. There is another agent j
with the same character sharing the environment with agent i without noticing
the existence of agent i. They receives reward or penalty together, therefore
agent i needs to take into account agent j’s behavior. A two time-slice I-DID for
agent i situated in the multiagent tiger problem is depicted in Fig. 1.

TLt

GCt

Ai
t

Ri

TLt+1

GCt+1

Ai
t+1

Ri

Mj,l-1
t

Aj
t

Mj,l-1
t+1

Aj
t+1

Fig. 1. A two time-slice I-DID for agent i in the tiger problem. Policy links are marked
as dash lines, while model update links are marked as dotted lines. TL stands for ‘Tiger
Location’ and GC stands for ‘Growl&Creak ’.
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Fig. 2. The flat two time-slice DIDs for the tiger problem. Model nodes are replaced
by a set of ordinary chance nodes. All hidden variables are grouped as Xi.

I-DID EXACT

(level l ≥ 1 I-DID or level 0 DID, horizon T )
Expansion Phase
1. For t from 0 to T − 1 do
2. If l ≥ 1 then

Populate M t+1
j,l−1

3. For each mt
j in Range(M t

j,l−1) do
4. Recursively call algorithm with the l − 1 I-DID (or DID) that

represents mt
j and the horizon, T − t

5. Map the decision node of the solved I-DID (or DID), OPT (mt
j),

to the corresponding chance node Aj

6. For each aj in OPT (mt
j) do

7. For each oj in Oj (part of mt
j) do

8. Update j’s belief, bt+1
j ← SE(btj , aj , oj)

9. mt+1
j ← New I-DID (or DID) with bt+1

j as the initial belief

10. Range(M t+1
j,l−1)

∪← {mt+1
j }

11. Add the model node, M t+1
j,l−1, and the model update link between

M t
j,l−1 and M t+1

j,l−1

12. Add the chance, decision, and utility nodes for t + 1 time slice and
the dependency links between them

13. Establish the CPDs for each node
Solution Phase
14. If l ≥ 1 then
15. Represent the model nodes, policy links and the model update links as in

Fig. 1 to obtain the DID
16. Apply the standard sum-max-sum rule to solve the expanded DID (other
solution approaches may also be used)

Fig. 3. Algorithm for exactly solving a level l ≥ 1 I-DID or level 0 DID expanded over
T time steps.

Solving an I-DID (shown in Fig. 3) requires solving the lower-level mod-
els, and this recursive procedure ends at level 0 where the I-DID reduces to
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a DID (Line 4). The policies from solving lower-level models are used to expand
the next higher-level I-DID (Line 5–10). We may then replace the model nodes,
policy and the model update links with regular chance nodes and dependency
links. States of the nodes and parameters of the links are specified according to
the obtained policies (Line 11–13). Subsequently, an I-DID becomes a regular
DID, whose MEU is obtained (Line 15). Doshi and Zeng [5] provide more details
about I-DIDs including an algorithm for solving it optimally.

Example 2. The I-DID shown in Fig. 1 is expanded as shown in Fig. 2. GC
denotes a chance variable for observations of Growl&Creak, and the remain-
ing chance nodes are grouped and denoted by Xi for convenience. The MEU is
calculated as follows.

MEU [D] =
∑

Xt
i
maxAt

i

∑
GCt P (Xt

i)P (GCt|Xt
i)
∑

Xt+1
i

max
At+1

i∑
GCt+1 P (Xt+1

i |Xt
i, A

t
i)P (GCt+1|Xt+1

i )[Rt
i(A

t
i,X

t
i) + Rt+1

i (At+1
i ,Xt+1

i )]

(1)

2.3 CPU-GPU Architecture

Graphics processing units (GPUs) were originally designed for rendering com-
puter graphics. In a GPU, there are a number of streaming multiprocesssors
(SM), each containing a set of stream processors, registers and shared local
memory (SMEM). At run time, a set of parallelized computation tasks referred
to as a thread block are executed on a SM and distributed across the proces-
sors. In order to achieve good performance, it is crucial to map algorithms to
the GPU architecture efficiently, which is optimized for high throughput. For
example, designs that favor coalesced memory access are cost-effective. In the
past decade, general purpose computing on the GPU has increased with a focus
on bridging the gap between GPUs and CPUs by letting GPUs handle the most
intensive computing while still leaving controlling tasks to CPU. CUDA pro-
vided by NVIDIA is a general-purpose parallel computing programming model
for NVIDIA’s GPUs. CUDA abstracts most operational details of GPU and alle-
viates the developer from the technical burden of GPU-oriented programming.
An important component of a CUDA program is a kernel, which is a function
that executes in parallel on a thread block.

3 Related Work

Multiple frameworks formalize planning under uncertainty in settings shared
with other agents who may have similar or conflicting objectives. A recognized
framework in this regard is the interactive POMDP [7] that facilitates the study
of planning in partially observable multiagent settings where other agents may
be cooperative or non-cooperative. I-DIDs [5] are a graphical counterpart of
interactive POMDPs and have the advantage of a representation that explicates
the embedded domain structure by decomposing the state space into variables
and relationships between the variables.
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I-DIDs contribute to a promising line of research on graphical models for mul-
tiagent decision making and planning, which includes multiagent influence dia-
grams (MAID) [11], networks of influence diagrams (NID) [6], and limited mem-
ory influence diagram based players [16]. I-DIDs differ from MAIDs and NIDs
by offering a subjective perspective to the interaction and solutions not limited
to equilibria, by ascribing other agents with a distribution of non-equilibrium
behaviors as well. Importantly, I-DIDs offer solutions over extended time inter-
actions, where agents act and update their beliefs over others’ models which are
themselves dynamic.

Previous uses of CPU-GPU heterogeneous systems in the context of graph-
ical models focus on speeding up exact inference in Bayesian networks due to
parallelization [9,17,18]. For example, Jeon et al. [9] report speedup factors in
the range from 5 to 12 for both marginal and most probable inference in junc-
tion trees. In comparison, we elevate the problem from performing inference in
junction trees to finding optimal policies in I-DIDs and DIDs. As solving I-DIDs
requires performing inference on the underlying Bayesian network in each time
slice, our approach also parallelizes exact inference using junction trees in a
manner similar to previous work [20]. Additionally, we provide a fast method
for evaluating the sum-max-sum rule for DIDs by parallelizing component oper-
ations such as sum-marginalization and others on a GPU.

4 Parallelized Planning Approach

Our approach revises the algorithm, I-DID Exact, presented in Fig. 3 by par-
allelizing two component steps for utilization on a CPU-GPU heterogeneous
computing architecture and through leveraging some of the recent advances in
parallelizing inference in Bayesian networks.

4.1 Parallelizing Solving Models in the I-DID

As we mentioned previously, models in Mj,l−1, which is part of a level l I-DID,
could be simple probability distributions, DIDs or I-DIDs with models in a level
1 I-DID being DIDs or probability distributions. These candidate models are
differing hypotheses of the other agent’s behavior, not linked, and therefore may
be solved independently in parallel.

Consequently, we may distribute the solution of multiple models on the mul-
tiple GPU units. If we allocate one GPU unit to each I-DID, we may obtain
a speed up factor that is about the same as the number of GPU units in the
computing platform.

4.2 Parallelizing Sum-Max-Sum Rule for MEU

A solution of the sum-max-sum rule mentioned in Sect. 2 gives the maximum
expected utility of the flat DID that results from transforming the I-DID. The
temporal structure of the DID provides an ordering of the chance, decision and
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utility variables that is utilized by generalized variable elimination for IDs to
compute the MEU. In our two-time slice DID for the multiagent tiger problem,
the elimination ordering is: Xt+1, Yt+1, At+1

i , Xt, Yt, At
i, where X and Y

are the sets of hidden variables and those in the information set of a decision
variable in each time slice, respectively. The sum-max-sum rule does not specify
an ordering between the variables X and Y.

Memory-Efficient Variable Elimination for DIDs. In order to efficiently
use the CPU-GPU memory, we design the variable elimination memory effi-
ciently. Specifically, instead of keeping the entire DID in memory while perform-
ing variable elimination, we lazily bring the minimal set of the other variables
and their factors that are needed in order to eliminate the variable in question.
We refer to this set of variables as a cover set. We first revisit the definition of
a Markov blanket of a variable.

Definition 1 (Markov Blanket, [13]). The Markov blanket of a random
variable Q, denoted as MB(Q), is the minimal set of variables that makes Q
conditionally independent of all other variables given MB(Q). Formally, Q is
conditionally independent of all other variables in the network given its parents,
children, and children’s parents.

Definition 2 (Cover Set). The cover set of a random variable, Q, denoted by
CS(Q) is defined as:

CS(Q) = {Q} ∪ MB(Q).

Notice that the cover set of Q consists of itself and its Markov blanket.
Furthermore, we make the following straightforward observation:

Observation 1. CS(Q) is exactly identical to the union of the domains of the
factor of Q and the factors of the children of Q,

CS(Q) = dom(φQ)
⋃

Z∈ChQ

dom(φZ)

Let X be the set of variables in the elimination order that precedes Q. As
the cover sets of variables in X would be in memory already, we define an incre-
mental cover set below that is the set of all variables in the cover set less all
those variables contained in the cover sets of the variables preceding Q in the
elimination ordering.

Definition 3 (Incremental Cover Set). The incremental cover set of a ran-
dom variable, Q, denoted by ICS(Q) is defined as:

ICS(Q) = {Q} ∪ MB(Q) \
⋃

X∈X
CS(X),

where X are the variables that preceded Q in the elimination ordering.

Factors related to variables in ICS(Q) need to be additionally fetched into
memory because the latter cover sets are already in memory and overlapping
variables need not be fetched. Lemma 1 provides a simple way to determine the
incremental cover set.
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Lemma 1. As variable elimination proceeds, let FQ be the set of all factors not
previously loaded in memory with Q in each of their domains. Then, the union of
all variables in the domains of FQ, denoted as ΔQ forms the incremental cover
set of Q.

Proof. For the base case, let Q be the first variable to be eliminated. The union
of domains of all factors with Q in their domains is: ΔQ = dom(φ1(X1)) ∪
dom(φ2(X2)) ∪ . . . dom(φn(Xn)). We will show that ∀y ∈ Xi , y ∈ MB(Q) or
y = Q for i ∈ [1, n]. Suppose that ∃y ∈ Xi and y /∈ MB(Q) and y �= Q. Given
the definition of the Markov blanket, y is not a child of Q or parent of a child of
Q. Therefore, from Observation 1, the corresponding factor, φi, cannot contain
Q in its domain. This is a contradiction and no such y exists. Therefore, ∀y ∈ Xi,
y ∈ MB(Q) or y is Q.

Let Qk be the kth variable to be eliminated. As the inductive hypothesis,
ΔQk

= {Qk}∪MB(Qk) \⋃
X∈X CS(X). For the inductive step, let Qk+1 be the

next variable to be eliminated. Notice that

ΔQk
= ΔQk+1 ∪ CS(Qk) ∪ dom(ΦQk\Qk+1) \ dom(ΦQk+1\Qk

)

where ΦQk\Qk+1 are the factors with Qk in their domains and not Qk+1 – these
would be absent from ΔQk+1 – and ΦQk+1\Qk

are the factors with Qk+1 and not
Qk in their domains.

We may rewrite the above as:

ΔQk+1 = ΔQk ∪ dom(ΦQk+1\Qk
) \ dom(ΦQk\Qk+1) \ CS(Qk)

= dom(ΦQk+1\Qk
) ∪ ΔQk \ dom(ΦQk\Qk+1) \ CS(Qk)

As ΔQk
denotes the domains of all factors with Qk and additionally, with

Qk+1 being present or absent, ΔQk
= dom(ΦQk,Qk+1)∪dom(ΦQk\Qk+1)\

⋃

X∈X

CS

(X). Using this in the above equation,

ΔQk+1 = dom(ΦQk+1\Qk
) ∪ dom(ΦQk,Qk+1) ∪ dom(ΦQk\Qk+1) \ dom(ΦQk\Qk+1)

\⋃X∈XCS(X) \ CS(Qk)
= dom(ΦQk+1\Qk

) ∪ dom(ΦQk,Qk+1) \⋃X∈XCS(X) \ CS(Qk)

= dom(ΦQk+1) \⋃X∈X∪Qk
CS(X)

We may apply a proof similar to that in the base case to the first term above.
Therefore,

ΔQk+1 = {Qk+1} ∪ MB(Qk+1) \ ⋃
X∈X∪Qk

CS(X) = ICS(Qk+1)

Next, we establish the benefits and correctness of solely considering the cover
set of Q in Theorem 1. We define the joint probability distribution of the variables
in the cover set first.

Definition 4 (Factored Joint Probability Distribution of Cover Set).
The factored joint probability distribution for a cover set of a random variable,
Q, is defined as:

P (Q|PaQ)
∏

Z∈ChQ

P (Z|PaZ)
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(a) (b) (c)

(d) (e) (f)

Fig. 4. An illustration of variable elimination for DIDs. The incremental cover set for
each variable is marked using a dashed line. In (a−f), the DID is progressively reduced
following the elimination order: {Xt+1

i , At+1
i , GCt+1,Xt

i}.

Theorem 1. Let ΦQ (ΨQ) be a set of relevant probability (or utility) factors
required to compute the new factor φQ (ψQ) for eliminating variable Q. All the
variables in the domain of ΦQ (ΨQ) exactly comprise the cover set of Q, CS(Q).

Proof. The set of relevant probability factors ΦQ can be separated into two cat-
egories: P (Q|PaQ) and P (X|PaX) where X ∈ ChQ. Consequently, the variable
in domains of factors in ΦQ are included in PaQ ∪ ChQ

⋃
Z∈ChQ

PaZ ∪ {Q},
which is the cover set of Q by definition.

Assume there exists a variable Y �= Q, Y ∈ CS(Q) and Y does not appear
in either P (Q|PaQ) or P (X|PaX) where X ∈ ChQ. In other words, Y /∈ PaQ,
Y /∈ ChQ and Y /∈ ⋃

Z∈ChQ
PaZ . Consequently, Y /∈ MB(Q). As Y �= Q,

therefore Y /∈ CS(Q), but this is a contradiction. Therefore, all variables in
CS(Q) appear in the relevant factors. A similar argument is applicable to the
utility factors ΨQ.

Thus, the cover set of a variable, Q, locally identifies those variables whose
factors change on eliminating Q. These factors contain Q in their domains. The
alternative is a naive global method that searches over all factors and identifies
those with Q in their domains. We illustrate the use of the cover set in eliminating
chance and decision variables in the context of the multiagent tiger problem
below.

Example 3 (Variable Elimination Using Cover Set). The two-time slice flat DID
is shown in Fig. 4(a). For clarity, the hidden chance variables in each time slice
are replaced with Xi thereby compacting the DID. The MEU for the DID is
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given by Eq. 1. The temporal structure of the DID induces a partial ordering
for the elimination of the variables in the rule above. In the context of Fig. 4(a),
this ordering is: Xt+1

i , At+1
i , GCt+1, Xt

i, At
i, GCt.

We begin by eliminating Xt+1
i from the DID. Theorem 1 allows us to focus

on the cover set of Xt+1
i only, which is shown in Fig. 4(b).

CS(Xt+1
i ) ← {Xt+1

i }
⋃

MB(Xt+1
i )} = {Xt+1

i , GCt+1,Xt
i, A

t
i}

ψ1(GCt+1,Xt
i, A

t
i, A

t+1
i ) =

∑

Xt+1
i

P (CS(Xt+1
i ))Rt+1

i (At+1
i ,Xt+1

i )

=
∑

Xt+1
i

P (Xt+1
i , GCt+1|Xt

i, A
t
i) × Rt+1

i (At+1
i ,Xt+1

i )

Decision variable, At
i, in the probability factor is converted into a random

variable with a uniform distribution over its states. We update the set of all
utility factors as: Ψ ← {ψ1(GCt+1,Xt

i, A
t
i, A

t+1
i )}.

Next, we eliminate At+1
i from the reduced DID. Figure 4(c) shows the incre-

mental cover set of At+1
i with the dashed loop: At+1

i and its factors additionally
need to be fetched into memory.

CS(At+1
i ) ← {At+1

i , GCt+1, At
i}

ψ2(GCt+1,Xt
i, A

t
i) = maxAt+1

i
ψ1(GCt+1,Xt

i, A
t
i, A

t+1
i )

The set of utility factors updates to Ψ ← {ψ2(GCt+1,Xt
i, A

t
i)}.

The DID reduces to the one shown in Fig. 4(d), from which we now eliminate
GCt+1. The incremental cover set of this variable is empty as all the variables
in its cover set were utilized previously and preexist in memory.

CS(GCt+1) ← {GCt+1, At
i}

ψ3(Xt
i, A

t
i) =

∑

GCt+1
P (GCt+1|At

i) ψ2(GCt+1,Xt
i, A

t
i)

The set of utility factors now becomes: Ψ ← {ψ3(Xt
i, A

t
i)}.

Finally, we eliminate Xt
i and GCt after fetching GCt (and its factors) into

memory.

CS(Xt
i) ← {Xt

i, GCt}
ψ4(At

i, GCt) =
∑

Xt
i

P (GCt|Xt
i)

[
Rt

i(X
t
i, A

t
i) + ψ3(Xt

i, A
t
i)

]

The utility factor set becomes Ψ ← {ψ4(At
i, GCt)}.

Maximizing over At
i and sum marginalization of GCt will yield an empty

factor set and the decision that maximizes the expected utility of the DID.

Speeding up Factor Operations Using GPU. We perform the product
operation between probability and utility factors in parallel on a GPU.
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The operation is a pointwise product of the entries in factors. When there are
common variables, only entries with the same value of the common variables
is multiplied. For convenience, we denote Rt

i(X
t
i, A

t
i) + ψ3(Xt

i, A
t
i) simply as

ψ′
3(X

t
i, A

t
i).

In order to parallelize the factor product, indices of entries to be multiplied in
the factors are needed. Previous parallelization of inference in Bayesian networks
sought to minimize the size of the index mapping table for GPUs [9] due to the
SM memory limitation. The entire mapping table was decomposed into smaller
ones each giving the mapped indices of the entries in the second factor for each
non-common variable in the first factor. Our utility factor product follows the
similar principle of message passing for belief propagation in junction trees.

Entries in a factor are indexed according to variables as index =
∑

Q∈dom(ψ)

stateQ × strideQ. The stride of a variable Xi in a factor, P (X0, . . . , Xn) is
defined as strideX0 = 1 and strideXi

= strideXi−1 · |dom(Xi−1)|, for i ∈
[1, n]. We also define an entry’s state vector as 〈state1, . . . , staten〉. Here, n =
|dom(Xt

i)||dom(GCt)|, and stateQ = � index

strideQ
� mod |dom(Q)|. A tag for an entry

is the portion of the state vector pertaining to common variables.
A thread in a SM is allocated to finding the entries of the second factor

with which we may multiply a probability value in the first factor as we show in
Fig. 5. We allocate as many threads as the number of distinct entries in the first
factor until no more threads are available, in which case multiple entries may
be assigned to the same thread. Indices for the entries whose tags match the
tag of the subject entry in the first factor are obtained and the corresponding
products are performed. Because the index is needed repeatedly, it is beneficial
to investigate efficient ways of computing it. Notice that the index values can
be computed as: index =

∑
Q∈c. v. stateQ × strideQ +

∑
Q∈dom(ψ)/c. v. stateQ ×

strideQ, here c.v. stands for common variables.
As a particular thread must find entries with the same tag, we compute the

first summation in the above equation once, cache it and then reuse it in finding
the indices of the other entries. As illustrated in Fig. 5(a), each thread saves on
computing the first summation two times because the noncommon variable, At

i,
has three states, thereby saving O(|Xt

i|) each time which gets substantial in the
context of factor products that have a large number of common variables.

Factor products in the sum-max-sum rule are usually followed by sum mar-
ginalization operations. For example, the last variable elimination shown in
Fig. 4 marginalizes the set of variables in Xt

i that includes tiger locationt, At
j ,

Mod[M t
j ], among others, from the factor, P (Xt

i, GCt)×ψ′
3(X

t
i, A

t
i). Let us denote

the resulting product factor as, ψ34(Xt
i, GCt, At

i). For illustration purposes, let
us focus on marginalizing a single variable, At

j ∈ Xt
i from ψ34(Xt

i, GCt, At
i).

We parallelize and speed up sum-marginalization by allowing a separate
thread to sum those entries in the factor that correspond to the different values
of At

j while keeping the other variable values fixed [20] (Fig. 5(b)).

Parallelizing Message Passing in the BN. Probability factors utilized dur-
ing variable elimination for computing the MEU of the flat DID often involve
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Fig. 5. (a) The index mapping table. We assume that all variables are binary. SMEM
denotes shared memory. (b) Four threads are used to produce the entries in the four
rows of the resulting factor, ψ4, on the right.

joint probability distributions. For example, the factor P (Xt
i, GCt) utilized in

the elimination of Xt
i is the joint distribution over the multiple variables in Xt

i

and GCt. We may efficiently compute the probability factor tables by forming
a junction tree of the Bayesian network in each time slice, and computing the
joints using message passing [20].

Analogously to the operations involved in variable elimination, message pass-
ing in a junction tree involves sum-marginalization and factor products. However,
the typical order of these operations in message passing is the reverse of those
in the sum-max-sum rule: we perform marginalizations first followed by factor
products. These operations are part of the marginalization and scattering steps
that constitute message passing.

We parallelize message passing in junction trees to efficiently compute the
probability factors. Both sum-marginalizations and factor products are per-
formed on a CPU-GPU heterogeneous system by utilizing multiple threads in
a SM each of which computes the relevant index mapping tables online and
performs the products as we described previously in Fig. 5(a) and (b). This is
similar to the approach of Zheng et al. [20] that decomposes the whole index
mapping table into smaller components that are relevant to each thread. How-
ever, the latter precomputes tables while forming the junction trees and stores
them in memory.

5 Algorithm Design

The expansion phase of the I-DID Exact algorithm in Fig. 3 is multi-threaded
in order to solve the models in Mt−1

j in parallel. We utilize as many threads as
the number of GPUs in the system. The MEU of a flat DID is computed using
the sum-max-sum rule. Factor product and sum-marginalization operations are
parallelized by wrapping them in a GPU kernel function. This launches one or
more blocks of threads for performing the products and sums of probabilities
and utilities. The task of solving the lower level models are fairly partitioned
among the two processors each linked to a GPU.

For the message passing performed on the junction tree, a CPU routine call
selects the relevant cliques, which are nodes in the junction tree, for process-
ing. It computes the required parameters for cliques involved in the current
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Fig. 6. An abstract view of the parallelization of MEU computation for solving a DID.
Lower-level models are distributed across a multiprocesssor CPU-GPU system using
MPI.

Algorithm 1. Factor Product on GPU.

Require: probability factor φ and utility factor ψ
Ensure: product factor ψ′

1: tid is the thread id
2: numIter is the number of iterations
3: workSize is the number of products per thread
4: for i ← 1 to numIter parallel do
5: begLoadIdx ← begin offset
6: endLoadIdx ← end offset
7: SMEM ← ψ[begLoadIdx...endLoadIdx]
8: for j ← 1 to workSize parallel do
9: iidx is the input index

10: oidx is the output index
11: ψ′[oidx] ← φ[tid] ∗ SMEM [iidx]
12: end for
13: end for

communication, and asynchronously transmits the result to the GPU. After all
parameters are computed, a GPU block of threads is launched to compute and
propagate the message to a recipient clique.

Before running the algorithm, CUDA requires the kernel to be appropriately
configured: in terms of grid size and shape, shared memory and registers uti-
lization. We note three choices: (1) fixing thread block size in order to utilize
more registers; (2) minimizing the number of registers to possibly achieve high
occupancy; and (3) finding shared memory size per block to minimize global
memory accesses. Quick experimentation revealed that for both the factor oper-
ations and the message passing algorithm, fixing the number of registers to 32
and using shared memory chunk size of 512 were suitable. For effective alloca-
tion of memory, we allocate large chunks of memory at program start, and all
GPU memory allocation requests use one of these chunks of memory. If more
memory is requested than chunks available, a chunk is reallocated to possibly
accommodate the request.

Algorithms 1 and 2 provide the steps for performing the factor product and
the sum-marginalization, respectively, on the GPU. In Algorithm1, the utility
factor is divided and loaded into shared memory. The input and output indices
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in both algorithms are computed following the discussion in Sect. 4.1.2. We show
the abstract design of the algorithm in Fig. 6.

Algorithm 2. Sum-marginalization on GPU.

Require: ψ which needs to be marginalized
Ensure: the resulting factor ψ′

1: tid is the thread id
2: workSize is the number of additions per thread
3: sum ← 0
4: for j ← 1 to workSize parallel do
5: iidx ← index to ψ
6: sum ← sum + ψ[iidx]
7: end for
8: oidx ← output index to ψ′

9: ψ′[oidx] ← sum

6 Theoretical Analysis of Speed up

We theoretically analyze the speed up resulting from parallelizing the factor
product, sum-marginalization and factor sum operations that are involved in
computing the MEU. Let φQ and ψQ be some probability and utility factors
involving chance variable, Q, respectively, and SφQψQ

denote the set of variables
in common between the domains of the two factors. Then, dom(ψQ) − SφQψQ

is the set of variables in ψ that are not in φ. In multiplying the two factors, the
number of independent products are:

FPφQψQ =

{ |φQ||ψQ|/|SφQψQ | if |SφQψQ | > 0;
|φQ||ψQ| otherwise.

Our approach parallelizes the above factor product using |φQ| threads, with
each thread performing |ψQ|

|SφQψQ
| products if |SφQψQ

| > 0 otherwise |ψQ|. Analo-
gously, the number of independent sums are:

FS
ψ

′
Q

ψQ
=

{
|ψ′

Q||ψQ|/|S
ψ

′
Q

ψQ
| if |S

ψ
′
Q

ψQ
| > 0;

|ψ′
Q||ψQ| otherwise.

For marginalization of a utility factor ψQ over a random variable Q in its
domain, the number of independent maximizations are |ψQ|/|dom(Q)|, where
dom(Q) gives the number of states of the variable, Q. We assign a thread to
each independent maximization.

Let C, D and U denote the sets of decision, chance and utility variables
respectively in the DID. We begin by establishing the time complexity of evaluat-
ing the sum-max-sum rule serially on a flat DID. Overall, this requires summing
utility factors, whose complexity is

∑
Q∈U FSψ

′
QψQ

= O(|U||ψ′
Q||ψQ|/|Sψ

′
QψQ

|);
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performing as many factor products as there are chance variables, whose time
complexity is

∑
Q∈C FPφQψQ

= O(|C||φQ||ψQ|/|SφQψQ
|); sum-marginalization

of the chance variables in probability factors with complexity, O(|C||φQ|); and
the maximization over the decision variables, whose complexity is O(|D||ψD∗ |).
The total complexity for the serial computation is

O((|U| |ψ
′
Q||ψQ|

|S
ψ

′
Q

ψQ
| ) + |C||φQ|( |ψQ|

|SφQψQ | + 1) + |D||ψD|).

Here, ψ
′
denotes an expected utility; SφQψQ

, SφQψQ
are the smallest sets of

shared variables between probability and utility factors respectively; D is the
decision variable with the largest utility factor to maximize over.

Each parallelized utility sum operation has a theoretical time of FSψ
′
QψQ

|ψQ|;
the parallelized factor product requires a time of FSφQψQ

|φQ|; the parallelized
sum-marginalization requires a time of |φQ|/|dom(Q)|; and the parallelized max-
marginalization requires a time of |ψD|/|dom(D)| units. Consequently, the total
complexity for the parallel computation is:

O(κ + (|U| |ψQ|
|S

ψ
′
Q

ψQ
| ) + |C|( |ψQ|

|SφQψQ | + 1) +
|D||ψD|

|dom(D)| )

where D is the decision variable with the smallest domain size and κ, which is
a function of the size of the network, is the total cost for kernel invocations and
memory latency in the GPU.

Lemma 2 (Speed Up). The speed up of evaluating the sum-max-sum rule for
a flat DID with set, C, of chance variables, D of decision variables, and U of
utility variables is upper bounded by:

(|U| |ψ′
Q||ψQ|

|S
ψ

′
Q

ψQ
| ) + |C||φQ|( |ψQ|

|SφQψQ
| + 1) + |D||ψD|

κ + (|U| |ψQ|
|S

ψ
′
Q

ψQ
| ) + |C|( |ψQ|

|SφQψQ
| + 1) +

|D||ψ
D

|
|dom(D)|

where ψ
′
denotes an expected utility; SφQψQ

, SφQψQ
are the smallest sets of

shared variables between probability and utility factors respectively; D is the deci-
sion variable with the largest utility factor to maximize over; D is the decision
variable with the smallest domain size and κ, which is a function of the size of
the network, is the total cost for kernel invocations and memory latency in the
GPU.

Next, we formulate the speed up due to solving |Mj | level 0 models (DIDs)
across P GPUs.

Theorem 2 (Speed up). The speed up of solving a level 1 I-DID on multiple
GPUs is upper bounded by:

Ts|Mj | + Exp + T
′
s

Tp

P
|Mj | + Exp + T ′

p
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where Ts, Tp are the serial and parallel run times respectively for evaluating a
lower level model. In our context, Ts and Tp are the numerator and the denomi-
nator of the expression in Lemma 2 respectively. Exp, which remains unchanged
under parallelization, is the time taken for expanding the I-DID into a flat DID.
T

′
s, T

′
p are the run times for evaluating the resulting DID after expanding the

I-DID. |Mj | is the number of level 0 models ascribed by the subject agent to the
other agent and P is the number of GPUs.

7 Experiments

In this section we empirically evaluate the performance and scalability of Paral-
lelized I-DID Exact on different networks against its serial implementation I-DID
Exact. Experiments were performed on a desktop with four Intel quad-core CPUs
(3.10 GHz), 16 GB RAM and two NVIDIA Geforce GTX480 graphics card with
480 cores, 1.5 GB global memory and 64KB of shared memory for each SM.

Besides the tiger problem (|S|=2, |Ai|=|Aj |=3, |Ωi|=6 and |Ωj |=2), we
also evaluated the proposed approach on a larger problem domain: the two-
agent unmanned aerial vehicle (UAV) interception problem (|Si|=25, |Sj |=9,
|Ai|=|Aj |=5, |Ωi|=|Ωj |=5). In this problem, there is a UAV and a fugitive with
noisy sensors and unreliable actuators locating in a 3 × 3 grid. The fugitive j
plans to reach the safe house while avoiding detection by the hostile UAV i [19].

7.1 Performance Evaluation

For the Tiger problem, different numbers of (10, 50, and 100) level 0 DIDs with
the number of planning horizons from 6 to 9 are solved and used to expand
the level 1 I-DIDs of 3 to 5 horizons. The average factor sizes increases along
with the number of horizons. For the single (multiple) GPU implementation,
the mean speed up ranges between 6 (14) and slightly greater than 10 (23),
with I-DIDs of longer horizon demonstrating greater speed up in their solution.
We also observe super-linear speed up when two GPUs on the same system
are used. Our investigations into this phenomena reveal that the super-linear
speed up can be attributed to the computations that occur on the CPU and
is most likely due to the fast caching and retrieval of the common components
in the models. Due to the complexity of the UAV domain and limited global
memory, the current implementation solves the problem optimally up to horizon
3. However, parallelized I-DID Exact (with or without parallelized candidate model
solving) still provides promising speedups. Problems with larger factors, which
contain more common variables, show greater speedups.

All experiment results are summarized in Tables 1 and 2. The I-DIDs for the
different problem domains unrolled to different look ahead (T1) with different
number of level 0 models (the column |Mj |) at different look aheads (T0) were
used to evaluate the performance of the proposed algorithm. The average sizes
of factors processed during variable elimination, including probability and utility
factors, of level 0 and level 1 models are listed in columns titled by |φ| and |ψ|.
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Table 1. Run times, factor sizes and speed ups for the multiagent tiger problem.
|Mj | denotes the number of level 0 models. |φ| and |ψ| are the round average sizes of
probability and utility factors in the models (×103), respectively. Columns titled by
CPU, GPU and GPU+MPI denote the running times for the serial (CPU only), single
GPU, and two GPUs implementations respectively. The speedups are listed in the last
two columns. SpUP denotes the speedup using single GPU and SpUP MPI represents
the speedup using two GPUs with MPI.

|Mj | Level 1 Level 0 Time (seconds)

T1 |φ| |ψ| T0 |φ| |ψ| CPU GPU GPU+MPI SpUP SpUP MPI

10 3 1959 2237 6 2192 1703 3.1 0.5 0.2 6.2 14.2

7 11126 8620 17.8 1.9 0.9 9.2 20.5

8 58835 45556 106 10.2 4.7 10.4 22.5

9 306284 237130 644 60.0 27.8 10.8 23.2

4 38376 44998 6 2192 1703 5.6 0.8 0.5 7.3 11.6

7 11126 8620 20.3 2.2 1.1 9.3 17.9

8 58835 45556 108 10.5 5.0 10.3 21.9

9 306284 237130 647 60.0 28.1 10.8 23.0

5 600493 655141 6 2192 1703 50.0 5.1 4.9 9.8 10.2

7 11126 8620 64.7 6.5 5.5 10.0 11.7

8 58835 45556 153 14.7 9.4 10.4 16.3

9 306284 237130 691 64.3 32.5 10.7 21.2

50 3 5449 5307 6 2192 1703 13.7 1.8 0.9 7.5 15.7

7 11126 8620 80.5 8.2 4.1 9.8 19.5

8 58835 45556 481 46.0 23.2 10.5 20.7

9 306284 237130 2930 272 140 10.8 21.0

4 63225 65249 6 2192 1703 16.1 2.1 1.1 7.7 14.4

7 11126 8620 83.0 8.5 4.4 9.8 18.9

8 58835 45556 484 45.9 23.5 10.5 20.5

9 306284 237130 2931 272 139 10.7 21.1

5 672794 683530 6 2192 1703 60.5 6.44 5.7 9.4 10.9

879830 910980 7 11126 8620 127 12.7 8.8 10.0 14.5

8 58835 45556 528 50.6 27.9 10.4 18.9

9 306284 237130 2972 277 144 10.7 20.7

100 3 5546 5322 6 2192 1703 27.4 3.6 1.7 7.7 16.1

7 11126 8620 162.5 16.3 8.2 9.9 19.8

8 58835 45556 971 92.8 46.3 10.4 20.9

9 306284 237130 5937 573 285 10.3 20.8

4 63294 65260 6 2192 1703 29.9 3.8 2.0 7.8 15.3

7 11126 8620 164.9 16.7 8.4 9.8 19.5

8 58835 45556 974 92.4 46.6 10.5 20.9

9 306284 237130 5937 569 285 10.7 20.8

5 672848 683538 6 2192 1703 74.3 8.1 6.37 9.2 11.6

879884 910989 7 11126 8620 209 21.0 12.9 9.9 16.2

8 58835 45556 1018 96.8 51.0 10.5 20.0

9 306284 237130 5975 575 288 10.4 20.7
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Table 2. Run times, factor sizes and speed ups for the multiagent UAV problem.
Columns have similar meanings.

|Mj | Level 1 Level 0 Time (seconds)

T1 |φ| |ψ| T0 |φ| |ψ| CPU GPU GPU+MPI SpUP SpUP MPI

10 3 104223 75120 3 1235 1029 16.6 2.2 2.1 7.5 8.0

4 20237 9467 24.4 3.2 2.5 7.7 9.6

5 392043 170405 239 27.6 13.5 8.7 17.7

25 3 106410 75270 3 1235 1029 16.9 2.3 2.1 7.4 8.0

4 20237 9467 32.6 4.2 3.2 7.7 10.3

5 392043 170405 462 55.6 28.6 8.8 16.2

50 3 209573 117520 3 1235 1029 17.5 2.4 2.2 7.3 8.0

212260 117695 4 20237 9467 46.6 6.0 4.1 7.7 11.5

153348 81195 5 392043 170405 845 99.3 51.0 8.5 16.6

Columns labeled by CPU, GPU and GPU+MPI contain the total running times,
which include the time for solving level 0 models, expanding the level 1 I-DIDs
into flat DIDs, and solving the resulting level 1 models. The speedup is indicated
in the last two columns titled with SpUP and SpUP MPI. As observed, the
benefits of parallelizing the computation of MEU and having multiple GPUs to
solve lower level models are demonstrated.

As suggested in Theorem 2, the theoretical speedup, for these two domains
are 70/(κ+22) and 450/(κ+28), respectively, where κ is the total cost for kernel
invocations and memory latency in the GPU. As the tiger problem is a small
domain, the cost of data transmission is negligible, and the lower bound can be
seen as approximately 4. However for the larger UAV problem, a comparison
with the reported empirical speedup shows that κ is not negligible.

Figure 7 shows the speedup for the Tiger and the UAV domain with different
problem sizes. Overall, the speed up in planning optimally increases as the sizes
of the level 1 and level 0 planning problems increase. Varying the number of
candidate models (DIDs) ascribed to the other agent did not significantly impact
the speedup. This is expected as the lower-level models are solved independently.
However, the parallelization of their solutions on two GPUs with MPI increased
the speedup factor considerably. Note that the overall speedup decreases when
level 0 models are solved in parallel given level 1 models of increasing horizon.
The reason is that the expanded level 1 models are solved by single GPU.

7.2 Optimizing Thread Block Size

By parallelizing the computation on the GPU, we observed around an order
of magnitude speedup through the performed experiments. As computation
tasks are organized as a set of thread blocks and executed on SMs, the num-
ber of thread blocks determines the overall performance. Generally speaking,
more thread blocks will increase the degree of parallelization with higher syn-
chronization cost. Automatically calculating the optimal thread-block sizes [14],
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Fig. 7. The speedup for the multiagent tiger problem (the first column) and the UAV
problem (the second column) given different amount of level 0 models and number of
decision horizons. Results shown in figures in the first row are obtained by using single
GPU, while the ones in the second row are obtained by using multiple GPUs.

Fig. 8. The running time of the multiagent tiger problem given different GPU’s thread
block sizes.

which is domain dependent, is beneficial but computationally expensive. The
expense may be amortized over multiple runs. But, because we solve I-DIDs just
once for a domain, this expense cannot be amortized and significantly adds to
the run time. As a trade-off, we empirically search for a block size that opti-
mizes the solution for many problem domains following the CUDA optimization
heuristics.

We evaluated the performance of Parallelized I-DID Exact as the number of
threads in each block is increased from 64 to 640, on a level 1 I-DID of horizon 3
and 10 lower-level DIDs as candidate models. The impact of different blocks sizes
on run time is shown in Fig. 8. As observed, the block size of 512 gives the best
performance in terms of running time. The upside is that as more threads are
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involved in the computation there are less iterations of fetching global memory
loads to shared memory. In contrast, the degradation in performance is expected
because spawning more threads per block limits the number of blocks that can be
scheduled to run concurrently because of limited resources, hence, the observed
fall in performance.

8 Conclusion

We presented a method for optimal planning in multiagent settings under uncer-
tainty that utilizes the parallelism provided by a heterogeneous CPU-GPU com-
puting architecture. We focused on the interactive dynamic influence diagrams,
which are probabilistic graphical models whose solution involves transforming
the I-DID into a flat DID and computing the policy with the maximum expected
utility. Not only operations involving probability and utility factors during vari-
able elimination are parallelized on GPUs, we also parallelize solving lower level
models (i.e., differing hypotheses of the other agent’s behavior modeled as DIDs
or I-DIDs with different initial beliefs) on a multiple processor machine with
multiple GPUs using MPI. Specifically, two processors each with its own GPU
were used to solve the lower level models in parallel.

We demonstrate speed ups close to an order of magnitude on multiple prob-
lem domains for large numbers of models and long horizons. To the best of
our knowledge, these are the fastest run times reported so far for exactly solving
I-DIDs and other related frameworks such as I-POMDPs for multiagent
planning, and represent a significant step forward in making these complex
frameworks practical. Comparisons based on different types of GPUs will be
our immediate future work as well.
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Abstract. Social computers have been characterised as goal oriented
socio-technical systems comprised of humans as well as computational
devices. Such systems can be found in natura in a variety of scenarios,
as well as designed to tackle specific issues of social and economic rele-
vance. In the present article we introduce the Lightweight Situated Social
Calculus (LS2C) as a language to design norm controlled executable
specifications of interaction protocols for social computers. Additionally,
we describe a platform to process these specifications, giving them a
computational realisation. We argue that LS2C can be used to design,
implement and execute algorithms in social computers.

Keywords: Interaction models · Social computers · Social interaction
protocols

1 Introduction

Social computers have been characterised as socio-technical systems that bring
together the innate problem solving, action and information gathering powers of
humans and the environments in which they live and of computational devices,
in order to tackle large scale social and economic problems [15]:

– The “hardware” of a social computer is supplied by humans (taken as individ-
uals as well as collectively in the form of human-powered institutions) and the
environment where these humans live, including all relevant artifacts which
can be natural or man-made, as well as computational devices.

– The “software” of a social computer is comprised of human capabilities, organ-
isational and social rules and norms, social conventions, as well as computer
software.

This work has been partially supported by FAPESP and CNPq. This article is a
revised and extended version of the article LS2C– A Platform to Design, Implement
and Execute Social Computations, presented at ICAART 2015 [7].

c© Springer International Publishing Switzerland 2015
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– The “algorithms” in social computer are defined by socially accepted goals and
corresponding actions which can be taken to achieve local as well as global
goals.

– Finally, the “processing” of algorithms in social computers are collective,
decentralised, goal-oriented actions whose emergent results can be iteratively
evaluated and steered towards active goals.

A social computer is not programmed the same way as conventional com-
putational devices. Social computers are evolving social systems, whose com-
ponents (i.e. their “hardware”, “software”, “algorithms” and “processing”) are
dynamically and evolutionarily designed together with their goals and available
resources. The analysis and design of social computers require novel methodolog-
ical practices, blending existing techniques and experiences from applied social
sciences and computational sciences [6].

The design of a social computer requires participatory definition of goals,
elicitation of resources and coordination of actions. Appropriate methodologies
for such activities can be borrowed from or inspired by existing practices of
Participatory Action Research [2], in which the goals and the resources to reach
these goals are defined collectively by the members of the community who shall
be directly interested in these goals and ready to work to reach them.

In order to design, implement, and continuously monitor and steer the
behaviour of social computers, specialised languages are required to build spec-
ifications, and corresponding computational platforms are required to support,
manage and provide a computational realisation of social computers. An essen-
tial aspect to be represented in such languages is interaction between actors in
social computers, so that the internal behaviour of these actors can be abstracted
and the resulting systems can be analysed as a whole. Additionally, since these
languages should be used to communicate specifications as well as processing
results to participants in social computers (i.e. humans who behave as actors
in social computers), they should be concise and simple to understand. Finally,
in order to build social computers whose behaviour can be verified with respect
to desired requirements and attributes, these languages should have a formal
underpinning and the corresponding specifications and processing results should
be formally verifiable.

Social computers can be found in natura or designed to tackle specific issues
of social and economic relevance. Designed social computers contain rules that
specify their general behaviour, which are built in the form of normative systems.
Normative systems can be fixed or evolving, and they can steer the behaviour of
the system according to norm management procedures that can be centralised
or distributed across the social computer.

In the present article we present the ongoing development of a language
and a platform for norm controlled social computers. The proposed language
and companion computational platform – coined the Lightweight Situated Social
Calculus (LS2C) is a fusion of two previously existing languages, respectively
the Lightweight Social Calculus (LSC) and the JamSession platform.
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In Sect. 2 we present some related work and the preliminary concepts that
have guided the development of the LS2C language and platform. In Sect. 3
we introduce in detail the LS2C language. In Sect. 4 we briefly describe the
platform in which this language shall be used. In Sect. 5 we illustrate how this
platform can be used in practice. Finally, in Sect. 6 we present some conclusions
and proposed future work.

2 Preliminary Concepts and Related Work

The LS2C platform is a fusion of the Lightweight Social Calculus (LSC) and the
JamSession platform. LSC, in turn, is an extension of the Lightweight Coordi-
nation Calculus (LCC). In the following paragraphs we briefly introduce these
languages and platforms.

The LCC is an executable specification language grounded on the notions
of process algebras and initially proposed for the specification and processing of
interaction models for distributed software components [24]. It has been extended
in a variety of ways, e.g. for contextual reasoning about distributed software
systems [27], for the specification and execution of choreographies for web ser-
vices [1] and, more recently, for the specification of social computers, under the
name of Lightweight Social Calculus – LSC [22]. It has also been successfully
implemented using the logic programming language Prolog, the object oriented
programming language Java and the object-functional programming language
Scala.

LCC and its variations – particularly LSC – fulfill most of the requirements to
be a language for the specification, implementation and execution of algorithms
in social computers. LSC is a compact formal language that can be used to
specify and to mediate ongoing social interaction protocols. The syntax of LSC
(as well as all other variations of LCC), however, can lead to lengthy specifica-
tions which can be difficult for human reading and understanding. Moreover, the
extension of LCC to manage contexts (coined Ambient LCC [27]) departs from
the lightweight approach and becomes more complex than the other variations
of LCC, resulting in a not so concise and effective platform for the specification
and execution of interaction protocols by human system designers.

The explicit management of contexts can be a powerful technique to help in
the analysis and design of social interactions, given that many of these interac-
tions are context-dependent (e.g. business negotiations must occur in adequately
equipped meeting rooms, to ensure privacy and the availability of required com-
munication resources; healthcare must occur in hospitals and clinics, to ensure
the availability of required specialised equipment and personnel; bank trans-
actions must occur over the appropriate counters; the automated interactions
among communicating portable devices in an Internet of Things scenario must
be context sensitive to ensure privacy and reliability of interactions; and so on).

Contexts are also an expressive and convenient way to design and implement
norms and norm management systems, in the form of contextual rules that steer
the behaviour of a social computer. Therefore, a useful feature in a language
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for social computers is the explicit representation and management of contexts,
which can be abstracted as locations in which certain interactions are allowed to
occur.

The JamSession platform is a language developed for purposes similar to
those of LSC. It was initially conceived as an executable specification language
to manage the interactions between human controlled and synthetic charac-
ters in Second Life-style virtual worlds and multiplayer computer games, and
later employed to mediate business interactions between organisations in cross-
organisational workflows [4,5]. A simplified prototype of JamSession has been
implemented in Prolog, and a cloud-based prototype of JamSession has been
implemented using the functional language F�, based on which sample demos of
applications have been developed [8]. The fundamental concept in JamSession
is the notion of situated interaction protocols, which determine how and where
actors can interact with each other and with the environment. The semantics of
situated interaction protocols can be formally characterised in terms of Nested
Petri Nets, which are an extension of coloured Petri nets to handle recursion
[12]. Nested Petri Nets, in turn, can be translated into the specification language
Promela and verified using the model checker SPIN with respect to properties
of their operational behaviour (such as liveness and termination) [13].

There have been initiatives by other authors to analyse social interactions
based on formal languages capable of capturing the dynamics of interactions, in
many cases grounded on the notions of dynamic modal logics, preference logics
and public announcement logics [3,16,26,28]. Our work distinguishes from these
initiatives at least in two senses:

1. We focus on systems design as well as analysis, whereas those initiatives focus
primarily on analysis of existing social networks grounded on formal theories.

2. Since we are interested in the design of systems for goal-oriented social interac-
tions, we have taken into account scalability and computational performance
issues, as well as interaction design issues. Previously existing initiatives have
mostly focused on theoretical issues, accounting for computational and system
level performance as secondary issues. Scalability in LS2C shall be ensured by
the appropriate use of asynchronous state management based on Linda-style
tuple spaces [14], following the implementation practices used in JamSession.

3 The LS2C Language

The Lightweight Situated Social Calculus LS2C is based on the notion of
situated social interactions, in which situations are used to represent the notion
of contexts and, therefore, of normative systems.

A situated social interaction is comprised of actions which are permitted to
occur if performed by specific agents at specific locations, together with messages
exchanged among agents in order to enable and trigger further actions, and
with migrations of agents across locations that occur in order to enable agents
to dynamically update their roles in a social computer and, as a consequence,
adjust their capabilities.
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In LS2C , locations are an abstraction used to represent a variety of concepts,
such as:

– Actual physical locations, e.g. the counter in a bank where financial transac-
tions are permitted to occur.

– Contextual information, e.g. characterising the collective acceptance of inter-
action protocols by agents in a business transaction (buy, sell, legal procedures,
and so on) so that it is common knowledge that the transaction can be carried
out as long as all actions in all protocols – the “setting” for the transaction –
are fulfilled.

Locations are represented as nodes in a directed graph, in which edges rep-
resent accessibility relations, characterising allowed transitions between loca-
tions or contexts. We denote the set of nodes in a graph of locations as
S = {s1, ..., sr}1.

Each location can host an unlimited number of agents. An agent is capable of:

– Moving between directly connected locations.
– Performing allowed actions while in specific locations.
– Reading, writing or deleting messages in locations.

We have a set of agents A = {a1, ..., am} whose behaviour is constrained and
determined by each role that they adopt, according to each location to which they
move. Actions and message types are available only to agents bearing specific
roles at specific locations. The positioning of agents in locations is the way to
control the processing of algorithms in social computers represented using LS2C.

Actions can be enabled by and influence or transform objects that can be
found in the environment. We have a set of objects B = {b1, ..., bn}, which are
subject to the actions of agents. Objects can be physical objects as well as their
digital counterparts.

We build mappings pointing to agents and objects, so that we can refer to
them indirectly through built connections between them (such as FatherOf(X)
to refer to an agent by naming another agent). For this reason, we also include
in the language a set F of n-ary functions, 0 < n < ∞, such that if f ∈ F has
arity j, it can be used to build or point to an element of A ∪ B given j elements
of A ∪ B ∪ S. In other words, f : (A ∪ B ∪ S)j �→ A ∪ B.

In order to be able to build terms as in first order logics, we also include
a countable set of variables X = {x1, ...}. Every formula built in this calculus
is assumed to be existentially closed, i.e. free variables are implicitly bound to
existential quantifiers.

We build relations involving agents and objects, representing information
that can be known by agents and action statements. We have three sets of n-ary
predicates to represent each of these relation types:

– P : set of n-ary knowledge predicates, 0 ≤ n < ∞.
– Q : set of n-ary action predicates, 0 ≤ n < ∞.
1 We abuse notation and also refer to the graph of locations itself as S.
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– R : set of n-ary protocol names, 0 ≤ n < ∞.

Predicates are prefixed by modal operators as follows, in which p ∈ P, q ∈
Q, r ∈ R, s ∈ S and a ∈ A:

– [k]sap denotes a knowledge modality – agent a knows fact p ∈ P at location s.
– [e]saq denotes an engagement modality – agent a performs action q ∈ Q at

location s.
– [i]sq denotes a location-specific computation modality – action q ∈ Q is

processed at location s.
– [i]sr denotes a location-specific interaction protocol – protocol r ∈ R can be

started from location s.

In order to avoid unnecessary complications in our proposed language, we
allow modal operators to only prefix a single predicate, i.e. no nesting of modal-
ities is allowed, nor it is allowed to have a modality prefixing arbitrary formulae.

Communicative actions are defined as follows, in which p ∈ P, a, a′ ∈ A and
s, s′ ∈ S:

– null: a void message.
– [e]sawrite(p, a′): agent a writes message in location s, which is then stored as

predicate p known by agent a′ in s, i.e. [k]sa′p. In other words, agent a tells p
to a′ in s.

– [e]sadel(p, a′): agent a deletes message which was previously stored in location
s as predicate p known by a′ in s, i.e. the piece of knowledge [k]sa′p is retracted
from location s.

In order to continue with the definition of LS2C , we need to define two
connectives:

– Non-commutative conjunction: given two existentially closed formulae ϕ and
ψ, the conjunction ϕ ∧ ψ is evaluated as 	 if:
1. ϕ is evaluated as 	 AND
2. the variable bindings performed during the evaluation of ϕ are used to bind

the values of variables in ψ, producing the instatiated formula ψ̂ AND
3. ψ̂ is also evaluated as 	.
Otherwise, the conjunction ϕ ∧ ψ is ⊥.

– Non-commutative disjunction: given two existentially closed formulae ϕ and
ψ, the disjunction ϕ ∨ ψ is evaluated as 	 if:
1. ϕ is evaluated as 	, in which case ψ is never evaluated OR
2. ϕ is evaluated as ⊥, and ψ is evaluated as 	. In this case, the variable

bindings performed during the evaluation of ϕ are not used to bind the
values of variables in ψ.

Otherwise, the disjunction ϕ ∨ ψ is ⊥.

We define an atomic event AE as one of the following expressions, in which
p ∈ P, q ∈ Q, r ∈ R, a ∈ A and s, si, sj ∈ S:

– [k]sap.
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– [e]saq.
– [i]sq.
– [i]sr.
– [i]si→sj

a mv, in which the special predicate mv is used to state that agent a is
being moved from location si to location sj .

– a communicative action M .

We define an event E as a conjunction of atomic events, i.e. E = ∧iAEi.
Finally, we define an interaction protocol as a pair 〈[i]sr,∨iEi〉, in which

[i]sr is a location-specific interaction protocol and ∨iEi is a non-commutative
disjunction of events.

The interaction protocol 〈[i]sr,∨iEi〉 is triggered by a formula that unifies
with the left hand side expression [i]sr. Variable bindings are applied to the
right hand side expression ∨iEi, which is then computed. Each event Ei is an
alternative course of actions that can be tested. If one of the events Ei returns 	,
then the interaction protocol succeeds and the corresponding variable bindings
are presented. If all alternatives in ∨Ei return ⊥, then the interaction protocol
fails and variable bindings are discarded.

It should be observed that, since location-specific interaction protocol expres-
sions [i]siri can occur as atomic events in the right hand side of interaction
protocols, recursive interaction protocols are allowed in LS2C.

LS2C is a coordination language. Knowledge is encoded in the platform using
communicative actions that update knowledge predicates p ∈ P, and action
predicates are expected to be evaluated by external actors, which can include
human as well as computational agents.

4 The LS2C Platform

We are working on a robust implementation for the LS2C language, benefitting
from existing implementations of LSC and of JamSession, that shall be freely
deployed as the LS2C platform. In this software platform, the graph of locations,
the list of pairs 〈s, a〉, s ∈ S, a ∈ A for each predicate indicating where and by
whom it can be evaluated, and the state of each location are managed in a
centralised cloud server.

Interaction protocols are stored in distributed hosts. The processing of these
protocols may require human intervention, this way characterising the LS2C
Platform as a tool to support and manage social interactions. The physical loca-
tion where interaction protocols can be found is stored in the centralised cloud
server as an address catalog. This catalog can be rearranged locally according to
private ranking criteria, defined by priority policies used in different sites which
can be used to rank interaction protocols.

The locations of agents are also managed in the centralised server, charac-
terising the notions of virtual worlds as featured in the JamSession literature [4]
and mirror worlds as featured in the LSC literature [22].

The definitions of predicates – including action predicates, which can cap-
ture the input-output expected behaviour of human actions – are stored in the
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distributed hosts. The locations of interaction protocols and their corresponding
predicates are stored in the centralised server.

The architecture of the LS2C Platform is depicted in Fig. 1.
Protocols can be triggered concurrently and asynchronously by several users.

As a consequence, the verification of properties related to distribution and con-
currency is important to ensure an expected behaviour in a system whose interac-
tions are specified using LS2C. We are working on the characterisation of LS2C
protocols using Nested Petri Nets, based on our experience using the same for-
malism to characterise JamSession protocols. Nested Petri Nets can be used to
formally verify properties such as fairness, liveness and termination. Given that
Nested Petri Nets can also be translated as Promela programs to be verified
using the model checker SPIN [13], we will be able to verify such properties also
for LS2C social interaction protocols.

Similarly to LCC and to what can be observed in business process modeling
[5,24], social interaction protocols can be considered at specification time and at
run time. Specification time refers to the design of social computers, while run
time can refer to the a posteriori analysis of the actual execution of algorithms
in social computers, in which e.g. specific protocols are used to enact concrete
interactions. Such analysis can reveal social network properties involving inter-
acting peers, such as centrality of a location, and cohesiveness and density of
location-related interactions [17], whose interpretation can be relevant to under-
stand features of specific domains.

Fig. 1. The architecture of the LS2C Platform.
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5 An Example – LS2C for S3

In this section we mention some potential applications for the LS2C platform,
and sketch how some interaction protocols can be encoded for one of these appli-
cations.

The LS2C platform has been conceived to design and implement social com-
puters in which situated interactions are most relevant. Social computers of this
sort can be found in urban computing and in smart city environments, which are
urban landscapes augmented with digital communication and processing devices
and applications [18,19,25,29].

Urban computing refers to requesting citizens to carry (most likely within
their smartphones) software applications that track their activities, interact with
them and provide information to service managers, so that the quality of ser-
vice provisioning can be improved in issues such as traffic monitoring, public
transportation and emergency relief.

Smart cities are urban settings which have been augmented with ubiquitous
computing devices, in such way that existing services can become more effective
and novel services can be offered to citizens, businesses and governments. A
representative example of what can be achieved under the concept of smart
cities is the structuring of effective business clusters supported by digital services,
which enable economic sustainability and the creation of jobs in cities. In the
following paragraphs we detail this possibility.

An important well known factor for regional economic development is inno-
vation. Innovative entrepreneurship is frequently associated with start-up com-
panies, which in most cases are small companies which hold deep knowledge and
skills over a narrow and specialised domain. One factor that has proven to be
influential for the survival of these companies is their ability to cooperate with
other companies, possibly forming or entering a network of cooperating organ-
isations. Local and regional governments have taken notice of that and have
created programmes to support and incentive the blooming of such networks, as
well as studied how these networks should be structured in order to minimise the
risk of failure of participating companies and maximise the economic efficiency
of the networks [11,20,21,23].

Business clusters are emergent agglomerations of companies which benefit
from the proximity of each other to grow. Smart Specialisation Strategies (S3)
have been proposed recently as means for policy makers to build “smart clus-
ters”, in which the use of knowledge and resources is optimised and cooperation
among companies is brought to be most effective [9,10]. S3 can be seen as an
effort to design business clusters, instead of simply providing appropriate means
for them to emerge.

Business relations are partially constrained by rationality rules (such as
profit maximisation and risk minimisation) and by general norms (such as legal
constraints on business contracts). On the other hand, companies are human-
powered and human controlled institutions, and therefore – especially small com-
panies – are influenced by human decision making, which takes into account
rules beyond those that can be captured by simplified models of pure rationality
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sA sB

Fig. 2. The two locations and corresponding agents for the customer-supplier example.

(e.g. brand fidelity, intuition driven trust relations, aesthetic considerations and
cultural affinity) as well as social norms (such as socially defined ethical rules).
Company relations are diversified and include customer-supplier relations as well
as cooperative relations involving similar companies [20,21,23]. Hence, we sug-
gest that business networks can be treated as social computers, and that the
LS2C Platform can be a useful tool to design, implement, run, monitor and
iteratively refine Smart Specialisation Strategies.

In order to illustrate how this can be done, we show a simplified version
of interaction rules that could be relevant in a customer-supplier relationship
involving two companies. In this example, company A asks company B to pro-
vide a service that is required to carry on production activities within com-
pany A2.

Company A may wish to minimise risk in its operations by limiting the
number of open requests sent to company B to a fixed value N : once A has sent
N requests to B, it will only send a new request after B has fulfilled at least one
of the queued requests.

In order to model this small example, the graph consists of two locations
sA and sB , and edges connecting these two locations in both directions (Fig. 2).
Agents, in this example, represent orders: when company A places an order, an
agent is sent from sA to sB , and when this order is delivered by company B the
agent is sent back from sB to sA. In Fig. 2 we depict agents as black dots. In
that figure, company A accepts to have seven simultaneous open orders at most
(i.e. N = 7), as shown by the seven agents that are inside sA.

2 This example is borrowed and adapted from [5] and from [7]. Evidently, we are
exhibiting only a very small fraction of a model for S3 using this example. Our goal
is simply to illustrate how rules that could be used to model a S3 would look like.
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The following three small interaction protocols implement this interaction3:

– Protocol 1:
1. 〈[i]sAreq1(X,Order),
2. [i]sA→sB

X mv ∧ [e]sBX write(msg(Order),X) ∧ [i]sBsupply(X,Order)
3. 〉.

– Protocol 2:
1. 〈[i]sBsupply(X,Order),
2. [k]sBX msg(Order) ∧ [e]sBX prOrder(Order) ∧ [i]sBreq2(X,Order)
3. 〉.

– Protocol 3:
1. 〈[i]sBreq2(X,Order),
2. [e]sBX del(msg(Order),X) ∧ [i]sB→sA

X mv ∧ [e]sAX endOrder(Order)
3. 〉.

Interaction protocols 1 and 3 reside in a host managed by company
A, and interaction protocol 2 resides in a host managed by company B.
[i]sAreq1(X,Order) triggers the interactions, by asking an agent X in location
sA to start interaction req1, in which order Order will be requested to company
B. This is performed by moving the agent to location sB, where it registers the
order and triggers protocol 2.

By pattern matching on the right hand side of protocol 2, the message stored
in location sB containing the specification of the order is verified as being part
of the knowledge of X while in sB , based on which the order is processed (by
triggering the action predicate prOrder) and finally protocol 3 is triggered.

By pattern matching on the right hand side of protocol 3, the message is
deleted and the agent is moved back to location sA, then the order is properly
delivered (using the action predicate endOrder).

This is a simplified example, in which success/failure verifications of per-
formed operations and security issues are not taken into account. Additional
features can be implemented by extending these protocols and/or by adding
special purpose protocols, towards the design of interaction rules that can spec-
ify and characterise successful relations between companies in a supply chain.

Other protocols can be designed to compete with these protocols, and pro-
tocols can also be designed to characterise cooperative behaviour of suppliers
to provide combined services to customers, towards the design of interaction
rules that can specify and characterise relations between companies in a net-
work. Hence, the relations involving companies in a netchain, i.e. a network of
relations mixing supply chains and cooperative/competitive relations [20] can be
designed.

Based on theoretical analysis of properties of the interaction protocols, as
well as empirical analysis of actual relations that can result from the use of
these protocols, iterative refinements and adjustments can be made.

3 We adopt the Prolog convention that variables begin with capital letters, and all
other terms begin with small letters.



LS2C - A Platform for Norm Controlled Social Computers 295

6 Conclusion and Future Work

In this article we have introduced the LS2C platform to design, implement and
execute algorithms in social computers, and sketched how it can be used to model
and support a complex system of economic relevance, namely the organisation
of companies in a business cluster according to S3.

A platform for social computers should present features such as:

– The possibility to empower domain experts and end users to build specifica-
tions and execute them,

– Technology-agnosticism, meaning that implementations can be built based on
various and diverse software platforms, operating systems and programming
languages,

– Explicit account of participants in social interactions and their possible behav-
iours,

– Resources for the design of interaction protocols as well as for the analysis
of existing protocols, including formal analysis based on algebraic and logical
concepts.

We are currently working on the design and implementation of the LS2C
platform as a framework (in the software engineering sense) of LCC/LSC pro-
tocols. Since it inherits features and properties of LCC/LSC as well as of
JamSession, we claim that this platform addresses all these features.

The specification of social interactions as characterised in the LS2C platform
can be used at least in three different ways:

1. As a design tool to specify desired features of interaction protocols in a decen-
tralised way,

2. As a platform for the execution of algorithms in social computers, and
3. As a tool to reason about specifications, including strategic reasoning (e.g.,

given alternative protocols that can be built, what is best for me/my com-
pany?), whereby participants may try out certain behaviours “in vitro” before
these can be actually enacted.

LSC has been combined with an existing social network platform [22], and
JamSession has been combined with an existing workflow management platform
[8]. We envisage that a full LS2C Platform can be implemented as the combina-
tion of a novel implementation of the LS2C language, a workflow management
system (e.g. Bonita4) and a social network platform (e.g. elgg5 or eXo6). The
implementation of the LS2C language shall benefit from previous experience
implementing LSC and JamSession.

We are particularly interested in the characterisation of Smart Specialisation
Strategies (S3 ) as a discipline to steer the emergency of networks of social inter-
actions involving human-powered agencies aiming at regional economic efficacy.
4 http://www.bonitasoft.com/.
5 http://elgg.org/.
6 http://www.exoplatform.com/.

http://www.bonitasoft.com/
http://elgg.org/
http://www.exoplatform.com/
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We believe that this approach can be appropriate to implement S3 effectively,
and that the LS2C platform can be useful to support the design and operation of
business clusters following S3. In future work, we shall explore these views, hope-
fully through the analysis of empirical data resulting from the actual structuring
of clusters of innovation as goal-oriented social interaction networks.
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Abstract. Qualitative spatial reasoning (QSR) is a method of repre-
senting spatial data by extracting necessary information depending on a
user’s purpose, and allowing reasoning on this representation. Although
many studies have examined QSR, little work has been carried out
from the viewpoint of computational models, which are necessary for
practical use in an implemented system. This paper presents a com-
putational model of a qualitative spatial representation and shows the
correspondence of an image and its symbolic expression. Specifically, we
take PLCA as a framework of QSR, which represents a figure using the
objects used to construct it, i.e., points, lines, circuits, and areas, as
well as the relationships among them, without using numerical data. We
describe a method of constructing a PLCA expression inductively, and
prove that the defined class coincides with a subclass of PLCA that can
be realized on a two-dimensional plane. Part of the proof is implemented
using the proof assistant Coq.

Keywords: Qualitative spatial reasoning · Formalization · PLCA ·
Planarity

1 Introduction

With the advances in computer performance, we often need to deal with large
amounts of static or dynamic image data. Image data are usually represented in
raster or vector form using coordinates, which require much time and memory,
if we reason on these data. Fortunately, a user’s purpose may be met without
using precise data. For example, it is sometimes sufficient to know a relative
direction or positional relationships between landmarks during route navigation,
or it is sometimes sufficient to grasp qualitative change, such as the fact that
connected objects can be disconnected to separate them, when extracting events
from a sequence of video frames. Qualitative reasoning or qualitative physics is
a method that has long been studied in artificial intelligence (AI) [9]. It reasons
about contiguous aspects of the physical world without using numerical data.
Qualitative spatial reasoning (QSR) is a method of representing spatial data by
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extracting their topological, mereological, or geometric properties depending on
the application [5,14,16,19]. Various proposed systems for doing this depend on
focal aspects such as the relative positional relations or relative sizes of objects
and orientations.

Studies have ranged from theoretical work to practical applications, including
simulations using geographic information systems, query-answering systems for
spatial databases, and navigation in mobile robots. The qualitative treatment
not only reduces computational complexity but also reflects human cognition and
reasoning using common-sense knowledge. Moreover, it gives clear semantics, as
it uses symbolic data. Typically, these representations adopt logical expressions,
which enable us to perform mechanical reasoning on symbols.

To certify a QSR system, we must prove that an expression correctly repre-
sents the properties of the image data and that there is a corresponding image
for a given expression. Although many studies have examined QSR in artificial
intelligence [3,8,10,17,18], little work has been carried out from the viewpoint of
computational models. For representations, most studies claim expressive power
for spatial knowledge but do not refer to the class the expression stands for.
Hence, we do not know whether a proposed expression is valid or reliable. There-
fore, it is necessary to clarify the extent to which the expression is effective if we
are to implement a system based on the expression. For reasoning, most research
has focused on the consistency check, that is, whether there exist a space that
can satisfy all of the given relationships among spatial objects and efficient algo-
rithms for solving this problem. However, there has been no discussion of how to
construct such a consistent set. Practical use of an implemented system requires
rigorous proof for the correspondence of the real figure and a symbolic expres-
sion. Mechanical proving with a proof assistant is an effective approach for this
purpose.

In this paper, we describe a computational model of a qualitative represen-
tation.

Takahashi et al. have proposed a framework for qualitative spatial reasoning,
PLCA1 [20,21], which focuses on the patterns of connections between regions.
This method distinguishes patterns in which regions are connected in different
ways, for example, by a single point, by two points, by a line and so on. For
example, in Fig. 1(a), (b) and (c) are regarded as the same, while 1(d) and 1(e)
and these figures are regarded to be different. PLCA expressions represent the
properties of spatial data by describing the constituent objects, and the relation-
ships between them, without considering attributes such as the size, direction,
or shape.

Takahashi et al. have described the conditions for planarity of a given PLCA
expression [22], that is, an existence of the corresponding figure on a two-
dimensional plane, and given a proof for this; however, they have not discussed
the construction of such a planar PLCA expression.

1 The name of PLCA is originated from an acronym for Point (P), Line (L), Circuit
(C) and Area (A).
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Fig. 1. Classification of figures in PLCA. (a)–(c) Regions connected by a line,
(d) regions connected by a point, and (e) regions that are not connected.

In this paper, we describe the construction of a planar PLCA expression
inductively, and prove that the resulting class coincides with that of the planar
PLCA. The part of this proof is implemented using a proof assistant Coq [2].

The remainder of this paper is organized as follows. In Sect. 2, we describe a
PLCA expression. In Sect. 3, we describe the inductive construction of a PLCA
expression. In Sect. 4, we prove that the constructed class coincides with that of
planar PLCA. In Sect. 5 we compare our work with the related work, and Sect. 6
concludes the paper.

2 PLCA

2.1 Target Figure

The target figure of PLCA is considered as a region segmentation of a finite
space. In addition, PLCA admits regions with holes, and regards a hole itself to
be a region. It does not admit isolated lines or points, because a region cannot
be properly defined. Here, we describe a target figure using a simple closed
curve [15].

Definition 1 (Simple Closed Curve). A non-self-intersecting continuous
loop in a plane is called a simple closed curve or a Jordan curve.

The following is the well-known theorem on a simple closed curve.

Theorem 1. Every simple closed curve divides the plane into an interior region
bounded by the curve and an exterior region containing all of the nearby and far
away exterior points.

Formally, our target figure is a finite region on a two-dimensional plane,
divided into a finite set of subregions of which each boundary is a simple closed
curve. In Fig. 2(a) and (b) are target figures, whereas 2(c) and 2(d) are not.

2.2 PLCA Expression

A PLCA expression is defined as a five-tuple, 〈P,L,C,A, outermost〉, where P
is a set of points, L ⊆ P 2, C ⊆ Ln (n ≥ 3), A ⊆ Cm (m ≥ 1), outermost ∈ C.

In PLCA, there are four basic types of object: points P , lines L, circuits
C and areas A. An element l ∈ L is defined as a pair of points p1 and p2,
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Fig. 2. Examples of (a) and (b) target figures, and (c) and (d) non-target figures.

and denoted by l.points = [p1, p2], where p1 and p2 are distinct. Intuitively, a
line is an edge between points. No two lines are allowed to cross. A line has
an inherent orientation. When l.points = [p1, p2], l+ and l− mean [p1, p2] and
[p2, p1], respectively. They are called directed lines. l∗ denotes either l+ or l−

and l∗re denotes the line with the inverse orientation of l∗.
An element c ∈ C is defined as a list of directed lines and denoted by c.lines =

[l∗0, . . . , l
∗
n], where l∗i �= l∗j if i �= j (0 ≤ i, j ≤ n), l∗i = [pi, pi+1](0 ≤ i ≤ n) and

pn+1 = p0. If p ∈ l.points ∧ l∗ ∈ c.lines, it is said that p is on c. A circuit has
a cyclic structure, that is, [l∗0, . . . , l

∗
n] and [l∗j , . . . , l

∗
n, l∗0, . . . , l

∗
j−1] represent the

same circuit for any j (0 ≤ j ≤ n). Intuitively, a circuit is the boundary between
an area and its adjacent areas.

An element a ∈ A is defined as a set of circuits and denoted by a.circuits =
{c0, . . . , cn}, where any pair of circuits ci and cj (0 ≤ i �= j ≤ n) cannot share
a point. Intuitively, an area is a connected region which consists of exactly one
piece encircled by a single closed curve.

In addition, outermost is a specific circuit in the outermost side of the figure.

Example 1. Figure 3 shows an example of a target figure and its PLCA expres-
sion 〈P,L,C,A, outermost〉.

2.3 Basic Concepts of PLCA Expressions

For c1, c2 ∈ C, we introduce two new predicates lc and pc to indicate that two
circuits share line(s) and point(s), respectively.

lc(c1, c2)
def= ∃l ∈ L; (l∗ ∈ c1.lines) ∧ (l∗re ∈ c2.lines)

pc(c1, c2)
def= ∃p ∈ P ; (p ∈ l1.points) ∧ (p ∈ l2.points) ∧ (l+1 ∈ c1.lines)

∧ (l−2 ∈ c2.lines).

If lc(c1, c2), then either pc(c1, c2) or pc(c2, c1) holds. For any pair of circuits
c1, c2 ∈ C, if c1, c2 ∈ a.circuits, then ¬pc(c1, c2) holds from the definition of
Area.

For a circuit c, we define a corresponding circuit-segment.

Definition 2 (Circuit-Segment). Let c.lines = [l∗0, . . . , l
∗
n]. A sequence cs =

[m∗
0, . . . , m

∗
k] (0 ≤ k ≤ n), where m∗

i = l∗(i+j) mod n (0 ≤ j ≤ n − 1) is said to be
a circuit-segment of c, and denoted by cs � c.
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Fig. 3. An example of a target figure and its PLCA expression.

For a circuit-segment cs = [m∗
0, . . . , m

∗
k], we define its inverse as inv(cs) =

[m∗re
k , . . . , m∗re

0 ].

Example 2. In Example 1, [l−0 , l−5 ], [l−4 , l−6 , l−0 ], [l−0 , l−5 , l−4 , l−6 ] are some circuit-
segments of c0. Furthermore, inv([l−0 , l−5 ]) is [l+5 , l+0 ].

For a pair of circuits c1 and c2, Sscs(c1, c2) represents a set of their shared
circuit-segments, that is, Sscs(c1, c2) = {cs |cs � c1, inv(cs) � c2}. For any
cs ∈ Sscs(c1, c2), inv(cs) ∈ Sscs(c2, c1) holds.

Definition 3 (MSCS). An element cs ∈ Sscs(c1, c2) is said to be a maximal
shared circuit-segment of c1 and c2 if there does not exist cs′ ∈ Sscs(c1, c2) such
that cs is a subsequence of cs′. A set of maximal shared circuit-segments of c1
and c2 is denoted by SMSCS(c1, c2).

When SMSCS(c1, c2) = {c1.lines}, c1 and c2 are the inner and the outer
circuits of a simple closed curve, respectively. Note that if pc(c1, c2)∧¬lc(c1, c2),
then SMSCS(c1, c2) = {}.

Example 3. In Fig. 4, Sscs(c0, c1) = {[], [l+0 ], [l+1 ], [l+2 ], [l+3 ], [l+0 , l+1 ], [l+2 , l+3 ]}. Fur-
thermore, SMSCS(c0, c1) = {[l+0 , l+1 ], [l+2 , l+3 ]} and SMSCS(c1, c0) = {[l−1 , l−0 ],
[l−3 , l−2 ]}.

Here, we introduce a new type Path. An instance path of type Path is
defined as a list of directed lines [l∗0, . . . , l

∗
n], where l∗i = [pi, pi+1] and pi �= pj

if i �= j (0 ≤ i, j ≤ n). It is represented by quad-ruple of the starting point,
ending point, list of inner points and list of inner lines. For path, start(path),
end(path), inner points(path) and inner lines(path) show the starting point,
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Fig. 4. Shared circuit-segments of c0 and c1.

ending point, list of inner points and list of inner lines, respectively. The length of
inner lines(path), which may be 0, is said to be the length of the path. Clearly,
any circuit-segment is a Path. Path is used to construct a new circuit.

2.4 Consistency

A consistent PLCA expression does not allow an isolated point or an isolated line,
and all of the objects should be correctly defined by the incidence relations. For
any point, there exists at least one line that contains it. For any line, there exist
exactly two distinct circuits that contain it and its inverse direction, respectively.
For any circuit, there exists exactly one area that contains it. The outermost is
not included in any area. The consistency is formally defined as follows.

Definition 4 (PLCA Consistency).

– [Consistency of Point-Line]
∀p ∈ P (∃l ∈ L; p ∈ l.points)
∀l ∈ L(∀p ∈ l.points; p ∈ P )

– [Consistency of Line-Circuit]
∀l ∈ L(∃c, c′ ∈ C; l+ ∈ c.lines ∧ l− ∈ c′.lines)
∀c ∈ C(∀l∗ ∈ c.lines; l ∈ L)
∀l ∈ L(l∗ ∈ c1.lines, l∗ ∈ c2.lines → c1 = c2)

– [Consistency of Circuit-Area]
∀c ∈ C(∃a ∈ A; c ∈ a.circuits)
∀a ∈ A(∀c ∈ a.areas; c ∈ C)
∀c ∈ C(c ∈ a1.circuits, c ∈ a2.circuits → a1 = a2)

– [Independence of outermost]
¬∃a ∈ A; outermost ∈ a.cuicuit.

2.5 PLCA-connectedness

Intuitively, PLCA-connectedness guarantees that no objects are separated,
including the outermost. In other words, for any pair of objects, there exists
a trail from one object to the other via further objects.
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Definition 5 (d-pcon). Let e = 〈P,L,C,A, outermost〉 be a PLCA expression.
For a pair of objects of e, the binary relation d-pcon on P ∪L∪C ∪A is defined
as follows.

1. d-pcon(p, l) iff p ∈ l.points.
2. d-pcon(l, c) iff l ∈ c.lines.
3. d-pcon(c, a) iff c ∈ a.circuits.

Definition 6 (pcon). Let α, β and γ be objects of a PLCA expression.

1. If d-pcon(α, β), then pcon(α, β).
2. If pcon(α, β), then pcon(β, α).
3. If pcon(α, β) and pcon(β, γ), then pcon(α, γ).

Definition 7 (PLCA-Connected). A PLCA expression e is said to be PLCA-
connected iff pcon(α, β) holds for any pair of objects α and β of e.

2.6 PLCA-Euler

Intuitively, PLCA-Euler guarantees that a PLCA expression can be embedded in
a two-dimensional plane so that the orientation of each circuit can be correctly
defined.

Definition 8 (PLCA-Euler). For a PLCA expression 〈P,L,C,A, outermost〉,
if |P | − |L| − |C| + 2|A| = 0, then it is said to be PLCA-Euler.

Takahashi et al. have derived this equation from Euler’s formula on a con-
nected planar graph [22].

2.7 Planar PLCA Expression

Takahashi et al. have given a proof of the following theorem on the planarity of
a PLCA expression [22].

Theorem 2. For a consistent, connected PLCA expression, it is PLCA-Euler
iff there exists a corresponding target figure on a two-dimensional plane.

Planar PLCA is defined as follows.

Definition 9 (Planar PLCA). For a PLCA expression, if it is consistent,
PLCA-connected and PLCA-Euler, then it is said to be planar PLCA2.

For example, the PLCA expression in Example 1 is planar.
The following lemmas hold for a planer PLCA expression, and are used in

the subsequent proof for the realizability of an inductively constructed PLCA.
2 Strictly, the original PLCA admits a curved line, and multiple lines between the

same pair of points. If we admit only straight lines, we convert a PLCA expression
in the original definition by adding the same number of points and lines, and this
conversion does not affect the condition for planarity or the proof thereof.
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Lemma 1. For a planar PLCA expression, there exists an area that has a single
circuit.

Proof. Let 〈P,L,C,A, outermost〉 be a planar PLCA expression. Assume that
for any area a ∈ A, |a.circuits| ≥ 2 holds.

Set k = 0 and ck be outermost. Take c such that lc(ck, c) holds. Take an area
ak such that c ∈ ak.circuits holds. Let ak.circuits be {c, ck1 , . . . , ckn

}. Note
that ¬pc(c, cki

) holds for all i from the definition of Area. Take an arbitrary cki

(cki
�= c) and let ck+1 be cki

Increment k and repeat this procedure, then we
can take an infinite sequence of circuits SeqC = c0, c1, . . ..

Figure 5 illustrates each step of this procedure. Take c0 as an outermost
and c such that lc(c0, c) holds. Take an area a0 such that c ∈ a0.circuits holds
(Fig. 5(a)). There are three circuits in a0.circuits other than c. Take an arbitrary
circuit among them and set it as c1; take c such that lc(c1, c) holds. Take an area
a1 such that c ∈ a1.circuits holds (Fig. 5(b)). There is one circuit in a1.circuits
other than c. Take this circuit and set it as c2; take c such that lc(c2, c) holds.
Take an area a2 such that c ∈ a2.circuits holds (Fig. 5(c)). We continue this
procedure.

Since each circuit is a simple closed curve, ci and ci+2 are circuits in the
exterior region and interior region of ci, respectively, by Theorem 1. Therefore,
¬pc(ci, ci+2) holds for each i, On the other hand, the number of circuits is finite.
Therefore, we cannot take an infinite sequence of circuits SeqC. Hence, there
exists an area a ∈ A such that |a.circuits| = 1.

Lemma 2. For any circuit c of a planar PLCA expression, there exists a circuit
that has only one maximal shared circuit-segment with c.

Proof. Let 〈P,L,C,A, outermost〉 be a planar PLCA, and c ∈ C be an arbi-
trary circuit. There should be a circuit c′ ∈ C, such that |SMSCS(c, c′)| �= 0
holds, by the consistency of Line-Circuit. We take such a circuit c′. Assume
that |SMSCS(c, c′)| ≥ 2. Let SMSCS(c, c′) = {cs1, cs2} without losing general-
ity (Fig. 6). Circuit-segments cs1 and cs2 do not share a point. Since cs1 and
cs2 are considered to be paths, we can take their starting points and ending
points: start(cs1) = p, end(cs1) = q, start(cs2) = r, end(cs2) = s. Then there
exists cs � c such that start(cs) = q, end(cs) = r, and each line in cs is not
included in c′.lines. Here, p, q, r and s are distinct with each other. Since c′

is a circuit, there exists cs′; cs′ � c′, start(cs′) = r, end(cs′) = q. On the
other hand, from the consistency of Line-Circuit, there exists c0; inv(cs) � c0,
start(inv(cs)) = r, end(inv(cs)) = q. Then, circuit c0 is defined by append-
ing two circuit-segments inv(cs′) and inv(cs). Therefore, Sscs(c, c0) = {cs}. It
follows that |SMSCS(c, c0)| = 1, which is a contradiction.

3 Construction of PLCA

Theorem 2 gives the conditions for planarity of a given PLCA expression. The
next issue to address is how to construct such an expression.
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Fig. 5. Existence of an area with a single circuit.

We can construct a PLCA expression of elements P , L, C and A in this
order, for example. In this approach, we must check all of the constraints on the
objects carefully during each stage. For example, we must make a circuit so that
there exist exactly two distinct circuits: one that contains a line, and the other
that contains the line in its inverse direction. If this is not satisfied, we must
backtrack to construct these lines. This not only requires time, but it is also
very difficult to prove that the resulting structure is a planar PLCA expression.

Therefore, we take a different approach, in which we begin with outermost
and construct a PLCA expression inductively.

We define a class for PLCA expressions using the following three construc-
tors: single loop, add loop and add path. A constructor single loop corresponds
to the base case, and the other two correspond to operations that construct a
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Fig. 6. Existence of an area with a single maximal shared circuit-segments. (Relation-
ships of circuit-segments: cs1, cs2, cs � c, inv(cs1), inv(cs2), cs

′ � c′ inv(cs), inv(cs′) �
c0, start(cs1) = p, end(cs1) = q, start(cs2) = r, end(cs2) = s. start(cs) = q, end(cs) =
r, start(cs′) = r, end(cs′) = q.)

new PLCA expression by dividing an existing area in a current PLCA expres-
sion using a path. An arbitrary path, the length of which is more than one is
introduced, makes a new circuit using it. Points and lines contained in the path
are added simultaneously, and the area is divided into two areas.

We must add objects of four different types simultaneously during an induc-
tion step because the objects of a PLCA expression are mutually related. We
take the number of areas as a measure of induction, and the number of other
objects increases following the application of each constructor. We cannot take
the number of points or lines as such a measure, because the expression that is
obtained as a result of adding a single point or a single line to a PLCA expression
may not be a PLCA expression.

An alternative method of generating a new area is to add a path to the outer
part of the outermost. That is, we take two points on the current outermost
and combine these with a path in the exterior region of outermost. In this case,
outermost changes during each step where a constructor is applied. Because the
construction of a new outermost is the base case in an inductive definition, we
cannot succeed in a proof if we change the definition of outermost during each
step. Therefore, we do not adopt this method.

We now describe the construction. The idea of construction is based on draw-
ing a figure. Although we demonstrate the construction process on a figure to
provide an intuitive discussion, the construction itself is performed symbolically.

A constructor single loop is for a base case, and corresponds to the simplest
target figure with one area. There are only two circuits: the outermost circuit and
the inner side thereof. Consider an arbitrary path path, such that start(path) =
x, end(path) = y, and inner lines(path) = [l+0 , . . . , l+n ]. Then we create new
circuits outermost such that outermost.lines = [l+, l+0 , . . . , l+n ] and c such that
c.lines = [l−n , . . . , l−0 , l−], where l.points = [y, x]. We also create a new area a
such that a.circuit = {c} (Fig. 7).
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Formally, single loop is defined as follows:

path = 〈x, y, ip, [l+0 , . . . , l+n ]〉 ∧ x �= y ∧ n ≥ 1
→ e = 〈P,L,C,A, o〉

where

P = inner points(path),
L = inner lines(path) ∪ {l},

C = {c, outermost},

A = {a},

o = outermost,

l.points = [y, x],

outermost.lines = [l+, l+0 , . . . , l+n ]

c.lines = [l−n , . . . , l−0 , l−],
a.circuit = {c}.

Fig. 7. The constructor single loop.

Next, we define add loop. Consider an arbitrary area a (Fig. 8(a)). Take an
arbitrary path path, such that start(path) = x, end(path) = y and inner lines
(path) = [l+0 , . . . , l+n ]. Make a line l such that l.points = [y, x] (Fig. 8(b)). Then
make new circuits c1 and c2 such that c1.lines = [l+, l+0 , . . . , l+n ], and c2.lines =
[l−n , . . . , l−0 , l−]. Add c1 to a1.circuits and c2 to a2.circuits (Fig. 8(c)). As a result,
a is divided into two areas, a1 and a2 (the hatched part). The points and lines
contained in path are added accordingly. If a contains more than one circuit, all
of them remain in a1, and a2 contains none.

Formally, add loop is defined as follows:

e = 〈P,L,C,A, o〉 ∧
path = 〈x, y, ip, [l+0 , . . . , l+n ]〉 ∧ x �= y ∧ n ≥ 1 ∧ a ∈ A ∧ ∀p(p ∈ ip → p /∈ P )
→ e′ = 〈P ′, L′, C ′, A′, o′〉
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where

P ′ = P ∪ inner points(path),
L′ = L ∪ inner lines(path) ∪ {l},

C ′ = C ∪ {c1, c2},

A′ = A \ a ∪ {a1, a2},

o′ = o,

l.points = [y, x]

c1.lines = [l+, l+0 , . . . , l+n ],

c2.lines = [l−n , . . . , l−0 , l−],
a1.circuit = a.circuits ∪ {c1},

a2.circuit = {c2}.

Fig. 8. The constructor add loop.

Next, we define add path. Consider a circuit c such that c ∈ a.circuits,
and two points y, z on c. Here y and z may be identical. Because a circuit-
segment is a path, consider a circuit-segment cs � c such that start(cs) = y,
end(cs) = z. Then c is divided into two circuit-segments: cs and cs′. Let c.lines =
[ll+0 . . . , ll+m], cs = [ll+0 . . . , ll+k ] (0 ≤ k ≤ m) and cs′ = [ll+k+1 . . . , ll+m] (Fig. 9(a)).
Take an arbitrary path path, such that start(path) = s, end(path) = e and
inner lines(path) = [l+0 , . . . , l+n ]. Make lines ls and le such that ls.points =
[s, y] and le.points = [z, e], respectively (Fig. 9(b)). Then make new circuits
c1 and c2 such that c1.lines = [l−s , l+0 , . . . , l+n , l−e , ll+k+1 . . . , ll+m] and c2.lines =
[l+e , l−n , . . . , l−0 , l+s , ll+0 . . . , ll+k ]. Add c1 to a1.circuits and add c2 to a2.circuits
(Fig. 8(c)). As a result, a is divided into two areas, a1 and a2 (the hatched part),
c is eliminated, and two new circuits are created. The points and lines contained
in path are added and the objects are changed. If a contains circuits other than
c, all of them remain in a1, and a2 contains none.

Formally, add path is defined as follows:

e = 〈P,L,C,A, o〉 ∧
path = 〈s, e, ip, [l+0 , . . . , l+n ]〉 ∧ s �= e ∧ n ≥ 0 ∧ a ∈ A ∧ ∀p(p ∈ ip → p /∈ P )∧
c ∈ a.circuits ∧ c.lines = [ll+0 . . . , ll+m]
→ e′ = 〈P ′, L′, C ′, A′, o′〉
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where

P ′ = P ∪ inner points(path),
L′ = L ∪ inner lines(path) ∪ {ls, le},

C ′ = C \ c ∪ {c1, c2},

A′ = A \ a ∪ {a1, a2},

o′ = o,

ls.points = [s, y],
le.points = [z, e],

c1.lines = [l−s , l+0 , . . . , l+n , l−e , ll+k+1 . . . , ll+m],

c2.lines = [l+e , l−n , . . . , l−0 , l+s , ll+0 . . . , ll+k ],
a1.circuit = a.circuits ∪ {c1},

a2.circuit = {c2}.

Fig. 9. The constructor add path.

Note that add loop is applied to a specific area, whereas add path is applied
to a specific circuit and two points on it.

Definition 10 (IPLCA). PLCA expressions constructed by the above three
constructors are said to be Inductive PLCA (IPLCA).

4 Proof of Formalization

Here we prove that IPLCA coincides with planar PLCA.

4.1 Proof of Planarity

We first prove that IPLCA is planar. From Theorem 2, we prove the following
theorem.

Theorem 3. If e is an IPLCA expression, e is (i) consistent, (ii) PLCA-
connected, and (iii) PLCA-Euler.
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We implement IPLCA and prove these three properties using the proof assis-
tant Coq [2]. Coq is based on typed logic adopted for higher-order functions.
The data types and functions are defined in recursive form, and the proof pro-
ceeds by connecting suitable tactics. The definition of IPLCA and the proof of
Theorem 3 required approximately 5500 lines of code in total. As for consistency,
we combine several conditions in a single formula and verify them simultane-
ously. As for PLCA-connectivity, the proof is somewhat involved, and we prove
it by decomposing it into several sub-lemmas. As for PLCA-Euler, the proof is
straightforward, since we only need to convert the numbers that appear in the
formula. The advantage of using Coq is to certify the correctness of the formal-
ization. We do not show the detail of the proof here, since it is out of the focus
of this paper. The entire code is shown in [12].

4.2 Proof of Realizability

We prove that a planar PLCA is IPLCA. This means that any target figure
can be drawn by applying the constructors of IPLCA in a suitable order. For
example, consider Fig. 10. If we apply add loop first, we cannot successively apply
constructors, because any intermediate figure is not the target figure (Fig. 10(a)).
However, if we apply add path first, we can successively add areas by applying
add path again (Fig. 10(b)). In proving mechanically, we search all the possible
cases and show an instance in each case.

Fig. 10. Constructing figures (a) by first applying add loop, and (b) by first applying
add path.

Theorem 4. A planar PLCA is IPLCA.

Proof. We prove the theorem using induction on the number of areas of a given
planar PLCA.

(Base case) The number of areas is 1.
This is clearly a base case of IPLCA, and is constructed by applying single

loop.

(Induction step) The number of areas is n + 1.
The principle of our proof via induction is as follows. For a planar PLCA e, of

which the number of areas is n+1, we remove a suitable area a such that we can
form a planar PLCA e′, of which the number of areas is n. Because e′ is IPLCA
from the induction hypothesis, we can apply add loop or add path to obtain e.
We proceed the proof based on this principle. The point of the proof is that we
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Fig. 11. Removing an area with case 1.

Fig. 12. Circuit-segments in case 2. Circuit c is divided into cs and cs1, and circuit c′

is divided into inv(cs) and cs2.

Fig. 13. Removing an area with case 2.

can find a suitable area. We can take an area a with a single circuit c from e by
Lemma 1. There exists c′ such that |SMSCS(c, c′)| = 1, from Lemma 2. Assume
that c′ = outermost. Since the number of areas of e is more than one, a contains
more than one circuit, which is a contradiction. Therefore, c′ �= outermost.

Case 1. SMSCS(c, c′) = {c.lines}.
In this case, we remove a, c, c′, and all objects on c and c′ to obtain a

planar PLCA e′ such that |e′.areas| = n. Let a′ be an area such that c′ ∈
a′.circuits holds. Note that since c′ �= outermost, e′ has an outermost. Here e′

is IPLCA from the induction hypothesis. Then we can construct e by applying
the constructor add loop on a′ (Fig. 11).

Case 2. SMSCS(c, c′) �= {c.lines}.
Let SMSCS(c, c′) = {cs}. In this case, c is divided into two circuit-segments cs

and cs1, and c′ is divided into two circuit-segments inv(cs) and cs2 (Fig. 12). We
remove a, c, c′, and all objects on c and c′, and add a circuit newC by appending
cs1 and cs2. We obtain a planar PLCA expression e′ such that |e′.areas| = n. e′
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is IPLCA from the induction hypothesis. Then we can construct e by applying
the constructor add path on newC, start(cs1) and end(cs1) (Fig. 13).

5 Related Work

There exist several symbolic expressions other than qualitative spatial represen-
tations for a figure on a two-dimensional plane, including computational geome-
try [1] and graph theory [13]. Different from qualitative spatial representations,
the main objective of computational geometry is to analyze the complexity of
algorithms for problems expressed in terms of geometry and to develop efficient
ones, rather than to recognize or to analyze the characteristics of a figure. Graph
theory can be used to provide symbolic expressions of spatial data. The topolog-
ical structure of spatial data can be represented as a graph by treating spatial
objects, such as points and lines, as nodes and the relationships between them
as edges. There exists a condition to determine the planarity of a given graph;
however, in general, a graph does not contain any information on an area, and
therefore we only know that we can embed a graph by locating areas properly.
In contrast, a PLCA expression places constraints on the locations of areas. In
this respect, a PLCA expression is more specific than a graph.

One of the challenges for symbolic expressions of a figure on a two-dimensional
plane is the concept of a hypermap. A hypermap is an algebraic structure that
represents objects and relationships between them, and can be used to distin-
guish the topological and geometric aspects. There are several works that use a
hypermap and give a formalization and a proof of the properties of these aspects
using proof assistants. Gonthier et al. formalized and proved the four-color the-
orem and showed a proof [11]. In this work, planar subdivisions are described by
a hypermap. Dufourd applied a hypermap to formalize and to prove a Jordan
curve theorem [6]. He also showed a treatment of surface subdivision and pla-
narity based on a hypermap [7]. Brun et al. showed a derivation of a program
to compute a convex-hull for a given set of points from their specification using
a hypermap [4]. They specified the algorithm and proved its correctness using a
structural induction. Hypermap is a strong method for providing a mechanical
proof of the topological or geometric properties in a symbolic form; however, the
representation is too complicated to understand intuitively.

6 Conclusion

We have described a method of constructing a PLCA expression inductively, and
have proved that the defined class coincides with that of planar PCLA. Formal-
ization and part of the proof was implemented using the proof assistant Coq.
Our main contribution is giving a computational model to a qualitative spatial
representation, which is the first attempt in the research field on qualitative
spatial reasoning.
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Here, we discuss the realizability of a PLCA expression on a two-dimensional
plane. We are considering its realizability on surfaces such as a sphere or a torus
as well.

Mechanical proof using a proof assistant provides a rigorous proof of correct-
ness of the formalization. In future, we will complete the mechanical proof of the
part currently done manually.
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Abstract. An approach to the pre-runtime design of normative systems
for a class of problem-solving norm-regulated multi-agent systems is sug-
gested. The basic idea is to employ evolutionary mechanisms to evolve
efficient normative systems for so-called norm-regulated Dalmases, as
part of the design process. The Dalmas architecture uses an algebraic
approach to normative systems, in which normative consequences are
based on an extended set of one-agent types of normative positions,
which is given a semantics in terms of prohibition of certain types of
state transitions. To illustrate the approach, a genetic algorithm is used
to evolve norms for an example system. Furthermore, some approaches
to reducing the algorithm’s search space, including to employ a notion of
‘operational equivalence’ of norms, are discussed. It is demonstrated that
an evolutionary algorithm may be a useful tool when designing norms
for problem-solving multi-agent systems.

Keywords: Norm-regulated multi-agent system · Normative MAS ·
DALMAS · Norm evolution · Evolutionary algorithm

1 Introduction

Agent-based modelling and simulation is an active field of study which, for exam-
ple, may offer methods for solving complex optimization problems. In this set-
ting, agents are required to cooperate to solve the problem at hand. In complex
systems with adjustable agent autonomy, sophisticated planning can often be
replaced by norms; see for example [21]. The study of norm-regulated multi-
agent systems, often referred to as normative MAS, has also attracted a lot of
attention. The NorMAS roadmap [3] is a comprehensive introduction to and
overview of the field. The combination of agent-based modelling and simulation
and normative MAS is a promising field of study [4].

It is often desirable to replace planning (and replanning), since it may be a
complex and time-consuming task, especially in collaborative environments. On
the other hand, designing good normative systems is also a challenge. The app-
roach suggested here, whose basic ideas were outlined in [20, pp. 164f], is to use
evolutionary mechanisms, employed in a genetic algorithm, to aid the ‘off-line’
c© Springer International Publishing Switzerland 2015
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Table 1. One-agent types of normative positions.

T1(x, F ) : May Do(x, F ) & May[¬Do(x, F ) & ¬Do(x, ¬F )]& May Do(x, ¬F )

T2(x, F ) : May Do(x, F ) & May[¬Do(x, F ) & ¬Do(x, ¬F )]& ¬May Do(x, ¬F )

T3(x, F ) : May Do(x, F ) & ¬May[¬Do(x, F ) & ¬Do(x, ¬F )] & May Do(x, ¬F )

T4(x, F ) : ¬May Do(x, F ) & May[¬Do(x, F ) & ¬Do(x, ¬F )] & May Do(x, ¬F )

T5(x, F ) : May Do(x, F ) & ¬May[¬Do(x, F ) & ¬Do(x, ¬F )] & ¬May Do(x, ¬F )

T6(x, F ) : ¬May Do(x, F ) & May[¬Do(x, F ) & ¬Do(x, ¬F )] & ¬May Do(x, ¬F )

T7(x, F ) : ¬May Do(x, F ) & ¬May[¬Do(x, F )& ¬Do(x, ¬F )] & May Do(x, ¬F )

(i.e., pre-runtime) design of normative systems for problem-solving multi-agent
systems based on the Dalmas architecture for norm-regulated MAS. The nor-
mative framework of a Dalmas is based on an algebraic version of the Kanger-
Lindahl theory of normative positions, which is well suited as the logical foun-
dation for normative systems in a MAS context, since the types of normative
positions are mutually exclusive and jointly exhaustive in the logical sense.

The paper is structured as follows. Section 1.2 briefly introduces the algebraic
version of the theory of normative positions, and in Sect. 1.3, previous work on
the Dalmas architecture is presented. Section 2 introduces an example Dalmas

which will be used in Sect. 3 to demonstrate how to employ evolutionary mecha-
nisms in the process of designing norms, by applying an evolutionary algorithm
to this example. Section 4 concludes and suggests some lines of future work.

1.1 Related Work

The runtime emergence of norms within artificial social systems has attracted the
attention of many researchers; see, e.g., [2]. However, evolving normative systems
as part of the process of designing norm-regulated MAS is not as well studied,
although evolutionary approaches for learning behaviour patterns or strategies
for coordination have been successfully used in, e.g., the RoboCup1 domain; see
for example [6,17,18] . In fact, the simple decision policies evolved by Di Pietro
et al. for the RoboCup Keepaway game can be regarded as simple normative
systems consisting of production rules which prescribe certain behaviours in
certain situations.

1.2 One-Agent Types of Normative Positions

The Kanger-Lindahl theory of normative positions is based on Kanger’s ‘deon-
tic action-logic’; see for example [14]. The theory, further developed by Lin-
dahl [15], contains three systems of types of normative positions, based on the
logic of the action operator Do and the deontic operator Shall. The simplest
of these systems is a system of seven ‘one-agent types’ of normative positions.

1 http://www.robocup.org.

http://www.robocup.org
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Do(x, F ) is commonly read as ‘x sees to it that F ’ or ‘x brings it about that F ’,
where F is a proposition regarding some state of affairs. The logical properties
assumed for Do is that it is the smallest system containing propositional logic,
closed under logical equivalence and containing the axiom schema Do(x, F ) → F ,
which tries to capture the notion of successful action; if x ‘sees to it’ or ‘brings
about’ that F , then F is indeed the case.

Each of the three statements

(i) Do(x, F ),
(ii) Do(x,¬F ), and
(iii) ¬Do(x, F )&¬Do(x,¬F ),

implies the negation of each of the others, and the disjunction of all three is a
tautology. Each of (i) – (iii) can be prefixed with either May or ¬May, where
May F is defined as ¬Shall¬F , and basic conjunctions containing one statement
from each such pair can be formed. By iterated construction of basic conjunc-
tions, a set of eight conjunctions (of which one is self-contradictory) is obtained.
The consistent ‘maxi-conjunctions’ are listed in Table 1.

In a series of papers, comprehensively summarized in [16], Lindahl and
Odelstad have combined the theory of normative positions with an algebraic
approach to normative systems. Their idea is to use the one-agent types of nor-
mative positions as operators on descriptive conditions to get deontic conditions.
A ν-ary condition d can be true or false of ν agents x1, ..., xν . Thus, d(x1, ..., xν)
is a state of affairs which may be true or false. (To facilitate the presentation,
Xν will often be used as an abbreviation for the argument sequence x1, ..., xν .)
In the special case when the sequence of agents is empty, i.e. ν = 0, d represents
a proposition which may be true or false. Note that negations d′, conjunctions
(c ∧ d), and disjunctions (c ∨ d) can be formed in the following way:

d′(Xν) iff ¬d(Xν),
(c ∧ d)(Xν) iff [c(Xp) and d(Xq)], and
(c ∨ d)(Xν) iff [c(Xp) or d(Xq)],

where ν = max(p, q).2 Therefore, it is possible to construct Boolean algebras of
conditions. A Boolean algebra together with an implicative relation R fulfilling
certain conditions, forms a so-called Boolean quasiordering (Bqo). As an appli-
cation of their Theory of Joining-Systems (TJS), Lindahl and Odelstad define
the notion of a normative position condition-implication structure, abbreviated
np-cis, which is based on Bqo’s on descriptive and deontic conditions, so-called
cis-Bqo’s. For details on Boolean quasiorderings, condition implication struc-
tures and np-cis’es, see for example [16] or [20].

2 The free variables in c(x1, ..., xp) must be the same, and in the same order, as the
free variables in d(x1, ..., xq), but it is not necessary that c and d have the same arity.
Cf. [20, p.146].



Offline Norm Evolution 319

Table 2. ‘Reduced extended’ types of one-agent normative positions.

P1(x, F ) : MayDo(x, F ) & MayΛ(x, F ) & MayΩ(x, F ) & MayDo(x, ¬F )

P2Λ(x, F ) : MayDo(x, F ) & MayΛ(x, F ) & ¬MayΩ(x, F ) & ¬MayDo(x, ¬F )

P2Ω(x, F ) : MayDo(x, F ) & ¬MayΛ(x, F ) & MayΩ(x, F ) & ¬MayDo(x, ¬F )

P4Λ(x, F ) : ¬MayDo(x, F ) & MayΛ(x, F ) & ¬MayΩ(x, F ) & MayDo(x, ¬F )

P4Ω(x, F ) : ¬MayDo(x, F ) & ¬MayΛ(x, F ) & MayΩ(x, F ) & MayDo(x, ¬F )

P5(x, F ) : Shall Do(x, F )

P6Λ(x, F ) : Shall Λ(x, F )

P6Ω(x, F ) : Shall Ω(x, F )

P7(x, F ) : Shall Do(x, ¬F )

1.3 Previous Work

Dalmas [20] is an abstract architecture for a class of norm-regulated multi-
agent systems. A deterministic Dalmas is a simple multi-agent system in which
the actions of an agent are connected to transitions between system states.
In a deterministic Dalmas the agents take turns to act; only one agent at a
time may perform an action. By allowing ‘do nothing’ actions and accelerating
the turn-taking, systems with close to asynchronous behaviour can be obtained.
A special kind of Dalmas is the norm-regulated simple deterministic Dalmas,
which employs what is often referred to as ‘negative permission’, by letting its
deontic structure (i.e., the set of permissible acts) consist of all acts that are
not explicitly prohibited by a normative system N . The Dalmas’s preference
structure consists of the most preferable (according to the agent’s utility func-
tion) of the acts in the deontic structure. In short, a Dalmas agent’s behaviour
is regulated by the combination of a normative system and a utility function;
this ‘agent oeconomicus norma’3 chooses the most desirable act, according to
the utility function, within the ‘room for manouver’ determined by the norms.
The Dalmas’s normative framework is based on an algebraic version of the
Kanger-Lindahl theory of normative positions, in which normative consequences
are formulated by applying normative operators to descriptive conditions. (See
Sect. 1.2.) From these general normative conditions follow normative sentences
regarding specific states of affairs, which in turn result in permission or prohi-
bition of individual actions in specific situations. (See for example [19,20] for
an introduction.) Hence, the norms in the Dalmas architecture play a different
role, and is represented in a fundamentally different way, than, e.g., the decision
rules in the RoboCup setting (see Sect. 1.1).

Since the agents in a deterministic Dalmas take turns to act, each individual
step in a run of a Dalmas may be characterized by an ordered 5-tuple S =
〈x, s,A,Ω, S〉 whose components are a set of states S, a state s, an agent-set Ω =
{x1, ..., xn}, the acting (‘moving’) agent x, and an action-set A = {a1, ..., am}.4

3 Cf. [19, Sect. 1.8.3].
4 In [9], such a tuple is called a transition system situation.
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Table 3. Basic transition types.

I. d(Xν ; s) & d(Xν ; s+)

II. ¬d(Xν ; s) & d(Xν ; s+)

III. d(Xν ; s) & ¬d(Xν ; s+)

IV. ¬d(Xν ; s) & ¬d(Xν ; s+)

In this setting, a may be regarded as a function such that a(x, s) = s+ means
that s+ is the resulting state when x performs act a in state s. In the following,
the abbreviation s+ will be used for a(x, s) when there is no need for an explicit
reference to the action a and the acting agent x. As already mentioned, there is
no simultaneous action by other agents (including the ‘environment’, which may
be regarded as a special kind of agent). Furthermore, we assume that a ν-ary
condition d is true or false on ν agents x1, ..., xν ∈ Ω in s; with the abbreviation
Xν for the agent sequence, this will be written d(Xν ; s).

Let the situation 〈x, s〉 be characterized by the moving agent x and the state s
in a norm-regulated simple deterministic Dalmas . It is possible in the Dalmas

architecture to distinguish between the moving agent and the agent to which
normative condition applies5, but to facilitate the presentation it is assumed in
the sequel that norms always apply to the moving agent x in a situation 〈x, s〉.
A norm in N is represented by an ordered pair 〈c,Nd〉, where the (descriptive)
condition c on a situation 〈x, s〉 is the ground of the norm and the (normative)
condition Nd on 〈x, s〉 is its consequence; see, e.g., [20]. Nd is formed by applying
a ‘norm-creating’ operator N to the descriptive condition d.

In the following, the normative framework of the Dalmases employed is
based on the notion of an np9-cis [12, Sect. 2.2.1], a structure similar to the
np-cis defined by Lindahl and Odelstad, but based on the ‘reduced extended’
set of types of normative positions shown in Table 2. It is argued in [12] that a
semantics for the normative framework of a Dalmas can be formed by defining a
set of ‘transition type operators’ Ca

k , k ∈ {1, 2Λ, 2Ω, 4Λ, 4Ω, 5, 6Λ, 6Ω, 7}, based
on Table 4, and a set of corresponding ‘transition type prohibition operators’ Pk,
such that Pkd(Xν ;x, s) is intended to mean that if Ca

kd(Xν ;x, s) holds, then a
is prohibited for x in 〈x, s〉. In effect, Pkd(Xν ;x, s) implies a prohibition of zero,
one or two of the four ‘basic transition types’ (see Table 3, where s+ refers to
the resulting state when the acting agent performs its act) with regard to the
state of affairs d(Xν). For example, 〈c, Pkd〉, where c and d can have different
arity, represents the sentence

∀x1, x2, ..., xν ∈ Ω : c(x1, x2, ..., xp;x, s) → Pkd(x1, x2, ..., xq;x, s)

where Ω is the set of agents, x is the acting agent (to which the norm applies) in
the situation 〈x, s〉, and ν = max(p, q). If the condition specified by the ground
of a norm for some agents in some situation, then the (normative) consequence

5 Cf. the remark in [10, p. 84].
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Table 4. Transition type prohibition operators and transition type conditions.

Operators Prohibiteda(x, s) if

P1 - -

P2Λ Ca
2Λ d(Xν ; s) & ¬d(Xν ; a(x, s))

P2Ω Ca
2Ω ¬d(Xν ; s) & ¬d(Xν ; a(x, s))

P4Λ Ca
4Λ ¬d(Xν ; s) & d(Xν ; a(x, s))

P4Ω Ca
4Ω d(Xν ; s) & d(Xν ; a(x, s))

P5 Ca
5 ¬d(Xν ; a(x, s))

P6Λ Ca
6Λ ¬(d(Xν ; s) ↔ d(Xν ; a(x, s)))

P6Ω Ca
6Ω d(Xν ; s) ↔ d(Xν ; a(x, s))

P7 Ca
7 d(Xν ; a(x, s))

Table 5. Possible changes of Lapn.

State of affairs Possible state of affairs in next state

Lap0(x1, x2) Lap0(x1, x2), Lap1(x1, x2), Lap2(x1, x2), Lap3(x1, x2)

Lap1(x1, x2) Lap0(x1, x2), Lap1(x1, x2), Lap2(x1, x2)

Lap2(x1, x2) Lap0(x1, x2), Lap1(x1, x2), Lap2(x1, x2), Lap3(x1, x2), Lap4(x1, x2)

Lap3(x1, x2) Lap0(x1, x2), Lap2(x1, x2), Lap3(x1, x2), Lap4(x1, x2), Lap6(x1, x2)

Lap4(x1, x2) Lap2(x1, x2), Lap4(x1, x2), Lap6(x1, x2)

Lap6(x1, x2) Lap3(x1, x2), Lap4(x1, x2), Lap6(x1, x2), Lap9(x1, x2)

x1 =′ x2 &Lap9(x1, x2) Lap6(x1, x2), Lap9(x1, x2)

of the norm is in effect in that situation. If the normative system N contains a
norm whose ground holds in the situation 〈x, s〉 and whose consequence prohibits
the type of transition represented by x performing action a, then a is prohibited
for x in 〈x, s〉:

Prohibitedx,s(a) according toN
if there is a p-ary condition c

and a q-ary condition d
and a k ∈ {1, 2Λ, 2Ω, 4Λ, 4Ω, 5, 6Λ, 6Ω, 7},

such that 〈c, Pkd〉 is a norm in N ,
and there arex1, ..., xν such that

c(x1, ..., xp;x, s)&Ca
kd(x1, ..., xq;x, s),

where ν = max(p, q).

Hence, if c(x1, ..., xp;x, s) for some sequence of agents x1, ..., xν , then the
normative condition Pkd(x1, ..., xq;x, s) is ‘in effect’. Thus, if Ca

kd(x1, ..., xq;x, s)
holds, then a is prohibited for x in s. (Cf. the examples in Sect. 3.1.) Table 4
contains the nine norm-building operators Pk, together with the corresponding
Ca

k operators and the result of applying them to d(x1, ..., xq; s); cf. Table VI
in [11].
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A general-level Java/Prolog implementation of the Dalmas architecture has
been developed, to facilitate the implementation of specific systems. The Colour
& Form system, the Waste-collector system and the Forest Cleaner system are
three specific systems that have been implemented using this framework. The
reader is referred to [7,8,13,20] for a description of these systems and their
instrumentalizations.

The approach to normative systems employed in this framework is ideally
suited for evolution of normative systems, since the nine ‘reduced extended’
types of normative positions are mutually exclusive and jointly exhaustive in
the logical sense. Therefore each conceivable normative system, consisting of
conditional norms based on descriptive conditions selected from a set of potential
grounds and normative conditions selected from a set of potential consequences,
could become a candidate for evaluation in the execution of an evolutionary
algorithm. This idea will be further explored in the following sections.

2 Example: Explorer DALMAS

Let us consider a class of systems of agents operating in an environment con-
sisting of a grid of squares ordered in rows and columns, in which each square is
assigned a pair of integer coordinates. Let us assume that the joint goal of the
agents is to explore as much as possible of the grid using a fixed number of moves.
An agent can stay in the current square, i.e., do nothing, or move one square
in one of four directions (east, north, west, south) as long as it stays within the
boundaries of the grid. In other words, in a given situation, an action is feasible
if and only if it does not move the agent off limits. It should of course be noted
that these simple systems (in the following referred to as Explorer Dalmases)
in themselves are of limited interest, but the idea here is to illustrate how evolu-
tionary mechanisms could be used in the process of designing normative systems
for problem-solving MAS.

Fig. 1. Overlap of the protected spheres for three agents.
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To simulate a situation with limited possibilites for communication between
agents and only local knowledge of the environment, we further assume that an
agent only knows the status (visited or unvisited) of the immediately surround-
ing squares, and the location of other agents within two squares. An agent’s
preference is represented by a very simple utility function such that moving to
an unvisited square is preferred over moving to a visited square, and stay is the
least preferred action. In the case of a tie between equally preferred actions, one
of them is randomly selected. This means that all agents have the same utility
function.

To make the situation more concrete, let us assume that the size of the grid is
c × r squares and place three agents at square (1, 1), the leftmost lowest square.
Note that this system can be considered as an instance of the Waste-collector
system [13,20], in which visited (resp., unvisited) squares are represented by 0
(resp., 1) units of ‘waste’. The higher number of ‘waste’ carried by an agent, the
higher number of unvisited squares have been entered by that agent. It would
not be a very difficult task to design a plan where the agents take turns to act
in such a way that all remaining cr − 1 squares are visited in cr − 1 moves. But
if the environment gets changed, e.g., is resized or reshaped, the plan must be
recalculated. What if we let norms replace plans in this class of environments?
Let us investigate the interplay between the agents’ utility functions, represent-
ing their ‘desires’, and a normative system which determines their ‘room for
manouvre’. One idea is to base norms on the spatial relationship between the
agents, potentially restricting how the agents may move in the proximity of other
agents. We define the condition Lapn, n ∈ {0, 1, 2, 3, 4, 6, 9}, with the intended
meaning that Lapn(xi, xj ; s) holds if and only if the protected spheres of agents
xi and xj overlap with n squares in a state s. The protected sphere consists of the
agent’s square plus the eight surrounding squares; see Fig. 1, which illustrates a
state in which Lap2(x1, x2), Lap1(x2, x3), and Lap0(x1, x3) holds. Table 5 shows
how the overlap can change from one state to another, given the five available
actions. Note that Lapn(xi, xj) implies xi =′ xj for n < 9, and xi = xj implies
Lap9(xi, xj). Furthermore, Lapn(xi, xj) implies ¬Lapm(xi, xj) for n 	= m. In
other words, Lapn R =′ for n < 9, = R Lap9, and Lapn R Lap′

m for n 	= m,
where d′ is the negation of the condition d and R is the implicative relation
on conditions which defines the cis-Bqo’s of grounds and consequences of the
normative system.

Now let the ‘elementary’ conditions Lap0, Lap1, Lap2, Lap3, Lap4, Lap6,
together with the ‘non-elementary’ condition (=′ ∧Lap9), form a set of poten-
tial descriptive grounds for conditional norms. The set of potential normative
consequences corresponding to each ground is constructed by applying the norm-
building operators P1, P2Λ, ..., P7 (see Sect. 1.3) to the conditions listed in the
corresponding rows in Table 5. Thus, the potential consequences for, e.g., Lap1
are P1Lap0,..., P7Lap0, P1Lap1,..., P7Lap1, and P1Lap2,..., P7Lap2. Note that
it would be meaningless to, e.g., let PiLap4 be a potential consequence for Lap0,
since none of the available acts can change the state of the system in such a way
that Lap0(xi, xj) holds in one state and Lap4(xi, xj) holds in the next state.
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With these building blocks available, normative systems for Explorer
Dalmases can be constructed. Let us employ the following scheme: For each con-
dition c in the leftmost column of Table 5, one norm 〈M1c, Pid〉 is added to the nor-
mative system for each condition d in the rightmost column.6 E.g., for Lap0 we add
four norms: 〈M1Lap0, Pk0Lap0〉, 〈M1Lap0, Pk1Lap1〉, 〈M1Lap0, Pk2Lap2〉, and
〈M1Lap0, Pk3Lap3〉. Note that, as regards the ground (=′ ∧Lap9), one of 〈M1(=′

∧Lap9), Pk0Lap9〉 and 〈M1(=′ ∧Lap9), Pk1Lap6〉 is redundant, and can therefore
be removed.7 This gives a total of 24 norms. Note, however, that not all norma-
tive systems formed in this way are coherent. To begin with, some sets of rules
may be contradictory, according to the intended meaning of the Pi operators, but
the problem of coherence (sometimes referred to as ‘absence of conflicts’) cannot
simply be reduced to logical consistency; see for example [1]. We will return to this
issue in Sect. 3.1.

We would now like to find the best normative system, i.e., the normative sys-
tem that, together with the simple utility function described earlier, on average
makes the Explorer system most efficient. The following measure of efficiency
will be employed: the normative system is applied to three different Explorer
Dalmases, operating on grids of (almost) equal sizes but different shapes: 6 × 8
squares, 7×7 squares, and 10×5 squares, respectively. On each grid, three agents
are initially placed on square (1, 1). A k-event run of each of these three systems
will be performed, where k is the number of unvisited squares from the begin-
ning, i.e., k = cr −1. For each run, the ratio between the total number of visited
squares and the total number of unvisited squares in the beginning is calculated.
If the normative system is not coherent, in the sense that, at some point during
the run, all actions (including stay) become prohibited for the acting agent, then
the evaluation score is set to 0. The score of the normative system under eval-
uation is then the average of the three ratios obtained. We have now obtained
an optimization problem which may be solved with the help of an evolutionary
algorithm.

3 Evolution of Explorer Norms

Evolutionary algorithms (EA), being a subfield of evolutionary computation, use
the principles of biological evolution (such as reproduction, mutation, recombi-
nation, and selection) to solve problems on computers. For a comprehensive
introduction to this field the reader is referred to, e.g., [22]. In the Explorer

6 The ‘move operator’ Mκ, where κ is less than or equal to the arity of the condition
to which it is applied, identifies the agent to which the normative condition applies
with the moving agent x in the situation 〈x, s〉, as well as with the κth agent in
the argument sequence Xν . For example, M1Lap0(x1, x2, x3; x, s) holds if and only
if Lap0(x1, x2; s) holds, and x1 = x3, and x3 = x. See, e.g., [9] for an explanation.

7 This is due to the fact that Lap6 R Lap′
9 and Lap9 R Lap′

6. Thus, if a certain type of
normative position holds regarding Lap9, then this completely determines the type
of normative position regarding Lap6, or vice versa. For example, when Lap9 holds,
if P7Lap6, then it must follow that P5Lap9.
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Dalmas setting, there is some randomness in the agents’ choices of actions, and
in such ‘noisy’ domains, evolutionary algorithms are known to work well [5]. We
thus implement a basic genetic algorithm (one of the most common forms of
EAs) for Explorer Dalmas norms:

1. Genesis. Create an initial population of n candidate normative systems,
half of which are entirely randomly generated and half of which consist of
P1-consequences (the most permissive consequences) only. Each candidate is
represented by a character string consisting of 24 characters, one for each
norm, from {‘1’, ...,‘9’}, where ‘1’ represents P1, ‘2’ represents P2Λ, ‘3’ repre-
sents P2Ω , ‘4’ represents P4Λ, etc.

2. Evaluation. Evaluate each member of the population, by translating the
character string to a normative system according to the scheme presented in
Sect. 2, running three different systems regulated by this normative system
and using as fitness function the average of the evaluation scores of the three
runs. For example, a ‘chromosome’ starting with “371529...” is translated to
the following normative system:
{〈M1(=′∧Lap9), P2ΩLap9〉, 〈M1Lap6, P6ΛLap9〉, 〈M1Lap6, P1Lap6〉,
〈M1Lap6, P4ΩLap4〉, 〈M1Lap6, P2ΛLap3〉, 〈M1Lap4, P7Lap6〉, . . .}

3. Survival of the Fittest. Select a number of members of the evaluated
population, favouring those with higher fitness scores, to be the parents of
the next generation.

4. Evolution. Generate a new population of offspring by randomly altering and
combining elements of the parent candidates. The evolution is performed by
the two basic evolutionary operators cross-over and mutation.

5. Iteration. Repeat steps 2–4 until the termination condition (see Table 6)
is met.

The evolutionary algorithm was implemented using the Java-based Watch-
maker framework for evolutionary computation8 together with a slightly adapted
Java/Prolog implementation of the Waste-collector system [7,13].9 The latter
was used in step 2 to perform the k-event runs of Explorer systems to be
evaluated.

3.1 Result

The algorithm was run with the parameter values shown in Table 6; the execution
time on an ordinary laptop was 5–6 h. The graph in Fig. 2 shows the fitness values
(evaluation scores) of the best normative system, as well as the average fitness
values, in each generation. We can see that, initially, the best fitness (which is
obtained by a normative system with P1-consequences only, i.e., a normative
system which allows everything) is around 0.78. Up to around generation 25, we
can see a slow but quite steady improvement in the best fitness values, although
8 http://watchmaker.uncommons.org/.
9 The source code is available for download via http://drpa.se/norms/nrtssit, together

with a log of a run of the algorithm.

http://watchmaker.uncommons.org/
http://drpa.se/norms/nrtssit
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Fig. 2. Evolution progress. Upper curve shows fitness of best individual, lower curve
shows mean fitness. Algorithm parameter values are shown in Table 6. A log of the run
is available for download via http://drpa.se/norms/nrtssit/.

the impact of the slight randomness in the agents’ choices of actions is clear. The
highest scores, just above 0.86, which roughly corresponds to three more visited
squares per run, are obtained in generations 41 and 78. After 25 generations
there seems to be no significant improvement.

According to the log, the best normative system in generation 41 (with P1-
norms omitted for brevity) is translated to

〈M1(=′ ∧Lap9), P2ΩLap9〉, 〈M1Lap6, P6ΛLap9〉, 〈M1Lap4, P6ΩLap4〉,
〈M1Lap3, P2ΛLap6〉, 〈M1Lap2, P6ΛLap4〉, 〈M1Lap2, P4ΩLap3〉,

〈M1Lap1, P4ΩLap2〉, 〈M1Lap0, P4ΛLap1〉.
A closer look at the log reveals that, of the best candidates with a fitness

over 0.85,

(1) all but one (13 out of 14) contain either 〈M1Lap6, P6ΛLap9〉 or 〈M1Lap6, P4Λ

Lap9〉, and
(2) all but three contain 〈M1Lap2, P6ΛLap4〉 or 〈M1Lap2, P4ΛLap4〉.
Let us first consider (1). The intended meaning of 〈M1Lap6, P6ΛLap9〉 is that if
Lap6(x1, x2; s) for some agents x1, x2, and x3 such that x1 = x3 and x1 is the
moving agent x, then the normative condition P6ΛLap9(x1, x2, x3;x, s) holds,
and thus, according to the definition of Ca

6Λ (see row 7 in Table 4) action a is
prohibited for x if

http://drpa.se/norms/nrtssit/
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Table 6. Choice of parameter values.

Parameter Value

Population size 100 individuals

Termination condition 100 generations evolved

Level of elitism 25 %

Crossover probability 0.7

Crossover points 6

Mutation probability 0.05

Selection strategy Roulette wheel selection

¬Lap9(x, x2; s)&Lap9(x, x2; a(x, s))

or
Lap9(x, x2; s)&¬Lap9(x, x2; a(x, s)).

Now, when Lap6(x, x2; s), the second disjunct never becomes true, since
Lap6 R Lap′

9 (i.e., Lap6 implies Lap′
9); hence a is prohibited for x if

¬Lap9(x, x2; s)&Lap9(x, x2; a(x, s)).

Since ¬Lap9(x, x2; s) follows from Lap6(x, x2; s), a is prohibited for x if
Lap9(x, x2; a(x, s)). Similarly, the meaning of 〈M1Lap6, P4ΛLap9〉 is that if Lap6
(x1, x2; s) for some agents x1, x2, and x3, such that x1 = x3 and x3 = x, then
P4ΛLap9(x1, x2, x3;x, s) holds, and thus (see Table 4, row 4) a is prohibited for
x if

¬Lap9(x, x2; s)&Lap9(x, x2; a(x, s));

i.e., when Lap6(x, x2; s), it follows that ¬Lap9(x, x2; s), and thus a is prohibited
for x if Lap9(x, x2; a(x, s)). Hence, 〈M1Lap6, P6ΛLap9〉 and 〈M1Lap6, P4ΛLap9〉
are ‘operationally equivalent’ in the Explorer Dalmas setting, in the sense that
they prohibit the same actions in the same situation. Furthermore, both are oper-
ationally equivalent to 〈M1Lap6, P7Lap9〉 with the intended interpretation that
if Lap6 then the moving agent shall see to it that not Lap9. A similar case can be
made for (2); 〈M1Lap2, P6ΛLap4〉, 〈M1Lap2, P4ΛLap4〉 and 〈M1Lap2, P7Lap4〉
are operationally equivalent and thus interchangeable in this setting. The notion
of operational equivalence of norms is further discussed in Sect. 3.2.

It is showed by (1) and (2) that, in some settings, the set of consequences
may contain redundancy. This is an effect of the fact that, in this particular
setting, the set of grounds and the set of consequences are constructed from the
same set of conditions. Whether this is a problem or not is probably dependent
on the particular setting. We may also note that, for example, the meaning of
〈M1Lap0, P4ΩLap2〉 would be that if Lap0(x1, x2; s) for some agents x1, x2, and
x3, such that x1 = x3 and x3 = x, then P4ΩLap2(x1, x2, x3;x, s) holds, and thus
(see Table 2, row 5) a is prohibited for x if

Lap2(x, x2; s)&Lap2(x, x2; a(x, s)).
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Now, Lap2(x1, x2; s)&Lap2(x1, x2; a(x, s)) can never become true when Lap0
(x1, x2; s), since Lap0 R Lap′

2. Hence, 〈M1Lap0, P4ΩLap2〉 will never prohibit
any actions, and is thus operationally equivalent to, 〈M1Lap0, P1Lap2〉 in this
setting. This illustrates another kind of redundancy. Another consequence of
employing negative permission is that normative systems may evolve which are
incoherent (see Sect. 1.3) according to the underlying logic of the Pk operators,
but still meaningful in an ‘operational’ sense. A discussion of these matters is
beyond the scope of this paper, but a more precise representation of genes and
a more careful design of the genetic operators could avoid or at least reduce
logical incoherence and redundancy in the setting at hand. This could, poten-
tially, significantly reduce the search space for the evolutionary algorithm. For
this purpose, the mechanisms for norm addition and subtraction described in
[16, Sect. 4.3] might be very useful, as well as a more thorough analysis of the
relationships between potential grounds and consequences, in order to exploit
the possibility of operational equivalence of norms (Sect. 3.2).

Based on the above analysis, the following set of Explorer norms (again, P1-
norms are omitted) is suggested: {〈M1Lap6, P7Lap9〉,〈M1Lap2, P7Lap4〉}. The
intended interpretation is

(1) ∀x, y : Lap6(x, y; s) → P7Lap9(x, y, x;x, s)); and
(2) ∀x, y : Lap2(x, y; s) → P7Lap4(x, y, x;x, s)).

Using the deontic operator Shall and the action operator Do, these norms
are expressed as follows: (1) For all x, y: if Lap6(x, y), and x is the moving
agent, then Shall Do(x,¬Lap9(x, y)); and (2) For all x, y: if Lap2(x, y), and x
is the moving agent, then Shall Do(x,¬Lap4(x, y)); cf. [11,20]. This represents
the following simple set of ‘rules of thumb’: (1) If you stand in the square next
to another agent’s square, you shall act so that you do not end up in the same
location as the other agent, and (2) if your protected sphere overlaps another
agent’s protected sphere with two squares, you shall act so that the overlap does
not increase to four.

Test runs indicate that the average improvement with this very simple nor-
mative system compared with a system with no restrictions is two to three addi-
tional squares visited. As the Explorer Dalmas example was chosen primarily
for demonstration purposes, we shall be content with the simple analysis per-
formed here. In more complex scenarios, other more powerful (e.g., statistical)
methods could be useful.

3.2 Discussion

Validation of the suggested approach to the design of normative systems for
problem-solving MAS is, of course, a non-trivial problem. One aspect of this
problem is the difficulty of applying this approach, but most important is prob-
ably to focus on the quality of the results it produces, i.e., to validate the systems
obtained by applying the approach. The performance of norm-regulated MAS
designed in this way could, for example, be compared with the performance of
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systems (norm-regulated systems as well as, e.g., planning systems) designed by
hand. Such comparisons require domain-specific performance measures, which
makes a general-level (i.e., domain independent) validation very difficult, if not
impossible. Even within a specific domain, validation is non-trivial and sensitiv-
ity analyses are required. A good starting-point is to consider every tool in the
evolutionary toolbox, together with a thorough analysis of the domain at hand,
to increase the chance of evolving the optimal normative system. First, the para-
meters controlling the evolutionary algorithm may be varied: the population size,
the number of evolved generations, the level of elitism (i.e., the portion of the best
candidates which are allowed to survive into the next generation), the probabil-
ity of crossover, the number of crossover points, and the selection strategy (e.g.,
tournament selection instead of roulette wheel). Other ideas include using other
representations of chromosomes, such as tree-based representations to allow for
normative systems with a variable number of norms, or (as has already been
mentioned) more carefully designed evolutionary operators that exclude redun-
dant and/or incoherent candidates from evaluation. More advanced schemes,
such as island evolution (where several populations are evolved in parallel, with
a small probability of ‘migration’ between such ‘islands’) or cooling (where the
crossover and mutation probabilities gradually decrease), could also be tried.
One example of a more careful design of an evolutionary operator is to restrict
the mutation operator by the notion of ‘deontic paths’ [15, pp. 110ff] between
types of normative positions. In short, the deontic path follows the edges in the
Hasse diagram of the relation ‘less free than’ on types of normative positions; cf.
[15, p. 105] and [12, Fig. 1]. The restriction could be that a gene which represents
a type operator Pi applied to a descriptive condition d, may only be changed by
mutation to represent a new operator Pj in such a way that Pj lies immediately
above or below Pi on the deontic path between them. This could bring more
stability into the evolution process, since the effects of mutations would be less
dramatic.

Furthermore, the parameters for the particular setting may also be varied.
For example, one might want to consider grounds and consequences based on
other conditions. In the Explorer Dalmas domain one could try, e.g., Lapn con-
ditions based on larger protected spheres (since it seems reasonable to expect
that a normative system based on small protected spheres will be most ‘effec-
tive’ when the agents are relatively close to each other), or generalized versions
of Lapn conditions involving three or more agents. Other ideas are to allow
individual utility functions for each agent, or evolving the utility function and
the normative system in parallel. In general, special treatment is required for
domains such as the Explorer Dalmas where the fitness evaluations are ‘noisy’,
i.e., subject to some degree of randomness. To deal with noisy fitness evaluations,
a number of techniques are available, for example increasing the population
size, and resampling and averaging the fitness. [6, Sect. 3.3] As described in
Sect. 2, a variant of the latter technique is used in the Explorer Dalmas fitness
evaluations. Another option regarding the evaluation function is to allow more
or less variation regarding, e.g., grid sizes or shapes, number of agents, number
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of events per run and number of runs per normative system. However, large pop-
ulations, in combination with expensive fitness calculations in each generation,
are computationally challenging. The moving average approach by Di Pietro et
al. can be used to reduce the number of samples needed per generation, and
thus allow for running more generations in a given run-time. When a candidate
is generated for the first time, its ‘fitness array’ is initialized with n fitness evalu-
ations. For each new generation, the evaluation score is calculated only once, and
the oldest score in the fitness array is replaced with the new score. A candidate’s
fitness is then the average of the evaluation scores in the fitness array.

Operational Equivalence of Norms. It was observed in Sect. 3.1 that norms
where grounds and consequences are based on the same set of descriptive condi-
tions can become equivalent in the sense that they have exactly the same effect
in the same situations. Let us investigate this further. First, recall the definitions
of the Ca

i operators in Table 4, and note the following:

Ca
5 c(Xν , xν+1;x, s) iff [c(Xν ; s)&¬c(Xν ; a(x, s))] or [¬c(Xν ; s)&¬c(Xν ; a(x, s))]

Ca
6Λc(Xν , xν+1;x, s) iff [c(Xν ; s)&¬c(Xν ; a(x, s))] or [¬c(Xν ; s)& c(Xν ; a(x, s))]

Ca
6Ωc(Xν , xν+1;x, s) iff [c(Xν ; s)& c(Xν ; a(x, s))] or [¬c(Xν ; s)&¬c(Xν ; a(x, s))]

Ca
7 c(Xν , xν+1;x, s) iff [c(Xν ; s)& c(Xν ; a(x, s))] or [¬c(Xν ; s)& c(Xν ; a(x, s))]

Now suppose for example that c ∈ C, the set of potential grounds, but also
c ∈ D, the set of descriptive conditions underlying the set of potential normative
consequences. Let Mκ be a ‘move operator’, for example M1, such that κ ≤ ν,
and suppose that c is true of some agents x1, ..., xν in a state s. We may then
note the following:

(1) Ca
2Ωc(Xν , xν+1;x, s), and Ca

4Λc(Xν , xν+1;x, s) are false whenever c(Xν ; s).
Hence, the set of actions a that would be prohibited by 〈Mκc, P2Ωc〉, resp.
〈Mκc, P4Λc〉, is exactly the same as the set of actions that would be prohib-
ited by 〈Mκc, P1c〉, viz. the empty set.

(2) The second disjunct of Ca
6Λc(Xν , xν+1;x, s) and the second disjunct of Ca

5 c
(Xν , xν+1;x, s) must be false. Hence, if c(Xν ; s), then Ca

6Λc(Xν , xν+1;x, s)
iff Ca

2Λc(Xν , xν+1;x, s) iff Ca
5 c(Xν , xν+1;x, s), which means that the actions

that would be prohibited by 〈Mκc, P2Λc〉, 〈Mκc, P5c〉, and 〈Mκc, P6Λc〉, are
exactly the same.

(3) The second disjunct of Ca
6Ωc(Xν , xν+1;x, s) and the second disjunct of Ca

7 c
(Xν , xν+1;x, s) must be false. Hence, if c(Xν ; s), then Ca

6Ωc(Xν , xν+1;x, s)
iff Ca

4Ωc(Xν , xν+1;x, s) iff Ca
7 c(Xν , xν+1;x, s); so the actions that would be

prohibited by 〈Mκc, P4Ωc〉, 〈Mκc, P6Ωc〉, and 〈Mκc, P7c〉, are exactly the
same. In other words, given that c(Xν) holds, P2Ω, P4Λ, and P1 are ‘equally
prohibitive’, and the same holds for P2Λ, P4Ω , and P5, resp. P2Λ, P6Ω , and
P7. Now suppose that ¬c(Xν) holds for some agents x1, ..., xν and some act
a in s:

(4) Since Ca
2Λc(Xν , xν+1;x, s) and Ca

4Ωc(Xν , xν+1;x, s) are false whenever ¬c
(Xν ; s), the set of actions that would be prohibited by 〈Mκc′, P2Λc〉, resp.
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〈Mc′, P4Ωc〉, is exactly the same as the set of actions that would be prohib-
ited by 〈Mκc′, P1c〉, viz. the empty set.

(5) The second disjunct of Ca
6Λc(Xν , xν+1;x, s) and the first disjunct of Ca

7 c(Xν ,
xν+1;x, s) must be false. Hence, if ¬c(Xν ; s), then Ca

6Λc(Xν , xν+1;x, s) iff
Ca

4Λc(Xν , xν+1;x, s) iff Ca
7 c(Xν , xν+1;x, s), which means that the actions

that would be prohibited by 〈Mκc′, P4Λc〉, and 〈Mκc′, P6Λc〉, and 〈Mκc′, P7c〉,
are exactly the same.

(6) The first disjunct of Ca
6Ωc(Xν , xν+1;x, s) and the first disjunct of Ca

5 c(Xν ,
xν+1;x, s) must be false. Hence, if ¬c(Xν ; s), then Ca

6Ωc(Xν , xν+1;x, s) iff
Ca

2Ωc(Xν , xν+1;x, s) iff Ca
5 c(Xν , xν+1;x, s); therefore, the actions that would

be prohibited by 〈Mκc′, P2Ωc〉, 〈Mκc′, P6Ωc〉, and 〈Mκc′, P5c〉 are exactly the
same.

Thus, if ¬c(Xν) holds, then P2Λ, P4Ω , and P1 are equally prohibitive, and
the same holds for P4Λ, P6Λ, and P7, resp. P2Λ, P5, and P6Ω . It seems plau-
sible that ‘equally prohibitive’ could be a suitable foundation for a notion
of operational equivalence of norms. It is straightforward to generalize the
above arguments to cases where c R d or c R d′, i.e., where c implies d, resp.,
c implies d′.

4 Conclusion and Future Work

Concrete advice on how to use evolutionary mechanisms as part of the pre-
runtime design of normative systems for problem-solving MAS were presented.
The idea behind the methodology sketched here is to use a top-down approach of
selecting (a subset of) the most ‘efficient’ norms from an evolved normative sys-
tem, rather than a bottom-up approach of designing a normative system entirely
from scratch. To illustrate the idea, a simple system, based on the Dalmas archi-
tecture for norm-regulated MAS was employed as part of the evaluation step
of an evolutionary algorithm. The results show that an evolutionary algorithm
has the potential of being a useful tool when designing normative systems for
problem-solving MAS.

Ideas for future work include trying to formalize and further investigate the
notion of operational equivalence of norms, which was introduced in Sect. 3.2.
Also left for future work is further validation of the suggested methodology, for
example by applying the methodology in other domains in which the grounds of
the norms and the consequences are based on different sets of descriptive con-
ditions, or by further validating the evolved normative system for the Explorer
Dalmas. One could experiment with different domain-specific parameters as
well as evolutionary algorithm parameters, as suggested in Sect. 3.2, to see if
better solutions can be found and thus gain more support for the ideas sug-
gested here. It could be interesting to, e.g., explore normative systems of vari-
able size and evaluation functions which impose a penalty for large normative
systems, since in many cases it could be desirable to rely on a small number of
‘rules of thumb’ and avoid overly complex normative systems which may become
expensive in terms of calculations. Investigating the possibility to design more
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accurate evolutionary operators, for example by exploiting the fact that certain
norms are operationally equivalent in the Explorer Dalmas setting, also seems
like a promising idea.
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Abstract. We address the problem of making syntactic sense of text for
which the grammar has only partial information. Our proposed method-
ology is to adapt a recent formalism, Womb Grammars, into parsing
creative text that departs from the grammar at hand, or which cannot
rely on a complete grammar being available. We argue that unspecified
information can be detected with appropriate ontologies together with
our adaptation of a recently introduced constraint-based methodology
for acquiring linguistic information on a given language from that of
another. Our implementation tool is CHRG (Constraint Handling Rule
Grammars). We examine as well possible extensions to multilingual text
parsing. Our proposed methodology exploits the descriptive power of
constraints both for defining sentence acceptability and for inferring lex-
ical knowledge from a word’s sentential context, even when foreign.

Keywords: Partial grammars · Womb grammars · Ontologies · Imper-
fect querying · Mixed language text · Constraint acquisition · Universal
grammar · Parsing · CHRG (Constraint Handling Rule Grammars) ·
Constraint based grammars · Property grammars

1 Introduction

Social media promotes communication across countries, multiplying the oppor-
tunities for users to spontaneously mix syntax, lexicons and jargons. Also, there
are domains where syntactic arrangements different from the standard arrange-
ment are acceptable. These factors, together with the increasing infiltration of
English words and specific group jargons into technical and even every day com-
munications in many other languages, results in the need for ever more flexible
parsers if we are to succeed in extracting information from text in timely fash-
ion. Yet we are quite far from being able to address the challenges inherent in
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multilingual and creative text. In fact, one of the worst nightmares for linguistics
is that of trying to parse textual sources that do not respect the grammar.

Traditional parsers focus on constructing syntactic trees for complete and
correct sentences in a given language. More flexible parsing models can be arrived
at in economic fashion by giving up syntactic trees as a focus and focusing instead
on grammar constraints, also called properties. For instance, if we were to work
with tree-oriented rules such as:

np --> det, adj, n.

their adaptation into a language where nouns must precede adjectives would
require changing every rule where these two constituents are involved. In con-
trast, by expressing the same rule in terms of separate constraints, we only
need to change the precedence constraint into saying that adjectives must pre-
cede nouns, and the modification carries over to the entire grammar without
further ado.

In this paper we propose to combine Womb Grammar parsing—a property-
based methodology for multilingual parsing developed by Dahl and Miralles [10]-
with ontologies, in view of further specifying partial information which can be
lexical or structural, in an automatic manner.

The remainder of this paper is organized as follows: Sect. 2 discusses our moti-
vation; Sect. 3 overviews the relevant background; Sect. 4 presents our method-
ology; and Sect. 5 present our concluding remarks.

2 Motivation

Taking into account the way humans speak and the way we interact via social
media, it is very important to propose parsing techniques that are able to parse
non-canonical input. Among the potential benefits are the consequent improve-
ment of information retrieval tools, and the possibility of treating hybrid, cross-
cultural jargons, which are becoming ubiquitous with the proliferation of texting
and of social media communications.

Program transformation is one of the research areas that has received fair
attention in the past few years in CHR literature. It has been successfully used
in particular for simplifying program development (e.g. [19] studies how to trans-
form transaction-augmented CHR programs into CHR ones); for program opti-
mization; and for mechanizing the generation of programs with certain desired
features. Grammar transformation on the other hand is just as promising at
least all of these subfields, but has been fairly neglected so far.

The encouraging results in using grammar transformation to induce a
target language’s grammar from that of a known grammar plus appropriate
corpuses [10] have motivated us to adapt this same methodology of grammar
transformation to the needs of partially known grammar parsing.
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3 Background

3.1 Womb Grammars

Womb Grammars [10] were designed for inducing a target language’s syntax
from the known syntax of a source language plus a representative corpus of cor-
rect sentences in the target language. As such they can be considered a kind of
self-modifying grammar, whose approach is quite different from that of prede-
cessors (e.g. [15] resorts heavily to push-down automata; [7], while being more
declarative, are an extension of attribute grammars.) Womb grammars, in con-
trast, are constraint-based: they derive a target language’s syntax by observing
the list of violated properties that are output when correct sentences in the tar-
get language are fed to the source grammar, and correcting that grammar so
that these properties are no longer violated. WGs have been useful in various
applications such as second language tutoring [2], language acquisition [12] and
bio-inspired computation [1].

Using linguistic information from one language for the task of describing
another language has historically yielded good results, albeit for specific tasks–
such as disambiguating the other language [5], or fixing morphological or syntac-
tic differences by modifying tree-based rules [16]–rather than for syntax
induction.

This usually requires parallel corpora, an interesting exception being [9],
where information from the models of two languages is shared to train parsers for
two languages at a time, jointly. This is accomplished by tying grammar weights
in the two hidden grammars, and is useful for learning dependency structure in
an unsupervised empirical Bayesian framework.

Most of these approaches have in common the target of inferring syntactic
trees. As exemplified above and discussed for instance in [4], constraint-based for-
malisms that make it possible to evaluate each constraint separately are advanta-
geous in comparison with classical, tree-based derivation methods. For instance
the Property Grammar framework [3] defines phrase acceptability in terms of
the properties or constraints that must be satisfied by groups of categories. For
instance, English noun phrases can be described through a few constraints such
as precedence (a determiner must precede a noun, an adjective must precede a
noun), uniqueness (there must be at most one determiner), exclusion (an adjec-
tive phrase must not coexist with a superlative), obligation (a noun phrase must
contain the head noun), and so on. Rather than resulting in either a parse tree
or failure, such frameworks characterize a sentence through the list of the con-
straints a phrase satisfies and the list of constraints it violates, so that even
incorrect or incomplete phrases will be parsed.

For partially known grammars, this flexibility comes in very handy, but must
be complemented, as we shall argue, with ontological information. Ontologies are
nowadays part of the essential tools for natural language processing. It is well
understood that semantic models can be exploited in order to improve and share
lexical resources [14]. The ability of representing and maintaing the relations
between words and semantic concepts is crucial for charting and using models of
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language. In our work we build upon the advances in this research area in order
to use ontological knowledge-sharing to fill the gaps in our target lexicon.

In the original Womb Grammar formalism, we had two languages: the source
language, of which both the syntax and the lexicon were known, and the target
language, of which only the lexicon and a correct input corpus were known. Here
we still assume a main language such as English, but it might be creatively cross
fertilized with multilingual contributions, both in structure and lexicon, from
other languages.

Since Womb Grammars are implemented in CHRG, we now briefly summa-
rize the subset of CHRG relevant to understanding the code.

3.2 CHRG

CHRGs, or Constraint handling Rule Grammars [6], are a grammatical interface
to CHR, providing it what DCGs provide to Prolog—namely, they invisibly
handle input and output strings for the user. In addition, they include constructs
to access those strings dynamically, and the possibility of reasoning in non-
classical ways, with abduction or with resource-based assumptions.

For the purposes of this paper, we only use two types of CHRG rules, which
parallel the CHR rules of propagation and simplification, and are respectively
defined as follows:

A propagation rule is of the form

α -\ β /- γ :: > G | δ.

The part of the rule preceding the arrow ::> is called the head, G the guard,
and δ the body; α, β, γ, δ are sequences of grammar symbols and constraints
so that β contains at least one grammar symbol, and δ contains exactly one
grammar symbol which is a nonterminal (and perhaps constraints); α (γ) is
called left (right) context and β the core of the head; G is a conjunction of
built-in constraints as in CHR and no variable in G can occur in δ. If left or
right context is empty, the corresponding marker is left out and if G is empty
(interpreted as true), the vertical bar is left out. The convention from DCG
is adopted that constraints (i.e., non-grammatical stuff) in head and body of a
rule are enclosed by curly brackets. Gaps and parallel match are not allowed in
rule bodies. A gap in the rule head is noted “...”. Gaps are used to establish
references between two long distant elements.

A simplification (grammar) rule is similar to a propagation rule except that
the arrow is replaced by <:>.

4 Our Proposed Methodology

The main difficulty in adapting our methodology is that the target language’s
input can no longer be considered correct. We shall first consider lexical and
structural intrusions separately, and then discuss how to deal with them jointly.
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4.1 Failure-Driven Parsing

Notation. As said, our implementation of Womb Grammars [10] is done in
terms of CHRG. During our explanation below we show some actual code for
completeness, but our description should be intuitively clear that the main ideas
can be followed independently from the code.

Parsing Strategy. Each word is stored in a CHRG symbol word/3, along
with its category and traits (i.e. word(n,[sing,masc],livre)).

Grammar constraints are entered in terms of a CHRG constraint g/1, whose
argument stores each possible grammar property. For instance, an English noun
phrase parser would include the constraints:

g(obligatority(n)), g(constituency(det)),
g(precedence(det,adj)), g(unicity(det)),
g(requirement(n,det)), g(dependence(det,n))

Our proposal adopts the Direct PG parsing strategy introduced in [11], in
which constraints are tested only for failure. In contrast, all previous methods
exhaustively test each constraint for all constituents that can participate in it.

Concretely, a notion not unlike obligation can be used to identify new phrases,
and those phrases can be tentatively expanded from nearby constituents.

For each tentatively expanded phrase, all other constraints are tested for
failure only. The phrase is allowed to expand only if either no constraint fails, or
all constraints that fail have been declared as relaxable. Exhaustive satisfaction
check is thus replaced by a smart guided search for a falsifying assignment. This is
appropriate provided that the set of satisfied constraints is the exact complement
of the set of failed constraints - an assumption that seems reasonable, and that
we make.

Should we need to explicitly output those constraints that hold, they can be
inferred from the list of constraints that must be satisfied plus those output as
unsatisfied, at less computational cost than the usual practice of evaluating all
constraints between every pair of constituents, or of adding heuristics to reduce
the search space.

This is significant because deep parsing with Property Grammars is the-
oretically exponential in the number of categories of the grammar and the
size of the sentence to parse [18]. Since all previous approaches to PG pars-
ing (except for Womb Parsing) have to calculate all constraints between every
pair of constituents, and since the number of failed constraints will in general be
much smaller than the number of satisfied constraints, any parsing methodology
that manages to mostly check the failed ones will have a substantial efficiency
advantage.

Violation Detection. Properties are weeded out upon detection of a violation
by CHRG rules that look for them, e.g. an input noun phrase where an adjective
precedes a noun will provoke deletion of the constraint g(precedence(n,adj)) plus
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perhaps (if the rest of the input corpus warrants it) inclusion of the converse
constraint: g(precedence(adj,n)). The following CHRG rule accomplishes that:

!word(C2,_,_), ... , !word(C1,_,_),
{g(precedence(C1,C2))} <:>
{update(precedence(C1,C2))}.

Note that the rule works bottom-up, and that the three dots are a facility of
CHRG which allows us to skip over an unspecified substring of words. The curly
brackets indicate a call to a procedure (as opposed to a grammar symbol).

The CHRG parse predicate stores and abstracts the position of each word in
the sentence. In plain English, the above rule states that if a word of category
C2 precedes a word of category C1, and there is a precedence rule stipulating
that words of category C1 must precede words of category C2, the precedence-
updating rule needs to be invoked (in CHRG syntax the symbols prefixed with
exclamation points are kept, while the ones without are replaced by the body
of the rule, in this case an update constraint that invokes some housekeeping
procedures).

Each of the properties dealt with has similar rules associated with it.

4.2 Inferring Lexical Knowledge from Sentential Context

Let us first consider the problem of making sense of extraneous words. We assume
in a first stage that we have only one language with known syntax and lexicon,
and an input corpus which is correct save for the occasional intrusion of neol-
ogisms or words belonging to another language or jargon. We can adapt our
Womb Grammar methodology to this situation, by running the input corpus as
is and observing the list of violated properties that will be output.

Since we know everything to be correct except that some lexical items do not
“belong”, we know that the violated properties stem from those lexical items
that failed to parse. By examining the violated properties, we can draw useful
inferences about the lexical items in question.

For instance, if the head noun appears as an unknown word, among the vio-
lated properties we will read that the obligatory character of a noun phrase’s
noun has been violated, which can lead us to postulate that the word in ques-
tion is a noun. A violated exigency property would likewise suggest that the
unrecognized word has the category that is required and has not been found.

But do we Really Need Womb Grammars? It is clear that with sufficient
programming effort, any computational linguistic methodology can be adapted
to guess lexical categories of extraneous words from context. However in most of
them, this would require a major modification of the parser. Take for instance
DCGs (Definite Clause Grammars, [17]), where lexical rules would appear as
exemplified by:

noun --> [borogove].
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If the lexicon does not explicitly include the word “borogrove” among the
nouns, the parser would simply fail when encountering it. One could admit
unknown nouns through the following rule:

noun --> [_].

But since this rule would indiscriminately accept any word as a noun (and
similar rules would have to be included in order to treat possible extraneous
words in any other category), this approach would mislead the parser into trying
countless paths that are doomed to fail, and might even generate wrong results.

In contrast, we can parse extraneous words through Womb Grammar by
anonymizing the category and its features rather than the word itself, e.g.
word(Category,[Number, Gender],borogrove)), which more accurately represents
what we know and what we don’t. The category and features will become effi-
ciently instantiated through constraint satisfaction, taking into account all the
properties that must be satisfied by this word in interaction with its context.

Of course, what would be most interesting would be to derive the meaning
of the word that “does not belong”. While Womb Grammars do not yet have a
complete way of treating semantics, the clues they can provide regarding syn-
tactic category can serve to guide a subsequent semantic analysis, or to bypass
the need for a complete semantic analysis by the concomitant use of ontologies
relevant to domain-specific uses of our parser. In general, we are not necessarily
interested in capturing the exact meaning of each unrecognized word; but rather
to infer its relation with known words. The problem can be casted into the (auto-
matic) extraction of a portion of the hypernym relation involving the extraneous
word using the actual document or additional sources as corpora (see [8]).

Some Examples. In the poem “Jabberwocky”, by Lewis Carroll,1 nonsense
words are interspersed within English text with correct syntax. Our target lex-
icon, which we might call Wonderland Lexicon or WL, can be to some extent
reconstructed from the surrounding English words and structure by modularly
applying the constraints for English. Thus, “borogoves” must be labelled as a
noun in order not to violate a noun phrase’s exigency for a head noun.

In other noun phrases, the extraneous words can be recognized only as adjec-
tives. This is the case for “the manxome foe” and “his vorpal sword”, once the
following constraints are applied: adjectives must precede nouns, a noun phrase
can have only one head noun, determiners are also unique within a noun phrase.

In the case of “the slithy toves”, where there are two WL words, the constraint
that the head noun is obligatory implies that one of these two words is a noun,
and the noun must be “toves” rather than “slithy” (which is identified as an
adjective as in the two previous examples) in order not to violate the precedence
constraint between nouns and adjectives.

In other cases we may not be able to unambiguously determine the category,
for instance the WL word “frabjous” preceding the English word “day” may
1 See http://www.poetryfoundation.org/poem/171647.

http://www.poetryfoundation.org/poem/171647
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remain ambiguous no matter how we parse it, if it satisfies all the constraints
either as a determiner or as an adjective.2

Two of the poem’s noun phrases (“the Jubjub bird” and “the Tumtum tree”)
provide ontological as well as lexical information (under the reasonable assump-
tion that capitalised words must be proper nouns, coupled with the fact that
as proper nouns, these words do not violate any constraints). Our adaptation of
Womb Grammars includes a starting-point, domain dependent ontology (which
could, of course, initially be empty), which can be augmented with such onto-
logical information as the facts that Tumtums are trees and Jubjubs are birds.
Similarly, input such as “Vrilligs are vampires” would result in additions to the
ontology besides in lexical recognition.

It could be that some input allows us even to equate some extraneous words
with their English equivalents. For instance, if instead of having in the same
poem the noun phrases “his vorpal sword” and “the vorpal blade”, we’d encoun-
tered “his vorpal sword” and “the cutting blade”, we could bet on approximate
synonymy between “vorpal” and “cutting”, on the basis of our English ontology
having established semantic similarity between “sword” and “blade”.

Similarly, extraneous words that repeat might allow a domain-dependent
ontology to help determine their meaning. Taking once more the example of
“his vorpal sword” and “the vorpal blade”, by consulting the ontology besides
the constraints, we can not only determine that “vorpal” is an adjective, but
also that it probably refers to some quality of cutting objects. It would be most
interesting to carefully study under which conditions such ontological inferences
would be warranted.

4.3 Inferring Extraneous Structures

We have said that Womb Grammars figure out the syntax of a target language
from that of a source language by “correcting” the latter’s syntax to include
properties that were violated by the input corpus. Another variant of Womb
Grammars, which we call Universal Womb Grammars, does not rely on a spe-
cific source language, but uses instead the set of all properties that are possi-
ble between any two constituents – a kind of universal syntax. This universal
grammar contains contradictory properties, for instance it will state both that
a constituent A must precede another constituent B, and that B must precede
A. One or both of these properties will be weeded out by processing the input
corpus, which is assumed to be correct and representative.

When dealing only with lexical intrusions, our solution discussed in the pre-
vious section does not affect the assumption, made by Womb Grammars, that
the input corpus is correct: we merely postulate an anonymous category and fea-
tures, and let constraint solving automatically find out from context which are
the “correct” ones (correct in the sense of our multilingual or neologism-creating
environment) to associate to an extraneous word.

2 Which precise constraints are defined for a given language subset is left to the gram-
mar designer; those in this paper are meant to exemplify more than to prescribe.
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Extraneous structures, particularly if coexisting with extraneous lexicon,
might be more difficult to deal with, because we rely upon the structural con-
straints being correct in order to infer an unknown category (e.g. the constraint
that adjectives must precede nouns helps to determine that the word “vorpal”
functions as an adjective in Lewis Carrol’s poem). Therefore, in this section
we assume there are no extraneous words and we only deal with extraneous
structures. We shall then try to combine both approaches.

We assume, with no loss of generality, that the main language is English
and that it is being infiltrated with structures of other languages—the same
considerations apply if the main language is another one.

One possibility is to use the Hybrid Womb Grammar approach with the
user’s mother tongue as target language and English as the source language,
thus obtaining a parser for the mixed language, through training a hybrid Womb
Grammar with a user-produced representative corpus of sentences. We can then
run an input corpus that is representative of the user’s talk (e.g. Spanglish)
and this will result in a Spanglish grammar adapted to the user in question.
Thereafter, this user will be able to create all the neologisms he wants, given
that the structures used, although they may be incorrect for either Spanish
or English, will be adequately represented in the Spanglish grammar obtained,
which is tailored to this user.

Mixed Language Text Parsing

The Training Phase. Before being able to parse a user’s mixed use of two lan-
guages, we propose to obtain a parser for the mixed language, through training
a hybrid Womb Grammar with a user-produced representative corpus of sen-
tences. Let LS (the source language) be the main language used in the text we
want to parse, e.g. English. Its syntactic component will be noted LS

syntax, and
its lexical component, LS

lex.
Let LT be the user’s mother tongue. We want to obtain the syntax for the

user’s blending of LS and LT . Let us call this mixed language LM .
Since we have made the assumption that during this training phase we have

no extraneous words (that is, no words that do not appear in the lexicon), we
have two options: we can either require that the user do not include them in the
training phase, so that the target lexicon will be that of English (LM

lex=LS
lex) or

we can simply extend the target lexicon to include both the source language’s
and that of the user’s mother tongue (LM

lex = LS
lex ∪ LT

lex). Whichever of these
two options we take, let us call the mixed language’s lexicon (LM

lex). We can feed
a sufficiently representative corpus LM

corpus of sentences in LM that the user has
produced, to a hybrid parser consisting of LS

syntax and LM
lex. This will result in

some of the sentences being marked as incorrect by the parser. An analysis of the
constraints these “incorrect” sentences violate can subsequently reveal how to
transform LS

syntax so it accepts as correct the sentences in the corpus of LM—i.e.,
how to transform it into LM

syntax. Figures 1 and 2 respectively show our problem
and our proposed solution through Hybrid Parsing in schematic form.
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lex LM
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syntax

Fig. 1. The problem
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Violated syntax
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Grammar
Repairing
Module

LM
syntax

Fig. 2. The solution.

For example, let LS = English and LT = French, and let us assume that
English adjectives always precede the noun they modify, while in French they
always post-cede it (an oversimplification, just for illustration purposes). Thus
“the blue book” is correct English, whereas in French we would more readily say
“le livre bleu”.

If we plug the French lexicon and the English syntax constraints into our
Womb Grammar parser, and run a representative corpus of (correct) French
noun phrases by the resulting hybrid parser, the said precedence property will
be declared unsatisfied when hitting phrases such as “le livre bleu”. The gram-
mar repairing module can then look at the entire list of unsatisfied constraints,
and produce the missing syntactic component of LT ’s parser by modifying the
constraints in LS

syntax so that none are violated by the corpus sentences.
Some of the necessary modifications are easy to identify and to perform, e.g.

for accepting “le livre bleu” we only need to delete the (English) precedence
requirement of adjective over noun (noted adj < n). However, subtler modifi-
cations may be in order, perhaps requiring some statistical analysis in a second
round of parsing: if in our LM corpus, which we have assumed representative,
all adjectives appear after the noun they modify, French is sure to include the
reverse precedence property as in English: n < adj. So in this case, not only do
we need to delete adj < n, but we also need to add n < adj.

4.4 Extracting Domain Knowledge from Text Corpora

Extracting domain knowledge from text corpora is an active research area which
involves several communities (see e.g. [8] for an overview). For our purposes
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we’ll focus on the problem of building a (partial) hypernym relation graph from
textual corpora.

In our context, we are not interested in building a precise structured con-
ceptualization of a domain but to recognize hypernyms and hyponyms of the
extraneous words. Once we are able to recognise the meaning of related words
(e.g. using a background source of information like EuroWordNet [22]) we can
classify the missing words and grasp their meaning. For example, searching the
web for the exact phrase “a borogove is” returns a snippet containing the sen-
tence “a borogove is a thin shabby-looking bird” which allows us to infer that a
“borogove” is a bird.

Different techniques have been developed to optimize the task of acquiring
semantic structuring of a domain; however, our problem is much more limited
because we are not interested in constructing a complete taxonomy. In particular,
the problems of precision and recall will not affect us to the same extent as in
the general case.

The fact that we start our search for hypernyms from specific seed words
and we cannot make strong assumptions on the corpora we are analysing, makes
approaches based on hyponym patterns a natural choice (see [13,20]). The basic
idea is to search the corpora for specific textual patterns which explicitly identify
a hyponym relation between terms (e.g., “such authors as 〈X〉”). Hyponym
patterns can be pre-defined or extracted from corpora using known taxonomies
(e.g., [20]). For our purposes we can reuse known patterns and apply them to
the text source being parsed or external sources like Wikipedia or a web search
engine [21].

5 Conclusion

We have shown how to use the combined power of Womb grammars plus ontolo-
gies in order to make syntactic sense of text for which the grammar we dispose
of has only partial information. As well, we have delineated how we could extend
these abilities into semantics.

While in this paper we have focused on a specific language’s grammar, it
might be useful to be able to consult in a second stage the relevant fragment
(e.g. that of noun phrases if the extraneous word belongs to one) of a universal
grammar. This will be the case for instance if the word that seems not to belong
in the text exhibits some property that does not exist in the text’s main language.
When this is the case, there will be no way to assign for some word a category
that is in line with the surrounding ones and results in no more properties being
violated.

Our work may have interesting connections with Chomskys innate theory of
language, which states that all children share the same internal constraints which
characterize narrowly the grammar they are going to construct, and exposure to
a specific language determines their specialization into the specific rules for that
language.

These internal constraints, if the theory is correct, characterize what may be
seen as a latent universal language. Womb grammars may help to uncover its
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constraints phrase by phrase, perhaps relative to families of language, or help
shed light upon specific problems, such as phylogenetic classification.
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Université de Provence (2005) (2005)

19. Schrijvers, T., Sulzmann, M.: Transactions in constraint handling rules. In: Garcia
de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 516–530.
Springer, Heidelberg (2008)

20. Snow, R., Jurafsky, D., Ng, A.Y.: Learning syntactic patterns for automatic hyper-
nym discovery. In: Advances in Neural Information Processing Systems, vol. 17
(2004)

21. Snow, R., Jurafsky, D., Ng, A.Y.: Semantic taxonomy induction from heterogenous
evidence. In: Proceedings of the 21st International Conference on Computational
Linguistics and the 44th Annual Meeting of the Association for Computational
Linguistics, pp. 801–808. ACL-44, Association for Computational Linguistics,
Stroudsburg (2006). http://dx.doi.org/10.3115/1220175.1220276

22. Vossen, P.: EuroWordNet: a multilingual database of autonomous and language-
specific wordnets connected via an inter-lingualindex. Int. J. Lexicography 17(2),
161–173 (2004). http://dx.doi.org/10.1093/ijl/17.2.161

https://hal.inria.fr/inria-00553259
http://dx.doi.org/10.3115/1220175.1220276
http://dx.doi.org/10.1093/ijl/17.2.161


Author Index

Adebara, Ife 334
Adoe, Fadel 262
Aehnelt, Mario 207
Aggoune-Mtalaa, Wassila 145
Anders, Gerrit 223
Ang, E. Mei 100

Bader, Sebastian 207
Barták, Roman 185
Benelallam, Imade 20
Bouyakhf, El Houssine 20

Cabri, Giacomo 58
Capodieci, Nicola 58
Chen, Yingke 262

da Silva, Flavio S. Correa 284
Dahl, Veronica 334
Doshi, Prashant 262
Dranidis, Dimitris 37
Drugan, Madalina M. 128

EL Khattabi, Ghizlane 20
Erraji, Zakarya 20

Goto, Mizuki 298

Habbas, Zineb 145
Hjelmblom, Magnus 316

Iida, Hiroyuki 100
Ishitobi, Taichi 100

Jakubův, Jan 245

Kefalas, Petros 37
Khalid, Mohd Nor Akmal 100

Kiyohara, Tatsuya 163
Komenda, Antonín 245

Lakemeyer, Gerhard 79
Leonardi, Letizia 58

Meyer, Thomas 3, 79
Miwa, Hiroyoshi 298

Ntika, Marina 37

Ohsuga, Akihiko 163
Orihara, Ryohei 163

Puviani, Mariachiara 58

Reif, Wolfgang 223
Rens, Gavin 3, 79
Robertson, David S. 284

Sadeg, Lamia 145
Sakellariou, Ilias 37
Sei, Yuichi 163
Siefert, Florian 223

Tahara, Yasuyuki 163
Takahashi, Kazuko 298
Tessaris, Sergio 334
Tožička, Jan 245

Vasconcelos, Wamberto W. 284
Vlk, Marek 185

Yusof, Umi Kalsom 100


	Preface
	Organization
	Contents
	Agents
	A Hybrid POMDP-BDI Agent Architecture with Online Stochastic Planning and Desires with Changing Intensity Levels
	1 Introduction
	2 Preliminaries
	3 The HPB Architecture
	4 Evaluation
	5 Towards Generalizing Goals
	6 Related Work and Conclusion
	References

	Dynamic JChoc: A Distributed Constraints Reasoning Platform for Dynamically Changing Environments
	1 Introduction
	2 Preliminaries
	2.1 Distributed Constraint Satisfaction Problems
	2.2 Meeting Scheduling Problem as a DisCSP

	3 Related Work
	4 JChoc Platform
	4.1 JChoc Description
	4.2 JChoc Architecture

	5 Using Dynamic JChoc
	5.1 Using JChoc in Distributed Environment
	5.2 Using JChoc in Dynamic Distributed Environment

	6 Experimental Results
	6.1 Configuration Example
	6.2 Platform Scalability
	6.3 Platform Scalability in a Dynamic Changed Environement

	7 Conclusion
	References

	Stream X-Machines for Agent Simulation Test Case Generation
	1 Introduction
	2 The SXM Approach
	3 Modelling and Testing Agents as SXMs
	3.1 Background on Testing with SXM

	4 MAS Simulation with TXStates
	4.1 TXStates Models SXMs
	4.2 Encoding Agent Actions
	4.3 State and Transition Diagram Specification
	4.4 Executing the Agent Specification

	5 Case Study: Modelling the Japanese Bee
	6 Generating the Test Cases
	6.1 The Model in JSXM
	6.2 Test Generation
	6.3 From Test Cases to Simulation Scenarios

	7 Related Work
	8 Conclusions
	References

	Building Self-adaptive Systems by Adaptation Patterns Integrated into Agent Methodologies
	1 Introduction
	2 The Catalogue of Adaptation Patterns
	3 Agent-Oriented Methodologies for Adaptive Systems
	4 Integrating Catalogue of Adaptation Patterns into Methodologies
	4.1 Integration in PASSI2
	4.2 The Graphical Tool

	5 Related Work
	6 Conclusions
	References

	Artificial Intelligence
	A Logic for Reasoning About Decision-Theoretic Projections
	1 Introduction
	2 The Stochastic Decision Logic
	2.1 Syntax
	2.2 Semantics

	3 The Decision Procedure for SDL Entailment
	3.1 The Tableau Phase
	3.2 The SI Phase

	4 Domain Specification
	4.1 The Framework
	4.2 Examples

	5 Concluding Remarks
	References

	Identifying Critical Positions Based on Conspiracy Numbers
	1 Introduction
	2 Conspiracy-Number Search
	3 Conspiracy-Number Search as Critical Position Identifier
	3.1 Tic-Tac-Toe: Experimental Results and Discussion
	3.2 Othello: Experimental Results and Discussion

	4 CNS Correlations to PNS
	4.1 The Basis of PNS
	4.2 General Correlation of the Elements of CNS and PNS

	5 Concluding Remarks
	A Appendix
	B Appendix
	C Appendix
	References


	Infinite Horizon Multi-armed Bandits with Reward Vectors: Exploration/Exploitation Trade-off
	1 Introduction
	2 Multi-objective Multi-armed Bandits Paradigm
	3 Exploration vs Exploitation Trade-off in Pareto UCB1
	3.1 Exploitative Pareto UCB1
	3.2 Exploratory Pareto UCB1

	4 Exploration vs Exploitation Trade-Off in Pareto UCB2
	4.1 Exploitative Pareto UCB2
	4.2 Exploratory Pareto UCB2

	5 Numerical Simulations
	5.1 Comparing the Performance of MOMAB Algorithms
	5.2 Exploration vs Exploitation Mechanism in Pareto UCB2 Algorithms

	6 Conclusions
	References

	Solving PCSPs Using Genetic Algorithms Guided by Structural Knowledge
	1 Introduction
	2 Partial Constraint Satisfaction Problem (PCSP)
	3 Decomposition Techniques
	3.1 Generalities on Decomposition Techniques
	3.2 Newman Algorithm
	3.3 Detected Structural Knowledge

	4 Adaptive Genetic Algorithm for PCSPs (AGA)
	4.1 Motivation
	4.2 Presentation of the Adaptive Genetic Algorithm (AGA) for PCSPs

	5 Adapative Genetic Algorithm Guided by Decomposition: AGAGD_x_y
	5.1 Presentation of AGAGD
	5.2 Definition
	5.3 Crossover_clus
	5.4 Crossover_cut
	5.5 Crossover_clus_cut

	6 Experimental Results
	6.1 Application Domain: MI-FAP
	6.2 Experimental Protocol
	6.3 Experimental Results Obtained with AGA
	6.4 Experimental Results Obtained with AGAGD_x_y
	6.5 AGA vs AGAGD

	7 Conclusion & Perspectives
	References

	Activity Recognition for Dogs Based on Time-series Data Analysis
	1 Introduction
	2 Questionnaire Survey for Needs
	2.1 Questionnaire Result
	2.2 Questionnaire Analysis

	3 Related Work
	3.1 Activity Recognition for Dogs
	3.2 Time Series Data Mining

	4 Algorithm for Similarity Caluculation
	4.1 Euclidean Distance
	4.2 Classical DTW
	4.3 DTW-D

	5 Experimental Protocol
	5.1 Experimental Environments
	5.2 Experimental Procedure
	5.3 Experimental Results and Discussion

	6 Evaluations Based on Real-World Use Cases
	6.1 Possible Scenarios of Our Approach
	6.2 Evaluation for Scenario 1
	6.3 Scenario 2
	6.4 Evaluation for Scenario 3

	7 Conclusion and Future Works
	7.1 Conclusion
	7.2 Future Work

	References

	Machine Breakdown Recovery in Production Scheduling with Simple Temporal Constraints
	1 Introduction
	2 Related Works
	3 Problem Definition
	3.1 Scheduling Problem
	3.2 Schedule
	3.3 Rescheduling Problem

	4 Right Shift Affected
	4.1 Reallocating Activities
	4.2 Constraint Repair

	5 STN-recovery
	5.1 Swapping Resource Selections
	5.2 Shifting Activities
	5.3 Updating STN
	5.4 Components Acquirement
	5.5 Deallocation
	5.6 Allocation

	6 Rescheduling as a Mixed Integer Program
	7 Experimental Results
	8 Conclusions
	References

	From Information Assistance to Cognitive Automation: A Smart Assembly Use Case
	1 Introduction
	2 Required Assistance
	3 Detecting Situations
	4 Providing Assistance
	4.1 Raising Awareness
	4.2 Guiding
	4.3 Monitoring

	5 Using Soar to Provide Assistance
	5.1 Cognitive Architectures
	5.2 Situation Detection
	5.3 Contextual Knowledge
	5.4 Interaction

	6 Industrial Application in Plant@Hand
	7 Conclusions
	References

	A Heuristic for Constrained Set Partitioning in the Light of Heterogeneous Objectives
	1 Introduction and Related Work
	2 Particle Swarm Optimization
	2.1 General Definition
	2.2 Discrete Particle Swarm Optimization

	3 The Particle Swarm Optimizer for Solving the Partitioning Problem
	3.1 Constraining Valid Solutions
	3.2 The Algorithm's Basic Procedure
	3.3 Similarity of Partitionings
	3.4 Random Moves in the Search Space
	3.5 Approach of Other Particles

	4 Evaluation
	5 Conclusion and Future Work
	References

	Using Process Calculi for Plan Verification in Multiagent Planning
	1 Introduction
	2 Multiagent Planning
	2.1 Planning Problem
	2.2 Public and Internal Classification
	2.3 Local Planning Problems
	2.4 Plans and Extensibility

	3 Planning State Machines
	4 Planning Calculus
	4.1 Planning as Process Calculus
	4.2 Planning Calculus Type System

	5 PSM with Plan Analysis
	5.1 Plan Extensibility as Planning
	5.2 Simplified Plan Analysis (PSM+)
	5.3 Partial Plan Reuse (PSM86)

	6 Experimental Results
	7 Conclusions
	References

	Speeding up Planning in Multiagent Settings Using CPU-GPU Architectures
	1 Introduction
	2 Background
	2.1 Dynamic Influence Diagram
	2.2 Interactive DID
	2.3 CPU-GPU Architecture

	3 Related Work
	4 Parallelized Planning Approach
	4.1 Parallelizing Solving Models in the I-DID
	4.2 Parallelizing Sum-Max-Sum Rule for MEU

	5 Algorithm Design
	6 Theoretical Analysis of Speed up
	7 Experiments
	7.1 Performance Evaluation
	7.2 Optimizing Thread Block Size

	8 Conclusion
	References

	LS2C - A Platform for Norm Controlled Social Computers
	1 Introduction
	2 Preliminary Concepts and Related Work
	3 The LS2C Language
	4 The LS2C Platform
	5 An Example -- LS2C for S3
	6 Conclusion and Future Work
	References

	Construction of a Planar PLCA Expression: A Qualitative Treatment of Spatial Data
	1 Introduction
	2 PLCA
	2.1 Target Figure
	2.2 PLCA Expression
	2.3 Basic Concepts of PLCA Expressions
	2.4 Consistency
	2.5 PLCA-connectedness
	2.6 PLCA-Euler
	2.7 Planar PLCA Expression

	3 Construction of PLCA
	4 Proof of Formalization
	4.1 Proof of Planarity
	4.2 Proof of Realizability

	5 Related Work
	6 Conclusion
	References

	Offline Norm Evolution
	1 Introduction
	1.1 Related Work
	1.2 One-Agent Types of Normative Positions
	1.3 Previous Work

	2 Example: Explorer DALMAS
	3 Evolution of Explorer Norms
	3.1 Result
	3.2 Discussion

	4 Conclusion and Future Work
	References

	Parsing with Partially Known Grammar
	1 Introduction
	2 Motivation
	3 Background
	3.1 Womb Grammars
	3.2 CHRG

	4 Our Proposed Methodology
	4.1 Failure-Driven Parsing
	4.2 Inferring Lexical Knowledge from Sentential Context
	4.3 Inferring Extraneous Structures
	4.4 Extracting Domain Knowledge from Text Corpora

	5 Conclusion
	References

	Author Index



