
Improving css-KNN Classification Performance
by Shifts in Training Data

Karol Draszawka1(B), Julian Szymański1, and Francesco Guerra2

1 Gdańsk University of Technology, Gdańsk, Poland
{kadr,julian.szymanski}@eti.pg.da.pl

2 Universita’ di Modena e Reggio Emilia, Modena, Italy
francesco.guerra@unimore.it

Abstract. This paper presents a new approach to improve the perfor-
mance of a css-k -NN classifier for categorization of text documents. The
css-k -NN classifier (i.e., a threshold-based variation of a standard k -NN
classifier we proposed in [1]) is a lazy-learning instance-based classifier.
It does not have parameters associated with features and/or classes of
objects, that would be optimized during off-line learning. In this paper
we propose a training data preprocessing phase that tries to alleviate
the lack of learning. The idea is to compute training data modifications,
such that class representative instances are optimized before the actual
k -NN algorithm is employed. The empirical text classification exper-
iments using mid-size Wikipedia data sets show that carefully cross-
validated settings of such preprocessing yields significant improvements
in k -NN performance compared to classification without this step. The
proposed approach can be useful for improving the effectivenes of other
classifiers as well as it can find applications in domain of recommendation
systems and keyword-based search.

Keywords: KNN classifier · Wikipedia · Documents classification ·
Missing data imputation

1 Introduction

Text classification finds many applications e.g., in the library systems where it
aggregates thematically related resources into a one category, in e-commerce,
where it serves for profiling users on the basis of their behaviours, and in the
organization of the web, where categories of pages have been proposed (e.g., see
the DMOZ directory).

Classification is a task that only for small repositories can be performed
manually, in almost all the cases the size of the data requires the development
and exploitation of the automatic techniques. The text classification problem
is widely studied and approached using variety of methods such as: SVM [2],
Bayesian [3] and others [4,5]. Due to their simplicity, k -Nearest Neighbours algo-
rithms [6] have been frequently used for this task, achieving also good results as

c© Springer International Publishing Switzerland 2015
J. Cardoso et al. (Eds.): KEYWORD 2015, LNCS 9398, pp. 51–63, 2015.
DOI: 10.1007/978-3-319-27932-9 5

52 K. Draszawka et al.

Fig. 1. The architecture of css-KNN-classifier used in experiments (details in [1]).

in [7,8]. Modifications in k -Nearest Neighbours algorithms also enables multi-
label classification [9,10] that can be introduced with relatively low computa-
tional cost, in comparison to prominent SVM classifiers that are known to have
troubles with scalability and multi-label tasks [11,12].

The main disadvantage of the typical k -NN approaches is that they do not
provide ability for improving the results using the learning by the examples.
Success and popularity of k -NN approach to multi-label large-scale text classifi-
cation encouraged us to undertake research in this field. In [1], we proposed an
approach based on k -NN to text classification that introduced class-specific para-
meters that can be cross-validated to generate best results. Figure 1 shows the
architecture of our classifier: it is based on a typical k -NN classifier, with cosine
metric, and k parameter set to 30. The nearest neighbors contribute to the cal-
culation of each class’s score, according to scoring formula described in [7]. Then,
a thresholding phase using so called Class-specific Scaled Score strategy (CSS)
determines the output of the classifier: if a score of class exceeds a threshold spe-
cific for this class it is added to the final prediction. The values of class-specific
thresholds are tuned using training set subsampling and validation.

In this paper we propose a new approach for improving the results of k -
NN classifier. Our idea is to introduce a training phase where we “modify the
training dataset” to generate better results in terms of classification accuracy.
In particular, in Sect. 3 we propose four methods in which training data exam-
ples are translated or shifted in the feature space, i.e. their feature values are
modified, so that they become more similar to other examples. In geometrical
interpretation, the points in the high dimensional feature space, representing
training data examples, are translated towards other points. In particular, for
attributes that a given example do not have any value, these approaches induce
values, which relates the approaches to “missing value management” methods,
largely studied in the literature. The k -NN classification on such enhanced train-
ing dataset shows better performance than without modifications. The results
obtained by our experiments, computed with large and sparse datasets, as it is
typical in text classification, encourage us to proceed in this direction.

Improving css-KNN Classification Performance by Shifts in Training Data 53

Machine learning techniques have been widely used for supporting keyword
search. k -NN classification techniques have been in particular adopted in the
field of textual documents, images or videos retrieval, allowing users to “query
by example” and obtaining items close to the ones given as input. Nevertheless,
machine learning can support other tasks in keyword search: k -NN classification
can be particularly useful in the keyword search field, in two areas: disambigua-
tion and expansion of the users’ keywords. Disambiguation task is necessary
in solving queries, where the keywords have several meanings according to the
reference context. To be able to select among the possible meanings the one
suitable for the keywords, in the specific query, different techniques are typi-
cally applied. One of them is to make a reduction of the document search space,
thus providing a large benefit in the accuracy of the results. The classification
of the keyword query obtained by the exploitation of the k -NN classification on
a feature vector representing the user’s keyword query can be exploited for this
purpose, by identifying the possible categories where the query belongs to, and
in consequence the set of the interesting documents.

Query expansion is another approach that aims at improving the retrieved
results accuracy. The typical approaches employ dictionaries of different but
semantically related terms. Query expansion provides an additional number of
keywords to be included in the original set formulated by the user. In this case,
the technique for completing missing values introduced in the paper can be
directly adopted for modification of the feature vector representing the user’s
keyword query. In particular, the technique can be used for changing the values
of terms not provided in the original query (i.e., having a 0 value in the query fea-
ture vector), with new estimated values. This enhancement of the feature vector
can subsequently be adopted for selection of similar documents or identification
of the possible reference categories as described below.

The paper is constructed as follows: Sect. 2 introduces some Related Work
with the emphasis on dealing with missing values, Sect. 3 describes our shifting
methods, which are evaluated by the results of the experiments presented in
Sect. 4. Finally in Sect. 5 we sketch out some conclusions and future work.

2 Related Work

Our proposal computes changes in the dataset for improving the k -NN classifier.
Techniques for modifying values in the datasets have been developed in the
literature as related to the management for missing values.

All the existing solutions can be usually classified in one of the following
categories [13]: (1) Ignoring and discarding incomplete records and attributes;
(2) Managing missing data as special values; and (3) Parameter estimation in
the presence of missing data.

The elimination of all samples with missing values and the consequent reduc-
tion of the dataset is the simplest solution for managing the issue. Nevertheless,
this solution is not always suitable due to the discard of significant fragments of
the dataset with potentially useful informative power.

54 K. Draszawka et al.

Approaches falling in the second category treat “unknown” itself as a new
value to be treat in the same way as other values [14].

Finally, the problem of missing values can be handled by various imputation
methods. Working with these approaches, we make the assumptions the “miss-
ingness mechanism” can be analyzed and patterns of missing values (if any) can
be applied for imputation. As stated in [15], there are three different mechanisms
for induction of missing values: 1. Missing completely at random (MCAR), when
the distribution of an example having a missing value for an attribute does not
depend on either the observed data or the missing values; 2. Missing at ran-
dom (MAR), when the distribution of an example having a missing value for
an attribute depends on the observed data, but does not depend on the missing
values; and 3. Not missing at random (NMAR), when the distribution of an
example having a missing value for an attribute depends on the missing values.
Unfortunately missing values imputation methods are suitable only for missing
values caused by MCAR and some of them for MAR mechanisms. If missing
values are caused by NMAR, it must be handled by going back to the source of
data and obtaining more information or the appropriate model for the missing
data mechanism have to be taken into account [13]. Techniques in this category
include: replacing missing value with mean, mean or median for the given class,
most common attribute value, with values computed with machine learning tech-
niques, association rules (see [13,14,16] for some surveys). Our approach can also
be interpreted as a data smoothing technique, a preprocessing commonly used
especially in connection with Bayes classifiers [17].

3 Shifting Methods of Training Examples

This section describes four types of training data modifications used in our exper-
iments. A given training dataset Dtrain consists of N training pairs (examples):

Dtrain =
{
(x ,Y) : x ∈ RM ,Y ⊆ L}

,

where x is a M -dimensional feature vector and Y is a set of objects’ labels, which
is some subset of the set of all labels/classes L in the data. Each of the following
methods can be treated as a function that modifies a training feature vector x
according to its label set Y and its relation to the rest of training examples in
Dtrain:

x ′ = shift (x ,Y,Dtrain) .

The whole modified training data set D′
train is then composed of (x ′,Y) pairs.

It is important to notice that such modifications of the training dataset should
be applied to test examples, because label sets of test examples are assumed to
be unknown. Therefore, transformations are employed only to training data,
the modified training examples are given to a classifier, but during testing the
classifier is fed with test examples not affected by any such transformation. The
following approach then breaks the usual scheme, that the processing pipeline
from an input data feature vector to an output prediction vector is the same in
the training and testing phases.

Improving css-KNN Classification Performance by Shifts in Training Data 55

The four proposed modifications of the training dataset have a common form,
given by Eq. (1):

x ′(i) = x (i) + α ·
(
d (i) − x (i)

)
= (1 − α) · x (i) + α · d (i). (1)

They are vector translations (shifts) of an i -th data point x (i) towards some
destination point d (i) by some step size α ∈ [0, 1]. The knowledge of Y(i) as well
as the rest of Dtrain is necessary to compute d (i).

How exactly calculating the destination point of a given training dataset is
the first differentiating factor of the following methods. d (i) can be determined
by global or local feature space examination. The second differentiating factor
specifies the way of multi-labeled training examples treatment. These two factors
taken together generate the following four methods of shifts in training data.

3.1 Shifts Towards Globally Defined Destinations

In the first two methods the direction towards which a data point is pushed is
determined by examining the data set globally. Particularly, the shift destination
point is the center of the class to which an object belongs. In this paper, a class
center is chosen to be an average of all examples in the class (i.e. a simple centroid
of the class), although a medoid representation of a class center should also work.
The centroid ci of a class Ci is given by:

ci =

∑
x∈Ci

x

|Ci| (2)

Because of multi-label character of the problem, the arising question is how
to move objects that belong to more than one class. Moving a point towards all
of its classes’ centers sequentially, i.e. in the direction of a centroid of one class,
then towards other centroid of an affiliated class and then towards another and
so on, is not a correct strategy. In effect, this would place the point nearest to
the last class and farthest from the first class to which it was pushed. Therefore
the object’s classes would not be treated equally and this is unjustified. Instead,
there are two other ways of translating multi-labeled objects having known the
centers of their affiliated classes.

Translation to Centroid of Centroids (T2CC). In this approach, we aver-
age the centroids of the classes to which object x(i) belongs:

cc(i) =

∑
j∈Y(i) cj

|Y(i)| (3)

After obtaining such centroid of centroids for each object, the object can be
shifted in accordance to Eq. (1), with d (j) = cc(j).

56 K. Draszawka et al.

(a) T2CCmethod (b) C&T2Cmethod

Fig. 2. Comparison of two methods using global dataset investigation to calculate
destination points and then translate towards them using α values ranging from 0.1
to 0.5. The difference is visible in the way in which multi-labeled objects are treated.
Examples in the middle, depicted as stars, are assigned to both upside and downside
triangle labels. T2CC calculates the centroid out of both labels centroids and moves
the objects towards that single point, whereas C&T2C splits the objects into two
single-labeled ones and translates them to respective class centers.

Copy and Translate (C&T2C). Here, we begin by decomposing each multi-
labeled object in the dataset into single-labeled copies of it. That is, an object
associated with p classes (i.e. |Y(i)| = p) is replaced by p copies of itself and each
of these copies is marked with a different class from the set of original object’s
labels:

(x , {l1, l2, . . . , lp}) =⇒ (x , {l1}) , (x , {l2}) , . . . , (x , {lp}) (4)

After such operation, in C&T2C method each object is pushed according
to (1), having d (j) set to a suitable class centroid c. Figure 2 illustrates the dif-
ference between T2CC and C&T2C translation methods in a simple 2D example.

It should be noticed that this dataset transformation, objects’ forking, sig-
nificantly increases the number of training objects. This may be a potential
drawback for some applications, because much more memory space is needed
to store the data. It also changes the character of the training data, which is
not multi-labeled any more. In connection with the fact that the classification
problem to solve is still multi-labeled, this means that the approach can be used
only when working with classifiers capable of dealing with such situations.

3.2 Shifts Towards Locally Defined Destinations

In contrast to the above global methods, the local approach to calculate destina-
tion points for data shifts is presented here. The idea is that instead of choosing
a class center as the point (d (i)) towards which executing a movement of a

Improving css-KNN Classification Performance by Shifts in Training Data 57

feature vector x (i), it is determined by m closest examples to x (i) (with respect
to some distance metric, e.g. cosine) among those that belong to the same class
as x (i) does (assuming for a while that it is single labeled). Therefore, they can
be called m nearest in-class neighbors (nin-s) of the example.

When m nin-s of an x (i) are found, constituting a set Nx (i) , then d (i) is
simply the average of these points, analogously to class centroid calculation:

d (i) =

∑
N

x(i)
n

|Nx (i) | =

∑
N

x(i)
n

m
(5)

For single-labeled datasets, the parameter m can be fixed to a constant
value for all classes or it could be proportional to the size of the class to which
x (i) is assigned. For multi-labeled cases, the following two methods have been
developed.

Translation to Centroid of Nearest In-Class Neighbors (T2CNIN). In
this approach, the local destination point calculation given above is adapted
to multi-labeled objects by changing the notion of an in-class object. Now, an
example is considered as in-class with respect to some x (i), if and only if at
least one of this example’s labels is in Y(i) or, in other words, if the intersection
between this example’s Y and Y(i) is not empty. With this adaptation, the rest
of the procedure is the same as for a single-labeled case: the m nearest in-class
neighbors have to be found, d (i) is determined by applying Eq. 5, and the change
of x (i) by shift given in Eq. 1.

Of course, this method can have many other variants. For example, one
can be more demanding in treating examples as an in-class peers to a given
x (i) by requiring the respective Y and Y(i) to be the same (i.e. a label power
set approach). Or, one can incorporate a weighted average, instead of Eq. 5, to
vary the importance of m nearest neighbors, so that those with many common
labels would pull stronger than those with, say, only one common label. In the
experiments, these variants were not used.

Copy and Translate to Nearest In-Class Neighbors (C&T2NIN). The
last proposed method is a result of applying local destination points calculation
(Eq. 5) with previous multi- to single-label data transformation, presented by 4.
After the object forking transformation, each example has exactly one label,
so the notion of an in-class peer is not problematic, and Eq. 5 can be applied
directly. Of course, all restrictions about the consequences of using the object
forking transformation, described previously, apply here also.

The difference between the two local shift methods on a toy 2D example is
shown in Fig. 3.

3.3 Pre- and Post-shift Data Pruning

For sparse data, the effect of points shifts in the feature space is the addition of
many non-zero values, i.e. the sparseness of data is reduced. For example, the

58 K. Draszawka et al.

(a) T2CNIN method (b) C&T2NIN method

Fig. 3. Comparison of two methods using local neighborhood investigation to calculate
destination points and then translate towards them using α values ranging from 0.1 to
0.5, m = 3. Here also the difference lies in the way multi-labeled objects are treated.
Objects in the middle, e.g., stars, are assigned to both upside and downside triangle
labels. T2CNIN calculates centroids of in-class neighbors and moves the objects owards
those points, whereas C&T2NIN splits the objects into two single-labeled ones and
translates them to suitable in-class neighbors’ centers.

average number of nonzero elements of a class centroid in our dataset (described
in Sect. 4.1) is ca. 700, whereas the average number of nonzero elements of a single
data example is 53. This means, that on average a shifted data example to a
class centroid has over 1200 % nonzero elements of the original data example.

On the one hand, this is a massive data imputation, which was one of the
aims of the methods and is beneficial for better classification. On the other hand,
however, it significantly increases the space requirements for the transformed
data which can cause memory problems. Therefore, in practice a deletion of
small nonzero elements is needed to restrict the reduction of data sparsity. This
is obtained in a process called data pruning. A pruning can be done by setting
an absolute threshold value and zeroing feature values less than this threshold.
The threshold can also be relative, in which case a feature is removed from
the example, if its value scaled by example’s highest feature value is below the
threshold.

In the presented data shifts methods, pruning can be executed two times.
First, after the calculation of the centroids (for global methods), the centroids
can be immediately pruned, so that they contain only important features, that
characterize classes. This can be called pre-shift pruning. For example, pruning
the centroids of the above example with relative pruning trrel = 0.05, reduces
their average number of nonzero elements from 700 to 311. After data move-
ments, the obtained modified train dataset can also be pruned using the same
technique. This process can be referenced to as post-shift pruning.

Improving css-KNN Classification Performance by Shifts in Training Data 59

4 Experiments

4.1 The Dataset

The evaluation was performed using the dataset constructed from the corpus
of articles from Simple English Wikipedia. It is a well known, frequently used
dataset that has characteristic properties, such as: the data is highly multi-
labeled (in some cases more than 5 labels), has many irregularities, contains
noise and missing values, the articles are of different lengths, are not necessarily
correctly assigned to categories (or not assigned to all categories to which they
would fit well), and often have some less important content while missing crucial
information. Simple English Wikipedia corpus is also suited well to test-bed
experiments, because it is middle sized – big enough to exhibit most important
properties of real problems, but computations upon it are relatively not much
time consuming (all the data can fit at once into a typical computer memory).

The corpus was preprocessed using Matrix’u software [18] to obtain a bag-
of-words representation of the articles. The confidence weighting scheme [19]
was used, which gives slightly better classification accuracy than typical TF-
IDF feature weighting. From the original corpus, the articles with less than 5
features as well as the categories with less than 5 articles were removed. After
such filtering, the dataset has 55637 articles, connected in a multi-label fashion
with 5679 categories.

The dataset was divided into train and test sets in proportion 3:1, so that at
least one article from every category is included in the test set. The problem of
stratified partitioning a multi-labeled dataset is NP-hard, therefore a version of
simulated annealing was used to obtain a satisfactory partition.

4.2 Results

Figures 5 and 4 presents the quality of the test set examples classification using
two KNN-based classifiers under train data examples shift. For comparison, the
baseline (classification performance on raw training data) is also presented. For
each method, the results were obtained by computation of destination points first
and then gradually moving training data examples towards them (changing α in
Eq.(1) from 0 to 1 by 0.1) each time checking the performance of classifiers on
the same test set examples. The performance is expressed by a popular macro-
averaged F1-score (abbrev. maF) [20]. Because Wikipedia category structure has
a pseudo-hierarchical structure, besides typical “flat” maF, the measurements
using a hierarchical version of it, abbreviated as hMaF, introduced in [21], are
also presented (Fig. 5b and 4b).

It can be seen that all four methods can improve the training set leading to
better classification performance. However, having chosen a method, it is very
important to find a proper step size (α) value. The optimal α has to be large
enough to reduce variance in the training data associated with noise, but small
enough to maintain the variance resulting from class distribution in the feature
space. Too small α may not increase the performance significantly and too big

60 K. Draszawka et al.

0 0.2 0.4 0.6 0.8 1
0.2

0.22

0.24

0.26

0.28

0.3

0.32

α

M
ac

ro
−F

1

Enhanced−KNN−classifier classification performance under different translation methods

T2CC
T2CNIN
C&T2C
C&T2NIN
no translations

(a) Macro F1-score

0 0.2 0.4 0.6 0.8 1

0.3

0.32

0.34

0.36

0.38

0.4

α

H
ie

ra
rc

hi
ca

l m
ac

ro
−

F
1

Enhanced−KNN−classifier classification performance under different translation methods

T2CC
T2CNIN
C&T2C
C&T2NIN
no translations

(b) Hierarchical macro F1-score

Fig. 4. The results of Enhanced-KNN classifier [7] performance on a held out test
set under train data translations using proposed methods. Simple English Wikipedia
dataset, centroid pruning threl = 0.05, shifted data pruning threl = 0.05, neighborhood
size for local methods: m = 3.

0 0.2 0.4 0.6 0.8 1
0.24

0.26

0.28

0.3

0.32

0.34

0.36

α

M
ac

ro
−F

1

css−KNN−classifier classification performance under different translation methods

T2CC
T2CNIN
C&T2C
C&T2NIN
no translations

(a) Macro F1-score

0 0.2 0.4 0.6 0.8 1
0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

α

H
ie

ra
rc

hi
ca

l m
ac

ro
−

F
1

css−KNN−classifier classification performance under different translation methods

T2CC
T2CNIN
C&T2C
C&T2NIN
no translations

(b) Hierarchical macro F1-score

Fig. 5. The results of css-KNN classifier performance on a held out test set under train
data translations using proposed methods. Simple English Wikipedia dataset, centroid
pruning threl = 0.05, shifted data pruning threl = 0.05, neighborhood size for local
methods: m = 3.

value may even cause the performance to be worse than the baseline. Indeed, for
methods with globally calculated destination points, shifting too much towards
class centroids makes KNN to behave similarly to centroids-based classifiers (like
nearest centroid / Rocchio classifier), which is known to be inferior than KNN
in most cases.

The degree of data smoothing in methods incorporating nearest in-class
neighbors (nin) is controlled not only by the step size, but also by the num-
ber of nins involved in destination points calculation, i.e. the m parameter. The
presented results were obtained with m set arbitrarily to 3 for all classes, with-
out attempts to optimize it. Figure 5 shows that, css-KNN classifier is vulnerable

Improving css-KNN Classification Performance by Shifts in Training Data 61

to multi-label examples forking (red lines, performance even without shifts, i.e.
for α = 0) and therefore initially exhibits worse quality than the baseline. How-
ever, it becomes better after increasing the step size to 0.4–0.5. Interestingly, for
enhanced-KNN classifier, the multi-label examples splitting instantly improves
the outcome quality. The methods’ usefulness is then closely connected with
a chosen classifier.

It should also be noted, that the presented results are obtained using pre-
and post-shift data pruning. In both the relative thresholds were used with set
to 0.05. For selected α values, we also tested the classification performance on
less pruned data (and even without pre-translation pruning), but the obtained
results were almost identical. However, there is much difference in memory
space requirements, which is presented in Table 1. With our simple, all-data-in-
memory implementation, some data pruning was needed to avoid out of memory
problems.

Table 1. The impact of pre- and post-translation data pruning on the size of the
modified training dataset (in MB). Simple English Wikipedia train data. Original train
data size is 25.

5 Conclusions and Future Work

In our paper we present an approach for shifts in the training data for text
classification based on KNN that allowed us to improve generalization of the
categorization process. We proposed four variants of train data points shifts
and shown that all of them can improve classification quality. The modifications
perform a data smoothing, and, especially, can be seen as a type of missing data
imputation.

The proposed modification lies before main classification phase and as a gen-
eral approach can be used with other classification tools, thus improve their
effectiveness. In future we plan to investigate the impact of training data mod-
ifications on results of the SVM and neural network models. For these models
however, it may be necessary to learn a function that will perform a similar
transformation, but in an unsupervised manner, i.e. without the knowledge of
class labels, so that the transformations could be performed also on the test
examples.

62 K. Draszawka et al.

Besides this, future work will also be oriented in two main directions. Firstly
we will investigate whether the approach for dealing with missing data can be
applied to keyword search over databases that do not offer direct access to their
instances (e.g. deep web databases, which can be typically accessed by query
forms). In this case, the proposed technique can be used for estimating the
assignment of a keyword to a particular database schema element, thus com-
pleting and extending our previous work [22]. Then we will adopt the technique
in a recommender system, where we have to discover the users’ preference rates
for unrated items. In this case, unrated preference rates have to be thought of
as missing value. We plan to perform this experimentation in the field of rec-
ommendation of web pages, where new pages can be proposed to a user on the
basis of the analysis of the pages visited in the current session.

Acknowledgement. The authors would like to acknowledge networking support by
the ICT COST Action IC1302 KEYSTONE - Semantic keyword-based search on struc-
tured data sources (www.keystone-cost.eu).

References

1. Draszawka, K., Szymanski, J.: Thresholding strategies for large scale multi-label
text classifier. In: The 6th International Conference on Human System Interaction
(HSI), 2013, pp. 350–355. IEEE (2013)

2. Joachims, T.: Transductive inference for text classification using support vector
machines. In: ICML, vol. 99, pp. 200–209 (1999)

3. McCallum, A., Nigam, K., et al.: A comparison of event models for naive bayes
text classification. In: AAAI-98 Workshop on Learning for Text Categorization,
vol. 752, pp. 41–48. Citeseer (1998)

4. Sebastiani, F.: Machine learning in automated text categorization. ACM Comput.
Surv. (CSUR) 34, 1–47 (2002)

5. Westa, M., Szymański, J., Krawczyk, H.: Text classifiers for automatic articles
categorization. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R.,
Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part II. LNCS, vol. 7268, pp. 196–
204. Springer, Heidelberg (2012)

6. Tan, S.: Neighbor-weighted k-nearest neighbor for unbalanced text corpus. Expert
Syst. Appl. 28, 667–671 (2005)

7. Wang, X., Zhao, H., Lu, B.: Enhanced k-nearest neighbour algorithm for largescale
hierarchical multi-label classification. In: Proceedings of the Joint ECML/PKDD
PASCAL Workshop on Large-Scale Hierarchical Classification, Athens, Greece,
vol. 5 (2011)

8. Zhou, Y., Li, Y., Xia, S.: An improved knn text classification algorithm based on
clustering. J. Comput. 4, 230–237 (2009)

9. Zhang, M.L., Zhou, Z.H.: Ml-knn: a lazy learning approach to multi-label learning.
Pattern Recogn. 40, 2038–2048 (2007)

10. Read, J.: Scalable multi-label classification. Ph.D. thesis, University of Waikato
(2010)

11. Yu, H., Yang, J., Han, J., Li, X.: Making svms scalable to large data sets using
hierarchical cluster indexing. Data Min. Knowl. Disc. 11, 295–321 (2005)

http://www.keystone-cost.eu

Improving css-KNN Classification Performance by Shifts in Training Data 63

12. Tang, L., Rajan, S., Narayanan, V.K.: Large scale multi-label classification via
metalabeler. In: Proceedings of the 18th International Conference on World Wide
Web, pp. 211–220. ACM (2009)

13. Kaiser, J.: Dealing with missing values in data. J. Syst. Integr. 5, 42–51 (2014)
14. Grzyma�la-Busse, J.W., Hu, M.: A comparison of several approaches to missing

attribute values in data mining. In: Ziarko, W.P., Yao, Y. (eds.) RSCTC 2000.
LNCS (LNAI), vol. 2005, p. 378. Springer, Heidelberg (2001)

15. Little, R.J.A., Rubin, D.B.: Statistical Analysis with Missing Data, 2nd edn. Wiley,
New York (2002)

16. Farhangfar, A., Kurgan, L.A., Dy, J.G.: Impact of imputation of missing values on
classification error for discrete data. Pattern Recogn. 41, 3692–3705 (2008)

17. Juan, A., Ney, H.: Reversing and smoothing the multinomial naive bayes text
classifier. In: PRIS, pp. 200–212. Citeseer (2002)

18. Szymanski, J.: Comparative analysis of text representation methods using classifi-
cation. Cybern. Syst. 45, 180–199 (2014)

19. Soucy, P., Mineau, G.W.: Beyond tfidf weighting for text categorization in the
vector space model. IJCAI. 5, 1130–1135 (2005)

20. Tsoumakas, G., Vlahavas, I.P.: Random k -Labelsets: an ensemble method for mul-
tilabel classification. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin,
S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp.
406–417. Springer, Heidelberg (2007)

21. Kiritchenko, S., Matwin, S., Nock, R., Famili, A.F.: Learning and evaluation in the
presence of class hierarchies: application to text categorization. In: Lamontagne,
L., Marchand, M. (eds.) Canadian AI 2006. LNCS (LNAI), vol. 4013, pp. 395–406.
Springer, Heidelberg (2006)

22. Bergamaschi, S., Domnori, E., Guerra, F., Trillo-Lado, R., Velegrakis, Y.: Keyword
search over relational databases: a metadata approach. In: SIGMOD, pp. 565–576.
ACM (2011)

	Improving css-KNN Classification Performance by Shifts in Training Data
	1 Introduction
	2 Related Work
	3 Shifting Methods of Training Examples
	3.1 Shifts Towards Globally Defined Destinations
	3.2 Shifts Towards Locally Defined Destinations
	3.3 Pre- and Post-shift Data Pruning

	4 Experiments
	4.1 The Dataset
	4.2 Results

	5 Conclusions and Future Work
	References

