
Discriminative Dimensionality Reduction
for Patch-Based Label Fusion

Gerard Sanroma1(B), Oualid M. Benkarim1, Gemma Piella1, Guorong Wu2,
Xiaofeng Zhu2, Dinggang Shen2, and Miguel Ángel González Ballester1,3
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Abstract. In this last decade, multiple-atlas segmentation (MAS) has
emerged as a promising technique for medical image segmentation. In
MAS, a novel target image is segmented by fusing the label maps of a set
of annotated images (or atlases), after spatial normalization. Weighted
voting is a well-known label fusion strategy consisting of computing each
target label as a weighted average of the atlas labels in a local neighbor-
hood. The weights, denoting the local anatomical similarity of the candi-
date atlases, are often approximated using image-patch similarity mea-
surements. Such an approach, known as patch-based label fusion (PBLF),
may fail to discriminate the anatomically relevant patches in challenging
regions with high label variability. In order to overcome this limitation
we propose a supervised method that embeds the original image patches
onto a space that emphasizes the appearance characteristics that are
critical for a correct labeling, while supressing the irrelevant ones. We
show that PBLF using the embedded patches compares favourably with
state-of-the-art methods in brain MR image segmentation experiments.

1 Introduction

Medical image segmentation aims at estimating a dense label map of the anatom-
ical structures in medical images, such as magnetic resonance images (MRI)
of the human brain. Quantitative analysis of segmentation data is useful in
many fields such as the neurosciences, where the morphometric analysis of brain
structures helps characterizing the progression of diseases such as Alzheimer
and Schizophrenia [2]. Manual annotation is a tedious time-consuming process
which has to be done by trained experts and thus, automatic methods are highly
valuable.

Partly enhanced by the success of image registration, multiple-atlas seg-
mentation (MAS) has recently gained attention for segmenting medical images.
Three main steps are involved in MAS: (i) the image registration step regis-
ters each individual atlas onto the target image [7], (ii) the atlas selection step
selects the best atlases for segmenting a particular target image [1,13,14], and
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(ii) the label fusion step fuses the registered label maps onto a consensus seg-
mentation [3,4,10–12,15–17,21,22].

By combining the labels from multiple atlases, the label fusion step can
compensate for the registration errors by the individual atlases. Even a simple
label fusion strategy such as majority voting [11] (which assigns each target
voxel to the label appearing most frequently among the corresponding atlas
labels) yields better segmentation performance than any of the single atlases
used individually [10].

Another commonly used label fusion strategy is weighted voting, in which the
label on each target point is computed as a weighted average of the atlas labels,
where the weights reflect the estimated anatomical similarity between the target
and each atlas. A critical issue here, is how to set the weights that accurately
reflect the anatomical correspondence. One common approach, adopted in patch-
based label fusion (PBLF), consists in estimating the weights based on the local
similarity between the atlas and the target image patches [3,4,12,17,22].

However, there are uncertain regions, such as the interfaces between two
anatomical structures, where very similar atlas patches may bear different labels.
In such cases, the appearance cues responsible for a correct discrimination may
be too weak to be correctly captured by simple image similarity measurements. In
order to overcome this limitation we propose a method that learns an embedding
of the image patches so that the relevant variations for a correct discrimination
are emphasized while the misleading ones are supressed. We pose this problem
in a supervised learning setting, where we seek the linear mapping of the image
patches that simultaneously (i) maximizes the similarity of the target patch
with its true neighbors (i.e., similar atlas patches with the same label) and (ii)
minimizes the similarity with its false neighbors (i.e., similar atlas patches with
different label).

The proposed method bears some similarity with manifold learning methods
such as neighborhood preserving embeddings (NPE) [9] and locality preserving
projections (LPP) [8] in the sense that it aims at preserving the true neigh-
borhood but it simultaneously enforces an additional discriminative component
aimed at simultaneously maximizing the separation between false neighbors.

The weights obtained by the proposed method using an example target patch
are illustrated in Fig. 1. As we can see in the top-left plot, using the similarity
in the original image space, a fair amount of atlas patches with the wrong label
(denoted in red) accumulate a considerable amount of weight. On the other
hand, using the similarity of the projected patches with the proposed method,
the weights of the wrong atlas labels are considerably reduced, while still main-
taining a significant amount of weight for the atlas patches with the correct
labels (denoted in blue), as shown in the top-right plot.

The contributions of the proposed method are three-fold:

– The embeddings are learned offline in a common space so that they can be
readily applied to any new target image.

– The learned embeddings can be plugged into any existing PBLF method to
enhance its performance.
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Fig. 1. Weights obtained using the example target patch in the middle box. Top row:
estimated weights for the neighboring atlas patches using the original patches (left) and
the embedded patches (right). Vertical axis represent the weights and horizontal axis
represent the atlas patch index. Using the embedded patches, false neighbors (in red)
accumulate less weight than true neighbors (in blue).Middle row:Original target patch
and some true and false neighbors with high weights (note that we only show the center
slice of a cubic 5 × 5 × 5 patch). Bottom row: Most discriminative 25 coordinates of
the embedded patches, arranged in a 5 × 5 patch (we show the first 25 coordinates for
the convenience of displaying them in a 5 × 5 patch). (Color figure online)

– The proposed method provides a compact representation with a much lower
dimensionality than the original patch.

The remainder of the paper is organised as follows: in Sect. 2 we describe the
method. In Sect. 3 we present the experiments and results and, finally in Sect. 4
we outline the conclusions.

2 Method

2.1 Patch-Based Label Fusion

Consider a set of n atlas images and label maps, denoted as
{
Ai, Li

}n

i=1
, that have

been previously registered to a common space, denoted as ΩC (for instance by
groupwise non-rigid registration [20]). Therefore, Ai

x denotes the image intensity
value at voxel x ∈ ΩC of the i-th atlas, and Li

x ∈ {0, 1} denotes whether x
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belongs (1) or not (0) to the area of interest to be segmented. We denote as T
the to-be-segmented target image, after being registered to the common space.

Weighted voting label fusion estimates the label at each target point, denoted
as F̂x, as a weighted average of the neighboring atlas labels1. That is,

F̂x =
n∑

i=1

∑

y∈Nx

ωi
yL

i
y (1)

where ωi
y denotes the weight of atlas label Li

y at position y ∈ Nx on the i-th atlas,
with Nx denoting the local neighborhood of point x. The local neighborhood Nx

consists of the patches in a cubic neighborhood of a certain radius from point x.
The eventual segmentation performance depends on the ability of the label

fusion method to identify the true anatomical neighbors of the to-be-segmented
target point among the atlas labels. In particular, PBLF assigns higher weights
to the atlas locations with higher local image similarity to the target point [3,
4,12,17,22]. As for the image similarity measures, the Gaussian kernel is widely
used to estimate the weights [4,12]. That is,

ωi
y = exp

(
−‖tx − ai

y‖2/γ
)
, (2)

where tx,a
i
y ∈ R

p denote the vectors of the target and the (i-th) atlas image
patch centered at x and y ∈ Nx, respectively, γ is a normalization factor, which
is set here as in [4] as γ = miny,i ‖tx − ai

y‖2, and ‖ · ‖ is the Euclidean norm.

2.2 Learning Discriminative Embeddings

PBLF assumes that the higher the similarity between the target patch tx and
an atlas patch ai

y, the higher the likelihood that they share the same label. This
simplistic assumption, as expressed in Eq. (2), considers that all the features are
equally relevant in capturing the anatomical similarity.

Our goal is to learn a transformation for each point x ∈ ΩC , denoted by the
matrix P ∈ R

p×d, to a lower-dimensional space so that the weights obtained
using the transformed patches successfully identify the anatomically equivalent
patches (rather than the apparently similar).

We use all the available atlases as training set, where the image patch from
each of the atlases is used as target patch, denoted as at

x, and the neighboring
patches from the rest of the atlases are used as atlas patches, denoted as ai

y

(with i �= t and y ∈ Nx).
The training is performed in the common space. This means that all the

training images are registered to a template image (built e.g., by groupwise
registration [20]). We learn a different transformation (denoted as P below) for
each point in the common space.

We seek the transformation P that simultaneously maximizes the distance
with the false neighbors and minimizes the distance with the true neighbors,
1 The estimated label map in the common space F̂ is finally transformed back to the

original target space and thresholded to obtain the binary labels.
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where the true (false) neighbors are the sub-set of positive (negative) samples
with higher appearance similarity with the target patch. This can be expressed
as follows:

max
P

∑n
t=1

∑
(i,y)∈Ft

x
‖P�at

x − P�ai
y‖2 ut,i

y
∑n

t=1

∑
(i′,y′)∈T t

x
‖P�at

x − P�ai′
y′‖2 vt,i′

y′
, (3)

where ut,i
y and vt,i′

y′ are the weights identifying the false and true neighbors,
respectively (i.e., ut,i

y > 0 only for those negative samples with higher appearance
similarity to the target patch) and F t

x =
{
(i, y) |Li

y �= Lt
x, i �= t, y ∈ Nx

}
is the

set of negative samples (the set of positive samples T t
x is similarly defined). We

compute the weights ut,i
y and vt,i′

y′ for each target patch in our training set by
restricting Eq. (2) to the set of its positive and negative samples, respectively.

The intuition of Eq. (3) is to seek the linear transformation that emphasizes
the characteristic differences between false neighbors, so that they are less likely
to mislead label fusion, while at the same time downscaling the characteristic dif-
ferences between true neighbors, so that they end up accumulating more weight.
This optimization is somewhat related to linear discriminant analysis (LDA) [5]
in the sense that it distinguishes both positive and negative samples for learning
the transformation. However, the objective function of LDA is different since it
seeks to maximize the between-class scatter and minimize the within-class scat-
ter. In this regard, our approach is more related to manifold learning methods
such as locality preserving projections (LPP) [8] and neighborhood preserving
embeddings (NPE) [9], but with the difference that we not only minimize the
distance with the true neighbors but also jointly maximize the distance with the
false neighbors.

Equation (3) can be expressed more compactly as follows:

max
P

Tr
[
P�EFUE�

FP
]

Tr
[
P�ETVE�

TP
] , (4)

where EF =
[
. . . ,et,iy , . . .

]
∈ R

p×q is a matrix with the columns containing
vectors of differences between pairs of false neighbors, i.e., et,iy = at

x − ai
y (with

t = 1, . . . , n and (i, y) ∈ F t
x), and U ∈ R

q×q is a diagonal matrix with the
corresponding weights ut,i

y . (ET and V are similarly defined using the differences
between true neighbors and their weights, respectively). The larger dimension
of the matrices is q = nk, where n is the number of atlases in the training set
and k is the expected number of false/true neighbors for each target patch. The
solution of Eq. (4) can be found according to the following generalized eigenvalue
problem: (

ETVE�
T

)−1
EFUE�

Fp = λp, (5)

where the desired embedding P = [p1, . . . ,pd] is composed of the d < p eigenvec-
tors with the largest eigenvalues, where d is the desired number of dimensions.

To avoid the possible over-fitting problem, in Eq. (5) we substitute the matri-
ces SF ≡ EFUE�

F and ST ≡ ETVE�
T by their regularized counterparts [6], as

follows:
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RF = (1 − α)SF +
α

p
Tr [SF ] I (6)

(and similarly for ST ), where 0 ≤ α ≤ 1 is a parameter controlling the amount
of regularization and I is the identity matrix.

In the testing stage, we estimate the label map F̂ of a new target image T
according to the following steps:

1. We register the target image to the common space.
2. For each point x ∈ ΩC , we extract the surrounding target image patch tx

and the set of neighboring atlas image patches from all the atlases, i.e., ai
y,

with i = 1, . . . , n and y ∈ Nx, where Nx is a cubic neighborhood of a certain
radius from point x.

3. We estimate the weights ωi
y for each atlas patch according to Eq. (2) using

the embedded target and atlas image patches, P�tx and P�ai
y, respectively.

4. We estimate the label F̂x on each target point by fusing the atlas labels
according to Eq. (1) using the weights ωi

y estimated in the previous step.
5. We transform the estimated target label map F̂ back to the original target

space by using the inverse spatial transformation to the common space.

3 Experiments and Results

We compare our proposed approach to the following methods: (i) majority vot-
ing (MV) [11], which assigns each target label as the label appearing most fre-
quently among the corresponding atlas labels, and (ii) non-local weighted voting
(NLWV) [4,12], which uses Eqs. (1) and (2) to estimate the labels and weights,
respectively. We apply the proposed discriminative dimensionality reduction on
the NLWV pipeline (DDRNL), hence we can clearly evaluate the effect of
embedding the patches by comparing with the baseline NLWV.

In all the methods, we perform 5-fold cross-validation experiments, where
one of the folds is considered as the target images and the rest of the folds
as the atlas images. In each fold, the projection matrices P learned from the
atlas images (one projection for each point in the common space) are used to
segment the target images. Target images are segmented in the common space
and evaluated in the target space by using the Dice similarity coefficient (DSC)
with the ground-truth label maps. We use the group-wise non-rigid registration
method in [20] to create the template image defining the common space, and
diffeomorphic demons [19] to register the target images to the common space.
In both NLWV and DDRNL, we use a patch size of 5× 5× 5 and a cubic search
neighborhood Nx of 3 × 3 × 3. We evaluate the proposed method on brain MR
image segmentation experiments on the ADNI2 and SATA3 datasets.

2 http://www.adni-info.org/.
3 http://masi.vuse.vanderbilt.edu/workshop2013/index.php/Main Page.

http://www.adni-info.org/
http://masi.vuse.vanderbilt.edu/workshop2013/index.php/Main_Page
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3.1 ADNI Dataset

The ADNI dataset is provided by the Alzheimer’s Disease Neuroimaging
Initiative and contains the segmentations of the left and right hippocampi. We
use images from 40 randomly selected subjects, where the size of each image is
256 × 256 × 256.

We first conduct a sensitivity analysis on a sub-set of 10 randomly selected
images. Figure 2(a) shows the sensitivity to the regularization parameter α and
the number of dimensions d. Based on these results we choose the values of the
regularization parameter α = 0.9 and the number of dimensions d = 7 (which is
considerably lower than the 125 dimensions of the original 5× 5× 5 patches). In
Fig. 2(b) we show the average DSC (%) (±std) in segmenting the left and right
hippocampus across the 40 images. As we can see, our proposed method obtains a
considerable improvement of >1.4% with respect to the NLWV baseline. Results
of MV provide a reference of what can be obtained by the only means of non-rigid
registration without using any confidence estimates to weigh the atlases.

(a)

Method R HC L HC

MV 76.15 ± 4.04 76.77 ± 3.65

NLWV 79.25 ± 3.25 79.80 ± 3.07

DDRNL 80.95± 2.66 81.27± 2.25

(b)

Fig. 2. (a)Parameter sensitivity analysis and, (b) quantitative segmentation results.

3.2 SATA Dataset

The SATA dataset is composed of 35 images with a resolution of 1×1×1 mm and
contains the segmentation of 16 mid-brain structures. We will focus on the 10
smallest structures since they tend to be more sensitive to registration errors and
hence, more challenging to segment. The segmented structures include the right
and left parts of: accumbens, amygdala, pallidum, caudate and hippocampus.

Figure 3(a) shows the average segmentation performance by each method
across the 35 images in each structure. Here, we have used the same parameter
values d = 7 and α = 0.9 as in the previous experiments. We have grouped
the left and right parts of each structure, so each cell contains the average of
70 segmentations. As we can see, our proposed method obtains a consistent
improvement of ∼1% and even >1% in some structures with respect to the
baseline NLWV. Again, MV provides a reference of what can be achieved with-
out resorting to image similarity measurements to weight the atlas contributions.
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To gain further insight, in Fig. 3(b) we show the estimated hippocampus segmen-
tations by each method on an example target image. As we can see by the MV
results, the head of the hippocampus in this target image is consistently over-
segmented by the majority of atlases. NLWV can partially correct this effect by
using image-patch similarity to discard some misleading atlases. The proposed
method can solve this over-segmentation by using only the discriminative image
characteristics in the patch similarity comparisons.

Method ACC AMYG PAL CN HC

MV 67.43 ± 10.84 71.35 ± 8.36 71.16 ± 15.43 79.42 ± 8.50 79.06 ± 6.22

NLWV 73.74 ± 6.00 73.76 ± 8.02 82.04 ± 7.15 86.89 ± 3.95 83.09 ± 4.08

DDRNL 75.61± 4.95 74.59± 8.47 84.30± 4.78 87.65± 3.47 83.85± 3.35

(a)

(b)

Fig. 3. (a)Quantitative segmentation results and, (b) an example of qualitative seg-
mentation results on the hippocampus, where green indicates coincidence with the
ground-truth labels (i.e., true positive), red indicates excessive segmentation (i.e., false
positives) and blue indicates insufficient segmentation (i.e., false negatives). (Color
figure online)

4 Discussion and Conclusions

We have presented a dimensionality reduction method to learn optimal patch
representations for label fusion that can be plugged into any existing PBLF
method. Such representations are learned in the common space so that they can
be readily applied to any target image that has been previously aligned to the
common space.

Since the proposed method performs label fusion in the common space, the
target image needs only to be registered once. This represents a computational
advantage with respect to performing it in the target space, since the latter one
requires each atlas to be independently registered to the target image space.
However, there is some evidence pointing out to the superior performance of
using the target space [18]. A possible reason is that pairwise registration accu-
racy through the common space might not be as accurate as directly warping
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the atlas images onto the target image. As a future work, we plan to adapt our
method to perform label fusion in the target space.

It is worth noting that the proposed method requires a fair amount of regu-
larization (α = 0.9). We believe that this is due to the high complexity involved
in learning a different model for each point. A possible solution would be to
group the points into perceptually similar regions and learn a single classifier
per each region instead of per each point.

We have shown the benefit of the proposed patch representations in the
segmentation of several brain structures. We achieve considerable improvements
using a compact representation of only 7 dimensions, compared to the 125 dimen-
sions of the original patch.
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