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Preface

This volume contains the proceedings of the First International Workshop on Medical
Learning Meets Medical Imaging (MLMMI 2015) held on July 11, 2015, in Lille,
France, in conjunction with the 32nd International Conference on Machine Learning
(ICML 2015).

This workshop presented original methods and applications on machine learning in
medical imaging. Developments in machine learning have opened up a wealth of novel
opportunities in knowledge discovery, analysis, visualization, and reconstruction of
medical image datasets. However, medical images also pose several particular chal-
lenges for standard approaches, for instance, lack of data availability (due to ethics or
rarity of pathology), poor image quality (due to imaging or medical condition), or
dedicated training requirements.

The workshop offered a unique opportunity to present and discuss the latest work on
machine learning in medical imaging in the presence of both the machine learning and
medical imaging communities. Innovative contributions addressed questions such as
how to better exploit smaller datasets and understand the fundamentals of image spaces
or generative models in order to improve training in machine learning methods. The
workshop focused on theoretical aspects as well as on effective applications built on
machine learning and all aspects of medical imaging.

The objective of this workshop was to bring together these specialties, to foster
links, and to further communicate the specific needs and nuances of medical imaging to
the machine learning community while exposing the medical imaging community to
current trends in machine learning. We are also extremely grateful to the contributors
of the first MLMMI workshop. We thank all authors who shared their latest findings, as
well as the Program Committee members, and reviewers, who all achieved quality
work in a very short time.

We also thank our keynote speakers, who kindly accepted our invitations: Bertrand
Thirion, Research Director at Inria, France; John Ashburner, Professor in the Func-
tional Imaging Laboratory at University College London; Marleen de Bruijne, Pro-
fessor in the Erasmus Medical Center, in Rotterdam and in Computer Science at the
University of Copenhagen; and Ben Glocker, Lecturer at Imperial College London.
Special thanks go to the generous sponsors of our workshop: the Microsoft Research –

Inria Joint Centre, in Palaiseau, France, and Imperial College London, UK. Congrat-
ulations go to Jonathan Young, who received the best paper award, kindly sponsored
by NVidia Inc.

July 2015 Kanwal K. Bhatia
Herve Lombaert
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Retrospective Motion Correction
of Magnitude-Input MR Images

Alexander Loktyushin(B), Christian Schuler, Klaus Scheffler,
and Bernhard Schölkopf

Max Planck Institute for Intelligent Systems,
Spemannstraße 41, 72076 Tübingen, Germany

aloktyus@tuebingen.mpg.de

Abstract. There has been a considerable progress recently in under-
standing and developing solutions to the problem of image quality dete-
rioration due to patients’ motion in MR scanners. Retrospective methods
can be applied to previously acquired motion corrupted data, however,
such methods require complex-valued raw volumes as input. It is com-
mon practice, though, to preserve only spatial magnitudes of the medical
scans, which makes the existing post-processing-based approaches inap-
plicable. In this work, we make first humble steps towards solving the
problem of motion-related artifacts in magnitude-only scans. We propose
a learning-based approach, which involves using large-scale convolutional
neural networks to learn the transformation from motion-corrupted mag-
nitude observations to the sharp images.

1 Introduction

The problem of image quality degradation due to subjects’ motion during the
acquisition remains one of the most important problems in MRI with no univer-
sally accepted solution [1]. Motion causes ghosting and blurring of the images,
and even a millimeter displacements of the head position during the scan can
make the image non-diagnostic. High resolution scans are particularly prone to
motion because they require long acquisition times, and since high-frequency
details of the image can be distorted even by sub-millimeter movements.

Over the last decades a multitude of approaches have been proposed. They can
be broadly categorized into two classes: prospective and retrospective approaches.
Prospective methods [2] aim at solving the problem of motion online during the
acquisition by constantly adjusting the spatial encoding gradients to accommo-
date for the position change of the scanned object. This requires real-time motion
tracking, which can be achieved with the use of tracking cameras [3], active mark-
ers [4] or the scanner itself [5]. Although there has been a lot of progress recently
in improving prospective methods, they are still mostly used in research facilities
and not in clinical practice.

Retrospective approaches, on the other hand, attempt to correct for motion
artifacts once the data is acquired, which means that they can be potentially
applied to any scan that was acquired in the past. An important subclass of
c© Springer International Publishing Switzerland 2015
K.K. Bhatia and H. Lombaert (Eds.): MLMMI 2015, LNCS 9487, pp. 3–12, 2015.
DOI: 10.1007/978-3-319-27929-9 1



4 A. Loktyushin et al.

such methods are autofocusing-based approaches, which are purely data-driven.
The origin of the autofocusing methods [6] can be traced to the early attempts
in solving image denoising and deblurring problems. The idea of autofocusing
is to search for a set of motion parameters, which is used to invert the effects
of motion in the image. The motion trajectory associated with the lowest value
of the image quality metric evaluated in the spatial domain is then selected.
Typically, the entropy of the image gradients is used as an image metric. Such
approaches rely on the fact that the effects of motion are perfectly invertible in
case of translational motion, and approximately invertible in case of rotations by
small angles (typically below 10 degrees). In case of rotations, k-space regridding
is performed in order to correct for motion.

An important aspect of retrospective methods is that contrasted with prospec-
tive approaches they can be also applied to correct for non-rigid motion [7]. How-
ever, retrospective approaches suffer from long computation times when it comes
to correction, which hinders their use in the time-critical environment of medical
facilities. This shortcoming was addressed in recent work, where fast correction
of both rigid [8] and non-rigid [9] motion was shown to be possible (seconds scale
for rigid motion, and minutes for non-rigid motion). However, to our knowledge,
all current retrospective methods require complex-valued raw data as input to do
the correction, while most medical images are usually stored in DICOM format
with only the spatial magnitude being preserved. The problem with the magni-
tude images is that the effects of motion can not be inverted in one step closed
form solution.

It has recently been shown that it is possible to use large scale deep neural
networks to achieve state of the art results in denoising [10], non-blind [11] and
blind deblurring problems [12]. In this proof-of-concept paper we make early
steps into the exploration of the problem of motion correction of magnitude-only
medical scans, which we show to be similar to the image deblurring problem.
We use large scale convolutional neural networks [13] to learn the mapping from
motion corrupted magnitude-only scans to artifact-free images. We benefit from
the fact that the exact model of the motion transformation is known, which
makes it possible to generate an arbitrary amount of motion-corrupted data for
training thus avoiding the problem of overfitting.

2 Methods

We first describe the model of the image degradation due to motion, and then
formalize and discuss the problem of correction of the magnitude-only images.
We then propose an iterative solution to the special case of the problem, namely
that the latent image is assumed to be real-valued and the motion transformation
to be known. We then take the next step and consider the more realistic problem
of unknown motion degradation, and complex-valued latent images, which we
address with a learning-based approach. Please note that in this preliminary
work we deal with a simple version of the problem, where the images are assumed
to be 2D, the motion to have no rotational components, and the data to be
acquired with a single channel coil.
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2.1 Models of the Image Degradation Due to Motion

There are two fundamental ways the effects of the motion of the scanned object
on the image can be described. Lets first introduce the necessary formalism.
Let u ∈ C

n be an unknown sharp 2D image of size n = n1 · n2 pixels, Ãθt
a

rigid motion transformation matrix, θt ∈ R
2 × [0, 2π) a vector with translation

and rotation motion parameters at time t, T the length of the acquisition (total
number of time points), and F ∈ C

n×n the orthonormal Fourier matrix. In this
preliminary work, we assume that there is no noise. There are two ways the
effects of motion can be modeled:

Spatial domain model:
The image acquisition with motion can be written as a linear process

y =
T∑

t=1

diag(mt)FÃθt
u ∈ C

n, 1 =
T∑

t=1

mt,

where mt ∈ [0, 1]n is a diagonal masking matrix selecting the segment in
k -space acquired by the scanner at time t.

Fourier domain model:
Let Aθ be an operator, such that FÃθ = AθF. Then acquisition in k -space

can then be written as

y =
T∑

t=1

diag(mt)Aθt
Fu ∈ C

n.

This representation allows for a more compact description of the problem,
where we can now use a single matrix AΘ to describe the cumulative effects of
motion on the image

y = AΘFu ∈ C
n, AΘ :=

⎡

⎢⎢⎢⎣

[Aθ1 ]m1

[Aθ2 ]m2

...
[AθT

]mT

⎤

⎥⎥⎥⎦ ∈ C
n×n,

where the vector Θ = [θ1, ..,θT ] ∈ R
2T × [0, 2π)T now contains the motion

parameters from the entire trajectory (all repetitions).
In this work, we restrict ourselves to the case where the scanned object

performs purely translational motions. In this case the matrix AΘ is diagonal,
and its entries relate to the frequency-dependent phase ramps with slopes equal
to spatial displacements. An important insight is that in this case the degradation
due to motion can be written as a convolution in spatial domain y = F(aΘ � u),
with the kernel aΘ. Such a convolution kernel has very special properties: it
has a large support in spatial domain (basically the size of the image), it is
complex-valued, and its power spectrum is unit-valued in all frequencies.
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2.2 Magnitude-Only Image Problem

In many practical cases the raw observation y is not available, and only the
magnitude of the image in spatial domain z = |aΘ � u| is what is left from the
scan. As a trivial case, yet containing the crucial aspects of the problem, we
can consider a two-element image u ∈ C

2 and a two-element kernel a ∈ C
2,

with entries equal to u = [û1e
iβ1 , û2e

iβ2 ] and a = [â1e
iα1 , â2e

iα2 ] respectively.
Computing the convolution and taking the complex modulus we obtain for the
first element z1:

z1 = (û1â1e
i(α1+β1) + û2â2e

i(α2+β2))(û1â1e
−i(α1+β1) +

+ û2â2e
−i(α2+β2))

= (û1â1 + û2â2)
2 + 2û1â1û2â2(cos(α1 + β1 −

− α2 − β2) − 1).

We see that the degraded result is not a convolution anymore, and even worse,
it depends on the phase difference, which is lost. In case the phase variation is
smooth over the image we can drop the term with phases, but this is not likely
to be the case in real images.

2.3 Iterative Solution

Under the assumption that the image u is real-valued, and the convolution
kernel aΘ is known, it is possible to use the following iterative procedure (see
Algorithm 1), which is our first contribution to solving the problem.

Algorithm 1. Non-blind iterative magnitude image motion correction
Input: Corrupted magnitude image z; translational convolution kernel aΘ

Output: Motion-corrected volume u in spatial domain
Initialize u ← z.
For s ← 1, ..., N do

x = z � exp(i · ∠(aΘ � |u|)).

u ← FH Fx
FaΘ

.

End

The idea behind this algorithm is to do a multiple reconvolu-
tion/deconvolution phase updates, while keeping the magnitude of the obser-
vation fixed. In our experiments, we observed that 100 iterations were sufficient.
Although the proposed iterative procedure has certain interesting theoretical
aspects it is of little use when it comes to motion correction of medical data,
where the convolution kernel aΘ is not known, and the latent image is complex-
valued.
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2.4 Learning-Based Approach

Inspired by the recent success in using large scale learning-based approaches
to solving the standard computational photography problems such as denois-
ing and blind deconvolution, we decided to try using neural networks to learn
the transformation that undoes the effects of motion in magnitude images. The
network is given the motion-corrupted magnitude observation z as input, and
the target is the magnitude of the latent image u. We choose to predict just
the magnitude of the image (containing all the necessary medical information),
since it simplifies the inference problem. To generate the data we used a 3D scan
of the brain from a healthy volunteer (acquired with MPRAGE sequence), and
split it into 70 two-dimensional slices. We then used 50 randomly-selected slices
for training, and the remaining 20 slices for validation.

On each training iteration we generated random translational motion trajec-
tories Θ with maximum displacements of up to five pixels. We then used the
forward model of translational motion parameterized by randomly generated
trajectories to simulate the effects of motion in slice images. On each training
iteration the random slice was picked and an input/target pair was generated.
Thus on each training iteration the network always receives a new distinct input
subject to the infinitely many possible variations in the motion trajectories.

Over the training process we also evaluated the training curve by generating
the inputs based on validation slices and random motion. We computed the mean
squared error between the predicted magnitudes and motion-free magnitudes.
This way we could track the progress in the network training.

Although the input and the output layers of the network only deal with
magnitudes, the underlying motion transformation that generates the magnitude
observation from the complex-valued latent image is applied in complex domain.
Since we can generate arbitrary many motion trajectories, we are unlikely to
overfit the data.

Fig. 1. The overview of the neural network architecture used for motion correction.
The input to the network is the motion-corrupted magnitude observation z, output is
the magnitude of the motion-free original image u.

The architecture of the network that we used is outlined in Fig. 1. The first
layer is a convolutional layer with 128 large filters of size 192× 128 pixels. We
have observed that using large filters is necessary for good prediction results,
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which has to do with the fact that the motion kernels aΘ have large spatial sup-
port. We used our own custom-built C++/CUDA-based neural network imple-
mentation with circular convolution operations. The convolution layer outputs
128 hidden image planes, which are then passed through a non-linear tanh layer,
and get recombined in the subsequent linear layer to 1000 new hidden images.
The recombination interleaved with the tanh coordinate-wise operation is then
repeated three times. We used 3 · 105 training iterations, the Adadelta parame-
ter update rule [14] with an adaptive learning rate, and MSE criterion as a loss
function.

3 Results

We start with an experiment on the simulated data with a simpler non-blind
problem for which an iterative solution is sufficient. We then show the results of
the second experiment, where we consider the harder blind problem and use the
learning-based approach to solve it.

3.1 Iterative Reconstruction

In Fig. 2 we show the results that were obtained using the iterative procedure
(Algorithm 1). In this case, the complex-valued convolution kernel is provided to
the algorithm as input, and the latent image is assumed to be real-valued.

Fig. 2. The results of motion correction obtained with the iterative approach. The
complex-valued kernel is assumed to be known, and the image to be real-valued.
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Fig. 3. Neural network-based prediction. Here the convolution kernel is not known and
the latent image is assumed to be complex-valued. Also shown is the result obtained
with the iterative procedure (having access to the kernel).

Fig. 4. Four filters (each of size 192× 128) extracted from the convolutional layer of
the network after training.

3.2 Learning-Based Solution

In a realistic scenario the motion trajectory and thus the kernel are not known.
Furthermore, MR images have a non-trivial spatial phase, which depends on
the sequence, magnetic properties of the scanned object and shims. In Fig. 3
we show motion correction results produced by the neural network. As input,
the network received just the magnitude observation (from the validation slice
dataset). Although some residual blurring can be seen, the network-based pre-
diction was successful at removing the ghosting motion artifacts. In the same
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figure we also plot the results obtained with the iterative procedure, for which
the blurring kernel was provided as input. In this case, the iterative procedure
fails to remove the artifacts because the latent image is complex-valued (we show
the spatial phase in the figure).

In Fig. 4 we plot six filters (out of the 128 filters from the first convolution
layer) that were learned by the network. The filters display an intricate structure
with a large spatial extent, which justifies using large filters in convolution layer.

4 Discussion

Retrospective motion correction of magnitude-only MR scans is in many ways
similar to the well-studied problem of blind deconvolution. However, it also poses
some unique challenges due to the special structure of the motion degradation
kernel. In this paper, we explore the capability of a large-scale convolutional
neural network to confront these challenges. Compared to the neural network
designs commonly used to solve image denoising/deblurring problems our net-
work has unusually large convolution filters in the first layer. Experimenting with
different sizes of the filters we observed that larger filters allow for more improve-
ment in the visual quality of reconstructed images. A possible explanation for
this observation is that the translational motion point spread function has a large
spatial support, which makes the problem highly non-local and necessitates the
use of large receptive fields in the first layer. Also, the neural networks used for
deblurring/denoising rely on splitting the image into multiple small patches, and
training on the patches, not the images. In our case, this was not to be feasible
due to the above mentioned problem of non-local image degradation. We use
large scale neural networks and not the other learning based approaches since
convolutional neural networks have a structure (local receptive fields) well-suited
for the medical image data. Furthermore, such networks can be efficiently imple-
mented to run on modern GPUs, which allows for efficient computations and
reasonable training times, while having millions of neurons/parameters.

Having a network of such a large capacity can make the training prone to
overfitting. We address this problem by using the forward model of the motion
degradation to generate an arbitrary amount of the training input/target data,
which is affected by random translational motions. However, we use just 70
slices from a single 3D scan for training and validation. The next research goal
would involve constructing a large database of complex-valued scans of different
human subjects in order to have sufficiently many examples of the different brain
morphologies. Still, it is yet far from clear how many medical scans are needed for
training in order to be able to generalize to all practical variations of the medical
data, where the intensity of the image is subject to the pulse sequence parameters
and coil configuration. It remains to be shown if it is possible to have a good
generalization over different image contrasts. The bottom line is that in order
to make the presented approach practical sufficiently large and representative
dataset is needed. The problem of the scarcity of medical data is well-known in
the medical image processing community, and here we are furthermore hindered
by the fact that we need raw datasets to simulate the motion.
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In this work, we only do simulation-based experiments, where we correct the
motion on artificially generated data. In real data there are both translational
and rotational components of motion. Rotational motion is no longer a convolu-
tion (to some extent it can be approximated as a spatially-variant convolution),
which makes the problem even more challenging, and it remains to be shown
that using the neural networks is an adequate solution for this problem too. We
further assumed that the data was acquired only from a single channel coil –
an assumption that greatly simplifies the problem. Learning-based motion cor-
rection of sum-of-squares combined multi-coil data is another topic for future
research.

We admit that the motion model we assume (purely translational motion)
will be insufficient for many practical cases of motion, where large rotations
(around the point where the head touches the pillow) can happen. The main
purpose of this work was rather to probe the possibility of using learning-based
approaches for solving magnitude-only image correction problem in a simplified
setting. Still, we expect the translation-only correction method to be able to
improve the image quality in the images that are affected by weak motion.

Since we have the ground-truth available, it is possible to use the objective
numerical estimates of the image quality improvement. This is useful when com-
paring reconstruction results against the alternative approaches. However, to
our knowledge no other method capable of correction of magnitude-only data
exists. We thus prefer not to provide the numerical estimates of the image quality
improvement, because such estimates can be misleading, especially if the plain
MSE criterion is used.

To summarize, in this work we have attempted to cope with the problem of
motion correction of magnitude-only images with the use of large scale neural
networks. Our preliminary results indicate the potential of the proposed app-
roach for solving this problem.

References

1. Zaitsev, M., Maclaren, J., Herbst, M.: Motion artifacts in MRI: a complex problem
with many partial solutions. Journal of Magnetic Resonance Imaging (2015)

2. Maclaren, J., Herbst, M., Speck, O., Zaitsev, M.: Prospective motion correction in
brain imaging: a review. Magn. Reson. Med. 69(3), 621–636 (2012)

3. Zaitsev, M., Dold, C., Sakas, G., Hennig, J., Speck, O.: Magnetic resonance imaging
of freely moving objects: prospective real-time motion correction using an external
optical motion tracking system. Neuroimage 31, 1038–1050 (2006)

4. Ooi, M.B., Krueger, S., Thomas, W.J., Swaminathan, S.V., Brown, T.R.: Prospec-
tive real-time correction for arbitrary head motion using active markers. Magn.
Reson. Med. 62, 943–954 (2009)

5. van der Kouwe, A.J.W., Benner, T., Dale, A.M.: Real-time rigid body motion
correction and shimming using cloverleaf navigators. Magn. Reson. Med. 56, 1019–
1032 (2006)

6. Atkinson, D., Hill, D., Stoyle, P., Summers, P., Keevil, S.: Automatic correction
of motion artifacts in magnetic resonance images using an entropy focus criterion.
IEEE Trans. Med. Imaging 16(6), 903–910 (1997)



12 A. Loktyushin et al.

7. Cheng, J.Y., Alley, M.T., Cunningham, C.H., Vasanawala, S.S., Pauly, J.M.,
Lustig, M.: Nonrigid motion correction in 3D using autofocusing with localized
linear translations. Magn. Reson. Med. 68(6), 1785–1997 (2012)

8. Loktyushin, A., Nickisch, H., Pohmann, R., Schölkopf, B.: Blind retrospective
motion correction of MR images. Magnetic Resonance in Medicine (2013). doi:10.
1002/mrm.24615. (Epub ahead of print)

9. Loktyushin, A., Nickisch, H., Pohmann, R., Schölkopf, B.: Blind multirigid retro-
spective motion correction of MR images. Magn. Reson. Med. 73(4), 1457–1468
(2015)

10. Burger, H.C., Schuler, C.J., Harmeling, S.: Image denoising with multi-layer
perceptrons, part 1: comparison with existing algorithms and with bounds.
CoRR abs/1211.1544 (2012)

11. Schuler, C.J., Burger, H.C., Harmeling, S., Schölkopf, B.: A machine learning app-
roach for non-blind image deconvolution. In: Proceedings of the 2013 IEEE Con-
ference on Computer Vision and Pattern Recognition, CVPR 2013, pp. 1067–1074.
IEEE Computer Society, Washington, DC (2013)

12. Schuler, C.J., Hirsch, M., Harmeling, S., Schölkopf, B.: Learning to deblur.
CoRR abs/1406.7444 (2014)

13. Le Cun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient based learning applied
to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

14. Zeiler, M.D.: ADADELTA: an adaptive learning rate method.
CoRR abs/1212.5701 (2012)

http://dx.doi.org/10.1002/mrm.24615
http://dx.doi.org/10.1002/mrm.24615
http://arxiv.org/abs/1211.1544
http://arxiv.org/abs/1406.7444
http://arxiv.org/abs/1212.5701


Automatic Brain Localization in Fetal MRI
Using Superpixel Graphs

Amir Alansary1(B), Matthew Lee1, Kevin Keraudren1, Bernhard Kainz1,2,
Christina Malamateniou2, Mary Rutherford2, Joseph V. Hajnal2,

Ben Glocker1, and Daniel Rueckert1

1 Department of Computing, Imperial College London, London, UK
{a.alansary14,matthew.lee13,kevin.keraudren10,
b.kainz,b.glocker,d.rueckert}@imperial.ac.uk

2 Division of Imaging Sciences, King’s College London, London, UK
{christina.malamateniou,mary.rutherford,jo.hajnal}@kcl.ac.uk

Abstract. Fetal MRI is emerging as an effective, non-invasive tool in
prenatal diagnosis and pregnancy follow-up. However, there is a signif-
icant variability of the position and orientation of the fetus in the MR
images. This makes these images more difficult to analyze and interpret
compared to standard adult MR imaging, which standardized anatomical
imaging aligned planes. We address this issue by automatic localization
of the fetal anatomy, in particular, the brain which is a structure of inter-
est for many fetal MRI studies. We first extract superpixels followed by
the computation of a histogram of features for each superpixel using
bag of words based on dense scale invariant feature transform (DSIFT)
descriptors. We construct a graph of superpixels and train a random for-
est classifier to distinguish between brain and non-brain superpixels. The
localization framework has been tested on 55 MR datasets at gestational
ages between 20–38 weeks. The proposed method was evaluated using
5-fold cross validation achieving a 94.55 % brain detection accuracy rate.

1 Introduction

Fetal magnetic resonance imaging (MRI) has significantly improved in the last
two decades, and is emerging as a novel, non-invasive tool for diagnosis and
planing of surgical interventions. It provides higher contrast and larger field-
of-view than ultrasound. Thus, it provides better structural information of the
different fetal organs such as the brain, spine and body. Fetal brain localiza-
tion is important for assessing the fetal brain development and maturation. It
is also the primary step for most of the current automatic motion correction
techniques for fetal MRI [10]. Recently, fetal brain detection has been used as a
landmark to extract the other fetal organs [11]. Problems that hinder the design
of automated image analysis tools for fetal MRI usually arise from: (a) the high
variability in shape, size, orientation, and anatomical configuration of the fetus;
(b) intensity non-uniformities (bias artifacts); (c) partial volume effects; and (d)
motion artifacts caused by the unconstrained fetal motion (see Fig. 1).
c© Springer International Publishing Switzerland 2015
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(a) axial (b) coronal (c) sagittal

Fig. 1. Three orthogonal cutting planes through a stack of fetal MRI images. The
quality of the in-plane (coronal) slices is not affected by motion, however, there are
inter-slice artifacts appear in the out-of-plane views (axial and sagittal).

Related work: Fetal MRI is an emerging field of research, with little work
focused on fully automatic processing of these datasets. In [2], 3D template
matching is used to detect the eyes, enabling a subsequent 2D/3D graph-cut
segmentation that extracts the brain. This approach is based on 3D templates
and lacks the flexibility necessary to deal with motion artifacts as well as fetal
abnormalities. The methods proposed in [9] and [12] address the variability of
fetal MRI through machine learning. In [9], a Random Forest (RF) classifier
first distinguishes between maternal and fetal tissues before classifying different
tissues of the fetal head, while [12] combines prior knowledge of the fetal size
with maximally stable extremal regions (MSER) detection and a bag-of-words
model.

Contribution: In this paper we propose a fully-automated framework for local-
izing the fetal brain in fetal MRI scans. Rather then working on individual pixels
we make use of superpixels for a faster and more efficient detection algorithm.
Because of the nature of superpixels that most likely represents the rigid regions
in the image, using superpixels neighbors instead of pixel neighbors can reduce
the effect of motion artifacts. Therefore, we have developed a new superpixel
graphical model based on both spatial and intensity distances in 3D. The pro-
posed localization framework achieves 94.55% accuracy for the brain detection
and 98.18% prediction accuracy of the center of the brain. The proposed app-
roach does not require landmarks as in [9] or prior information such as the
gestational age of the fetus as in [12].

2 Method

The proposed approach for the automatic localization of the fetal brain consists
of four main steps as shown in Fig. 2. The input data of our system are 3D fetal
MRI datasets. The first step is to decompose each 2D slice into {N1, ..., Ns}
superpixels in order to minimize the local redundancy in the input data. By
clustering and constructing a single descriptor for each superpixel we reduce the
impact of noise on each descriptor whilst preserving homogeneous regions that
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are likely belong to the same anatomical region. The second step is to calculate
image descriptors for each pixel and then aggregate them into one histogram
hi for each i-superpixel. The third step is to build superpixel graphs based on
each superpixel’s neighbors. Then each superpixel’s histogram is normalized with
its neighbors in the graphical model. During the fourth step, we use a random
forest to generate a probability map of the brain for every superpixel. Finally,
this probability map is refined using another auto-context classifier followed by
selecting the largest 3D component.

Fig. 2. The automatic localization of the fetal brain framework.

Superpixels: Superpixels are a popular unsupervised image segmentation tech-
nique that clusters image pixels into groups of pixels based on the correlation
between each pixel and its neighbors. In the literature [1], many superpixel tech-
niques have been shown to produce ‘good’ segmentation results. However, which
properties of superpixels are important depends on the application. Medical
image analysis can be computationally expensive when compared to normal
image analysis due to the size of the data, namely because MRI scans are 3D
volumes as opposed to 2D images.

Most of the current superpixel segmentation techniques have been proposed
for 2D images. In our work, we have chosen the simple linear iterative clustering
(SLIC) technique [1], which is fast to compute while achieving a good segmen-
tation quality (as shown in Fig. 3) with lower computational cost so that the
method scales well when processing the many slices of a volume. SLIC segments
pixels into compact and nearly uniform superpixels. Superpixels are applied in
2D (not 3D) because of the fetal motion that results in 2D misaligned slices.
Choosing the right number of superpixels for each 2D slice is challenging. Thus,
we have modified the ad-hoc heuristics proposed by [8] to optimize superpixels
for fetal MRI. We have weighted the rule with a constant factor k, where k ∈ R>0

and is chosen depending on n, the total number of pixels in the 2D input image.
Thus, the total number of superpixels s = |{N1, ..., Ns}| in a 2D slice has been
calculated:

s ≈ k ·
√

(n/2). (1)
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(a) s ≈ 25 (b) s ≈ 50 (c) s ≈ 100

Fig. 3. A cropped image of a 2D fetal MRI scan segmented at (a) 25-, (b) 50-, and (c)
100-superpixels.

Image descriptors: We build a bag of features using dense scale invariant
feature transform (DSIFT) [16] descriptors. This is done by first computing
SIFT [13] descriptors for each pixel in every 2D image in the training set at
a fixed scale and orientation. A k-means clustering is then performed on these
descriptors and their centers are used to form a dictionary of k words. When
collecting DSIFT descriptors from pixels we can then find their closest matching
word from this dictionary, aggregating the frequency of words in each superpixel
Ni into one histogram hi with k-bins. The k-dimensional histogram acts as the
feature descriptor for each superpixel. However, the descriptor is constructed in
such a way that only contains local information about the superpixel itself. This
leads to a loss of the large-scale image context. Also, due to the nature of the
superpixels, their histograms of features tend to be sparse. Most of the DSIFT
descriptors within a superpixel are likely to be mapped to the same word.

Superpixel graphs: To overcome the problem of sparse descriptors for super-
pixels, we construct superpixel graphs using the distance between the centroids
of superpixels as edges [7]. These edges are weighted based on both spatial and
geodesic distances. We first compute the centroid ci for each Ni superpixel. Then
we identify r neighbors based on the similarity score between two superpixels
Ni and No with centroids ci and co. The similarity between two superpixels is
defined:

fr(Ni, No) = 1 − d(ci, co)
D

, (2)

Here d(·, ·) is the Euclidean distance, and D is the length of the diagonal of the 2D
image. This normalizes the score to be between [0, 1]. The closer fr(ci, co) is to 1,
the smaller is the distance between these two centroids. We next assign weights
wj for the extracted r neighbors candidates based on the geodesic distances
between their centroids. The geodesic distance is estimated using:
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dr(Ni, No) =
m∑

j=1

|I(pj) − I(pj−1)| , (3)

Here I(pj) is the intensity of the pixel pj , and m equals to the number of pixels
located on the straight line between ci and co. Next, the weights wj are calculated
by normalizing dr, so that wj = 1 when dr is the lowest and wj = 0 when dr is
the highest. Finally, the histograms of features for the extracted r superpixels
are aggregated based on the calculated weights, and normalized using:

h̃i =

r∑
j=0

wjhj

∥∥∥∥∥
r∑

j=0

wjhj

∥∥∥∥∥
�1

(4)

Here h0 = hi or the histogram of the current superpixel in consideration. Using
graphs of superpixels enables the proposed localization method to overcome the
motion artifacts between the 2D slices by extracting the superpixel neighbors
in 3D, which would be more difficult using graphs of individual pixels. This is
because of the nature of superpixels that most likely represent rigid regions, see
Fig. 4. By selecting both spatial and intensity neighbors, we increase the features
for each extracted histogram instead of using sparse features. Consequently, we
extend the features used in the machine learning to include the image context
instead of using only the local information. Figure 4 shows the proposed graphical
model in both 2D and 3D.

Fig. 4. The proposed superpixel graphical model in 2D and 3D. The red superpixel
represents the current superpixel in consideration, the r-spatial neighbors are colored
in blue, and the neighbors with higher weights (wj) are colored in green(Color figure
online).
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Classification: We use the normalized feature vectors to train a two class ran-
dom forest (RF) [4] to classify each superpixel as brain or non-brain. Our dataset
has pixel-wise labels so we assign each superpixel Ni the class label li that cor-
responds to the label with the highest frequency inside the superpixel. After the
initial classification we obtain a probability map and use this to train another
second random forest along with 10% of the most important features used for
training the first classifier. This produces an auto-context classifier [15] that can
increase the classification accuracy. The output volume is then filtered by finding
the largest 3D component, which is the brain mask in this case, followed by a
convex-hull extraction [3] to obtain a clean homogeneous segmentation.

3 Evaluation and Results

Data: The proposed framework has been tested on 55 fetal scans at gestational
age between 20–38 weeks. Thirty subjects of these datasets are from normal
fetuses and 25 datasets are from fetuses with intrauterine fetal growth restriction
(IUGR). The data was acquired with a 1.5T Philips MRI system using single shot
fast spin echo (ssFSE) sequences with voxel size 0.8398×0.8398×4mm3. Ground
truth labels were obtained by manual segmentation of the brain performed by
expert observers.

Implementation: We perform mean and standard deviation normalization on
the input scan intensities as a preprocessing stage for our proposed approach. We
have adjusted the SLIC superpixel extraction used in [1] for generating super-
pixels that are optimized for fetal MRI data. The vlfeat library [16] was used
for generating DSIFT features and the scikit-learn library [14] was used for the
random forest classifier. The code was implemented using python and MatLab
with the mex-c environment. We use k = 5 to determine the number of super-
pixels s. The number of neighbors selected for superpixel graphs r were set to
25 calculated for each xy−plane in three slices. In order to balance the positive
and negative training samples for the classifier, we choose to restrict training to
superpixels generated from a cropped volume around the brain by adding 25% of
the maximum brain diameter in the xy-plane. The prior knowledge that brains
appear brighter in T2-scans allowed us to suppress some of the background pix-
els by thresholding any pixel less than 10% of the maximum intensity value of
the whole subject. All these parameters are chosen by experiment on a smaller
test dataset.

Results: A 5-fold cross validation was used for evaluating our approach (11 test
patients 44 training patients per fold). The random forest classifier achieved an
average accuracy score of 96.17% per a superpixel basis. We defined the detection
accuracy, the extracted mask covering at least 70% of the brain, similar to the
definition presented in [9] but calculated for the whole 3D brain for simplification.
The prediction accuracy of the centers of the segmented brains are measured by
calculating the percentage of centers that lie inside the ground truth of the
manually labeled brains. Brain coverage is measured by the percentage of the
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Table 1. The accuracy of the proposed localization approach at different dictionary
sizes k = 50, k = 100, k = 400 and k = 800.

k = 50 k = 100 k = 400 k = 800

Brain detection (% subjects) 87.27 89.09 94.55 90.91

Center in brain (% subjects) 80 81.82 98.18 98.18

Brain coverage (μ ± σ%) 85.59±30.51 85.9±28.2 90.03±16.63 90.54±15.17

Dice coefficient (μ ± σ%) 61.07±26.94 63.22±25.47 71.96±19 73.62±15.9

Average train time (minutes) 31.55 50.25 256.09 424.93

Average test time (minutes) 4.63 4.85 6.31 8.36

manually-labeled brain that are covered by the segmented boundary box. We
have also used the dice coefficient [6] in order to measure the segmentation
accuracy of the proposed approach. Table 1 shows the accuracy of our localization
approach at different dictionary sizes k = 50, k = 100, k = 400 and k = 800.
These results shows that increasing the dictionary size or the histogram bins
(sparsity) increases the dice accuracy. However, it also increases significantly
the processing time of training and testing. These experiments were done using
parallel processing on a CPU with 32-cores and 128 GB RAM (Fig. 5).

Fig. 5. The accuracy of the proposed localization approach at different dictionary sizes
k = 50, k = 100, k = 400 and k = 800.

Our brain localization approach have achieved a 94.55% detection accuracy.
It also could detect the center of the brain with prediction accuracy 98.18%
of the test subjects while in [9] they achieved only 81%, 78% and 60% using
coronal, axial and sagittal training data. In addition, the proposed approach
does not depend on the orientation of the acquired data and it does not use any
previous landmarks as in [9]. [12] achieved 100% detection accuracy of the brain;
their method, however, requires previous information about the gestational age
of the fetus to find the expected size of the brain. This information is later used
to remove the outliers of the detected brain mask. Our proposed method has
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(a) S1-axial (b) S1-coronal (c) S1-sagittal

(d) S2-axial (e) S2-coronal (f) S2-sagittal

(g) S3-axial (h) S3-coronal (i) S3-sagittal

Fig. 6. The segmented brain at different cross sections (axial, coronal, sagittal) for three
different test subjects S1, S2 and S3. The dice coefficient of S1=91.22 %, S2=70.01 %,
and S3=56.79 %.

an advantage to be generic and does not require any prior information. Figure 6
shows the segmented brain at different cross sections for three test subjects with
different dice accuracy.

4 Discussion and Conclusion

We have developed an automatic framework for localizing the brain in fetal MRI
scans using superpixel graphical models. Superpixels have enabled the proposed
detection algorithm to be faster and more efficient than using pixels for classi-
fication. Also, extending the extracted features from the individual superpixels
to include features from the neighbors using superpixel graphical models, have
provided more information about the image context instead of using only the
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local information. The evaluation results achieved 94.55% accuracy for the brain
detection, which shows the potential of extending the proposed approach using
superpixel graphs to segment other fetal organs such as the heart, lung, and pla-
centa. According to the recent studies [5], the placental functions affect the birth
weight as the placenta controls the nutrients transmissions from the maternal to
the fetal circulation. Moreover, the extracted brain can be used for developing
automatic motion correction and registration techniques for fetal MRI.
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Interaction Toolkit (MITK) [17] to visualize some of the figures. Amir Alansary is
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Abstract. Functional magnetic resonance imaging (fMRI) produces low
number of samples in high dimensional vector spaces which is hardly ade-
quate for brain decoding tasks. In this study, we propose a combination
of autoencoding and temporal convolutional neural network architecture
which aims to reduce the feature dimensionality along with improved
classification performance. The proposed network learns temporal repre-
sentations of voxel intensities at each layer of the network by leveraging
unlabeled fMRI data with regularized autoencoders. Learned temporal
representations capture the temporal regularities of the fMRI data and
are observed to be an expressive bank of activation patterns. Then a tem-
poral convolutional neural network with spatial pooling layers reduces
the dimensionality of the learned representations. By employing the pro-
posed method, raw input fMRI data is mapped to a low-dimensional
feature space where the final classification is conducted. In addition, a
simple decorrelated representation approach is proposed for tuning the
model hyper-parameters. The proposed method is tested on a ten class
recognition memory experiment with nine subjects. Results support the
efficiency and potential of the proposed model, compared to the baseline
multi-voxel pattern analysis techniques.

1 Introduction

Modeling the relationship between the brain activation patterns and the stim-
uli is beneficial for understanding the neural code. When the brain activity is
recorded during a stimulus, the relationship between the recorded signal and
the stimulus category may provide useful information for the underlying cog-
nitive process. Data driven approaches, such as Multi-Voxel Pattern Analysis
(MVPA), formulate this relationship as a machine learning task. The problem
of predicting the stimulus from the brain recordings, is called brain decoding
which has received much attention recently [6]. One of the major difficulties
in formulating the brain decoding as a machine learning task is the scarcity of
labeled samples. The number of labeled fMRI images over several time points
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reaches at most hundreds, while the dimension of the input space (number of
voxels) easily exceeds thousands. In order to improve the classification accuracy
and significance, there has been a great deal of effort to either reduce the dimen-
sionality [12] or to employ spatial/temporal structures [14]. As a result, many
brain decoding systems rely on cleverly hand-crafted features [5,13,15]. Another
issue related to the low number of labeled samples is the labeling procedure.
Within the time points acquired during an experiment, only few are assigned to
corresponding class labels by considering timing and the type of the stimulus.
For example in an event related design, class labels are assigned to time points
according to the prior knowledge of the peaks of hemo-dynamic response func-
tion [13]. The rest of the (unlabeled) samples are generally discarded from the
data sets before any classification pipeline. A typical fMRI experiment for brain
decoding is depicted in Fig. 1.

Fig. 1. 4D fMRI data consists of brain volumes across time, some of which are assigned
to a class label considering the type and timing of the stimulus. The classification
problem is to predict the class of a labeled sample given the rest of the samples.
Majority of the samples are unlabeled which are recorded during the inter stimulus
side-tasks or resting periods. The whole experimental data is used by forming a data
matrix, VT, where the rows correspond to voxel time-series (time axis) and columns
correspond to voxels in a 3D volume (space axis) (Color figure online).

Recent improvements in unsupervised feature learning and transfer learning
point out the importance of employing unlabeled data for a better classification
performance [4], especially, when there is no sufficient amount of labeled data.
It is hypothesized that learning the data distribution p(X) for the dataset X
from unlabeled samples improves the posteriors p(Y |X) of the target Y, when
p(X) and p(Y |X) share some structure [2]. We experimented this hypothe-
sis by proposing that the discarded (unlabeled) fMRI data may comprise some
information and can be exploited in brain decoding. Learning the data distrib-
ution p(X) is formulated as learning a set of basis functions that can be used
to represent temporal behavior of brain activity. Concretely, by incorporating
the unlabeled data, we learn a hierarchy of temporal filters by making use of
autoencoders. Learning the posterior of target, p(Y |X) is then formulated as
a mapping between learned representations and the class labels. Likewise this
mapping is modelled by a temporal convolutional neural network (tCNN) whose
filters (parameters) pretrained by autoencoders and having additional spatial
pooling layers to reduce the dimension of feature space.
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By leveraging unlabelled data and the representational power of tCNN, we
are able to train comparably better classifiers in terms of classification accuracy
and improve generalization performance by reducing the over fitting. The feature
spaces are automatically formed by temporal representations and have a reduced
dimensionality due to spatial pooling. Although similar approaches are common
in computer vision literature [10], there exist only few studies which employ
deep learning methods for neuroimaging data [3,7], and to our knowledge the
proposed model is the first attempt to use deep learning to learn multiple levels
of temporal representations for brain decoding.

2 Unsupervised Learning of Temporal Representations
and Convolutional Architecture

In this section, first we explain the structure of the fMRI data and suggest a
temporal representation. Then, we introduce a temporal convolutional neural
network architecture for brain decoding problem.

Sparse Autoencoders and fMRI Representation. fMRI measurements
consist of 3D brain volumes across time {ti}n

i=1. For each time instant, a 3D
brain volume is formed by stacking several 2D slices (scans), see Fig. 1. A task
fMRI experiment consists of several runs in which the subjects are presented task
specific stimuli at predetermined time instants. Each of these stimuli corresponds
to a category and the data acquired at that instant (with a few points of lag) is
assigned to the corresponding class label (orange lines in Fig. 1). In this study,
the entire experimental data is represented by a voxel×time matrix V T , having
n columns and m rows. A column of V T matrix represent the brain volume in
terms of m voxels (space) and the rows correspond to the voxel time series of
length n.

For classifying individual cognitive states, the labeled samples are separated
into training and test sets. Although the columns of V T that do not have a
class label are not directly related to the category of stimulus, they may carry
significant information about the temporal structure (activation pattern) of the
voxel time series. In order to improve the representation power of the voxels, it
is crucial to capture and employ the temporal activation pattern as a substitute
for raw intensity values. A plausible option is to use unsupervised feature learn-
ing methods to learn this temporal aspect. In this study, we utilize the entire
V T matrix (except the columns separated for test) to learn the temporal fil-
ters. Our aim is to learn a number of HRF-like activation patterns delimited by
short time-windows and capture the temporal regularities in the data. For the
aim of learning temporal filters in an unsupervised fashion, we employ sparse
autoencoders [8].

An autoencoder is a neural network which attempts to reconstruct its input.
A 3-layer autoencoder has an input, hidden and output layers, each having sev-
eral units. Let x ∈ R

τ be a given input, the network has an encoder function
f(x; θ1) which maps x to a hidden representation h ∈ R

k parametrized by θ1.
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And the decoder function g(h; θ2) maps the hidden representations h to the
reconstruction of input x which is x̃ ∈ R

τ with learned parameters θ2. In our
problem the inputs x are 1 dimensional patches (temporal-windows) extracted
from the rows of V T matrix.

Let W ∈ R
k×τ and b ∈ R

k be the weight matrix and biases of the encoder
function f such that θ1 = {W, b} and W ∗ ∈ R

τ×k and b ∈ R
τ be the weight

matrix and biases of the decoder function g with θ2 = {W ∗, b∗},

h = f(x; θ1) = σ(Wx + b), (1)

x̃ = g(f(x; θ1); θ2) = σ(W ∗h + b∗), (2)

where σ is an element-wise non-linearity function. Further by enforcing a sparsity
constraint (activation around zero) to hidden layer activations via the cost func-
tion, auto encoder learns a compact and non-linear representation of its input x.
The number of hidden neurons, will be referred as k, is equal to the number of
filters (bases) to be learned. The sparse autoencoder having k hidden neurons is
trained to minimize reconstruction error using gradient descent by minimizing
the cost function Jsparse(Θ) as,

Jsparse(Θ) = JNN (Θ) + βJρ̂ + λ||Θ||22, (3)

J(Θ) =
1
2

∑

i

||x̃(i) − x(i)||22 + β

k∑

j

KL(ρ||ρ̂j) + λ||Θ||22 (4)

where JNN = 1
2

∑
i ||x̃(i) − x(i)||22 is the neural network reconstruction term,

λ||Θ||22 is the L2 regularization and β is the hyper-parameter controlling impor-
tance of sparsity in the cost, we use superscript (i) for different examples. The
sparsity term Jρ̂ is the crucial term in our autoencoder. Let aj(x) be the activa-
tion of hidden unit j given input x and ρ̂j = E[aj(x)] be the expected activation
of hidden unit j over the dataset. By constraining ρ̂j ≈ ρ where ρ is the sparsity
hyper-parameter, hidden layer activations can be adjusted to be sparse. And to
measure the sparsity cost, KL-divergence between average activation of a unit ρ̂
and sparsity parameter ρ is calculated as Jρ̂ =

∑k1
j KL(ρ||ρ̂j).

The optimization of the cost function (3) yields the model parameters Θ =
{θ1, θ2}, and rows of the transition weights W of encoder function f(x; θ1),
constitutes the temporal filters, basis functions to represent the input (see Fig. 2
for sample filters). In our proposed model, we train an autoencoder on a set
of randomly selected 1-dimensional patches of size 1 × τl for layer l and use
the learned parameters of the encoder as filters in the convolutional layer l. For
the first layer, samples are collected from the original V T matrix and for the
forthcoming layers, samples are collected from the convolution layer response
maps of the previous layer, which will be explained in the next section.
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Fig. 2. First level temporal filters learned from unlabelled data for three subjects. Each
small box represents a temporal filter and 16 filters for each subject.

1D Convolutional Neural Networks. A convolutional neural network is a
feed-forward neural network with local connectivity pattern for hidden units and
parameter sharing between inputs of the hidden units [11]. In a convolutional
layer each hidden layer has several feature maps and all the hidden units within a
feature map share the same parameters. Let us first define a convolutional layer
with k feature maps {ri}k

i=1, as each feature map ri be 2-dimensional array,
having 2-dimensional input x ∈ R

m×n. Further let W be a filter bank of size
k × τ and W i be ith row of W which is a 1-dimensional filter connecting the
input to the rth feature map and bi be the scalar bias for the kth feature map.
Given input x, filters and biases W , b and filter size τ , the response at location
(m,n) of the feature map ri is calculated as,

ri(m,n) =

[
τ−1∑

u=0

W i(τ − u)x(m,n + u)

]
+ bi, (5)

paranthesis indicates indexing of matrix and vectors. With proper zero-padding
of the input x each feature map will be of size of its input and a layer constructed
of several feature maps obtained with (5) is called a convolutional layer.

Starting from the raw input matrix V T we first collected 50.000 random
windows of size τ1 resulting input matrix of size x ∈ R

τ1×50K where we trained
an autoencoder with k1 hidden units to learn parameters W1 ∈ R

k1×τ1 . Rows
of W1 as filters of the first convolutional layer, V T matrix is convolved along
the time axis (1D full temporal convolution) with the learned filters using (5)
and k1 number of response matrices are extracted. Note that resulting response
matrices are the same size as V T with a full convolution by zero padding. In a
CNN, general processing block is constructed by three consecutive operations;
convolution, pooling and applying an element-wise non-linearity [9] and these
blocks can be repeated consecutively by feeding output of one block to the next
one [10]. We construct our temporal CNN with two processing blocks as shown
in Fig. 3 with dashed boxes. In order to complete our first block, we determine
a spatial pooling function μ, a pooling range in a vicinity δ1 and a point-wise
non-linearity function σ. For layer j, given a feature map ri

j , pooling function μ

and pooling range δj , we calculate the pooled response map pi
j at position (m,n)

as follows,

pi
j(m,n) = μ

(
ri
j (η (m; δj) , n)

)
, (6)



30 O. Firat et al.

Fig. 3. tCNN with spatial pooling units used for brain decoding. All the filters shown
are learned by autoencoders and used for convolution.

where η(p; q) is a function that maps voxel at location p to a list of its q nearest
neighbor indices including p. Hence μ, takes a list of responses gathered around
a voxel at position m as input and returns their maximum. Since consecutive
convolution and pooling operations do not break down the neighboring structure
of V T matrix, η can be used as many layers are stacked. Considering the capil-
lary structure of the brain and point spread function of fMRI medium, nearby
voxels exhibit correlated intensities. Therefore for the choice of μ we employ max
function on the columns of feature maps. Note that the columns of the response
matrices correspond to spatial domain of fMRI data. As we increase the pooling
range without any overlaps between pooling functions, the final dimensionality
decreases. We finalize the first processing block by applying σ, which is set to
hyperbolic tangent, to all elements of the pooled response matrices.

The second level of our tCNN takes the pooled response matrices as input
and repeats the same pipeline. Training an autoencoder for each feature map,
each having k2 hidden units, and applying colvolutions with learned filters by
following (5). The only difference for the second block is the number of input
matrices, which is k1 number of m/δ1 rowed and n columned pooled response
matrices. For each of these matrices, a separate k2 number of temporal filters
are learned. Same procedure is followed k1 times: first collecting τ2 length time
windows from the rows of an input response matrix then training an autoencoder
having k2 hidden units. Each k2 filters are then convolved with the corresponding
first level pooled response matrix. At the end, we obtain k1×k2 number of second
level pooled response matrices. Note that second level pooled response matrices
have m/(δ1 × δ2) rows and n columns, where δ2 is the pooling range for second
processing block. See Supplementary Material (S1) for more details.

After processing raw input data with tCNN, the second block pooled response
matrices have the same number of columns n, hence still carries the class label
information. Finally at this point, all the second level pooled response matrices
are concatenated along their time axis resulting our final feature matrix which
has (m × k2)/(δ1 × δ2) rows and n columns. We then separate the training and
test data by extracting corresponding columns of V T matrix, according to the
experiment design class labels positions.
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3 Experiments and fMRI Data

fMRI recording was conducted during a recognition memory task on nine partici-
pants. Each participant is shown a list of words belonging to one of ten categories
in the working memory encoding phase. Following a delay period, participant
executes a yes/no response indicating the probe word belongs to the current
study list. For the decoding task, we select the anterior lateral temporal cortex
region having 1024 voxels (m). fMRI data consists of 2400 time points (n) in 8
runs, with 240 labeled samples for the memory encoding phase and 240 labeled
samples for the retrieval. The task we seek to accomplish is to predict class
labels of the samples in the retrieval phase by using samples in the encoding
phase. Measurements recorded in the memory encoding phase are used in train-
ing and retrieval samples are used in test. The recording was conducted using a
3T Siemens scanner with a 2 s TR.

Selection of Hyper-parameters. A major bottleneck of designing a deep
learning architecture is the large number of hyper-parameters to be tuned [2].
In this study, we propose a heuristic method motivated by the distributed rep-
resentations and decorrelated features [1]. We assume that the validity of the
network can be assured separately at each layer by reducing the redundancy
within the learned representations. In other words, we expect that the hidden
representations of an autoencoder learns different regularities from the input.
The representation power will, then, be increased and diversified as the learned
filters are decorrelated. Therefore, we select the least correlated features in a
parameter search space for the hyper-parameters of autoencoders k1, k2, β, ρ, λ.
For each learned filter bank in a layer with a hyper-parameter combination, we
calculate the correlation matrix of learned filters. In fully decorrelated filters
case, the diagonalized correlation matrix should be close to the identity matrix
(all eigenvalues should be equal to one). Therefore, we calculated the L1 dis-
tance between the eigenvalues of the correlation matrix of the learned filters to a
vector of ones. For example, the hyper-parameters k1, β and ρ for the first layer
autoencoder are calculated as follows,

arg min
k1,β,ρ

||diag(I) − eigs(Rθ1)||1 (7)

where I is the identity matrix and Rθ1 is the correlation matrix for filters θ1.
The first layer temporal representations are illustrated in Fig. 2, where we observe
several filters that resemble the HRF. Moreover, the filters which directly learn
from the unlabelled data are capable of representing several other activation
patterns such as linear trends, boxcar, rapid dips and peaks, even some baseline
trends.

Testing Procedures and Comparison. In order to test and compare the
proposed method with the MVPA methods, we employ the k-nearest neighbor
(k-NN) classifier to the feature vectors extracted from the row voxel intensity
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values. Three different MVPA approaches are taken into consideration. The first
one is the Raw MVPA method where the raw voxel intensity values are directly
fed into the classifier. To make a fair comparison, we further employ temporal
information in classical MVPA method in two different ways: In the first method,
we extract a set of hand-crafted features by convolving the raw intensity values
with a double gamma HRF function spanning 6 samples. It is expected that
these hand-crafted features capture the temporal activation patterns in the voxel
intensity values. This method, called HRF MVPA, trains a k-NN classifier from
the response matrix obtained at the output of the convolution. In the second
method, which is called Temporal MVPA (T-MVPA), we take a 6 sample time
window from the onset of the stimulus and concatenate the subsequent intensity
values acquired during that period. This yields a feature vector of dimension 6
for each voxel which is 6 times higher than the other MVPA methods. We also
test the single-level temporal convolutional network to monitor the impact of
depth on the performance of the classifier.

Experimental results are analysed by considering final feature space dimen-
sions (last column of Table 1) in classifiers by comparing classification accura-
cies. Overall results are also illustrated in Table 1. For the classical and temporal
MVPA approaches (first three rows of Table 1), Raw MVPA approach is taken as
baseline method. HRF convolved MVPA model improved baseline up to 8 % as
we employ temporal information. However, without adjusting HRF to the regu-
larities in the data, it remains rather hand-crafted. Similarly T-MVPA method
use temporal information without any HRF assumption and improves perfor-
mance compared to other MVPA methods with an increased feature dimension-
ality. Proposed tCNN architecture is tested with varying depth (single and two
layer rows in Table 1) and pooling ranges (δ1 and δ2 columns). A single layer
(shallow) temporal feature learning and convolution architecture with varying
pooling range between 2 to 16 yields a feature space with dimensions from 8192
to 1024. For all nine subjects, single layer architecture outperforms classical and
temporal MVPA methods substantially and achieving performance up to 60 %s.
By appropriate pooling, the feature dimensions of the single layer architecture
retracted down to 1024 where we still observe 20 % improvement.

In order to analyse the impact of the depth and further reduce feature dimen-
sionality, two layer architecture is tested with varying pooling ranges in the sec-
ond level. The proposed model in two layers reduces feature dimensions down
to 256 where we still observe better performance in 8 subjects compared to
the single layer architecture with lowest dimensions. We did not observe any
performance improvements by increasing depth more than two, as model gets
more complex and starts to overfit rapidly. The results suggest that employing
temporal structures with appropriate pooling for brain decoding gives rise to
better classification accuracies. Convolutional models pre-trained with a slightly
larger amount of unlabelled data are appropriate candidates to employ temporal
information in an efficient way. Furthermore, increasing depth of such temporal
convolutional architectures, makes it possible to reduce feature dimensionality,
and the learned filters become more abstract and non-linear, resulting a better



Learning Deep Temporal Representations for fMRI Brain Decoding 33

Table 1. Comparison of classification accuracies for the proposed method.

Method δ1 δ2 Sub1 Sub2 Sub3 Sub4 Sub5 Sub6 Sub7 Sub8 Sub9 Dim

Raw MVPA - - 28.9 41.5 43.1 45.5 42.3 31.9 34.0 40.6 41.4 1024

HRF MVPA - - 32.3 44.4 42.3 53.8 36.1 41.1 44.5 46.5 48.2 1024

T-MVPA - - 41.9 52.4 52.0 53.9 45.3 44.0 44.9 51.1 52.5 6144

Single layer 2 - 54.0 65.7 65.3 67.8 66.7 64.1 66.1 65.7 69.5 8192

Single layer 4 - 56.1 64.5 63.6 69.5 66.2 65.3 66.1 66.5 68.6 4096

Single layer 8 - 55.7 65.3 62.8 69.5 64.0 64.9 66.1 67.4 70.0 2028

Single layer 16 - 51.9 64.0 63.2 68.6 62.3 63.3 64.9 67.3 67.0 1024

Two layers 4 2 69.0 71.6 72.9 72.4 72.8 71.2 72.3 70.3 71.2 8142

Two layers 16 1 68.6 69.1 71.2 72.4 69.1 68.6 60.7 70.3 72.8 4096

Two layers 16 2 69.5 68.6 71.6 73.2 70.0 69.9 66.1 70.3 72.8 2048

Two layers 16 4 69.9 69.5 73.3 72.8 71.2 70.0 67.0 69.5 71.6 1024

Two layers 16 8 68.6 67.4 72.0 70.8 71.1 68.7 67.0 70.3 70.8 512

Two layers 16 16 63.6 66.5 69.9 70.7 68.3 66.6 64.4 68.2 66.5 256

classification performance. The fewer number of training samples may result in
greater variability of the estimation. Therefore we conducted simple, yet diagnos-
tic tests to determine how precise the proposed method performs where details
can be found in Supplementary Material (S2).

4 Conclusion

In this study, we propose a novel approach for brain decoding on fMRI data using
unsupervised feature learning and convolutional neural networks. By leveraging
unlabelled data and employing multi-layer temporal CNNs, we learn multiple
layers of temporal filters which represent the activation patterns of voxels under
experimental conditions. By making use of deep temporal representations, we
train comparatively better brain decoding models in terms of classification per-
formance. This method suggests a shift from the conventional MVPA approaches
which rely on the hand-crafted features, to learned feature representations of
deep architectures. As an evidence of the power of proposed model, we con-
ducted a recognition memory experiment on 9 subjects and observed signifi-
cant performance improvements. The proposed model has potential to further
improvements by incorporating spatial structures with spatial convolution and
pooling, or learning spatio-temporal filters all-together which is left as a future
work. Also, hyper-parameter selection and preventing overfitting is partially and
naively handled in this study, which should be further analysed in details.
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Abstract. Modelling longitudinal changes in organs is fundamental
for the understanding of biological and pathological processes. Most of
the previous works on spatio-temporal modelling of image time series
relies on the assumption of stationarity of the local spatial correlation,
and on the separability between spatial and temporal processes. These
assumptions are often made in order to lead to computationally tractable
approaches to longitudinal modelling, but inevitably lead to an oversim-
plification of the complex spatial and temporal dynamics underlying the
biological processes. In this work we propose a novel spatio-temporal
generative model of time series of images based on kernel convolutions of
a white noise Gaussian process. The proposed model is parameterised by
a sparse set of control points independently identified by specific spatial
and temporal parameters. This formulation is highly flexible and can nat-
urally account for spatially and temporally varying dynamics of changes.
We demonstrate a preliminary application of our non-parametric method
on the modelling of within-subject structural changes in the context of
longitudinal analysis in Alzheimer’s disease. In particular we show that
our method provides an accurate description of the pathological evolu-
tion of the brain, while showing high flexibility in modelling and predict-
ing region-specific non-linearity due to accelerated structural decline in
dementia.

1 Introduction

Modelling longitudinal changes in organs is fundamental for the understanding of
biological and pathological processes. For instance the development of a spatio-
temporal model of disease progression in Alzheimer’s disease (AD) from time
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series of magnetic resonance images (MRIs) would be highly valuable for the
fundamental understanding of the disease process, for diagnostic purposes and
individual predictions, and for testing the efficacy of disease modifying drugs in
clinical trials.

The consistent modelling and prediction of spatio-temporal changes in lon-
gitudinal MRI is still an important challenge from both methodological and
computational perspectives. In fact, flexible modelling instruments are required
in order to robustly capture meaningful pathological accelerations specific to
sensitive brain regions. Moreover, since a biological model of local brain changes
is often unknown, it is important to develop optimal models in terms of statisti-
cal complexity. Notably, the spatial dimensionality of MRI time series prevents
the straightforward implementation of classical multivariate statistical modelling
techniques and often leads to computationally intractable solutions.

We can identify two main approaches to spatio-temporal modelling of image
time-series in computational anatomy. The first one is based on non-linear image
registration, describing signal differences between images as local spatial trans-
formations [1–4]. In non-linear registration the spatial changes are usually mod-
elled at a fixed spatial scale defined by the regularization energy at which the
transformation is optimized. The temporal modeling usually relies on the defini-
tion of a specific model of temporal evolution, which is identified either by fitting
parametric progression models on geometric features of the transformation, or
by choosing an opportune metric in the space of transformations to characterize
specific evolution models in the image space. The second one, usually identified
as voxel-based-morphometry (VBM), is based on voxel-by-voxel modelling based
on parametric [5], or non-parametric regression frameworks [6]. Models are usu-
ally independently fitted for each voxel, and local correlation is usually imposed
by applying Gaussian convolution of the images with some apriori kernel size.

The majority of the above mentioned approaches rely on important assump-
tions concerning the spatial and temporal processes. In fact, by either choosing
a global regularization energy in image registration, or a global smoothing para-
meter in VBM, we usually impose local stationary correlation models for the
spatial changes. Even though this assumption is often necessary to lead to com-
putationally tractable approaches, it inevitably leads to an oversimplification of
the complex spatial properties of the images, for example concerning regionally
varying smoothness, and image boundaries.

At the same time, by fitting global longitudinal models, either defined by
the registration metric, or by a fixed statistical model complexity, we assume
that spatial and temporal processes are separable, i.e. that the properties of the
temporal variation (for instance following a quadratic or linear behaviour) is
independent from the spatial locations. As before, this assumption often leads
to simplistic modeling solution, as the progression of the temporal changes in
organs is generally highly variable across spatial regions.

Non-parametric Gaussian process (GP) models have emerged as a flexible and
elegant Bayesian approach for prediction of continuous and binary variables in
manifold applications [7]. Recently, GPs were successfully introduced to the field
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of neuroimaging, e.g. in the context of single-case inference in aging [6]. Moreover,
it was recently introduced in [8] a generative framework for the modelling of image
time series based on Gaussian process regression. This approach was however com-
pletely based on the assumption about stationarity and separability of spatial and
temporal processes.

In this work we propose a generative model of image time series based on
Gaussian processes (GPs), which is characterized by a covariance structure para-
meterized by a sparse set of control points defined in space and time. Since
each control point is governed by specific spatial and temporal parameters, the
proposed model is highly flexible and can naturally account for spatially and
temporally varying signal changes. The proposed model thus overcomes many
limitations of previous spatio-temporal modelling approaches.

The paper is organized as follows. In Sect. 2 we propose our generative model
of longitudinal changes parameterized by a sparse set of control points, and we
subsequently provide details about parameter optimization and prediction. In
Sect. 3 we provide a preliminary application of our non-parametric method on
the modelling of within-subject structural changes in the context of longitudinal
analysis in Alzheimer’s disease. In particular we show that our method provides
an accurate description of the pathological evolution of the brain, while showing
high flexibility in modelling and predicting region-specific non-linearity due to
accelerated structural decline in dementia.

2 Generative Model of Spatial Data Through Gaussian
Process Convolution

Let u and t be respectively the spatial and temporal coordinates. Given an image
time series y(s), s = (u, t), we assume a generative model for the spatio-temporal
variations:

y(s) = z(s) + ε, (1)

where ε Gaussian distributed spatial noise ε ∼ N (0, σ2
ε ), and where z is a (zero-

mean) Gaussian process (GP), identified by the associated covariance form Σ.
Following the idea introduced in [9], we model z(s) as the convolution of a
white noise process x(s) ∼ GP(0, σ2

xId), with a given kernel function k. More
specifically, the spatial process z(s) is identified by a sparse set of control points
defined in space and time, {wj = (uj , tj))}Nw

j=1, and associated parameters θj :

z(s) =
∑Nw

j=1 x(wj)k(s − wj |θj). (2)

Under these modelling assumptions, the generative model (1) assumes the form:

y = Kx + ε, (3)

where K is the matrix of the spatial coefficients associated to the control points
Ks,wj

= k(s − wj |θj). The image time series y is therefore a realization of the
following process:

y ∼ GP(0, Σ), with Σ = σ2
xKKT + σ2

ε Id. (4)
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The model (4) is completely identified by the measurement noise σε, by the
white process parameter σx, and by the control points wj with associated
parameteres θj .

We note that the size of the covariance matrix Σ is N ×N , where N = NuNt,
and Nu is the number of voxels, and Nt is the number of temporal observations.
For this reason the naive approach to the modelling of (4) can easily lead to pro-
hibitive problems in term of storage and computations. In the following section
we show that the proposed kernel parameterization leads to computationally
tractable inference schemes whose complexity depends on the number of basis
functions.

Fig. 1. The parameters associated to each control point of the grid completely identify
the local spatial and temporal covariance (exemplified by resp. red and green neigh-
borhoods) of the spatio-temporal process (Color figure online).

2.1 Efficient Inference in Gaussian Process Convolution Models

The GP-based generative model with kernel structure outlined in this work pro-
vides a powerful and extremely flexible framework for prediction an inference
in image time series. Let θ = {σx, σε, (θj)Nw

j=1} be the set of parameters of the
model (4). In the following sections we provide the main results concerning
the marginal likelihood computation, the hyper-parameter optimization and the
posterior prediction.

2.2 Log-Marginal Likelihood

The log-marginal likelihood of model (4) is:

log L(θ) = −n
2 log(2π) − 1

2 log |Σ(θ)| − 1
2yT Σ(θ)−1y. (5)
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In particular, the determinant and matrix inverse terms can be efficiently com-
puted by using well known matrix algebra properties:

|Σ(θ)| = |σ2
xKT K + σ2

ε IdNw
| (6)

Σ(θ)−1 =
1
σ2

ε

IdN − 1
σ4

ε

K

(
1
σ2

x

IdNw
+

1
σ2

x

KT K

)−1

KT . (7)

We note that in this form both inverse and determinant operations are performed
on matrices of size Nw, which is magnitude smaller than N .

2.3 Hyperparameter Optimization

The derivative of the log-marginal likelihood (5) with respect to the model para-
meters θ is:

d
dθ

log L = − 1
2Tr

(
Σ(θ)−1 dΣ(θ)

dθ

)
− yT Σ(θ)−1 dΣ(θ)

dθ Σ(θ)−1y (8)

It can be shown that formula (8) can be efficiently computed with respect
to each model parameters. For instance, the gradient with respect to the noise
parameter can be expressed in the form:

d
dσ2

ε

log L =
1
2
[−N +

1
σ2

ε

Tr(KT KA)+ (9)

yT

(
1
σ2

ε

IdN − 2
σ4

ε

KAKT +
1
σ6

ε

KAKT KAKT

)
y], (10)

where

A =
(

1
σ2

x

IdNw
+

1
σ2

ε

KT K

)−1

.

We note that, as for the computation of the marginal likelihood, the above
term can be efficiently decomposed in the more convenient product of matri-
ces of lower dimension, thus leading to computationally tractable solutions. In
particular, the computation and allocation of matrices of size N × N is never
required. The explicit derivation of the other model parameters is provided in
the Appendix.

2.4 Prediction

The proposed generative model allows us to consider the predictive distrib-
utions of the latent spatio-temporal process at any testing locations u∗ and
timepoints t∗.

Given image time series I(u, t), we now aim at predicting the image I∗

at N∗ × N∗
T testing coordinates {u∗, t∗}. Let us define ΣI,I∗ = Σ(u, t, u∗, t∗)
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the cross-covariance matrix of training and testing data, and ΣI∗,I∗ =
Σ(u∗, t∗, u∗, t∗) the covariance evaluated on the new coordinates. The joint GP
model of training and testing data is:

(
I(u, t)

I∗(u∗, t∗)

)
∼ N

[(
0
0

)
,

(
Σ + σ2Id ΣI,I∗

ΣI∗,I ΣI∗,I∗ + σ2Id

)]
, (11)

and it can be easily shown that the posterior distribution of I∗ conditioned on
the observed time series I and parameters θ is [7]:

I∗|I, {u∗, t∗},θ ∼N
(
μ∗, Σ∗

)
, where μ∗ = ΣI,I∗Σ−1I

and Σ∗ = ΣI∗,I∗ − ΣI,I∗Σ−1ΣI∗,I + σ2Id .
(12)

Fig. 2. Observed and modelled image time series by using a grid of 25× 25 control
points. The predicted progression provides a probabilistic description of the observed
data at the grid resolution.

3 Application: Longitudinal Brain Changes
in Alzheimer’s Disease

In this section we show an application of the proposed generative model to
the analysis of the individual longitudinal brain changes observable in image
time series. We consider the model outlined in Eq. (3), with kernel function k
associated to the control points {wj}Nw

j=1 identified by independent spatial and
temporal length-scale parameters θj = {θu

j , θt
j}:

k(s − wj |θj) = exp(−|u − uj |2/θu
j ) exp(−|t − tj |2/θt

j). (13)
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With the proposed parameterization, the spatio-temporal process (3) is com-
pletely characterized by the sparse set of spatial and temporal parameters asso-
ciated to the set of control points (Fig. 1). As we shall see in the following
experiment, these parameters describe the spatial and temporal complexity of
the underlying spatio-temporal signal, and thus they identify the non-stationary
and non-separable model of the observed image time series.

3.1 Data Analysis and Results

We selected a patient affected by mild cognitive impairment for which 6 images
were available, corresponding to observational time of respectively baseline, 6
months, 1, 1.5, 2 an 3 years.

The images were processed according to established procedures consisting of
joint bias correction, tissue segmentation, alignment to the within-subject average
anatomy, and non-linear normalization to a group-wise anatomical reference [10].
The final image size was of 1003 cubic voxels with isotropic resolution of 1.5mm.

Figure 2 shows an application of the proposed approach on the modeling of
the coronal slice including temporal regions, by using a grid of 25× 25 basis
functions. We note that the predicted progression provides a description of the
observed data at the grid resolution.

The fitted model parameters are shown in Fig. 3, left. It is interesting to note
that they provide a description of the spatial and temporal complexity of the
observed time series. Indeed, the spatial complexity is higher (decreased spatial
length-scale parameter) in the cortical areas, while the temporal complexity is
higher in the temporal regions (decreased temporal length-scale). We also note
that the model variability is zero outside the brain areas (Fig. 3, right).

Fig. 3. Fitted model parameters and model variance. We note that the model is capa-
ble to adjust the parameters to the spatial and temporal complexity of the data. In
particular, the spatial complexity is higher (decreased spatial length-scale parameter)
in the cortical areas, while the temporal complexity is higher in the temporal regions
(decreased temporal length-scale). We also note that the model variability is zero out-
side the brain areas.
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The accuracy of the proposed approach in modelling the longitudinal changes
is shown in Fig. 4, where we show the average longitudinal changes measured in
respectively temporal areas and thalami, two regions which are characterized
by different temporal complexity (Fig. 3): the temporal length-scale parameters
of the temporal region are low (thus denoting high temporal complexity of this
area), while the ones of the thalami are associated to higher length-scale (low
temporal complexity). Indeed, the average progressions shown in Fig. 4 show an
almost constant progression for the thalami, while the temporal area has an
accelerated atrophy process.

Fig. 4. Left. Modelled (red) and observed (blue) atrophy progressions. The model pro-
vides accurate fit, and shows that the temporal areas have higher temporal complexity
than the thalami, caused by the process of atrophy acceleration. Right. Reference areas
enclosing temporal region (red), and thalami (green) (Color figure online).

4 Conclusions

In this work we proposed a novel probabilistic approach to the modelling of non-
stationary, non-separable spatio-temporal processes, by means of kernel convo-
lutions of a white noise Gaussian process. The proposed approach is inspired
by the literature on non-stationary models of spatio-temporal changes [11], with
particular focus on the study of non-stationary covariance structures [12]. The
experimental results show that the proposed modelling method leads to an accu-
rate fit to the observed image time series, while at the same time providing a rich
description of the spatio-temporal dynamics of the data, encoded by the learned
spatial and temporal parameters. Further extensions of the proposed work will
aim at improving the computationally efficiency of the inferential process, in
order to scale to the modelling of high-dimensional time series of 3D images with
several time points. Finally, the present work will be in the future validated by
assessment of the predictive accuracy on large studies, and on different clinical
cases, such as asymptomatic or prodromal AD cases, which are characterized
by subtle and potentially non-linear dynamics of brain changes non-uniformly
localized in the brain.
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Appendix

We explicit here the derivatives of the log-marginal likelihood (5) with respect
to the model parameters θ:

d
dθ

log L = − 1
2Tr

(
Σ(θ)−1 dΣ(θ)

dθ

)
− yT Σ(θ)−1 dΣ(θ)

dθ Σ(θ)−1y. (14)

With the following simplification

A =
(

1
σ2

x

IdNw
+

1
σ2

ε

KT K

)−1

.

the derivative are as follows:

– Noise parameter.

d
dσ2

ε

log L =
1
2
[−N +

1
σ2

ε

Tr(KT KA) (15)

+ yT

(
1
σ2

ε

IdN − 2
σ4

ε

KAKT +
1
σ6

ε

KAKT KAKT

)
y]. (16)

– Amplitude parameter.

d
dσ2

x

log L = −1
2
Tr(

σ2
ε

σ2
x

KT K) − Tr(
σ2

x

σ4
ε

KT KAKT K) (17)

+
σ2

x

2

(
1
σ2

ε

yT K − 1
σ4

ε

yT KAKT K

)(
1
σ2

ε

KT y − 1
σ4

ε

KT KAKT y

)

(18)

– Control points parameters.

d
dθj

log L = −σ2
x

σ2
ε

Tr(
dK

dθj
KT ) +

σ2
x

σ4
ε

Tr(KT KAKT dK

dθj
) (19)

− 2
σ2

x

σ4
ε

(yT K
dK

dθj
y) (20)

+ 2
σ2

x

σ6
ε

(yT KAKT dK

dθj
KT y + yT KAKT K

dK

dθj
y) (21)

− 2
σ2

x

σ8
ε

(yT KAKT dK

dθj
KT KAKT y). (22)
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Abstract. Classification of brain images is frequently done using kernel
based methods, such as the support vector machine. These lend them-
selves to improvement via multiple kernel learning, where a number of
different kernels are linearly combined to integrate different sources of
information and increase accuracy. Previous applications made use of a
small number of kernels representing different image modalities or kernel
functions. Here, the kernels instead represent 83 anatomically meaningful
brain regions. To find the optimal combination of kernels and perform
classification, we use a Gaussian Process framework to infer the max-
imum likelihood weights. The resulting formulation successfully com-
bines voxel level features with prior anatomical knowledge. This gives
an improvement in classification accuracy of MRI images of Alzheimer’s
disease patients and healthy controls from the ADNI database to almost
88 %, compared to less than 86 % using a single kernel representing the
whole brain. Moreover, interpretability of the classifier is also improved,
as the optimal kernel weights are sparse and give an indication of the
importance of each brain region in separating the two groups.

Keywords: Gaussian processes · Classification · Multi-kernel learning ·
MRI · Alzheimer’s disease · Interpretability

1 Introduction

Machine learning methods have become increasingly common in the analysis
of brain image data, both for computer aided diagnosis (CAD) of disease and
in a more exploratory fashion to discover biomarkers that can be informative
about disease processes. For Alzheimer’s disease (AD), grey matter (GM) density
maps obtained from structural MRI images are used as sources of data in the
classification. However the actual features derived from the image can take two
forms: as the intensities of MRI voxels themselves [1], or as aggregations of all
GM voxels within different anatomical regions. The regions can be defined by
c© Springer International Publishing Switzerland 2015
K.K. Bhatia and H. Lombaert (Eds.): MLMMI 2015, LNCS 9487, pp. 45–53, 2015.
DOI: 10.1007/978-3-319-27929-9 5
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an atlas [2] or can themselves be generated from voxel level data [3]. There
is a trade-off between these methods. Regional level features reduce the data
dimensionality and can introduce prior information relevant to the classification
problem, but also eliminate fine detail that may be informative about disease
state. Voxel level data can introduce noise by including uninformative brain
regions and results in a very high dimensional problem. The different feature
extraction methods are compared and discussed in depth in [4].

Our proposed method combines the strengths of these two approaches. It uses
both voxel level features and atlas derived regions, and automatically gives less
weight to voxels within less relevant regions. This is done using multiple kernel
learning (MKL), a method that can be applied to any kernel based classifier, such
as the support vector machine (SVM) or Gaussian Process (GP). These use a lin-
ear combination of kernels, where the kernels can be derived from different data
modalities [2,5] or kernel functions [6]. Conversely, in our approach each kernel
represents the voxel level data within a different anatomical region to produce
anatomical regional kernels (ARKs). This takes a similar approach to [7,8] pre-
sented a related method using hierarchical groups of regional features. Although
the work was developed from our previous use of MKL, and is presented as a
specific case of MKL, it is related to other families of methods. Specifically, it
can be seen as a way to incorporate explicit spatial regularisation into the clas-
sifier. A number of other methods have been developed to do this specifically for
three dimensional medical image data. Spatial smoothness and sparsity can be
enforced with a joint �1 and total variation penalty [9]. Alternative a smoothness
penalty is derived from the image voxel neighbourhood structure, which can be
built into a kernel function for use with an SVM or other kernel method [10] or
used directly as a term in the objective function [11].

Our method and [11] can also both be interpreted as a variant of automatic
relevance determination (ARD) [12,13], a Bayesian method of automatic feature
selection. Our method, however, operates at the regional level in the kernel space,
rather than at the voxel level in the input space. Our approach builds on the
existence of a brain atlas in a custom groupwise template. We explain how this
was achieved, and how MKL is performed within a GP framework.

We apply this method to a large population of AD and control subjects from
the ADNI study. In terms of classification accuracy, our method outperforms a
single kernel with voxel level features by a susbtantial margin, and a single kernel
with regional features by a smaller amount. We also introduce a new method to
assess the quality of a classifier that exploit the probabilistic predictions made by
GPs. Finally, we show that the optimal kernel weights in the MKL formulation
are informative about which regions are affected by AD.

2 Materials and Methods

2.1 Image and Biomarker Data

All data were obtained from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database1. The MRI images were T1 weighted structural scans from
1 http://adni.loni.ucla.edu/.

http://adni.loni.ucla.edu/
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a mixture of 1.5T and 3T scanners. All were subjected to quality control and
automatically corrected for spatial distortion caused by gradient nonlinearity
and B1 field inhomogeneity and downloaded from the ADNI database. Subjects
were classified as healthy control (HC), AD or mild cognitive impairment by neu-
ropsychological and clinical testing at the time of the baseline scan, and only HC
and AD subjects were used. For the classification experiments, a further qual-
ity control step was taken which removed 16 subjects with registration errors,
leaving a final total of 627 subjects. Their demographics are given in Table 1.

Table 1. Subject groups and demographics

Disease status Number 1.5T Female Mean age (sd)

HC 376 162 192 74.8 (5.8)

AD 251 140 114 75.3 (7.8)

2.2 Image Processing

Groupwise Registration. As our method defines features at the voxel level, it
was necessary to transfer images into a common space. All native space images
were rigidly and then affinely registered to a randomly chosen image, coalescing
the registered images to update the template after each round of registrations.
This was then followed by ten rounds of nonrigid registration to produce a final
template in the groupwise space. All registrations were performed using the
Niftyreg package [14].

Image Segmentation. All images were segmented into GM, white matter
(WM), cerebrospinal fluid (CSF), and non-brain tissues components using the
new segment module of SPM12 with the cleanup option set to maximum. A
brain mask generated from the original structural image was then applied to the
GM segmentations to further exclude any non-brain material.

Image Parcellation. The native space images were also anatomically parcel-
lated into 83 regions. This was done with a novel label fusion algorithm [15] in a
multi-atlas label propagation scheme. A library of 30 atlases manually labelled
with 83 anatomical regions was used as a basis for the parcellation [16].

Atlas Construction. Unlike in other approaches using anatomical regions, fea-
tures were defined at the level of the voxel rather than regions, requiring that
all images share a common space. As kernels were constructed from the vox-
els within anatomical regions common across subjects, the parcellation defining
the region was also required to be in the common space. However, our initial
parcellations were in the native spaces of each subject. To combine these initial
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parcellations in the groupwise space, the following procedure was used. First,
all the parcellations were warped into the groupwise space, using the parame-
ters from the native space of each image to the final groupwise template. Care
was taken to preserve the integer labels in the parcellations during resampling.
Finally to combine the individual parcellations, a consensus atlas was produced
by majority voting among the set of N parcellations X to assign a single label
l to each voxel vi of the groupwise space Ω:

vi, i ∈ Ω = arg max
l

N∑

j=1

{
1, if Xi,j = l

0, otherwise
(1)

The pipeline to construct the atlas is summarised graphically in Fig. 1.

Fig. 1. Pipeline for constructing atlas in groupwise space

2.3 Gaussian Process Classification

Gaussian processes (GPs) provide a Bayesian, kernelised framework for solving
both regression and classification problems. As an in depth explanation of GPs is
beyond the scope of this paper, we refer the reader to [13] for a more theoretical
treatment. Briefly, however, a GP (essentially a multivariate Gaussian) forms
the prior on the value of a latent function f . For binary classification, the value
of the latent function is linked to the probability of being in class y, y ∈ {−1,+1}
by a sigmoidal function. The GP is parameterised by a mean function μ(x) and
a covariance kernel function k(x,x′) where x is a feature vector, whose elements
represent voxel values in this case.

p(f(x), f(x′) ∼ N (m,K), wherem =
[

μ(x)
μ(x′)

]
,K =

[
k(x,x) k(x,x′)
k(x′,x) k(x′,x′)

]
(2)
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For classification, the non-Gaussian link function means that the posterior is
also non-Gaussian so an approximation made be used. We make use of expecta-
tion propagation (EP) [17] as an approximation.

The GP prior is a function not only of the data but also of any hyperpara-
meters θ that specify the form of the prior. We trained the GP by tuning the
values of these hyperparameters to maximise the log likelihood of the training
data, which can be done with standard gradient based optimisation algorithms.
Once the hyperparameters have been set, predictions on unseen data are made
by integrating across this optimised prior.

2.4 Gaussian Processes as Multimodal Kernel Methods

As Eq. 2 implies, GP classification belongs to the family of kernel methods. Hence
a positive sum of valid kernels is a valid kernel, and a valid kernel multiplied
by a positive scalar is also a valid kernel. The covariance between the ith and
jth subject, Kij , is a kernel function k of the feature vectors for the ith and
jth subject xi and xj and hyperparameters θ. For ARKs, the final kernel K
is the weighted sum of 83 linear subkernels, each of which in turn is the dot
product between the voxels within a particular anatomical region of the ith and
jth image. These regions are defined using masks for each label derived from the
groupwise atlas. This is illustrated in Fig. 2.

Fig. 2. Construction of anatomical regional kernels

The covariance hyperparameters are the weights of the subkernels α and bias
term β, so the final kernel value K is given by

Kij = k(xi,xj) = β +
83∑

r=1

αr(xi,r · xj,r) (3)

where r indexes regions 1 to 83 and β is a bias term. There are thus 84 covari-
ance hyperparameters: θcov = (α1, α2, . . . , α83, β). All the above calculations are
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carried out within the GPML toolkit2, modified to take precomputed kernel
matrices.

3 Results

We performed binary classification of all subjects as HC or AD. To generate
results, we use a leave-one-out cross validation (LOOCV) across the entire set
of 627 subjects. For the ARK formulation described above, the feature vectors x
consist of voxel level data. For the purposes of comparison to existing methods,
we also deploy two more conventional methods related to those introduced, rep-
resenting opposite ends of the tradeoff between detail and use of prior anatomical
information discussed in the introduction:

‘voxels’ method: This again uses voxel level data for the whole brain. However
this is just used with a single kernel for the whole brain and no use of the
atlas or anatomical prior information.

‘regions’ method: In place of voxel GM densities, this method takes the total
GM volumes of each region as its features. These are normalised by the
intra-cranial volume to control for variability in head size. The resulting
feature vectors, of much lower dimensionality than either ARK or the voxels
methods, are then used to build the single kernel.

3.1 Binary Accuracy

We compare the three methods by thresholding predicted probabilities at 0.5 and
comparing to ground truth labels for HC or AD status. The resulting sensitivity,
specificity and accuracy are shown in Table 2. We also show the area under the
ROC curve (AUC), and a p-value for difference in accuracy with McNemar’s
test. The ARK formulation displays a greater accuracy and AUC then both
competing methods. While the advantage over the voxels method is substantial,
we do not quite have enough subjects and thus statistical power to show that
it or the smaller advantage over regions is significant. We can, however visualise
the effect of the ARK formulation across all the individual predictions.

Table 2. Binary accuracy summary

Method Sens (%) Spec (%) Acc (%) p vs ARK for acc AUC

ARK 80.9 92.6 87.9 – 0.937

Voxels 73.7 93.9 85.8 0.166 0.914

Regions 80.1 91.0 86.6 0.409 0.9275

2 http://www.gaussianprocess.org/gpml/code/matlab/doc/.

http://www.gaussianprocess.org/gpml/code/matlab/doc/
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3.2 Individual Predictions

Figure 3 shows the difference in predicted p(AD) between ARKs and each com-
peting method for all subjects. Results are colour-coded so AD subjects are
shown in red and HC ones in blue, and sorted by the value of the p(AD) for
the competing method. Hence blue (HC) subjects will be represented by a line
extending left from the baseline, and red (AD) subjects by a line extending right,
if ARKs improve the baseline classification. The plots also show how most sub-
jects are correctly classified: The AD subjects mostly occupied the right hand
side of the plots (p(AD) > 0.5) and the HC ones the left side of the plots.

Fig. 3. Effects of ARKs on predictions for individual subjects

3.3 Interpretation of Hyperparameters

The optimised weights α tell us about the importance of the corresponding
regions in the classification, and hence in AD. For each of the 627 sets of α, we
normalise α so they represent a fraction of the total weight, than average each
normalised weight across all folds. Only 14 regions have weights of more than
1 % of the total, shown in Fig. 3. These include temporal lobe regions frequently
implicated in AD in studies such as [18], as well as the GM tissue adjacent to
the temporal horn of the left lateral ventricle, which will be very sensitive to
expansion of the horn. However, other structures much more widely distributed
across the brain are also important in the classification, suggesting that atrophy
may more quite widespread. The largest weight value is given to the right nucleus
accumbens, and the left nucleus accumbens and right caudate are also given
large weights, which may be a result of recently identified AD related atrophy
in deeper structures [19] (Fig. 4).
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Fig. 4. Maps of regions with more than 1 % of total weight

4 Discussion

Our results show that ARKs successfully combine voxel level data with prior
anatomical knowledge, offering a substantial accuracy improvement compared
to voxel level data alone, and also offer a smaller improvement over features
based on predefined regions. We are also able to show the improvements ARKs
bring to individual subjects. Moreover, the kernel weights enhance model inter-
pretability by showing new regions which may be involved in the AD process.
The chief disadvantage of ARKs is speed of classifier training, due to the high
dimensionality of the data and the large number of hyperparameters; however
this is largely compensated for by the use of modified software that uses pre-
computed (sub)kernel matrices.

The method is quite general, and could also be applied to any type of training
data where low level features and a parcellation are available in a common space,
for example voxelwise cortical thickness data and a cortical atlas.
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Abstract. With the development of advanced image acquisition and
processing techniques providing better biomarkers for the characteri-
zation of brain diseases, automatic classification of biomedical imaging
becomes an important field in research. Since brain neural network is
one of the most complex network, graph theory constitutes a promis-
ing approach to characterize its connectivity properties. In this work, we
applied this technique to diffusion tensor imaging data acquired in mul-
tiple sclerosis (MS) patients in order to classify their clinical forms. Sup-
port Vector Machine (SVM) algorithm in combination with graph ker-
nel were used to classify 65 MS patients in three different clinical forms.
Results showed high classification performances using both weighted and
unweighted connectivity graphs, the later being more stable, and less
dependent to the pathological conditions.

Keywords: Multiple sclerosis · SVM · Graph kernel · Clinical classifi-
cation · Structural connectome

1 Introduction

Complex network analysis allows to describe highly structured data, simply
through a geometric representation [1]. Such models have been used to study
social behaviors [2], and have recently opened new perspectives in neuroscience,
to study functional and structural brain connectivity using graph-derived met-
rics [3]. On one hand, analysis of the neural connections by functional mag-
netic resonance imaging (fMRI) provides networks, where nodes are active func-
tional regions and links correspond to temporal functional correlations. This
new approach gave the opportunity to characterize either cognitive impairments
or pathological alterations caused by different brain diseases including Multi-
ple Sclerosis (MS) [4,5]. On the other hand, brain structural connectivity based
c© Springer International Publishing Switzerland 2015
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on diffusion tensor imaging (DTI) data can be described using graph theory
methods. Such structural networks are described by nodes, corresponding to
segmented cortical regions, and links, reconstructed by tractography [6] from
white matter (WM) fibers-tracts. Since structural connectome provides a fine
description of anatomical connections between different cortical areas that could
be modified by local [7] and/or diffuse [3] pathological mechanisms occurring
in brain diseases such as MS. Thus, graph analysis provides a potential tool to
better characterize MS disease and extract new brain biomarkers. Indeed, patho-
logical events occurring in brain of MS patients constitute a rich source of open
problems for image processing. This includes for instance, lesions segmentation
algorithms [8], WM fiber-bundles analysis [9], new acquisition models [10] and
others automatic algorithms.
Multiple sclerosis is the most frequent disabling neurological disease in young
adults with a national prevalence of 95/100 000 in France [11]. MS is a demyeli-
nating, inflammatory, chronic disease of the central nervous system. Disease
onset is characterized by a first acute episode called clinically isolated syndrome
(CIS), that evolves either into a relapsing-remitting (RR) course in about 85%
of cases or into a primary progressive (PP) course in the remaining 15% of
cases. RR patients will evolve into a secondary progressive (SP) course after
several years. Today’s neurologist challenge is to predict the individual patient
evolution and response to therapy based on the clinical, biological and imaging
markers available from disease onset. In this work, we will focus on the classi-
fication of MS patients in different groups of clinical forms. For the first time,
we will try to solve this prognostic question using a computer-based method.
Due to the unknown etiology of MS and the variability of the patients’ clini-
cal history, “model base” approaches are not suitable. This limitation could be
overcome using “data-driven” approaches based on machine learning algorithms.
Therefore, we propose a new fully automated method based on support vector
machine (SVM) algorithm to classify MS clinical forms using patients structural
connectivity information.

This paper is structured as follows. In Sect. 2, we provide a detailed descrip-
tion of our approach. In Sect. 3, we present the classification results. In Sect. 4
we discuss our results. Finally, in Sect. 5, we draw our conclusions.

2 Proposed Approach

2.1 Brain Structural Connectivity Graph

The connectivity graph of each subject was obtained by merging three different
step. First, cortical and sub-cortical parcellation was obtained from T1-weighted
MR images using FreeSurfer [12]. The obtained segmentation was used to label
each voxel in one of the five tissue-type (cortical grey matter (GM), sub-cortical
GM, WM, cerebrospinal fluid (CSF) and abnormal appearing tissue), and then,
define the graph nodes. Second, pre-processing of diffusion images included cor-
rection of Eddy-current distortions [13] and skull stripping. Third, main diffusion
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directions were estimated in each voxel using MRtrix spherical deconvolution
algorithm [14]. Spherical harmonic (order of Lmax = 4) was used to estimate
both response function and orientation distribution function (ODF). Probabilis-
tic streamline tractography algorithm [14] was applied to generate fiber-tracks
in voxels labeled as WM voxels.

Fig. 1. Illustration showing the different steps of graph construction: (A) T1 and dif-
fusion weighted MR images are used to generate cortical parcellation and fiber trac-
tography (B), which are combined to generate connectivity matrix (C).

Symmetrical connectivity matrix A ∈ N
q×q
+ was then generated for each

subject through the combination of GM segmentation and WM tractography. A
schematic representation of graph construction steps is shown in Fig. 1. Let ai,j

with 1 ≤ i, j ≤ q be an element of A, then ai,j = Ψ(i, j), where Ψ : N2
1 → N

denotes the number of fibers connecting the node i with the node j. The obtained
connectivity matrix A is the representation of the weighted undirected graph
G = (V,E, ω) where V (|V | = q) is the set containing the segmented GM brain
regions, E is the graph edges set defined as:

E = {{i, j} | Ψ(i, j) > 0 ∀ 1 ≤ i, j ≤ q}
and ω : E → Ψ(E) is the weighted function that assigns at each edge e ∈ E its
weight. Roughly speaking this function is the same as Ψ but it is defined only
on the element of the edges set E.

Starting from the weighted undirected graph G = (V,E, ω), we can generate
an unweighted undirected graph G

′
= (V

′
, E

′
) containing only the strongly

connected regions respect to a given threshold γ ∈ R[0,1]. The graph binarization
function Υ : G → G

′
performs the following mapping:

V
′
= V

E
′
= L(1, . . . , T ), T =

(q2 − q)γ
2
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where L is the list of graph edges (E) sorted in ascending order of weight.
In other words, the function Υ creates, starting from a weighted graph, an
unweighted graph containing only the T strongest connections of G.

2.2 Classification Using SVM

Support Vector Machines (SVM) are a family of supervised classification algo-
rithms [15]. The idea behind SVM classifier is to find the best hyperplane
to separate data belonging to two different classes. More in detail, let S =
{(x1, y1), . . . , (xn, yn)} be a set of instances where xi ∈ R

m and y ∈ {−1, 1}m, a
“soft margin” SVM classifier is based on the solution of the following optimiza-
tion problem:

minimize
w,b

1
2
‖w‖2 + C

n∑

i=1

εi

subject to yi(wT φ(xi) + b) ≥ 1 − εi, i = 1, . . . , n

εi ≥ 0, i = 1, . . . , n

Where ε is a relaxation variable of the optimization problem and C is the
error penalization constant. The function φ(xi) is mapping the feature vector xi

to an higher dimensional space.
The Lagrangian duality formulation of this problem is:

maximize
α

n∑

i=1

αi − 1
2

n∑

i,j=1

yiyjαiαj〈φ(xi), φ(xj)〉

subject to 0 ≤ αi ≤ C, i = 1, . . . , n
n∑

i=1

αiyi = 0

where αi are Lagrange multipliers. We can rewrite the inner product
〈φ(x), φ(x)〉 as a function K(x, y) = (φ(x)T φ(y)) called kernel. Different ker-
nel functions, mapping input space in higher dimensional space, are described in
literature: polynomial, radial basic function (RBF), sigmoid function and oth-
ers [16]. Since the weighted function ω of the generated graph G is such that
∀e ∈ E ω(e) > 0, no negative loops are present in our graph. Thanks to this
property, it is possible to apply the shortest-path graph kernel described in [17].

3 Classification Results

Sixty-five MS patients (24 males and 41 females, age = 39±7 years (mean±sd))
including 24 RR, 24 SP, and 17 PP were included in this study. Local and
national ethic committee (CPP Sud-Est IV and ANSM) approved this study
and informed consent was collected before subject inclusion. Patients underwent
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a MR examination on a 1.5T Siemens Sonata MR system with an 8-channel
head-coil. The protocol consisted in a 3D T1-weighted sequence, acquired in
the bi-commissural plane (isotropic 1mm3, TE/TR = 4/2000ms), and a 2D-
spin-echo DTI sequence (isotropic 2.5mm3, TE/TR= 86/6900ms; 24 gradient-
directions; b = 1000 s.mm−2). For each patient, the graph connectivity matrix
was calculated using the method described in Sect. 2.1. Eighty-four anatomical
regions were segmented and 500000 fibers were generated. Once all the con-
nectivity matrices were computed and the graphs were generated, two different
classification : first, using the weighted graphs classification (WGC) and second,
the unweighted graphs classification (UGC). In case of UGC, the classification
was performed using different threshold values γ. For each task, three different
two-class classification (“RR vs PP”, “RR vs SP”, “PP vs SP”) and one multi-
class classifications (“RR vs PP vs SP”) were performed using SVM with graph
kernel. Generalization of classification performances was ensured by K-Fold cross
validation [18] using leave-one-out criterion. The performances of both WGC and
UGC were evaluated by calculating accuracy, precision and F-Measure [19] as
reported in Table 1.

Table 1. Classification results using weighted (WGC) and unweighted (UGC, γ = 0.75)
graphs.

RR vs PP RR vs SP PP vs SP RR vs PP vs SP

WGC UGC WGC UGC WGC UGC WGC UGC

Accuracy (%) 82.9 68.3 64.6 66.7 51.2 70.7 35.4 47.7

Precision (%) 84.4 68.1 64.8 66.7 52.9 70.7 34.4 48.4

F-Measure (%) 80.3 68.1 64.6 66.7 51.5 70.7 33.7 47.5

The first classification task using the WGC reached the highest performance
for “RR vs PP” classification with a F-Measure of 80.3%. In contrast, the worst
performance was obtained classifying “RR vs PP vs SP” with a F-Measure of
33.7% (which is under the uncertainty level).
Results obtained by the second classification task using UGC for different γ
values are illustrated in Fig. 2. The F-Measure values showed a large variability
in the classification performances for γ < 0.75. In contrast, better performances
and a greater stability were obtained for high threshold values (0.75 ≤ γ ≤ 1).
In this range of γ values, UGC of “RR vs SP” and “PP vs SP” reached better
performances than WGC, while WGC of “RR vs PP” remained better than UGC
(Table 1). Similarly to the WGC, the multi-class UGC task (“RR vs PP vs SP”)
showed the worst performance with a F-Measure of 47.5% (γ = 0.75). When
comparing the average classification performances, no significant differences were
found between WGC and UGC. While the performances of the two-class WGC
are highly variable (sd(F-measure)= 12.6), especially for “RR vs PP” and “PP
vs SP” classifications, UGC results showed a lower variability (sd(F-Measure)=
1.7).
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Fig. 2. Variations of F-Measure of unweighted graph classification with γ threshold
values varying from 0 to 1.

4 Discussion

Similar average performances were obtained between the three clinical classifi-
cations using WGC and UGC. However, a large variability in performances was
observed between the two-class clinical classifications when using WGC. In con-
trast, the performances of UGC for γ > 0.75 were lower than WGC but similar
in between the two-class classifications.

From a methodological point of view, the two classification tasks, namely
WGC and UGC, differ by the lost of knowledge concerning the number of fibers
between edges in UGC due to binarization. This methodological difference may
explain the better performances obtained with WGC compared to UGC when
classifying “RR vs PP” and suggest that the fibers number plays a significant
role in the classification. RR and PP are both starting clinical forms of MS,
that are characterized by very different pathological processes. RR patients are
subject to remitting focal lesions mainly due to inflammatory processes while
PP patients are subject to diffuse and progressive degenerative mechanism [20].
These neurodegenerative processes lead to severe axonal loss that is concordant
with the poor clinical status of PP patients. Thus, the greater fiber loss occurring
in PP patients compared to RR patients may lead to a significant difference in
fibers number distribution which can help the WGC to discriminate RR from PP
clinical forms. Nevertheless, this finding may also reflect a limitation of tractog-
raphy algorithms to reconstruct short associative fibers, particularly in presence
of diffuse WM tissue damages occurring in PP forms.

In summary the WGC provides, in average, equal performance compared to
UGC. However, WGC is associated with a large variability of its performances
between the three clinical classifications. Fortunately these limits, could be over-
come by using the UGC method. Indeed, despite the information reduction due
to thresholding, the SVM algorithm in combination with graph kernel allows to
classify MS patients with acceptable performances.
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5 Conclusion

In this paper, we proposed a graph-based method to classify MS patients accord-
ing to their clinical forms. Graph theory was applied to describe brain network
topology and SVM classification was performed using weighted and unweighted
graphs. The main result of this study showed that the use of “data-driven”
methods like machine learning algorithm are suitable in environments where it
is difficult to build a descriptive model like in MS disease. Moreover, the high
performances obtained when classifying “RR vs PP”, the two starting MS clin-
ical forms, make our method a potential tool to allow a better prediction of
disability progression in MS patients.

In conclusion, SVM classifiers based on sensitive and global image biomark-
ers, such as structural graphs based on DTI data, may constitute a new and
sensitive tool for brain disease classification.
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Abstract. Neurodegenerative pathologies, such as Alzheimer’s disease,
are linked with morphological alterations of subcortical structures which
can be assessed from medical imaging and biological data. Recent
advances in machine learning have helped to improve classification
and prognosis rates. We present here a classification framework for
Alzheimer’s disease which extracts triangulated surface meshes from
segmented binary maps in MRI, and establishes reliable point-to-point
correspondences among a population of hippocampus 3D surfaces using
their spectral representation. Morphological changes between groups are
detected using a manifold learning algorithm based on Grassmannian
kernels in order to assess similarity between shape topology in control
normals and patients. A second manifold using discriminant embeddings
is then generated to maximize the class separability between three clinical
groups recognized in dementia. We test the method to classify 47 subjects
with Alzheimers Disease (AD), 47 with mild cognitive impairment (MCI)
and 47 healthy controls enrolled in a clinical study. Classification rates
compare favorably to standard classification methods based on SVM and
traditional manifold learning methods evaluated on the same database.

1 Introduction

Alzheimer’s disease (AD) is the most common form of dementia, with an inci-
dence that doubles every five years after the age of 65 [2]. As life expectancy
increases, the number of AD patients increases accordingly, which causes a heavy
socioeconomic burden. It is expected that treatment decisions will greatly benefit
from diagnostic and prognostic tools that identify individuals likely to progress
to dementia sooner. This is especially important in individuals with mild cogni-
tive impairment (MCI), who present a conversion rate of approximately 15 % per
year. Towards this end, neuroimaging datasets for AD including magnetic res-
onance imaging (MRI) and other types of biomarkers have shown considerable
promise to detect longitudinal changes in subjects scanned repeatedly over time
[13], by offering rich information on the patients morphometric and anatomi-
cal profiles. Their use stems from the premise that longitudinal changes may be

c© Springer International Publishing Switzerland 2015
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more reproducible and more precisely measured with MRI and other parameters
such as in clinical scores, cerebrospinal fluid (CSF), or proteomic assessments.

A number of studies reported structural changes in the hippocampus,
parahippocampal gyrus, cingulate, and other brain regions in both MCI and
AD patients [12]. Other studies have used intensity information to discriminate
elderly normal controls (NC) with patients inflicted with AD or mild cognitive
impairment (MCI), based on T1-weighted MRI [6]. Previous machine learning
algorithms using MRI were based on traditional morphometric measures, such as
subcortical volume or shape descriptors of brain structures [3] and their change
over time [5]. These were based on finding a low-dimensional representation of
complex and high-dimensional data using principal component analysis (PCA)
and multidimensional scaling (MDS). However these methods are typically lin-
ear, making it easy to transform data from image space into the learned subspace,
but lacks the ability to process irregular or abnormal structures, which tend to
follow non-linear patterns of variation. To cope with this limitation, manifold
learning methods on the other hand tend to better model highly non-linear
data, such as from neuroimaging datasets [1]. Recently, discriminant embed-
dings exploit within and between-class similarities to establish correspondences
between disparate data, thereby offering a more accurate relationship of subtile
structural alterations in AD.

The objective of this study is to propose a classifier which distinguishes NC
subjects from patients with MCI and patients afflicted with AD. First, seg-
mented hippocampus shapes from MRI are matched between each other using
a spectral representation of the 3D mesh surface of the sub-cortical surface in
order to have one-to-one vertex correspondences between hippocampus shapes
throughout a population. Once a training set of hippocampus shapes is created
for three clinical relevant groups (NC, MCI, AD), a discriminant manifold based
on Grassmannian kernels is trained to maximize the separation between these
three groups and improve the classification accuracy for any unseen MRI, which
can be processed by mapping the segmented hippocampus onto the trained man-
ifold. The main contribution of this paper is to develop a hippocamus classifi-
cation approach based on their spectral representation which is classified in the
Grassmannian space.

2 Methods

2.1 Hippocampus Shape Alignment

In the first step, segmented binary masks obtained from diagnostic T1-weighted
MRI are processed to the same image orientation and isotropic voxel sizes, and
then converted into 3D triangulated surfaces using the marching cube algorithm.
A Gaussian smoothing process is subsequently applied on each surface in order to
remove surface irregularities. Then, a reference surface is defined in an iterative
process, and all triangulated surfaces are aligned to this reference using a rigid
registration algorithm. In order to establish the point-to-point correspondences
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across all surfaces, each mesh is matched to a randomly selected reference surface
using a spectral matching algorithm as proposed in [8].

The matching between two surfaces Si and Sj of the hippocampus from two
separate subjects is conducted in a two-step process. In the first step, an ini-
tial transformation is calculated between the two surfaces, followed by a second
step to establish a smooth map between the two meshes based on a diffeomor-
phic mapping [7]. First, the spectrums of the meshes Si and Sj are computed
according to spectral representation theory. Meshes are described by their prin-
cipal eigenmodes following an eigendecomposition of their respective Laplacian
matrix L. In order to add robustness to the feature matching process, the mean
curvature at each point of the mesh defined as C(i) = 0.5 ∗ (Cmin + Cmax)
are calculated, where the principal curvatures Cmin and Cmax are estimated as
the minimum and maximum curving degrees of a mesh S, respectively. Hence,
the mean curvature of C is computed as {C(1), C(2), · · · , C(n)}, where n is the
number vertices. We incorporate these features in the weighting of the nodes of
the spectral graph G by computing the exponential of the mean curvature, and
defining the graph Laplacian as L̃ = GL, where

G = P−1(exp(diag({C(1), C(2), · · · , C(n)})))−1 (1)

and P is the diagonal node degree matrix integrating distance weights. Once
meshes are described in the spectral domain, the first e eigenvectors associated
with non-zero eigenvalues are chosen to define the spectral representations S̃i and
S̃j . After reordering and sign adjustment [7] of the resulting spectrums S̃i and S̃j ,
we perform non-rigid alignment of the spectral coordinates using Coherent Point
Drift (CPD) [9]. The CPD approach finds a continuous transformation between
the surfaces S̃i and S̃j in the spectral domain. Once the two spectral representa-
tions are aligned, the point-by-point correspondences between two meshes could
be directly established in the Euclidean space, such that the two closest points
in the spectral domain are considered as corresponding points in the Euclidean
space. Thus, the correspondence map c between Si and Sj is established with a
simple nearest-neighbor search in spectral domain.

It was shown in [8] that incorporating extra features might create disconti-
nuities in the correspondence map c. As a solution, a diffeomorphic matching is
applied to find the final map between two shapes. This is obtained by defining
an association graph composed of the set of vertices and edges, based on the
initial set of correspondence links. The graph Laplacian operator is applied on
the resulting graph, followed by a spectral decomposition to produce a shared
set of eigenvectors, from which the first and last eigenvalues are used to obtain
one-to-one vertex correspondences between the mesh vertices. This procedure is
repeated for all training meshes in the three groups of the database, with (1)
normal controls, (2) MCI patients and (3) AD patients.

2.2 Learning the Discriminant Grassmannian Manifold

Manifold learning algorithms are based on the premise that data are often of
artificially high dimension and can be embedded in a lower dimensional space.
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However the presence of outliers and multi-class information can on the other
hand affect the discrimination and/or generalization ability of the manifold.
We propose to learn the optimal separation between three classes (1) normal
controls, (2) MCI patients and (3) AD patients, by using a discriminant graph-
embedding based on Grassmannian manifolds for the classification problem ini-
tially proposed in [4]. Each sample mesh surface S, which vertices has been
rearranged using the alignment method in 2.1, can be viewed as the set of low-
dimensional m subspaces of Rn on a Grassmannian manifold and represented by
orthonormal matrices, each with a size of n×m, with n the higher dimensionality
of vertices defined earlier. Two points on a Grassmannian manifold are equiv-
alent if one can be mapped into the other one by a m × m orthogonal matrix.
In this work, similarity between two surfaces (Si, Sj) on the manifold is mea-
sured as a combination of projection and canonical correlation Grassmannian
kernels Ki,j defined in the Hilbert Space. By describing different features of the
hippocampus shape with each kernel, Ki,j can improve discriminatory accuracy
between shapes.

In order to effectively discover the low-dimensional embedding, it is necessary
to maintain the local structure of the data in the new embedding. The structure
G = (V ,W ) is an undirected similarity graph, with a collection of nodes V con-
nected by edges, and the symmetric matrix W with elements describing the rela-
tionships between the nodes. The diagonal matrix D and the Laplacian matrix
L are defined as L = D − W , with D(i, i) =

∑
j �=i W ij∀i. Here, N labelled

points S = {(Si, ci)}Ni=1 are generated from the underlying manifold M, where
ci denotes the label (NC, MCI or AD). The task at hand is to maximize a mea-
sure of discriminatory power by mapping the underlying data into a vector space,
while preserving similarities between data points in the high-dimensional space.
Discriminant graph-embedding based on locally linear embedding (LLE) [11] uses
graph-preserving criterions to maintain these similarities, which are included in a
sparse and symmetric N × N matrix, denoted as M .

Within and Between Similarity Graphs: In our work, the geometrical struc-
ture of M can be modeled by building a within-class similarity graph W w for
hippocampus of the same group and a between-class similarity graph W b, to sep-
arate hippocampus from the three classes. When constructing the discriminant
LLE graph, elements are partitioned into W w and W b classes. The intrinsic
graph G is first created by assigning edges only to samples of the same class
(ex: MCI). The local reconstruction coefficient matrix M(i, j) is obtained by
minimizing:

min
M

∑

j∈Nw(i)

‖Si − M(i, j)Sj‖2
∑

j∈Nw(i)

M(i, j) = 1 ∀i (2)

with Nw(i) as the neighborhood of size k1, within the same region as point i (e.g.
hippocampus from MCI patient). Each sample is therefore reconstructed only
from 3D meshes of the same clinical group. The local reconstruction coefficients
are incorporated in the within-class similarity graph, such that the matrix W w

is defined as:
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Ww(i, j) =

{
(M + MT − MTM)ij , if Si ∈ Nw(Sj) or xj ∈ Nw(Si)
0, otherwise.

(3)

Conversely, the between-class similarity matrix W b depicts the statistical prop-
erties to be avoided in the optimization process and used as a high-order con-
straint. Distances between healthy and pathological samples are computed as:

Wb(i, j) =

{
1/k2, if Si ∈ Nb(Sj) or Sj ∈ Nb(Si)
0, otherwise

(4)

with Nb containing k2 neighbors having different class labels from the ith sample.
The objective is to transform points to a new manifold M of dimensionality d,
i.e. Si → yi, by mapping connected samples from the same group in W w as close
as possible to the class cluster, while moving NC, MCI and AD meshes of W b

as far away from one another. This results in optimizing the objective functions:

f1 = min
1
2

∑

i,j

(yi − yj)2Ww(i, j) f2 = max
1
2

∑

i,j

(yi − yj)2Wb(i, j) (5)

Supervised Manifold Learning: The optimal projection matrix, mapping
new points to the manifold, is obtained by simultaneously maximizing class
separability and preserving interclass manifold property, as described by the
objective functions in Eq.(5). Assuming points on the manifold are known
as similarity measures given by the Grassmannian kernel Ki,j , a linear solu-
tion can be defined, i.e., yi = (〈α1, Si〉, . . . , 〈αr, Si〉)T for the r largest eigen-
vectors with αi =

∑N
j=1 aijSj . Defining the coefficient Al = (al1, . . . , alN )T

and kernel K i = (ki1, . . . , kiN )T vectors, the output can be described as
yi = 〈αl, Si〉 = AT

l K i. By replacing the linear solution in the minimization
and maximization of the between- and within-class graphs, the optimal projec-
tion matrix A is acquired from the optimization of the function as proposed
in [4]. The proposed algorithm uses the points on the Grassmannian manifold
implicitly (i.e., via measuring similarities through a kernel) to obtain a map-
ping A. The matrix maximizes a quotient similar to discriminant analysis, while
retaining the overall geometrical structure. Hence for any new segmented surface
mesh Sq, a manifold representation can be obtained using the kernel function
based on Sq and mapping A.

3 Experiments and Results

We used the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database with
1.5 or 3.0 T structural MR images (adni.loni.usc.edu). For this study, a subset
of baseline 1.5 T MR images is used including 47 normal controls (NC), 47 AD
patients, and 47 individuals with MCI. The three groups are matched approxi-
mately by age and gender (NC with a mean age of 76.7 ± 5.4, 23 male; AD with
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(a)

(b)

Fig. 1. (a) Distance maps of left and right hippocampal shape deformations in AD
patients compared with normal controls. (b) Distance maps of left and right hippocam-
pal shape deformations in MCI patients compared with normal controls.

a mean age of 77.4±7.2, 21 males; MCI with a mean age of 75.0±6.9, 28 males).
Additional post-processing steps were performed on the MR images to correct
certain image artifacts and to enhance standardization across sites and plat-
forms. The post-processing steps include gradient non-linearity correction, inten-
sity inhomogeneity correction, bias field correction, and phantom-based geomet-
rical scaling to remove calibration errors. Here, we use these processed images.
Left and right hippocampi were segmented using FSL-FIRST automatic seg-
mentation [10] and visual inspection was performed on the output binary masks
to ensure the quality of the segmentation. Figure 1 shows the shape differences
in the left and right hippocampus between NC, MCI and AD.

The optimal size was found at k1 = 7 for within-class neighborhoods (Nw),
and k2 = 4 for between-class neighborhoods (Nb). The optimal manifold dimen-
sionality was set at d = 5, when the trend of the nonlinear residual reconstruction
error curve stabilized for the entire training set. Figure 2 shows the resulting
manifold with embedded hippocampus shapes which can be clearly identified
into three separate groups, due to the discriminative nature of the framework.
Table 1 presents accuracy, sensitivity and specificity results for SVM (nonlinear
RBF kernel), LLE and the proposed method between three clinically relevant
pairs of diagnostic groups (NC/AD, NC/MCI, MCI/AD). The classifier perfor-
mance was obtained by repeating 100 times a random selection of samples, using
75 % of the data for training and 25 % for testing in each run. Results show a sig-
nificant improvement using the discriminant manifold embedding compared to
standard approaches. It also illustrates that increased accuracy can be achieved
using the discriminant embedding with combined kernel (α1 = 1, α2 = 5), which
suggests the benefit of extracting complementary features from the dataset for
classification purposes compared to different types of classification models (SVM,
LLE).
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Fig. 2. Resulting manifold embedding with low-dimensional coordinates of samples
points taken from the NC, MCI and AD groups.

Table 1. Classification results for the classification of NC, MCI and AD patients from
segmented hippocampal regions. We compare a standard SVM classification approach,
with a single LLE method and the proposed discriminant LLE method.

NC/AD NC/MCI MCI/AD All groups

SVM LLE DLLE SVM LLE DLLE SVM LLE DLLE SVM LLE DLLE

Sensitivity tp/(tp+fn) 0.75 0.84 0.90 0.58 0.61 0.69 0.50 0.57 0.60 0.61 0.67 0.73

Specificity tn/(tn+fp) 0.69 0.77 0.85 0.62 0.70 0.77 0.57 0.61 0.67 0.62 0.69 0.77

Overall accuracy 0.72 0.79 0.88 0.60 0.65 0.72 0.54 0.58 0.65 0.62 0.67 0.74

4 Conclusion

Our main contribution consists in describing morphometric variations of the
hippocampus in a discriminant nonlinear graph embedding with Grassmannian
manifolds to detect the presence of Alzheimer’s disease. A spectral matching
process based on the eigendecomposition of the Laplacian matrix of hippocam-
pus shapes extracted from a dataset of MRI images enabled to establish one-
to-one correspondences in mesh vertices. This is critical to construct a reliable
training set of sub-cortical shapes from various pathological groups and normal
controls. A manifold embedding including intrinsic and penalty graphs measur-
ing similarity within clinical relevant groups and between NC, MCI and AD
patients, respectively, was trained to differentiate between the different hip-
pocampus shapes. A combination of canonical correlation kernels creates a sec-
ondary manifold to simplify the deviation estimation from normality, improving
detection of pathology compared to standard LLE. Experiments show the need
of nonlinear embedding of the learning data, and the relevance of the proposed
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method for stratifying different stages of dementia progression. In the context
of Alzheimer’s disease, the method can improve for the early detection of the
disease with promising classification rates based on ground-truth knowledge.
Future work will compare results to volumetric measurements and improve the
deviation metric using high-order tensorization and investigate into fully auto-
mated hippocampus segmentation, as it can affect the precision of the spectral
correspondence process.
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Abstract. This paper addresses the issue of fusing datasets coming from
different imaging protocols or scanners to boost the performance of com-
puter aided diagnostic system. We present novel contributions in the
field of subspace alignment methods that are part of domain adaptation
framework. We first introduce a simple approach based on scaling the
features of the different distribution and accounting for the class infor-
mation. We also extend an unsupervised landmark based approach that
has been recently developed to the supervised setting. These methods
are evaluated in the context of prostate cancer screening based on two
patient MRI databases acquired on different scanners. We demonstrate
promising performance of the scaling based method when both databases
contain similar number of annotated samples, and stable performance of
the landmark based method even with unbalanced datasets.

Keywords: Transfer learning · Computer-aided detection system

1 Introduction

Computer-aided diagnosis (CAD) has become a major research subject in differ-
ent domains of cancer imaging to assist radiologists during their diagnostic task
by providing information on the location and characterization (malignancy score)
of suspicious regions of interest. These algorithms learn a multiclass (mostly
binary) decision model in a multidimensional feature space based on training
samples from the different classes of interest. Diagnostic performance of such
decision support systems is highly impacted by the quality of the training data-
base that should contain a large number of correctly annotated cases of all
classes. Such a condition is not easily met in clinical practice. First, images
might not be acquired from the same imaging protocols or the same scanner
model. This point is especially true with the current trend to perform multi-
centre studies. Moreover, manual labelling is time-consuming, so that most of
the datasets may contain only a restricted number of annotated data. One way
to handle heterogeneous data is to learn a unique classifier from the pooled
c© Springer International Publishing Switzerland 2015
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databases [1]. This, however, is likely to violate the standard supervised learn-
ing assumption that the training and test data come from the same statistical
distribution and may lead to poor classification performance. One promising
alternative is to investigate how transfer learning can adapt to this problem,
specifically regarding two scenarios encountered in the clinical practice. The
first situation happens when one wants to classify new target data originating
from a different imaging protocol than that used to generate the original CAD
training database. In that case, this original training database, referred to as the
source domain, contains a large number of annotated samples, while the new
dataset, referred to as the target domain, is composed of limited annotated sam-
ples. This situation directly fits the methodological framework of transductive
transfer learning. The second case assumes that each database (from the source
or target domain) contains a sufficient number of annotated data to build a sep-
arate classifier, but one wants to efficiently learn across these two domains. The
question is how to boost the diagnostic performance that would be achieved by
any of the CAD scheme trained on each domain separately, or on the pooled
source and target databases. In this paper, we address the second case study by
proposing two novel contributions in the field of subspace alignment methods
that are part of domain adaptation, and comparing their performance with that
of Adaptive SVM [2]. The medical context is that of prostate cancer screening
based on multiparametric magnetic resonance imaging (mp-MRI). We recently
achieved promising results with a CAD system that generates probability maps
of malignancy based on the combination of a series of statistical, structural and
functional features extracted from three MR sequences (T2, ADC and DCE) and
an SVM classifier [3,4]. This system was trained over a clinical database consist-
ing of 35 patient mpMRI exams acquired on a 1.5 T MR scanner. This scanner
was recently replaced by a 3T machine, so that the patients database now aggre-
gates 22 exams produced with a similar imaging and annotation protocol but on
a 3T scanner.

Transfer learning has received a recent but increasing interest in the med-
ical imaging community, for automated segmentation of MR neuroimaging [5],
electron microscopy data [6], or classification of multimodality neuroimaging
data [7,8]. As far as we know, these methods have not been applied yet to the
challenging question of adapting labeled source and target domains to boost
CAD diagnostic performance. This paper is organized as follows: Sect. 2 gives
some background knowledge on transfer learning as well as recent developments
in the field of subspace alignment methods. The two novel contributions are
described in Sect. 3. Section 4 presents the experiments that were carried out on
the two MRI databases to evaluate the achievable diagnostic performance based
on these methods compared with that achieved without adaptation or with the
Adaptive SVM. The results and discussion are given in the last section.

2 Background

Domain adaptation is a specific part of transfer learning in which we have two
domains with an underlying distribution mismatch but lying in the same feature
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space and corresponding to the same learning task. In the context of domain
adaptation, there are two main settings, the unsupervised domain adaptation in
which we only have access to big amount of labeled data from the source domain
(the different distribution) but no labeled examples from the target domain. The
other setting, is the semi supervised domain adaptation where there exists few
labeled samples from the target domain in addition to the labeled samples of
the source domain.There are different approaches to tackle this semi supervised
adaptation problem, the simplest approach is the feature augmentation where
each feature in the original space is mapped to an augmented space by duplicat-
ing the feature vector [9]. Another approach is the manifold learning that aims
at finding a lower dimensional latent space and then aligns the two embedding
subspaces [10]. A third approach represents the SVM based adaptation methods
by either learning a target classifier that is close to the previously learned source
classifier [2] or by training the SVM on all the samples from the two domains
while giving less weights to those from the source domain [11]. In this work,
we introduce a new simple approach that is based on finding a mapping of the
source distribution to the target distribution in a semi supervised manner. We
also suggest an extension to state of the art method on unsupervised domain
adaptation called landmarks based subspace alignment [12] by making use of
the available labeled examples from the target through the selection procedure
of the landmarks. Furthermore, we compare these two methods with the Adap-
tive SVM [2] that has been used recently in the context of medical images [5]
and shows a good performance. In the following, we explain each of the three
approaches and finalize by comparing their performance on MRI prostate cancer
dataset.

3 Methods

In the following methods, we deal with the case of domain adaptation in which
we have a source dataset drawn from a distribution DS and target dataset drawn
from a different distribution DT . The aim is to find a classifier with a low clas-
sification error on the target domain.

3.1 Adaptive SVM

The main idea is to learn independently an SVM classifier on the source distrib-
ution DS and another SVM classifier on the available labeled samples from the
target distribution DT meanwhile constraining the new classifier to be as close
as possible to the source classifier and in the same time minimizing the classifi-
cation error on the target samples as proposed by Yang et al. [2]. The method
adapts the classifier fS(x) learnt on DS by adding a delta function �f(x):

f(x) = fS(x) + �f(x) = fS(x) + w′x (1)
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In order to learn w, the method minimizes the following objective function:

minw
1
2

‖ w ‖2 +C
N∑

i=1

ξi

s.t. yifS(xi) + yiw
′x ≥ 1 − ξi

ξi ≥ 0
∀(xi, yi) ∈ DT

(2)

Where N is the number of the available target samples. Here the slack vari-
ables ξi have the same role as in regular SVM that is to minimize the classification
error on the target samples. Distinctively, w penalizes the deviation of the new
classifier f(x) from the classifier fS(x) learnt on the source domain.

3.2 Proposed Approach: Source Scaling

Here, we aim at discovering a different simple approach in which we exploit
possible transformation that puts the source samples as close as possible to
the available target samples. This step will give the later learned classifier the
ability to gain possible knowledge from the source dataset combined with the
available target set. Our hypothesis is that the target samples are stemmed from
a feature distribution that has been non uniformly scaled as compared to the
source distribution. This might happen when source and target data originate
from different scanners but almost similar imaging protocols. So, we want to find
a mapping function that moves the source samples closer to the target samples
with respect to their underlying labels. Suppose that we have a source dataset
S = {xp

S1
, .., xp

SKp
} ∪ {xn

S1
, .., xn

SKn
} composed of positive and negative examples

drawn from a marginal distribution DS over X. We also have access to samples
from the target dataset T = {xp

T1
, .., xp

TLp
}∪{xn

T1
, .., xn

TLn
} composed of positive

and negative samples drawn from the marginal distribution DT over X. We want
to find the vectors α = {α1, .., αF } and β = {β1, .., βF } (F is number of features)
that minimize the following equations:

minα ‖ 1
Kp

Kp∑

i=1

α ◦ xp
Si

− 1
Lp

Lp∑

j=1

xp
Tj

‖2 (3)

minβ ‖ 1
Kn

Kn∑

i=1

β ◦ xn
Si

− 1
Ln

Ln∑

j=1

xn
Tj

‖2 (4)

Where ◦ is the Hadamard product (element wise product), Kp and Kn are the
number of positive and negative samples in the source dataset. Similarly, Lp

and Ln are the number of positive and negative available samples in the target
dataset. These equations have a closed form solution which is a scaling factor that
matches the mean of the source distribution and target distribution regarding
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each feature and class label. After obtaining the scaling vectors α and β, we
map the source distributions to a new adapted one in order to minimize the
distributions divergence.

SourceAdapted Dataset = A ◦ Xp
S ∪ B ◦ Xn

S

WhereA = lT α

B = lT β

l = [1, .., 1] of length F

(5)

Xp
S ∈ R

Kp×F and Xn
S ∈ R

Kn×F denote the source positive samples and source
negative samples respectively. The features are normalized after while to have
a zero mean and standard deviation equals to one. Then, we can pool all the
samples from the target and the adapted source together and learn any type of
classifier. This scaling can be easily extended to any number of classes. Addition-
ally, we can run a feature selection step [13] in order to eliminate some features
that may exhibit a large difference and thus not suitable for adaptation.

3.3 Landmarks Based Approach

A third approach will be to visit the source and target samples looking for
possible key points (landmarks) that will maximize the overlapping between the
source and target distributions. This idea has been recently presented by Aljundi
et al. [12] but in unsupervised manner. Here we show how we can use the same
idea in semi supervised manner taking advantage of available labeled target
samples. We first present the unsupervised selection of the landmarks. Having
source samples XS drawn for the source distribution DS and target samples XT

drawn from the target distribution DT , the method looks for possible candidates
in both datasets. For each candidate point c, a mapping of the source data to a
nonlinear feature Φ is performed using a Gaussian kernel:

ΦS(xSi
, c) = exp(− ‖ xSi

− c ‖2 /2s2) (6)

and similarly for the target points:

ΦT (xTj
, c) = exp(− ‖ xTj

− c ‖2 /2s2) (7)

Where s is the width of the kernel.Then, to compute the degree of overlapping
between the two sets ΦS and ΦT , the two distributions are approximated as
normal distributions and summarized by their means and standard deviations
μS , σS , μT , σT . Here the overlapping is estimated by the integral of the dots
products between the two distributions:

∫
N(x | μS , σ2

S)N(x | μT , σ2
T )dx = N(μS − μT | 0, σ2

sum) (8)

overlap(μS , σS ;μT , σT ) =
N(μS − μT | 0, σ2

sum)
N(0 | 0, σ2

sum)
(9)
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Where σ2
sum is the sum of σ2

T and σ2
S . The candidates that give an overlapping

value above a threshold are selected. As the width of the kernel used for choosing
the landmarks is highly related to the candidate itself, the method follows a multi
scale fashion by looping among different values for the kernel width stemmed
from the percentiles of the euclidian distances between the two datasets. The
selected landmarks are then used to project the source and target distributions
in a shared space using a Gaussian kernel. In the original method, there is an
additional subspace alignment step that is performed after while. Here, we focus
on the landmarks selection part that can be extended to the supervised manner.

Supervised Landmarks Selection: Since, we have access to some labeled
target samples, we now show how we can plug this information in the landmarks
selection procedure:
In a similar manner, we loop over the source and target points looking for possible
candidates and map the source and target data to nonlinear feature ΦS(xSi

, c)
and ΦT (xTj

, c) using a Gaussian kernel. Instead of using one normal distribution
to model the source data and target data, we model the positive source data and
negative source data independently N(x | μp

S , σp
S), N(x | μn

S , σn
S) and similarly

for the positive and negative target samples N(x | μp
T , σp

T )), N(x | μn
T , σn

T )). We
estimate the overlapping values between the following pairs: {(target positive
and source positive), (target negative and source negative), (target positive and
target negative), (target positive and source negative) and (target negative and
source positive)}. Then, we use a weighted sum over the overlapping between the
pairs of the same class labels minus the overlapping between pairs of different
labels. The final overlapping value for a given candidate is:

TotalOverlap = 1/2(overlap(μp
T , σp

T ;μp
S , σp

S) + overlap(μn
T , σn

T ;μn
S , σn

S))
−1/3(overlap(μp

T , σp
T ;μn

T , σn
T ) + overlap(μp

T , σp
T ;μn

S , σn
S)

+overlap(μn
T , σn

T ;μp
S , σp

S))
(10)

Then, as in the original method we select the candidates that give an over-
lapping level above a threshold fixed experimentally. Notice that Eq. (10) can be
easily adapted to case of multiple classes.

4 Experiments

A series of experiments was carried out in order to compare the different dis-
cussed approaches in the context of semi supervised domain adaptation. The
source database consisted of 35 patients who underwent mp-MR imaging on
a 1.5T clinical MR scanner (Symphony, Siemens Medical Systems, Germany)
following the protocol described in [4]. Each tumor or suspicious tissue was out-
lined by an expert radiologist over the three MR sequences. The nature of the
tumor as well as its Gleason score characterizing cancer aggressiveness were con-
firmed by an anatomopathologist. The target database consisted of 22 patients
who underwent mp-MR imaging on a 3T clinical MR scanner (Discovery MR750
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Table 1. Comparison of performance between training on target and training on both
source and target regarding the three target sets

Method 2000 DT Samples 5000 DT Samples 10000 DT Samples

Only Target 0.722 0.734 0.737

Target and Source (NA) 0.727 0.735 0.741

Table 2. Performance of the compared methods on different adaptation settings

Method DS+2000 DT Samples DS +5000 DT Samples DS +10000 DT Samples

NA 0.72 0.73 0.74

ASVM 0.71 0.73 0.72

SLA 0.76 0.75 0.75

SC 0.73 0.75 0.76

General Electric Medical Systems, USA) following similar acquisition protocol
described in [14]. We want to show the adaptation performance and the possible
boosting in performance on 3T dataset by using the 1.5T dataset. We first ran-
domly drew 10000 voxels out of the 1.5T data, balancing the number of samples
among the different classes of tissues (normal and cancer lesions of different GL
score). A similar random sampling was performed on the 3T database to produce
3 different subsets, of 2000, 5000 and 10000 samples respectively. Three different
training databases were constructed by pooling the sampled source dataset with
each of the subsampled target sets. The test dataset was the biggest target set
which is composed of 10000 samples. These training and test databases served
to compare the three previously explained approaches which are Adaptive SVM
(ASVM), Supervised Landmarks approach (SLA) and Source Scaling approach
(SC) in addition to the baseline method consisting in combining the samples
from the two different distributions without any adaptation (NA). Cross valida-
tion was used to perform both the adaptation step and the classification with a
linear SVM within the same loop of the leave-one-patient out (LOPO) strategy.
The area under the roc curve, AUC, was used as the performance metric, which
is most suitable in our case due to the unbalancing in the data (The percent of
cancer voxels to the normal tissues). Figure 1 shows, for the different methods, an
example probability map of cancer overlaid a 3T MR T2 transverse of a patient
with two aggressive cancer lesions (GL = 8) in the peripheral zone. The voxels
detected by the methods as normal tissues are shown as transparent. Tables 1
and 2 show the detection performance achieved with the different methods and
considering the different training datasets.

4.1 Results Analysis

Table 1 shows that pooling the source dataset without adaptation doesnt improve
the performance over the use of only the target set. On the other hand, as shown
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Fig. 1. Example transverse slice of a patient with two aggressive cancer lesions. (a)
ground truth pixel labelling of the two lesions, (b) probability map produced by SC
method, (c) probability map produced by SLA method, (d) probability map produced
by ASVM.

in Table 2, the use of domain adaptation methods SLA and SC improved the raw
performance over the different sets of samples. However, the use of Adaptive
SVM did not show any boosting in performance which is explained by the fact
that such a method better handles the case of having access to few annotated
target samples which is not the aim of our study. This is mainly because the
Adaptive SVM constrains the target learned classifier to be close to a classifier
learned on the source set, which might be appropriate in the case of having an
insufficient number of target samples to learn even a moderate classifier. It should
be noticed also that the Source Scaling (SC) method gives good results when
having access to reasonable amount of target samples and is able to transfer
the knowledge from the source samples to further improve the target classifier
performance. In that case,despite its simplicity and its ability of keeping the
raw features which is important in some medical situations, the SC method
gives similar results to the state of the art method that we extend to the semi
supervised setting (SLA).It is worth noting that this performance is able to be
increased up to the AUC = 0.78 by adding a feature selection step [13], which
is competitive to the state of the art CAD system [3]. When considering small
target samples (DT = 2000) the SLA method is shown to overcome the SC
performance.

5 Conclusion

We present novel contributions in the field of domain adaptation for medical
imaging. Our aim is to boost the performance of computer aided diagnostic sys-
tem by efficiently combining heterogeneous prostate MR imaging databases. We
suggest a simple approach based on scaling the features of the source set to the
target set. This transformation is likely to be suitable for medical imaging cases
where the shift is stemmed from using different types of scanner that imposes
different resolution or different contrast. The performance of this approach based
on matching the mean of the source and target distribution increases by gaining
access to more target samples. We also suggest an extension to a state of the
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art method on unsupervised domain adaptation by using available target labels
which seems to give stable performance even when using the smallest target
set. As a future work, we will test the performance of the supervised landmark
based method on the target datasets of lower size. We also plan to run a large
series of experiments and examine the adaptation performance with respect to
the both available datasets and explore a possible solution to work on patients
from different scanners.
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4. Niaf, E., Rouvière, O., Mège-Lechevallier, F., Bratan, F., Lartizien, C.: Computer-
aided diagnosis of prostate cancer in the peripheral zone using multiparametric
MRI. Phys. Med. Biol. 57(12), 3833–3851 (2012)

5. van Opbroek, A., Ikram, M.A., Vernooij, M.W., de Bruijne, M.: Transfer learning
improves supervised image segmentation across imaging protocols. IEEE Trans.
Med. Imaging 34(5), 1018–1030 (2015)

6. Becker, C., Christoudias, C.M., Fua, P.: Domain adaptation for microscopy imag-
ing. IEEE Trans. Med. Imaging 34(5), 1125–1139 (2015)

7. Guerrero, R., Ledig, C., Rueckert, D.: Manifold alignment and transfer learning for
classification of Alzheimer’s disease. In: Wu, G., Zhang, D., Zhou, L. (eds.) MLMI
2014. LNCS, vol. 8679, pp. 77–84. Springer, Heidelberg (2014)

8. Jie, B., Zhang, D., Cheng, B., Shen, D.: Manifold regularized multi-task feature
selection for multi-modality classification in Alzheimer’s disease. In: Mori, K.,
Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part I. LNCS,
vol. 8149, pp. 275–283. Springer, Heidelberg (2013)
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Abstract. Image-segmentation techniques based on supervised classi-
fication generally perform well on the condition that training and test
samples have the same feature distribution. However, if training and
test images are acquired with different scanners or scanning parameters,
their feature distributions can be very different, which can hurt the per-
formance of such techniques.

We propose a feature-space-transformation method to overcome these
differences in feature distributions. Our method learns a mapping of the
feature values of training voxels to values observed in images from the
test scanner. This transformation is learned from unlabeled images of
subjects scanned on both the training scanner and the test scanner.

We evaluated our method on hippocampus segmentation on 27
images of the Harmonized Hippocampal Protocol (HarP), a heteroge-
neous dataset consisting of 1.5T and 3T MR images. The results showed
that our feature space transformation improved the Dice overlap of seg-
mentations obtained with an SVM classifier from 0.36 to 0.85 when only
10 atlases were used and from 0.79 to 0.85 when around 100 atlases were
used.

Keywords: Brain · Hippocampus · Machine learning · MRI · Transfer
learning

1 Introduction

Supervised voxelwise classification, where manually labeled images are used to
train a voxel classifier is a very popular approach for many medical-image seg-
mentation tasks. For these methods to perform optimally they need to be trained
on images that are representative of the test images. Such training images may
however not always be available, since training and test images are only truly
representative if they are acquired with the same scanner and scanning para-
meters and concern similar patient groups. Differences in scanners and patient

c© Springer International Publishing Switzerland 2015
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groups can result in differences in the voxels’ feature distributions, which is likely
to deteriorate a classifier’s performance.

A way to tackle this problem is by applying transfer learning [1]. So far, most
transfer-learning methods used in medical image segmentation concern transfer
classifiers, which are usually based on some form of sample weighting [2]. In this
paper we propose a different, complementary, transfer-learning approach. Our
method aims at finding a feature-space transformation (FST) between training
images acquired with one scanner and a test image from a different scanner, based
on unlabeled images from one or multiple subjects scanned on both scanners.
This FST is used to map the feature values of training voxels to values observed
in voxels from the test scanner.

Our method is somewhat similar to image synthesis methods, which trans-
form image intensities of images acquired with a certain scanner and contrast to
values observed in images that were scanned with a different scanner or contrast.
Roy et al. [3] for example, split up a source image into patches, which are all
matched to patches of an atlas that is scanned with both scanners/contrasts.
The corresponding patches from the other scanner/contrast are then combined
into a final image. Such a method could be used to first transform intensities
of training images, after which features can be extracted and a classifier can
be trained. Image synthesis methods are however likely to produce images that
are either slightly noisy of slight smoothed compared to the representation of
test images. Such differences can lead to very big differences in feature repre-
sentations between training and test data. In this paper we therefore investigate
whether it is beneficial to directly transform all features.

We evaluated whether the proposed FST can improve performance of a voxel
classifier for hippocampus segmentation in MR images. The most common app-
roach to hippocampus segmentation is by multi-atlas registration [4]. One of
many label-fusion techniques can then be used to combine the atlases into a final
segmentation. [5] provides an overview and comparison of various approaches.
Machine learning for hippocampus segmentation has gained attention in the pre-
vious years. Coupé et al. [6] performed voxelwise classification based on a patch
surrounding the voxel. Classification is performed by a similarity-weighted vot-
ing of nearest-neighbor training patches in feature space. Powell et al. [7] and
Van der Lijn et al. [8] showed that combining multi-atlas registration and voxel-
wise classification can improve performance compared to multi-atlas registration
alone.

In this paper we extend the work of [7,8] on combining multi-atlas registration
with voxel classifiers. We investigated whether the presented FST allows for such
classifiers to be trained on images from different scanners than the test scanner.

2 Methods

2.1 Notation

Let xs
i ∈ R

d denote sample (voxel) i in a training image from scanner s and
ys

i ∈ {0, 1} its label. xs
i contains a value for each of the d measured features.
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All training images from s together provide a set of Ns training samples and
corresponding labels {xs

i , y
s
i }Ns

i=1, which have a d-dimensional feature distribution
Fs. A test image from scanner t gives a set of Nt test samples with unknown
labels, {xt

i}Nt
i=1 from feature distribution Ft. If samples originate from different

scanners we assume their feature distributions to be different (Ft �= Fs). The
goal of our method is to learn a feature-space transformation (FST) from the
training scanner s to the test scanner t: fs→t : Fs → Ft. Once we know fs→t we
can use it to transform the training samples xs

i from Fs to Ft by transforming
it to xs

i + fs→t(xs
i ).

2.2 Determining Voxel-To-Voxel Correspondence

The FST is learned from one or multiple subjects that are scanned with both s
and t. We will call these two images of the same subject the source image and
the target image, which together form a source-target pair. These pairs should
be acquired within a short time interval from each other and no segmentation
labels are required for these images. The source images provide Ñs source voxels
x̃s

i and the target images provide Ñt target voxels x̃t
i. We perform an affine

registration with a nearest-neighbor interpolation of the target images to their
corresponding source images. This provides us with a voxelwise correspondence
for every sample x̃s

i to a sample x̃t
�:

∀i : ∃ � : x̃s
i → x̃t

� . (1)

2.3 Transforming Training Samples

Next, the training samples xs
i are mapped from Fs to Ft based on the voxel pairs

in Eq. 1. For each training sample xs
i we determine the closest k source samples

{x̃s
m1

, x̃s
m2

, . . . , x̃s
mk

} in feature space. The FST of xs
i equals the median1 differ-

ence of these k source samples to their corresponding target samples:

fsj→t(xs
i ) = median(x̃t

�1 − x̃s
m1

, x̃t
�2 − x̃s

m2
, . . . , x̃t

�k
− x̃s

mk
), (2)

where x̃t
�n (n = 1, 2, . . . , k) is the voxel pair of x̃s

mn
defined in Eq. 1. We used

the median to make sure that the chosen transformation is one that is observed
in the pairs, unlike the mean, which could result in implausible transformations.

Increasing k increases the regularization, which results in a smoother trans-
formation. By performing this regularization in feature space image details such
as tissue edges are left in tact.

Note that the formulation is easily expendable to multiple source scanners
by individually transforming each of them to the target distribution.

1 We used the robust median, which gives the point that has minimal total distance
to all other points.
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3 Experiments

Data Description. We applied our method to hippocampus segmentation on 27
images of the HarP dataset [9]. We used the preliminary release, which consist
of 100 images with manual hippocampus segmentations. All images are T1-
weighted MR images, acquired with either a 1.5T or a 3T scanner. The images
were scanned at a total of 31 sites with different scanners (Philips, GE, and
Siemens scanners, various scanner types). See Fig. 2 for an example of differences
between images from a 1.5T and a 3T scanner.

We segmented a subset of 27 of these 100 images, which consisted of all
images that were acquired at one of the six sites that acquired both 1.5T and
3T images for the HarP dataset. We trained on images acquired with the 1.5T
scanner and tested on images acquired at the same site with the 3T scanner and
vice versa. The source-target pairs consisted of (unlabeled) ADNI [10] images
(which are not in the HarP dataset). These images concern subjects scanned
within 30 days with both the 1.5T and the 3T scanner of the site.

Multi-Atlas Hippocampus Probability. For each test sample (voxel) we
obtained an atlas probability by non-rigid registration of images of the HarP
dataset. We did experiments with (1) only 10 randomly chosen images as atlas
and (2) all images from other scanners than the test image as atlas (this resulted
in 94 to 99 atlases, depending on how many of the 100 images were scanned with
the test scanner). Each of the atlas images was registered to the test image, after
which the obtained transformation was applied to the binary manual segmenta-
tions. Averaging over all atlases gives an atlas probability, which was used as a
feature in the voxel classifier. For the training set this feature was obtained by
registration of the atlases to the training images. The classifier was trained and
tested on a region of interest (ROI) consisting of all voxels with a non-zero atlas
probability.

Registrations. All registrations were performed with Elastix [11] based on max-
imizing mutual information within a brain mask. These masks were generated
with the brain-extraction tool (BET) [12]. We used the registration settings
of [13], which were visually optimized for ADNI data. The source-target pairs
were first rigidly and then affinely registered to each other, the HarP images
were subsequently registered rigidly, affinely, and non-rigidly.

Features. We used a total of 11 features: 10 image-intensity features and the
atlas-probability feature. The intensity features consisted of a subset of the fea-
tures of [8]: (1) the original T1 intensity, (2–4) the intensity after a Gaussian
smoothing with σ = 1, 2, 4mm3, (5–10) the Gradient Magnitude and Laplacian
after convolution with a Gaussian kernel with σ = 1, 2, 4mm3. Before calculat-
ing the features we performed image normalization with a 4th-96th percentile
range matching within the brain mask. Only the 10 image-intensity features were
transformed with the FST. For each image all features were normalized to zero
mean and unit variance within the whole image, except for the atlas feature,
which was normalized within the ROI.
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Classifier and Parameters. Voxelwise classification was performed with a
support vector machine (SVM) with a Gaussian kernel. Separate classifiers were
trained for the left and right hippocampus. For each site the SVM parameter
C and the kernel parameter γ were set with a cross-validation experiment on
the images of the five training sites. All SVM classifiers were trained on a total
of 10 000 random training samples within the ROI from all training images.
The FSTs were determined on all training voxels within the brain mask. We
experimented with multiple values for the FST parameter k (k = 1, 5, 10, 50, 100)
and with multiple numbers of source-target pairs (1 to 8).

Compared Methods. We compared the performance of: (1) Atlas: multi-atlas
segmentation, which was obtained by thresholding the atlas probability map at
0.5, (2) SVM no FST : an SVM classifier without the FST, (3) SVM FST1 :
an SVM where the T1 intensity was transformed with the FST and the other
intensity features were derived from the resulting image, (4) SVM FST : the
proposed method: an SVM where all intensity features were transformed with
the FST, and (5) Freesurfer2[14] version 5.1.0, a state-of-the-art brain-structure-
segmentation tool. The performance of the methods was measured in terms of
the Dice overlap between the manual and the automatic segmentation.
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Fig. 1. Mean dice overlap and 95 %-confidence interval of the mean for (1) multi-atlas
segmentation, (2) SVM without FST, (3) SVM with the FST only on the intensity
with k = 5, (4–6) SVM with the FST on all features for k = 1, k = 5, k = 10, and (7)
Freesurfer. (a) gives the result for 10 atlases, (b) for all atlases, both as a function of
the number of source-target pairs. For (a) SVM no FST gave a mean Dice of 0.36.

4 Results

Figure 1(a) shows the performance of the five methods when 10 atlases were
used, and Fig. 1(b) when all atlases were used, both as a function of the number
of source-target pairs used for the FST. In both experiments our SVM with FST
performed best. For 10 atlases the SVM without FST performed poorly with
2 Documented and freely available at http://surfer.nmr.mgh.harvard.edu/.

http://surfer.nmr.mgh.harvard.edu/
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(a) Image (b) Manual (c) Atlas, Dice=0.864

(d) SVM,Dice=0.742 (e) FST, Dice=0.900 (f) Freesurfer, Dice=0.823

(g) Image (h) Manual (i) Atlas, Dice=0.866

(j) SVM, Dice=0.888 (k) FST, Dice=0.904 (l) Freesurfer, Dice=0.815

Fig. 2. Example of obtained segmentations for Atlas, SVM no FST, SVM FST (k = 1,
1 source-target pair), and Freesurfer. (a)-(f) show the results for a 3T image, (g)-(l)
for a 1.5T image. The Dice scores for the slice are shown under the images.

a mean dice of and 0.36. Freesurfer also performed rather poorly with a mean
dice of 0.76. Multi-atlas segmentation performed well, and applying the FST
only to the intensity performed similarly; both obtained a mean dice of 0.82.
With a mean dice of 0.85 our method significantly outperformed all four other
methods3. When all atlases were used the multi-atlas segmentation increased

3 p = 10−6, p = 10−9, p = 10−5, and p = 10−3 ∼ 10−5 for SVM no FST, Freesurfer,
Atlas, and SVM FST1 respectively with a two-sided paired t-test.
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performance to 0.83, the SVM without FST increased performance to 0.79, and
the SVM FST1 performed similarly as with 10 atlases (Dice≈0.82). Our SVM
with FST still performed best with a mean dice of 0.84 to 0.85 depending on
the k and the number of source-target pairs and significantly better than all
methods except from the multi-atlas method4.

Contrary to the other two methods, SVM FST and SVM FST1 decreased in
performance when all atlases were used compared to when 10 atlases were used.
This is because the SVMs classified all voxels with an atlas probability above
zero. When more atlases are used it becomes more likely that some poorly reg-
istered atlases are included and the number of test voxels increases, resulting in
an increase in potential false positives. This problem could be solved by reducing
the size of the ROI, e.g. by setting a higher threshold on the atlas probability.

The figures show a very small increase in the performance of the SVM FST
when the number of source-target pairs increases, but there were no significant
differences. There were no significant differences between the tried values for the
regularization parameter k. We also experimented with k = 50 and k = 100 (not
shown here), which slightly decreased the performance. SVM FST1 performed
slightly better for k = 5 (shown in Fig. 1) than for k = 1 and k = 10.

Figure 2 shows the segmentations for two of the 27 subjects. Note that the
Dice scores for the shown slice are higher that the scores in Fig. 1 because the
shown slice has a relatively large fraction of hippocampus voxels. For the SVM
without FST on 10 atlases the shown segmentation is much better than average.

5 Conclusion and Discussion

We presented a feature-space transformation (FST) method to cope with training
images that are obtained with different scanners or scanning protocols than a
test image. Our FST maps the training voxels to the feature distribution of the
test voxels based on images of one or a few subjects that are scanned on both
the training and the test scanner. After application of this FST any classifier
could be used for classification.

Experiments on hippocampus segmentation in a multi-center dataset showed
that our FST can greatly improve classification results. In experiments with a
subset of 10 atlases it increased the mean Dice score of an SVM classifier from
0.36 to 0.85. In experiments with around 100 atlases our FST increased the Dice
overlap from 0.79 to 0.85, and this result can be expected to improve further
by decreasing the ROI. The results also showed a significant improvement of
mapping all features that are used for the classification over mapping only the
intensity, which obtained a mean Dice of only 0.82 for both settings. Note that
due to the small number of labeled images per site in this study the SVM was
often trained on only 1 or 2 images. If more training images would be available
per site we can expect the accuracy of our FST SVM to improve and reach values
similar to those reported by other hippocampus-segmentation methods [4].
4 p = 10−3, p = 10−6, p = 0.1, p = 10−2 ∼ 10−3 for SVM no FST, Freesurfer, Atlas,

and SVM FST1 respectively with a two-sided paired t-test.
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The experiments also showed that the incorporation of an SVM classifier
with our FST can significantly improve performance over multi-atlas segmen-
tation, especially when few atlases are available. This is in line with previous
work on brain-structure segmentation [7,8], which showed for single-center data
that atlas-based segmentation can be improved by incorporation of a voxelwise
classifier. Note that while only a simple average atlas probability was used, more
extensive label-fusion techniques could be easily incorporated in the SVM. We
also showed that our method significantly outperformed the readily available
segmentation tool Freesurfer.

We experimented with regularization by non-local median filtering to smooth
out possible noise in the FST due to e.g. image noise and mis registrations.
Increasing the amount of regularization did not significantly improve the results.
We also experimented with determining the FST on multiple subjects scanned
on training and test scanner. For the FST only on the intensity this significantly
improved the performance, but for the FST on all features this difference was
not significant. That more regularization and incorporation of more subjects
did not improve performance might be because of the good voxelwise corre-
spondence within subjects after registration as well as a low noise level in these
images. Whether it would also be possible to obtain the FST from the training
and test images might be an interesting topic for further research. In this case
the assumption of a voxelwise correspondence after registration might not hold,
which means that regularization becomes much more important.

The presented method can be applied not only to hippocampus segmentation,
but to classification in a wide range of applications where registration of two
images from the same subject can give an FST. The presented method can be
of particular interest for longitudinal studies, which often scan a few subjects
with multiple scanners to check for reproducibility and scanning problems. We
believe that since our method can construction an FST from unlabeled images
of only a single subject our method can be very valuable in practice.
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contrast synthesis. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801,
pp. 371–383. Springer, Heidelberg (2011)

4. Dill, V., Franco, A., Pinho, M.: Automated methods for hippocampus segmenta-
tion: the evolution and a review of the state of the art. Neuroinformatics 1, 1–18
(2014)



Feature-Space Transformation Improves Supervised Segmentation 93

5. Artaechevarria, X., Munoz-Barrutia, A., Ortiz-de-Solórzano, C.: Combination
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Abstract. In this last decade, multiple-atlas segmentation (MAS) has
emerged as a promising technique for medical image segmentation. In
MAS, a novel target image is segmented by fusing the label maps of a set
of annotated images (or atlases), after spatial normalization. Weighted
voting is a well-known label fusion strategy consisting of computing each
target label as a weighted average of the atlas labels in a local neighbor-
hood. The weights, denoting the local anatomical similarity of the candi-
date atlases, are often approximated using image-patch similarity mea-
surements. Such an approach, known as patch-based label fusion (PBLF),
may fail to discriminate the anatomically relevant patches in challenging
regions with high label variability. In order to overcome this limitation
we propose a supervised method that embeds the original image patches
onto a space that emphasizes the appearance characteristics that are
critical for a correct labeling, while supressing the irrelevant ones. We
show that PBLF using the embedded patches compares favourably with
state-of-the-art methods in brain MR image segmentation experiments.

1 Introduction

Medical image segmentation aims at estimating a dense label map of the anatom-
ical structures in medical images, such as magnetic resonance images (MRI)
of the human brain. Quantitative analysis of segmentation data is useful in
many fields such as the neurosciences, where the morphometric analysis of brain
structures helps characterizing the progression of diseases such as Alzheimer
and Schizophrenia [2]. Manual annotation is a tedious time-consuming process
which has to be done by trained experts and thus, automatic methods are highly
valuable.

Partly enhanced by the success of image registration, multiple-atlas seg-
mentation (MAS) has recently gained attention for segmenting medical images.
Three main steps are involved in MAS: (i) the image registration step regis-
ters each individual atlas onto the target image [7], (ii) the atlas selection step
selects the best atlases for segmenting a particular target image [1,13,14], and
c© Springer International Publishing Switzerland 2015
K.K. Bhatia and H. Lombaert (Eds.): MLMMI 2015, LNCS 9487, pp. 94–103, 2015.
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(ii) the label fusion step fuses the registered label maps onto a consensus seg-
mentation [3,4,10–12,15–17,21,22].

By combining the labels from multiple atlases, the label fusion step can
compensate for the registration errors by the individual atlases. Even a simple
label fusion strategy such as majority voting [11] (which assigns each target
voxel to the label appearing most frequently among the corresponding atlas
labels) yields better segmentation performance than any of the single atlases
used individually [10].

Another commonly used label fusion strategy is weighted voting, in which the
label on each target point is computed as a weighted average of the atlas labels,
where the weights reflect the estimated anatomical similarity between the target
and each atlas. A critical issue here, is how to set the weights that accurately
reflect the anatomical correspondence. One common approach, adopted in patch-
based label fusion (PBLF), consists in estimating the weights based on the local
similarity between the atlas and the target image patches [3,4,12,17,22].

However, there are uncertain regions, such as the interfaces between two
anatomical structures, where very similar atlas patches may bear different labels.
In such cases, the appearance cues responsible for a correct discrimination may
be too weak to be correctly captured by simple image similarity measurements. In
order to overcome this limitation we propose a method that learns an embedding
of the image patches so that the relevant variations for a correct discrimination
are emphasized while the misleading ones are supressed. We pose this problem
in a supervised learning setting, where we seek the linear mapping of the image
patches that simultaneously (i) maximizes the similarity of the target patch
with its true neighbors (i.e., similar atlas patches with the same label) and (ii)
minimizes the similarity with its false neighbors (i.e., similar atlas patches with
different label).

The proposed method bears some similarity with manifold learning methods
such as neighborhood preserving embeddings (NPE) [9] and locality preserving
projections (LPP) [8] in the sense that it aims at preserving the true neigh-
borhood but it simultaneously enforces an additional discriminative component
aimed at simultaneously maximizing the separation between false neighbors.

The weights obtained by the proposed method using an example target patch
are illustrated in Fig. 1. As we can see in the top-left plot, using the similarity
in the original image space, a fair amount of atlas patches with the wrong label
(denoted in red) accumulate a considerable amount of weight. On the other
hand, using the similarity of the projected patches with the proposed method,
the weights of the wrong atlas labels are considerably reduced, while still main-
taining a significant amount of weight for the atlas patches with the correct
labels (denoted in blue), as shown in the top-right plot.

The contributions of the proposed method are three-fold:

– The embeddings are learned offline in a common space so that they can be
readily applied to any new target image.

– The learned embeddings can be plugged into any existing PBLF method to
enhance its performance.
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Fig. 1. Weights obtained using the example target patch in the middle box. Top row:
estimated weights for the neighboring atlas patches using the original patches (left) and
the embedded patches (right). Vertical axis represent the weights and horizontal axis
represent the atlas patch index. Using the embedded patches, false neighbors (in red)
accumulate less weight than true neighbors (in blue).Middle row:Original target patch
and some true and false neighbors with high weights (note that we only show the center
slice of a cubic 5 × 5 × 5 patch). Bottom row: Most discriminative 25 coordinates of
the embedded patches, arranged in a 5 × 5 patch (we show the first 25 coordinates for
the convenience of displaying them in a 5 × 5 patch). (Color figure online)

– The proposed method provides a compact representation with a much lower
dimensionality than the original patch.

The remainder of the paper is organised as follows: in Sect. 2 we describe the
method. In Sect. 3 we present the experiments and results and, finally in Sect. 4
we outline the conclusions.

2 Method

2.1 Patch-Based Label Fusion

Consider a set of n atlas images and label maps, denoted as
{
Ai, Li

}n

i=1
, that have

been previously registered to a common space, denoted as ΩC (for instance by
groupwise non-rigid registration [20]). Therefore, Ai

x denotes the image intensity
value at voxel x ∈ ΩC of the i-th atlas, and Li

x ∈ {0, 1} denotes whether x
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belongs (1) or not (0) to the area of interest to be segmented. We denote as T
the to-be-segmented target image, after being registered to the common space.

Weighted voting label fusion estimates the label at each target point, denoted
as F̂x, as a weighted average of the neighboring atlas labels1. That is,

F̂x =
n∑

i=1

∑

y∈Nx

ωi
yL

i
y (1)

where ωi
y denotes the weight of atlas label Li

y at position y ∈ Nx on the i-th atlas,
with Nx denoting the local neighborhood of point x. The local neighborhood Nx

consists of the patches in a cubic neighborhood of a certain radius from point x.
The eventual segmentation performance depends on the ability of the label

fusion method to identify the true anatomical neighbors of the to-be-segmented
target point among the atlas labels. In particular, PBLF assigns higher weights
to the atlas locations with higher local image similarity to the target point [3,
4,12,17,22]. As for the image similarity measures, the Gaussian kernel is widely
used to estimate the weights [4,12]. That is,

ωi
y = exp

(−‖tx − ai
y‖2/γ

)
, (2)

where tx,ai
y ∈ R

p denote the vectors of the target and the (i-th) atlas image
patch centered at x and y ∈ Nx, respectively, γ is a normalization factor, which
is set here as in [4] as γ = miny,i ‖tx − ai

y‖2, and ‖ · ‖ is the Euclidean norm.

2.2 Learning Discriminative Embeddings

PBLF assumes that the higher the similarity between the target patch tx and
an atlas patch ai

y, the higher the likelihood that they share the same label. This
simplistic assumption, as expressed in Eq. (2), considers that all the features are
equally relevant in capturing the anatomical similarity.

Our goal is to learn a transformation for each point x ∈ ΩC , denoted by the
matrix P ∈ R

p×d, to a lower-dimensional space so that the weights obtained
using the transformed patches successfully identify the anatomically equivalent
patches (rather than the apparently similar).

We use all the available atlases as training set, where the image patch from
each of the atlases is used as target patch, denoted as at

x, and the neighboring
patches from the rest of the atlases are used as atlas patches, denoted as ai

y

(with i �= t and y ∈ Nx).
The training is performed in the common space. This means that all the

training images are registered to a template image (built e.g., by groupwise
registration [20]). We learn a different transformation (denoted as P below) for
each point in the common space.

We seek the transformation P that simultaneously maximizes the distance
with the false neighbors and minimizes the distance with the true neighbors,
1 The estimated label map in the common space F̂ is finally transformed back to the

original target space and thresholded to obtain the binary labels.
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where the true (false) neighbors are the sub-set of positive (negative) samples
with higher appearance similarity with the target patch. This can be expressed
as follows:

max
P

∑n
t=1

∑
(i,y)∈Ft

x
‖P�at

x − P�ai
y‖2 ut,i

y
∑n

t=1

∑
(i′,y′)∈T t

x
‖P�at

x − P�ai′
y′‖2 vt,i′

y′
, (3)

where ut,i
y and vt,i′

y′ are the weights identifying the false and true neighbors,
respectively (i.e., ut,i

y > 0 only for those negative samples with higher appearance
similarity to the target patch) and F t

x =
{
(i, y) |Li

y �= Lt
x, i �= t, y ∈ Nx

}
is the

set of negative samples (the set of positive samples T t
x is similarly defined). We

compute the weights ut,i
y and vt,i′

y′ for each target patch in our training set by
restricting Eq. (2) to the set of its positive and negative samples, respectively.

The intuition of Eq. (3) is to seek the linear transformation that emphasizes
the characteristic differences between false neighbors, so that they are less likely
to mislead label fusion, while at the same time downscaling the characteristic dif-
ferences between true neighbors, so that they end up accumulating more weight.
This optimization is somewhat related to linear discriminant analysis (LDA) [5]
in the sense that it distinguishes both positive and negative samples for learning
the transformation. However, the objective function of LDA is different since it
seeks to maximize the between-class scatter and minimize the within-class scat-
ter. In this regard, our approach is more related to manifold learning methods
such as locality preserving projections (LPP) [8] and neighborhood preserving
embeddings (NPE) [9], but with the difference that we not only minimize the
distance with the true neighbors but also jointly maximize the distance with the
false neighbors.

Equation (3) can be expressed more compactly as follows:

max
P

Tr
[
P�EFUE�

FP
]

Tr
[
P�ETVE�

TP
] , (4)

where EF =
[
. . . ,et,iy , . . .

] ∈ R
p×q is a matrix with the columns containing

vectors of differences between pairs of false neighbors, i.e., et,iy = at
x − ai

y (with
t = 1, . . . , n and (i, y) ∈ F t

x), and U ∈ R
q×q is a diagonal matrix with the

corresponding weights ut,i
y . (ET and V are similarly defined using the differences

between true neighbors and their weights, respectively). The larger dimension
of the matrices is q = nk, where n is the number of atlases in the training set
and k is the expected number of false/true neighbors for each target patch. The
solution of Eq. (4) can be found according to the following generalized eigenvalue
problem: (

ETVE�
T

)−1
EFUE�

Fp = λp, (5)

where the desired embedding P = [p1, . . . ,pd] is composed of the d < p eigenvec-
tors with the largest eigenvalues, where d is the desired number of dimensions.

To avoid the possible over-fitting problem, in Eq. (5) we substitute the matri-
ces SF ≡ EFUE�

F and ST ≡ ETVE�
T by their regularized counterparts [6], as

follows:
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RF = (1 − α)SF +
α

p
Tr [SF ] I (6)

(and similarly for ST ), where 0 ≤ α ≤ 1 is a parameter controlling the amount
of regularization and I is the identity matrix.

In the testing stage, we estimate the label map F̂ of a new target image T
according to the following steps:

1. We register the target image to the common space.
2. For each point x ∈ ΩC , we extract the surrounding target image patch tx

and the set of neighboring atlas image patches from all the atlases, i.e., ai
y,

with i = 1, . . . , n and y ∈ Nx, where Nx is a cubic neighborhood of a certain
radius from point x.

3. We estimate the weights ωi
y for each atlas patch according to Eq. (2) using

the embedded target and atlas image patches, P�tx and P�ai
y, respectively.

4. We estimate the label F̂x on each target point by fusing the atlas labels
according to Eq. (1) using the weights ωi

y estimated in the previous step.
5. We transform the estimated target label map F̂ back to the original target

space by using the inverse spatial transformation to the common space.

3 Experiments and Results

We compare our proposed approach to the following methods: (i) majority vot-
ing (MV) [11], which assigns each target label as the label appearing most fre-
quently among the corresponding atlas labels, and (ii) non-local weighted voting
(NLWV) [4,12], which uses Eqs. (1) and (2) to estimate the labels and weights,
respectively. We apply the proposed discriminative dimensionality reduction on
the NLWV pipeline (DDRNL), hence we can clearly evaluate the effect of
embedding the patches by comparing with the baseline NLWV.

In all the methods, we perform 5-fold cross-validation experiments, where
one of the folds is considered as the target images and the rest of the folds
as the atlas images. In each fold, the projection matrices P learned from the
atlas images (one projection for each point in the common space) are used to
segment the target images. Target images are segmented in the common space
and evaluated in the target space by using the Dice similarity coefficient (DSC)
with the ground-truth label maps. We use the group-wise non-rigid registration
method in [20] to create the template image defining the common space, and
diffeomorphic demons [19] to register the target images to the common space.
In both NLWV and DDRNL, we use a patch size of 5× 5× 5 and a cubic search
neighborhood Nx of 3 × 3 × 3. We evaluate the proposed method on brain MR
image segmentation experiments on the ADNI2 and SATA3 datasets.

2 http://www.adni-info.org/.
3 http://masi.vuse.vanderbilt.edu/workshop2013/index.php/Main Page.

http://www.adni-info.org/
http://masi.vuse.vanderbilt.edu/workshop2013/index.php/Main_Page
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3.1 ADNI Dataset

The ADNI dataset is provided by the Alzheimer’s Disease Neuroimaging
Initiative and contains the segmentations of the left and right hippocampi. We
use images from 40 randomly selected subjects, where the size of each image is
256 × 256 × 256.

We first conduct a sensitivity analysis on a sub-set of 10 randomly selected
images. Figure 2(a) shows the sensitivity to the regularization parameter α and
the number of dimensions d. Based on these results we choose the values of the
regularization parameter α = 0.9 and the number of dimensions d = 7 (which is
considerably lower than the 125 dimensions of the original 5× 5× 5 patches). In
Fig. 2(b) we show the average DSC (%) (±std) in segmenting the left and right
hippocampus across the 40 images. As we can see, our proposed method obtains a
considerable improvement of >1.4% with respect to the NLWV baseline. Results
of MV provide a reference of what can be obtained by the only means of non-rigid
registration without using any confidence estimates to weigh the atlases.

(a)

Method R HC L HC

MV 76.15 ± 4.04 76.77 ± 3.65

NLWV 79.25 ± 3.25 79.80 ± 3.07

DDRNL 80.95± 2.66 81.27± 2.25

(b)

Fig. 2. (a)Parameter sensitivity analysis and, (b) quantitative segmentation results.

3.2 SATA Dataset

The SATA dataset is composed of 35 images with a resolution of 1×1×1 mm and
contains the segmentation of 16 mid-brain structures. We will focus on the 10
smallest structures since they tend to be more sensitive to registration errors and
hence, more challenging to segment. The segmented structures include the right
and left parts of: accumbens, amygdala, pallidum, caudate and hippocampus.

Figure 3(a) shows the average segmentation performance by each method
across the 35 images in each structure. Here, we have used the same parameter
values d = 7 and α = 0.9 as in the previous experiments. We have grouped
the left and right parts of each structure, so each cell contains the average of
70 segmentations. As we can see, our proposed method obtains a consistent
improvement of ∼1% and even >1% in some structures with respect to the
baseline NLWV. Again, MV provides a reference of what can be achieved with-
out resorting to image similarity measurements to weight the atlas contributions.
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To gain further insight, in Fig. 3(b) we show the estimated hippocampus segmen-
tations by each method on an example target image. As we can see by the MV
results, the head of the hippocampus in this target image is consistently over-
segmented by the majority of atlases. NLWV can partially correct this effect by
using image-patch similarity to discard some misleading atlases. The proposed
method can solve this over-segmentation by using only the discriminative image
characteristics in the patch similarity comparisons.

Method ACC AMYG PAL CN HC

MV 67.43 ± 10.84 71.35 ± 8.36 71.16 ± 15.43 79.42 ± 8.50 79.06 ± 6.22

NLWV 73.74 ± 6.00 73.76 ± 8.02 82.04 ± 7.15 86.89 ± 3.95 83.09 ± 4.08

DDRNL 75.61± 4.95 74.59± 8.47 84.30± 4.78 87.65± 3.47 83.85± 3.35

(a)

(b)

Fig. 3. (a)Quantitative segmentation results and, (b) an example of qualitative seg-
mentation results on the hippocampus, where green indicates coincidence with the
ground-truth labels (i.e., true positive), red indicates excessive segmentation (i.e., false
positives) and blue indicates insufficient segmentation (i.e., false negatives). (Color
figure online)

4 Discussion and Conclusions

We have presented a dimensionality reduction method to learn optimal patch
representations for label fusion that can be plugged into any existing PBLF
method. Such representations are learned in the common space so that they can
be readily applied to any target image that has been previously aligned to the
common space.

Since the proposed method performs label fusion in the common space, the
target image needs only to be registered once. This represents a computational
advantage with respect to performing it in the target space, since the latter one
requires each atlas to be independently registered to the target image space.
However, there is some evidence pointing out to the superior performance of
using the target space [18]. A possible reason is that pairwise registration accu-
racy through the common space might not be as accurate as directly warping
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the atlas images onto the target image. As a future work, we plan to adapt our
method to perform label fusion in the target space.

It is worth noting that the proposed method requires a fair amount of regu-
larization (α = 0.9). We believe that this is due to the high complexity involved
in learning a different model for each point. A possible solution would be to
group the points into perceptually similar regions and learn a single classifier
per each region instead of per each point.

We have shown the benefit of the proposed patch representations in the
segmentation of several brain structures. We achieve considerable improvements
using a compact representation of only 7 dimensions, compared to the 125 dimen-
sions of the original patch.
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