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Abstract. Inverse modeling of geophysical observations is becoming an
important topic in volcanology. The advantage of exploiting innovative
inverse methods in volcanology is twofold by providing: a robust tool for
the interpretation of the observations and a quantitative model-based
assessment of volcanic hazard. This paper re-interprets the data collected
during the 1981 eruption of Mt Etna, which offers a good case study
to explore and validate new inversion algorithms. Single-objective opti-
mization and multi-objective optimization are here applied in order to
improve the fitting of the geophysical observations and better constrain
the model parameters. We explore the genetic algorithm NSGA2 and the
differential evolution (DE) method. The inverse results provide a better
fitting of the model to the geophysical observations with respect to pre-
viously published results. In particular, NSGA2 shows low fitting error in
electro-optical distance measurements (EDM), leveling and micro-gravity
measurements; while the DE algorithm provides a set of solutions that
combine low leveling error with low EDM error but that are character-
ized by a poor capability of minimizing all measures at the same time.
The sensitivity of the model to variations of its parameters are investi-
gated by means of the Morris technique and the Sobol’ indices with the
aim of identifying the parameters that have higher impact on the model.
In particular, the model parameters, which define the sources position,
their dip and the porosity of the infiltration zones, are found to be the
more sensitive. In addition, being the robustness a good indicator of the
quality of a solution, a subset of solutions with good characteristics is
selected and their robustness is evaluated in order to identify the more
suitable model.

1 Introduction

Mt Etna is one of the best monitored and most studied active volcanoes world-
wide. Since the Eighties a large number of multiparametric geophysical surveys

c© Springer International Publishing Switzerland 2015
P. Pardalos et al. (Eds.): MOD 2015, LNCS 9432, pp. 359–370, 2015.
DOI: 10.1007/978-3-319-27926-8 32



360 P. Conca et al.

have been carried out on the ground surface to gain insights into the activ-
ity of the volcano. One of the first historical dataset dates back to the 1981
eruption, which is remembered because of its intensity in terms of effusive rate
and amount of lava emitted, despite the relatively short time duration of the
eruptive activity. Attempts had been made to separately model the recorded
dataset [2,3,15]. Among the different hypotheses formulated, Bonaccorso [2]
interpreted the geodetic observations (leveling and EDM) by suggesting the acti-
vation of two magmatic intrusions oriented northward: the initial deeper one
starting from the summit craters and the shallower one feeding the final effusive
fractures. This hypothesis was considered later on to implement a computational
model of the 1981 eruption [3], with the purpose of getting a more comprehen-
sive picture of the intrusive mechanism related to the 1981 flank eruption of Mt
Etna through a joint inversion of all the available dataset (microgravity, lev-
eling and EDM). A multi-objective optimization was performed to search the
space of the model parameters and find a solution that closely fits the geophys-
ical measurements [6,13,18]. In order to explain the discrepancy between the
intrusive volumes estimated by geodetic and gravity data, the model was modi-
fied to account for the porosity of the host rock. That model was optimised by
means of the evolutionary multi-objective optimization algorithm NSGA2 [8].
This paper provides insight into the optimization of the computational model
proposed in [3]. In particular, it presents further investigation of the optimization
capabilities of NSGA2 and, in addition, it also applies the single-objective DE
algorithm to evaluate its performance with respect to the NSGA2. The paper
also presents the results of a sensitivity analysis of the model in order to iden-
tify the parameters that have higher influence on its performance. Finally, an
analysis of the robustness of a set of solutions is presented.

2 Single-Objective and Multi-objective Optimization

Geophysical inversion in volcanic areas focuses on exploiting data from differ-
ent monitoring techniques (geodesy, gravimetry, magnetism), physical models
and numerical approaches in order to identify likely magmatic sources and gain
insights about the state of the volcano. Indeed, the geophysical observations col-
lected on a volcano are the surface expressions of processes that occur deeply
within the volcanic edifice. Magma migration and accumulation generate a wide
variety of geophysical signals, which can be observed before and during eruptive
processes. Magma ascent to the Earth’s surface forces crustal rocks apart engen-
dering stress and displacement fields and producing variations in the gravity field
due to modifications in the subsurface density distribution. Ground deformation
and gravity changes are generally recognized as reliable indicators of unrest,
resulting from the uprising of fresh magma toward the surface. Measurements of
these geophysical signals are useful for imaging the spatio-temporal evolution of
magma propagation and for providing a quantitative estimate about the magma
volume rising from depth. Deformation and gravity changes are generally inter-
preted separately from each other using physics-based models, which provide an
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estimate of the expected geophysical observation produced by volcanic sources.
The consistency of interpretations from different observations is qualitatively
checked only a posteriori. An integrated geophysical inversion based on both
data set should prove a more efficient and accurate procedure for inferring mag-
matic sources and minimizing interpretation ambiguities. The geophysical inver-
sion is formulated as an optimization problem, which searches the magma source
parameters (location, geometry, volume, mass, etc.) m = {m1, . . . ,mp} ∈ M in
order to minimize the misfit between the values of geophysical observations and
their respective values estimated by the physics-based forward model. The joint
inversion of different geophysical observables implies that the misfits for each
i-th dataset are simultaneously minimized:

fi (m) = ‖gi (m) − dobs
i ‖ for i = 1, . . . , k. (1)

where fi is an objective function and denotes the difference between the value
calculated through gi(m) (forward model) and the observed value dobs

i for each
i-th geophysical observable. Therefore, the joint inversion of a multiparametric
geophysical dataset can be regarded as a multiobjective optimization problem
(MOP). Solving this problem means to find the set of model parameters m∗ that
satisfies a set of constraints and optimizes the objective function vector, whose
elements are the objective functions:

m∗ = min
m∈M

F (m) with mmin
j ≤ mj ≤ mmax

j and j = 1, . . . , p, (2)

where F (m) = [f1 (m) , f2 (m) , . . . , fk (m)] .

Here, we set up a MOP to infer the models space parameters m of the magmatic
sources by jointly inverting the microgravity, leveling and EDM (Electroptical
Distance Measurements) data gathered spanning the 1981 Etna eruption. Grav-
ity measurements were performed using spring-based relative gravimeters along
a profile circumventing the Etna edifice. Gravity changes were computed by dif-
ferencing the measurements carried out from two surveys in August/September
1980 and July/August 1981, before and after the eruption. Concurrently, lev-
elling surveys were also performed to measure elevation changes of the ground
surfaces. Moreover, discrete horizontal deformation were also measured in Sep-
tember 1980 and May 1982 and in October 1979 and June 1981, using the EDM
networks in the SW and NE area, respectively. The pattern of these geophysical
dataset support the volcanological evidence that the 1981 Etna eruption was
characterized by magma intrusions through fractures into the rocks. This geo-
physical process is simulated mathematically using solutions devised in [11,12]
by solving analytically the elasto-static and gravity equations for modeling dis-
placement and gravity changes induced by rectangular fluid-driven fractures.
Two intrusive sources and two associated surrounding zones of pre-existing
microfractures, which were filled with new magma are considered following the
results reported in Carbone et al. [5]. Since the forward models are nonlinear
operators, it calls for using robust nonlinear inversion methods. In the frame of
multi-objective optimization techniques, we investigate the NSGA2 algorithm.
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In order to improve the search for solutions, the population of solutions
and the number of generations are increased with respect to the experiments
reported in [3]. In particular, the size of the population has been increased from
500 to 1,000 individuals, while the number of generations has been increased
up to 10,000 from the value of 800. In addition, the single-objective optimiza-
tion technique of Differential Evolution (DE) has also been used to optimize
the parameters of the model. This technique evolves a population of solutions
without calculating the derivatives of the objective function. The parameters
that control the DE algorithm are the scale and the crossover probability that
in our case have, respectively, the values 0.8 and 0.7. The population contains
1,000 individuals and is optimized for 10,000 generations, in order to perform the
same number of objective function evaluations as NSGA2 and therefore provide
a fair comparison. In this context the three misfits used for the multi-objective
optimization (leveling, EDM and gravity) are combined into a single-objective
function which is expressed by the following formula:

φ(xi) =

√(
errleveling(xi)

σleveling

)2

+
(

errEDM(xi)
σEDM

)2

+
(

errgravity(xi)
σgravity

)2

; (3)

where xi is the ith individual and σh are the data uncertainties. An estimate of
the data uncertainty is obtained by the standard deviation of each measurements
dataset, which is of 0.05 m for the leveling, 0.12 m for the EDM, and 35µGal for
the gravity data. The best solutions generated by the optimization techniques
NSGA2 and DE are plotted in Figs. 1 and 2. The figures show that the NSGA2
with a population of 1,000 individuals and 10,000 generations produces better
results with respect to the same algorithm using a population of size 500 and 800
generations. By contrast, the solutions generated by the DE algorithm combine
lower EDM and leveling errors than NSGA2, but are not able to minimize all
measures at the same time, as shown in Fig. 2. The similarity of the output
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Fig. 1. Leveling error and EDM error of the solutions generated by the optimization
techniques NSGA2 with two different parametric configurations and DE.
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Fig. 2. Leveling error and gravity error of the solutions obtained.

values, which are concentrated in a very small region of the space of values,
indicates that these solutions present little differences. This result contrasts with
the large diversity of the solutions provided by NSGA2. Moreover, the values of
several parameters coincide with the bounds of their respective intervals, this
seems to indicate that DE is not able to search the space of parameters effectively.
This could be related to the fact that this technique was natively developed
for unconstrained optimization, and therefore could be more suitable to that
problem rather than constrained optimization. A manual selection, performed
by an expert, of the solutions found is displayed in Table 1. Moreover, a map of
the Etna and the values generated by the these solutions (found by NSGA2 with
a population of 1,000 individuals and 10,000 generations and with a population
of 800 individuals and 500 generations) is displayed in Fig. 3.

3 Sensitivity Analysis

Sensitivity analysis (SA) is an important tool for the study of a model [14].
In fact, SA can help understand the behaviour of a model by evaluating the
impact of its input parameters on the output. This information could be used,
for example, to focus on a subset of parameters when optimization is performed.
Moreover, SA allows to the unveil the relations between different parameters.

Concerning the model of the 1981 eruption of Mt Etna, SA is used to iden-
tify the characteristics of the magmatic intrusions whose variations affect signif-
icantly the output of the model and those which affect it marginally and are,
therefore, less relevant. There are several techniques for SA, in our context the
technique by Morris and the Sobol’ indices were used evaluate the sensitivity of
the model.



364 P. Conca et al.

Valle
del

Bove

Summit
Craters

Randazzo

A

B C

-5

0

5

10

15

20

-40

0

40

80

5

5

10

10

15

15

20

20

25

25BA C
Gravity changes

Elevation changes (levelling measurements)

BA CDist. (km)

Dist. (km)

Δg
 (

m
ic

ro
G

al
)

Δh
 (

cm
)

Obs.
Calc.

Obs.
Calc.

Model source

Gravity station

Levelling station

EDM station

Observed
Calculated

Displacement

0            30 cm

Fig. 3. Map of the Etna showing the locations of the measurement stations and the
deformations measured by the EDM sensors and those calculated by the model. The
plots at the bottom show the measured values (blue line) and the calculated values
of, respectively, elevation and gravity changes for the NSGA2-500-800 (red line) and
NSGA-1K-10K (green line) models. The details of the model parameters are reported
in Table 1 (Color figure online).
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Table 1. Ranges of the values of the parameters and optimal solutions selected by an
expert.

Series Parameter Min. Max. NSGA2 DE NSGA2 [3]

North source

ZN
1 , depth of the top, m b.s.l 20 20 20 20 20

LN , length, m 4,000 8,000 6,251 6,184.2 6,703

HN , height, m 200 500 209.42 200 231.7

WN , tensile opening, m 0.5 2 1.54 2 0.93

φN , azimuth (from the north) −35 −15 −15.69 −31.18 −16

XN , northing of top center, m 4,181,250 4,186,250 4,185,594 4,184,628 4,184,924

YN , easting of top center, m 496,750 499,250 497,887 498,736 497,970

δN , dip (from the east) 45 145 111.67 113.02 88.1

ΔρN , density contrast, Kg/m3 100 500 114.8 100 116.8

North infiltration zone

DN , depth, m 500 2,000 1,430.76 829.43 1,325

HN
I , height, m 100 2,000 335.68 1,999 576.5

U·ρN , thickness·density Kg/m2 0 50,000 18,943.01 4,118.51 13,146.76

South source

ZS
1 , depth of the top, m b.s.l 100 1,000 505.07 841 404

LS , length, m 1,000 5,000 2,446.51 3,024.73 3,589

HS , height, m 500 2000 1,028.12 883.3 1,140

WS , tensile opening, m 2 6 5.43 5.99 5.2

φS , azimuth (from the north) −30 10 −29.05 −16 −30

XS , northing of top center, m 4,180,000 4,181,277 4,181,277 4,180,741.2 4,181,004

YS , easting of top center, m 496,500 501,000 499,533.6 499,844.31 499,998.3

δS , dip (from the east) 45 145 118.4 111.08 131.1

ΔρS , density contrast, Kg/m3 100 500 114.82 100 116.8

South infiltration zone

DS , depth, m 500 2,000 1934.93.79 2,000 1,589

HS
I , height, m 100 2,000 976.65 2,000 1,409

U·ρS , Kg/m2 0 50,000 47,904.93 19,135.64 34,485.43

Objective function and robustness

errleveling 0.0112 0.0144 0.0106

errEDM 0.0595 0.0482 0.0646

errgravity 13.06 13.79 18.15

Global robustness 0.2646 0.2591 0.2618

3.1 Morris Technique

The method by Morris is one of the techniques used to analyse the sensitivity of
the model to variations of its parameters [10]. This global optimization technique
follows a path through the input space by modifying the value of one parameter
at a time and measures the response of the model. In particular, in order to
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Fig. 4. Sensitivity analysis by means of the Morris method. The parameters on the
upper right corner affect more largely the behaviour of the model.

quantify such response, the mean and the standard deviation of the changes to
the model output are calculated for each variable. Since the mean can assume
negative values, a normalization is performed. The results are shown in Fig. 4.
The points of the plot near the origin of the axes have small values of mean
and standard deviation and are, therefore, associated with parameters whose
variations cause negligible effects to the output of the model. The other points,
especially those in the top right corner, indicate large variations of the mean
and are associated with parameters that strongly affect the model output when
they are varied. The plot also reveals that the relationship between inputs and
outputs are nonlinear since the magnitude of the effect of the variation of a
parameter is related to the values of other parameters. This is suggested by the
fact that large values of standard deviation are observed. In particular, these
parameters control the characteristics of the deeper magmatic intrusion are its
dip (δS), easting position (YS), opening (WS), length (LS) and depth (ZS

1 ), as
well as northing position (XN ), height (HN ) and thickness·, density and dip δN of
the model of the shallower magmatic intrusion. These results are in agreement
with those obtained on volcanomagnetic models performed on similar source
geometries [5].

3.2 Sobol’ Indices

Sobol’ indices represent an effective method for estimating the sensitivity of a
nonlinear model [9]. This technique, assuming that the inputs are independent,
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performs a decomposition of the output variance of the model in order to gen-
erate a set of indices. The higher the value of an index, the more important the
effect of the parameter associated with that index in determining the output of
the model [14,16]. The results, shown in Fig. 5, display the estimated value of
each index along with its maximum and minimum values. They are in accor-
dance with those obtained by the Morris technique, with the exception of the
parameter δS , which in this case is not considered to affect the output.

Fig. 5. Sensitivity analysis by means of the Sobol’ indices.

4 Robustness Analysis

The minimization of the objective function is of primary importance for the
selection of a model. However, it is not the only measure of its quality and a
robustness analysis can help choose among a selection of optimal or sub-optimal
solutions [1]. As a matter of fact, in many applications, if two solutions have the
same objective function value, the solution which undergoes smaller variations
of its objective function value when its parameters are perturbed should be
preferred. For example, in the optimization of a biological model, robust solutions
are preferrable as they mimic the ability of organisms to operate under different
stress conditions [4,17]. In order to measure the robustness of a model, here we
use the method proposed in [17]. Given a solution Ψ , a perturbation is defined
as τ = γ(Ψ, σr), where the function γ having the form of a stochastic noise
with normal distribution and standard deviation σr is applied to the solution Ψ .
A set T consisting of several perturbations τ of Ψ is generated. A sample τ is
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robust to the perturbation of magnitude dictated by σr if the difference between
the value of the objective function φ in correspondence of τ and the value in
correspondence of the reference solution Ψ is smaller than ε, as expressed by the
following equation:

ρ(Ψ, τ, φ, ε) =

{
1, if |φ(Ψ) − φ(τ)| ≤ ε.

0, otherwise.
(4)

An estimate of the robustness of a system Ψ is obtained by performing a set T
of trials and then calculating the rate of successful trials, which is given by:

Γ (Ψ, T, φ, ε) =

∑
τ∈T

ρ(Ψ, τ, φ, ε)

|T | . (5)

Robustness analysis is global when all the parameters are varied at the same
time, while it is local if a parameter at a time is considered. Although local
robustness allows to evaluate how a solution “reacts” to perturbations of spe-
cific input parameters, we believe that performing a global robustness analysis
in this context is more meaningful, as it allows to observe the result of the joint
perturbation of the parameters of the model (which determine the characteris-
tics of the sources and the infiltration zones). In particular, we calculated the
robustness of the solutions that we found and the robustness of the solution
reported in [3], whose parameters are displayed in Table 1. The parameters of
the robustness analysis have the values: σr = 0.01 and ε = 0.0071, where the
value of ε corresponds to one tenth of the minimum objective function value of
NSGA2 according to the single-objective function (1), while the number of trials
|T | = 10, 000. The NSGA2 instance with a large population size and number of
iterations has the highest robustness, with a value of 0.2646, while the solution
reported in [3] has a slightly smaller robustness with a value of 0.2618 and the
solution obtained by DE has a value of 0.2591, the lowest of the three techniques.

5 Conclusions

This paper has presented the results of the optimization of the conceptual model
of the 1981 eruption at Etna volcano proposed in [3]. This model hypothesizes
that the eruption was generated by two magmatic intrusions that developed in
the northern flank of mount Etna. Two techniques have been used to perform
the optimization of the model: the single-objective Differential Evolution tech-
nique and the multi-objective NSGA2 technique with increased population size
and number of generations with respect to the original paper. The optimization
performed using NSGA2 provides improved solutions with respect to those pre-
sented in [3], while DE was not able to provide good combinations of all output
measures. Moreover, the solutions obtained by DE have very similar characteris-
tics, while those found using NSGA2 feature a high diversity, this provides more
meaningful information regarding the characteristics of a model. An analysis
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of the robustness of a selection of optimal solutions obtained was performed in
order to evaluate if they were able to provide a stable output when their para-
meters were perturbed. Such analysis revealed that the new solution obtained by
NSGA2 shows slightly higher robustness with respect to the solution previously
obtained, this entails that such solutions are less susceptible to variations of their
values. An analysis of the sensitivity of the model was also performed in order
to identify the parameters that more significantly affect the output of the model
and those which cause little effect on it. Two different methods were used: the
Morris technique and the Sobol’ indices. They revealed that the parameters of
the model that control the characteristics of the deeper magmatic intrusion are
its easting position, opening, length and depth, and the parameters that control
the shallower magmatic intrusion are its position, height and thickness, density
and dip. Moreover, the Morris technique highlighted that the relations between
the input parameters are nonlinear.

The new optimal solution found by NSGA2 (Fig. 3, Table 1), although similar
to the solution reported in [3], shows some differences. Particularly, the north-
ern shallow source has a deeper infiltration zone and the southern source is both
shorter and deeper. Since the sensitivity analysis showed that these parame-
ters are those that may significantly affect the model outputs, the new optimal
solution is preferable to the previous one. Moreover, the Morris and Sobol analy-
ses show that the optimization problem is more sensitive to those parameters,
which directly reflect their influence on the ground surface by controlling the
wavelength and the extent of the geophysical variations. As expected, the sensi-
tivity of the optimization model is also dependent on the network configurations
of the measurement points. Particularly, in the 1981 Etna eruption case study
no measurements were available in the more affected summit area that could
have been helped in better constraining the extension of the source, especially
the length and the position of the shallower intrusion.

A set of directions for the future developments of this study have been out-
lined. The search for solutions could be extended by the use of further opti-
mization techniques, such as the immune-inspired algorithm opt-IA [7]. This
would help shed light on the characteristics of the techniques that are effec-
tive at dealing with this optimization problem. Moreover, the information pro-
vided by the sensitivity analysis could be used to improve the optimization. For
instance, the search for solutions could focus on the parameters that more largely
affect the output of the model and neglect those which produce little or no vari-
ations. In addition, the information about the robustness could be used to select
a set of solutions among the optimal ones found or to guide the optimization
process.
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