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Abstract. Clustering is an important technique in data mining.
In unsupervised clustering, data is divided into several subsets (clus-
ters) without any prior knowledge. Heuristic optimization based clus-
tering algorithms tries to minimize an objective function, generally a
clustering validity index, in the search space defined by the dimensions
of the data vectors. If the number of the attributes of the data is large,
then this will decrease the clustering performance. This study presents
a new clustering algorithm, particle swarm optimization with the focal
particles (PSOFP). Contrary to the standard particle swarm optimiza-
tion (PSO) approach, this new clustering technique ensures high quality
clustering results without increasing the dimensions of the search space.
This new clustering technique handles communication among the parti-
cles in a swarm by using multiple focal particles. The number of focal
particles equals to the number of clusters. This approach simplifies the
candidate solution representation by a particle and therefore reduces the
effect of ‘curse of dimensionality’. Performance of the proposed method
on the clustering analysis is benchmarked against K-means, K-means++-,
hybrid PSO and the CLARANS algorithms on five datasets. Experimen-
tal results show that the proposed algorithm has an acceptable efficiency
and robustness and superior to the benchmark algorithms.

Keywords: Data clustering - Clustering analysis - High dimensional
data - Particle swarm optimization - Focal particles

1 Introduction

Advances in technology has made information easy to capture and inexpensive
to store, thus the amount of data stored in various databases increased dramat-
ically. These data contain useful but hidden information that may be critical for
the decision-making processes of the enterprises. Data mining is the general name
of the techniques that are used to extract information from a very large amount
of data [11]. Clustering is a major technique in data mining, which refers to a
process of dividing data into several subsets while maintaining maximum simi-
larity among the data within the same cluster and keeping minimum similarity
among different clusters. Its applications can be seen in customer segmentation,
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document clustering and information retrieval, web data analysis, image segmen-
tation, anomaly detection, biology, medicine and many other areas. Clustering
is an unsupervised process, thus true knowledge about the class that each data
object belongs to is not known by the clustering algorithm. If the true class label
of data is known to the algorithm and used in the analysis then the method is
named classification.

When we look at the history of clustering techniques, we see that many
unsupervised clustering algorithms have been developed. K-means is one of the
well-known of them. K-means clustering algorithm is easy to implement and
very efficient, however suffers from several drawbacks. The objective function
of the K-means is not convex hence it may contain many local minima. The
outcome of the K-means algorithm is heavily dependent on the initial choice
of the centroids [2]. In order to achieve better clustering performance, fuzzy
c-means (FCM) clustering algorithm is introduced by Bezdek [4].

Clustering is also an application field in mathematical optimization when it
is done by searching for the global minima of a clustering performance func-
tion. This approach makes it possible to apply heuristic algorithms to clustering
analysis. Particle swarm optimization (PSO) is a population based heuristic
algorithm, which maintains a population of particles where each particle repre-
sents a potential (candidate) solution to an optimization problem. Merwe and
Engelbrecht used PSO in data clustering [22]. They also developed an hybrid
approach, which combines PSO and K-means algorithm to achieve better clus-
tering performance.

Merwe and Engelbrecht’s original PSO data clustering approach inspired
many works. Ji et al. clustered mobile networks by applying PSO to weighted
clustering algorithm [12]. Correea et al. categorized sample types of biological
databases with PSO [7]. Chen et al. tested PSO clustering algorithm on four
different datasets. They analyzed the performance of standard PSO clustering
algorithm in their paper [6]. Cui et al. applied PSO to the document clustering
problem [8]. Attributes of documents defined as the dimensions of the particles.
Omran et al. applied PSO to the image classification problem [18,19]. Their
algorithm is a binary PSO model which dynamically adjusts the number of clus-
ters. Kumar and Arasu proposed a particle swarm optimization based clustering
method to medical databases [14]. Their modified particle swarm optimization
based adaptive fuzzy K-modes algorithm produces good results in terms of pre-
cision and accuracy. Rana et al. gives a detailed literature review of PSO appli-
cations to data clustering [20]. Readers can also refer to [16] for further literature
survey on nature inspired metaheuristic algorithms for data clustering.

Although each of these studies provide a number of improvements and inno-
vations for clustering applications of PSO, all of them remains faithful to the
Merwe and Engelbrecht’s standard particle representation. But this representa-
tion creates a disadvantage by increasing the dimensions of the particles by the
number of features of a data vector times the number of desired clusters (Fig. 1).
Most stochastic optimization algorithms, including particle swarm optimization,
suffer from this ‘curse of dimensionality’, which simply put, implies that their
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performance deteriorates as the dimensionality of the search space increases [23].
Bouveyron et al. advises dimension reduction or subspace clustering as the pri-
mary ways of avoiding the curse of dimensionality [5].
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Fig. 1. Particle structure of the standard PSO. Each particle contains the centroids
for all clusters.

The proposed method in this study,unlike the standard PSO approach,
achieves high quality clustering results without increasing the number of dimen-
sions. To do so, instead of a whole representation of a candidate solution by
a particle (including all centroids of all clusters as in Fig. 1), in the proposed
method, each particle represents only one centroid in the search space. There-
fore, the number of dimensions of a particle equals the number of data vector
features. Despite this major change in the particle representation, the proposed
version of PSO’s adherence to the standard PSO principles is provided by the
changes made in the structure of the communication between particles.

One of the main configurational properties of PSO is topology or structure
of connections between particles. Several approaches are developed to obtain
good performance. In the gbest model, each particle is connected to all other
particles (Fig. 2a). In the lbest model, each particle is connected to a predefined
number of other particles (Fig. 2b). In star topology, which is a lbest model, one
of the particles in the swarm become the focal particle and all other particles
are connected to this focal particle (Fig.2c). Therefore, all communication in
the swarm is transmitted through this focal particle.

The proposed PSO variant in this study, addresses a star topology based
new PSO clustering method. In this method there are several focal particles in
the swarm. Other particles are connected to their nearest focal particle and all
communication passes through these focal particles. There are several studies
about focal particles in PSO [13,21]. However, we couldn’t find any study on
multiple focal particles in a swarm with dynamically changing neighborhoods
among particles.

In this study, we aim to prove that, by decreasing the number of dimensions
with the help of this multiple focal particle topology, our proposed PSO variant
achieves high quality clustering results with less computation cost than other
heuristics in high dimensional datasets. In the following sections, first data clus-
tering is defined as an optimization problem. Then, in the third section, particle
swarm optimization technique is introduced and the method of data cluster-
ing with particle swarm optimization is explained. In the fourth section particle
swarm optimization with the focal particles method is introduced. This method
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Fig. 2. Swarm topologies: gbest topology - Each particle is connected to each other. lbest
topology - Each particle is connected to a number of other particles. Star topology -
Each particle is connected to a focal particle.

is applied on five datasets and, results and the conclusion is given at the end of
this study.

2 Data Clustering

When the data clustering problem is treated as an optimization problem, the aim
is to find optimal centroids of clusters rather than finding optimal partition of
the data vectors [1]. The dataset to be clustered is represented as a set of vectors
D = {z1,29, ...,z } where m is the number of data objects z;. A data object
can have any number of dimensions. These dimensions of data is called attributes
or features. A cost function is to be defined for clustering optimization problem.
In clustering analysis these cost functions are validity indexes. A comprehensive
review of the clustering methods can be found in [15,16,24].

2.1 Validity Indexes

Several validity indexes are defined to assess the performance of the clustering
algorithms. In optimization based data clustering, these validity indexes (or sim-
ilarity indexes) are used to calculate the fitness of the current solution. The most
basic validity index is the sum of distances between the data vectors and their
assigned cluster centroids in the vector space. This index is called clustering
error index [1] and given in the Eq. (1).
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where d is the distance of the data vector x; to its assigned centroid. IV, denotes
the number of clusters (provided by the user). o; denotes the centroid vector of
cluster Cj.

Another validity index is quantization error (2) from [22].
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Here | C; | is the number of data vectors belonging to cluster C;. This
quantization error is the average distances of the data vectors to their assigned
centroids. The quantization error used in the Eq. (2) allows for division by zero.
In our study, if a division by zero was encountered, the fitness of the particle
was approximated to infinity.

One another well-known validity index is Silhouette value. The silhouette
value for each point is a measure of how similar that point is to points in its
own cluster, when compared to points in other clusters. Higher silhouette means
a better assignment of data vectors to clusters. Formula for silhouette value is
given in (3).
maz{a(x;),b(x,)}

where a(z;) is the average distance from the ith point to the other points in the
same cluster as i, and b(z;) is the minimum average distance from the ith point
to points in a different cluster, minimized over clusters. Silhouette value is in
between —1 and +1. There are several other validity indexes for data clustering,
a brief list of them can be seen in [16].

The distance parameter in the Egs. (1) and (2) can be Euclidian, cosine or
any other distance metric. In data clustering euclidian distance, given in the
Eq. (4), is one of the most frequently used metric. But at some special occasions
like document clustering, cosine distance is more suitable [25].

S(x;) =

Here Ny is the data dimension, i.e. the number of attributes of each data
vector.

3 Particle Swarm Optimization

Swarm optimization algorithms are inspired by the efforts to model the social
systems of birds and bees. Particle swarm optimization is developed by Kennedy
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and Eberhart in 1995 [9]. In PSO, each particle represents a position in Ny dimen-
sional space. PSO algorithm moves particles through this multi-dimensional
search space to search for an optimal solution. A particle’s movement is affected
by three factors; (1) Particle’s own velocity vector, ¥; - (2) Particle’s best position
found thus far, p; - (3) Best position found by the particles in the neighborhood
of that particle, ;.

In the first step of the algorithm, velocity of a particle is calculated as in (5)
and then this value is added to the current position of the particle as given
in (6). If &; is the current position of the particle, ¥; is the current velocity of
the particle and p; is the personal best position of the particle then the velocity
of the particle for the next iteration is;

177;7]@(15 + 1) = w1717k(t) + ClTl,k(t)(ﬁi,k(t) — flk(t)) (5)
+cora k() (Y k (t) — Tik (1))

Zit+1)=2;)+ vt +1) (6)

where w is the inertia weight, c1, co are positive constants, called the cognitive
and social acceleration factors respectively. r1 (t), 72 k() «~ U(0,1), and k =
1,..., Ny [22].

3.1 Data Clustering with Particle Swarm Optimization

In PSO, every particle represents a candidate or potential solution. The model
employed by the particle should point a solution of the problem by its own.
In Merwe and Engelbrecht’s [22] method, a particle is constructed as in 7.

T; = (041, 0i2, .-+ 0jj; ---OiN,) ™

where 0;; corresponds to the jy, centroids represented by the 44, particle. Thus,
if a data vector consists of Ny dimensions, then a particle will have Ny x N,
dimensions.

PSO algorithm tries to minimize an objective function iteration by iteration.
In data clustering mode, this objective function should be chosen carefully to
achieve a good clustering result at the end of the iterations or when a termina-
tion criteria for the PSO is reached. Merwe and Engelbrecht [22] have chosen
quantization error (2) as the fitness function.

4 Particle Swarm Optimization with the Focal Particles

As it is explained before, in PSO, a particle is a representation of a whole solu-
tion, thus a particle should have Ny x N, dimensions. This usually yields the
so-called ‘curse of dimensionality’ problem. To overcome this ineffectiveness, we
have developed a new clustering approach, namely particle swarm optimization
with the focal particles (PSOFP). In this new approach each particle represents
only one centroid in the search space. If N, is the number of clusters, then N,
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number of particles are chosen as the final representatives of clustering solu-
tion. These particles are the focal particles to which all other particles in the
swarm are connected to their nearest. This neighborhood structure is similar to
Fig. 3. This approach results in less dimensionality in particles. Therefore, it is
expected to have less computational cost than the standard approaches. In the
next section we have benchmarked PSOFP’s performance with other clustering
algorithms.

Fig.3. fo and f; are the focal particles. There are 13 particles in total. This is an
example for a two cluster problem.

In PSOFP, a particle is constructed as in (8).
Ti = (01) (8)

where Z; is a centroid in the search space. Algorithm 1 displays the pseudo code
of PSOFP algorithm. To start PSOFP, a swarm with [ particles are initialized
with the particle formation given in (8). Swarm initialization of PSOFP is similar
to the standard PSO. Then, randomly selected N, number of these particles are
labeled as focal particles. The swarm size should be bigger than N.. At each
iteration, the fitness value of each particle is calculated. To do this calculation,
first centroid locations represented by the focal particles are combined together
to make a candidate solution. Then, for each non-focal particle, the particle’s
position vector (the centroid it represents) is overwritten to the corresponding
place in the candidate solution. This process is illustrated in the Table 1.

In this illustrative example, a swarm with 8 particles is initialized. We are
trying to cluster our data vectors into three clusters. Thus, the first three parti-
cles are assigned as the focal particles. The data vectors are in two dimensions,
therefore each particle has two dimensions. To calculate the fitness value of the
fourth particle,

— First a candidate solution is built by the focal particles as: {10; 18; 45; 26;
21; 34}. The first two columns of the candidate solution is the centroid of the
first cluster and the third and the fourth terms are the centroid of the second
cluster, the last part is the centroid of the third cluster.

— Then, we calculate the nearest focal particle to the fourth particle using the
selected distance metric. It is the second focal particle in this example.

— In the candidate solution, places belonging to the second focal particle is
replaced with the current particle’s position: {10; 18 ; 38; 30; 21; 34}. Fitness
of the fourth particle is calculated by using this final candidate solution.
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Table 1. An illustrative example for the PSOFP fitness calculation process.

Particle Nr. | Focal? | Position vector (z1;x2)
1 True |10; 18
2 True |45; 26
3 True |21; 34
4 False |38; 30
5 False |12; 22
6 False 5; 52
7 False |15; 42
8 False |45; 22

Another difference from the standard PSO is, focal particles in PSOFP will
not have their own inertia weight component. Focal particles are only affected
by their own personal best and the best performances of the other particles that
are connected to these focal particles. At the end of each iteration, particles,
including the focal, move in the search space. When these movements finishes,
the neighborhood structure of the swarm is to be updated. Each particle, except
focal ones, will be connected to its nearest focal particle. To do this, the distances
among focal and non-focal particles are calculated again.

5 Application and Results

Table 2 shows the datasets used for benchmarking. IRIS, WINE, CMC and Ges-
ture Data are from UCI benchmark datasets. RANDI1 is a randomly gener-
ated dataset which includes 500 x U(0,100), 1000 x U(500,1500) and 1000 x
U (2500, 3000) values.

Table 2. Benchmark datasets

Name Data vectors | Data attributes | Clusters
IRIS 150 4 3
WINE 178 13 3
CMC 1473 9 3
Gesture Data | 4833 18 5
RAND1 2500 25 3

The following methods are used for benchmarking:

— Standard K-Means Clustering Algorithm
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Require:

- Dataset: D = {x1,22,...., Tm }
- The number of clusters: N,

Initialisation:

- Initialize the position #; and velocity ©; of [ > N, number of particles

randomly. Each particle contains one randomly generated centroid vector (o;) in
the search space.

- Define the set of focal particles S, where the number of focal particles

equal to N,

foreach iteration do

forall the particle i do
- x;: Position of the particle ¢

- fi: The index of the focal particle that particle ¢ is connected to

- xy,: Position of the focal particle that particle 4 is connected to

- s, All focal particles' positions

- generate a candidate solution by replacing the z, in the zs, with the
T

- calculate the fitness of particle: J(z;)by a clustering validity index

// Compare the particles current fitness with its pbest:
if J(.’L’l) < J(pz) then
[

Pi=2q
end
nd

orall the particle i do
- Define neighborhood: If i is non-focal then assign i to its nearest focal
particle
- yi=MIN(p; € S},.i,n) Where S’Zeigh is the neighborhood of i
- Change the velocity of the particle ¢ according to the equation (5)
if v; > Vmae then
‘ Vi = Umaz// Check if the velocity is out of limits
end
Calculate the position of ¢ according to the equation (6)
if z; > Tmas then
‘ Ti = Tmaz// Check if the position is out of limits
end
if z; < Tmin then
‘ T; = Tmin// Check if the position is out of limits
end

=0

end

end

Algorithm 1. Pseudo code for PSOFP algorithm

— K-means++ Algorithm: Arthur and Vassilvitskii’s K-means++ algorithm [3],
is an improvement to the standard K-means for choosing better initial values
and therefore avoiding poor results.
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— Merwe’s [22] hybrid PSO data clustering method: In hybrid PSO, the result
of K-means clustering feed into PSO as a particle, i.e. the solution of K-means
algorithm is where the PSO starts.

— CLARANS: Ng and Han [17] introduced the algorithm CLARANS (Cluster-
ing Large Applications based upon RANdomized Search) in the context of
clustering in spatial databases. Authors considered a graph whose nodes are
the sets of k medoids and an edge connects two nodes if they differ by exactly
one medoid.

We have paralleled the benchmarking tests on a 16 processor computer. Due
to the random nature of k-means and particle swarm algorithms, all methods
have been run 160 times. The test computer had 16 Intel Xeon E5 2.90 Ghz
processors with 30 GB of RAM. 8 parallel runs are done at the same time. We
also tried paralleling the fitness evaluation process in a single run. But due to the
high information preprocessing overhead, parallel evaluation of fitness functions
in a single run was slower than the serial evaluation. Our test computer was on
the Amazon EC2 cloud computing servers. We refer to [10] for a discussion on
parallelization in data mining applications.

PSO and PSOFP algorithms are initialized with 100 particles. Permitted
maximum iteration count is 4000, but iterations stop when there is less than
0.0001 improvement in the global best value during the last 250 iterations. Equa-
tion 5 is used for velocity calculations, w = 0.90, ¢; = ¢o = 2.05. In standard
PSO, the gbest model is chosen. Selection of the fitness function is an important
process in heuristic optimization. We choose quantization error (2) as the fitness
function. Quantization error and Silhouette values of each method is reported
in the Table3. CPU time column is the mean CPU time for 160 runs. Mean
and Min. columns of quantization error represent the average and the best value
obtained from 160 runs. Maz. column of Silhouette value represents the best
value achieved among 160 runs for the Silhouette index. S.D. column gives the
standard deviation of runs.

When we refer to the quantization error, proposed PSOFP algorithm out-
performs all other algorithms on the benchmark datasets. The mean value of the
quantization error of PSOFP on five datasets is 3.71 %, 4.16 %, 4.06 % and 1.65 %
lower than the K-means, K-means++, PSO Hybrid and CLARANS algorithms
respectively. When we compare the best valued achieved by each algorithm (min-
imum values), PSOFP is 7.64 %, 7.59 %, 6.42% and 7.78 % better than these
algorithms. Standard deviation is an indicator of the representation strength of
reported average errors. In all datasets, except RAND1, standard deviation of
PSOFP is lower than the benchmarking algorithms. This shows that proposed
PSOFP is a robust clustering technique. Silhouette value is another useful index
to analyze the clustering performance. Values nearer to 41 is better for the
Silhouette index. Silhouette values of PSOFP is equal or slightly better than
the benchmarking algorithms. Only, in RAND1 dataset CLARANS algorithm is
2.23 % better than the PSOFP on the average.

As the CPU time column of the Table 3 indicates, due to the less number of
dimensions of the search space in the PSOFP method, PSOFP is much faster,
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at the same time more successful in the term of clustering validity, than the
standard PSO. Its computational time is 45.03 %, 5.00 %, 39.66 %, 64.54 % and
9.25% less than the standard PSO algorithm in WINE, IRIS, CMC, Gesture
and RAND1 datasets respectively. Although CLARANS algorithm gives better
results than the PSOFP on RANDI1 dataset, its computational time in this
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dataset is 4.3 times higher than the PSOFP.

Table 3. Benchmark results over 160 runs for each method.

Dataset | Algorithm | CPU time | Quantization error Silhouette
Mean |Min |S.D. Mean | Max | S.D.
WINE | K-Means 0.53 |101.58 | 97.87| 3.91 |0.726 0.73 | 0.01
K-Means++ 0.45 | 99.84| 97.87| 3.43 |0.729 |0.73 | 0.02
PSO Hybrid 668.75 |100.67| 97.87| 3.73 |0.728 |0.73 | 0.01
CLARANS |14,937.00 | 99.61| 97.15| 2.11 |0.726 0.74 | 0.02
PSOFP 367.61 | 96.72| 95.51 1.59 10.726 | 0.75 | 0.14
IRIS K-Means 0.44 0.65| 0.64| 0.02 |0.724 |0.74 | 0.06
K-Means++ 0.35 0.65, 0.64| 0.01 0.725|0.74 | 0.05
PSO Hybrid 257.98 0.65| 0.64| 0.01 |0.730 |0.74 | 0.04
CLARANS 356.86 0.65| 0.64| 0.00 |0.730 |0.74 |0.02
PSOFP 245.08 0.61, 0.53| 0.02 0.735]0.74 | 0.13
CMC K-Means 11.38 3.83| 3.83| 0.00 |0.645 |0.65 | 0.01
K-Means++ 9.66 3.83) 3.83| 0.00 |0.645 0.65 |0.01
PSO Hybrid 832.80 3.83| 3.83| 0.00 |0.645 |0.65 | 0.01
CLARANS 654.77 3.83| 3.83| 0.00 |0.645 |0.65 |0.01
PSOFP 502.53 3.83| 3.82| 0.002|0.643 | 0.65 | 0.00
Gesture | K-Means 15.54 1.51 1.47| 0.021]0.534 | 0.60 | 0.001
K-Means++ 12.56 1.50 1.47| 0.023]0.523 | 0.60 | 0.001
PSO Hybrid | 1,470.71 1.59| 1.37| 0.046|0.532 | 0.70 | 0.003
CLARANS 867.90 1.54 1.48| 0.0250.535 | 0.67 | 0.002
PSOFP 521.51 146, 1.19, 0.02 |0.536 0.71 | 0.00
RAND1 | K-Means 25.11 |369.23|334.71 | 134.11 |0.952 | 0.98 | 0.11
K-Means++ 24.74 | 388.58 |334.71 | 160.07 |0.905 | 0.98 | 0.33
PSO Hybrid 682.72 |360.31 | 334.71 | 114.50 |0.947 | 0.98 | 0.21
CLARANS 2,664.28 |334.80|334.71| 0.00 |0.978 | 0.98 | 0.00
PSOFP 619.60 |354.26 |334.71 | 85.67 |0.957 |0.98 | 0.10

6 Conclusions

In this study a new approach is presented for clustering analysis using parti-
cle swarm optimization with the focal particles. In standard PSO, each particle
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is a representation of the final solution, however, this increases the number of
dimensions a particle has. In PSOFP, each particle is a representation of only
one point in the search space, therefore the number of dimensions are lower
than the standard PSO. We analyzed the performance effect of this dimension-
ality reduction to the clustering performance. We selected three small and two
large datasets and benchmarked proposed PSOFP algorithm with the standard
K-means, K-means++, hybrid PSO and CLARANS algorithms. Each algorithm
has run 160 times. The Amazon EC2 cloud computing platform is used and 8
parallel runs has been made each time. Also, we tried paralleling the objective
function evaluation of particle swarm optimization. This approach didn’t accel-
erate the clustering analysis due to the high information overhead among parallel
processes.

Quantization error and Silhouette values are chosen as the performance cri-
teria for benchmark tests. The results indicated that while maintaining better
or equal clustering performance with the benchmarking algorithms, PSOFP was
faster than the standard PSO algorithm. This shows that the dimensionality
reduction approach of the PSOFP is an efficient and robust strategy in heuristic-
based data clustering analysis.

As the future work, an improved fully parallel approach for focal particles
can be studied. We employed Euclidian distance as the distance metric in our
calculations. But cosine metric is also known to be a good representative for the
similarity among data objects in high dimensional space. The performances of
the algorithms can be compared by using cosine distance metric.
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