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Abstract. Parameters tuning is a crucial step in global optimization.
In this work, we present a novel method, the Sensitive Algorithmic Tun-
ing, which finds near-optimal parameter configurations through sensi-
tivity minimization. The experimental results highlight the effectiveness
and robustness of this novel approach.

1 Introduction

An algorithm is a formal description of a series of steps, which provides a solution
for a given problem [1]. Obviously, the output of an algorithm depends on the
input data and its parameters; an algorithm can be viewed as a black-box pro-
cedure, which receives in input a set of data and returns an output representing
the results. The possibility of selecting different sets of parameters potentially
allows to achieve satisfactory results for different instances of a problem, thus
increasing the generality of an algorithm.

Parameters tuning represents a crucial part of any experimental protocol
in global optimization; indeed, parameters setting heavily affects the quality of
the solutions and the speed of convergence of an optimization algorithm [2,3].
Finding good parameters values is pivotal when using stochastic algorithms [4].
Typically, parameters are set using commonly used values, or by a trial-and-
error approach; interestingly, very few approaches have been proposed to sys-
tematically find optimal parameters settings [5–7]. Recently, Bartz-Beielstein
introduced the Sequential Parameter Optimization (SPO) algorithm, a general
framework for experimental analysis that accounts for iterative refinement of the
parameters [8]. Successively, Hutter et al. proposed SPO+, an improved variant
of SPO that uses log-transformations and the intensification criterion [9]. Hutter
et al. also proposed ParamILS, a method to find optimal parameters settings
through local search in the parameters space [10]. An alternative approach con-
sists of using a racing scheme where, starting from an initial set of techniques,
an iterative selection is performed [11].

We address the problem of tuning an algorithm by introducing the Sensitive
Algorithmic Tuning (SAT) method; our approach finds optimal parameters set-
tings by minimizing the worst-case performance of the most sensitive parameters.
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We evaluate this method by tuning the Differential Evolution (DE) optimiza-
tion algorithm [12], although, in principle, our method can be applied to any
algorithm.

The paper is organized as follows: in Sect. 2 we introduce the problem of
tuning algorithms and the notion of maximum success region. Section 3 presents
the concepts of robustness and sensitivity, and describes the Morris sensitivity
analysis method and the Differential Evolution algorithm. In Sect. 4, we describes
the SAT algorithm. Section 5 presents the experimental results. Finally, in Sect. 6
we discuss the conclusions and future works.

2 Algorithmic Tuning

Algorithmic tuning refers to the process of finding a set of values for the para-
meters of an algorithm, ensuring a satisfactory solution to the problem in the
average case.

A trial-and-error approach is computationally expensive and could lead to
poor performances if biased by a-priori knowledge. Without loss of generality,
we assume that an algorithm is defined as follows:

Y = A(P,X) (1)

where A is a procedure that takes in input a problem instance P and a vector of
parameters X, and returns an output Y . W.l.o.g., we assume that each parameter
xi ∈ X ⊂ IR is constrained to an interval [x−, x+].

Finding an optimal parameter setting is an intractable problem. Let X be a
parameter setting for an algorithm A, where each parameter can take k different
discrete values within the interval [x−, x+]; it follows that the number of feasible
parameters settings is k|X|. This result makes an exhaustive search intractable
for large instances.

Parameters tuning generally consists in running the algorithm on a testbed
problem P̄ , which shares same characteristics with the original problem P (e.g.
unimodality). In this context, it becomes crucial to identify a region of the
parameters space that maximizes the probability of success, which we denote
as maximum success region.

Definition 1 (Maximum Success Region). Let X = [x−, x+] ⊂ IR be the
range for the parameters of an algorithm A. X is called maximum efficiency
region if the following condition holds:

∀x ∈ X : Pr(A(P, x) = S(P )) ≈ 1

where Pr is a function that represents the probability of obtaining the exact solu-
tion S(P ) of P .

The concept of maximum efficiency region fits particularly well the task of
tuning the parameters of optimization algorithms; in this case, the maximum
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efficiency region of an optimizer is the subspace of parameters, which ensures
near-optimal solutions.

It should be noted that optimization methods are subject to eager tuning,
typically by requiring a large number of objective function evaluations to ensure
the convergence to an optimum. It is possible to overcome this limitation by sys-
tematically choosing the smallest parameter value ensuring a maximum success
rate; this general principle is exploited by the SAT algorithm.

3 Methods

In this section, we describe a framework for robustness and sensitivity analysis
that represents the basis of the Sensitive Algorithmic Tuning (SAT) algorithm.

3.1 Robustness and Sensitivity Estimation

Algorithmic robustness is the probability of finding a satisfactory solution to a
problem, even when the parameters are not optimally tuned. In general, there
is a range of values for each parameter for which near-optimality is guaranteed.
W.l.o.g., we assume that an algorithm is correct if a parameters setting ensuring
an optimal or suboptimal solution exists. We define the robustness condition ρ
and the accuracy yield Γ as follows:

Definition 2 (Robustness Condition). Let X ∈ IRn be a parameters setting
for an algorithm A. Given a parameters set X∗ obtained by perturbing X, the
robustness condition ρ is defined as follows:

ρ(X,X∗, A, P, ε) =
{

1 if | A(P,X) − A(P,X∗) |≤ ε
0 otherwise

(2)

where the robustness threshold ε denotes the precision in the objective function
value.

Definition 3 (Yield). Let X ∈ IRn be a parameters setting characterizing the
behavior of a technique D. Given an ensemble T of parameters settings obtained
by sampling the parameters space of X, the yield Γ is defined as follows:

Γ (X,A,P, ε, ρ, T ) =

∑
X∗∈T ρ(X,X∗, A, P, ε)

|T | (3)

Since we consider subsets of the parameters space, we perform a Monte-
Carlo sampling that generates trial settings in a specific parameters subspace.
In our study, we set the robustness threshold ε = 10−5 and the number of trials
|T | = 100.

An ad-hoc algorithmic tuning requires knowledge of the effects of the para-
meters on the output. In this context, the Morris sensitivity analysis technique
[13] represents an interesting approach; it ranks the parameters based on their
effect on the output, and does not require information about the system being
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analyzed [14]. In particular, a parameter is considered sensitive if variations of its
value significantly affect the performance of the algorithm. In this context, the
Morris technique can be used as an automated method for analyzing algorithms.
We hypothesized that the identification of regions of low sensitivity could lead to
an effective parameters tuning; this idea represents the basic principle of SAT.

3.2 Morris Method

Sensitivity analysis studies the influence of the input parameters on the out-
put of a function (e.g. an algorithm), and identifies possible relations between
parameters, e.g. linear and nonlinear.

The Morris method is a one-at-a-time (OAT) global sensitivity analysis tech-
nique. Given a set of parameters values, a parameter at time is modified and
the variation of the output is recorded. This information is used to calculate the
mean values μ and the standard deviations σ associated with each parameter.
Parameters with a high μ have an important impact on the output, large val-
ues of σ indicate nonlinear relations with other parameters, whereas small mean
values are associated with negligible effect.

3.3 Differential Evolution Algorithm

Differential Evolution (DE) is a stochastic population-based algorithm developed
for global optimization in continuous spaces [12]. DE is used to solve multi-
modal, multi-objective, dynamic or constrained optimization problems; it finds
application in several real-world problems, such as digital filter design, fermen-
tation processes, dispatch optimization, and several others [15–18].

DE exploits a vector of differences that is used as a perturbation operator.
Given an objective function f : IRn → IR, DE starts by generating NP indi-
viduals at random, where the values of the variables are constrained in their
respective lower and upper bounds. At each generation, each individual is mod-
ified according to a crossover probability Cr, using the following scheme:

xi
g+1 = xi

g + Fw × (yi
g − zig) (4)

where xi
g+1 is the i−th variable of the new individual at generation g + 1; yg

and zg are two individuals of the population such that x �= y �= z; and Fw is a
weighting factor.

If f(xg+1) < f(xg), xg+1 replaces xg in the population. Typically, the algo-
rithm stops when a predetermined number of generations (G) is reached.

The algorithm has few parameters; Cr controls the exploring ability of DE,
Fw controls its exploiting ability, while NP determines the population size. In
particular, for large-scale problems, DE requires large NP values and a sufficient
number of generations to obtain satisfactory results.
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4 Sensitive Algorithmic Tuning

The Sensitive Algorithmic Tuning (SAT) algorithm is a deterministic method
that relies on sensitivity analysis and worst-case screening to identify maximum
success regions within the parameters space.

Sensitive parameters are those that typically decrease the success or failure of
an algorithm. The sensitivity of a parameter is strictly related to its uncertainty
region; in general, a large parameter range makes difficult to find an optimal
setting. When the value of a parameter is outside its maximum success region,
we can observe an increase in sensitivity. Sensitivity minimization is a key prin-
ciple in system design; it is necessary to obtain robust parameters setting, but
not sufficient to guarantee near-optimal solutions. To overcome this limitation,
we adopt a worst-case screening method. Given two parameters settings, SAT
chooses the one providing the best solution in the worst case.

The SAT algorithm is depicted in Algorithm1. At each step, SAT splits
the parameters space of each parameter and performs Morris analysis in both
regions; it then selects the subspace with the highest mean value, aiming at
tuning the most sensitive parameter first. The splitting procedure can be any
interval-cutting strategy [19]; in our experiments, we generate two regions by
halving the range of sensitive parameters.

An example of the application of the SAT algorithm to a technique with two
parameters is depicted in Fig. 1. The objective function values obtained by each
parameters setting sampled during sensitivity analysis are also used for evaluat-
ing the worst case performance of the algorithm. We use two halting conditions;

Algorithm 1. Pseudo-code of the Sensitive Algorithmic Tuning (SAT)
algorithm.
1: procedure SAT(A, X−, X+)
2: k ← 0
3: Mk ← Morris(A, X−, X+, r, p, Δ)
4: while ¬StopCondition do
5: si ← max(Mk)
6: [lx−, lx+] ←LowSplit(X−, X+, si)
7: [hx−, hx+] ←HighSplit(X−, X+, si)
8: Mlx ←Morris(A, lx−, lx+, r, p, Δ)
9: Mhx ←Morris(A, hx−, hx+, r, p, Δ)

10: if max f(Mlx) > max f(Mhx) then
11: [X−, X+] ← [lx−, lx+]
12: Mk ← Mlx

13: else
14: [X−, X+] ← [hx−, hx+]
15: Mk ← Mhx

16: end if
17: k ← k + 1
18: end while
19: end procedure
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{[1, 5], [1, 10]} {[5, 10], [1, 10]}
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∅
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Morris
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Fig. 1. Iterations of the SAT algorithm on a bi-dimensional parameter space. ∅ denotes
a region that will not be furtherly splitted.

the attainment of an optimal solution in the worst case, or the impossibility of
further splitting the parameters space. This strategy is useful to prevent a waste
of computational effort when the parameter region is sufficiently small.

5 Experimental Results

We use the SAT algorithm for tuning DE, with the parameters reported in
Table 1.

Since parameters settings are problem-dependent, we consider unimodal and
multimodal numerical functions of dimensions d = 10 and d = 20 (see Table 2).
Three unimodal functions are used, characterized by multiple quadratic terms.
Multimodal functions take into account noise (see function f4), quadratic and
quartic terms. It should be noted that the number of local minima of f5 increases
exponentially with its dimension [20].

Table 1. Parameters of the Differential Evolution algorithm. n denotes the dimension
of the problem.

Parameter Description X− X+

NP Population size 10 50

G Number of generations n × 25 n × 250

Fw Weighting factor 0 1

Cr Crossover rate 0 1
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Table 2. Test problems. f∗ represents the global minimum; (X−) and (X+) are the
lower and upper bound, respectively, n denotes the dimension of the problem.

Class f f∗ X− X+

f1 Unimodal
∑n

i=1 x2
i 0 −100 100

f2 Unimodal
∑n

i=1(
∑i

j=1 xj)
2 0 −100 100

f3 Unimodal
∑n−1

i=1 100(xi+1 − x2
i )

2 + (xi − 1)2 0 −30 30

f4 Multimodal
∑n

i=1 i ∗ x4
i + random[0, 1) 0 −1.28 1.28

f5 Multimodal
∑n

i=1 x2
i − 10 cos(2πx − i) + 10 0 −5.12 5.12

The metric adopted for evaluating the DE performance is the average value
of the best solution over 10 independent runs; moreover, we apply the SAT
algorithm to find a setting that ensures a worst-case result of 10−1.

An extensive set of simulations is performed to achieve an optimal parameters
setting for DE. Table 3 reports the results of SAT on the five testbed problems
for d = 10. The experimental results show that SAT is able to find satisfactory
settings for all the problems.

Table 3. Results for d = 10. f∗
w is the worst case objective function value; v(f)

represents the variance of the output of all the sampled settings; the lower and the
upper bound of each parameter found by SAT are within brackets.

f f∗
w v(f) NP G Fw Cr

f1 1.434 × 10−82 1.690 × 104 [77, 100] [2000, 2500] [0.55, 0.66] [0.21, 0.32]

f2 7.737 × 10−96 2.594 × 106 [55, 100] [2375, 2500] [0.55, 0.75] [0.43, 0.55]

f3 8.586 × 10−1 2.095 × 109 [77, 88] [1500, 1625] [0.55, 1] [0.1, 0.32]

f4 1.482 1.597 × 10−1 [97, 100] [4937, 5000] [0.55, 0.66] [0.43, 0.55]

f5 5.971 × 10−1 5.9305 [83, 88] [500, 1500] [0.44, 0.55] [0.1, 0.325]

On unimodal functions f1 and f2, we are able to obtain an upper bound on
the algorithm performance that is close to the global optimum. The f3 function
represents an exception within the unimodal set: it is not surprising that the
worst case result is many orders of magnitude worse than the others, due to the
presence of several plateau regions that can trap the algorithm. The values of
variance show that DE is highly influenced by its parameters, and the initial
bounds contain many suboptimal parameters settings.

The multimodal functions are more complex, as the presence of noise and
several local minima leads to a difficult tuning. Despite this complex scenario,
SAT is able to find a setting that ensures near-optimal solutions in the worst
case. The variance is several orders of magnitude lower with respect to unimodal
functions; however, this is probably due to the smaller intervals on which the
algorithm operates.
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Fig. 2. Sensitivity landscape of f3 for d = 10. μ, σ are reported on the x and y axis,
respectively; the objective function values are reported on the z axis.
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Fig. 3. Sensitivity landscape of f5 for d = 10. μ, σ are reported on the x and y axis,
respectively; the objective function values are reported on the z axis.

Figures 2 and 3 report the sensitivity landscapes of f3 and f5. The lowest
function value is achieved when the sensitivity of each parameter is close to
zero. This result seems to support the underlying strategy implemented in SAT.
The sensitivity landscapes of the parameters are different for the two problems;
for the f3 function, the population size, the number of generations and the
weighting factor show a convex shape, while the crossover probability has a
spike near the maximum success region. By inspecting the sensitivity landscape
of f5, we note that the best results are obtained when the sensitivity is close
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to zero, but the shape of the landscape is more rugged. For all parameters, we
have a high number of peaks at different points, which remarks the complexity
of tuning DE in this case. Despite this rugged parameter space, SAT is able to
identify the best setting.

The results for the tuning of DE when d = 20 are presented in Table 4.

Table 4. Results for d = 20. f∗
w is the worst case objective function value; v(f)

represents the variance of the output of all the sampled settings; the lower and the
upper bound of each parameter found by SAT are within brackets.

f f∗
w v(f) NP G Fw Cr

f1 2.322 × 10−77 3.601 × 105 [55, 77] [4750, 5000] [0.55, 1] [0.21, 0.32]

f2 3.652 × 10−90 5.895 × 108 [55, 100] [4750, 5000] [0.55, 0.77] [0.43, 0.55]

f3 2.830 2.193 × 1011 [77, 88] [4000, 5000] [0.1, 0.32] [0.1, 0.21]

f4 5.402 0.795 [32, 55] [1000, 2000] [0.21, 0.32] [0.88, 1]

f5 2.985 60.316 [77, 88] [4000, 5000] [0.43, 0.55] [0.32, 0.55]

On the unimodal functions f1 and f2, the algorithm finds a setting with a
satisfactory upper bound, however this result is not as good as the one found
for the smaller dimension instances. f3 proves to be the most difficult unimodal
problem of the entire set; in this case, lower accuracy than expected was obtained.
The values of variance are dramatically increased, and the tuning becomes more
difficult for increasing problem dimension. Although SAT was not able to find a
parameters setting that matched the desired upper bound, the results required
only limited computational effort.

In Figs. 4 and 5, we report the sensitivity landscape of f3 and f5 for d = 20.
The plots confirm the results obtained for lower dimensional problems. The

lowest function value is always achieved when the parameters sensitivity is close
to zero. The landscape for the two problems are comparable with the previous,
however we observe an increase in μ and σ; for example, for f3, the crossover
probability shows a peak in the central region that is far from the maximum
success region. For the f5 function, a rugged landscape is also obtained, and
we observe increased sensitivity values for all parameters. This landscape seems
to remark the presence of sensitivity barriers, which makes difficult the tuning
process.

Finally, we perform robustness analysis. Since parameters ranges are consid-
ered instead of single values, we have to evaluate the probability of finding sat-
isfactory results using any setting belonging to a given parameter space. Table 5
shows the yield values of the settings for each problem. High yield values are
obtained in all testbeds, except for the f3 and f4 functions. We conclude that
the proposed settings are robust and effective, and guarantee near-optimal per-
formances of the DE algorithm.
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Fig. 4. Sensitivity landscape of f3 for d = 20. μ, σ are reported on the x and y axis,
respectively; the objective function values are reported on the z axis.
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Table 5. Robustness analysis of SAT parameters. d represents the dimension, Γ is the
yield.

f d Γ (%) f d Γ (%)

f1 10 100 f1 20 100

f2 10 100 f2 20 100

f3 10 52 f3 20 64

f4 10 54 f4 20 42

f5 10 92 f5 20 92
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6 Conclusions

Algorithm design is a complex process that should pursuit three general
properties; efficiency, effectiveness and generality. These properties are strictly
dependent on how algorithms parameters are configured. Parameters tuning is
therefore required to ensure efficiency and effectiveness when solving a problem.

In this work, we propose the Sensitive Algorithmic Tuning (SAT), a new
method for the automatic tuning of algorithms. SAT uses the Morris technique
to determine the parameters to optimize to obtain satisfactory upper bounds on
the expected performances. We evaluate the performance of SAT on the problem
of tuning the Differential Evolution (DE) algorithm. The experimental results
show the effectiveness of our approach; moreover, the discovered settings present
a high degree of robustness. Interestingly, these results confirm that optimal
settings are associated with a low parameters sensitivity.

We believe the parameters tuning problem should be exploited more deeply by
extending the cutting strategy; for instance, an alternative branch-and-bound [21]
approach could represent an efficient sampling strategy, where sensitivity infor-
mation could be used to perform expansion and pruning of the exploring tree.
We suggest the enhanced SAT algorithm could represent a valid candidate for tun-
ing one of the most important algorithms of the Internet era: PageRank [22].

Acknowledgments. The authors would like to acknowledge Professor Angelo
Marcello Anile for the useful discussions on the seminal idea of automatic algorithms
tuning. Professor Anile was a continuous source of inspiration during our research work.
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