
Panos Pardalos · Mario Pavone
Giovanni Maria Farinella
Vincenzo Cutello (Eds.)

 123

LN
CS

 9
43

2

First International Workshop, MOD 2015
Taormina, Sicily, Italy, July 21–23, 2015
Revised Selected Papers

Machine Learning,
Optimization,
and Big Data

Lecture Notes in Computer Science 9432

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7409

http://www.springer.com/series/7409

Panos Pardalos • Mario Pavone
Giovanni Maria Farinella • Vincenzo Cutello (Eds.)

Machine Learning,
Optimization,
and Big Data
First International Workshop, MOD 2015
Taormina, Sicily, Italy, July 21–23, 2015
Revised Selected Papers

123

Editors
Panos Pardalos
University of Florida
Gainsville, FL
USA

Mario Pavone
University of Catania
Catania
Italy

Giovanni Maria Farinella
University of Catania
Catania
Italy

Vincenzo Cutello
University of Catania
Catania
Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-27925-1 ISBN 978-3-319-27926-8 (eBook)
DOI 10.1007/978-3-319-27926-8

Library of Congress Control Number: 2015957789

LNCS Sublibrary: SL3 – Information Systems and Applications, incl. Internet/Web, and HCI

© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by SpringerNature
The registered company is Springer International Publishing AG Switzerland

Preface

MOD 2015 was the first international workshop dedicated entirely to the field of
Machine Learning, Optimization and Big Data. It was held in Taormina (Messina),
Sicily, Italy, during July 21–23, 2015.

By bringing together scientists, industry experts, postdoctoral, and PhD students
working in data science, optimization, and machine learning, MOD aims to provide
researchers with the opportunity to learn more about other research areas, where the
algorithms, methods, and theories on show are likely to be relevant to their own
research activity.

Machine learning, optimization, and big data researchers are now forming their own
community and identity. The International Workshop on Machine Learning, Opti-
mization and Big Data is proud to be the premier workshop in the area. As program
chairs, we were honored to have such a variety of innovative and original scientific
articles presented this year.

There were three plenary lectures:

Vipin Kumar, University of Minnesota, USA
Panos Pardalos, University of Florida, USA
Tomaso Poggio, MIT, USA

In addition, there were four tutorial speakers:

Peter Baumann, Jacobs University Bremen, Germany
Mario Guarracino, Italian National Research Council, Italy
Valeriy Kalyagin, National Research University - HSE, Russia
George Michailidis, University of Florida, USA
Theodore B. Trafalis, University of Oklahoma, USA

MOD 2015 received 73 submissions, and each manuscript was independently
reviewed by at least five members of the Technical Program Committee in a blind
review process. These proceedings contain 32 research articles written by leading
scientists in the field, from 40 different countries in five continents, describing an
impressive array of ideas, technologies, algorithms, methods, and applications.

We could not have organized this conference without these researchers, and we
thank them all for coming. We also could not have organized MOD 2015 without the
excellent work of all of the Program Committee members.

We would like to express our appreciation to the keynote and tutorial speakers who
accepted our invitation, and to all authors who submitted research papers to MOD
2015.

July 2015 Panos Pardalos
Mario Pavone

Giovanni Maria Farinella
Vincenzo Cutello

Organization

General Chair

Giuseppe Nicosia University of Catania, Italy

Conference and Technical Program Committee Co-chairs

Panos Pardalos University of Florida, USA
Mario Pavone University of Catania, Italy
Giovanni Maria Farinella University of Catania, Italy
Vincenzo Cutello University of Catania, Italy

Technical Program Committee

Ajith Abraham Machine Intelligence Research Labs, USA
Arvind Agarwal Xerox Research Center, USA
Agostinho Agra University of Aveiro, Portugal
Mohammad Al Hasan Purdue University, USA
Paula Alexandra Amaral Universidade Nova de Lisboa, Portugal
Aris Anagnostopoulos Sapienza University of Rome, Italy
Danilo Ardagna Politecnico di Milano, Italy
Martin Atzmueller University of Kassel, Germany
Chloé-Agathe Azencott CBIO Mines ParisTech Institut Curie, France
Antonio Bahamonde Universidad de Oviedo, Spain
Baski Balasundaram Oklahoma State University, USA
Elena Baralis Politecnico di Torino, Italy
Roberto Battiti Università di Trento, Italy
Christian Bauckhage Fraunhofer IAIS, Germany
Peter Baumann Jacobs University Bremen, Germany
Aurelien Bellet Télécom ParisTech, France
Daniel Berrar Tokyo Institute of Technology, Japan
Martin Berzins University of Utah, USA
Rajdeep Bhowmik Cisco Systems Inc., USA
Albert Bifet University of Waikato, New Zealand
Ernesto Birgin University of São Paulo, Brazil
J. Blachut University of Liverpool, UK
Konstantinos Blekas University of Ioannina, Greece
Flavia Bonomo Universidad de Buenos Aires, Argentina
Gianluca Bontempi Université Libre de Bruxelles, Belgium
Christian Borgelt European Centre for Soft Computing, Spain
Ulf Brefeld Technische Universität Darmstadt, Germany

Róbert Busa-Fekete University of Marburg, Hungary
Mustafa Canim IBM T.J. Watson Research Center, USA
Giuliano Casale Imperial College London, UK
Tania Cerquitelli Politecnico di Torino, Italy
Lijun Chang University of New South Wales, Australia
W. Art Chaovalitwongse University of Washington, USA
Nitesh V. Chawla University of Notre Dame, USA
Haifeng Chen NEC Labs America, USA
Keke Chen Wright State University, USA
Pietro Colombo Università dell’Insubria, Italy
Bruno Cremilleux Université de Caen, France
Tom Croonenborghs KU Leuven, Belgium
Florence D’Alché-Buc Université d’Evry and Genopole, France
Maria Luisa Damiani University of Milan, Italy
Raj Das University of Auckland, New Zealand
Gerard De Melo Tsinghua University, China
Noel Depalma Inria/UJF, France
Luigi Di Caro University of Turin, Italy
Tom Diethe University of Bristol, UK
Stephan Doerfel University of Kassel, Germany
Ding-Zhu Du University of Texas at Dallas, USA
Devdatt Dubhashi Chalmers University, Sweden
George S. Dulikravich Florida International University, USA
Maria Ebling IBM T.J. Watson Research Center, USA
Roberto Esposito Università di Torino, Italy
Georges Fadel Clemson University, USA
Cesar Ferri Universitat Politecnica de València, Spain
Jordi Fonollosa University of California San Diego, USA
Piero Fraternali Politecnico di Milano, Italy
Patrick Gallinari University of Paris 6 - LIP6, France
Amir Hossein Gandomi The University of Akron, USA
David Gao The Australian National University, Australia
Inmaculada G. Fernández University of Málaga, Spain
Roman Garnett University of Bonn, Germany
Paolo Garza Politecnico di Torino, Italy
Nicolas Gauger TU Kaiserslautern, Germany
Kyriakos Giannakoglou National Technical University of Athens, Greece
Aris Gkoulalas-Divanis IBM Dublin Research Lab, Ireland
C. Gogu Université Toulouse III, France
Michael Granitzer University of Passau, Germany
Clemens Grelck Universiteit van Amsterdam, The Netherlands
Carlos Henggeler Antunes University of Coimbra, Portugal
Jaakko Hollmén Aalto University School of Science, Finland

VIII Organization

Arjen Hommersom University of Nijmegen, The Netherlands
Vasant Honavar Pennsylvania State University, USA
Frank Höppner Ostfalia Hochschule für angewandte Wissenschaften,

Germany
Xian-Sheng Hua Microsoft Research, USA
H. Howie Huang George Washington University, USA
Fabrice Huet Inria Sophia Antipolis, France
Sam Idicula Oracle, USA
Yoshiharu Ishikawa Nagoya University, Japan
Hasan Jamil University of Idaho, USA
Frederik Janssen TU Darmstadt, Germany
Gareth Jones Dublin City University, Ireland
Hachem Kadri Aix-Marseille University, France
Valeriy Kalyagin Higher School of Economics, Russia
Jaap Kamps University of Amsterdam, The Netherlands
Panagiotis Karras Skoltech, Russia
George Karypis University of Minnesota, USA
Ioannis Katakis National and Kapodistrian University of Athens,

Greece
Saurabh Kataria Xerox Research, USA
Kristian Kersting TU Dortmund University, Germany
Andrzej Kochut IBM T.J. Watson Research Center, USA
Levente Kocsis MTA SZTAKI, Hungary
Yun Sing Koh University of Auckland, New Zealand
Petros Koumoutsakos ETH Zürich, Switzerland
Georg Krempl University of Magdeburg, Germany
Sergei O. Kuznetsov National Research University, Russia
Nicolas Lachiche University of Strasbourg, France
Albert Y.S. Lam Hong Kong Baptist University, Hong Kong,

SAR China
Silvio Lattanzi Google, USA
Niklas Lavesson Blekinge Institute of Technology, Sweden
Jaan Lellep University of Tartu, Estonia
Carson K. Leung University of Manitoba, Canada
Jiuyong Li University of South Australia, Australia
Kang Li Groupon Inc., USA
Jun Li University of Technology Sydney, Australia
Hsuan-Tien Lin National Taiwan University, Taiwan
Weifeng Liu China University of Petroleum, China
Xiaozhong Liu Indiana University, USA
Paul Lu University of Alberta, Canada
Anthony Man-Cho The Chinese University of Hong Kong, Hong Kong,

SAR China
Yannis Manolopoulos Aristotle University of Thessaloniki, Greece
Tiziana Margaria University of Potsdam, Germany
Enrique Frias Martinez Telefonica, Spain

Organization IX

Juan Enrique
Martinez-Legaz

Universitat Autònoma de Barcelona, Spain

Suzanne Mcintosh NYU Courant Institute and Cloudera Inc., USA
Gabor Melli VigLink, USA
Taneli Mielikainen Nokia Research Center, USA
Kaisa Miettinen University of Jyväskylä, Finland
Mohamed Nadif Université Paris Descartes, France
Hidemoto Nakada National Institute of Advanced Industrial Science

and Technology, Japan
Mirco Nanni CNR, Italy
Jian-Yun Nie University of Montreal, Canada
Xia Ning IUPUI, USA
Gerhard Paass Fraunhofer IAIS, Germany
Sinno Jialin Pan Nanyang Technological University, Singapore
Panagiotis Papapetrou Stockholm University, Sweden
Ioannis Partalas Université Joseph Fourier, France
Fabio Pinelli IBM Research Ireland, Ireland
George Potamias FORTH-ICS, Greece
Buyue Qian IBM T.J. Watson Research Center, USA
Helena Ramalhinho Universitat Pompeu Fabra, Spain
Karthik Raman Cornell University, USA
Jan Ramon KU Leuven, Belgium
Zbigniew Ras University of North Carolina, USA
Jan Rauch University of Economics, Czech Republic
Fabrizio Riguzzi University of Ferrara, Italy
Juan J. Rodriguez University of Burgos, Spain
Vittorio Romano University of Catania, Italy
Fabrice Rossi Université Paris 1, France
Alessandro Rozza Università degli Studi di Napoli - Parthenope, Italy
Salvatore Ruggieri Università di Pisa, Italy
Florin Rusu University of California - Merced, USA
Nick Sahinidis Carnegie Mellon University, USA
Lorenza Saitta University of Piemonte Orientale, Italy
Vítor Santos Costa Universidade do Porto, Portugal
Samuel Sarjant The University of Waikato, New Zealand
Claudio Sartori University of Bologna, Italy
Christoph Schommer University of Luxembourg, Luxembourg
Martin Schulz Lawrence Livermore National Laboratory, USA
Giovanni Semeraro University of Bari Aldo Moro, Italy
Junming Shao Johannes Gutenberg - Universität Mainz, Germany
Chiusano Silva Politecnico di Torino, Italy
Dan Simovici University of Massachusetts, Boston, USA
Kevin Small Amazon, USA
Mauro Sozio Institut Mines-Télécom, Télécom Paristech, France
Suvrit Sra Carnegie Mellon University, USA
Natarajan Sriraam Indiana University, USA

X Organization

Markus Strohmaier University of Koblenz-Landau, Germany
Johan Suykens KU Leuven, Belgium
Domenico Talia University of Calabria, Italy
Wei Tan IBM, USA
Dacheng Tao University of Technology Sydney, Australia
Maguelonne Teisseire Cemagref - UMR Tetis, France
Panayiotis Tsaparas University of Ioannina, Greece
Aditya Tulsyan MIT, USA
Theodoros Tzouramanis University of the Aegean, Greece
Satish Ukkusuri Purdue University, USA
Giorgio Valentini Università degli Studi di Milano, Italy
Joaquin Vanschoren KU Leuven, Belgium
Ana Lucia Varbanescu University of Amsterdam, The Netherlands
Carlos A. Varela Rensselaer Polytechnic Institute, USA
Iraklis Varlamis Harokopio University of Athens, Greece
Eleni Vasilaki University of Sheffield, UK
Vassilios Verykios Hellenic Open University, Greece
Herna Viktor University of Ottawa, Canada
Maksims Volkovs University of Toronto, Canada
D. Vucinic Vrije Universiteit Brussel, Belgium
Jianwu Wang University of California San Diego, USA
Liqiang Wang University of Wyoming, USA
Marco Wiering University of Groningen, The Netherlands
Lin Wu UNSW, China
Yinglong Xia IBM T.J. Watson Research Center, USA
Liguang Xie Virginia Tech, USA
Chang Xu Peking University, China
Qi Yu Rochester Institute of Technology, USA
Kunpeng Zhang University of Illinois at Chicago, USA
Nan Zhang The George Washington University, USA
Rui Zhang IBM Research - Almaden, USA
Ying Zhao Tsinghua University, China
Anatoly Zhigljavsky University of Cardiff, UK
Bin Zhou University of Maryland, USA
Zhi-Hua Zhou Nanjing University, China
Djamel A. Zighed University of Lyon 2, France

Organization XI

Contents

Learning with Discrete Least Squares on Multivariate Polynomial Spaces
Using Evaluations at Random or Low-Discrepancy Point Sets 1

Giovanni Migliorati

Automatic Tuning of Algorithms Through Sensitivity Minimization 14
Piero Conca, Giovanni Stracquadanio, and Giuseppe Nicosia

Step Down and Step Up Statistical Procedures for Stock Selection with
Sharp Ratio . 26

A.P. Koldanov, V.A. Kalyagin, and P.M. Pardalos

Differentiating the Multipoint Expected Improvement for Optimal Batch
Design . 37

Sébastien Marmin, Clément Chevalier, and David Ginsbourger

Dynamic Detection of Transportation Modes Using Keypoint Prediction 49
Olga Birth, Aaron Frueh, and Johann Schlichter

Effect of the Dynamic Topology on the Performance of PSO-2S Algorithm
for Continuous Optimization. 60

Abbas El Dor and Patrick Siarry

Heuristic for Site-Dependent Truck and Trailer Routing Problem with Soft
and Hard Time Windows and Split Deliveries . 65

Mikhail Batsyn and Alexander Ponomarenko

Cross-Domain Matrix Factorization for Multiple Implicit-Feedback
Domains . 80

Rohit Parimi and Doina Caragea

Advanced Metamodeling Techniques Applied to Multidimensional
Applications with Piecewise Responses . 93

Toufik Al Khawli, Urs Eppelt, and Wolfgang Schulz

Alternating Direction Method of Multipliers for Regularized Multiclass
Support Vector Machines . 105

Yangyang Xu, Ioannis Akrotirianakis, and Amit Chakraborty

Tree-Based Response Surface Analysis . 118
Siva Krishna Dasari, Niklas Lavesson, Petter Andersson,
and Marie Persson

http://dx.doi.org/10.1007/978-3-319-27926-8_1
http://dx.doi.org/10.1007/978-3-319-27926-8_1
http://dx.doi.org/10.1007/978-3-319-27926-8_2
http://dx.doi.org/10.1007/978-3-319-27926-8_3
http://dx.doi.org/10.1007/978-3-319-27926-8_3
http://dx.doi.org/10.1007/978-3-319-27926-8_4
http://dx.doi.org/10.1007/978-3-319-27926-8_4
http://dx.doi.org/10.1007/978-3-319-27926-8_5
http://dx.doi.org/10.1007/978-3-319-27926-8_6
http://dx.doi.org/10.1007/978-3-319-27926-8_6
http://dx.doi.org/10.1007/978-3-319-27926-8_7
http://dx.doi.org/10.1007/978-3-319-27926-8_7
http://dx.doi.org/10.1007/978-3-319-27926-8_8
http://dx.doi.org/10.1007/978-3-319-27926-8_8
http://dx.doi.org/10.1007/978-3-319-27926-8_9
http://dx.doi.org/10.1007/978-3-319-27926-8_9
http://dx.doi.org/10.1007/978-3-319-27926-8_10
http://dx.doi.org/10.1007/978-3-319-27926-8_10
http://dx.doi.org/10.1007/978-3-319-27926-8_11

A Single-Facility Manifold Location Routing Problem with an Application
to Supply Chain Management and Robotics . 130

Emre Tokgöz, Iddrisu Awudu, and Theodore B. Trafalis

An Efficient Many-Core Implementation for Semi-Supervised Support
Vector Machines . 145

Fabian Gieseke

Intent Recognition in a Simulated Maritime Multi-agent Domain 158
Mohammad Taghi Saffar, Mircea Nicolescu, Monica Nicolescu,
Daniel Bigelow, Christopher Ballinger, and Sushil Louis

An Adaptive Classification Framework for Unsupervised Model Updating
in Nonstationary Environments . 171

Piero Conca, Jon Timmis, Rogério de Lemos, Simon Forrest,
and Heather McCracken

Global Optimization with Sparse and Local Gaussian Process Models 185
Tipaluck Krityakierne and David Ginsbourger

Condense Mixed Convexity and Optimization with an Application in Data
Service Optimization . 197

Emre Tokgöz and Hillel Kumin

SoC-Based Pattern Recognition Systems for Non Destructive Testing 209
Omar Schiaratura, Pietro Ansaloni, Giovanni Lughi, Mattia Neri,
Matteo Roffilli, Fabrizio Serpi, and Andrea Simonetto

Node-Immunization Strategies in a Stochastic Epidemic Model. 222
Juan Piccini, Franco Robledo, and Pablo Romero

An Efficient Numerical Approximation for the Monge-Kantorovich Mass
Transfer Problem . 233

M.L. Avendaño-Garrido, J.R. Gabriel-Argüelles, L. Quintana-Torres,
and E. Mezura-Montes

Adaptive Targeting for Online Advertisement . 240
Andrey Pepelyshev, Yuri Staroselskiy, and Anatoly Zhigljavsky

Outlier Detection in Cox Proportional Hazards Models Based on the
Concordance c-Index . 252

João Diogo Pinto, Alexandra M. Carvalho, and Susana Vinga

Characterization of the #k–SAT Problem in Terms of Connected
Components . 257

Giuseppe Nicosia and Piero Conca

XIV Contents

http://dx.doi.org/10.1007/978-3-319-27926-8_12
http://dx.doi.org/10.1007/978-3-319-27926-8_12
http://dx.doi.org/10.1007/978-3-319-27926-8_13
http://dx.doi.org/10.1007/978-3-319-27926-8_13
http://dx.doi.org/10.1007/978-3-319-27926-8_14
http://dx.doi.org/10.1007/978-3-319-27926-8_15
http://dx.doi.org/10.1007/978-3-319-27926-8_15
http://dx.doi.org/10.1007/978-3-319-27926-8_16
http://dx.doi.org/10.1007/978-3-319-27926-8_17
http://dx.doi.org/10.1007/978-3-319-27926-8_17
http://dx.doi.org/10.1007/978-3-319-27926-8_18
http://dx.doi.org/10.1007/978-3-319-27926-8_19
http://dx.doi.org/10.1007/978-3-319-27926-8_20
http://dx.doi.org/10.1007/978-3-319-27926-8_20
http://dx.doi.org/10.1007/978-3-319-27926-8_21
http://dx.doi.org/10.1007/978-3-319-27926-8_22
http://dx.doi.org/10.1007/978-3-319-27926-8_22
http://dx.doi.org/10.1007/978-3-319-27926-8_23
http://dx.doi.org/10.1007/978-3-319-27926-8_23
http://dx.doi.org/10.1007/978-3-319-27926-8_23

A Bayesian Network Model for Fire Assessment and Prediction 269
Mehdi Ben Lazreg, Jaziar Radianti, and Ole-Christoffer Granmo

Data Clustering by Particle Swarm Optimization with the Focal Particles 280
Tarık Küçükdeniz and Şakir Esnaf

Fast and Accurate Steepest-Descent Consistency-Constrained Algorithms
for Feature Selection . 293

Adrian Pino Angulo and Kilho Shin

Conceptual Analysis of Big Data Using Ontologies and EER 306
Kulsawasd Jitkajornwanich and Ramez Elmasri

A Parallel Consensus Clustering Algorithm . 318
Olgierd Unold and Tadeusz Tagowski

Bandits and Recommender Systems. 325
Jérémie Mary, Romaric Gaudel, and Philippe Preux

Semi-Naive Mixture Model for Consensus Clustering 337
Marco Moltisanti, Giovanni Maria Farinella, and Sebastiano Battiato

Consensus Decision Making in Random Forests . 347
Raja Khurram Shahzad, Mehwish Fatima, Niklas Lavesson,
and Martin Boldt

Multi-objective Modeling of Ground Deformation and Gravity Changes
of Volcanic Eruptions . 359

Piero Conca, Gilda Currenti, Giovanni Carapezza, Ciro del Negro,
Jole Costanza, and Giuseppe Nicosia

Author Index . 371

Contents XV

http://dx.doi.org/10.1007/978-3-319-27926-8_24
http://dx.doi.org/10.1007/978-3-319-27926-8_25
http://dx.doi.org/10.1007/978-3-319-27926-8_26
http://dx.doi.org/10.1007/978-3-319-27926-8_26
http://dx.doi.org/10.1007/978-3-319-27926-8_27
http://dx.doi.org/10.1007/978-3-319-27926-8_28
http://dx.doi.org/10.1007/978-3-319-27926-8_29
http://dx.doi.org/10.1007/978-3-319-27926-8_30
http://dx.doi.org/10.1007/978-3-319-27926-8_31
http://dx.doi.org/10.1007/978-3-319-27926-8_32
http://dx.doi.org/10.1007/978-3-319-27926-8_32

Learning with Discrete Least Squares
on Multivariate Polynomial Spaces

Using Evaluations at Random
or Low-Discrepancy Point Sets

Giovanni Migliorati(B)

MATHICSE-CSQI, École Polytechnique Fédérale de Lausanne,
Lausanne, Switzerland

giovanni.migliorati@gmail.com

Abstract. We review the results achieved in previous works [1,2,6,8,
10–12] concerning the analysis of stability and accuracy of discrete least-
squares approximation on multivariate polynomial spaces with noiseless
evaluations at random points, and the results from [9] concerning the
case of noiseless evaluations at low-discrepancy point sets. Afterwards,
we present some numerical examples that confirm our theoretical find-
ings and give some insights on their potential applications. The purpose
of the numerical section is twofold: on the one hand we compare the
performance of discrete least squares using random points versus low-
discrepancy points; on the other hand we point out further directions
of research, by showing what happens when we choose fewer evaluation
points than those prescribed by our theoretical analysis.

1 Introduction

Discrete least squares (hereafter shortened to DLS) are widely used for functional
approximation, data fitting, prediction, and have countless applications in many
scientific fields. In the present work we aim at approximating in the L2 sense a
smooth target function which depends on a multivariate random variable distrib-
uted according to a given probability density with bounded support, by computing
its DLS approximation onto a properly chosen multivariate polynomial space. The
DLS approximation is calculated starting from pointwise evaluations of the tar-
get function at random or deterministic point sets. In particular, our framework
is an instance of the projection learning problem (or improper function learning
problem) described in [3,13,14]. Depending on the context, two situations arise:
the evaluations of the target function can be assumed noisefree (noisefree evalu-
ations), or be polluted by noise (noisy evaluations).

Several previous contributions [1,2,6,7,10–12] have analyzed the stability
and accuracy of DLS on multivariate approximation spaces, and in particular on
multivariate polynomial spaces, in the case of random noiseless or noisy evalua-
tions. One of the main results achieved, is that the DLS approximation is stable
and accurate with overwhelming high probability in any dimension, provided
c© Springer International Publishing Switzerland 2015
P. Pardalos et al. (Eds.): MOD 2015, LNCS 9432, pp. 1–13, 2015.
DOI: 10.1007/978-3-319-27926-8 1

2 G. Migliorati

a certain proportionality relation between the number of pointwise evaluations
and the dimension of the underlying approximation space is satisfied. A partic-
ular feature of this analysis, in the case of approximation spaces of polynomial
type, is that the number of evaluations depends on the dimension of the poly-
nomial space but not on its “shape”, which only needs to satisfy the minimal
property of being downward closed. In our analysis, explicit proportionality rela-
tions between the number of evaluations and the dimension of the approximation
space have been derived, for densities in the beta family including the cases of
uniform and Chebyshev, and we recall these results in the following section. In
[1,2,10] several estimates concerning the accuracy of DLS with noisy evaluations
at random points have been proven, for several noise models and with different
assumptions, under the same stability conditions obtained in the case of noise-
less evaluations. For this reason, in the present paper we numerically investigate
mainly the stability of DLS, since the same stability conditions apply to both
cases of noiseless and noisy evaluations. We also briefly present some numerical
results concerning the accuracy of DLS in the noiseless case.

Recently, in [9,15] DLS on multivariate polynomial spaces in any dimension
have been analyzed, when using evaluations at low-discrepancy point sets rather
than at random points. Similar conditions as those in the case of random points
have been derived, for points asympotically distributed according to the Cheby-
shev density in [15] and for the uniform density in [9]. However, in the case of
low-discrepancy points, stability and accuracy of DLS have been proven with
certainty, rather than only with high probability. In the present paper we verify
numerically the stability and accuracy estimates proposed in [9] in one dimen-
sion and for tensor product multivariate polynomial spaces, and compare the
results with those obtained in the case of random points.

In both analyses with evaluations at random or low-dicrepancy points, the
proportionality relations between number of evaluations and dimension of the
approximation space are sufficient conditions ensuring the stability and accuracy
of the DLS approximation, and are confirmed by our numerical tests. However,
although the DLS problem can become unstable when the aforementioned pro-
portionality relations are not fulfilled, it can be the case that a relatively accurate
DLS approximation is still found up to a certain threshold. These phenomena
are currently under investigation, and the present paper aims to better clarify
and compare among the two cases of random and low-discrepancy points the
performance of DLS in this setting.

The outline of the paper is the following: in Sect. 2 we recall some results
from the theory of DLS with random evaluations, and in Sect. 3 from the theory
with low-discrepancy point sets. In Sect. 4 we present some numerical results
comparing the case of random points versus low-discrepancy points. Finally in
Sect. 5 we draw some conclusions.

Learning with Discrete Least Squares on Multivariate Polynomial Spaces 3

2 Stability and Accuracy of Discrete Least Squares
on Polynomial Spaces with Evaluations
at Random Points

In any dimension d ∈ N, let D ⊆ R
d be a subset of the d-dimensional Euclidean

space such that D =
∏d

i=1 Di, with Di ⊆ R being closed intervals for any
i = 1, . . . , d. We introduce a complete probability space (D,Σ, μ), with D being
the sample space, Σ the σ-algebra of Borel sets and μ a probability measure.
We denote with y ∈ D a random variable distributed according to the measure
μ. Moreover, we assume that μ is absolutely continuous with respect to the
Lebesgue measure λ on D and denote with ρ : D → R, ρ = dμ/dλ the associated
probability density function.

We introduce a given target function φ : D → R, that we would like to
approximate in the L2 sense using pointwise evaluations φ(y1), . . . , φ(ym) in m
independent and randomly chosen points y1, . . . , ym ∈ D distributed according
to the measure μ. We assume that the function φ is well-defined at any point
in D except eventually a zero μ-measure set and that φ ∈ L2

μ := {f : D → R :∫
D

f2dμ < +∞}. Hereafter, the L2
μ norm will be simply denoted by ‖ · ‖, i.e.

‖f‖ := ‖f‖L2
µ(D) = (

∫
D

f2dμ)1/2. Moreover, ‖f‖L∞(D) := ess supy∈D |f(y)|.
In general, the evaluations φ(y1), . . . , φ(ym) can be polluted by noise, coming

from any source of uncertainty due to controlled or uncontrolled agents. We
define the noiseless and noisy observation models as

noiseless model, zj := φ(yj), j = 1, . . . , m, (1)
noisy model, zj := φ(yj) + ηj , j = 1, . . . , m, (2)

where y1, . . . , ym ∈ D are m i.i.d. random variables distributed according to
the probability measure μ, and η1, . . . , ηm represents the noise, and denote with
z ∈ R

m the vector containing the observations z1, . . . , zm according to the chosen
model (1) or (2). In a more general framework, e.g. as in [10], also the noise ηj

can be modeled as a random variable, which might eventually depend on yj ,
i.e. ηj = ηj(yj). This requires the definition of a different probability space and
the use of the marginal measure, see [10]. Of course the noiseless case can be
seen as a particular instance of the noisy case with ηj = 0 for any j = 1, . . . , m.

In the applications, experimental measurements naturally embed uncertainty,
which can be modeled by means of random variables and of suitable assump-
tions on the type of noise polluting the measurements. However, in an abstract
modeling context the main source of uncertainty is due to round-off errors when
operating with finite precision calculations, and this type of uncertainty can be
properly controlled making the noiseless model appropriate. As an example, we
mention the recent domain of application of DLS with noiseless evaluations in
the field of approximation of the solution to parametric and stochastic PDEs,
see e.g. [1,6,11], where this methodology has been successfully analyzed. In the
present paper we address only the noiseless model (1). Anyhow, both the noise-
less and noisy models share the same stability conditions in our analysis, and the

4 G. Migliorati

differences between the two cases lie in the accuracy estimates, where of course
the presence of noise pollutes the overall precision of the upper bounds for the
approximation error.

Unless mentioned otherwise, throughout the paper Pr and E refer to the
probability and the expectation w.r.t. the measure μ. We define the inner product

〈f1, f2〉 :=
∫

D

f1(y)f2(y)dμ(y), ∀f1, f2 ∈ L2
μ(D), (3)

as well as the discrete inner product

〈f1, f2〉m := m−1
m∑

j=1

f1(yj)f2(yj), ∀f1, f2 ∈ L2
μ(D),

with y1, . . . , ym being any choice of m distinct points in D. These inner products
are associated with the norm ‖ · ‖ = 〈·, ·〉1/2 (already previously defined) and
seminorm ‖ · ‖m := 〈·, ·〉1/2

m . Notice that E(‖ · ‖m) = ‖ · ‖. We denote by Vn ⊂
L∞(D) any finite-dimensional subspace of L2

μ(D) such that n := dim(Vn), and by
(ψi)1≤i≤n an orthonormal basis of Vn w.r.t. the inner product (3). In the present
paper we confine to multivariate approximation spaces of polynomial type, and
in the remaining part of this section we present the main results achieved in [1,9]
concerning our analysis of the stability and accuracy properties of DLS, in the
specific case of multivariate polynomial approximation spaces. For the analysis
of DLS in more general multivariate approximation spaces see [1,10].

We introduce further information concerning the structure of the probability
measure μ. Given a collection of (possibly different) univariate measures μi with
corresponding densities ρi : Di → R for any i = 1, . . . , d, we assume that μ can
be expressed as a product measure dμ =

∏d
i=1 dμi. Then we introduce the family

(ϕi
k)k≥0 of L2

μi
-orthonormal polynomials of degree k, i.e. these polynomials are

orthonormal w.r.t. the weighted L2 inner product (3) with the weight being the
probability density function ρi associated with the measure μi:
∫

Di

ϕi
j(t)ϕ

i
k(t)dμi(t) =

∫

Di

ϕi
j(t)ϕ

i
k(t)ρi(t)dλ(t) =

∫

Di

ϕi
j(t)ϕ

i
k(t)ρi(t)dt = δjk.

We introduce the gamma function Γ (θ) :=
∫ +∞
0

tθ−1e−tdt with Re(θ) >
0 then extended by analytic continuation, and the beta function B(θ1, θ2) :=
Γ (θ1)Γ (θ2)/Γ (θ1 + θ2) for any θ1, θ2 > −1. In the present article we focus on
the univariate Jacobi weight with real shape parameters θ1, θ2 > −1,

ρθ1,θ2
J (t) :=

(
2θ1+θ2+1B(θ1 + 1, θ2 + 1)

)−1
(1 − t)θ1(1 + t)θ2 , t ∈ [−1, 1], (4)

which leads to the family of univariate Jacobi polynomials (Jθ1,θ2
k)k≥0. Remark-

able instances of Jacobi polynomials are Legendre polynomials when θ1 = θ2 = 0,
and Chebyshev polynomials of the first kind when θ1 = θ2 = −1/2. Notice that
the weight (4) is normalized such that it integrates to one over the whole sup-
port, also known as probabilistic orthonormalization. The Jacobi weight ρθ1,θ2

J

Learning with Discrete Least Squares on Multivariate Polynomial Spaces 5

corresponds, up to a translation in the parameters θ1, θ2 and up to an affine trans-
formation in the support, to the standard beta probability density function. In
the following we refer to the tensorized Jacobi density as the tensorization of (4)
in the d coordinates, i.e. ρθ1,θ2

J (y) =
∏d

i=1 ρθ1,θ2
J ([y]i), y ∈ D, where the notation

[y]i denotes the ith component of y. Accordingly, for the corresponding choices
of the parameters θ1 and θ2, we refer to tensorized Chebyshev and tensorized
uniform density.

Given a set Λ ⊆ F := N
d
0 of d-dimensional multi-indices, we define the

polynomial space PΛ = PΛ(D) as

PΛ := span{ψq : q ∈ Λ},

with each multivariate polynomial basis function being defined for any q ∈ Λ as

ψq(y) :=
d∏

i=1

ϕi
qi([y]i), y ∈ D, (5)

by tensorization of the univariate families of L2
μi

-orthonormal polynomials. We
denote the cardinality of the multi-index set Λ by #(Λ). The discrete seminorm
becomes a norm almost surely over PΛ, provided the points are distinct and their
number satisfies m ≥ dim(PΛ), therefore leading to an overdetermined least-
squares problem. In the case of polynomial approximation we set Vn = PΛ with
n = dim(PΛ) = #(Λ). From now on, we confine to a specific type of polynomial
spaces PΛ, which are associated to multi-index sets Λ with the property of being
downward closed. For any q, p ∈ F , the ordering q ≤ p means that [q]i ≤ [p]i for
all i = 1, . . . , d.

Definition 1 (Downward closed multi-index set). In any dimension d, a
multi-index set Λ ⊂ F is downward closed (or it is a lower set) if

q ∈ Λ =⇒ p ∈ Λ, ∀p ≤ q.

Let w be a nonnegative integer playing the role of spectral accuracy in the
DLS approximation. In the present article, we test two types of isotropic poly-
nomial spaces PΛ, with the set Λ = Λw ⊂ F being defined using the parameter
w as:

Tensor Product (TP) : Λw =
{

q ∈ N
d
0 : ‖q‖�∞(Nd

0)
≤ w

}
, (6)

Total Degree (TD) : Λw =
{

q ∈ N
d
0 : ‖q‖�1(Nd

0)
≤ w

}
. (7)

Moreover, an anisotropic polynomial space that will be mentioned in the sequel
is the anisotropic tensor product space with maximum degrees w1, . . . ,wd in
each one of the d coordinates, in which case

anisotropic Tensor Product (aTP) : Λw1,...,wd =
{

q ∈ N
d
0 : [q]i ≤ wi, ∀i = 1, . . . , d

}
. (8)

Of course all the sets (6)–(8) are downward closed according to Definition 1.

6 G. Migliorati

Given the target function φ : D → R, we define its continuous L2 projection
over Vn as

Πnφ := arg min
v∈Vn

‖φ − v‖,

and denote by
en(φ) := inf

v∈Vn

‖φ − v‖ = ‖φ − Πnφ‖

its best approximation error in the L2
μ norm. We denote by

e∞
n (φ) := inf

v∈Vn

‖φ − v‖L∞(D)

the best approximation error in the L∞ norm. We also define the DLS approxi-
mation (or discrete L2 projection) of the function φ over Vn as

Πm
n φ := arg min

v∈Vn

m∑

i=1

|zi − v(yi)|2 = arg min
v∈Vn

‖z − v‖m. (9)

The minimization in (9) corresponds to minimize the discrete seminorm con-
taining the evaluations of the target function φ in the m points y1, . . . , ym ∈ D.
Given a threshold τ ∈ R

+
0 , we introduce the truncation operator

Tτ (t) :=sign(t)min{τ, |t|}, for any t ∈ R,

and use it to define the truncated DLS projection over Vn as:

Π̃m
n := Tτ ◦ Πm

n .

After choosing a given ordering to enumerate the multi-indices in F and thus
the elements of the orthonormal basis, for example the lexicographical ordering,
we introduce the design matrix D defined element-wise as [D]jk = ψk(yj) ∈
R

m×n, and the Gramian matrix G := m−1D�D. From an algebraic standpoint,
the DLS projection (9) can be computed by solving the normal equations

Gβ = m−1D�z,

where β ∈ R
n is the vector containing the coefficients of the DLS approximation

of the function φ expanded over the orthonormal basis, i.e. Πm
n φ =

∑n
k=1[β]kψk.

In the following we recall a result from [1], restricted to the specific case of the
noiseless model. See [1, Theorem 3] for the complete theorem covering also the
noisy case. More general estimates in the noisy case with several noise models
have been proven in [10, Theorems 5 and 6]. We define ζ := (1 − ln 2)/2 ≈ 0.15
and denote with ||| · ||| the spectral matrix norm.

Theorem 1 (from [1, Theorem 3]). In any dimension d ≥ 1, for any real
r > 0 and given any finite downward closed set Λ ⊂ F , if ρ is the tensorized
Jacobi density with parameters θ1, θ2 ∈ N0 and the number of points m satisfies

m

ln m
≥ 1 + r

ζ
(#(Λ))2max{θ1,θ2}+2 (10)

Learning with Discrete Least Squares on Multivariate Polynomial Spaces 7

or, if ρ is the tensorized Chebyshev density (i.e. the tensorized Jacobi density
with θ1 = θ2 = −1/2) and the number of points m satisfies

m

ln m
≥ 1 + r

ζ
(#(Λ))

ln 3
ln 2 , (11)

then the following holds true:

(i) the deviation between G and the identity matrix I satisfies

Pr
{

|||G − I||| >
1
2

}

≤ 2m−r, (12)

(ii) if φ satisfies a uniform bound τ over D (i.e. |φ| ≤ τ a.s. w.r.t. ρ), then one
has the estimate in expectation

E(‖φ − Π̃m
n φ‖2) ≤

(

1 +
ζ

(1 + r) ln(m)

)

en(φ)2 + 8τ2m−r, (13)

(iii) one also has the estimate in probability

Pr
(
‖φ − Πm

n φ‖ ≥ (1 +
√

2)e∞
n (φ)

)
≤ 2m−r. (14)

Denoting with K (G) the spectral condition number of the Gramian matrix
G, an immediate consequence of (12) is that

Pr
{

K (G) >
1
2

}

≤ 2m−r, (15)

see [10,12], i.e. condition (10) or (11) ensures that the Gramian matrix is well-
conditioned and thus the DLS approximation is stable with high probability.

3 Stability and Accuracy of Discrete Least Squares
on Polynomial Spaces with Evaluations at
Low-Discrepancy Point Sets

The use of deterministic point sets with good discrepancy properties rather than
random points finds applications in the development of quasi-Monte Carlo meth-
ods versus the plain Monte Carlo method. Nowadays, several types of determin-
istic points, so-called low-discrepancy points, are available, see e.g. [4] and refer-
ences therein. In the present paper, we only recall the minimal notation needed
to introduce our results achieved in [9] concerning the analysis of DLS with
evaluations at low-discrepancy point sets. We refer to [4,5] for a complete intro-
duction to the topic and the precise definition of the notion of low-discrepancy
point set, or to [9] for an introduction more targeted to the application in DLS
approximation. Intuitively, the points in a low-discrepancy point set tend to be
“evenly distributed” over the domain.

We deal with two types of low-discrepancy point sets: (t, u, d)-nets and (t, d)-
sequences, defined as in the following according to [4]. For convenience, we keep
the same choice of the domain D = [0, 1)d adopted in [9].

8 G. Migliorati

Definition 2 ((t, u, d)-net in base b). Let d ≥ 1, b ≥ 2, t ≥ 0 and u ≥ 1 be
integers with t ≤ u. A (t, u, d)-net in base b is a point set consisting of bu points
in [0, 1)d such that every elementary interval of the form

d∏

i=1

[
ai

bgi
,
ai + 1

bgi

)

with integers gi ≥ 0, 0 ≤ ai < bgi , and g1 + . . . + gd = u − t, contains exactly bt

points of the net.

Definition 3 ((t, d)-sequence in base b). Let t ≥ 0 and d ≥ 1 be integers. A
(t, d)-sequence in base b is a sequence of points (y1, y2, . . .) in [0, 1)d such that
for all integers u > t and l ≥ 0, every block of bu points

ylbu+1, . . . , y(l+1)bu

in the sequence (y1, y2, . . .) forms a (t, u, d)-net in base b.

A particular instance of a (t, u, d)-net, that will be tested in the numerical
section in the one-dimensional case d = 1, is the following:

yj =
2j − 1
2m

∈ [0, 1), j = 1, . . . , m. (16)

This point set is a (0, 1, 1)-net in base b = m, and it has the minimal star
discrepancy among all point sets with m points in [0, 1).

In the following, we recall a result from [9], in the particular case of δ = 1/2,
concerning the stability and accuracy of DLS in multivariate polynomial spaces
of tensor product type.

Theorem 2 (from [9, Corollary 5]). Let ρ be the tensorized uniform density
(i.e. the tensorized Jacobi density with θ1 = θ2 = 0). In one dimension d = 1, if
the number of sampling points m satisfies

m ≥ (#(Λ))2

2
, with the (0, 1, 1)-net in base b = m given by (16), (17)

m

ln m
≥C(#(Λ))2, with any (t, 1)-sequence in base b, (18)

then (21) and (22) hold true. The constant C eventually depends on the para-
meters t and b. In any dimension d ≥ 2 with the set Λ ⊂ F being of anisotropic
tensor product type (8): if the number of sampling points m satisfies

m

(b + 3)d−2

(

1 +
b − 1
b + 3

ln m

ln b

)d−1

O(d2)

≥ (#(Λ))2

2
bt, (19)

Learning with Discrete Least Squares on Multivariate Polynomial Spaces 9

with any (t, u, d)-net in base b with m = bu points, or

m

b (b + 3)d−2

(

1 +
2(b − 1)
b + 3

ln m

ln b

)d−1

O(d2) +
(

1 +
ln m

ln b

)

O(d)

≥ (#(Λ))2

2
bt,

(20)

with any (t, d)-sequence in base b, then (21) and (22) hold true.

1 ≤ K (G) ≤ 3. (21)

For any φ ∈ C0([0, 1]d)

‖φ − Πm
n φ‖ ≤

(
1 +

√
2
)

e∞
n (φ). (22)

4 Numerical Results

In this section we present some numerical results comparing the performances of
DLS using evaluations at random versus low-discrepancy point sets. In the whole
section the domain is chosen as D = [−1, 1]d and we consider only the uniform
density, i.e. the Jacobi density with θ1 = θ2 = 0, with the random variable y
being uniformly distributed in D. In the plots displaying the results for random
points, the continuous lines correspond to the mean of the condition number or
to the mean of the approximation error, and the dashed lines correspond to the
mean plus one standard deviation. Both the mean and the standard deviation
are computed employing the cross-validation procedure described in [12, Sect. 4].
In the plots displaying the results for low-discrepancy points, the continuous
lines give the value of the condition number or of the approximation error. In
the following, c denotes a positive proportionality constant whose values are
specified in the legend tables.

Our numerical tests confirm that, when the number of sampling points is
quadratically proportional to the dimension of the polynomial space m = cn2,
as prescribed by condition (10) of Theorem 1 with random points or conditions
(17)–(20) of Theorem 2 with low-discrepancy points, then the condition number
of the Gramian matrix G is small (i.e. (15) or (21)) and the DLS approximation
is accurate (i.e. (13), (14) or (22)). Then we test the stability and accuracy of
DLS when the number of sampling points follows a linear proportionality m = cn
w.r.t. the dimension of the approximation space, therefore requiring fewer points
than those prescribed by the quadratic proportionality m = cn2.

We begin with the one-dimensional case d = 1, where the polynomial approx-
imation space is the trivial one-dimensional space obtained by replacing d = 1
into (6). In Fig. 1 we show the condition number of the matrix G in the three
cases of random points, equispaced deterministic points (16) and points chosen
from the Sobol low-discrepancy sequence, which is a particular (t, d)-sequence in
base b = 2. We denote with w the maximum degree of the polynomials retained

10 G. Migliorati

1 5 10 15 20 25
100

105

1010

1015

w

K
(
D
T
D
)

Condition number, d=1, m=c(w+1)

c=2
c=3
c=5
c=10
c=20

1 5 10 15 20 25
100

105

1010

1015

w

K
(
D
T
D
)

Condition number, d=1, m=c⋅(w+1)

c=2
c=3
c=5
c=10
c=20

1 5 10 15 20 25
100

105

1010

1015

w

K
(
D
T
D
)

Condition number, d=1, m=c⋅(w+1)

c=2
c=3
c=5
c=10
c=20

1 5 10 15 20 25 30 35 40
100

105

1010

1015

w

K
(
D
T
D
)

Condition number, d=1, m=c(w+1)2

c=0.5
c=1
c=1.5
c=2
c=3

1 5 10 15 20 25 30 35 40
100

105

1010

1015

w

K
(
D
T
D
)

Condition number, d=1, m=c(w+1)2

c=0.5
c=1
c=1.5
c=2
c=3

1 5 10 15 20 25 30 35 40
100

105

1010

1015

w

K
(
D
T
D
)

Condition number, d=1, m=c⋅(w+1)2

c=0.5
c=1
c=1.5
c=2
c=3

Fig. 1. Condition number K(G) in the case d = 1. Top-left: m = c(w + 1) with
random points. Top-center: m = c(w + 1) with deterministic equispaced points. Top-
right: m = c(w+1) with Sobol points. Bottom-left: m = c(w+1)2 with random points.
Bottom-center: m = c(w + 1)2 with deterministic equispaced points. Bottom-right:
m = c(w + 1)2 with Sobol points.

in the space, so that n = w + 1. Both proportionalities m = cn and m = cn2

between the number of sampling points m and the dimension of the polyno-
mial space n are investigated, for different values of the proportionality constant
c. The linear proportionality m = cn with random points is outperformed by
the choice of deterministic equispaced points and Sobol points. Moreover, in
one dimension the choice of deterministic equispaced points (16) yields the low-
est values of the approximation error, but its extension to higher dimensions
is clearly of limited interest due to the curse of dimensionality. The quadratic
proportionality m = cn2 yields a bounded condition number with all the three
choices of points, independently of the dimension n of the polynomial space, thus
confirming the theoretical results achieved in our analysis.

In Fig. 2 we show the corresponding DLS approximation error when approx-
imating the function φ(y) = exp(y) over [−1, 1]. Clearly, with the quadratic pro-
portionality m = c(w + 1)2 the DLS approximation is accurate with any choice
of the sampling points, either random, equispaced or from the Sobol sequence.
With the linear proportionality m = c(w + 1) the choice of equispaced points
or Sobol points still gives an accurate DLS approximation, although without a
theoretical justification. In the case of random points the results with the linear
proportionality m = c(w + 1) are in agreement with the loss of stability seen in
Fig. 1(top-left): the DLS approximation remains accurate only up to a threshold,
after which the DLS problem becomes unstable and the accuracy of the approx-
imation degenerates. Anyhow, depending on the desired accuracy, the linear

Learning with Discrete Least Squares on Multivariate Polynomial Spaces 11

1 5 10 15 20 25
10−15

10−10

10−5

100

w

|
|

φ−
Π
wY
φ|
|
c
v

Error φ(Y)=exp(Y), d=1, m=c(w+1)

c=2
c=3
c=5
c=10
c=20

1 5 10 15 20 25
10−15

10−10

10−5

100

w

|
|

φ−
Π
wY
φ|
|
c
v

Error φ(Y)=exp(Y), d=1, m=c(w+1)

c=2
c=3
c=5
c=10
c=20

1 5 10 15 20 25
10−15

10−10

10−5

100

w

|
|

φ−
Π
wM
φ|
|
c
v

Error φ(Y)=exp(Y), d=1, m=c⋅(w+1)

c=2
c=3
c=5
c=10
c=20

1 5 10 15 20 25 30 35 40
10−15

10−10

10−5

100

w

|
|

φ−
Π
wY
φ|
|
c
v

Error φ(Y)=exp(Y), d=1, m=c(w+1)2

c=0.5
c=1
c=1.5
c=2
c=3

1 5 10 15 20 25 30 35 40
10−15

10−10

10−5

100

w

|
|

φ−
Π
wY
φ|
|
c
v

Error φ(Y)=exp(Y), d=1, m=c(w+1)2

c=0.5
c=1
c=1.5
c=2
c=3

1 5 10 15 20 25 30 35 40
10−15

10−10

10−5

100

w

|
|

φ−
Π
wM
φ|
|
c
v

Error φ(Y)=exp(Y), d=1, m=c⋅(w+1)2

c=0.5
c=1
c=1.5
c=2
c=3

Fig. 2. Error E
[‖φ − Πm

n φ‖2
]
in the case d = 1. Top-left: m = c(w + 1) with random

points. Top-center: m = c(w + 1) with deterministic equispaced points. Top-right:
m = c(w + 1) with Sobol points. Bottom-left: m = c(w + 1)2 with random points.
Bottom-center: m = c(w + 1)2 with deterministic equispaced points. Bottom-right:
m = c(w + 1)2 with Sobol points.

proportionality can still be successfully employed: for example m = 3(w + 1)
still provides an error smaller than 10−8 when w = 10, but cannot be used when
smaller values for the error are sought.

Then we move to the two-dimensional case d = 2, where we compare the
use of random points versus Sobol points. In dimension higher than one there
are different ways to enrich the polynomial space, making the analysis of the
approximation error more complicated than in the one-dimensional case. Usually
multivariate functions are anisotropic, and some parameters are more important
than others. To take into account these anisotropic features, adaptive polynomial
spaces can be constructed, see e.g. [7], but their treatment is out of the scope
of the present paper. In the following we only address the issue of stability of
DLS in the multivariate case, and do not consider the issue of accuracy (that
anyhow, from Theorems 1 and 2, is proven to be directly related to stability).

In Fig. 3 we show the condition number using the tensor product polynomial
space (6). As in the one-dimensional case, these results confirm the theoretical
findings achieved in our analysis, with the quadratic proportionality m = cn2

always ensuring stability. The linear proportionality m = cn exhibits the same
deterioration as in the one-dimensional case, with Sobol points again performing
slightly better than random points. In Fig. 4 we show the condition number using
the total degree polynomial space (7), and the situation looks very similar to
the case of tensor product polynomial spaces.

12 G. Migliorati

1 5 10 15
100

105

1010

1015

w

K
(
D
T
D
)

Condition number, TP, d=2, m=c⋅n

c=2
c=3
c=5
c=10
c=20

1 5 10 15
100

105

1010

1015

w

K
(
D
T
D
)

Condition number, TP, d=2, m=c⋅n

c=2
c=3
c=5
c=10
c=20

1 5 10 15
100

105

1010

1015

w

K
(
D
T
D
)

Condition number, TP, d=2, m=c⋅n2

c=0.5
c=1
c=1.5
c=2
c=3

1 5 10 15
100

105

1010

1015

w

K
(
D
T
D
)

Condition number, TP, d=2, m=c⋅n2

c=0.5
c=1
c=1.5
c=2
c=3

Fig. 3. Condition number in the case
d = 2 with the tensor product polyno-
mial space (6). Top-left: m = cn with
random points. Top-right: m = cn with
Sobol points. Bottom-left: m = cn2 with
random points. Bottom-right: m = cn2

with Sobol points.

1 5 10 15 20 25
100

105

1010

1015

w

K
(
D
T
D
)

Condition number, TD, d=2, m=c⋅n

c=2
c=3
c=5
c=10
c=20

1 5 10 15 20 25
100

105

1010

1015

w

K
(
D
T
D
)

Condition number, TD, d=2, m=c⋅n

c=2
c=3
c=5
c=10
c=20

1 5 10 15 20 25
100

105

1010

1015

w

K
(
D
T
D
)

Condition number, TD, d=2, m=c⋅n2

c=0.5
c=1
c=1.5
c=2
c=3

1 5 10 15 20 25
100

105

1010

1015

w

K
(
D
T
D
)

Condition number, TD, d=2, m=c⋅n2

c=0.5
c=1
c=1.5
c=2
c=3

Fig. 4. Condition number in the case
d = 2 with the total degree polynomial
space (7). Top-left: m = cn with random
points. Top-right: m = cn with Sobol
points. Bottom-left: m = cn2 with ran-
dom points. Bottom-right: m = cn2 with
Sobol points.

5 Conclusions

In this paper we have numerically verified the theoretical results achieved in
our previous analyses [1,9,12] concerning the stability and accuracy of DLS on
multivariate polynomial spaces with evaluations at random or low-discrepancy
point sets. In one dimension, three types of points have been compared: random
points, deterministic equispaced points, and points from the Sobol sequence. In
all the three cases, the numerical results confirm the theoretical estimates: sta-
ble and accurate DLS approximations are obtained when the number of points
and the dimension of the approximation space satisfy the proportionality rela-
tion m = cn2. The numerical results show that, in one dimension and with
low-discrepancy points, the less demanding linear proportionality m = cn is
also enough to achieve stability and accuracy, although this claim is not sup-
ported by the theory at present time. The same does not hold in one dimen-
sion with random points, and an accurate DLS approximation is obtained only
up to a threshold, after which the stability is lost and the accuracy deteriorates.
In higher dimension, with tensor product and total degree polynomial spaces,
the numerical results confirm the behaviour predicted by the theory, and the
quadratic proportionality m = cn2 again ensures stability and accuracy. As in
the one-dimensional case, the linear proportionality m = cn does not ensure
the stability of DLS, but the gap between random and low-discrepancy points is
reduced. Numerical tests with random points from [6,7,11,12] show that, using
the linear proportionality m = cn, the stability of DLS improves when increas-
ing the dimension, making random points more attractive. In the case of low-
discrepancy points with the linear proportionality m = cn, the stability of DLS

Learning with Discrete Least Squares on Multivariate Polynomial Spaces 13

shows the opposite trend as the dimension increases, and low-discrepancy points
seem to be more attractive than random points only in moderately high dimen-
sions. Further investigations are needed to detect, depending on the dimension,
when it is advised to choose low-discrepancy points or random points for DLS
approximation.

References

1. Chkifa, A., Cohen, A., Migliorati, G., Nobile, F., Tempone, R.: Discrete least
squares polynomial approximation with random evaluations - application to para-
metric and stochastic elliptic PDEs. ESAIM Math. Model. Numer. Anal. 49, 815–
837 (2015)

2. Cohen, A., Davenport, M.A., Leviatan, D.: On the stability and accuracy of least
square approximations. Found. Comp. Math. 13, 819–834 (2013)

3. Cucker, F., Smale, S.: On the mathematical foundations of learning. Bull. Am.
Math. Soc. 39(1), 1–49 (2001)

4. Dick, J., Pillichshammer, F.: Digital Nets and Sequences: Discrepancy Theory and
Quasi-Monte Carlo Integration. Cambridge University Press, Cambridge (2010)

5. Kuipers, L., Niederreiter, H.: Uniform Distribution of Sequences. Pure and Applied
Mathematics. Wiley-Interscience [Wiley], New York-London-Sydney (1974)

6. Migliorati, G.: Polynomial approximation by means of the random discrete L2

projection and application to inverse problems for PDEs with stochastic data.
Ph.D. thesis, Dipartimento di Matematica “Francesco Brioschi”, Politecnico di
Milano and Centre de Mathématiques Appliquées, École Polytechnique (2013)

7. Migliorati, G.: Adaptive polynomial approximation by means of random discrete
least squares. In: Abdulle, A., Deparis, S., Kressner, D., Nobile, F., Picasso, M.
(eds.) Proceedings of ENUMATH 2013. Lecture Notes in Computational Science
and Engineering, vol. 103. Springer, Switzerland (2015)

8. Migliorati, G.: Multivariate markov-type and nikolskii-type inequalities for polyno-
mials associated with downward closed multi-index sets. J. Approx. Theory 189,
137–159 (2015)

9. Migliorati, G., Nobile, F.: Analysis of discrete least squares on multivariate poly-
nomial spaces with evaluations at low-discrepancy point sets. J. Complexity 31(4),
517–542 (2015)

10. Migliorati, G., Nobile, F., Tempone, R.: Convergence estimates in probability and
in expectation for discrete least squares with noisy evaluations at random points.
J. Multivar. Anal. 142, 167–182 (2015)

11. Migliorati, G., Nobile, F., von Schwerin, E., Tempone, R.: Approximation of quan-
tities of interest in stochastic PDEs by the random discrete L2 projection on poly-
nomial spaces. SIAM J. Sci. Comput. 35, A1440–A1460 (2013)

12. Migliorati, G., Nobile, F., von Schwerin, E., Tempone, R.: Analysis of discrete L2

projection on polynomial spaces with random evaluations. Found. Comp. Math.
14, 419–456 (2014)

13. Poggio, T., Smale, S.: The mathematics of learning: dealing with data. Not. Am.
Math. Soc. 50, 537–544 (2003)

14. Temlyakov, V.N.: Approximation in learning theory. Constr. Approx. 27, 33–74
(2008)

15. Zhou, T., Narayan, A., Xu, Z.: Multivariate discrete least-squares approximations
with a new type of collocation grid. SIAM J. Sci. Comput. 36(5), A2401–A2422
(2014)

Automatic Tuning of Algorithms Through
Sensitivity Minimization

Piero Conca1(B), Giovanni Stracquadanio2, and Giuseppe Nicosia1

1 Department of Mathematics and Computer Science,
University of Catania, Catania, Italy

{conca,nicosia}@dmi.unict.it
2 Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK

giovanni.stracquadanio@ludwig.ox.ac.uk

Abstract. Parameters tuning is a crucial step in global optimization.
In this work, we present a novel method, the Sensitive Algorithmic Tun-
ing, which finds near-optimal parameter configurations through sensi-
tivity minimization. The experimental results highlight the effectiveness
and robustness of this novel approach.

1 Introduction

An algorithm is a formal description of a series of steps, which provides a solution
for a given problem [1]. Obviously, the output of an algorithm depends on the
input data and its parameters; an algorithm can be viewed as a black-box pro-
cedure, which receives in input a set of data and returns an output representing
the results. The possibility of selecting different sets of parameters potentially
allows to achieve satisfactory results for different instances of a problem, thus
increasing the generality of an algorithm.

Parameters tuning represents a crucial part of any experimental protocol
in global optimization; indeed, parameters setting heavily affects the quality of
the solutions and the speed of convergence of an optimization algorithm [2,3].
Finding good parameters values is pivotal when using stochastic algorithms [4].
Typically, parameters are set using commonly used values, or by a trial-and-
error approach; interestingly, very few approaches have been proposed to sys-
tematically find optimal parameters settings [5–7]. Recently, Bartz-Beielstein
introduced the Sequential Parameter Optimization (SPO) algorithm, a general
framework for experimental analysis that accounts for iterative refinement of the
parameters [8]. Successively, Hutter et al. proposed SPO+, an improved variant
of SPO that uses log-transformations and the intensification criterion [9]. Hutter
et al. also proposed ParamILS, a method to find optimal parameters settings
through local search in the parameters space [10]. An alternative approach con-
sists of using a racing scheme where, starting from an initial set of techniques,
an iterative selection is performed [11].

We address the problem of tuning an algorithm by introducing the Sensitive
Algorithmic Tuning (SAT) method; our approach finds optimal parameters set-
tings by minimizing the worst-case performance of the most sensitive parameters.
c© Springer International Publishing Switzerland 2015
P. Pardalos et al. (Eds.): MOD 2015, LNCS 9432, pp. 14–25, 2015.
DOI: 10.1007/978-3-319-27926-8 2

Automatic Tuning of Algorithms Through Sensitivity Minimization 15

We evaluate this method by tuning the Differential Evolution (DE) optimiza-
tion algorithm [12], although, in principle, our method can be applied to any
algorithm.

The paper is organized as follows: in Sect. 2 we introduce the problem of
tuning algorithms and the notion of maximum success region. Section 3 presents
the concepts of robustness and sensitivity, and describes the Morris sensitivity
analysis method and the Differential Evolution algorithm. In Sect. 4, we describes
the SAT algorithm. Section 5 presents the experimental results. Finally, in Sect. 6
we discuss the conclusions and future works.

2 Algorithmic Tuning

Algorithmic tuning refers to the process of finding a set of values for the para-
meters of an algorithm, ensuring a satisfactory solution to the problem in the
average case.

A trial-and-error approach is computationally expensive and could lead to
poor performances if biased by a-priori knowledge. Without loss of generality,
we assume that an algorithm is defined as follows:

Y = A(P,X) (1)

where A is a procedure that takes in input a problem instance P and a vector of
parameters X, and returns an output Y . W.l.o.g., we assume that each parameter
xi ∈ X ⊂ IR is constrained to an interval [x−, x+].

Finding an optimal parameter setting is an intractable problem. Let X be a
parameter setting for an algorithm A, where each parameter can take k different
discrete values within the interval [x−, x+]; it follows that the number of feasible
parameters settings is k|X|. This result makes an exhaustive search intractable
for large instances.

Parameters tuning generally consists in running the algorithm on a testbed
problem P̄ , which shares same characteristics with the original problem P (e.g.
unimodality). In this context, it becomes crucial to identify a region of the
parameters space that maximizes the probability of success, which we denote
as maximum success region.

Definition 1 (Maximum Success Region). Let X = [x−, x+] ⊂ IR be the
range for the parameters of an algorithm A. X is called maximum efficiency
region if the following condition holds:

∀x ∈ X : Pr(A(P, x) = S(P)) ≈ 1

where Pr is a function that represents the probability of obtaining the exact solu-
tion S(P) of P .

The concept of maximum efficiency region fits particularly well the task of
tuning the parameters of optimization algorithms; in this case, the maximum

16 P. Conca et al.

efficiency region of an optimizer is the subspace of parameters, which ensures
near-optimal solutions.

It should be noted that optimization methods are subject to eager tuning,
typically by requiring a large number of objective function evaluations to ensure
the convergence to an optimum. It is possible to overcome this limitation by sys-
tematically choosing the smallest parameter value ensuring a maximum success
rate; this general principle is exploited by the SAT algorithm.

3 Methods

In this section, we describe a framework for robustness and sensitivity analysis
that represents the basis of the Sensitive Algorithmic Tuning (SAT) algorithm.

3.1 Robustness and Sensitivity Estimation

Algorithmic robustness is the probability of finding a satisfactory solution to a
problem, even when the parameters are not optimally tuned. In general, there
is a range of values for each parameter for which near-optimality is guaranteed.
W.l.o.g., we assume that an algorithm is correct if a parameters setting ensuring
an optimal or suboptimal solution exists. We define the robustness condition ρ
and the accuracy yield Γ as follows:

Definition 2 (Robustness Condition). Let X ∈ IRn be a parameters setting
for an algorithm A. Given a parameters set X∗ obtained by perturbing X, the
robustness condition ρ is defined as follows:

ρ(X,X∗, A, P, ε) =
{

1 if | A(P,X) − A(P,X∗) |≤ ε
0 otherwise

(2)

where the robustness threshold ε denotes the precision in the objective function
value.

Definition 3 (Yield). Let X ∈ IRn be a parameters setting characterizing the
behavior of a technique D. Given an ensemble T of parameters settings obtained
by sampling the parameters space of X, the yield Γ is defined as follows:

Γ (X,A,P, ε, ρ, T) =

∑
X∗∈T ρ(X,X∗, A, P, ε)

|T | (3)

Since we consider subsets of the parameters space, we perform a Monte-
Carlo sampling that generates trial settings in a specific parameters subspace.
In our study, we set the robustness threshold ε = 10−5 and the number of trials
|T | = 100.

An ad-hoc algorithmic tuning requires knowledge of the effects of the para-
meters on the output. In this context, the Morris sensitivity analysis technique
[13] represents an interesting approach; it ranks the parameters based on their
effect on the output, and does not require information about the system being

Automatic Tuning of Algorithms Through Sensitivity Minimization 17

analyzed [14]. In particular, a parameter is considered sensitive if variations of its
value significantly affect the performance of the algorithm. In this context, the
Morris technique can be used as an automated method for analyzing algorithms.
We hypothesized that the identification of regions of low sensitivity could lead to
an effective parameters tuning; this idea represents the basic principle of SAT.

3.2 Morris Method

Sensitivity analysis studies the influence of the input parameters on the out-
put of a function (e.g. an algorithm), and identifies possible relations between
parameters, e.g. linear and nonlinear.

The Morris method is a one-at-a-time (OAT) global sensitivity analysis tech-
nique. Given a set of parameters values, a parameter at time is modified and
the variation of the output is recorded. This information is used to calculate the
mean values μ and the standard deviations σ associated with each parameter.
Parameters with a high μ have an important impact on the output, large val-
ues of σ indicate nonlinear relations with other parameters, whereas small mean
values are associated with negligible effect.

3.3 Differential Evolution Algorithm

Differential Evolution (DE) is a stochastic population-based algorithm developed
for global optimization in continuous spaces [12]. DE is used to solve multi-
modal, multi-objective, dynamic or constrained optimization problems; it finds
application in several real-world problems, such as digital filter design, fermen-
tation processes, dispatch optimization, and several others [15–18].

DE exploits a vector of differences that is used as a perturbation operator.
Given an objective function f : IRn → IR, DE starts by generating NP indi-
viduals at random, where the values of the variables are constrained in their
respective lower and upper bounds. At each generation, each individual is mod-
ified according to a crossover probability Cr, using the following scheme:

xi
g+1 = xi

g + Fw × (yi
g − zig) (4)

where xi
g+1 is the i−th variable of the new individual at generation g + 1; yg

and zg are two individuals of the population such that x �= y �= z; and Fw is a
weighting factor.

If f(xg+1) < f(xg), xg+1 replaces xg in the population. Typically, the algo-
rithm stops when a predetermined number of generations (G) is reached.

The algorithm has few parameters; Cr controls the exploring ability of DE,
Fw controls its exploiting ability, while NP determines the population size. In
particular, for large-scale problems, DE requires large NP values and a sufficient
number of generations to obtain satisfactory results.

18 P. Conca et al.

4 Sensitive Algorithmic Tuning

The Sensitive Algorithmic Tuning (SAT) algorithm is a deterministic method
that relies on sensitivity analysis and worst-case screening to identify maximum
success regions within the parameters space.

Sensitive parameters are those that typically decrease the success or failure of
an algorithm. The sensitivity of a parameter is strictly related to its uncertainty
region; in general, a large parameter range makes difficult to find an optimal
setting. When the value of a parameter is outside its maximum success region,
we can observe an increase in sensitivity. Sensitivity minimization is a key prin-
ciple in system design; it is necessary to obtain robust parameters setting, but
not sufficient to guarantee near-optimal solutions. To overcome this limitation,
we adopt a worst-case screening method. Given two parameters settings, SAT
chooses the one providing the best solution in the worst case.

The SAT algorithm is depicted in Algorithm1. At each step, SAT splits
the parameters space of each parameter and performs Morris analysis in both
regions; it then selects the subspace with the highest mean value, aiming at
tuning the most sensitive parameter first. The splitting procedure can be any
interval-cutting strategy [19]; in our experiments, we generate two regions by
halving the range of sensitive parameters.

An example of the application of the SAT algorithm to a technique with two
parameters is depicted in Fig. 1. The objective function values obtained by each
parameters setting sampled during sensitivity analysis are also used for evaluat-
ing the worst case performance of the algorithm. We use two halting conditions;

Algorithm 1. Pseudo-code of the Sensitive Algorithmic Tuning (SAT)
algorithm.
1: procedure SAT(A, X−, X+)
2: k ← 0
3: Mk ← Morris(A, X−, X+, r, p, Δ)
4: while ¬StopCondition do
5: si ← max(Mk)
6: [lx−, lx+] ←LowSplit(X−, X+, si)
7: [hx−, hx+] ←HighSplit(X−, X+, si)
8: Mlx ←Morris(A, lx−, lx+, r, p, Δ)
9: Mhx ←Morris(A, hx−, hx+, r, p, Δ)

10: if max f(Mlx) > max f(Mhx) then
11: [X−, X+] ← [lx−, lx+]
12: Mk ← Mlx

13: else
14: [X−, X+] ← [hx−, hx+]
15: Mk ← Mhx

16: end if
17: k ← k + 1
18: end while
19: end procedure

Automatic Tuning of Algorithms Through Sensitivity Minimization 19

{[1, 10], [1, 10]}

{[1, 5], [1, 10]} {[5, 10], [1, 10]}

∅ {[5, 10], [1, 5]} {[5, 10], [5, 10]}

∅

Morris

Morris

Morris

Morris Morris

Fig. 1. Iterations of the SAT algorithm on a bi-dimensional parameter space. ∅ denotes
a region that will not be furtherly splitted.

the attainment of an optimal solution in the worst case, or the impossibility of
further splitting the parameters space. This strategy is useful to prevent a waste
of computational effort when the parameter region is sufficiently small.

5 Experimental Results

We use the SAT algorithm for tuning DE, with the parameters reported in
Table 1.

Since parameters settings are problem-dependent, we consider unimodal and
multimodal numerical functions of dimensions d = 10 and d = 20 (see Table 2).
Three unimodal functions are used, characterized by multiple quadratic terms.
Multimodal functions take into account noise (see function f4), quadratic and
quartic terms. It should be noted that the number of local minima of f5 increases
exponentially with its dimension [20].

Table 1. Parameters of the Differential Evolution algorithm. n denotes the dimension
of the problem.

Parameter Description X− X+

NP Population size 10 50

G Number of generations n × 25 n × 250

Fw Weighting factor 0 1

Cr Crossover rate 0 1

20 P. Conca et al.

Table 2. Test problems. f∗ represents the global minimum; (X−) and (X+) are the
lower and upper bound, respectively, n denotes the dimension of the problem.

Class f f∗ X− X+

f1 Unimodal
∑n

i=1 x2
i 0 −100 100

f2 Unimodal
∑n

i=1(
∑i

j=1 xj)
2 0 −100 100

f3 Unimodal
∑n−1

i=1 100(xi+1 − x2
i)

2 + (xi − 1)2 0 −30 30

f4 Multimodal
∑n

i=1 i ∗ x4
i + random[0, 1) 0 −1.28 1.28

f5 Multimodal
∑n

i=1 x2
i − 10 cos(2πx − i) + 10 0 −5.12 5.12

The metric adopted for evaluating the DE performance is the average value
of the best solution over 10 independent runs; moreover, we apply the SAT
algorithm to find a setting that ensures a worst-case result of 10−1.

An extensive set of simulations is performed to achieve an optimal parameters
setting for DE. Table 3 reports the results of SAT on the five testbed problems
for d = 10. The experimental results show that SAT is able to find satisfactory
settings for all the problems.

Table 3. Results for d = 10. f∗
w is the worst case objective function value; v(f)

represents the variance of the output of all the sampled settings; the lower and the
upper bound of each parameter found by SAT are within brackets.

f f∗
w v(f) NP G Fw Cr

f1 1.434 × 10−82 1.690 × 104 [77, 100] [2000, 2500] [0.55, 0.66] [0.21, 0.32]

f2 7.737 × 10−96 2.594 × 106 [55, 100] [2375, 2500] [0.55, 0.75] [0.43, 0.55]

f3 8.586 × 10−1 2.095 × 109 [77, 88] [1500, 1625] [0.55, 1] [0.1, 0.32]

f4 1.482 1.597 × 10−1 [97, 100] [4937, 5000] [0.55, 0.66] [0.43, 0.55]

f5 5.971 × 10−1 5.9305 [83, 88] [500, 1500] [0.44, 0.55] [0.1, 0.325]

On unimodal functions f1 and f2, we are able to obtain an upper bound on
the algorithm performance that is close to the global optimum. The f3 function
represents an exception within the unimodal set: it is not surprising that the
worst case result is many orders of magnitude worse than the others, due to the
presence of several plateau regions that can trap the algorithm. The values of
variance show that DE is highly influenced by its parameters, and the initial
bounds contain many suboptimal parameters settings.

The multimodal functions are more complex, as the presence of noise and
several local minima leads to a difficult tuning. Despite this complex scenario,
SAT is able to find a setting that ensures near-optimal solutions in the worst
case. The variance is several orders of magnitude lower with respect to unimodal
functions; however, this is probably due to the smaller intervals on which the
algorithm operates.

Automatic Tuning of Algorithms Through Sensitivity Minimization 21

 0 200 400 600 800 1000 0
 500 1000 1500 2000 2500

 0⋅100
 1⋅103
 2⋅103
 3⋅103
 4⋅103

f3

NP

μ

σ

f3

 0 10 20 30 40 50 60 70 80 0 50 100 150 200 250
 0⋅100
 1⋅103
 2⋅103
 3⋅103
 4⋅103

f3

G

μ

σ

f3

 0 20 40 60 80 100 120 0
 100

 200
 300

 400
 0⋅100
 1⋅103
 2⋅103
 3⋅103
 4⋅103

f3

Fw

μ

σ

f3

 0 10 20 30 40 50 60 70 80 90 0 50 100 150 200 250
 0⋅100

 1⋅103

 2⋅103
f3

Cr

μ

σ

f3

Fig. 2. Sensitivity landscape of f3 for d = 10. μ, σ are reported on the x and y axis,
respectively; the objective function values are reported on the z axis.

 0 0.5 1 1.5 2 2.5 3 0 1 2 3 4 5 6
 0
 5

 10
 15
 20
 25f5

NP

μ

σ2

f5

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 0
 0.5 1

 1.5 2
 2.5 3

 0
 5

 10
 15
 20
 25f5

G

μ

σ2

f5

 0 1 2 3 4 5 6 7 8 0 2 4 6 8 10 12
 0
 5

 10
 15
 20f5

Fw

μ

σ2

f5

 0 1 2 3 4 5 6 7 8 0 2 4 6 8 10 12
 0
 5

 10
 15
 20
 25f5

Cr

μ

σ2

f5

Fig. 3. Sensitivity landscape of f5 for d = 10. μ, σ are reported on the x and y axis,
respectively; the objective function values are reported on the z axis.

Figures 2 and 3 report the sensitivity landscapes of f3 and f5. The lowest
function value is achieved when the sensitivity of each parameter is close to
zero. This result seems to support the underlying strategy implemented in SAT.
The sensitivity landscapes of the parameters are different for the two problems;
for the f3 function, the population size, the number of generations and the
weighting factor show a convex shape, while the crossover probability has a
spike near the maximum success region. By inspecting the sensitivity landscape
of f5, we note that the best results are obtained when the sensitivity is close

22 P. Conca et al.

to zero, but the shape of the landscape is more rugged. For all parameters, we
have a high number of peaks at different points, which remarks the complexity
of tuning DE in this case. Despite this rugged parameter space, SAT is able to
identify the best setting.

The results for the tuning of DE when d = 20 are presented in Table 4.

Table 4. Results for d = 20. f∗
w is the worst case objective function value; v(f)

represents the variance of the output of all the sampled settings; the lower and the
upper bound of each parameter found by SAT are within brackets.

f f∗
w v(f) NP G Fw Cr

f1 2.322 × 10−77 3.601 × 105 [55, 77] [4750, 5000] [0.55, 1] [0.21, 0.32]

f2 3.652 × 10−90 5.895 × 108 [55, 100] [4750, 5000] [0.55, 0.77] [0.43, 0.55]

f3 2.830 2.193 × 1011 [77, 88] [4000, 5000] [0.1, 0.32] [0.1, 0.21]

f4 5.402 0.795 [32, 55] [1000, 2000] [0.21, 0.32] [0.88, 1]

f5 2.985 60.316 [77, 88] [4000, 5000] [0.43, 0.55] [0.32, 0.55]

On the unimodal functions f1 and f2, the algorithm finds a setting with a
satisfactory upper bound, however this result is not as good as the one found
for the smaller dimension instances. f3 proves to be the most difficult unimodal
problem of the entire set; in this case, lower accuracy than expected was obtained.
The values of variance are dramatically increased, and the tuning becomes more
difficult for increasing problem dimension. Although SAT was not able to find a
parameters setting that matched the desired upper bound, the results required
only limited computational effort.

In Figs. 4 and 5, we report the sensitivity landscape of f3 and f5 for d = 20.
The plots confirm the results obtained for lower dimensional problems. The

lowest function value is always achieved when the parameters sensitivity is close
to zero. The landscape for the two problems are comparable with the previous,
however we observe an increase in μ and σ; for example, for f3, the crossover
probability shows a peak in the central region that is far from the maximum
success region. For the f5 function, a rugged landscape is also obtained, and
we observe increased sensitivity values for all parameters. This landscape seems
to remark the presence of sensitivity barriers, which makes difficult the tuning
process.

Finally, we perform robustness analysis. Since parameters ranges are consid-
ered instead of single values, we have to evaluate the probability of finding sat-
isfactory results using any setting belonging to a given parameter space. Table 5
shows the yield values of the settings for each problem. High yield values are
obtained in all testbeds, except for the f3 and f4 functions. We conclude that
the proposed settings are robust and effective, and guarantee near-optimal per-
formances of the DE algorithm.

Automatic Tuning of Algorithms Through Sensitivity Minimization 23

 0 15000 30000 45000 60000 0
 40000

 80000
 120000

 160000
 0⋅100 1⋅105 2⋅105 3⋅105 4⋅105 5⋅105

f3

NP

μ

σ

f3

 0 4000 8000 12000 16000 0
 20000

 40000
 60000

 0⋅100 1⋅105 2⋅105 3⋅105 4⋅105 5⋅105
f3

G

μ

σ

f3

 0 1000 2000 3000 4000 0
 4000

 8000
 12000

 16000
 0⋅100 1⋅105 2⋅105 3⋅105 4⋅105 5⋅105

f3

Fw

μ

σ

f3

 0 4000 8000 12000 16000 0
 10000

 20000
 30000

 40000
 0⋅100
 1⋅105
 2⋅105
 3⋅105
 4⋅105

f3

Cr

μ

σ

f3

Fig. 4. Sensitivity landscape of f3 for d = 20. μ, σ are reported on the x and y axis,
respectively; the objective function values are reported on the z axis.

 0 1 2 3 4 5 6 7 8 0 2 4 6 8 10 12
 0

 20
 40
 60
 80f5

NP

μ

σ2

f5

 0 0.5 1 1.5 2 2.5 3 3.5 4 0 1 2 3 4 5 6 7 8
 0

 20
 40
 60
 80f5

G

μ

σ2

f5

 0 5 10 15 20 0 5 10 15 20 25 30
 0

 20
 40
 60
 80f5

Fw

μ

σ2

f5

 0 5 10 15 20 25 30 35 0 10 20 30 40 50
 0

 20
 40
 60
 80f5

Cr

μ

σ2

f5

Fig. 5. Sensitivity landscape of f5 for d = 20. μ, σ are reported on the x and y axis,
respectively; the objective function values are reported on the z axis.

Table 5. Robustness analysis of SAT parameters. d represents the dimension, Γ is the
yield.

f d Γ (%) f d Γ (%)

f1 10 100 f1 20 100

f2 10 100 f2 20 100

f3 10 52 f3 20 64

f4 10 54 f4 20 42

f5 10 92 f5 20 92

24 P. Conca et al.

6 Conclusions

Algorithm design is a complex process that should pursuit three general
properties; efficiency, effectiveness and generality. These properties are strictly
dependent on how algorithms parameters are configured. Parameters tuning is
therefore required to ensure efficiency and effectiveness when solving a problem.

In this work, we propose the Sensitive Algorithmic Tuning (SAT), a new
method for the automatic tuning of algorithms. SAT uses the Morris technique
to determine the parameters to optimize to obtain satisfactory upper bounds on
the expected performances. We evaluate the performance of SAT on the problem
of tuning the Differential Evolution (DE) algorithm. The experimental results
show the effectiveness of our approach; moreover, the discovered settings present
a high degree of robustness. Interestingly, these results confirm that optimal
settings are associated with a low parameters sensitivity.

We believe the parameters tuning problem should be exploited more deeply by
extending the cutting strategy; for instance, an alternative branch-and-bound [21]
approach could represent an efficient sampling strategy, where sensitivity infor-
mation could be used to perform expansion and pruning of the exploring tree.
We suggest the enhanced SAT algorithm could represent a valid candidate for tun-
ing one of the most important algorithms of the Internet era: PageRank [22].

Acknowledgments. The authors would like to acknowledge Professor Angelo
Marcello Anile for the useful discussions on the seminal idea of automatic algorithms
tuning. Professor Anile was a continuous source of inspiration during our research work.

References

1. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
The MIT Press, Cambridge (2001)

2. Horst, R., Pardalos, P.M., Thoai, N.V.: Introduction to Global Optimization.
Springer, USA (2000)

3. Floudas, C.A.: Deterministic Global Optimization. Kluwer, New York (2000)
4. Motwani, R., Raghavan, P.: Randomized algorithms. ACM Comput. Surv. (CSUR)

28(1), 37 (1996)
5. Back, T., Schwefel, H.P.: An overview of evolutionary algorithms for parameter

optimization. Evol. Comput. 1(1), 1–23 (1993)
6. Audet, C., Orban, D.: Finding optimal algorithmic parameters using derivative-free

optimization. SIAM J. Optim. 17(3), 642–664 (2006)
7. Nannen, V., Eiben, A.E.: Relevance estimation and value calibration of evolu-

tionary algorithm parameters. In: Proceedings of the 20th International Joint
Conference on Artifical Intelligence, pp. 975–980. Morgan Kaufmann Publishers
Inc. (2007)

8. Bartz-Beielstein, T.: Sequential parameter optimization - sampling-based optimiza-
tion in the presence of uncertainty (2009)

9. Hutter, F., Hoos, H.H., Leyton-Brown, K., Murphy, K.P.: An experimental investi-
gation of model-based parameter optimisation: Spo and beyond. In: Proceedings of
the 11th Annual Conference on Genetic and Evolutionary Computation, GECCO
2009, pp. 271–278. ACM, New York (2009)

Automatic Tuning of Algorithms Through Sensitivity Minimization 25

10. Hutter, F., Hoos, H.H., Stützle, T.: Automatic algorithm configuration based on
local search. In: AAAI, vol. 7, pp. 1152–1157 (2007)

11. Birattari, M., Yuan, Z., Balaprakash, P., Sttzle, T.: F-race and iterated f-race: an
overview. In: Bartz-Beielstein, T., Chiarandini, M., Paquete, L., Preuss, M. (eds.)
Experimental Methods for the Analysis of Optimization Algorithms, pp. 311–336.
Springer, Berlin (2010)

12. Storn, R., Price, K.V.: Differential evolution - a simple and efficient heuristic for
global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

13. Morris, M.D.: Factorial sampling plans for preliminary computational experiments.
Technometrics 33(2), 161–174 (1991)

14. Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D.,
Saisana, M., Tarantola, S.: Global Sensitivity Analysis: The Primer. Wiley-
Interscience, Hoboken (2008)

15. Storn, R.: Differential evolution design of an iir-filter. In: Proceedings of IEEE
International Conference on Evolutionary Computation, pp. 268–273 (1996)

16. dos Santos Coelho, L., Mariani, V.C.: Improved differential evolution algorithms
for handling economic dispatch optimization with generator constraints. Energy
Convers. Manage. 48(5), 1631–1639 (2007)

17. Chiou, J.-P., Wang, F.-S.: Hybrid method of evolutionary algorithms for static
and dynamic optimization problems with application to a fed-batch fermentation
process. Comput. Chem. Eng. 23(9), 1277–1291 (1999)

18. Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical App-
roach to Global Optimization. Springer, Heidelberg (2005)

19. Fusiello, A., Benedetti, A., Farenzena, M., Busti, A.: Globally convergent auto-
calibration using interval analysis. IEEE Trans. Pattern Anal. Mach. Intell. 26,
1633–1638 (2004)

20. Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. Evol. Comput.
3(2), 82–102 (1999)

21. Fuchs, M., Neumaier, A.: A splitting technique for discrete search based on convex
relaxation. J. Uncertain Syst. 4(1), 14–21 (2010)

22. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking:
Bringing order to the web. Technical report, Stanford InfoLab (1999)

Step Down and Step Up Statistical Procedures
for Stock Selection with Sharp Ratio

A.P. Koldanov(B), V.A. Kalyagin, and P.M. Pardalos

Laboratory of Algorithms and Technologies for Network Analysis,
National Research University Higher School of Economics,

Rodionova 136, Nizhny Novgorod 603155, Russia
akoldanov@hse.ru

Abstract. Stock selection by Sharp ratio is considered in the framework
of multiple statistical hypotheses testing theory. The main attention is
paid to comparison of Holm step down and Hochberg step up procedures
for different loss functions. Comparison is made on the basis of condi-
tional risk as a function of selection threshold. This approach allows to
discover that properties of procedures depend not only on relationship
between test statistics, but also depend on dispersion of Sharp ratios.
Difference in error rate between two procedures is increasing when the
concentration of Sharp ratios is increasing. When Sharp ratios do not
have a concentration points there is no significant difference in quality
of both procedures.

Keywords: Market network · Stock selection · Sharp ratio · Step-
wise multiple testing statistical procedures · Holm procedure · Hochberg
procedure

1 Introduction

Financial market can be considered as a complex network represented by a com-
plete weighted graph. Market graph is a particular structure in this network
[1]. It is known [10] that independent sets in market graph can be useful for
portfolio optimization if one first selects stocks by Sharp ratio. In the present
paper the stock selection by Shap ratio is considered in the framework of multi-
ple hypothesis testing theory. There are two type of multiple testing statistical
procedures: single-step and step-wise statistical procedures [6,13,14]. There is
an intensive discussion of different properties of step-wise multiple testing sta-
tistical procedures with applications to bioinformatics last decades. In general,
quality of step-wise procedures is related with degree of dependence of individual
tests statistics. Important attention is paid to the case of independent statistics
[3] and to the case of positive pairwise dependent statistics [2].

In this paper we investigate statistical procedures of stock selection by Sharp
ratio by studying its properties as a function of the selection threshold. This
point of view seems to be novel in multiple hypothesis testing but it is known to
c© Springer International Publishing Switzerland 2015
P. Pardalos et al. (Eds.): MOD 2015, LNCS 9432, pp. 26–36, 2015.
DOI: 10.1007/978-3-319-27926-8 3

Step Down and Step Up Statistical Procedures for Stock Selection 27

be an appropriate technique of data mining in market network analysis [1,11]. In
our study we use a theoretical framework developed in [8,9] for stock selection
with returns. Following this approach we use conditional risk as comparison
criteria for different loss functions. We consider two types of loss functions: 0-
1 W1 loss function and 1-0 W2 loss function. The first function W1 equals 1 if
there is at least one error of false rejection (error of the first kind or type I error),
and equals 0 otherwise. The second function W2 equals 1 if there is at least one
error of false acceptance (error of the second kind or type II error), and equals
0 otherwise. Conditional risk is the expected value of the loss function.

Our main interest is a comparison of two well known multiple testing sta-
tistical procedures: Holm step down multiple test procedure [4] and Hochberg
step up multiple test procedure [5]. Holm step down multiple test procedure
is a statistical procedure with control of conditional risk for W1 loss function.
Theoretical estimation of conditional risk for Hochberg step up multiple test
procedure is more difficult task but in practice it shows a good performance [7].
To compare above mentioned multiple testing statistical procedures we consider
two extreme cases: independent individual tests statistics and linearly dependent
individual tests statistics. Our main finding is: properties of procedures depend
not only on relationship between individual tests statistics but also depend on
dispersion of Sharp ratios. We show that the difference in error rate between two
procedures is increasing when the concentration of Sharp ratios is increasing. In
all cases Hochberg procedure is preferable to Holm procedure.

The paper is organized as follows. In Sect. 2 we formulate the stock selection
problem and introduce conditional risk to measure a quality of statistical pro-
cedures. In Sect. 3 we introduce individual tests statistics for Sharp ratio and
discuss its properties. In Sect. 4 we give a detailed description of Hochberg step
up multiple test procedure for stock selection and of Holm step down multiple
test. In Sect. 5 the results of comparison of stock selection statistical procedures
are given and discussed. The Sect. 6 summarizes the main finding of the paper.

2 Stock Selection Problem, Decision Functions
and Conditional Risk

We consider a stock market. Characteristic of stock is described by the random
variable Xi(t) which represent the value of attribute (price, return, volume, ...) of
stock i at the moment t. Let N be the number of stocks in the financial market,
n be the number of observations, xi(t) be observation of Xi(t), i = 1, 2, . . . , N ,
t = 1, 2, . . . , n. We define sample space as RN×n with elements (xi(t)), and
denote the matrix of all observations by x = ||xi(t)||. We make the following
assumptions:

– Random variables Xi(t), t = 1, ..., n are independent for fixed i, and have all
the same distribution as a random variable Xi(i = 1, ..., N). This is standard
assumption to model a sample of observations.

– Random vector (X1,X2, ...,XN) has a multivariate normal distribution with
covariances matrix Σ = ||σi,j || and vectors of means μ = (μ1, μ2, . . . , μN).

28 A.P. Koldanov et al.

This assumption can be considered for example as first approximation for
stocks returns multivariate distribution.

Sharp ratio for the stock i is defined by

Shi :=
μi√
σi,i

.

Selection Problem: For a given set of observations x select the stocks satisfying
condition Shi > Sh0, where Sh0 is a given threshold. This problem is a multiple
decision problem of choosing by observations one hypothesis from the set of
hypotheses:

Hi1,i2,...iN : Shik ≤ Sh0, if ik = 0, Shik > Sh0, if ik = 1 (1)

where ik ∈ {0, 1}, k = 1, 2, . . . , N . For a fixed threshold Sh0 total number of
hypotheses equals to L = 2N .

Decision function δ(x) is a map from the sample space RN×n to the decision
space D = {di1,i2,...iN }, where di1,i2,...iN is the decision to accept the hypothesis
Hi1,i2,...iN , ik ∈ {0, 1}, k = 1, 2, . . . , N .

Individual Hypotheses: Formulated problem is equivalent to multiple (simul-
taneous) testing of individual hypothesis

hi : Shi ≤ Sh0 vs ki : Shi > Sh0 i = 1, . . . , N. (2)

Loss Functions: Denote by W (Hi1,i2,...,iN , dj1,j2,...,jN) the loss from the deci-
sion dj1,j2,...,jN when the hypothesis Hi1,i2,...,iN is true. We consider two loss
functions: W1 and W2:

W1(Hi1,i2,...,iN , dj1,j2,...,jN) =
{

1, ∃k such that ik = 0 and jk = 1
0, else

(3)

W2(Hi1,i2,...,iN , dj1,j2,...,jN) =
{

1, ∃k such that ik = 1 and jk = 0
0, else

(4)

The loss functions W1 and W2 are traditionally used in the theory of multi-
ple hypotheses testing [6,13]. Another type of loss functions (so called additive
loss functions) was introduced in [12] and used in multiple decision theory and
applications [8,9,11].

Conditional Risk: For any statistical procedure δ and truehypothesisHi1,i2,...,iN

the conditional risk is defined by

Risk(W ;Hi1,i2,...,iN , δ) : = E[W (Hi1,i2,...,iN , δ)]

=
∑

j1,j2,...,jn∈{0,1} W (Hi1,i2,...,iN , dj1,j2,...,jN) (5)

P (δ = dj1,j2,...,jN /Hi1,i2,...,iN)

Step Down and Step Up Statistical Procedures for Stock Selection 29

One has for the 0-1 loss functions W1, W2:

Risk(W1;Hi1,i2,...,iN , δ) = 1 − P (δ = dj1,j2,...,jN such that js = 0 if is = 0)

Risk(W2;Hi1,i2,...,iN , δ) = 1 − P (δ = dj1,j2,...,jN such that js = 1 if is = 1)

Note that Risk(W1) is equal to the probability of at least one false rejection
(type I error), and Risk(W2) is equal to the probability of at least one false
acceptance (type II error). In multiple testing literature Risk(W1) is usually
denoted as FWER (Family Wise Error Rate [6]). Risk(W1) is a generalization
to multiple testing of classical significance level in individual hypothesis testing.
Risk(W2) is a generalization to multiple testing of power of test in individual
hypothesis testing.

3 Sample Sharp Ratio Statistics

Consider individual hypothesis (2). Sample Sharp ratio statistics is defined by

Fi =
√

n
xi√
si,i

, xi =
1
n

t=n∑

t=1

xi(t), si,i =
1

n − 1

t=n∑

t=1

(xi(t) − xi)2

Statistics Fi has non central Student distribution with density function [13]

p(x; Shi) =
1

2
1
2 (n+1)Γ (1

2
n)

√
πn

∫ ∞

0

y
1
2 (n−1) exp(−1

2
y) exp[−1

2
(x

√
y

n
− μi√

σi,i
)2]dy

Uniformly most powerful test for individual hypothesis

hi : Shi ≤ Sh0 vs ki : Shi > Sh0

in the class of invariant under multiplication by a positive common constant is
given by [13]:

ϕ(x) =
{

1, Fi > F0

0, Fi ≤ F0
(6)

where F0 is defined from the equation (α is significance level of the test)
∫ ∞

F0

p(x;Sh0)dx = α

This equation is hard to solve for a large value of n. From the other hand
one can use asymtotic theory. According to general asymptotic theory [13], if
(μi/

√
σi,i) = Sh0, the following individual tests statistics has asymptotically

standard normal distribution

Ti =
√

n

1 + 1
2Sh2

0

(
xi√
si,i

− Sh0

)

30 A.P. Koldanov et al.

In what follows we will replace the test (6) by the test

ϕ(x) =
{

1, Ti > c
0, Ti ≤ c

(7)

where the constant c is defined from the equation Φ(c) = 1 − α, Φ(x) being
cumulative distribution function for standard normal distribution.

4 Multiple Test Procedures

In this section we describe stepwise statistical procedures for the solution of the
problem (1). First we give a general sequentially acceptance (step-up) framework
for these procedures and describe in details the Hochberg procedure. Second we
give a general sequentially rejective (step-down) framework and discuss in details
Holm multiple tests procedure. In what follows we use the notation H-procedure
for the Holm multiple test procedure, Hg-procedure for the Hochberg multiple
test procedure. Associated decision functions will be denoted by δH and δHg

respectively.

General Sequentially Acceptance (Step-Up) Test for Stock Selection:
The algorithm consists of at most N steps. At each step either one individual
hypothesis h is accepted or all remaining hypotheses are rejected. For a given
set of observations the decision di1,i2,...,iN is constructed as follows: let

Ti(x) =
√

n

1 + 1
2Sh2

0

(
xi√
si,i

− Sh0

)

– Step 1: If
min

i=1,...,N
Ti(x) > c1

then the decision is d111...1: reject all hypotheses hi, i = 1, 2, . . . , N ,
else if mini=1,...,N Ti = Tk1 then accept hypothesis hk1 : Shk1 ≤ Sh0 (put
is = 0, s = k1 for the decision di1,i2,...,iN) and go to step 2.

– . . .
– Step M: Let I = {k1, k2, . . . , kM−1} be the set of indexes of previously accepted

hypotheses. If
min

i=1,...,N ;i/∈I
Ti(x) > cM

then the decision is di1,i2,...,iN with is = 0, s ∈ I and is = 1, s /∈ I: reject all
hypotheses hi, i = 1, 2, . . . , N , i /∈ I,
else if mini=1,...,N ;i/∈I Ti = TkM

then accept hypothesis hkM
: ShkM

≤ Sh0

(put is = 0, s ∈ I and is = 0, s = kM for the decision di1,i2,...,iN) and go to
step (M+1).

– . . .
– Step N: Let I = {k1, k2, . . . , kN−1} be the set of indexes of previously accepted

hypotheses. Let l /∈ I. If

Step Down and Step Up Statistical Procedures for Stock Selection 31

Tl(x) > cN

then the decision is di1,i2,...,iN with is = 1, s = l and is = 0, s �= l: reject the
hypothesis Shl ≤ Sh0

else accept hypothesis hl : Shl ≤ Sh0 (the taken decision is d00...00).

Hochberg multiple test step up procedure is obtained from general sequen-
tially acceptive algorithm by choosing critical values cHg

M , M = 1, 2, . . . , N . Let
Φ(x) be the standard normal distribution function. Then for a given value of
significance level α, cHg

M are defined from the equations

Φ(cHg
M) = 1 − α

M
, M = 1, 2, . . . , N.

Note that cHg
1 < cHg

2 < · · · < cHg
N . The constants CHg

M can be written as
CHg

M = u1−α/M , where u1−α/M is the (1 − α/M)-percentile of standard normal
distribution.

General Sequentially Rejective (Step-Down) Test for Stock Selection:
The algorithm consists of at most N steps. At each step either one individual
hypothesis h is rejected or all remaining hypotheses are accepted. For a given
set of observations the decision di1,i2,...,iN is constructed as follows:

– Step 1: If
max

i=1,...,N
Ti(x) ≤ c1

then the decision is d000...0: accept all hypotheses hi, i = 1, 2, . . . , N ,
else if maxi=1,...,N Ti = Tk1 then reject hypothesis hk1 : Shk1 ≤ Sh0 (put
is = 1, s = k1 for the decision di1,i2,...,iN) and go to step 2.

– . . .
– Step M: Let I = {k1, k2, . . . , kM−1} be the set of indexes of previously rejected

hypotheses. If
max

i=1,...,N ;i/∈I
Ti(r) ≤ cM

then the decision is di1,i2,...,iN with is = 1, s ∈ I and is = 0, s /∈ I: accept all
hypotheses hi, i = 1, 2, . . . , N , i /∈ I,
else if maxi=1,...,N ;i/∈I Ti = TkM

then reject hypothesis hkM
: ShkM

≤ Sh0

(put is = 1, s ∈ I and is = 1, s = kM for the decision di1,i2,...,iN) and go to
step (M+1).

– . . .
– Step N: Let I = {k1, k2, . . . , kN−1} be the set of indexes of previously rejected

hypotheses. Let l /∈ I. If
Tl(x) ≤ cN

then the decision is di1,i2,...,iN with is = 0, s = l and is = 1, s �= l: accept the
hypothesis

Shl ≤ Sh0

else reject hypothesis hl : Shl ≤ Sh0 (the taken decision is d11...11).

32 A.P. Koldanov et al.

Different statistical procedures are obtained from general sequentially rejec-
tive test by choosing critical values cM , M = 1, 2, . . . , N . Let α be a signif-
icance level. Let Φ(x) be the standard normal distribution function. For the
H-procedure one has cM = cH

M , M = 1, 2, . . . , N , where cH
M are defined from

the equations Φ(cH
M) = 1 − α

N−M+1 . Note that cH
1 > cH

2 > · · · > cH
N . The

constants CH
M can be written as CH

M = u1−α/(N−M+1), where u1−α/(N−M+1) is
the (1 − α/(N − M + 1))-percentile of standard normal distribution. One has
cH
M = cHg

N−M+1, M = 1, 2, . . . , N .
Statistical procedure H controls the conditional risk for the loss function W1.

It means that overall error rate for these procedure is less or equal to α. Overall
error rate for Hg-procedure is a subject of intensive investigations. It is known
[15], for example, that Hg-procedure control the conditional risk for the loss
function W1 in the case of positive dependence of individual tests statistics Ti,
Tj , i, j = 1, 2, . . . , N .

5 Comparative Analysis of Step Up and Step Down
Multiple Test Procedures

In this sectionwe compareHandHg statistical procedures.Wewillmake a compar-
ison using two criteria: concentration of Sharp ratios, dependence of test statistics.

Concentrated Case: Concentration of Sharp ratios can be measured by its
variance. Consider the most concentrated case where all Sharp ratios are equal:
Sh1 = Sh2 = · · · = ShN = Sh0. This case is of interest because in this case one
can expect a maximum error rate. We consider two extreme cases for dependence
of individual test statistics: random variables T1, T2, . . . , TN are independent
and random variables T1, T2, . . . , TN are linearly dependent. In these cases it is
known that H-procedure and Hg-procedure control the conditional risk for W1

loss function. Therefore to compare the quality of procedures one has to consider
the behaviour of conditional risk as a function of threshold for W2 loss function.
We start with N = 2. Let Sh0 = Sh0. In this case one can calculate explicitly
conditional risks for W1, W2.

Let X1 and X2 are independent Gaussian random variables with the same
means and variances. In this case individual tests statistics T1 and T2 are inde-
pendent. For the W1 loss function one has:

Risk(W1;H0,0, δ
H) = α − α2

4
, Risk(W1;H0,0, δ

Hg) = α,

Both procedures have FWER (Family Wise Error Rate) less or equal to α.
The difference between conditional risks is α2/4.

For the W2 loss function one has Risk(W2;H1,1, δ
H) = Risk(W2;H1,1, δ

Hg) =
0 (Sh0 = Sh0) but the comparison can be obtained from the following relations:

lim
Sh0→Sh0−0

Risk(W2;H1,1, δH) = 1− 3

4
α2, lim

Sh0→Sh0−0
Risk(W2;H1,1, δHg) = 1− α2,

Step Down and Step Up Statistical Procedures for Stock Selection 33

It means that in a neighborhood of concentration point Sh0, Hg-procedures
is more accurate than H-procedure for W2 loss function. The difference between
conditional risks is α2/4.

Let X1 and X2 are linearly dependent Gaussian random variables. In this
case individual tests statistics T1 and T2 are lineary dependent. For the W1 loss
function one has:

Risk(W1;H0,0, δ
H) =

α

2
, Risk(W1;H0,0, δ

Hg) = α,

Both procedures have FWER less or equal to α. The difference between condi-
tional risks is α/2.

For the W2 loss function one has Risk(W2;H1,1, δ
H) = Risk(W2;H1,1, δ

Hg) =
0 (Sh0 = Sh0) but the comparison can be obtained from the following relations:

lim
Sh0→Sh0−0

Risk(W2;H1,1, δ
H) = 1−α

2
, lim

Sh0→Sh0−0
Risk(W2;H1,1, δ

Hg) = 1−α,

It means that in a neighborhood of concentration point Sh0, Hg-procedures is
more accurate than H-procedure for W2 loss function. The difference between
conditional risks is α/2.

Behavior of Risk(W2) for N = 2 as a function of threshold Sh0 is illus-
trated on the Fig. 1. It is important to note that Hg-procedure is more accurate
for Risk(W2). Moreover sensibility of conditional risk to degree of dependence
between T1 and T2 is more important for Hg-procedure than for H-procedure.
The Fig. 2 shows the behavior of conditional risk Risk(W2) for N = 100. The
conclusion is similar: Hg-procedure is more accurate and sensibility of condi-
tional risk to degree of dependence between T1, T2, . . . , TN is more important for
Hg-procedure than for H-procedure.

Non Concentrated Case: we start with illustrative example for N = 3. Con-
sider the following values of Sharp rations: Sh1 = 1.0, Sh2 = 1.5, Sh3 = 2.0.

Fig. 1. Risk Risk(W2) as a function of Sh0. Left: H-procedure. Solid line - indepen-
dent random variables, dashed line - linearly dependent random variables. Right: Hg-
procedure. Solid line - independent random variables, dashed line - linearly dependent
random variables. Horizontal axe represents the value of Sh0. N = 2, α = 0.5, Sh0 = 1.

34 A.P. Koldanov et al.

Fig. 2. Risk Risk(W2) as a function of Sh0 for H and Hg-procedures. Solid line -
Hg-procedure, dashed line - H-procedure. Left: independent random variables. Right:
linearly dependent random variables. Horizontal axe represents the value of Sh0. N =
100, α = 0.5, Sh0 = 1.

Fig. 3. Conditional risk as a function of Sh0 for H and Hg-procedures. Left: Risk(W1).
Right: Risk(W2). Horizontal axe represents the value of Sh0. N = 3, α = 0.5, Sh1 =
1.0, Sh2 = 1.5, Sh3 = 2.0. Solid line - Hg-procedure, dashed line - H-procedure.

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

thresold

A
0
-1

lo
ss

fu
n
ct

io
n

A 0-1 loss function, real, Hg vs H, n=10000, alpha = 0.5

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

thresold

B
0
-1

lo
ss

fu
n
ct

io
n

B 0-1 loss function, real, Hg vs H, n=10000, alpha = 0.5

Fig. 4. Conditional risk as a function of Sh0 for H and Hg-procedures for the real
market. Left: Risk(W1). Right: Risk(W2). Horizontal axe represents the value of Sh0.
N = 100, α = 0.5.

Step Down and Step Up Statistical Procedures for Stock Selection 35

Figure 3 shows behavior of conditional risks Risk(W1), Risk(W2). In contrast
with concentration case there is no difference in quality between H and Hg pro-
cedures independently from degree of dependence of random variables T1, T2, T3.

Now consider the case of real stock market: NYSE stock market, N = 100
(we take companies greatest by capitalization), period of observations from
20.01.2010 until 06.02.2014. There is no concentration of Sharp ratios for this
market and the behavior of conditional risks Risk(W1), Risk(W2) is similar to
the example with N = 3. The Fig. 4 illustrates this behavior.

6 Concluding Remarks

Conditional risk of two well known step-wise statistical procedures (Holm and
Hochberg procedures) for stock selection with Sharp ratio is investigated as a
function of selection threshold. Four extreme cases are considered to emphasize
a difference between two procedures:

– Concentrated Sharp ratios and independent individual tests statistics.
– Concentrated Sharp ratios and linearly dependent individual tests statistics.
– Non concentrated Sharp ratios and independent individual tests statistics.
– Non concentrated Sharp ratios and linearly dependent individual tests

statistics.

In all cases both procedures control the conditional risk for W1 loss function
(Family Wise Error Rate) at a fixed level α. For W2 loss function Hochberg
procedure is preferable. Advantage of this procedure takes place with concen-
tration of Sharp ratios. When Sharp ratios do not have a concentration points
there is no significant difference in quality of both procedures. At the same time
the quality of Hochberg procedure is more sensible to the degree of dependence
of random variables. For the real market with concentration of Sharp ratios it
is appropriate to use Hochberg statistical procedures for stock selection. From
the other hand Holm procedure is more robust to the degree of dependence of
individual tests statistics and can be used for all other cases.

Acknowledgement. The authors are partly supported by National Research Univer-
sity Higher School of Economics, Russian Federation Government grant, N. 11.G34.31.
0057 and RFFI grant 14-01-00807.

References

1. Boginski, V., Butenko, S., Pardalos, P.M.: Statistical analysis of financial networks.
Comput. Stat. Data Anal. 48(2), 431–443 (2005)

2. Cai, G., Sarkar, S.K.: Modified Simes’ critical values under positive dependence.
J. Stat. Plann. Infer. 136, 4129–4146 (2006)

3. Cai, G., Sarkar, S.K.: Modified Simes’ critical values under independence. Stat.
Probab. Lett. 78, 1362–1368 (2008)

36 A.P. Koldanov et al.

4. Holm, S.: A simple sequentially rejective multiple test procedure. Scand. J. Stat.
6, 65–70 (1979)

5. Hochberg, Y.: A sharper Bonferroni procedure for multiple tests of significance.
Biometrika 75, 800–802 (1988)

6. Hochberg, Y., Tamhane, A.: Multiple Comparison Procedures. John Wiley and
Sons, New York (1987)

7. Huang, Y., Hsu, J.C.: Hochberg’s step-up method: cutting corners off holm’s step-
down method. Biometrika 94(4), 965–975 (2007)

8. Koldanov, P.A., Bautin, G.A.: Multiple decision problem for stock selection in
market network. In: Pardalos, P.M., Resende, M., Vogiatzis, C., Walteros, J. (eds.)
Learning and Intelligent Optimization. LNCS, vol. 8426, pp. 98–110. Springer,
Heidelberg (2014)

9. Koldanov, P.A., Kalyagin, V.A., Bautin, G.A.: On some statistical procedures for
stock selection problem. Ann. Math. Artif. Intell. doi:10.1007/s10472-014-9447-1

10. Kalyagin, V.A., Koldanov, P.A., Koldanov, A.P., Zamaraev, V.A.: Market graph
and markowitz model. In: Rassias, T.M., Floudas, C.A., Butenko, S. (eds.) Opti-
mization in Science and Engineering (In Honor of the 60th Birthday of Panos M.
Pardalos), pp. 293–306. Springer Science+Business Media, New York (2014)

11. Koldanov, A.P., Koldanov, P.A., Kalyagin, V.A., Pardalos, P.M.: Statistical pro-
cedures for the market graph construction. Comput. Stat. Data Anal. 68, 17–29
(2013)

12. Lehmann, E.L.: A theory of some multiple decision procedures 1. Ann. Math. Stat.
28, 1–25 (1957)

13. Lehmann, E.L., Romano, J.P.: Testing Statistical Hypotheses. Springer, New York
(2005)

14. Rao, C.V., Swarupchand, U.: Multiple comparison procedures - a note and a bib-
liography. J. Stat. 16, 66–109 (2009)

15. Sarkar, S.K., Chang, C.K.: The simes method for multiple testing with positively
dependent test statistics. J. Am. Stat. Assoc. 92(440), 1601–1608 (1997)

http://dx.doi.org/10.1007/s10472-014-9447-1

Differentiating the Multipoint Expected
Improvement for Optimal Batch Design

Sébastien Marmin1,2,3(B), Clément Chevalier4,5, and David Ginsbourger1,6

1 Department of Mathematics and Statistics, IMSV,
University of Bern, Bern, Switzerland

marminsebastien@gmail.com
2 Institut de Radioprotection et de Sûreté Nucléaire, Cadarache, France

3 École Centrale de Marseille, Marseille, France
4 Institute of Statistics, University of Neuchâtel, Neuchâtel, Switzerland

5 Institute of Mathematics, University of Zurich, Zürich, Switzerland
6 Idiap Research Institute, Martigny, Switzerland

Abstract. This work deals with parallel optimization of expensive
objective functions which are modelled as sample realizations of Gaussian
processes. The study is formalized as a Bayesian optimization problem,
or continuous multi-armed bandit problem, where a batch of q > 0
arms is pulled in parallel at each iteration. Several algorithms have
been developed for choosing batches by trading off exploitation and
exploration. As of today, the maximum Expected Improvement (EI)
and Upper Confidence Bound (UCB) selection rules appear as the most
prominent approaches for batch selection. Here, we build upon recent
work on the multipoint Expected Improvement criterion, for which an
analytic expansion relying on Tallis’ formula was recently established.
The computational burden of this selection rule being still an issue in
application, we derive a closed-form expression for the gradient of the
multipoint Expected Improvement, which aims at facilitating its maxi-
mization using gradient-based ascent algorithms. Substantial computa-
tional savings are shown in application. In addition, our algorithms are
tested numerically and compared to state-of-the-art UCB-based batch-
sequential algorithms. Combining starting designs relying on UCB with
gradient-based EI local optimization finally appears as a sound option
for batch design in distributed Gaussian Process optimization.

Keywords: Bayesian optimization · Batch-sequential design · GP ·
UCB

1 Introduction

Global optimization of deterministic functions under a drastically limited eval-
uation budget is a topic of growing interest with important industrial applica-
tions. Dealing with such expensive black-box simulators is typically addressed

c© Springer International Publishing Switzerland 2015
P. Pardalos et al. (Eds.): MOD 2015, LNCS 9432, pp. 37–48, 2015.
DOI: 10.1007/978-3-319-27926-8 4

38 S. Marmin et al.

through the introduction of surrogate models that are used both for recon-
structing the objective function and guiding parsimonious evaluation strate-
gies. This approach is used in various scientific communities and referred to as
Bayesian optimization, but also as kriging-based or multi-armed bandit optimiza-
tion [5,11,15,16,20,23,25]. Among such Gaussian process optimization methods,
two concepts of algorithm relying on sequential maximization of infill sampling
criteria are particularly popular in the literature. In the EGO algorithm of [16],
the sequence of decisions (of where to evaluate the objective function at each
iteration) is guided by the Expected Improvement (EI) criterion [19], which is
known to be one-step lookahead optimal [14]. On the other hand, the Upper
Confidence Bound (UCB) algorithm [1] maximizes sequentially a well-chosen
kriging quantile, that is, a quantile of the pointwise posterior Gaussian process
distribution. Similarly to EI [6,24], the consistency of the algorithm has been
established and rates of convergence have been obtained [23].

Recently, different methods inspired from the two latter algorithms have
been proposed to deal with the typical case where q > 1 CPUs are available.
Such synchronous distributed methods provide at each iteration a batch of q
points which can be evaluated in parallel. For instance, [10] generalizes the UCB
algorithm to a batch-sequential version by maximizing kriging quantiles and
assuming dummy responses equal to the posterior mean of the Gaussian process.
This approach can be compared with the so-called Kriging Believer strategy of
[15] where each batch is obtained by sequentially maximizing the one-point EI
under the assumption that the previously chosen points have a response equal to
their Kriging mean. Originally, the strategies suggested in [15] were introduced
to cope with the difficulty to evaluate and maximize the multipoint Expected
Improvement (q-EI) [22], which is the generalization of EI known to be one-
batch lookahead optimal [7,14]. One of the bottlenecks for q-EI maximization
was that it was until recently evaluated through Monte-Carlo simulations [15],
a reason that motivated [11] to propose a stochastic gradient algorithm for its
maximization. Now, [8] established a closed-form expression enabling to compute
q-EI at any batch of q points without appealing to Monte-Carlo simulations.
However, the computational complexity involved to compute the criterion is still
high and quickly grows with q. Besides, little has been published about the
difficult maximization of the q-EI itself, which is an optimization problem in
dimension qd, where d is the number of input variables.

In this work, we contribute to the latter problem by giving an analytical
gradient of q-EI, in the space of dimension qd. Such a gradient is meant to
simplify the local maximization of q-EI using gradient-based ascent algorithms.
Closed-form expressions of q-EI and its gradient have been implemented in the
DiceOptim R package [21], together with a multistart BFGS algorithm for max-
imizing q-EI. In addition, we suggest to use results of the BUCB algorithm
as initial batches in multistart gradient-based ascents. These starting batches
are shown to yield good local optima for q-EI. This article is organized as fol-
lows. Section 2 quickly recalls the basics of Gaussian process modeling and the
closed-form expression of q-EI obtained in [8]. Section 3 details the analytical

Differentiating the Multipoint Expected Improvement 39

q-EI gradient. Finally, numerical experiments comparing the performances of the
q-EI maximization-based strategy and the BUCB algorithms are provided and
discussed in Sect. 4. For readability and conciseness, the most technical details
about q-EI gradient calculation are sent in Appendix.

2 General Context

Let f : x ∈ D ⊂ IRd −→ IR be a real-valued function defined on a compact sub-
set D of IRd, d ≥ 1. Throughout this article, we assume that we dispose of a set
of n evaluations of f , An =

(
x1:n := {x1, . . . ,xn},y1:n = (f(x1), . . . , f(xn))�)

,
and that our goal is to evaluate f at well-chosen batches of q points in order to
globally maximize it. Following each batch of evaluations, we observe q deter-
ministic scalar responses, or rewards, yn+1 = f(xn+1), . . . , yn+q = f(xn+q). We
use past observations in order to carefully choose the next q observation loca-
tions, aiming in the end to minimize the one-step lookahead regret f(x∗)− tn+q,
where x∗ is a maximizer of f and ti = maxj=1,...,i(f(xj)). In this section, we first
define the Gaussian process (GP) surrogate model used to make the decisions.
Then we introduce the q-EI which is the optimal one-batch lookahead criterion
(see, e.g., [3,12,14] for a definition and [7,14] for a proof).

2.1 Gaussian Process Modeling

The objective function f is a priori assumed to be a sample from a Gaussian
process Y ∼ GP(μ,C), where μ(·) and C(·, ·) are respectively the mean and
covariance function of Y . At fixed μ(·) and C(·, ·), conditioning Y on the set of
observations An yields a GP posterior Y (x)|An ∼ GP(μn, Cn) with:

μn(x) = μ(x) + cn(x)�C−1
n (y1:n − μ(x1:n)), and (1)

Cn(x,x
′
) = C(x,x

′
) − cn(x)�C−1

n cn(x
′
), (2)

where cn(x) = (C(x,xi))1≤i≤n, and Cn = (C(xi,xj))1≤i,j≤n. Note that, in
realistic application settings, the mean and the covariance μ and C of the prior
are assumed to depend on several parameters which require to be estimated.
The results presented in this article and their implementations in the R pack-
age DiceOptim are compatible with this more general case. More detail about
Eqs. (1), (2) with or without trend and covariance parameter estimation can be
found in [21] and is omitted here for conciseness.

2.2 The Multipoint Expected Improvement Criterion

The Multipoint Expected Improvement (q-EI) selection rule consists in maximiz-
ing, over all possible batches of q points, the following criterion, which depends
on a batch X = (xn+1, . . . ,xn+q) ∈ Dq:

EI(X) = E
[
(max Y (X) − Tn)+

∣
∣ An], (3)

40 S. Marmin et al.

where (·)+ = max(·, 0), and the threshold Tn is the currently observed maximum
of Y , i.e. Tn = max1≤j≤n Y (xj). Recalling that Y (X)|An ∼ N (μn(X), Cn(X,
X)), and denoting Y (X) = (Y1, . . . , Yq)�, an analytic expression of q-EI at
locations X over any threshold T ∈ IR can be found in [8] and is reproduced
here:

EI(X) =

q∑

k=1

(

(mk − T)Φq,Σ(k)

(
−m(k)

)
+

q∑

i=1

Σ
(k)
ik ϕΣii

(
m

(k)
i

)
Φ

q−1,Σ
(k)
|i

(
−m

(k)

|i
)
)

(4)

where ϕσ2(·) and Φp,Γ (·) are respectively the density function of the centered
normal distribution with variance σ2 and the p-variate cumulative distribu-
tion function (CDF) of the centered normal distribution with covariance Γ ;
m = E(Y (X)|An) and Σ = cov(Y (X)|An) are the conditional mean vector
and covariance matrix of Y (X); m(k) and Σ(k), 1 ≤ k ≤ q, are the condi-
tional mean vector and covariance matrix of the affine transformation of Y (X),
Z(k) = L(k)Y (X)+b(k), defined as Z

(k)
j := Yj for j �= k and Z

(k)
k := T −Yk; and

finally, for (k, i) ∈ {1, . . . , q}2, m
(k)
|i and Σ

(k)
|i are the mean vector and covariance

matrix of the Gaussian vector (Z(k)
−i |Z(k)

i = 0), the index −i meaning that the
ith component is removed.

3 Gradient of the Multipoint Expected Improvement

In this section, we provide an analytical formula for the gradient of q-EI. Get-
ting such formula requires to carefully analyze the dependence of q-EI written
in Eq. (4) on the batch locations X ∈ IRq×d. This dependence is summarized
in Fig. 1 and exhibits many chaining relations. In the forthcoming multivariate
calculations, we use the following notations. Given two Banach spaces E and F ,
and a differentiable function g : E → F , the differential of g at point x, writ-
ten dx [g] : E → F , is the bounded linear map that best approximate g in the
neighborhood of x. In the case where E = IRp and F = IR, it is well known that
∀h ∈ E, dx [g] (h) = 〈∇g(x), h〉. More generally the differential can be written
in terms of Jacobian matrices, matrix derivatives and/or matrix scalar products
where E and/or F are IRp or IRp×p. To simplify notations and handle the differ-
ent indices in Eq. (4), we fix the indices i and k and focus on differentiating the
function EI(k)(i), standing for the generic term of the double sums in Eq. (4).
We can perform the calculation of dX

[
EI(k)(i)

]
by noticing that EI(k)(i) can be

rewritten using the functions gj , 1 ≤ j ≤ 8 defined on Fig. 1 as follows:

EI(k)(i) = (mk − T) · g7 ◦ G + g4 ◦ g2 · g5 ◦ G · g8 ◦ g6 ◦ G, (5)

where G = (g3 ◦ g1, g4 ◦ g2), ◦ is the composition operator and · the multi-
plication operator. The differentiation then consists in applying classical dif-
ferentiation formulas for products and compositions to Eq. (5). Proposition 1

Differentiating the Multipoint Expected Improvement 41

Fig. 1. Link between the different terms of Eq. (4) and the batch of points X

summarizes the results. For conciseness, the formulae of the differentials involved
in Eq. (6) are justified in the Appendix. The calculations notably rely on the dif-
ferential of a normal cumulative distribution function with respect to its covari-
ance matrix obtained via Plackett’s formula [4].

Proposition 1. The differential of the multipoint Expected Inmprovement cri-
terion of Eq. (4) is given by dX [EI] =

∑q
k=1

∑q
i=1 dX

[
EI(k)(i)

]
, with

dX

[
EI(k)(i)

]
= dX [mk] . g7 ◦ G + (mk − T) . dG(X) [g7] ◦ dX [G] (6)

+ dg2(X) [g4] ◦ dX [g2] . g5 ◦ G . g8 ◦ g6 ◦ G

+ g4 ◦ g2 . dG(X) [g5] ◦ dX [G] . g8 ◦ g6 ◦ G

+ g4 ◦ g2 . g5 ◦ G . dg6(G(X)) [g8] ◦ dG(X) [g6] ◦ dX [G] ,

where the gj’s are the functions introduced in Fig. 1. The gj’s and their respective
differentials are as follow:

– g1 : X ∈ Dq → g1(X) = (μn(xj))1≤j≤q ∈ IRq,
dX [g1] (H) = (〈∇μn(xj),H�

j,1:d〉)1≤j≤q,

with ∇μn(xj) = ∇μ(xj) +
(

∂cn(xj)
�

∂x�

)

1≤�≤d
C−1

n (y1:n − μ(x1:n)).

– g2 : X ∈ Dq → g2(X) = (Cn(xj ,x�))1≤j,�≤q ∈ Sq
++. Sq

++ is the set of q × q
positive definite matrices.
dX [g2] (H) =

(〈
∇xCn(xj ,x�),H�

j,1:d

〉
+

〈
∇xCn(x�,xj),H�

�,1:d

〉)

1≤j,�≤q
,

with ∇xCn(x,x′) = ∇xC(x,x′) −
(

∂cn(x)�

∂xp

)

1≤p≤d
C−1

n cn(x′).

– G : X → (
m(k), Σ(k)

)
, dX [G] =

(
L(k)dX [g1] , L(k)dX [g2] L(k)�)

.
– g7 : (a, Γ) ∈ IRq × Sq

++ → Φq,Γ (a) ∈ IR,
dG(X) [g7] (h,H) = 〈h,∇xΦq,Σ(k)(m(k))〉+tr(H∇ΣΦq,Σ(k)(m(k))). ∇xΦq,Σ(k)

and ∇ΣΦq,Σ(k) are the gradient of the multivariate Gaussian CDF with respect
to x and to the covariance matrix, given in appendix.

– g4 : Σ → Σ(k), dg2(X) [g4] (H) = L(k)HL(k)�.
– g5 : (a, Γ) ∈ IRq × Sq

++ → ϕΓii
(ai) ∈ IR,

dG(X) [g5] (h,H) =
(
− ai

Γii
hi + 1

2

(
a2

i

Γ 2
ii

− 1
Γii

)
Hii

)
ϕΓii

(ai)

42 S. Marmin et al.

– g6 : (m(k), Σ(k)) ∈ IRq × Sq
++ → (m(k)

|i , Σ
(k)
|i),

d(
m(k),Σ(k)

) [g6] (h, H) =

⎛
⎝h−i − hi

Σ
(k)
ii

Σ
(k)
−i,i +

m
(k)
i Hii

Σ
(k)2
ii

Σ
(k)
−i,i − m

(k)
i

Σ
(k)
ii

H−i,i,

H−i,−i +
Hii

Σ
(k)2
ii

Σ
(k)
−i,iΣ

(k)�
−i,i − 1

Σ
(k)
ii

H−i,iΣ
(k)�
−i,i − 1

Σ
(k)
ii

Σ
(k)
−i,iH

�
−i,i

⎞
⎠

– g8 : (a, Γ) ∈ IRq−1 × Sq−1
++ → Φq−1,Γ (a) ∈ IR,

dg6(G(X)) [g8] = 〈h,∇xΦq,Σ(k)(m(k))〉 + tr(H∇ΣΦq,Σ(k)(m(k))).

The gradient of q-EI, relying on Eq. (6) is implemented in the version 1.5
of the DiceOptim R package [9], together with a gradient-based local optimiza-
tion algorithm. In the next section, we show that the analytical computation
of the gradient offers substantial computational savings compared to numerical
computation based on a finite-difference scheme. In addition, we investigate the
performances of the batch-sequential EGO algorithm consisting in sequentially
maximizing q-EI, and we compare it with the BUCB algorithm of [10].

4 Numerical Tests

4.1 Computation Time

In this section, we illustrate the benefits – in terms of computation time – of using
the analytical gradient formula of Sect. 3. We compare computation times of gra-
dients computed analytically and numerically, through finite differences schemes.
It is important to note that the computation of both q-EI and its gradient (see,
Eqs. (4), (6)) involve several calls to the cumulative distribution functions (CDF)
of the multivariate normal distribution. The latter CDF is computed numerically
with the algorithms of [13] wrapped in the mnormt R package [2]. In our imple-
mentation, computing this CDF turns out to be the main bottleneck in terms of
computation time. The total number of calls to this CDF (be it in dimension q,
q − 1, q − 2 or q − 3) is summarized in Table 1. From this table, let us remark that
the number of CDF calls does not depend on d for the analytical q-EI gradient and
is proportional to d for the numerical gradient. The use of the analytical gradient
is thus expected to bring savings when q is not too large compared to d. Figure 2
depicts the ratio of computation times between numerical and analytical gradient,
as a function of q and d. These were obtained by averaging the evaluation times of
q-EI’s gradient at 10 randomly-generated batches of size q for a given function in
dimension d being a sample path of a GP with separable Matérn (3/2) covariance
function [21]. In the next section, we use the values q = 6 and d = 5 and we rely
exclusively on the analytical q-EI formula which is now known to be faster.

4.2 Tests

Experimental Setup. We now compare the performances of two parallel
Bayesian optimization algorithm based, respectively, on the UCB approach of [23]

Differentiating the Multipoint Expected Improvement 43

Table 1. Total number of calls to the CDF of the multivariate Gaussian distribution
for computing q-EI or its gradient for a function with d input variables. The last column
gives the overall computational complexity.

Φq−3 Φq−2 Φq−1 Φq Total

Analytic q-EI 0 0 q2 q O(q2)

Finite differences gradient 0 0 q(d + 1) q2 q(d + 1) q O(dq3)

Analytic gradient q2 q(q−1)
2

q q(q−1)
2

+ q3 q2 + 2q2 q O(q4)

and on sequential q-EI maximizations. We consider a minimization problem in
dimension d = 5 where n = 50 evaluations are performed initially and 10 batches
of q = 6 observations are sequentially added. The objective functions are 50 dif-
ferent sample realizations of a zero mean GP with unit variance and separable
isotropic Matérn (3/2) covariance function with range parameter equal to one.
Both algorithms use the same initial design of experiment of n points which are
all S-optimal random Latin Hypercube designs [17]. The mean and covariance
function of the underlying GP are supposed to be known (in practice, the hyper-
parameters of the GP model can be estimated by maximum likelihood [9]). Since
it is difficult to draw sample realizations of the GP on the whole input space
D := [0, 1]d, we instead draw 50 samples on a set of 2000 space-filling locations
and interpolate each sample in order to obtain the 50 objective functions.

Two variants of the BUCB algorithms are tested. Each of them constructs
a batch by sequentially minimizing the kriging quantile μ�

n(x) − βnsn(x) where

2 4 6 8 10

2
4

6
8

10

Dimension

B
at

ch
si

ze

1

2

3

4

5

Fig. 2. Ratio between computation
times of the numerical and analytical
gradient of q-EI as a function of the
dimension d and the batch size q. The
hatched area indicates a ratio below 1.

2 4 6 8 10

−
6

−
5

−
4

−
3

−
2

−
1

0

Number of batch selections

lo
ga

rit
hm

 o
f t

he
 a

ve
ra

ge
 r

eg
re

t a
nd

 th
e

95
%

 q
ua

nt
ile

qEI

BUBC−1

BUBC−2

Fig. 3. Logarithm of the average (plain
lines) and 95 % quantile (dotted lines)
of the regret for three different batch-
sequential optimization strategies (see
Sect. 4.2 for detail).

44 S. Marmin et al.

sn(x) =
√

Cn(x,x) is the posterior standard deviation at step n and μ�
n(x) is

the posterior mean conditioned both on the response at previous points and at
points already selected in the current batch, with a dummy response fixed to
their posterior means in the latter case. Following the settings of [10], in the first
and second variant of BUCB, the coefficients βn are given by:

β(1)
n := 2βmult log

(
π2d

6δ
(k + 1)2

)

and β(2)
n := 2βmult log

(
π2d

6δ
(1 + qk)2

)

(7)

where βmult = 0.1, δ = 0.1, and k is the number of already evaluated batches at
time n, i.e., here, k ∈ {0, . . . , 9}. The BUCB1 strategy is expected to select loca-
tions in regions with low posterior mean (exploitation) while BUCB2 is meant
to favour more exploration due to a larger βn. The minimization of the kriging
quantile presented above is performed using a genetic algorithm [18]. Regard-
ing the algorithm based on q-EI sequential maximization, we propose to use a
multi-start BFGS algorithm with analytical gradient. This algorithms operates
gradient descents directly in the space of dimension qd = 30. To limit computa-
tion time, the number of starting batches in the multi-start is set to 3. These 3
batches are obtained by running the BUCB1 algorithm presented above with 3
different values of βmult equals to 0.05, 0.1, 0.2 respectively.

At each iteration, we measure the regrets of each algorithm and average them
over the 50 experiments. To facilitate the interpretation of results, we first focus
on the results of the algorithms after 1 iteration, i.e. after having added only 1
batch of q points. We then discuss the results when 10 iterations are run.

Table 2. Expected and observed first batch Improvement for q-EI and BUCB batch
selection methods, in average for 50 functions.

Selection rule Average expected improvement (q-EI) Average realized
improvement

q-EI 0.672 0.697

BUCB 0.638 0.638

First Step of the Optimization. To start with, we focus on the selection of
the first batch. Table 2 compares the average q-EI and real improvement obtained
for the three selection rules. For the first iteration only, the BUCB1 and BUCB2
selection rules are exactly the same. Since q-EI is the one-step optimal, it is
not a surprise that it performs better at iteration 1 with our settings where
the objective functions are sample realizations of a GP. If only one iteration is
performed, improving the q-EI is equivalent to improving the average perfor-
mance. However, we point out that, in application, the maximization of q-EI
was not straightforward. It turns out that the batches proposed by the BUCB
algorithms were excellent initial candidates in our descent algorithms. The use of
other rules for the starting batches, with points sampled uniformly or according
to a density proportional to the one-point EI, did not manage to yield this level
of performance.

Differentiating the Multipoint Expected Improvement 45

10 Optimization Steps. The average regret of the different batch selection
rules over 10 iteration is depicted in Fig. 3. This Figure illustrates that choosing
the one-step optimal criterion is not necessarily optimal if more than one itera-
tion is run [14]. Indeed, after two steps, q-EI maximization is already beaten by
BUCB2, and q-EI becomes better again after iteration 7. Among the 50 opti-
mized functions, q-EI maximization gives the smallest 10-steps final regret for
only 30 % of functions, against 52 % for the BUCB1 and 18 % for the BUCB2.
On the other hand, the q-EI selection rule is eventually better in average since,
for some functions, BUCB is beaten by q-EI by a wide margin. This is further
illustrated with the curve of the 95% quantile of the regret which indicates that,
for the worst simulations, q-EI performs better. This gain in robustness alone
explains the better average performance of q-EI. Such improved performance
comes at a price: the computational time of our multistart BFGS algorithm
with analytical gradient is 4.1 times higher compared to the BUCB computa-
tion times.

5 Conclusion

In this article, we give a closed-form expression of the gradient of the multi-
point Expected Improvement criterion, enabling an efficient q-EI maximization
at reduced computational cost. Parallel optimization strategies based on maxi-
mization of q-EI have been tested and are ready to be used on real test case with
the DiceOptim R package. The BUCB algorithm turns out to be a good com-
petitor to q-EI maximization, with a lower computational cost, and also gives
good starting batches for the proposed multistart BFGS algorithm. In general,
however, the maximization of q-EI remains a difficult problem. An interesting
perspective is to develop algorithms taking advantage of some particular proper-
ties of the q-EI function in the space of dimension qd, for example its invariance
to point permutations. Other research perspectives include deriving cheap but
trustworthy approximations of q-EI and its gradient. Finally, as illustrated in the
application, q-EI sequential maximizations have no reason to constitute optimal
decisions for a horizon beyond one batch. Although the optimal policy is known
[14], its implementation in practice remains an open problem.

Acknowledgement. Part of this work has been conducted within the frame of the
ReDice Consortium, gathering industrial (CEA, EDF, IFPEN, IRSN, Renault) and
academic (École des Mines de Saint-Étienne, INRIA, and the University of Bern) part-
ners around advanced methods for Computer Experiments.

6 Appendix: Differential Calculus

– g1 and g2 are functions giving respectively the mean of Y (X) and its covari-
ance. Each component of these functions is either a linear or a quadratic
combination of the trend function μ or the covariance function C evaluated
at different points of X. The results are obtained by matrix differentiation.
See the Appendix B of [21] for a similar calculus.

46 S. Marmin et al.

– g3 (resp. g4) is the affine (resp. linear) tranformation of the mean vector m
into m(k) (resp. the covariance matrix Σ into Σ(k)). The differentials are then
expressed in terms of the same linear transformation:

dm [g3] (h) = L(k)h and dΣ [g4] (H) = L(k)HL(k)�.

– g5 is defined by g5
(
m(k), Σ(k)

)
= ϕ

Σ
(k)
ii

(
m

(k)
i

)
. Then the result is obtained

by differentiating the univariate Gaussian probability density function with
respect to its mean and variance parameters. Indeed we have:

d(m(k),Σ(k)) [g5] (h,H) = dm(k)

[
g5(·, Σ(k))

]
(h) + dΣ(k)

[
g5(m(k), ·)

]
(H)

– g6 gives the mean and the covariance of Z
(k)
−i |Zi = 0. We have:

(
m

(k)
|i , Σ

(k)
|i
)
= g6

(
m(k), Σ(k)

)
=

(
m

(k)
−i − m

(k)
i

Σ
(k)
ii

Σ
(k)
−i,i, Σ

(k)
−i,−i −

1

Σ
(k)
ii

Σ
(k)
−i,iΣ

(k)�
−i,i

)

d(m(k),Σ(k)) [g6] (h,H) = dm(k)

[
g6

(
·, Σ(k)

)]
(h) + dΣ(k) [g6]

(
m(k), ·

)
(H),

with : dm(k)

[
g6

(
·, Σ(k)

)]
(h) =

(

h−i − hi

Σ
(k)
ii

Σ
(k)
−i,i, 0

)

and : dΣ(k)

[
g6

(
m(k), ·

)]
(H) =

(
m

(k)
i Hii

Σ
(k)2
ii

Σ
(k)
−i,i − m

(k)
i

Σ
(k)
ii

H−i,i,

H−i,−i +
Hii

Σ
(k)2
ii

Σ
(k)
−i,iΣ

(k)�
−i,i − 1

Σ
(k)
ii

H−i,iΣ
(k)�
−i,i − 1

Σ
(k)
ii

Σ
(k)
−i,iH

�
−i,i

)

– g7 and g8 : these two functions take a mean vector and a covariance matrix in
argument and give a probability in output : Φq,Σ(k)

(−m(k)
)

= g7
(
m(k), Σ(k)

)
,

Φ
q−1,Σ

(k)
|i

(
−m

(k)
|i

)
= g8

(
m

(k)
|i , Σ

(k)
|i

)
So, for {p, Γ,a} = {q,Σ(k),−m(k)}

or {q − 1, Σ
(k)
|i ,−m

(k)
|i }, we face the problem of differentiating a function

Φ : (a, Γ) → Φp,Γ (a), with respect to (a, Γ) ∈ IRp × Sp
++:

d(a,Γ) [Φ] (h,H) = da [Φ(·, Γ)] (h) + dΓ [Φ(a, ·)] (H).

The first differential of this sum can be written:

da [Φ(·, Γ)] (h) =

〈(
∂

∂ai
Φ(a, Γ)

)

1≤i≤p

,h

〉

,

with : ∂
∂ai

Φ(a, Γ) =
a1∫

−∞
. . .

ai−1∫

−∞

ai+1∫

−∞
. . .

ap∫

−∞
ϕp,Γ (u−i, ai)du−i = ϕ1,Γii

Φp−1,Γ|i

(
a|i

)
.

The last equality is obtained with the identity: ∀u ∈ IRq, ϕq,Γ (u) = ϕ1,Γii
(ui)

Differentiating the Multipoint Expected Improvement 47

ϕp−1,Γ|i(u|i), with u|i = u−i − ui

Γii
Γ −i,i and Γ|i = Γ−i,−i − 1

Γii
Γ −i,iΓ

�
−i,i. The

second differential is:

dΓ [Φ(a, ·)] (H) :=
1

2
tr

(
H.

(
∂Φ

∂Γij
(a, Γ)

)

i,j≤p

)
=

1

2
tr

(
H.

(
∂2Φ

∂ai∂aj
(a, Γ)

)

i,j≤p

)

where : ∂2Φ
∂ai∂aj

(a, Γ) =

⎧
⎨

⎩

ϕ2,Σ{i,j},{i,j}(xi, xj)Φp−2,Σ|ij
(x|ij) , if i �= j,

− xi

Γii

∂
∂ai

ΦΓ (a, Γ) − ∑p
j=1
j �=i

1
Γii

Γij
∂2

∂ai∂aj
Φ(a, Γ).

References

1. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed
bandit problem. Mach. Learn. 47(2–3), 235–256 (2002)

2. Azzalini, A., Genz, A.: The R package mnormt: the multivariate normal and t
distributions (version 1.5-1) (2014)

3. Bect, J., Ginsbourger, D., Li, L., Picheny, V., Vazquez, E.: Sequential design of
computer experiments for the estimation of a probability of failure. Stat. Comput.
22(3), 773–793 (2011)

4. Berman, S.M.: An extension of Plackett’s differential equation for the multivariate
normal density. SIAM J. Algebr. Discrete Methods 8(2), 196–197 (1987)

5. Brochu, E., Cora, M., de Freitas, N.: A tutorial on bayesian optimization of expen-
sive cost functions, with application to active user modeling and hierarchical rein-
forcement learning, December 2010. eprint arXiv:1012.2599

6. Bull, A.: Convergence rates of efficient global optimization algorithms. J. Mach.
Learn. Res. 12, 2879–2904 (2011)

7. Chevalier, C.: Fast uncertainty reduction strategies relying on Gaussian process
models. Ph.D. thesis, University of Bern (2013)

8. Chevalier, C., Ginsbourger, D.: Fast computation of the multipoint expected
improvement with applications in batch selection. In: Giuseppe, N., Panos, P. (eds.)
Learning and Intelligent Optimization. Springer, Heidelberg (2014)

9. Ginsbourger, D., Picheny, V., Roustant, O., with contributions by Chevalier, C.,
Marmin, S., Wagner, T.: DiceOptim: Kriging-based optimization for computer
experiments. R package version 1.5 (2015)

10. Desautels, T., Krause, A., Burdick, J.: Parallelizing exploration-exploitation trade-
offs with gaussian process bandit optimization. In: ICML (2012)

11. Frazier, P.I.: Parallel global optimization using an improved multi-points expected
improvement criterion. In: INFORMS Optimization Society Conference, Miami FL
(2012)

12. Frazier, P.I., Powell, W.B., Dayanik, S.: A knowledge-gradient policy for sequential
information collection. SIAM J. Control Optim. 47(5), 2410–2439 (2008)

13. Genz, A.: Numerical computation of multivariate normal probabilities. J. Comput.
Graph. Stat. 1, 141–149 (1992)

14. Ginsbourger, D., Le Riche, R.: Towards gaussian process-based optimization with
finite time horizon. In: Giovagnoli, A., Atkinson, A.C., Torsney, B., May, C. (eds.)
mODa 9 Advances in Model-Oriented Design and Analysis, Contributions to Sta-
tistics, pp. 89–96. Physica-Verlag, HD (2010)

http://arxiv.org/abs/1012.2599

48 S. Marmin et al.

15. Ginsbourger, D., Le Riche, R., Carraro, L.: Kriging is well-suited to parallelize opti-
mization. In: Tenne, Y., Goh, C.-K. (eds.) Computational Intelligence in Expensive
Optimization Problems. ALO, vol. 2, pp. 131–162. Springer, Heidelberg (2010)

16. Jones, D.R., Schonlau, M., William, J.: Efficient global optimization of expensive
black-box functions. J. Global Optim. 13(4), 455–492 (1998)

17. Kenny, Q.Y., Li, W., Sudjianto, A.: Algorithmic construction of optimal symmetric
latin hypercube designs. J. Stat. Plann. Inf. 90(1), 145–159 (2000)

18. Mebane, W., Sekhon, J.: Genetic optimization using derivatives: the rgenoud pack-
age for R. J. Stat. Softw. 42(11), 1–26 (2011)

19. Mockus, J., Tiesis, V., Zilinskas, A.: The application of bayesian methods for seek-
ing the extremum. In: Dixon, L., Szego, G. (eds.) Towards Global Optimization,
vol. 2, pp. 117–129. Elsevier, Amsterdam (1978)

20. Rasmussen, C.R., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT
Press, Cambridge (2006)

21. Roustant, O., Ginsbourger, D., Deville, Y.: DiceKriging, DiceOptim: two R pack-
ages for the analysis of computer experiments by Kriging-based metamodelling and
optimization. J. Stat. Softw. 51(1), 1–55 (2012)

22. Schonlau, M.: Computer experiments and global optimization. Ph.D. thesis, Uni-
versity of Waterloo (1997)

23. Srinivas, N., Krause, A., Kakade, S., Seeger, M.: Information-theoretic regret
bounds for gaussian process optimization in the bandit setting. IEEE Trans. Inf.
Theory 58(5), 3250–3265 (2012)

24. Vazquez, E., Bect, J.: Convergence properties of the expected improvement algo-
rithm with fixed mean and covariance functions. J. Stat. Plan. Infer. 140(11),
3088–3095 (2010)

25. Villemonteix, J., Vazquez, E., Walter, E.: An informational approach to the global
optimization of expensive-to-evaluate functions. J. Global Optim. 44(4), 509–534
(2009)

Dynamic Detection of Transportation Modes
Using Keypoint Prediction

Olga Birth1(B), Aaron Frueh2, and Johann Schlichter2

1 Connected Drive Department, BMW Research and Technology, Munich, Germany
olga.birth@bmw.de

2 Institute for Applied Informatics Cooperative Systems, Garching, Germany
aaron.frueh@tum.de, johann.schlichter@in.tum.de

Abstract. This paper proposes an approach that makes logical
knowledge-based decisions, to determine the transportation mode a per-
son is using in real-time. The focus is set to the detection of different
public transportation modes. Hereby it is analyzed how additional con-
textual information can be used to improve the decision making process.
The methodology implemented is capable to differentiate between dif-
ferent modes of transportation including walking, driving by car, taking
the bus, tram and (suburbain) trains. The implemented knowledge-based
system is based on the idea of Keypoints, which provide contextual infor-
mation about the environment. The proposed algorithm reached an accu-
racy of about 95%, which outclasses other methodologies in detecting the
different public transportation modes a person is currently using.

Keywords: Knowledge representation and acquisition · Mobility and
big data · Public transport modes · Context information · Real-time

1 Introduction

Detecting a users mobility mode like walking, driving or using public transport is
of increasing importance in multiple applications. Appropriate and more detailed
information about the used transportation mode can be provided, if the recogni-
tion was correct. Navigation systems like TomTom [1] or Navigon [2] are examples
which can detect the transportation mode “driving”. Those systems can track the
route which a person is driving by car and show appropriate information in the
event of an obstacle, like traffic jam. The provided information of such navigation
systems can vary from a simple guiding to displaying obstacles and calculating
a re-routing. It can also show where the next break option or fuel station can be
found.Google Maps [3] can not only detect the transportation mode “driving” but
also “walking”. It can help pedestrians finding the desired destination by showing
step-by-step guiding and providing help if the user took the wrong turn.

Besides the traveling modes driving and walking, which also includes running,
there is another transport mode which a person can take when traveling in urban
areas, which is the public transport. When it comes to public transportation,
c© Springer International Publishing Switzerland 2015
P. Pardalos et al. (Eds.): MOD 2015, LNCS 9432, pp. 49–59, 2015.
DOI: 10.1007/978-3-319-27926-8 5

50 O. Birth et al.

real-time guidance or proactive re-routing is still a deficit. Such information
would be very useful to people who are visiting unknown areas and wonder, if
they’re using the right train. Also for users who are just interested whether they
should hurry to get the chosen bus or need to know when they have to exit,
real-time guidance in public transport is necessary.

There are already solutions available, which can help remind the user to exit
at the next station [4,5]. In those systems the user needs to choose a route
which can consist of many different transit blocks. A sequence of transit blocks
can for example be “walking”, “taking the subway”, “walking”, “taking the bus”,
“walking”. Each of the transit blocks has a time indication which shows how long
it will take the user to travel with each transportation mode. Additionally it also
shows the different times for each block.

Having the chosen route of the user and the time indicator for the different
transit blocks, current systems start counting back the time according to the time
indicators in the transit blocks. When the first transit block ends, e.g. “walking”,
the next starts and the time indicators count back the time for the new block,
e.g. “taking the subway”. Those system have real-time data concerning delays
of the public transport and they can add the delay to the time indicator in the
transit block, displaying this information to the user.

The big disadvantage of those systems is that they never know if the user has
really entered or left the transit block in the indicated time. They can only make
assumptions based on the route a user has chosen. In that case no real-time help
can be provided, if the user did not leave at the planned time or has taken the
wrong train. Also delays may be shown on a route but that does not help the
user if he accidentally took the wrong train.

To the best of our knowledge, there is no solution available, which can identify
not only the current used public transport type and the direction of the used
public transport but also the station at which the user is currently waiting and
at which station the user is leaving.

We have built a system that makes logical decisions based on a knowledge-
based system. We have chosen this approach, because it is not limited to our test
field, which was Munich in Germany. Our designed algorithm is able to deter-
mine multiple transportation modes, including different types of public trans-
port. Detailed information about the current used public transport is delivered.
This information covers the current line, the next station while using public
transportation, the entry point and the exit point.

The detection precision for any public transportation should be close or
equal to the “best” (in terms of precision) state-of-the-art approach, described
in Chap. 2. The total detection precision therefore should be about 93 % and
specific to public transport about 83 %. We have reached an accuracy of about
95 % for the identification of the public transportation mode.

Following we will discuss the existing approaches, to identify different public
transportation modes. In Chap. 3, we will describe the decision making process
of our developed knowledge-based system. Furthermore, we explain the use case
and the evaluation of our system. We finish this paper by providing a conclusion
and outlook of future work.

Dynamic Detection of Transportation Modes Using Keypoint Prediction 51

2 Related Work

Existing approaches for transportation mode detection share the same pattern.
They map low-level sensors to a generalized high-level behavior e.g., “on foot”, “on
a car”, “on a bus” [8–11], without the capability of delivering detailed information,
like “which bus route?”, “which direction is the bus heading to?”, “which entry
took the person?”, “which exit took the person?”. The existing methodology is
mostly based on a classification mode made out of mobility patterns based on his-
torically collected data. The advantage of the approach of using low-level sensors
like accelerometers, is their generalized nature. In general the acceleration sensors
can be used to differentiate between motorized and non-motorized states, but the
disadvantage is the mostly low probability while distinguishing between motor-
ized states. The acceleration and declaration behavior is very similar. Partsch [8]
shows, that the accelerometer data is capable to give very detailed information
about the state of trams, which was tested in Dresden in Germany. They gathered
very specialized information like the vibrations of the tram. Further information
is mostly too inaccurate or too specific for a general approach and therefore could
not be considered for the transportation mode detection.

In comparison it is notable, that algorithms that take additional contextual
information into account, were able to increase their detection rate significantly.
For instance Patterson [9] was able to increase the prediction accuracy from 60 %
to 78 % by adding contextual information like bus stops, bus routes, and parking
lots. The most interesting approach is discussed by Stenneth et al. [7]. They use
a mixture of classifiers, e.g. average speed, average acceleration, average rail line
closeness, average bus closeness, and candidate bus closeness. With these features
and a Random Forest classification model, they reached an average accuracy of
93,42 %. The bus detection accuracy was at 85 %. The flaw with the approach
described in Stenneth et al. [7] is that it always needs the live positioning data
of buses and trains. Even though such information is available in bigger cities,
like Chicago, New York, Washington DC or London, it is difficult to accomplish
in other cities where the data is not publicly available.

This leads to the main focus of our research work. The idea to add contex-
tual information can increase the detection rate of existing algorithms. We have
built a knowledge-based system that makes logical decisions based on a concept
hereby described as Keypoints. Keypoints are the data representation needed
to determine the logical decisions made by the knowledge-based system. Even
though it seems complex to build a knowledge-based system that logically dif-
ferentiates between multiple transportation modes, the area of freedom within
public transportation is limited. Public transports are bound by rails or usually
do not leave their route. They generally stop at their stations and they have
a certain schedule. Our proposed approach is also not limited to a restricted
environment like in Stenneth et al. [7] or [8].

3 Transport Mode Detection Using Keypoints

Any location that helps identifying the current position is a Keypoint. Keypoints
are also locations that give additional contextual or logical information. Details

52 O. Birth et al.

on how a Keypoint has to be identified is not further specified. As an example,
a Keypoint can be identified by the location or by other sensors. This leaves a
wide variety of possible points. The location of stations and stops can give logical
and contextual information according to public transportation modes, like bus
stations, tram stations and taxi stations. Access Points can be put in relation to
other Keypoints. This could lead to a better accuracy. Certain requirements for
the data representation of the Keypoints had to be fulfilled:

Flexible. The data representation is incrementally refinable and extensible.
A general transport mode detection has to be extensible to further cities.

Symbolic/Numeric. The data representation should be able to incorporate
knowledge that is symbolic as well as numeric.

Correlations. Knowledge can be put in correlation to one other. The system
needs to do logical decisions based on the dependencies between multiple
data blocks.

Transparent. Knowledge should be represented simply and explicitly.

3.1 Concept of Keypoints

For our work, we chose stations as valid Keypoints, because it was the only
source of Keypoints that could be exported from map content databases, which
are publicly available (e.g. Google Maps).

The main focus of Keypoints are the relations to each other. The relations
represent the public transportation network. This was mapped to a directional
graph, whereas every edge is able to represent multiple lines. Figure 1 shows
on the left side the abstract representation of such a graph. The real world
representative can be found aside. The orange points represent tram stations,
magenta are bus stations and blue are subway stations. The small blue points
are the entries of a particular subway station.

(a) Abstract Keypoint graph visualiza-
tion between multiple Keypoints

(b) Real world representative of the
Keypoints in Munich

Fig. 1. Abstract Keypoint graph visualization between multiple Keypoints

Dynamic Detection of Transportation Modes Using Keypoint Prediction 53

It is also possible to put multiple Keypoints together, which is called a Key-
point cluster. These clusters are used as indicators, that help to identify a related
“primary”-point. As an example, all entrances of a subway station would be put
together to a cluster and put in relation to the subway station. If a traveler is
close to a subway entrance, the Keypoint logic would return a high probability
for the subway station. The reasoning behind this is, that being at the geograph-
ical location of a underground subway station, is not related to the underground
station itself. Because the position is somewhere above the surface for example
on a street. These special Keypoints can also be used as triggers, for example to
detect a “stairs down”-motion.

An advantage of Keypoints is that it is possible to calculate probabilities
according to the movement of the traveler. In principal, closer Keypoints have a
higher probability than Keypoints that are further away. The following Eq. (1–7)
show how the probability is calculated. The variable di is the distance from the
current location to a particular Keypoint (for each Keypoint).

sumDistance =
n∑

i=0

di (1)

I(d) = (
d

sumDistance
)−1 =

sumDistance

d
(2)

Equation 2 calculates the inverse of the flat distance distribution between all
currently weighted Keypoints. Which is the biggest percentage for the nearest
Keypoint and the lowest percentage for the furthest Keypoint. On itself this
returns no satisfying probability, because distributed between a high density
of Keypoints, which is the case for a city like Munich, the percentage for all
Keypoints is very low. However two weighting functions can be used to give a
correct probability (Eqs. 3 and 4)

A(d) ∈]0, 2];A(d) = {Δddt−1 + 1 =
dt−1 − dt

dt−1
+ 1, ifΔd > −dt−11, otherwise

(3)
Equation 3 gives a differential weight. Keypoints that are approached faster

are higher weighted than Keypoints that stay at the same distance. The probabil-
ity of Keypoints that move away are significantly reduced. Equation 3 only uses
the distance from the last measurement and the current distance between Key-
points, which makes it slightly vulnerable to oscillations. The average between
the last three or five distances might give better results.

Equation 4 is an exponential weighting on the Keypoint. This weighting
occurs only on distances below 200 m. Everything above this distance is kept
neutral by this function.

B(d) ∈ [1, 10];B(d) = 1 + 9 ∗ e−d∗0.026347 (4)

Equation 5 is the final weight of one Keypoint. Divided by the total weight
of all Keypoints, it is possible to calculate the probability. These calculations

54 O. Birth et al.

are simple but effective and therefore perfectly fit for mobile devices, as used for
testing purposes within our work.

W(d) = (I(d) ∗ A(d) ∗ B(d)) (5)

S =
n∑

i=0

W(di) (6)

This information can be used to display points of relevance for the traveler,
as Keypoints with high probabilities are a likely target. This might be further
specified with the first derivation of Eq. 7, which can be calculated by the dif-
ference of the two calculations. The pool of Keypoints can further be filtered,
depending on the current state of the traveler, as for example nearby locations
of parking lots are of no interest if the traveler is currently using a bus.

P(d) = 100 ∗ W(d)
S . (7)

3.2 Decision Making Process

The logic is separated between an upper and a lower logic. The lower logic is
used within every Keypoint. Every active Keypoint has it’s own state-machine.
The upper logic keeps track of all Keypoints and gathers notifications of the
lower logic and makes decisions about the current situation accordingly.

Upper Logic. The upper logic consists of six states, as shown in Fig. 2. The
primary states are walking, car and public transport. Unknown, motorized and
transition are helper states.

Fig. 2. Overview of the upper logic

1. The Initial State: Unkown → Walking/Motorized. The initial state
is not further specified. The traveler could be in any imaginable state. The
first step of the logic is therefore to differentiate between a motorized and a

Dynamic Detection of Transportation Modes Using Keypoint Prediction 55

walking state. If the traveler is not moving at all, the logic waits until the traveler
starts moving. Using the activity recognition provided by Google, this could be
solved in an easy way. The activity recognition implements an accelerator based
differentiation between the following states: “walking”, “running”, “on foot”,
“bicycling”, “car” and “still”. A high car probability is an indication for the
upper logic to switch to the motorized state. Even though it is named “car”,
it is not able to differentiate between multiple motorized vehicles like buses
or trains. If the activity recognition detects running, walking or on foot, the
state can be initialized with walking. While in the unknown or walking state,
the environment is searched for Keypoints and put into a plausible points list.
These points are removed as soon as they leave the search area, and are currently
not viable for any public transportation.

2. Walking. → Motorized → Public Transport. The transition to public
transport can be best explained with Fig. 3, which represents what happens at
the lower logic. Every Keypoint has its own states. If the traveler gets close
enough to a Keypoint, which is illustrated by the solid circle A, a notification
is sent to the upper logic. At this point there are two possibilities. Either the
traveler is just passing by or the traveler might enter public transportation that
is associated with that Keypoint. As soon as the traveler leaves circle B, all edges
are tracked for their targeted Keypoint. The range for circle A is about 50 m
and for circle B about 75 m. With the previously made assumption, that every
public transportation vehicle stops at their targeted station, the algorithm can
notify every targeted Keypoint. The Keypoints now track whether the traveler
is approaching them or not. When the probability of one targeted Keypoint
falls, then it is sorted out and the Keypoint resets itself to its initial state. If
the traveler reaches the next Keypoint, it is checked if the movement speed
drops below a certain margin of about five kilometers per hour. At this point a
decision can be made and all lines that are assigned on that edge are possible
public transportation candidates. As multiple lines can be attached to one edge,
all of them have the same likelihood. With the addition of live departure times
of a Keypoint, the likelihood of one line can be shifted to the most recent line
departed. Without the live information these are excluded as soon as they split
up their route.

Fig. 3. Keypoint Behavior: Lower logic closeness indicator

3. The Transition State: Public Transport → Transition → Public
Transport. While reaching the targeted Keypoint, the logic follows the graph
and forwards the target to the next Keypoint. Hereby it prioritizes the current

56 O. Birth et al.

possible lines, but if additional lines stop at the current station or there are
transitions available, they are also tracked in the background, because the trav-
eler might change the vehicle. Figure 4 illustrates, that the current point (CP)
is incremented to the targeted point (TP). The solid lines represent the possible
transition points. The edges of the other possibilities are added to the secondary
check and are tracked until they have been excluded.

Fig. 4. Possible transitions at a transition state (CP = Current Point, TP = Targeted
Point)

4. The Exit Conditions: Transition → Walking. In every transition state
the fallback conditions explained below are renewed. We have implemented three
fallback conditions. The first fallback condition is a timeout. The algorithm takes
the distance to the next Keypoint and estimates a maximum time frame in which
the next Keypoint should be reached. The time is measured as soon as the
traveler leaves the current Keypoint area. The timeout is a backup mechanism,
if the other fallback conditions are not triggered. The second fallback condition
is a decreasing probability at the targeted Keypoint. The probability will fall
significantly as soon as the traveler is moving towards a different direction. If
this exceeds a certain margin, which is also calculated by the distance, then the
fallback condition is triggered. This condition likely won’t trigger if the traveler
switches between different transportation modes at one Keypoint because the
distances are too small. The third fallback condition is the activity recognition.
If the activity recognition is very certain that the current activity is walking, on
foot or running, then this is also a fallback condition. But the activity recognition
is only tested within the transition state, because of being inaccurate within the
accelerated motion of public transportation modes.

5. Motorized → Car. The differentiation between multiple motorized states
is, as already mentioned, a difficult challenge. To solve this issue the algorithm
uses the help of the already tracked data, the Keypoints. The motorized state is
entered as soon as the probability of the “car”-State of the activity recognition is
above average (about 60 %). Within this state, the surroundings are not further
checked for new Keypoints and only the Keypoints that are currently within the
plausible points list are taken into account. As soon as all plausible Keypoints
fail their check, which means their internal logic has decided that they currently
are not valid for any public transportation, then the decision is made that the
traveler is currently using a car.

Dynamic Detection of Transportation Modes Using Keypoint Prediction 57

Lower Logic. Figure 5 illustrates the states of the lower logic. As mentioned
earlier, every Keypoint has it’s own state machine representing its logical status.
How the Keypoint gets into the nearby state, was explained with previous Fig. 3
and its solid circle A. As soon as the dashed circle B is left, the tracking state
is triggered. The dashed arrow indicates, that a transition to another Keypoints
happens at this point. Whereas the Keypoint sending the notification, calculates
the fallback conditions for all its edged and notifies all Keypoints targeted by
those edges. Afterwards the Keypoint resets itself to it’s initial state.

Fig. 5. The states of the lower logic

All targeted Keypoints track, if they are approached by the traveler. As soon
as the traveler gets close enough to the targeted Keypoint, it switches to the
“Check if Stops”-state. This closeness factor has about four times the size to the
nearby factor because the traveler is moving in a faster pace and the algorithm
needs to determine if the traveler will indeed slow down and stop. If the traveler
stops, an “On Public” notification is sent to the upper logic, as illustrated. The
logic now again notifies the next targeted Keypoint. This is done by a own
state to prevent multiple “On Public” notifications to the upper logic. Instead a
transition notification is sent to the upper logic, which indicates the possibility
exists that the can exit the vehicle.

4 Case Study and Evaluation

In this section the evaluation procedure is discussed with the help of a proto-
typical application. The prototype was developed on an Android OS Platform,
using Google Nexus with Android 4.2. The goal was to deliver a simple true
or false interface to verify the correctness of decisions made by the algorithm.
The case study was executed in the area of Munich and the final data used for
this evaluation was the first version of the data parsed by the exporter, consist-
ing out of 3.000 Keypoints, 4.000 edges and about 260 lines. The duration of

58 O. Birth et al.

the test was 4 days. The test results met the requirements with an accuracy of
90.9 % and a recall accuracy of 96.77 %. Results that have been sent in and have
been commented, that they have been underground while the wrong prediction
was made have been excluded within the recall procedure, because we are until
now not capable to handle underground Keypoints. Also results, that have been
wrong because of graphical issues. Graphical issues existed within the center
of the town where the list of possibilities exceeded the size of the notification
window and were not visualized correctly.

For the sake of illustrating the results, a typical scenario has been chosen to
showcase the functionality of the algorithm. The scenario chosen started in the
north-east of Munich. The starting station has a total of three lines (tram 16,
tram 18 and bus 50), which consists out of six possibilities. Within this test, the
tram number 16 was chosen in direction of the inner city. The three possibilities
going in the wrong direction sorted out quickly and were not considered as
possible lines. As soon as the second station was reached, the algorithm made
the correct detection of the three possibilities. The prediction narrowed down
the possibilities to tram 16 after a couple of stations, because their routes split
up along the way.

The target of this route was a station, where the transition was made to a
different tram. The algorithm at first did not notice that the current vehicle was
exited. Because the movement to the transitioning Keypoint was minimal. After
about one to two minutes, the state switched from public transport to walking,
due to the timeout of the original transportation mode. The transit station has
about 18 public transportation possibilities in a small area. Even though this is
a quite challenging scenario, the algorithm was able to detect the transition to a
new public transportation. After a short period the other possibilities could be
excluded and the prediction was correctly set to tram 19. The final exit of the
route was the main station of Munich, which was also detected correctly.

5 Conclusion and Outlook

Our research work proves that a knowledge-based logic system has the capability
to give an accurate prediction of the current used public transport type. The
prediction accuracy of about 95 % showed that this approach outclasses other
methodologies. The issue with this approach is, that it is highly dependent on
the contextual data of the Keypoints. Errors within the database cause wrong
assumptions within the decision making process. Errors made by the algorithm
were mostly due to wrong or missing relations. The data was improved after
the test procedure and might already deliver better results. Considering the
support of even more Keypoints, like W-LAN Access points, it is likely that the
accuracy could further improve. The best comparable approach, which already
used additional positioning real-time information of buses, reached an accuracy
of 85 %. Algorithms that use no additional contextual information are mostly
below 65 % prediction accuracy.

As already mentioned the data is the most important prerequisite for the Key-
point based prediction to work. The question is how could the data collection be

Dynamic Detection of Transportation Modes Using Keypoint Prediction 59

improved? First, crowd sourced learning of Keypoints. With anonymous position
data of thousands of people, it is imaginable that a crowd-sourced algorithm can
identify Keypoints. Locations with high density of people could be Keypoints.
Restaurants, appartments, etc. could be excluded through map-matching. Not
only the information about the current location could be analyzed, but also the
missing information. For example, if people lose their GPS signal at the same
point, this could indicate an underground subway entrance. The movement of
a Keypoint, for example due to a construction site, also could be detected and
adapted. A second thought is gamification, which is the usage of game thinking
and game mechanics. A project that currently is run by Google, called Ingress
[6], is a community based reality game. Where the player has the task to cap-
ture, discover and defend special points. These points consist mostly of grand
buildings, monuments and statues, but also out of public transportation stops.
A game that is based on the idea to deliver Keypoints would be a opportunity to
gather data. The approach was built to represent any public transportation net-
work. We further would like to understand, how well the database is expandable
to other cities.

References

1. TomTom. http://www.tomtom.com/de de/?
2. Navigon. http://www.navigon.com/portal/de/index.html
3. Google Maps. https://www.google.de/maps
4. Qixxit. https://www.qixxit.de/
5. DB Navigator. http://www.bahn.de/p/view/buchung/mobil/db-navigator.shtml
6. Ingress. https://www.ingress.com/l
7. Steneth, L., Wolfson, O., Yu, P.S., Xu, B.: Transportation mode detection using

mobile phones and GIS information. In: Proceedings of the 19th ACM SIGSPA-
TIAL International Conference on Advances in Geographic Information Systems,
GIS 11, pp. 54–63. ACM, New York (2011)

8. Partsch, I., Duerrschmidt, G., Michler, O., Foerster, G.: Positioning in real-
time public transport navigation: comparison of vehicle-based and smartphone-
generated acceleration data to determine motion states of passengers. In: 6th
International Symposium on Mobility: Economy - Ecology - Technology (2012)

9. Patterson, D.J., Liao, L., Fox, D., Kautz, H.: Inferring high-level behavior from low-
level sensors. In: Dey, A.K., Schmidt, A., McCarthy, J.F. (eds.) UbiComp 2003.
LNCS, vol. 2864, pp. 73–89. Springer, Heidelberg (2003)

10. Reddy, S., Burke, J., Estrin, D., Hansen, M., Srivastava, M.: Determining trans-
portation mode on mobile phones. In: Proceedings of the 2008 12th IEEE Inter-
national Symposium on Wearable Computers, ISWC2008, Washington, DC. IEEE
Computer Society, pp. 25–28 (2008)

11. Reddy, S., Mun, M., Burke, J., Estrin, D., Hansen, M., Srivastava, M.: Using mobile
phones to determine transportation modes. ACM Trans. Sens. Netw. 6, 13:1–13:27
(2010)

http://www.tomtom.com/de_de/?
http://www.navigon.com/portal/de/index.html
https://www.google.de/maps
https://www.qixxit.de/
http://www.bahn.de/p/view/buchung/mobil/db-navigator.shtml
https://www.ingress.com/l

Effect of the Dynamic Topology
on the Performance of PSO-2S Algorithm

for Continuous Optimization

Abbas El Dor1(B) and Patrick Siarry2

1 TASC INRIA (CNRS UMR 6241), Ecole des Mines de Nantes,
4 rue Alfred Kastler, 44300 Nantes, France

abbas.eldor@mines-nantes.fr
2 LiSSi (E.A. 3956), Université de Paris-Est Créteil, 122 rue Paul Armangot,

94400 Vitry-sur-Seine, France
siarry@u-pec.fr

Abstract. PSO-2S is a multi-swarm PSO algorithm using charged par-
ticles in a partitioned search space for continuous optimization problems.
In order to improve the performance of PSO-2S, this paper proposes a
novel variant of this algorithm, called DPSO-2S, which uses the Dclus-
ter neighborhood topologies to organize the communication networks
between the particles. Experiments were conducted on a set of classical
benchmark functions. The obtained results prove the effectiveness of the
proposed algorithm.

1 Introduction

The concept of particle swarm optimization (PSO) is based on social behavior
to exchange information between the particles in a swarm. Thus this property
can be modelized thanks to a graph: two particles Pi and Pj of the swarm S
are connected if a communication can be established between them. The set
of edges between each particle Pi and its neighbours Nei forms the communi-
cation graph, also called the topology. Hence, the chosen topology can greatly
affect the performance of the PSO algorithm. In this paper, we present a new
dynamic topology, called Dcluster, which is a combination of two existing topolo-
gies (Four-clusters [7] and Wheel [6]). This topology was integrated in our pro-
posed algorithm called PSO-2S, introduced in [2]. PSO-2S is a multi-swarm PSO
algorithm using charged particles in a partitioned search space for continuous
optimization problems. The performance of PSO-2S with the Dcluster topology
is analysed and compared to that of PSO-2S without Dcluster, using a set of
benchmark test functions. Comparisons show that the use of Dcluster improves
significantly the performance of PSO-2S.

2 Particle Swarm Optimization

The particle swarm optimization (PSO) [4] is inspired originally by the social
and cognitive behavior existing in the bird flocking. The algorithm is initial-
ized with a population of particles randomly distributed in the search space,
c© Springer International Publishing Switzerland 2015
P. Pardalos et al. (Eds.): MOD 2015, LNCS 9432, pp. 60–64, 2015.
DOI: 10.1007/978-3-319-27926-8 6

DCluster Topology 61

and each particle is assigned a randomized velocity. Each particle represents a
potential solution to the problem. The particles fly over the search space, keeping
in memory the best solution encountered. At each iteration, each particle adjusts
its velocity vector, based on its momentum, influences of its best solution and of
the best solution of its neighbors, then computes a new point to be evaluated.
The displacement of a particle is influenced by three components:

1. Physical component : the particle tends to keep its current direction of dis-
placement;

2. Cognitive component : the particle tends to move towards the best site that it
has explored until now;

3. Social component : the particle tends to rely on the experience of its congeners,
then moves towards the best site already explored by its neighbors.

In this paper, the swarm size is denoted by s, and the search space is n-
dimensional. In general, a particle i has three attributes: the current position
Xi = (xi,1, xi,2, ..., xi,n), the current velocity vector Vi = (vi,1, vi,2, ..., vi,n) and
the past best position Pbesti = (pi,1, pi,2, ..., pi,n). The best position found in the
neighborhood of the particle i is denoted by Gbesti = (gi,1, gi,2, ..., gi,n). These
attributes are used to update iteratively the state of each particle in the swarm.
The objective function to be minimized is denoted by f . The velocity vector
Vi of each particle is updated using the best position it visited so far and the
overall best position visited by its neighbors. Then, the position of each particle
is updated using its updated velocity per iteration. At each step, the velocity of
each particle and its new position are updated as follows:

vi,j(t+1) = wvi,j(t)+c1r1i,j (t) [pi,j(t)−xi,j(t)]+c2r2i,j (t) [gi,j(t)−xi,j(t)] (1)

xi,j(t + 1) = xi,j(t) + vi,j(t + 1) (2)

xi,j is the position and vi,j is the velocity of the ith particle (i ∈ 1, 2, ..., s) of
the jth dimension (j ∈ 1, 2, ..., n). Where w is called inertia weight, c1, c2 are
the learning factors and r1, r2 are two random numbers selected uniformly in the
range [0, 1].

3 PSO-2S Algorithm

In this section, we present the first version of PSO-2S [2]. PSO-2S is based on
three main ideas. The first is to use two kinds of swarms: a main swarm, denoted
by S1, and s auxiliary ones, denoted by S2i, where 1 ≤ i ≤ s. The second idea is
to partition the search space into several zones in which the auxiliary swarms are
initialized (the number of zones is equal to the number of auxiliary swarms, thus
is equal to s). The last idea is to use the concept of the electrostatic repulsion
heuristic to diversify the particles for each auxiliary swarm in each zone.

To construct S1, we propose to perform the auxiliary swarms S2i several
times in different areas, and then each best particle for each S2i is saved and

62 A. El Dor and P. Siarry

considered as a new particle of S1. To do so, the population of each auxiliary
swarm is initialized randomly in different zones (each S2i is initialized in its
corresponding zone i). After each of these initializations, K displacements of
particles, of each S2i, are performed in the same way of standard PSO. Then
the best solution found by each auxiliary swarm is added to S1. The number of
initializations of S2i is equal to the number of particles in S1.

As we mentioned above the second idea is to partition the search space
[mind, maxd]N into several zones (maxzone zones). Then, we calculate the
centerd and the stepd of each dimension separately, according to (3) and (4).
The stepd are similar in the case of using a square search space.

centerd = (maxd − mind)/2 (3)

stepd = centerd/maxzone (4)

where maxzone is a fixed value, and d is the current dimension (1 ≤ d ≤ N).
The sizes of the zones of the partitioned search space are different (Z1 <

Z2 < . . . < Zmaxzone
). Therefore, the number of particles in S2i, denoted by

S2isize, depends on its corresponding zone size. Indeed, a small zone takes less
particles and the number of particles increases when the zone becomes larger.
The size of each auxiliary swarm is calculated as follows:

S2isize = numzone ∗ nbparticle (5)

where numzone = 1, 2, ..., maxzone, is the current zone number and nbparticle
is a fixed value. After the initializations of the auxiliary swarms in different
zones (Zi, S2i), an electrostatic repulsion heuristic is applied to diversify the
particles and to widely cover the search space [3]. This technique is used in
an agent-based optimization algorithm for dynamic environments [5]. Therefore,
this procedure is applied in each zone separately, hence each particle is considered
as an electron. Then a force of 1/r2 is applied, on the particles of each zone, until
the maximum displacement of a particle during an iteration becomes lower than
a given threshold ε (where r is the distance between two particles, ε is typically
equal to 10−4). At each iteration of this procedure, the particles are projected
in the middle of the current zone, before reapplying the heuristic repulsion.

4 Dynamic Cluster Topology (Dcluster)

Dcluster is a dynamic topology that works as follows [1]. At each iteration, the
particles are sorted in a list according to their personal best fitness in increasing
order, so that the worst particle has an index equal to 1 in the list (the size of the
list is equal to the size of the swarm). Then, the list is partitioned into several
sub-lists which correspond to a cluster in the proposed topology. The first cluster
which has the “worst” particle, called central cluster, is placed in the center of
the topology. Each particle of the central cluster is connected to other clusters by
one of their particles; the first worst particle of the central cluster is linked to the

DCluster Topology 63

6 7 98 101 2 43 5 16 17 1918 2011 12 1413 15

The particles are sorted in ascending order according to their fitness values

6 7 98 101 2 43 5 16 17 1918 2011 12 1413 15

The worst particles

1 2 43

6 7 85 6 7 85

9 10 11 12

The best particles161413 15

17 1918 20

The best particles

7

8

5

6

1

24

1

9

10

111719

20

2

3

4 9

12

1117

18

19

13

1416

15

)b()a(

Fig. 1. (a) - The partitioning of the list into sub-lists. (b) - The structure of Dcluster
topology.

Table 1. Results of DPSO-2S using Dcluster topology and PSO-2S.

Function Search space Acceptable

error

Max.

FEs

DPSO-2S PSO-2S

Mean best Suc.

rate

Mean best Suc.

rate

Rosenbrock [−10, 10]30 0.0001

40000

2.50e+001 0.0% 2.28e+001 0.0%

Ackley [−32, 32]30 0.0001

40000

9.40e-003 99% 3.54e-001 69%

Griewank [−100, 100]30 0.0001

40000

2.19e-003 78% 3,88e-003 72%

Rastrigin [−10, 10]30 0.0001

40000

1.34e+000 30% 2.16e+000 25%

Sh. Rosenbrock [−100, 100]10 0.01 100000 5.25e+000 5% 5.98e-001 75%

Sh. Ackley [−32, 32]30 0.0001 100000 6.26e-002 95% 1.88e-001 86%

Sh. Griewank [−600, 600]30 0.0001 100000 5.16e-003 66% 6.11e-003 61%

Sh. Rastrigin [−5, 5]30 0.0001 100000 3.14e+001 0,0% 5,36e+001 0.0%

worst particle in the second cluster, the second one is linked to the third cluster
also by its worst particle, and so on, as in Fig. 1-(a). All clusters in this topology,
including the central cluster, have a fully connected neighborhood. The reason
why the central cluster is linked to each other cluster by only one gateway and
with the worst particle of the latter is to avoid a premature convergence to a
local optimum by slowing down the propagation of the information in the whole
swarm. Figure 1-(b) illustrates the final structure of the proposed topology.

64 A. El Dor and P. Siarry

5 Experimental Results

Table 1 presents the settings of each problem, the number of function evalua-
tions (Max. FEs), the success rate and the mean best value of 100 runs. The
best results among those obtained by the two algorithms are shown in bold. From
the experiments, we can notice that DPSO-2S (PSO-2S using Dcluster topology)
obtains the best results on most of the functions used. Hence, DPSO-2S algo-
rithm outperforms PSO-2S, except for Rosenbrock and Shifted Rosenbrock.
Thus, this algorithm leads to a significant improvement over the previous
PSO-2S.

6 Conclusion

In this paper, a new dynamic topology, called Dcluster, based on two static
neighbourhood topologies was presented. Dcluster was integrated to our multi-
swarm algorithm PSO-2S. Experimental results indicate that Dcluster improves
the search performance of the previous algorithm.

In conclusion, the improvement of the PSO-2S algorithm due to the integra-
tion of Dcluster topology opens the gate to apply this dynamic topology in other
PSO algorithms.

References

1. El Dor, A., Lemoine, D., Clerc, M., Siarry, P., Deroussi, L., Gourgand, M.: Dynamic
cluster in particle swarm optimization algorithm. Nat. Comput. 14, 655–672 (2014).
doi:10.1007/s11047-014-9465-2

2. El Dor, A., Clerc, M., Siarry, P.: A multi-swarm PSO using charged particles in
a partitioned search space for continuous optimization. Comput. Optim. Appl. 53,
271–295 (2012)

3. Conway, J., Sloane, N.: Sphere Packings, Lattices and Groups. Springer, New York
(1999)

4. Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the
Sixth International Symposium on Micro Machine and Human Science, pp. 39–43
(1995)

5. Lepagnot, J., Nakib, A., Oulhadj, H., Siarry, P.: A new multiagent algorithm for
dynamic continuous optimization. Int. J. Appl. Metaheuristic Comput. 1(1), 16–38
(2010)

6. Kennedy, J., Mendes, R.: Population structure and particle swarm performance. In:
Proceedings of the 2002 IEEE Congress on Evolutionary Computation, CE 2002,
Honolulu, HI, USA, pp. 1671–1676 (2002)

7. Mendes, R., Kennedy, J., Neves, J.: The fully informed particle swarm: simpler
maybe better. IEEE Trans. Evol. Comput. 8(3), 204–210 (2004)

http://dx.doi.org/10.1007/s11047-014-9465-2

Heuristic for Site-Dependent Truck and Trailer
Routing Problem with Soft and Hard Time

Windows and Split Deliveries

Mikhail Batsyn(B) and Alexander Ponomarenko

Laboratory of Algorithms and Technologies for Network Analysis,
National Research University Higher School of Economics, 136 Rodionova street,

Niznhy Novgorod, Russia
{mbatsyn,aponomarenko}@hse.ru

Abstract. In this paper we develop an iterative insertion heuristic for
a site-dependent truck and trailer routing problem with soft and hard
time windows and split deliveries. In the considered problem a truck
can leave its trailer for unloading or parking, make a truck-subtour to
serve truck-customers, and return back to take the trailer. This can be
done several times in one route. In our heuristic every route is con-
structed by sequentially inserting customers to it in the way similar to
Solomon’s (1987) approach developed for simple vehicle routes. Our con-
tributions include: heuristic insertion procedure for complex truck and
trailer routes with transshipment locations; efficient randomized mech-
anisms for choosing the first customer for insertion, for making time
window violations, and for making split-deliveries; an improvement pro-
cedure shifting deliveries in a route to earlier time; an efficient approach
dealing with site-dependency feature based on the transportation prob-
lem in case of arbitrary intersecting vehicle sets and a fast vehicle assign-
ment procedure in case of nested vehicle sets.

Keywords: Truck and trailer · Site-dependent · Soft time windows ·
Split-deliveries · Insertion heuristic

1 Introduction

In truck and trailer routing problems there are two types of customers: trailer-
customers and truck-customers. Trailer-customers can be served both from a
truck and a trailer, while truck-customers can be served only from a truck.
This can be, for example, small stores in a big city to which it is impossible to
drive up by a road train because of narrows streets, small parking place, and
other limitations. There are two possibilities to leave a trailer. It can be left
at a trailer-customer for unloading and while it is unloaded a truck can serve
several truck-customers making a so-called truck-subtour and then return to
take the trailer. This is efficient in terms of time because truck and trailer serve
customers in parallel in this case. Another possibility is to park a trailer at a
c© Springer International Publishing Switzerland 2015
P. Pardalos et al. (Eds.): MOD 2015, LNCS 9432, pp. 65–79, 2015.
DOI: 10.1007/978-3-319-27926-8 7

66 M. Batsyn and A. Ponomarenko

special transshipment location close to some truck-customer. If there are not
enough goods in a truck, before it leaves for a truck-subtour, a load transfer
from the trailer to the truck can be performed. If there are not enough goods in
the trailer, when it is left for unloading at a trailer-customer, then the remaining
goods are unloaded from the truck before it leaves.

The most simple truck and trailer routing problem is the homogeneous fleet
truck and trailer routing problem which is usually referenced in literature as
TTRP (Chao, 2002). In this problem all trucks and trailers are the same, have the
same capacity, same travel and fixed costs and can visit every customer without
any limitations except the truck-customers limitation. A number of heuristics
have been suggested for this problem: Chao (2002), Scheuerer (2006), Lin et al.
(2009; 2010), Villegas et al. (2011a; 2011b). Lin et al. (2011) considered the
TTRP problem with hard Time Windows (TTRPTW).

Much more difficult problems are Heterogeneous Fleet TTRP problems (HFT-
TRP). Different heuristics for the HFTTRP problem have been suggested by Hoff
(2006), Hoff & Lokketangen (2007), Caramia & Guerriero (2010a; 2010b). Except
different vehicle capacities, travel and fixed costs, for every customer there can be
defined a set of vehicles which can serve it. In this case the problem is called the
Site Dependent TTRP (SDTTRP). Semet (1995) developed a cluster-first route-
second heuristic for the SDTTRP problem. Semet & Taillard (1993) suggested a
tabu-search algorithm for the SDTTRP problem with hard time windows (SDT-
TRPTW). In their formulations of these problems there are no transshipment
locations and a trailer can be left only for unloading at a trailer-customer. A
more general formulation with transshipment locations is presented by Drexl
(2011). Along with road trains there are also single-truck vehicles. The author
provides a mathematical programming model for this SDTTRPTW problem and
a branch-and-price algorithm to solve it.

In this paper we consider even more general TTRP problem. We add soft
time windows and split-deliveries to the SDTTRPTW problem considered by
Drexl (2011). An integer linear programming model for this problem is provided
in Batsyn & Ponomarenko (2014). In the current paper we further develop our
heuristic suggested in Batsyn & Ponomarenko (2014). The main improvements
include: new approach dealing with site-dependency feature based on the trans-
portation problem in case of arbitrary intersecting vehicle sets; new fast vehicle
assignment procedure in case of nested vehicle sets; new randomized mechanism
for making soft time window violations; new insertion cases for the greedy inser-
tion procedure. We describe our iterative insertion heuristic for the considered
problem, present all possible insertion cases, and provide the pseudo-code of our
algorithm. There are many cases of inserting a customer to a complex truck and
trailer route because such a route can have different nodes such as: depot, trailer-
customers visited by a road train, truck-customers visited by a truck without a
trailer, trailer-customers at which a trailer is left for unloading, transshipment
locations at which a trailer is left for parking.

In our approach many different solutions are iteratively constructed with the
following randomizations. We choose the first customer in every route randomly

Heuristic for Site-Dependent Truck and Trailer Routing Problem 67

from the most expensive (farthest) customers. Split-deliveries and soft time win-
dow violations are also made in a random way. In order to avoid making a big
detour when inserting a customer, we do not insert customers for which the cost
of serving it with another vehicle directly from the depot is smaller than the
insertion cost. We insert customers taking into account soft time windows. If a
delivery of inserted customer is started after the soft time window we apply an
improvement procedure which moves all deliveries earlier in time so that instead
of a late (after the soft time window) delivery at this customer we have an early
(before the soft time window) delivery at some of the previous customers. This
helps to compress a route and insert more customers to it.

For each customer there is a set of different vehicles which can serve it. To
deal with this site-dependency feature we suggest solving a special transportation
problem in which we give preference to bigger vehicles. In case where these sets
for all customers are nested, instead of solving the transportation problem we
propose an efficient algorithm to assign a vehicle to serve a customer.

In our formulation of the problem it is permitted to violate a given number of
soft time windows and to make split-deliveries to a given number of customers. To
address the soft time windows feature we suggest that during building a solution
it is allowed to violate a soft time window in a random way with the probability
equal to the remaining number of permitted violations divided by the expected
number of possible remaining violations. We allow a split-delivery only when we
insert the last customer in the current route when the remaining capacity of the
vehicle is not enough to serve the total demand of this customer. This is done
to load vehicles as much as possible. A split-delivery is allowed in a random way
with the probability equal to the remaining number of permitted split-deliveries
divided by the expected number of possible remaining split-deliveries.

2 Insertion Heuristic

The following parameters are used is the pseudo-code of the algorithm.
n - the number of customers
V - the set of all customers
K - the set of all vehicles
Ki - the set of vehicles which can serve customer i
fk - the fixed cost of using vehicle k for delivery
Qk - the current remaining capacity of vehicle k
qi - the current remaining demand of customer i
ski - the service time spent by vehicle k when serving customer i
opi, cli - the open and close time of customer i (hard time window)
eri, lti - the earliest and latest time of serving customer i (soft time window)
bRj - the begin time of serving customer j in route R
vR - the number of soft time window violations in route R
cklij - the travel cost of arc (i, j) for vehicle k with/without trailer (l = 1/l = 2)
v - the number of permitted soft time window violations
w - the current remaining number of permitted soft time window violations

68 M. Batsyn and A. Ponomarenko

σ - the number of permitted split deliveries
s - the current remaining number of permitted split deliveries
R - the current route
S - the current solution
S∗ - the best solution
f(S) - the total cost of the current solution
f∗ - the total cost of the best solution
U - the set of all customers sorted the most expensive (farthest) customer first
[Cjk] - the cost matrix of the transportation problem used to assign vehicles
μ - the number of the most expensive customers from which we choose randomly
λ - the preference weight of customer direct travel cost ck10i

Algorithm 1. Iterative insertion heuristic
function IterativeInsertionHeuristic(N)

� Builds N solutions running InsertionHeuristic()
S∗ ← ∅, f∗ ← ∞
U ← V � the set of all customers sorted so that U1 has maximal ck10i
Q̄ ←∑Qk/|K| � average vehicle capacity
r̄ ← Q̄/(

∑
qi/n) � average route size

m ← 0 � the total number of built routes
M ← 0 � the total number of customers in these routes
π ← 0 � the probability of time window violation
v′ ← v � backup the number of allowed time window violations
v ← n � temporarily allow unlimited time window violations
InsertionHeuristic(U, [qj], [Qk]) � get a solution with unlimited tw-violations
π ← (v − w)/n � π is estimated as the ratio of time window violations to n
v ← v′ � restore the number of allowed time window violations
for i ← 1, N do

S ← InsertionHeuristic(U, [qj], [Qk])
if S �= ∅ then

m ← m + |S|, M ← M +
∑

R∈S |R|, r̄ ← M/m
if f(S) < f∗ then

S ← S∗, f∗ ← f(S)
end if

end if
end for
return S∗

end function

The main function in our algorithm is IterativeInsertionHeuristic()
(Algorithm 1). It makes the specified number of iterations N calling Insertion-
Heuristic() function and stores the best found solution in S∗. First, all cus-
tomers in set V are sorted by the direct travel cost ck10i from the depot so that the
first customer has maximal direct cost (is the most expensive). The sorted list of
customers is stored in variable U . Note that we copy parameters U, [qj], [Qk] each
time we call InsertionHeuristic() function so that it can change them without

Heuristic for Site-Dependent Truck and Trailer Routing Problem 69

Algorithm 2. Insertion heuristic
function InsertionHeuristic(U, [qj], [Qk])

� Builds a solution for customers U , demands [qj], vehicle capacities [Qk]
� Parameters U, [qj], [Qk] are copied and not changed in the calling function
S ← ∅ � current solution
w ← v � remaining number of soft time window violations
s ← σ � remaining number of split-deliveries
while U �= ∅ do

i ← Random(U1, ..., Uµ) � choose random from the first μ most expensive
k ← ChooseVehicle(i, [qj], [Qk])
if k = 0 then

return ∅ � not enough vehicles
end if
InsertCustomer(U, i, 1, R, qi, Qk) � insert i to an empty route R
success ← true
while success do

success ← InsertBestCustomer(U, [qj], [Qk], R, k)
end while
S ← S ∪ {R}
Qk ← 0 � remove vehicle k from further consideration

end while
return S

end function

affecting their values in the main function. We also calculate here an estimation
for the average route size r̄ equal to the average vehicle capacity Q̄ divided by
the average demand. This estimation is used only for the first iteration and for
next iterations we divide the total number of customers in all constructed routes
by the total number of these routes. To estimate the probability π of soft time
window violation we run the insertion heuristic once with an unlimited number
of permitted violations v. Then we measure this probability as the fraction of
soft time window violations made in the obtained solution to the total number
of customers n.

We fill in the cost matrix Cjk for the transportation problem using the fol-
lowing formula:

Cjk =
{

0, k ∈ Kj

∞, otherwise

We set Cjk = ∞ for each vehicle k which cannot serve customer j. The
transportation problem is solved to check that the currently available vehicles
with remaining capacities [Qk] are able to serve the remaining demands [qj] of the
customers with site-dependency constraints given by vehicle sets Kj containing
for each customer j the vehicles which can serve it.

If these vehicle sets are nested it is possible to check it without solving the
transportation problem. It is usual that for many different customers their vehicle
sets are the same: Ki1 = ... = Kil . We denote these vehicle sets as Kj = Ki1 =
... = Kil . Let K1 ⊂ K2 ⊂ ... ⊂ Km be all different nested vehicle sets. When we

70 M. Batsyn and A. Ponomarenko

Algorithm 3. Choose the best vehicle
function ChooseVehicle(i, [qj], [Qk])

� Returns the best vehicle k∗ for customer i, demands [qj], vehicle capacities [Qk]
� Parameters [qj], [Qk] are changed in the calling function also
Qmax ← max(Qk)
[C′

jk] ← [Cjk]
for k ∈ Ki do

C′
ik ← Qmax/Qk � set smaller costs for bigger vehicles

end for
repeat

[xjk] ← TransportationProblem([C′
jk], [qj], [Qk])

if [xjk] = ∅ then
return 0 � not enough vehicles

end if
k∗ ← 0
for k ∈ Ki do

if xik > 0 and Qk > Qk∗ then
k∗ ← k

end if
end for
if xik∗ < qi and xik∗ < Qk∗ then

C′
ik∗ ← ∞ � cannot serve total demand qi, let’s try another vehicle

end if
until C′

ik∗ = ∞
return k∗

end function

assign for customer i vehicle k from its vehicle set Ki = Kj , and this vehicle
does not belong to smaller (nested to Kj) vehicle sets: k /∈ Kj−1, then there is
nothing to check. Otherwise, we need to check that this assignment is feasible
and the remaining vehicles capacity is enough to serve the remaining demand.

Let us denote as QKj =
∑

k∈Kj (Qk) the current total capacity of vehicles in
set Kj and as qKj =

∑
i,Ki=Kj (qi) - the current total demand of customers for

which the vehicle set is Kj . We consider that vehicles in K1 serve all customers
for which Ki = K1 and then they have the remaining capacity equal to QK1 −
qK1 . Then vehicles in K2\K1 together with the remaining vehicles from K1 serve
all customers for which the vehicle set is K2, and we have the remaining capacity
of vehicles equal to (QK2\K1 − qK2) + (QK1 − qK1). And so on up to the largest
vehicle set Km. We precalculate all these remaining capacities for all vehicle sets
from K1 to Km only once, and then we only update it quickly each time we add
a customer to a route. If adding a customer results in a negative value for some of
the remaining capacities this means that this adding is infeasible and we cannot
do it. If we assign vehicle k to serve customer i, and the smallest vehicle set Kj0

which contains k is smaller than Ki = Kj , then for each set Kj0 , ...,Kj−1 we
check that after delivering goods to customer i the remaining vehicle capacities
will be enough to serve the demands qKj0 , ..., qKj−1 .

Heuristic for Site-Dependent Truck and Trailer Routing Problem 71

Function InsertionHeuristic() (Algorithm 2) sequentially constructs all
routes in a solution by inserting customers one by one to the constructed route.
The first customer in each route is chosen randomly from the first μ customers
(μ most expensive) in the set of unserved customers U . In our experiments
we take μ = 5 because it provides a good balance between diversification and
intensification of the search. A vehicle for each constructed route is assigned in
ChooseVehicle() function. Each next customer to be inserted to the current
route is chosen and inserted in InsertBestCustomer() function.

Algorithm 4. Insert the customer to the route
function InsertCustomer(U, i, p, R, qi, Qk)

� Inserts customer i to position p in route R
� Parameters U, R, qi, Qk are changed in the calling function also
r ← |R| � the size of route R = (R1, ..., Rr)
R ← (R1, ..., Rp−1, i, Rp, ..., Rr) � insert customer i to position p in route R
q ← min(qi, Qk) � the delivered demand
Qk ← Qk − q � update the remaining vehicle capacity
qi ← qi − q � update the remaining customer demand
if qi = 0 then

U ← U \ {i} � update the unserved customers list
end if

end function

Function ChooseVehicle() (Algorithm 3) chooses the biggest vehicle feasi-
ble for customer i. It is done by setting transportation costs Cik such that the
bigger vehicles feasible for i have smaller costs and thus the optimal solution
of the transportation problem will assign as much demand as possible to the
biggest vehicle. If the biggest vehicle cannot serve the total demand qi due to
the site-dependency constraints though its capacity is enough, we forbid assign-
ment of this vehicle by setting C ′

ik = ∞ and solve the transportation problem
again.

Function InsertCustomer() (Algorithm 4) inserts customer i to the speci-
fied position p in route R served by vehicle k. The remaining capacity Qk of this
vehicle and the remaining demand qi of this customer are decreased by the value
of the delivered demand q. If this customer has no remaining demand after this
operation it is removed from the set of unserved customers U .

Function InsertBestCustomer() (Algorithm 5) finds the unserved cus-
tomer which has the lowest insertion cost and inserts it to the best position in
the current route. Precisely we take into account the insertion cost c decreased
by the direct customer cost ck10i multiplied by weight λ. This is done to give
preference to the most expensive (farthest) customers because it is usually more
optimal to insert such customers to the solution earlier. In our experiments we
take λ = 1 since it gives the best results in average.

Before choosing the best customer we decide in a random way if we allow
soft time window violation and split-delivery for this customer. In average every

72 M. Batsyn and A. Ponomarenko

Algorithm 5. Insert the customer with the lowest insertion cost
function InsertBestCustomer(U, [qj], Qk, R, k)

� Inserts the best customer from U to route R served by vehicle k
� Parameters [qj] store demands, Qk - the remaining free capacity of vehicle k
� Parameters U, [qj], Qk, R are changed in the calling function also
s̄ = |U |/r̄ � the expected number of remaining splits (1 split per route)
w̄ = |U | · π � the expected number of remaining time window violations
split ← (Random([0, 1]) < s/s̄) � allow split-delivery with probability s/s̄
violate ← (Random([0, 1]) < w/w̄) � allow tw-violation with probability w/w̄
i∗ ← 0 � best customer to insert to route R
p∗ ← 0 � best position in route R to insert this customer
c∗ ← ∞ � insertion cost for this customer
for i ∈ U do

if k /∈ Ki then � skip customers which cannot be served by this vehicle k
continue

end if
� If split-deliveries are not allowed skip all them except inevitable ones
if (! split) & (qi > Qk) & (qi < maxk∈Ki(Qk)) then

continue
end if
� Check that after serving customer i by vehicle k the remaining
� vehicles are able to serve the remaining customers
q ← min(qi, Qk) � the delivered demand
Qk ← Qk − q � try decreasing the remaining vehicle capacity
qi ← qi − q � try decreasing the remaining customer demand
[xjk] ← TransportationProblem([Cjk], [qj], [Qk])
Qk ← Qk + q � restore the remaining vehicle capacity
qi ← qi + q � restore the remaining customer demand
� If the remaining vehicles are not able to serve the remaining customers
if [xjk] = ∅ then

continue � skip such a customer
end if
p∗ ← 0 � the best position in route R to insert customer i
c ← GetInsertionCost(R, i, k, p, violate) � find the best place for i in R
c0 ← ck10i + fk/|R| � estimation for the cost of serving i directly from depot
if c0 < c then

continue � it is cheaper to serve this customer directly from the depot
end if
c ← c − λ · ck10i � give preference (λ · ck10i) to farthest customers
if c < c∗ then

c∗ ← c, i∗ ← i, p∗ ← p
end if

end for
if c∗ = ∞ then

return false
end if
InsertCustomer(U, i∗, p∗, R, qi∗ , Qk)
if Qk = 0 then

return false � return false to stop building this route
end if
return true

end function

Heuristic for Site-Dependent Truck and Trailer Routing Problem 73

Algorithm 6. Calculate the best cost of inserting the customer to the route
function GetInsertionCost(R, i, k, p∗, violate)

� Inserts customer i to route R served by vehicle k, returns position p∗ and cost
� Parameter p∗ (best insertion position) is changed in the calling function also
c∗ ← ∞
r ← |R| � the size of route R = (R1, ..., Rr)
vR ← Violations(R)
for p ← 1, r + 1 do

R′ ← (R1, ..., Rp−1, i, Rp, ..., Rr) � insert customer i to position p
Δ∗ ← 0
for j ∈ {i, Rp, ..., Rr} do

l ← ltj � the latest possible begin time is the time window end ltj
� For the second and next split-deliveries violations are not counted
if NextSplitDelivery(j, R′) then

l ← clj − skj � the latest possible is close time minus service time
end if
Δ ← bR

′
j − l � how greater the begin time than the latest possible time

if Δ > Δ∗ then
Δ∗ ← Δ, j∗ ← j

end if
end for
� Try to shift all deliveries earlier by Δ∗

if (! ShiftEarlier(j∗, R′, Δ∗)) then � if cannot satisfy hard time windows
continue

end if
vR′ ← Violations(R′)
if vR′ > vR and violate = false then � skip if R′ has more tw-violations

continue
end if
c ← CostDelta(i, p, R)
if c < c∗ then

c∗ ← c, p∗ ← p
end if

end for
return c∗

end function

route should have one split-delivery to fully use the capacity of the vehicle. So we
take the expected number of possible future split-deliveries s̄ equal to the average
number of the remaining routes in this solution. And this value is estimated as
the number of unserved customers |U | divided by the average route size r̄. The
expected number of possible future violations of soft time windows w̄ is equal
to the number of unserved customers |U | multiplied by the probability π of soft
time window violation. To provide uniform occurrence of split-deliveries and soft
time window violations during construction of a solution we allow a split-delivery
and a violation with probabilities s/s̄ and w/w̄ correspondingly.

74 M. Batsyn and A. Ponomarenko

Algorithm 7. Count the number of time window violations in the route
function Violations(R)

� Returns the number of time window violations in route R
vR ← 0
r ← |R| � the size of route R = (R1, ..., Rr)
for p ← 1, r do

j ← Rp

� For the second and next split-deliveries violations are not counted
if NextSplitDelivery(j, R) then

continue
end if
if bRj < erj or bRj > ltj then � begin time bRj violates time window [erj , ltj]

vR ← vR + 1
end if

end for
return vR

end function

For every customer we check that after serving it by the current vehicle the
remaining vehicle capacities will be enough to serve the remaining demands. This
is done by solving the transportation problem with the cost matrix [Cjk]. The
best position p∗ to insert a customer is determined by function GetInsertion-
Cost(). If the insertion cost of a customer is greater than the cost of serving this
customer directly from the depot with another vehicle, then such customer is not
inserted to the current route. This is done to avoid big detours when inserting
customers.

Function GetInsertionCost() (Algorithm 6) finds the best position to
insert the given customer to the current route which provides the lowest inser-
tion cost. It tries to insert the customer to every position in the route. If after
insertion this or next customers in the route have late deliveries (deliveries after
the soft time window), then function ShiftEarlier() is called to shift all the
deliveries earlier so that some of the previous deliveries become early deliveries
(deliveries before the soft time window). This procedure reduces the total time
of the route and thus allows inserting more customers to it.

Function ShiftEarlier() moves the delivery for the specified customer j∗

earlier by the specified time Δ∗. This requires moving earlier deliveries for some
of the previous customers in the route and for some of the next customers. It
moves the deliveries taking into account waiting time and split deliveries, because
two vehicles cannot serve one customer at the same time. If it is not possible
to move the deliveries earlier so that all hard time windows are satisfied, then
ShiftEarlier() function returns false. If for example waiting time at some
previous customer is greater than Δ∗, then this time is simply decreased by Δ∗

and any other previous customers do not need to be moved.
Function NextSplitDelivery() checks if the delivery to the specified cus-

tomer j in route R is the second or next split delivery to this customer. This is
needed because it is allowed to violate the soft time window for all split deliveries

Heuristic for Site-Dependent Truck and Trailer Routing Problem 75

i j

i j

u

Insert trailer-customer to
trailer-route
Δ = ck1iu + ck1uj − ck1ij

i j

i j

u

Insert truck-customer to
truck-route
Δ = ck2iu + ck2uj − ck2ij

u

i j

i j

Insert trailer-customer to
truck-route
Δ = ck2iu + ck2uj − ck2ij

i j

ji

u

i

Insert truck-customer to
trailer-route
Δ = ck2iu + ck2uj

i j

j

i'

u

i'

i

Insert truck-customer to
trailer-route with trailer
parking Δ =
ck1ii′ + ck2i′u + ck2ui′ + ck1i′j − ck2ij

Fig. 1. Simple insertion cases

except one. So we do not count soft time window violations for the second and
next split deliveries.

Function CostDelta() returns the insertion cost for all possible cases. These
cases together with the corresponding cost deltas are shown in Figs. 1, 2, 3. The
following icons are used in these figures: �, a node visited by a road train; ©, a
node visited by a truck without the trailer; �, a node at which a trailer is left
for parking; �, a node at which a trailer is left for unloading; �, a node at which
a trailer is connected back to a truck. In each of these figures a new customer
u is inserted to a route. The original route is shown above and the route after
inserting this customer is shown below in each figure. An expression to calculate
the cost delta is also provided.

Function Violations() (Algorithm 7) counts the number of soft time window
violations made in the given route. Note that in case of split deliveries the soft
time window should not be violated only for the first split delivery to a customer.
All the next split deliveries to this customer can be outside the soft time window.

76 M. Batsyn and A. Ponomarenko

i
i

i'

jj'

u

i'

jj'

i

u

iu ui ju uj

ck2
ii′ − ck2

ji − ck1
ij′

u'
u'

i'

jj'

u

i'

jj'

i

u

i

Δ = ck1
iu + ck2

ui′ + ck2
ju + ck1

uj′ −
ck1
iu′ − ck2

u′i′ − ck2
ju′ − ck1

u′j′

i
i

i'

jj'

u'

i'

jj'

i

u'

u

iu uu′ u′i′ ju′
ck1
u′j′ − ck2

ii′ − ck2
ji − ck1

ij′

i
i

i'

jj'

u'

i'

jj'

i

u'
u

iu′ u′u ui′ ju′
ck1
u′j′ − ck2

ii′ − ck2
ji − ck1

ij′

v
v

i'

jj'

u'

i'

jj'

i

u'
u

i

Δ = ck1
iu′ + ck2

u′u + ck2
ui′ + ck2

ju′ +

ck1
u′j′ − ck1

iv − ck2
vi′ − ck2

jv − ck1
vj′

Fig. 2. Insertion cases with leaving trailer at another node

3 Computational Experiments

For computational experiments we used several real-life instances with the num-
ber of customers from 55 to 300 (input data for all instances can be provided by
request). All the experiments for real-life instances have been performed on Intel
Core i7 machine with 2.2 GHz CPU and 8 Gb of memory. A comparison with an
exact solution is possible only for very small instances of about 10 customers.
Such a comparison for the first version of our heuristic can be found in Batsyn
& Ponomarenko (2014).

The objective function values obtained by different algorithms are presented
in Table 1. When an algorithm is not able to obtain a feasible solution it is shown
as “–” in the table. We compare the suggested heuristic with an iterative greedy
insertion heuristic which iteratively applies Solomon (1987) insertion procedure

Heuristic for Site-Dependent Truck and Trailer Routing Problem 77

j

j'

v j

i i

j'

v

u

i

j

Join new truck-route
with an old one
Δ = ck2

iu + ck2
uj + ck2

j′i + ck1
iv −

ck1
ij − ck2

j′j − ck1
jv

j

j'v j

i i

v

u

i

j'

v'

v'

ck1
ij − ck2

jj′ − ck2
v′j − ck1

jv

i i

i'

j

j'

v j

i i

i'

j'

v

u

j

Join two truck-routes
Δ = ck2

i′u + ck2
uj + ck2

j′i + ck1
iv −

ck2
i′i − ck1

ij − ck2
j′j − ck1

jv

i i

i'

j

j'v' j

i i

i'

j'v'

u

v

v

= c
i′u + c

uj′ + ck2
vi + ck1

iv′ −
ck2
i′i − ck1

ij − ck2
jj′ − ck2

vj − ck1
jv′

i i

j

v

i'

j'

i i

j

v

u
u

i'

j'

Break a truck-route into two
Δ = ck2

i′i + ck1
iu + ck2

uj + ck2
j′u +

ck1
uv − ck2

i′j − ck2
j′i − ck1

iv

Fig. 3. Insertion cases with joined and broken truck-routes

using our insertion cases. To provide different solutions on all iterations the
first customer in every route is chosen randomly from the remaining unserved
customers. The solutions obtained by this approach for 100 and 100k iterations
are shown in columns 2 and 3 of Table 1. The solutions of Batsyn & Ponomarenko
(2014) algorithm for 100 and 100k iterations are presented in columns 4 and 5.
Finally, the solutions found by the suggested new heuristic for 100 and 100k
iterations are reported in columns 6 and 7.

78 M. Batsyn and A. Ponomarenko

Table 1. Computational experiments

Instance Simple
greedy,
100

Simple
greedy,
100k

Batsyn &
Ponomarenko
(2014), 100

Batsyn &
Ponomarenko
(2014), 100k

New
heuristic,
100

New
heuristic,
100k

Novosibirsk 104026 103660 104148 103660 103757 103660

Udmurtia – – 1312720 1277967 1222630 1218939

Bashkortostan01 – – 960130 941629 916792 902353

Bashkortostan07 – – 1074651 1060665 1036272 1028024

Bashkortostan08 – – 1027655 1021944 995317 984917

Bashkortostan09 – – 1012611 1002596 974641 965984

Bashkortostan10 – – 957746 945515 939019 929642

Novgorod03 – – – – 1190419 1185121

Novgorod04 – – – – 1082395 1073438

Novgorod05 – – – – 1138652 1128973

Novgorod06 – – – – 1184675 1171648

Novgorod07 – – – – 1243691 1229926

Kropotkin – – – – 717075 708625

The simple greedy heuristic is able to find a feasible solution only for the first
small instance of 55 customers. This is due to random assignment of vehicles and
treating soft time windows as hard ones. The heuristic of Batsyn & Ponomarenko
(2014) is not able to find a feasible solution for 7 instances because it always
chooses the biggest available vehicle which can serve the first customer in the
route and does not analyze that later a vehicle of this type will be needed for
other customers which could not be served by other vehicles. The suggested
heuristic obtains feasible solutions for all instances and provides the lowest costs.

4 Conclusions

In this paper we have suggested an iterative greedy randomized heuristic which
efficiently addresses such features of real-life vehicle routing problems as het-
erogeneous fleet of vehicles, site-dependency feature, complex truck-and-trailer
routes with transshipment locations, soft time windows along with hard time
windows, split deliveries. To the best of our knowledge this is one of the most
general formulations considered in literature for truck and trailer routing prob-
lems. We have implemented our algorithm and integrated it to the software
system of a big retail company. And it shows better results on real-life instances
than their experienced staff could get using their old software which partly auto-
mates construction of routes.

Currently we are working on further improvements of the suggested app-
roach. We consider different neighbourhood structures for local search. The idea
is to allow infeasible solutions during local search by penalizing them in the

Heuristic for Site-Dependent Truck and Trailer Routing Problem 79

objective function. This makes it possible to use many different simple and effi-
cient neighbourhoods. However due to the penalties local search will often get
stuck in bad, but feasible solutions. To overcome this problem we are going to
apply the tabu search approach.

Acknowledgments. The authors are supported by LATNA Laboratory, NRU HSE,
RF government grant, ag. 11.G34.31.0057.

References

Batsyn, M., Ponomarenko, A.: Heuristic for a real-life truck and trailer routing problem.
Procedia Comput. Sci. 31, 778–792 (2014). The 2nd International Conference on
Information Technology and Quantitative Management, ITQM 2014

Caramia, M., Guerriero, F.: A heuristic approach for the truck and trailer routing
problem. J. Oper. Res. Soc. 61, 1168–1180 (2010a)

Caramia, M., Guerriero, F.: A milk collection problem with incompatibility constraints.
Interfaces 40(2), 130–143 (2010b)

Chao, I.M.: A tabu search method for the truck and trailer routing problem. Comput.
Oper. Res. 29(1), 33–51 (2002)

Drexl, M.: Branch-and-price and heuristic column generation for the generalized truck-
and-trailer routing problem. J. Quant. Methods Econ. Bus. Adm. 12(1), 5–38 (2011)

Hoff, A.: Heuristics for rich vehicle routing problems. Ph.D. Thesis. Molde University
College (2006)

Hoff, A., Lokketangen, A.: A tabu search approach for milk collection in western
Norway using trucks and trailers. In: The Sixth Triennial Symposium on Trans-
portation Analysis TRISTAN VI, Phuket, Tailand (2007)

Lin, S.-W., Yu, V.F., Chou, S.-Y.: Solving the truck and trailer routing problem based
on a simulated annealing heuristic. Comput. Oper. Res. 36(5), 1683–1692 (2009)

Lin, S.-W., Yu, V.F., Chou, S.-Y.: A note on the truck and trailer routing problem.
Expert Syst. Appl. 37(1), 899–903 (2010)

Lin, S.-W., Yu, V.F., Lu, C.-C.: A simulated annealing heuristic for the truck and
trailer routing problem with time windows. Expert Syst. Appl. 38, 15244–15252
(2011)

Scheuerer, S.: A tabu search heuristic for the truck and trailer routing problem. Com-
put. Oper. Res. 33, 894–909 (2006)

Semet, F., Taillard, E.: Solving real-life vehicle routing problems efficiently using tabu
search. Ann. Oper. Res. 41, 469–488 (1993)

Semet, F.: A two-phase algorithm for the partial accessibility constrained vehicle rout-
ing problem. Ann. Oper. Res. 61, 45–65 (1995)

Solomon, M.M.: Algorithms for the vehicle routing and scheduling problem with time
window constraints. Oper. Res. 35, 254–265 (1987)

Villegas, J.G., Prins, C., Prodhon, C., Medaglia, A.L., Velasco, N.: A GRASP with
evolutionary path relinking for the truck and trailer routing problem. Comput. Oper.
Res. 38(9), 1319–1334 (2011a)

Villegas, J.G., Prins, C., Prodhon, C., Medaglia, A.L., Velasco, N.: Heuristic column
generation for the truck and trailer routing problem. In: International Conference on
Industrial Engineering and Systems Management IESM2011, Metz, France (2011b)

Cross-Domain Matrix Factorization for Multiple
Implicit-Feedback Domains

Rohit Parimi(B) and Doina Caragea

Kansas State University, Manhattan, USA
{rohitp,dcaragea}@ksu.edu

Abstract. Cross-domain recommender systems represent an emerging
research topic as users generally have interactions with items from mul-
tiple domains. One goal of a cross-domain recommender system is to
improve the quality of recommendations in a target domain by using
user preference information from other source domains. We observe that,
in many applications, users interact with items of different types (e.g.,
artists and tags). Each recommendation problem, for example, recom-
mending artists or recommending tags, can be seen as a different task,
or, in general, a different domain. Furthermore, for such applications,
explicit feedback may not be available, while implicit feedback is read-
ily available. To handle such applications, in this paper, we propose a
novel cross-domain collaborative filtering approach, based on a regular-
ized latent factor model, to transfer knowledge between source and tar-
get domains with implicit feedback. More specifically, we identify latent
user and item factors in the source domains, and transfer the user fac-
tors to the target, while controlling the amount of knowledge transferred
through regularization parameters. Experimental results on six target
recommendation tasks (or domains) from two real-world applications
show the effectiveness of our approach in improving target recommenda-
tion accuracy as compared to state-of-the-art single-domain collaborative
filtering approaches. Furthermore, preliminary results also suggest that
our approach can handle varying percentages of user overlap between
source and target domains.

Keywords: Cross-domain recommender systems · Collaborative
filtering · Matrix factorization · Implicit feedback

1 Introduction

The goal of a recommender system is to suggest to users items that match their
interests. Collaborative Filtering (CF) is a popular implementation strategy for
recommender systems because of its high-efficiency and domain independent
nature [9,15]. CF approaches generally work by identifying patterns in user’s
explicit opinions (e.g., ratings) or implicit behavioral history (e.g., clicks) from a
single data domain, and generate personalized item suggestions for that domain.
However, in some real-world scenarios, user preferences for different types of
c© Springer International Publishing Switzerland 2015
P. Pardalos et al. (Eds.): MOD 2015, LNCS 9432, pp. 80–92, 2015.
DOI: 10.1007/978-3-319-27926-8 8

Cross-Domain Matrix Factorization for Multiple Implicit-Feedback Domains 81

items from multiple domains are available. For example, in the context of a
music site, users can express preferences regarding artists, tags that they use for
music, and other users that they are friends with. Instead of treating each type of
item independently and creating a recommendation model for each task/domain
separately, the user knowledge gained in one domain can be transferred to other
domains. This area of research, known as cross-domain recommender systems,
aims to improve the quality of recommendations in a target domain, by exploiting
knowledge from one or more source domains.

One naive way to use knowledge about user preferences from multiple domains
is to aggregate data about users and items from all domains into one user-item
preference matrix, and use a standard CF algorithm to generate recommenda-
tions. However, such models generally recommend items from the domain in
which users have preferred many items [4,7]. Furthermore, implicit user prefer-
ences across domains might mis-lead the model as implicit feedback can have
different ranges [8]. To address these problems, cross-domain neighborhood-
based CF approaches, which transfer similarity or neighborhood information
from source domains to the target, have been originally proposed in the litera-
ture [1,2,4,16,19]. More recently, approaches based on matrix factorization have
also been proposed for cross-domain recommender systems, as these techniques
have better accuracy compared to neighborhood approaches [8,9]. The underly-
ing idea of these approaches is to use the latent factors from source domains as
a bridge to transfer knowledge to the target. Most of these approaches assume
that items are of the same type across domains [1,2,4,12], or that the domains
have explicit user feedback (binary or ratings) [1,2,4,10–12,17,19], or that the
cluster level preference pattern is similar across domains [10,11]. However, in
many applications, user preferences are captured through implicit feedback (e.g.,
clicks) and, thus, might not have the same cluster level pattern across domains,
and items across domains may not be of the same type (may not even be similar).

To address these limitations, we introduce a new cross-domain recommenda-
tion problem that does not satisfy the assumptions in the literature. Our prob-
lem formulation is driven by applications such as those captured by the Last.FM
music dataset and the DBLP scientometric dataset. Specifically, in Last.FM, we
can recommend artists, friends and tags to users. Each task can be seen as a dif-
ferent domain. Similarly, in DBLP, we can recommend co-authors, conferences,
and references, and we also see these tasks as different domains. In both cases,
the items are of different types and highly dissimilar across domains. Further-
more, user preferences in both cases are captured through implicit feedback. The
feedback corresponds to the number of artists, number of friends, and number
of tags, a user interacted with, respectively, for the three domains of Last.FM,
and number of co-authors, number of conferences, and number of references, an
author interacted with, respectively, for the three domains of DBLP.

To tackle the above-mentioned problem, we propose a novel cross-domain CF
approach based on matrix factorization (MF) to transfer the latent factors from
source domains to the target domain. The novelty of the algorithm consists in its
ability to handle multiple source domains with different types of dissimilar items

82 R. Parimi and D. Caragea

and implicit feedback. Our assumption is that although the items are of different
types and user preferences for items are different across domains, there will be
some latent user information that is common for the source and target domains,
and can be shared between the two. Thus, our goal is to discover, the domain
independent semantic user concepts from the related source domains and transfer
them to the target. We only transfer the user latent factors, given the differences
in items and preferences across domains. Intuitively, our approach should be able
to prevent negative transfer, to some extent, as we only require the user latent
factors in source and target domains to be similar, through regularization.

In the rest of this paper, we provide an overview of the existing cross-domain
approaches in Sect. 2. We define the recommendation problem addressed in this
work, and present our solution in Sect. 3. In Sect. 4, we describe the datasets and
evaluation methodology, and discuss the results in Sect. 5. Finally, we conclude
this work with possible future directions in Sect. 6.

2 Related Work on Cross-Domain Recommender Systems

Cross-domain recommender systems are gaining popularity as many applications
such as social networks and e-commerce sites have started to collect user histories
for items from many domains. However, there is no unified perception of the
cross-domain recommendation problem. According to the work in [4], given two
domains A and B, the objective of a cross-domain recommendation task can be
(a) to improve the recommendation accuracy in a target domain, for example, A,
using knowledge from both domains A and B, (b) to recommend items in both
A and B to users in A and B, or (c) to recommend items in B to users in A and
vice versa. In this work, we focus on the first objective: our goal is to improve
target recommendation accuracy using knowledge from two or more domains.

Some recent studies proposed several aggregation techniques for cross-domain
recommender systems. For example, Berkovsky et al. [1,2] proposed approaches
to transfer knowledge about user similarity, neighborhoods, and predicted item
ratings, from source domains to target. Winto and Tang [19] used user pref-
erences from multiple domains for recommender systems, while addressing the
relatedness and correlation across domains. Shapira et al. [16] studied the possi-
bility of utilizing user preferences collected from Facebook to address the sparsity
and cold-start problems in recommender systems. While some of these stud-
ies concluded that cross-domain recommendations tend to be less precise than
single-domain recommendations [19], other works suggested that cross-domain
approaches have better recall compared to single-domain approaches [16].

Another line of research applies collective factorization or transfer learn-
ing techniques to improve target recommendation accuracy. For example, Li
et al. [10,11] proposed two techniques to transfer cluster level rating informa-
tion (known as the Codebook) from a dense source domain to reduce the sparsity
in the target domain. Pan et al. [12] addressed the sparsity problem in the target
domain by transferring user and item latent features from two auxiliary domains,
an approach known as Coordinate System Transfer. Singh and Gordan [17] pro-
posed the Collective Matrix Factorization approach to jointly factorize a user-
item rating matrix and an item-context matrix by sharing the same item-specific

Cross-Domain Matrix Factorization for Multiple Implicit-Feedback Domains 83

latent features. One drawback of the previous work mentioned above is that most
studies were conducted with “simulated” cross-domain data. For example, some
works have simulated a cross-domain framework by partitioning a movie dataset
based on genre [1], while others used different movie rating datasets as different
domains [12], or transferred user rating knowledge between movies and books
(as they have similarity in genre and there are many movies based on books)
[10,11]. Furthermore, some works assumed explicit (Boolean or numerical) user
preferences in the source and target domains [1,10–12,17,19], fixed number of
source domains [10–12], dense source domains [10,11], or complete user and item
overlap between source and target domains [12]. In our work, we propose an app-
roach which can handle one or more source domains, and assumes implicit user
preferences in all domains. We also assume that items are heterogeneous across
domains. Finally, our approach requires only partial user overlap. Note, also,
that we do not make any assumptions about data density.

3 Cross-Domain Implicit-Feedback Matrix Factorization

Problem Formulation: We define the cross-domain recommendation problem
addressed in this work using a notation introduced in [4]: assume there exist a
target domain T , and s auxiliary source domains, Sk, where k ε [1, s], all with
implicit feedback. Let Ut, Uk be the sets of target and source users, respectively,
where Ut ∩ Uk �= ∅; let It, Ik be the sets of target and source items, respectively,
where It ∩ Ik = ∅. Our objective is to improve target recommendation accuracy
(T) by exploiting user-item preferences from the s source domains.

Approach: Our approach to the problem defined earlier involves two steps:
first, we follow the framework proposed in [8] to extract the user and item latent
factors from the source domains with implicit user preferences; in the second
step, we propose a novel way to use the latent factors from the first step as a
bridge between the source and the target domains, which allows us to transfer
knowledge. We describe the two steps in detail in the rest of the section.

Step 1 - Computing Source Domain Latent Factors: In this step, we
find the latent user and item factors from the preference matrices for the source
domains. Typically, these latent factors correspond to semantic concepts and
measure the extent to which a user and an item exhibit these concepts [9]. Koren
et al. [9] proposed an MF approach to identify user and item latent factors from
explicit ratings of movies. Hu et al. [8] pointed out some drawbacks of using
traditional MF approaches for implicit feedback, and proposed a new approach
that can handle implicit user preferences. Given that the source domains have
implicit feedback, we use the factorization proposed in [8], which uses two new
variables to represent user feedback, namely, preference and confidence. The
preference, a Boolean value denoted by pui, indicates the preference of user u for
item i and takes a value 1 when u uses i. The confidence variable (cui) associates
a confidence value to item i preferred by user u. The increase rate for a confidence
value is controlled by a constant α which can be determined by cross-validation.

84 R. Parimi and D. Caragea

Equations (1) and (2) depict the computation of pui and cui from an implicit
user feedback value rui (number of times user u preferred item i), respectively.

pui =

{
1 if rui > 0
0 if rui = 0

(1)

cui = 1 + αrui (2)

For a domain Sk, the user and item factors can be computed by finding xuk

and yik that minimize the objective function J given by Eq. (3).

J (xuk
,yik) =

∑
(uk,ik)

cukik

(
pukik − xT

uk
yik

)2 + λ
(∑

uk

∥
∥x2

uk

∥
∥ +

∑
ik

∥
∥y2

ik

∥
∥
)

(3)

In Eq. (3), λ denotes the regularization parameter. The objective function
can be efficiently solved using alternating least squares (ALS), and analytic
expressions for user and item factors that minimizes Eq. (3) can be obtained by
differentiation. Space limitations preclude us from explaining these optimizations
in detail. We point the interested reader to the work in [8].

Step 2 - Integrating Source Latent Factors into Target Domain: In this
step, we transfer the information captured as latent user factors from the source
domains in Step 1 into the target domain through a regularization technique. To
accomplish this, we use an approach similar to the approach used in Step 1, as we
also have implicit user feedback in T . Specifically, we represent a user feedback
(rui) using the preference (p) and confidence (c) variables given by Eqs. (1) and
(2), respectively, and reconstruct the preference matrix as inner products of user
and item latent factors. However, to facilitate knowledge transfer from source to
target domains, we extend the objective function in Step 1 given by Eq. (3) to
incorporate knowledge from source domains through regularization parameters
in the factorization model, as described below.

After obtaining user and item latent factors from the source domains, we
add s (number of source domains) regularization terms

∑
ut

‖xut
− xuk

‖2 to the
objective function J for the target domain T as shown in Eq. (4).

J (xut ,yit) =
∑

(ut,it)

cutit

(
putit − xT

ut
yit

)2
+

∑

k ε [1,s]

λk

∑

ut

‖xut
− xuk

‖2 + λ
∑

it

‖yit‖2 (4)

In Eq. (4), xut
and xuk

are the user latent factors for user u in the target
T and the source Sk, respectively, and have dimensions 1 × f ; yit are the item
latent factors in T also with dimensions 1 × f ; f is the number of latent factors.
It is possible to have a user v in T who does not have any preferences in source
domain Sk, as we do not assume a complete user overlap between source and
target domains. In such cases, no knowledge about v can be transferred from Sk

to T and the user factors xvk
will be a zero vector. The regularization parameter

for user factors, λk, is used to control the amount of knowledge transferred from
source domain Sk and to address the problem of negative transfer; λ denotes the
regularization for target item factors, and s is the number of source domains.

The goal of the objective function in Eq. (4) is to factorize the user-item
preference matrix in T under the constraint that the source and target user

Cross-Domain Matrix Factorization for Multiple Implicit-Feedback Domains 85

factors are similar. Intuitively, the source user factors can only be similar to
the target user factors. The reason for this is that although source and target
domains are related, the user factors in the source and target domains can only be
similar given that bi-factorization technique used in Step 1 also integrates domain
specific semantic concepts into user and item latent factors [5,12]. By controlling
the amount of knowledge transferred from source domains to the target through
regularization parameters λk, our goal is to transfer only the domain independent
part of a source Sk to the target T . Note, also, that we only use user latent factors
from the s source domains when transferring knowledge to T . This is because the
items are of different types across domains, according to our problem definition,
and thus will not contribute to the target recommendation task.

The minimization of the proposed model defined in Eq. (4), can be performed
using the alternating least squares algorithm, similar to the optimization in Step
1. Observe that, when either the user or the item factors are assumed to be known
and fixed, the cost function becomes quadratic and by differentiation we can find
an analytic expression for the user and the item factors, respectively. Taking the
learning of the user factors as an example, we will show how to optimize xut

while fixing the item factors. We get the following updating rule for xut
when

we differentiate J with respect to xut
and equate it to 0.

xut
=

∑

it

(cutitputityit) +
∑

k ε [1,s]

(λkxuk
)

∑

it

(
cutity

T
ityit

)
+

∑

k ε [1,s]

(λkI)
(5)

Let Yn×f be an item factor matrix, where n is the number of items, f is the
number of factors. Let Cu

n×n be a diagonal matrix where Cu
ii = cutit , and p(u)

be an n × 1 vector. Using these notations, Eq. (5) can be expressed as:

xut
=

(
Y TCuY +

∑
k ε [1,s] λkI

)−1 (
Y TCup(u) +

∑
k ε [1,s] λkxuk

)
(6)

Similarly, the updating rule for the item factors, yit , is given by Eq. (7):

yit =
(
XTCiX + λI

)−1
XTCip(i) (7)

where Xm×f is a user factor matrix, m is the number of users, f is the number
of factors; Ci

m×m is a diagonal matrix, where Ci
uu = cutit , and p(i) is a m × 1

vector. We note that the update rule for learning yit for our model is identical
to the update rule for learning yik in Step 1 (derivation not shown), as we do
not transfer any knowledge about items between source and target domains.

4 Experimental Design

Dataset Description and Preprocessing: We have used two datasets to
evaluate the effectiveness of our approach in improving the recommendation
accuracy in the target domain, using knowledge from multiple source domains.

Last.FM Dataset: This dataset, created by Cantador et al. [3], is a subset of
the Last.FM dataset1 and consists of the following three domains: artist domain
1 http://www.lastfm.com.

http://www.lastfm.com

86 R. Parimi and D. Caragea

in which each tuple has (userID, artistID, #timesListened) information, friend
domain in which each tuple has (userID, friendID,1), tag domain in which each
tuple has (userID, tagID, #timesUsed) information. The number of users in each
domain is approximately 1.8 K. The number of items in the artist, friend, and
tag domains are approximately 17 K, 1.8 K, 11 K, respectively.

Timestamps are not available for this dataset. To construct the training
and test sets for the three domains, we removed users who interacted with less
than three items, for example, three artists. This resulted in final datasets with
approximately 1.8 K users, 1.4 K users, and 1.7 K users in the artist, friend, and
tag domains, respectively. We divided the filtered data into three folds with
approximately 33.3% of a user’s preferences in each fold (referred to as the per-
user CV [14]) and used the standard 3-fold cross validation (CV) technique and
use two folds as training and one fold as test.

DBLP Dataset: This dataset2 has approximately 2 × 107 publications, and
4 × 107 citation relations [18] and we construct the following three domains: a
co-author domain in which each tuple has (authorID, coauthorID, #papersCoau-
thored) information, a conference domain in which each tuple has (authorID,
conferenceID, #papersPublished) information, and a reference domain in which
each tuple has (authorID, referenceID, #papersReferenced) information.

Given that timestamps are available for each publication record in the
dataset, we choose the data between the years 1990 and 2006 to construct the
training set and data between the years 2007 to 2013 to construct the test set.
As part of preprocessing, we removed any authors who co-authored with less
than five authors, referenced less than five publications, and published in less
than one conference, from the training set. From the test set for each domain, we
removed authors who do not have any preferences in the corresponding training
set. After filtering the authors as described above, we have 29, 189 authors in
each domain. The number of items in the co-author, conference, and reference
domains are approximately, 140 K, 2.3 K, and 201 K, respectively.

When creating the training and test data for the three domains in the two
datasets above, we ensure the following properties hold: a user in the test set has
some history available in the training set [10,12,15], and the test set for a user
does not contain items that are also in the corresponding training set for that
user, as our objective is to recommend only unknown items. For the Last.FM
dataset, the results we report are averaged over the three CV folds. Note that,
in our experiments for the DBLP dataset, for a train user, we randomly pick
50 % of preferences from his/her training data and use only these preferences to
generate recommendations. This is repeated five times, similar to CV, to account
for variation in results from the algorithms and the averaged results are reported.

Evaluation Metric: For each user, the algorithm generates (item, preference
Score) tuples as output. From this, we remove items that the user is aware
of as our objective is to recommend only unknown items. Next, we sort the

2 http://arnetminer.org/citation.

http://arnetminer.org/citation

Cross-Domain Matrix Factorization for Multiple Implicit-Feedback Domains 87

recommendations according to the preferenceScore and compute Mean Average
Precision (MAP@n) and Recall@n to evaluate the algorithm [6,16].

Experiments and Baselines: We aim to understand how our proposed Cross-
domain Implicit-feedback Matrix Factorization (CIMF) approach performs on
the two datasets. Towards this goal, we run three experiments for each dataset.
In each experiment, we compute the accuracy of CIMF when one domain is used
as target and the other two domains as sources. We compare CIMF with two
Adsorption-based cross-domain approaches (WAN and WAR) that we proposed
in our earlier work [13], and three single-domain approaches which use user
preferences only from the target: the MF approach for explicit feedback data [20],
the MF approach adapted for implicit feedback data (IMF) [8], and the item-
based collaborative filtering approach (Item-CF) [15]. The implementations of
MF, IMF, and Item-CF are part of the Apache Mahout software. Note that
when comparing different approaches, we used a controlled evaluation protocol
as indicated in [14], i.e., for all algorithms, we use the same training and test
splits and compute evaluation metrics in the same way.

Parameter Settings: The parameters of the algorithms have been manually
tuned and best results obtained from combinations of different parameter set-
tings have been reported. For IMF, the following four combinations of (λ, α)
were tried in the six domains: (.01, 1), (.01, 5), (.1, 1), and (.1, 5). We note
that the values (.1, 5) for (λ, α) worked best for IMF in the three domains of
the Last.FM dataset and the values (.01, 5) for (λ, α) worked best for IMF in
the three domains of the DBLP dataset and are reported in our results. For
CIMF, the values .1 and .01 are used for λ (item regularization) for the Last.FM
and the DBLP datasets, respectively, as these values proved to be best for IMF
in the single-domain setting for the corresponding datasets; for the source user
factors, different regularization parameter values (λk), specifically, {0.1, 0.5, 1, 5}
are tried. For MF, we found that the values 0.1 and 0.01 for λ worked best for the
three domains of the Last.FM and the DBLP datasets, respectively. For WAN
and WAR approaches, five sets of (target, source) weights - (0.5, 0.25), (0.6,
0.2), (0.7, 0.15), (0.8, 0.1), (0.9, 0.05) were tried. Finally, the number of latent
dimensions (f) for MF, IMF, and CIMF and the number of recommendations
from the algorithm (n) were set to be 50 and 10, respectively.

5 Results

We report results for the three cross-domain approaches and the three single-
domain approaches for the two datasets in Table 1.

Analysis of the Last.FM Dataset: As expected, our CIMF approach of trans-
ferring user latent factors from source domains outperforms the single-domain
approaches in most cases considered. This can be seen from the MAP and Recall
values in Table 1 for Artist, Friend, and Tag domains, respectively. Furthermore,
the CIMF approach is significantly better than the WAN and WAR cross-domain
approaches in two of the three domains considered. These results confirm our

88 R. Parimi and D. Caragea

Table 1. The MAP@10 and Recall@10 values of Item-CF, IMF, and MF (single-
domain) and WAN, WAR, and CIMF (cross-domain) when the target domain is the
Artist, Friend, Tag in Last.FM, and Co-Author, Conference, Reference in DBLP,
respectively. For each target, the remaining two domains in the corresponding dataset
are used as sources. The number of latent factors (f) is 50.

Target domain Metrics Single-domain Cross-domain

Item-CF IMF MF WAN WAR CIMF

Artist MAP 0.0658 0.0653 0.033 0.0950 0.0950 0.0699

Recall 0.1537 0.1333 0.108 0.1508 0.1483 0.1380

Friend MAP 0.0540 0.0771 0.0135 0.0568 0.0549 0.0915

Recall 0.1249 0.1601 0.0318 0.1164 0.1143 0.1925

Tag MAP 0.1038 0.1087 0.0134 0.1070 0.1105 0.1459

Recall 0.2310 0.2003 0.0514 0.1948 0.1962 0.2543

Co-author MAP 0.0340 0.0314 0.0251 0.0240 0.0349 0.0357

Recall 0.0824 0.0702 0.0605 0.0504 0.0696 0.0799

Conference MAP 0.0762 0.1017 0.0124 0.0554 0.0806 0.1020

Recall 0.1674 0.2014 0.0373 0.1172 0.1689 0.2014

Reference MAP 0.0153 0.0470 0.0013 0.0309 0.0297 0.0472

Recall 0.0347 0.0860 0.0041 0.0616 0.0592 0.0866

intuition that information about related domains can help in improving target
recommendation accuracy and suggest the effectiveness of our CIMF approach
to leverage information from multiple source domains. Our approach captures
the correlation between related domains through latent user factors identified
in each domain, while controlling the amount of knowledge to use from each
source domain through regularization parameters. Among the single-domain
approaches, we can also see from Table 1 that the performance of MF is sig-
nificantly worse than that of IMF and Item-CF for the three domains of the
Last.FM dataset. This is consistent with a similar observation in literature that,
factorizing a user-item preference matrix by assuming an implicit preference to
be an explicit rating yields poor performance [8]. Between IMF and Item-CF,
the results suggest that IMF is better than Item-CF for recommending friends
and tags, but slightly worse than Item-CF for recommending artists, together
suggesting that IMF is a better single-domain approach for the Last.FM dataset.

Analysis of the DBLP Dataset: As can be seen from the results in Table 1
for the Co-Author, Conference, and Reference domains, our CIMF approach is
generally better than the single domain approaches for all three DBLP domains
as well, with bigger improvements observed for the Conference and Reference
domains, especially when comparing CIMF to the Item-CF and MF approaches.
When comparing CIMF with IMF, although there is a good improvement in the
MAP and Recall values for the Co-Author domain, we observe a smaller increase
in these metrics for the Conference and Reference domains. Finally, when com-
paring CIMF with WAN and WAR approaches, we can see from the results in

Cross-Domain Matrix Factorization for Multiple Implicit-Feedback Domains 89

Table 1 that our CIMF approach has better MAP and Recall scores in all three
domains, with bigger improvements observed for the Conference and Reference
domains. This suggests that our CIMF approach is a superior cross-domain app-
roach compared to WAN and WAR approaches for this dataset as well. Among
the single-domain approaches, IMF is slightly worse than Item-CF when recom-
mending co-authors, but is significantly better when the task is to recommend
conferences and references. The weaker performance of IMF for the co-author
domain most probably relates to the way in which co-author relationships are
formed in real-world. Authors often collaborate with acquaintances as opposed
to unknown authors. For a user, Item-CF recommends authors who frequently
co-authored with the co-authors of the current user, while IMF recommends
more global co-authors, which might explain why Item-CF might be a better
choice among the two approaches for this domain. Finally, similar to what we
observed for Last.FM, MF again has the lowest MAP and Recall values.

We want to emphasize that in real-world, it is possible for a user to use
an item again in the future although the item has been used by that user in
the past. In our experiments, for both the datasets, we only test on items that
the user has not preferred in the past. However, as timestamp information is
available for the DBLP dataset, we evaluated the performance of all algorithms
without filtering preferred items from the test set. As expected, the MAP and
Recall values from all algorithms increased by about 20 % to 50 % for the three
domains, specifically, the MAP scores of CIMF for the Co-Author, Conference,
and Reference domains are 0.0774, 0.1252, and 0.0645, respectively, and are still
better than the values from other approaches. This is intuitive because authors
repeat collaborations with other authors, publish in conferences in which they
have published in the past, and refer papers they have cited in the past.

User Overlap Scenarios: As discussed in Sect. 3, our CIMF approach requires
a partial overlap between users in source and target domains to facilitate trans-
fer of knowledge. To better understand the effectiveness of our approach in
improving target accuracy as compared to single-domain approaches, we con-
ducted several experiments by varying the percentage of user overlap between
the source and target domains, specifically, we considered 25 % overlap, 50 %
overlap, and 75 % overlap. For example, 25 % overlap means that 25 % of users
in target domain are in the source domains and vice versa. For each overlap
scenario, we compare the performance of CIMF with the performance of IMF.
From the results reported in Table 2, we can observe that our CIMF approach
has better performance compared to IMF, across all percentages of overlap and
for all target domains considered. This suggests that our approach can handle
varying user overlap percentages between source and target domains and is effec-
tive in improving target recommendation accuracy as compared to IMF. While
the performance improvement of CIMF relative to IMF is considerable for the
Artist, Friend, Tag, and Co-Author domains, the improvement is smaller for the
Conference and Reference domains (across all overlap percentages) similar to
what we have observed in Table 1. Note that when creating the training and test
sets for these experiments, we only ensure that the target and source domains

90 R. Parimi and D. Caragea

have the specified percentage of users in common. We do not ensure that the
training set for one overlap percentage is built on top of the previous training set
corresponding to the previous overlap percentage, as our main goal was to show
that our approach can handle different percentages of user overlap, as opposed
to showing that the performance increases with the amount of overlap.

Table 2. The MAP@10 scores of IMF and CIMF for the six target domains considered
when user overlap between sources and target is varied from 25% to 50%, and to 75%.

Target domain Algorithm Percentage User Overlap

25% 50 % 75 %

Artist IMF 0.0651 0.0660 0.0669

CIMF 0.0682 0.0693 0.0690

Friend IMF 0.0651 0.0756 0.0773

CIMF 0.0705 0.0791 0.0847

Tag IMF 0.1008 0.1065 0.1077

CIMF 0.1351 0.1381 0.1460

Co-author IMF 0.0331 0.0324 0.0317

CIMF 0.0342 0.0351 0.0355

Conference IMF 0.0992 0.0994 0.1012

CIMF 0.0995 0.1001 0.1015

Reference IMF 0.0469 0.0470 0.0463

CIMF 0.0470 0.0472 0.0466

6 Summary and Future Work

In this paper, we proposed a novel cross-domain matrix factorization approach
for transferring knowledge from multiple source domains to a target domain.
Our method first identifies user and item latent factors in the source domains,
and later integrates the source user latent factors into the target through a reg-
ularization technique. The novelty of the algorithm includes its ability to handle
multiple source domains, heterogeneous items across domains, and implicit feed-
back. Also, the algorithm requires only a partial user overlap as opposed to a
complete user overlap between source and target domains. Our experimental
study shows that the proposed approach was effective in improving the MAP
scores in majority of the target recommendation tasks considered as compared
to two previously proposed cross-domain and three single-domain approaches.
Furthermore, our results show that the CIMF approach can prevent negative
transfer, as we only require the user latent factors in source and target domains
to be similar through the regularization terms. Finally, experiments under dif-
ferent user overlap scenarios produced encouraging results. As future work, we

Cross-Domain Matrix Factorization for Multiple Implicit-Feedback Domains 91

plan to create more overlapping scenarios and further test the effectiveness of our
approach to improve target recommendation accuracy. Furthermore, we intend
to perform similar study on other cross-domain datasets, and also to study the
performance of our approach as a function of the sparsity of the target domain.

Acknowledgements. The computing for this project was performed on the Beocat
Research Cluster at Kansas State University, which is funded, in part, by grants MRI-
1126709, CC-NIE-1341026, MRI-1429316, CC-IIE-1440548.

References

1. Berkovsky, S., Kuflik, T., Ricci, F.: Cross-domain mediation in collaborative filter-
ing. In: Conati, C., McCoy, K., Paliouras, G. (eds.) UM 2007. LNCS (LNAI), vol.
4511, pp. 355–359. Springer, Heidelberg (2007)

2. Berkovsky, S., Kuflik, T., Ricci, F.: Distributed collaborative filtering with domain
specialization. In: Proceedings of RecSys (2007)

3. Cantador, I., Brusilovsky, P., Kuflik, T.: 2nd workshop on information heterogene-
ity and fusion in recommender systems (hetrec 2011). In: Proceedings of RecSys
(2011)

4. Cremonesi, P., Tripodi, A., Turrin, R.: Cross-domain recommender systems. In:
Proceedings of ICDMW (2011)

5. Gao, S., Luo, H., Chen, D., Li, S., Gallinari, P., Guo, J.: Cross-domain recommen-
dation via cluster-level latent factor model. In: Blockeel, H., Kersting, K., Nijssen,
S., Železný, F. (eds.) ECML PKDD 2013, Part II. LNCS, vol. 8189, pp. 161–176.
Springer, Heidelberg (2013)

6. Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative
filtering recommender systems. ACM Trans. Inf. Syst. 22, 5–53 (2004)

7. Hu, L., Cao, J., Xu, G., Cao, L., Gu, Z., Zhu, C.: Personalized recommendation
via cross-domain triadic factorization. In: Proceedings of WWW (2013)

8. Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback
datasets. In: Proceedings of ICDM (2008)

9. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender
systems. IEEE Comput. 42(8), 30–37 (2009)

10. Li, B., Yang, Q., Xue, X.: Can movies and books collaborate?: cross-domain col-
laborative filtering for sparsity reduction. In: Proceedings of IJCAI (2009)

11. Li, B., Yang, Q., Xue, X.: Transfer learning for collaborative filtering via a rating-
matrix generative model. In: Proceedings of ICML (2009)

12. Pan, W., Xiang, E.W., Liu, N.N., Yang, Q.: Transfer learning in collaborative
filtering for sparsity reduction. In: Proceedings of AAAI (2010)

13. Parimi, R., Caragea, D.: Leveraging multiple networks for author personalization.
In: Scholarly Big Data, AAAI Workshop (2015)

14. Said, A., Belloǵın, A.: Comparative recommender system evaluation: benchmarking
recommendation frameworks. In: Proceedings of RecSys (2014)

15. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering
recommendation algorithms. In: Proceedings of WWW (2001)

16. Shapira, B., Rokach, L., Freilikhman, S.: Facebook single and cross domain data
for recommendation systems. User Model. User-Adap. Interact. 23, 211–247 (2013)

17. Singh, A.P., Gordon, G.J.: Relational learning via collective matrix factorization.
In: Proceedings of ACM SIGKDD (2008)

92 R. Parimi and D. Caragea

18. Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and
mining of academic social networks. In: Proceedings of KDD (2008)

19. Winoto, P., Tang, T.: If you like the devil wears prada the book, will you also enjoy
the devil wears prada the movie? a study of cross-domain recommendations. New
Gener. Comput. 26(3), 209–225 (2008)

20. Zhou, Y., Wilkinson, D., Schreiber, R., Pan, R.: Large-scale parallel collaborative
filtering for the netflix prize. In: Fleischer, R., Xu, J. (eds.) AAIM 2008. LNCS,
vol. 5034, pp. 337–348. Springer, Heidelberg (2008)

Advanced Metamodeling Techniques Applied
to Multidimensional Applications

with Piecewise Responses

Toufik Al Khawli1(&), Urs Eppelt1, and Wolfgang Schulz2

1 Department for Nonlinear Dynamics of Laser Processing (NLD),
RWTH Aachen University, Aachen, Germany

{toufik.al.khawli,urs.eppelt}@nld.rwth-aachen.de
2 Fraunhofer Institute for Laser Technology ILT, Aachen, Germany

wolfgang.schulz@ilt.fraunhofer.de

Abstract. Due to digital changes in the solution properties of many engineering
applications, the model response is described by a piecewise continuous function.
Generating continuous metamodels for such responses can provide very poor fits
due to the discontinuity in the response. In this paper, a new smart sampling
approach is proposed to generate high quality metamodels for such piecewise
responses. The proposed approach extends the Sequential Approximate Opti-
mization (SAO) procedure, which uses the Radial Basis Function Network
(RBFN). It basically generates accurate metamodels iteratively by adding new
sampling points, to approximate responses with discrete changes. The new
sampling points are added in the sparse region of the feasible (continuous)
domain to achieve a high quality metamodel and also next to the discontinuity to
refine the uncertainty area between the feasible and non-feasible domain. The
performance of the approach is investigated through two numerical examples, a
two- dimensional analytical function and a laser epoxy cutting simulation model.

Keywords: Metamodeling � Classification � Radial basis function network �
Approximation � Multi-objective optimization � Genetic algorithm � Sequential
approximate optimization � Density function

1 Introduction

In everyday engineering applications, multidisciplinary design is required where the
product performance and the manufacturing plans are designed simultaneously. The
main objective is then to optimize the design process in the most efficient way allowing
the designer the flexibility to involve as many disciplines, objectives, and computa-
tional processes as possible. During the 1980’s, virtual prototyping was successfully
introduced to the engineering community. Virtual prototyping involves computer-aided
design (CAD), computer-automated design (CAutoD) and computer-aided engineering
(CAE) software to predict fundamental design problems as early as possible in the
design process. Thus, before going into production, new products were first designed
on the computer by simulation then prototyping different concepts and selecting the
best were simultaneously performed [1].

© Springer International Publishing Switzerland 2015
P. Pardalos et al. (Eds.): MOD 2015, LNCS 9432, pp. 93–104, 2015.
DOI: 10.1007/978-3-319-27926-8_9

The process of learning from simulation results becomes more difficult when the
simulation time as well as the number of parameters increase. This leads to the need for
more efficient approximation models which are called metamodels. The main idea of
these metamodels is to find a fast and cheap approximation model which is a surrogate
of the expensive simulation and can be used to describe the relationship between the
process parameters and criteria [2]. Once a fast metamodel is generated with a moderate
number of computer experiments, it offers making predictions at additional untried
inputs, and thus the conventional engineering tasks such as optimization, sensitivity
analysis, or design space exploration become easily possible due to the numerous
number of evaluation runs that could be performed.

Due to digital changes in the solution properties of many engineering applications
(e.g. topology changes like a material cut-through), the model response is described by
a piecewise function. Identifying the region of the discontinuity is not explicit, since it
is defined by many other parameter relationships or other physical interactions [3].
When applying metamodels to responses with discontinuity, it can provide very poor
fits because metamodels are generally applied to only continuous responses, as the
reason is that they mostly apply fully-steady basis functions.

In this paper, a new smart sampling approach is proposed to generate high quality
metamodels for piecewise responses. The proposed approach extends the Sequential
Approximate Optimization (SAO) procedure, which uses the Radial Basis Function
network (RBFN). It mainly generates accurate metamodels iteratively while adding
new sampling points, which allows to approximate discrete-continuous responses. The
new sampling points are added as follows: (i) in the sparse region of the feasible
domain to achieve a high quality metamodel, and (ii) next to the discontinuity to refine
the uncertainty area between the feasible and non-feasible domain.

The paper is organized as follows: Sect. 2 describes the formulation of the proposed
methodology in detail. In this section, the radial basis function network method,
classification, cross-validation, and smart sampling techniques are briefly presented. In
Sect. 3, the method is applied onto two test cases, where the results of each are
discussed. Finally the concluding remarks and future work are provided in Sect. 4.

2 Metamodeling Approaches for Responses
with Discontinuity

After defining the design objectives, identifying the problem’s input parameters and
output criteria, and defining the lower and upper bounds for the domain space, a
metamodel can be generated by one of the two approaches: the one-shot approach or
the iterative approach.

2.1 One Shot Approach

The seven main steps typically involved in constructing a one shot metamodel are:
1- sampling the design-space; 2- evaluating the response of the referencemodel; 3- splitting
the data; 4- interpolating the feasible data; 5- classification of the domain space;

94 T. Al Khawli et al.

6- merging the classification model and interpolation model; and 7- validating the
metamodel as shown in Fig. 1.

• Step 1. The procedure to efficiently sample the parameter space is addressed by
so-called Design of Experiments (DOE) techniques. These sampling methods are
categorized either as classical sampling methods [4] such as (factorial designs,
central composite design, Box-Behnken, etc…), or simulation sampling methods.
Kleijnen et al. [5] proposed that experimental designs for deterministic computer
simulations should be space-filling. Space-filling designs such as Latin hypercube
design and orthogonal arrays design provide a high flexibility when estimating a
large number of linear and nonlinear effects. The samplings determined by the
methods above are generated all at once. That is why this metamodeling approach is
called a “one shot approach”.

• Step 2. A validated reference or original model (analytical functions, reduced
model, full numerical simulation, or even experiments) is required for metamod-
eling. In this step, a discontinuity value (DiscVal), must be set to represent and
distinguish the discontinuity in the domain space.

• Step 3. Split the sampling data according to the DiscVal to two training data sets TF
and TC, such as

TF ¼ xF ; yFð Þf gnFi¼1; TC ¼ xC; yCð Þf gni¼1; ð1Þ

where indexes F, C, nF, and n represent the feasible sampling data (no discontinuity
values), the classification data (full data set), the number of feasible sampling data, and
the number of the full data set respectively. The vector yC is rescaled to values equal to
either −1 that correspond to DiscVal, or 1 that correspond to feasible values.

• Step 4. Construct a metamodel of the feasible data set TF. Out of numerous
metamodeling techniques in literature [6], the Radial Basis Function Network
(RBFN) is well known for its accuracy and its ability to generate multidimensional
interpolations for complex nonlinear problems [7]. The radial basis function
interpolant for the feasible data FF(x) is given by:

1-Sampling

4-Interpolation 5-Classification

2-Evaluate on the Reference Model

3-Split

6-Merge

7-Validation

Feasible Data

Fig. 1. Flow diagram of the one shot metamodel approach

Advanced Metamodeling Techniques 95

FFðxÞ ¼
XnF
i¼1

wFihFi x� xFik kð Þ ; ð2Þ

where nF, hi, ||.||, correspond to the number of sampling points of the feasible set, the ith

basis function, and the Euclidian distance respectively. In this work, the multiquadric
function and its corresponding width rM are chosen according to [8]. They are defined
by:

hF xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

r2M

s
; rM ¼ 0:81 � d; d ¼ 1

nF

XnF
i¼1

di; ð3Þ

where di is the distance between the ith data point and its nearest neighbor. The weight
vector wF, is calculated according to:

wF ¼ HT
FHF þK

� ��1
HT

FyF ; ð4Þ

HF ¼
h1 x1ð Þ h2 x1ð Þ . . . hnF x1ð Þ
h1 x2ð Þ h2 x2ð Þ . . . hnF x2ð Þ

..

. ..
. . .

. ..
.

h1 xnFð Þ h2 xnFð Þ . . . hnF xnFð Þ

2
6664

3
7775 ; K ¼

k 0 . . . 0
0 k . . . 0
..
. ..

. . .
. ..

.

0 0 . . . k

2
664

3
775; ð5Þ

where λ is a regularization parameter which determines the relative importance of the
smoothness of the function and

yF ¼ yF1 ; yF2 ; � � � ; yFnFð Þ : ð6Þ

• Step 5. Perform a classification task in order to decompose design space into
feasible and non-feasible regions and to detect the discontinuity. By applying the
Cover’s theorem [9], the domain space ψ that is formed by set of n vectors xC, can
be split into two classes ψ1 and ψ2 by assigning a dichotomy of surfaces. This is
done in Step 3 where a value of −1 is assigned to non-feasible regions and a value
of 1 is assigned to feasible regions. A RBF neural network is used to perform a
classification task. The domain space ψ is said to be separable if there exists a vector
wC such that:

CðxÞ ¼
Xn
i¼1

wCihCi x� xCk kð Þ[0; x 2 W1;

CðxÞ ¼
Xn
i¼1

wCihCi x� xCk kð Þ\0; x 2 W2:

ð7Þ

96 T. Al Khawli et al.

The discontinuity in the domain space is defined by the equation

CðxÞ ¼
Xn
i¼1

wCihCi x� xCk kð Þ ¼ 0; ð8Þ

where, wC is defined similar to Eq. (4) by considering the whole data set of size n. The
first order linear spline basis and the vector yC are defined as:

hðxÞ ¼ xj j: ð9Þ

• Step 6. Merge the classification model and feasible interpolation metamodel in one
function such as:

f ðxÞ ¼ FFðxÞ if CðxÞ[0
DiscVal if C xð Þ� 0

:

�
ð10Þ

• Step 7. Validate the metamodel. The validation techniques are mainly used to
estimate the quality of the metamodel in terms of the prediction accuracy. For
quantifying the model accuracy, the Relative Mean Squared Error coefficient
(RMSE) and the Coefficient of Determination (R2) statistical measures are calculated
on an additional data. RMSE percentage represents the deviation of the metamodel
from the real simulation model, and is defined as:

RMSE ¼ 1
nVS

XnVS

i¼1

yi � f xið Þ
yi

� �2

; ð11Þ

where nVS is the number of the validation data set, yi is the output dependent variable
of the validation set, and f(xi) is the metamodeling function of the parameter vector xi.
The smaller the RMSE value, the more accurate the metamodel is. Additionally R2 is an
error performance measure which takes into account the variance and captures how
irregular the sample data is [10]. R2 is calculated according to:

R2 ¼ 1� MSE
variance

; variance ¼ 1
nVS

XnVS

i¼1
yi � �yið Þ2: ð12Þ

MSE is as defined as the relative mean squared error (similar to Eq. (11) without
dividing by yi). The closer the value of R

2 gets to 1, the more accurate the metamodel
becomes.

Advanced Metamodeling Techniques 97

2.2 Iterative Smart Sampling Approach

Regardless of the metamodel use, there is always a concern of achieving high accuracy
with respect to the sampling size, the sampling method, and the metamodeling method.
An important research issue associated with metamodeling is how to obtain a good
accuracy for metamodels with reasonable sampling techniques. This was recently
addressed by the Sequential Approximate Optimization (SAO) technique [11–14].
The SAO is an iterative sampling technique that reduces the number of simulation runs,
and at the same time maximizes the information gain of every sampling step by adding
appropriate sampling points until a predefined termination criterion is satisfied. The
goal of the proposed approach, shown in Fig. 2, is to develop an adaptive sampling
method that enhances the effectiveness of generating metamodels for systems that
contains a discontinuity. There are two ways to enhance the accuracy of the meta-
model: (1) adding infill points in the feasible sparse region (xSR); (2) adding sampling
point next to the discontinuity (xDISC) to reduce the uncertainty in the region that lies in
the range [−1,1]. The proposed methodology that is shown in Fig. 2 involves, in
addition to the seven major steps listed before, two additional steps.

• Step 8. Adding new sampling points. In order to add infill points in the feasible
sparse region xSR, the density function, which is proposed by Kitayama [13], is
constructed according to the equation:

DðxÞ ¼
Xn
i¼1

wDihDi x� xCk kð Þ; ð13Þ

9-Termination
Criteria met?

No

Yes

8-Addition of new
sampling points

1-Sampling

4-Interpolation 5-Classification

2-Evaluate on the Reference Model

3-Split

6-Merge

Density function

Evolutionary
Constraint

Optimization

Feasible Data

7-Validation

End

Fig. 2. Flow diagram of the proposed smart sampling method

98 T. Al Khawli et al.

where the weights vector wD is defined similar to Eq. (4) with considering the whole
data set of size n, and yD is a 1-by-n vector of +1. In order to achieve a response that
decreases monotonically between the sampling points, the gauss basis function hD is
employed as the basis function with a width rG chosen according to Nakayama [11]:

hD xð Þ ¼ exp � x2

r2G

� �
; rG ¼ dmaxffiffiffiffiffi

pnp
p ; ð14Þ

where dmax is the distance between the ith data point and its farthest neighbor, p is the
number of parameters, and n is the number of the training points. The additional point
(xSR) is acquired by minimizing the multidimensional density function restricted only to
the feasible region. The mathematical problem is formulated as follows:

minDðxÞ
subjected to

CðxÞ[0

lðiÞ\xi\uðiÞ 1� i� p;

ð15Þ

where l and u denotes the minimum and maximum ranges of every parameter, and
p denotes the parameter number. Second, adding sampling point xDISC, in the
dichotomy metamodel to reduce the uncertainty region that ranges between −1 to 1. In
this minimization problem, the threshold value in Eq. (16) was set to 0.2 in order to
acquire values that lie in the range of −0.2 to 0.2. The discontinuity has a higher
certainty to exist within this range. Thus the mathematical problem is formulated as
follows:

minDðxÞ
subjected to

Cð�XÞj j � threshold

lðiÞ\xi\uðiÞ 1� i� p:

ð16Þ

The constrained multidimensional optimization problem listed in Eqs. (15) and (16)
are solved by interfacing the metamodel with the evolutionary genetic algorithm library
NSGA-II [15].

• Step 9. Terminating. In this paper the iteration number is chosen to be the termi-
nation criterion. Once the maximum iteration number, set by the user, is reached,
the algorithm terminates. Or else, add new sampling points are generated by going
to Step 2.

Advanced Metamodeling Techniques 99

3 Numerical Results

3.1 Two-Dimensional Analytical Function

In the first test case, the iterative smart sampling algorithm is applied on a
two-dimensional piecewise function y(x1, x2) defined by:

yðx1; x2Þ ¼
x21 þ x22�62ð Þ2 þ x21 þ 0:5x1�0:5x2�1:5ð Þ2

100 þ 10 if x1 � 7ð Þ2 þ x2 þ 7ð Þ2 [80
NULL if x1 � 7ð Þ2 þ x2 þ 7ð Þ2 � 80

(
;

in a design space limited to −7 < x1,2 < 7. The function is plotted in Fig. 3. The goal of
this example is to create a metamodel that resembles the analytical function y which
contains a discontinuity (DiscVal is set here to NULL). The algorithm starts by fitting a
radial basis function and a radial basis linear classifier to a training initial data set
containing 9 sampling points. The initial training experimental design set is obtained by
a 3-levels full factorial design. The resulting initial metamodel, with the corresponding
classification model, and density function are plotted in Fig. 4. The new proposed
sampling points, which are acquired from the optimization algorithm, are illustrated by
a green and white stars denoting the xDISC next to the discontinuity and xSR in the sparse
feasible region respectively. The update procedure is repeated and this process is
continued until the predefined terminating criterion (30 iterations) is met. The results in
Fig. 4 show that the contour shapes in the metamodel become similar to the ones in
Fig. 3 by simply adding more sampling points in the feasible region. At the same time,
the gray region which represents the uncertainty in the classification model decreases
while adding more sampling points next to the discontinuity.

3.2 Laser Epoxy Cutting

In this test case, the superior performance of the proposed smart sampling algorithm is
demonstrated on a real design manufacturing application- laser epoxy cutting. One of
the challenges in cutting glass fiber reinforced plastics by using a pulsed laser beam, is
to estimate achievable cutting qualities. An important factor for the process improve-
ment is first to detect the physical cutting limits and then to minimize the damage
thickness of the epoxy-glass material. EpoxyCut, which is a tool developed by the
Chair Nonlinear Dynamics of Laser Processing (NLD) of RWTH Aachen, is a reduced

Fig. 3. Two-dimensional analytical function example

100 T. Al Khawli et al.

model that calculates the upper and lower cutting width, in addition to other criteria like
melting threshold, time required to cut through, and damage thickness [16]. In this
paper, the reduced model is considered as a black-box model. For further details on the
mathematical analysis, the reader is referred to [17]. The goal of this test case is to:
(i) minimize the lower cutting width while minimizing the laser power; (ii) detect the

Smart sampling algorithm after 10 iterations:

Smart sampling algorithm after 30 iterations:

Smart sampling algorithm after 1 iteration:

Initial sampling model:

Fig. 4. Interpolation Metamodel (Left), Classification model (Middle), Density function (Right)
of the two-dimensional analytical function y(x1,x2) for different iteration steps. The white region
represents the non-feasible region. In the classification model, the gray region between the red
(feasible) and blue (non-feasible) represent the uncertainty region. The density function reflects
the position of the sampling points (Color figure online).

Advanced Metamodeling Techniques 101

cutting limits; and (iii) efficiently generate an accurate metamodel. The laser was
modeled as a Gaussian beam. The material thickness, the focal position, the beam
radius, and the Rayleigh length were kept constant at 1 mm, 0 mm, 70 um, and
1.28 mm respectively. The metamodeling process parameters are selected to be the
pulse duration tP (10–1000 µs) and the laser power PL, (10–5000 W). The criterion is
the cutting width at the bottom of the material WB.

With the help of a first-order polynomial regression metamodel, a process map on a
50 × 50 Grid is generated and shown in left plot of Fig. 5.

The white color in the contour plot represents the discontinuity (non-feasible
region, no cut region) in the process domain. The physical interpretation is plausible. If
the laser power or the pulse duration is not large enough to melt a specific material
at the bottom of the work piece, cut through does not occur, and the relationship
between the laser intensity and the cutting width bottom is determined by a disconti-
nuity value. Otherwise if the intensity exceeds the energy material threshold, cutting
occurs and the response between the laser intensity and the cutting width becomes
continuous. For generating an accurate metamodel for this response, while using the
minimal number of simulation runs, the proposed smart sampling algorithm is applied
with a maximum of 30 iterations starting with a 3-levels full factorial model (Fig. 6).

Fig. 5. Parameter space analyses of the cutting width at the bottom on laser power and pulse
duration. The plots are generated by the numerical model EpoxyCut using 2500 simulations
(Left) and the Metamodel using 69 simulations (Right). The big black points in the metamodel
represent the sampling points generated by the smart sampling algorithm.

Fig. 6. Evolution of the two-dimensional Contour Plots of the metamodel after 10 iterations
(Left), 20 iterations (Middle), and 30 iterations (Right)

102 T. Al Khawli et al.

In every iteration step, the relative mean squared error (RMSE) and the coefficient
of determination (R2) of the cutting width are calculated and plotted in Fig. 7. The
results show that the quality of the metamodel improves when more training points are
added till a convergence is reached. The advantage in this iterative technique is that the
algorithm can be controlled by the user. If a maximum iteration number or a required
quality is reached, the algorithm is terminated, and there is no need for further simu-
lation evaluations.

The main advantage of using a metamodel in this process over the full scale
simulation is the minimization of the time required to generate the process map. The
full data set is 2500 samples in total. It takes EpoxyCut around 5 s to estimate the
cutting width for one parameter set. Thus, the total computation time required for
generating such a process map will be around 3.5 h. However by using the fast
metamodel, it takes the metamodel, generated after 30 iterations with 69 sampling
points, about 0.003 s to evaluate one run, thus for the same grid, the process map
requires around 7.5 s only.

4 Conclusions

In this paper, a new smart sampling algorithm for generating metamodels with piece
wise responses is proposed. The algorithm interfaces the sequential approximation
optimization (SAO) and the Radial Basis Function Network (RBFN). The RBFN, with
the three different basis functions- multiquadric, gauss, and linear spline, is used to
construct the interpolation model, the classification model and the density function. The
numerical examples indicate that the proposed algorithm provides better and more
efficient results than conventionally used methods in the application cases shown, and
that it can also be used in conjunction with multidimensional models. The main focus
in the future work is to test the proposed algorithm on applications that have a high
dimensional parameter space (5 to 8 parameters). For improving the performance of the
algorithm, additional smart points will be considered such as the global optimum as
well as the Expected Improvement (via Kriging-method) in the feasible domain.

Fig. 7. The statistical measures RMSE (left) and R2 (right) are generated to validate the quality
of the metamodel. The blue line represents validation of a one shot metamodel generated from
10-levels full factorial design. The plots show that the same quality achieved by 100 sampling
points from full factorial design can be achieved similarly by 60 sampling points generated by the
proposed smart sampling algorithm (Color figure online).

Advanced Metamodeling Techniques 103

Acknowledgements. The authors would like to thank the German Research Association DFG
for the kind support within the Cluster of Excellence “Integrative Production Technology for
High-Wage Countries” of RWTH Aachen University.

References

1. Stinstra, E.: The Meta-Model Approach FOR Simulation-Based Design Optimization.
CentER, Center for Economic Research, Tilburg (2006)

2. Eppelt, U., Al Khawli, T.: Metamodeling of laser cutting, presentation and proceedings
paper In: ICNAAM—12th International Conference of Numerical Analysis and Applied
Mathematics, 22–28 September 2014

3. Meckesheimer, M., Barton, R., Simpson, T., Limayem, F., Yannou, B.: Metamodeling of
combined discrete/continuous responses. AIAA J. 39, 1950–1959 (2001)

4. Box, G.E.P., Draper, N.R.: Empirical Model-Building and Response Surfaces, p. 424.
Wiley, New York (1987). ISBN 0-471-81033-9

5. Kleijnen, J.P., Sanchez, S.M., Lucas, T.W., Cioppa, T.M.: State of- the-art review: a user’s
guide to the brave new world of designing simulation experiments. INFORMS J. Comput.
17(3), 263–289 (2005)

6. Jurecka, F.: Robust Design Optimization based on Metamodeling Techniques. Shaker
Verlag, Germany (2007)

7. Orr, M.: Introduction to Radial Basis Function Networks, Centre for Cognitive Science,
University of Edinburgh, Buccleuch Place, Edinburgh EH8 9LW, Scotland (1996)

8. Hardy, R.: Multiquadric equations of topography and other irregular surfaces. J. Geophys.
Res. 76(8), 1905–1915 (1971)

9. Haykin, S.: Neural Networks and Learning Machines, 3rd edn. Prentice Hall, Upper Saddle
River (2009)

10. Jin, R, Chen, W., Simpson, T.W.: Comparative studies of metamodeling techniques under
multiple modeling criteria. In: Proceedings of the 8th Symposium on Multidisciplinary
Analysis and Optimization, Long Beach, CA (2001)

11. Nakayama, H., Arakawa, M., Sasaki, R.: Simulation-based optimization using
computational intelligence. Optim. Eng. 3, 201–214 (2002)

12. Deng, Y.M., Zhang, Y., Lam, Y.C.: A hybrid of mode-pursuing sampling method and
genetic algorithm for minimization of injection molding warpage. Mater. Des. 31(4), 2118–
2123 (2010)

13. Kitayama, S., Arakawa, M., Yamazaki, K.: Sequential approximate optimization using radial
basis function network for engineering optimization. Optim. and Eng. 12(4), 535–557
(2011)

14. Kitayama, S., Srirat, J., Arakawa, M.: Sequential approximate multi-objective optimization
using radial basis function network. Struct. Multi. Optim. 48(3), 501–515 (2013)

15. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

16. Schulz, W., Al Khawli, T.: Meta-modelling techniques towards virtual production
intelligence. In: Brecher, C. (ed.) Advances in Production Technology, pp. 69–84.
Springer International Publishing, Switzerland (2015)

17. Schulz, W., Kostrykin, V., Zefferer, H., Petring, D., Poprawe, R.: A free boundary problem
related to laser beam fusion cutting: ODE apprximation. Int. J. Heat Mass Transfer. 12(40),
2913–2928 (1997)

104 T. Al Khawli et al.

Alternating Direction Method of Multipliers
for Regularized Multiclass Support

Vector Machines

Yangyang Xu1, Ioannis Akrotirianakis2(B), and Amit Chakraborty2

1 Rice University, Houston, TX, USA
yangyang.xu@rice.edu

2 Siemens Corporate Technology, Princeton, NJ, USA
{ioannis.akrotirianakis,amit.chakraborty}@siemens.com

Abstract. The support vector machine (SVM) was originally designed
for binary classifications. A lot of effort has been put to generalize the
binary SVM to multiclass SVM (MSVM) which are more complex prob-
lems. Initially, MSVMs were solved by considering their dual formu-
lations which are quadratic programs and can be solved by standard
second-order methods. However, the duals of MSVMs with regulariz-
ers are usually more difficult to formulate and computationally very
expensive to solve. This paper focuses on several regularized MSVMs
and extends the alternating direction method of multiplier (ADMM) to
these MSVMs. Using a splitting technique, all considered MSVMs are
written as two-block convex programs, for which the ADMM has global
convergence guarantees. Numerical experiments on synthetic and real
data demonstrate the high efficiency and accuracy of our algorithms.

Keywords: Alternating direction method of multipliers · Support
vector machine · Multiclass classification · Elastic net · Group lasso ·
Supnorm

1 Introduction

The linear support vector machine (SVM) [6] aims to find a hyperplane to sep-
arate a set of data points. It was orginally designed for binary classifications.
Motivated by texture classification and gene expression analysis, which usually
have a large number of variables but only a few relevant, certain sparsity reg-
ularizers such as the �1 penalty [4], need to be included in the SVM model to
control the sparsity pattern of the solution and achieve both classification and
variable selection. On the other hand, the given data points may belong to more
than two classes. To handle the more complex multiclass problems, the binary
SVM has been generalized to multicategory classifications [7].

The initially proposed multiclass SVM (MSVM) methods construct sev-
eral binary classifiers, such as “one-against-one” [1], “one-against-rest” [2] and

c© Springer International Publishing Switzerland 2015
P. Pardalos et al. (Eds.): MOD 2015, LNCS 9432, pp. 105–117, 2015.
DOI: 10.1007/978-3-319-27926-8 10

106 Y. Xu et al.

“directed acyclic graph SVM” [17]. These models are usually solved by con-
sidering their dual formulations, which are quadratic programs often with fewer
variables and can be efficiently solved by quadratic programming methods. How-
ever, these MSVMs may suffer from data imbalance (i.e., some classes have much
fewer data points than others) which can result in inaccurate predictions. One
alternative is to put all the data points together in one model, which results in
the so-called “all-together” MSVMs; see [14] and references therein for the com-
parison of different MSVMs. The “all-together” MSVMs train multi-classifiers
by solving one large optimization problem, whose dual formulation is also a
quadratic program. In the applications of microarray classification, variable selec-
tion is important since most times only a few genes are closely related to certain
diseases. Therefore some structure regularizers such as �1 penalty [19] and �∞
penalty [23] need to be added to the MSVM models. With the addition of the
structure regularizers, the dual problems of the aforementioned MSVMs can be
difficult to formulate and hard to solve by standard second-order optimization
methods.

In this paper, we focus on three “all-together” regularized MSVMs. Specifi-
cally, given a set of samples {xi}n

i=1 in p-dimensional space and each xi with a
label yi ∈ {1, · · · , J}, we solve the constrained optimization problem

min
W,b

�G(W,b) + λ1‖W‖1 + λ2φ(W) +
λ3

2
‖b‖2

2, s.t. We = 0, e�b = 0 (1)

where

�G(W,b) =
1

n

n∑

i=1

J∑

j=1

I(yi �= j)[bj + w�
j xi + 1]+

is generalized hinge loss function; I(yi �= j) equals one if yi �= j and zero
otherwise; [t]+ = max(0, t); wj denotes the jth column of W; e denotes the
vector of appropriate size with all ones; ‖W‖1 =

∑
i,j |wij |; φ(W) is some

regularizer specified below. Usually, the regularizer can promote the structure
of the solution and also avoid overfitting problems when the training samples
are far less than features. The constraints We = 0, e�b = 0 are imposed to
eliminate redundancy in W,b and are also necessary to make the loss function
�G Fisher-consistent [16]. The solution of (1) gives J linear classifiers fj(x) =
w�

j x+ bj , j = 1, · · · , J . A new coming data point x can be classified by the rule
class(x) = argmax1≤j≤J fj(x).

We consider the following three different forms of φ(W):

elastic net: φ(W) = 1
2
‖W‖2

F , (2a)

group Lasso: φ(W) =
∑p

j=1 ‖wj‖2, (2b)

supnorm: φ(W) =
∑p

j=1 ‖wj‖∞, (2c)

where wj denotes the jth row of W. They fit to data with different structures
and can be solved by a unified algorithmic framework. Note that we have added
the term λ3

2 ‖b‖22 in (1). A positive λ3 will make our algorithm more efficient
and easier to implement. The extra term usually does not affect the accuracy of

ADMM for regularized MSVM 107

classification and variable selection as shown in [14] for binary classifications. If
λ3 happens to affect the accuracy, one can choose a tiny λ3. Model (1) includes
as special cases the models in [16,23] by letting φ be the one in (2a) and (2c)
respectively and setting λ1 = λ3 = 0. To the best of our knowledge, the regular-
izer (2b) has not been considered in MSVM before. It encourages group sparsity
of the solution [22], and our experiments will show that (2b) can give similar
results as those by (2c). Our main contributions are: (i) the development of a
unified algorithmic framework based on the ADMM that can solve MSVMs with
the three different regularizers defined in (2); (ii) the proper use of the Woodbury
matrix identity [13] which can reduce the size of the linear systems arising dur-
ing the solution of (1); (iii) computational experiments on a variety of datasets
that practically demonstrate that our algorithms can solve large-scale multiclass
classification problems much faster than state-of-the-art second order methods.

We use e and E to denote a vector and a matrix with all ones, respectively.
I is used for an identity matrix. Their sizes are clear from the context.

The rest of the paper is organized as follows. Section 2 gives our algorithm
for solving (1). Numerical results are given in Sect. 3 on both synthetic and real
data. Finally, Sect. 4 concludes this paper.

2 Algorithms

In this section we extend ADMM into the general optimization problems
described by (1). Due to lack of space we refer the reader to [3] for details of
ADMM. We first consider (1) with φ(W) defined in (2a) and then solve it with
φ(W) in (2b) and (2c) in a unified form. The parameter λ3 is always assumed
positive. One can also transform the MSVMs to quadratic or second-order cone
programs and use standard second-order methods to solve them. Neverthe-
less, these methods are computationally intensive for large-scale problems. As
shown in Sect. 3, ADMM is, in general, much faster than standard second-order
methods.

2.1 ADMM for Solving (1) with φ defined by (2a)

Introduce auxiliary variables A = X�W + eb� + E and U = W, where X =
[x1, · · · ,xn] ∈ R

p×n. Using the above auxiliary variables we can equivalently
write (1) with φ(W) defined in (2a) as follows

min 1
n

∑

i,j

cij [aij]+ + λ1‖U‖1 + λ2
2

‖W‖2
F + λ3

2
‖b‖2

2

s.t. A = X�W + eb� + E, U = W,We = 0, e�b = 0.
(3)

The augmented Lagrangian1 of (3) is

L1(W,b,A,U, Π , Λ) = 1
n

∑

i,j

cij [aij]+ + λ1‖U‖1 + λ2
2

‖W‖2
F + λ3

2
‖b‖2

2 + 〈Λ,W − U〉
+μ

2
‖W − U‖2

F + 〈Π ,X�W + eb� − A + E〉
+α

2
‖X�W + eb� − A + E‖2

F ,

(4)
1 We do not include the constraints We = 0, e�b = 0 in the augmented Lagrangian,

but instead we include them in (W,b)-subproblem; see the update (5a).

108 Y. Xu et al.

where Π,Λ are Lagrange multipliers and α, μ > 0 are penalty parameters. The
ADMM approach for (3) can be derived by minimizing L1 alternatively with
respect to (W,b) and (A,U) and updating the multipliers Π,Λ, namely, at
iteration k,

(
W(k+1),b(k+1)) = argmin

(W,b)∈D
L1

(
W,b,A(k),U(k), Π (k), Λ(k)), (5a)

(
A(k+1),U(k+1)) = argmin

A,U
L1

(
W(k+1),b(k+1),A,U, Π (k), Λ(k)), (5b)

Π (k+1) = Π (k) + α
(
X�W(k+1) + e(b(k+1))� − A(k+1) + E

)
, (5c)

Λ(k+1) = Λ(k) + μ
(
W(k+1) − U(k+1)), (5d)

where D = {(W,b) : We = 0, e�b = 0}. The updates (5c) and (5d) are
simple. We next discuss how to solve (5a) and (5b).

Solution of (5a): Define P = [I;−e�] ∈ R
J×(J−1). Let Ŵ be the submatrix

consisting of the first J−1 columns of W and b̂ be the subvector consisting of the
first J − 1 components of b. Then it is easy to verify that W = ŴP�,b = Pb̂
and problem (5a) is equivalent to the unconstrained optimization problem

min
Ŵ,b̂

λ2
2

‖ŴP�‖2
F + 〈Λ(k),ŴP�〉 + λ3

2
‖b̂�P�‖2

2 + μ
2
‖ŴP� − U(k)‖2

F

+〈Π (k),X�ŴP� + eb̂�P�〉 + α
2
‖X�ŴP� + eb̂�P� − A(k) + E‖2

F .
(6)

The first-order optimality condition of (6) is the linear system

[
αXX� + (λ2 + μ)I αXe

αe�X� nα + λ3

] [
Ŵ

b̂�

]
=

⎡

⎣

(
XΘ − Λ(k) + μU(k)

)
P(P�P)−1

e�
(
αA(k) − Π (k) − αE

)
P(P�P)−1

⎤

⎦ ,

(7)
where Θ = αA(k) −Π(k) −αE. The size of (7) is (p+1)× (p+1) and when p is
small, we can afford to directly solve it. However, if p is large, even the iterative
method for linear system (e.g., preconditioned conjugate gradient) can be very
expensive. In the case of “large p, small n”, we can employ the Woodbury matrix
identity (e.g., [13]) to efficiently solve (7). In particular, let D = block diag((λ2+
μ)I, λ3) and Z = [X; e�]. Then the coefficient matrix of (7) is D + αZZ�, and
by the Woodbury matrix identity, we have P(P�P)−1 = [I;0] − 1

J E and

(D + αZZ�)−1 = D−1 − αD−1Z(I + αZ�D−1Z)−1Z�D−1 .

Note D is diagonal, and thus D−1 is simple to compute. I + αZ�D−1Z is
n × n and positive definite. Hence, as n � p, (7) can be solved by solving a
much smaller linear system and doing several matrix-matrix multiplications. In
case of large n and p, one can perform a proximal gradient step to update W
and b, which results in a proximal-ADMM [8]. To the best of our knowledge,
this is the first time that the Woodbury matrix identity is used to substantially
reduce2 the computational work and allow ADMM to efficiently solve large-scale
2 For the case of n � p, we found that using the Woodbury matrix identity can be

about 100 times faster than preconditioned conjugate gradient (pcg) with moderate
tolerance 10−6 for the solving the linear system (7).

ADMM for regularized MSVM 109

multiclass SVMs. Solve (7) by multiplying (D+αZZ�)−1 to both sides. Letting
W(k+1) = ŴP� and b(k+1) = Pb̂ gives the solution of (5a).

Solution of (5b): Note that A and U are independent of each other as W and
b are fixed. Hence we can separately update A and U by

A(k+1) = argmin
A

1

n

∑

i,j

cij [aij]+ +
α

2

∥∥X�W(k+1) + e(b(k+1))� +
1

α
Π (k) + E − A

∥∥2
F

U(k+1) = argmin
U

λ1‖U‖1 +
μ

2

∥
∥W(k+1) +

1

μ
Λ(k) − U

∥
∥2

F
.

Both the above problems are separable and have closed form solutions

a
(k+1)
ij = T cij

nα

((
X�W(k+1) + e(b(k+1))� +

1

α
Π (k) + E

)

ij

)

, ∀i, j, (8)

u
(k+1)
ij = S λ1

μ

((
W(k+1) +

1

μ
Λ(k)

)

ij

)

, ∀i, j, (9)

where

Tν(δ) =

⎧
⎨

⎩

δ − ν, δ > ν,
0, 0 ≤ δ ≤ ν,
δ, δ < 0,

and Sν(δ) = sign(δ)max(0, |δ| − ν). Putting the above discussions together, we
have Algorithm 1 for solving (1) with φ defined in (2a).

Algorithm 1. ADMM for (1) with φ(W) in (2a)
Input: n sample-label pairs {(xi, yi)}n

i=1.
Choose: α, μ > 0 and (W0,b0,A0,U0, Π0, Λ0), k = 0.
while not converge do

Solve (7); let W(k+1) = ŴP� and b(k+1) = Pb̂;

Update A(k+1) and U(k+1) by (8) and (9);

Update Π (k+1) and Λ(k+1) by (5c) and (5d);
Let k = k + 1

2.2 ADMM for Solving (1) with φ defined by (2b) and (2c)

Firstly, we write (1) with φ(W) defined in (2b) and (2c) in the unified form of

min
W,b

�G(W,b) + λ1‖W‖1 +

p∑

j=1

λ2‖wj‖q +
λ3

2
‖b‖2

2, s.t.We = 0, e�b = 0, (10)

where q = 2 for (2b) and q = ∞ for (2c). Introducing auxiliary variables A =
X�W + eb� + E, U = W, and V = W, we can write (10) equivalently to

min 1
n

∑

i,j

cij [aij]+ + λ1‖U‖1 +
p∑

j=1

λ2‖vj‖q + λ3
2

‖b‖2

s.t. A = X�W + eb� + E, U = W, V = W, We = 0, e�b = 0.

(11)

110 Y. Xu et al.

The augmented Lagrangian of (11) is

L2(W,b,A,U,V, Π , Λ, Γ) =
1

n

∑

i,j

cij [aij]+ + λ1‖U‖1 +

p∑

j=1

λ2‖vj‖q +
λ3

2
‖b‖2

2

+ 〈Π ,X�W + eb� − A + E〉 +
α

2
‖X�W + eb� − A + E‖2

F

+ 〈Λ,W − U〉 +
μ

2
‖W − U‖2

F + 〈Γ ,W − V〉 +
ν

2
‖W − V‖2

F , (12)

where Π,Λ,Γ are Lagrange multipliers and α, μ, ν > 0 are penalty parameters.
The ADMM updates for (11) can be derived as

(
W(k+1),b(k+1)

)
= argmin

(W,b)∈D
L2

(
W,b,A(k),U(k),V(k), Π(k), Λ(k), Γ (k)

)
(13a)

(
A(k+1),U(k+1),V(k+1)

)
= argmin

A,U,V
L2

(
W(k+1),b(k+1),A,U,V, Π(k), Λ(k), Γ (k)

)
(13b)

Π(k+1) = Π(k) + α
(
X�W(k+1) + e(b(k+1))� −A(k+1) +E

)
(13c)

Λ(k+1) = Λ(k) + μ
(
W(k+1) −U(k+1)

)
, (13d)

Γ (k+1) = Γ (k) + ν
(
W(k+1) −V(k+1)

)
. (13e)

The subproblem (13a) can be solved in a similar way as discussed in Sect. 2.1.
Specifically, first obtain (Ŵ, b̂) by solving

[
αXX� + (ν + μ)I αXe

αe�X� nα + λ3

] [
Ŵ

b̂�

]
=

[(
XΞ − Λ(k) − Γ (k) + μU(k) + νV(k)

)
P(P�P)−1

e�
(
αA(k) − Π(k) − αE

)
P(P�P)−1

]
,

(14)
where Ξ = αA(k) − Π(k) − αE and then let W(k+1) = ŴP�, b(k+1) = Pb̂.
To solve (13b) note that A,U and V are independent of each other and can
be updated separately. The update of A and U is similar to that described in
Sect. 2.1. We next discuss how to update V by solving the problem

V(k+1) = argmin
V

p∑

j=1

λ2‖vj‖q +
ν

2

∥
∥W(k+1) +

1

ν
Γ (k) − V

∥
∥2

F
(15)

Let Z = W(k+1) + 1
ν Γ (k). According to [22], the solution of (15) for q = 2 is

(
v(k+1)

)j

=

{
0, ‖zj‖2 ≤ λ2

ν
‖zj‖2−λ2/ν

‖zj‖2
zj , otherwise

, ∀j. (16)

For q = ∞, the solution of (15) can be computed via Algorithm 2 (see [5] for
details). Putting the above discussions together, we have Algorithm 3 for solving
(1) with φ(W) given by (2b) and (2c).

2.3 Convergence Results

Let us denote the kth iteration of the objectives of (3) and (11) as

F
(k)
1 = F1

(
W(k),b(k),A(k),U(k)

)
, F

(k)
2 = F2

(
W(k),b(k),A(k),U(k),V(k)

)
, (17)

ADMM for regularized MSVM 111

Algorithm 2. Algorithm for solving (15) when q = ∞
Let λ̃ = λ2

ν
and Z = W(k+1) + 1

ν
Γ (k).

for j = 1, · · · , p do
Let v = zj ;

if ‖v‖1 ≤ λ̃ then

Set
(
v(k+1)

)j

= 0.

else
Let u be the sorted absolute value vector of v: u1 ≥ u2 ≥ · · · ≥ uJ ;

Find r̂ = max
{

r : λ̃ −∑r
t=1(ut − ur) > 0

}

Let v
(k+1)
ji = sign(vi)min

(
|vi|, (∑r̂

t=1 ut − λ̃)/r̂
)

, ∀i.

and define

Z
(k)
1 =

(
W(k),b(k),A(k),U(k), Π (k), Λ(k)

)
,

Z
(k)
2 =

(
W(k),b(k),A(k),U(k),V(k), Π (k), Λ(k), Γ (k)

)
.

Theorem 1. Let {Z(k)
1 } and {Z(k)

2 } be the sequences generated by (5) and (13),
respectively. Then F

(k)
1 → F ∗

1 , F
(k)
2 → F ∗

2 , and ‖X�W(k) + e(b(k))� + E −
A(k)‖F , ‖W(k) − U(k)‖F , ‖W(k) − V(k)‖F all converge to zero, where F ∗

1 and
F ∗
2 are the optimal objective values of (3) and (11), respectively. In addition, if

λ2 > 0, λ3 > 0 in (3), then Z(k)
1 converges linearly.

The proof is based on [8,10] and due to the lack of space we omit it.

3 Numerical Results

We now test the three different regularizers in (2) on two sets of synthetic data
and two sets of real data. As shown in [19] the L1 regularized MSVM works bet-
ter than the standard “one-against-rest” MSVM in both classification and vari-
able selection. Hence, we choose to only compare the three regularized MSVMs.
The ADMM algorithms discussed in Sect. 2 are used to solve the three models.
Until the preparation of this paper, we did not find much work on designing
specific algorithms to solve the regularized MSVMs except [19] which uses a
path-following algorithm to solve the L1 MSVM. To illustrate the efficiency of
ADMM, we compare it with Sedumi [18] which is a second-order method. We
call Sedumi in the CVX environment [12].

3.1 Implementation Details

All our code was written in MATLAB, except the part of Algorithm 2 which
was written in C with MATLAB interface. We used λ3 = 1 for all three models.

112 Y. Xu et al.

Algorithm 3. ADMM for (1) with φ(W) in (2b) and (2c)
Input: n sample-label pairs {(xi, yi)}n

i=1.
Choose: α, μ, ν > 0, set k = 0 and initialize (W0,b0,A0,U0,V0, Π0, Λ0, Γ 0).
while not converge do

Solve (14); let W(k+1) = ŴP� and b(k+1) = Pb̂;

Update A(k+1) and U(k+1) by (8) and (9);

Update V(k+1) by (16) if q = 2 and by Algorithm 2 if q = ∞;

Update Π (k+1), Λ(k+1) and Γ (k+1) by (13c), (13d) and (13e);

In our experiments, we found that the penalty parameters were very important
for the speed of ADMM. By running a large set of random tests, we chose
α = 50J

n , μ =
√

pJ in (4) and α = 50J
n , μ = ν =

√
pJ in (12). Origins were used

as the starting points. As did in [21], we terminated ADMM for (3), that is, (1)
with φ(W) in (2a), if

max

{ ∣
∣F (k+1)

1 −F
(k)
1

∣
∣

1+F
(k)
1

,

∥
∥W(k)−U(k)

∥
∥

F√
pJ

,

∥
∥X�W(k)+e(b(k))�+E−A(k)

∥
∥

F√
nJ

}
≤ 10−5,

and ADMM for (11), that is, (1) with φ(W) in (2b) and (2c), if

max

{ ∣∣F (k+1)
2 −F

(k)
2

∣∣
1+F

(k)
2

,

∥∥X�W(k)+e(b(k))�+E−A(k)
∥∥

F√
nJ

,

∥∥W(k)−U(k)
∥∥

F√
pJ

,

∥∥W(k)−V(k)
∥∥

F√
pJ

}
≤ 10

−5
.

In addition, we set a maximum number of iterations maxit = 5000 for ADMM.
Default settings were used for Sedumi. All the tests were performed on a PC
with an i5-2500 CPU and 3-GB RAM and running 32-bit Windows XP.

Table 1. Results of different models solved by ADMM and Sedumi on a five-class
example with synthetic data. The numbers in parentheses are standard errors.

Models ADMM Sedumi

Accuracy Time CZ IZ NR Accuracy Time CZ IZ NR

Elastic net 0.597(0.012) 0.184 39.98 0.92 2.01 0.592(0.013) 0.378 39.94 1.05 2.03

Group Lasso 0.605(0.006) 0.235 34.94 0.00 3.14 0.599(0.008) 2.250 33.85 0.02 3.25

Supnorm 0.606(0.006) 0.183 39.84 0.56 2.08 0.601(0.008) 0.638 39.49 0.61 2.21

3.2 Synthetic Data

The first test is a five-class example with each sample x in a 10-dimensional
space. The data was generated in the following way: for each class j, the first

ADMM for regularized MSVM 113

two components (x1, x2) were generated from the mixture Gaussian distribution
N (μj , 2I) where for j = 1, · · · , 5,

μj = 2[cos ((2j − 1)π/5) , sin ((2j − 1)π/5)],

and the remaining eight components were independently generated from stan-
dard Gaussian distribution. This kind of data was also tested in [19,23]. We
first chose best parameters for each model by generating n = 200 samples for
training and another n = 200 samples for tuning parameters. For elastic net,
we fixed λ2 = 1 since it is not sensitive and then searched the best λ1 over
C = {0, 0.001, 0.01 : 0.01 : 0.1, 0.15, 0.20, 0.25, 0.30}. The parameters λ1 and
λ2 for group Lasso and supnorm were selected via a grid search over C × C.
With the tuned parameters, we compared ADMM and Sedumi on n = 200
randomly generated training samples and n′ = 50, 000 random testing sam-
ples, and the whole process was independently repeated 100 times. The perfor-
mance of the compared models and algorithms were measured by accuracy (i.e.,
number of correctly predicted

total number), running time (sec), the number of correct zeros (CZ),
the number of incorrect zeros (IZ) and the number of non-zero rows (NR). We
counted CZ, IZ and NR from the truncated solution Wt, which was obtained
from the output solution W such that wt

ij = 0 if |wij | ≤ 10−3 maxi,j |wij | and
wt

ij = wij otherwise. The average results are shown in Table 1, from which we can
see that ADMM produces similar results as those by Sedumi within less time.
Elastic net makes slightly lower prediction accuracy than that by the other two
models.

Table 2. Results of different models solved by ADMM and Sedumi on a four-class
example with synthetic data. The numbers in the parentheses are corresponding stan-
dard errors.

Models ADMM Sedumi

Accuracy Time IZ NZ1 NZ2 NZ3 NZ4 Accuracy Time IZ NZ1 NZ2 NZ3 NZ4

Correlation ρ = 0

Elastic
net

0.977(0.006) 0.27 13.8 37.6 36.9 36.8 37.0 0.950(0.013) 3.75 11.0 40.2 40.0 39.5 40.4

Group
Lasso

0.931(0.020) 0.46 30.4 33.7 33.4 33.2 33.2 0.857(0.022) 12.13 40.5 31.8 31.6 31.8 31.7

Supnorm 0.924(0.025) 0.52 32.6 36.6 36.1 36.4 36.2 0.848(0.020) 13.93 46.6 34.2 33.8 33.7 33.5

Models Correlation ρ = 0.8

Elastic
net

0.801(0.018) 0.19 24.1 29.6 29.7 30.6 29.6 0.773(0.036) 3.74 15.7 35.4 36.3 36.0 35.7

Group
Lasso

0.761(0.023) 0.38 64.0 21.4 21.2 21.3 21.2 0.654(0.023) 12.30 89.7 17.3 17.6 17.5 17.3

Supnorm 0.743(0.023) 0.45 63.1 34.1 34.0 33.9 34.2 0.667(0.016) 14.01 79.8 35.3 35.3 35.3 35.2

The second test is a four-class example with each sample in p-dimensional
space. The data in class j was generated from the mixture Gaussian distribution
N (μj ,Σj), j = 1, 2, 3, 4. The mean vectors and covariance matrices are μ2 =
−μ1,μ4 = −μ3,Σ2 = Σ1,Σ4 = Σ3, and

μ1 = (1, · · · , 1
︸ ︷︷ ︸

s

, 0, · · · , 0
︸ ︷︷ ︸

p−s

)�, μ3 = (0, · · · , 0
︸ ︷︷ ︸

s/2

, 1, · · · , 1
︸ ︷︷ ︸

s

, 0, · · · , 0
︸ ︷︷ ︸
p−3s/2

)�,

114 Y. Xu et al.

Σ1 =

[
ρEs×s + (1 − ρ)Is×s

I(p−s)×(p−s)

]
,

Σ3 =

⎡

⎣
I s

2 × s
2

ρEs×s + (1 − ρ)Is×s

I(p− 3s
2)×(p− 3s

2)

⎤

⎦ .

This kind of data was also tested in [20,21] for binary classifications. We took
p = 500, s = 30 and ρ = 0, 0.8 in this test. As did in last test, the best para-
meters for all models were tuned by first generating n = 100 training samples
and another n = 100 validation samples. Then we compared the different mod-
els solved by ADMM and Sedumi with the selected parameters on n = 100
randomly generated training samples and n′ = 20, 000 random testing samples.
The comparison was independently repeated 100 times. The performance of dif-
ferent models and algorithms were measured by prediction accuracy, running
time (sec), the number of incorrect zeros (IZ), the number of nonzeros in each
column (NZ1, NZ2, NZ3, NZ4), where IZ, NZ1, NZ2, NZ3, NZ4 were counted in a
similar way as that in last test by first truncating the output solution W. Table 2
lists the average results, from which we can see that the elastic net MSVM tends
to give best predictions. ADMM is much faster than Sedumi, and interestingly,
ADMM also gives higher prediction accuracies than those by Sedumi. This is
probably because the solutions given by Sedumi are sparser and have more IZs
than those by ADMM.

Table 3. Original distributions of SRBCT and leukemia data sets

Data set SRBCT Leukemia

NB RMS BL EWS total B-ALL T-ALL AML total

Training 12 20 8 23 63 19 8 11 38

Testing 6 5 3 6 20 19 1 14 34

3.3 Real Data

This subsection tests the three different MSVMs on microarray classifications.
Two real data sets were used. One is the children cancer data set in [15], which
used cDNA gene expression profiles and classified the small round blue cell
tumors (SRBCTs) of childhood into four classes: neuroblastoma (NB), rhab-
domyosarcoma (RMS), Burkitt lymphomas (BL) and the Ewing family of tumors
(EWS). The other is the leukemia data set in [11], which used gene expression
monitoring and classified the acute leukemias into three classes: B-cell acute
lymphoblastic leukemia (B-ALL), T-cell acute lymphoblastic leukemia (T-ALL)
and acute myeloid leukemia (AML). The original distributions of the two data
sets are given in Table 3. Both the two data sets have been tested before on
certain MSVMs for gene selection; see [19,23] for example.

ADMM for regularized MSVM 115

Each observation in the SRBCT dataset has dimension of p = 2308, namely,
there are 2308 gene profiles. We first standardized the original training data
in the following way. Let Xo = [xo

1, · · · ,xo
n] be the original data matrix. The

standardized matrix X was obtained by

xgj =
xo

gj − mean(xo
g1, · · · , xo

gn)

std(xo
g1, · · · , xo

gn)
, ∀g, j.

Similar normalization was done to the original testing data. Then we selected the
best parameters of each model by three-fold cross validation on the standardized
training data. The search range of the parameters is the same as that in the
synthetic data tests. Finally, we put the standardized training and testing data
sets together and randomly picked 63 observations for training and the remaining
20 ones for testing. The average prediction accuracy, running time (sec), number
of non-zeros (NZ) and number of nonzero rows (NR) of 100 independent trials
are reported in Table 4, from which we can see that all models give similar
prediction accuracies. ADMM produced similar accuracies as those by Sedumi
within less time while Sedumi tends to give sparser solutions because Sedumi is
a second-order method and more accurately solves the problems.

Table 4. Results of different models solved by ADMM and Sedumi on SRBCT and
Leukemia data sets

Data Models ADMM Sedumi

Accuracy ime NZ NR Accuracy Time NZ NR

SRBCT Elastic net 0.996(0.014) 1.738 305.71 135.31 0.989(0.022) 8.886 213.67 96.71

Group Lasso 0.995(0.016) 2.116 524.88 137.31 0.985(0.028) 42.241 373.44 96.27

Supnorm 0.996(0.014) 3.269 381.47 114.27 0.990(0.021) 88.468 265.06 80.82

Leukemia Elastic net 0.908(0.041) 1.029 571.56 271.85 0.879(0.048) 30.131 612.16 291.71

Group Lasso 0.908(0.045) 2.002 393.20 150.61 0.838(0.072) 76.272 99.25 44.14

Supnorm 0.907(0.048) 2.211 155.93 74.60 0.848(0.069) 121.893 86.03 41.78

The leukemia data set has p = 7, 129 gene profiles. We standardized the
original training and testing data in the same way as that in last test. Then
we rank all genes on the standardized training data by the method used in [9].
Specifically, let X = [x1, · · · ,xn] be the standardized data matrix. The relevance
measure for gene g is defined as follows:

R(g) =

∑
i,j I(yi = j)(mj

g − mg)
∑

i,j I(yi = j)(xgi − mj
g)

, g = 1, · · · , p,

where mg denotes the mean of {xg1, · · · , xgn} and mj
g denotes the mean of

{xgi : yi = j}. According to R(g), we selected the 3,571 most significant genes.
Finally, we put the processed training and tesing data together and randomly
chose 38 samples for training and the remaining ones for testing. The process
was independently repeated 100 times. Table 4 tabulates the average results,
which show that all three models give similar prediction accuracies. ADMM gave
better prediction accuracies than those given by Sedumi within far less time. The
relatively lower accuracies given by Sedumi may be because it selected too few
genes to explain the diseases.

116 Y. Xu et al.

4 Conclusion

We have developed an efficient unified algorithmic framework for using ADMM
to solve regularized MSVS. By effectively using the Woodbury matrix identity we
have substantially reduced the computational effort required to solve large-scale
MSVMS. Numerical experiments on both synthetic and real data demonstrate
the efficiency of ADMM by comparing it with the second-order method Sedumi.

References

1. Bishop, C.: Pattern Recognition and Machine Learning. Springer, New York (2006)
2. Bottou, L., Cortes, C., Denker, J.S., Drucker, H., Guyon, I., Jackel, L.D., LeCun,

Y., Muller, U.A., Sackinger, E., Simard, P., et al.: Comparison of classifier methods:
a case study in handwritten digit recognition. In: Proceedings of the 12th IAPR
International Conference on Pattern Recognition, vol. 2, pp. 77–82 (1994)

3. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization
and statistical learning via the alternating direction method of multipliers. Found.
Trends Mach. Learn. 3(1), 1–122 (2010)

4. Bradley, P.S., Mangasarian, O.L.: Feature selection via concave minimization and
support vector machines. In: Proceedings of the Fifteenth International Conference
of Machine Learning (ICML 1998), pp. 82–90 (1998)

5. Chen, X., Pan, W., Kwok, J.T., Carbonell, J.G.: Accelerated gradient method
for multi-task sparse learning problem. In: Proceedings of the Ninth International
Conference on Data Mining (ICDM 2009), pp. 746–751. IEEE (2009)

6. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297
(1995)

7. Crammer, K., Singer, Y.: On the algorithmic implementation of multiclass kernel-
based vector machines. J. Mach. Learn. Res. 2, 265–292 (2002)

8. Deng, W., Yin, W.: On the global and linear convergence of the generalized alter-
nating direction method of multipliers. Rice technical report TR12-14 (2012)

9. Dudoit, S., Fridlyand, J., Speed, T.P.: Comparison of discrimination methods for
the classification of tumors using gene expression data. J. Am. Stat. Assoc. 97(457),
77–87 (2002)

10. Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Springer,
Heidelberg (2008)

11. Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P.,
Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D., Lander,
E.S.: Molecular classification of cancer: class discovery and class prediction by gene
expression monitoring. Science 286(5439), 531–537 (1999)

12. Grant, M., Boyd, S.: CVX - Matlab software for disciplined convex programming,
version 2.1 (2014). http://cvxr.com/cvx

13. Hager, W.W.: Updating the inverse of a matrix. SIAM Rev. 31, 221–239 (1989)
14. Hsu, C.W., Lin, C.J.: A comparison of methods for multiclass support vector

machines. IEEE Trans. Neural Netw. 13(2), 415–425 (2002)
15. Khan, J., Wei, J.S., Ringnér, M., Saal, L.H., Ladanyi, M., Westermann, F.,

Berthold, F., Schwab, M., Antonescu, C.R., Peterson, C., et al.: Classification and
diagnostic prediction of cancers using gene expression profiling and artificial neural
networks. Nat. Med. 7(6), 673–679 (2001)

http://cvxr.com/cvx

ADMM for regularized MSVM 117

16. Lee, Y., Lin, Y., Wahba, G.: Multicategory support vector machines. J. Am. Stat.
Assoc. 99(465), 67–81 (2004)

17. Platt, J.C., Cristianini, N., Shawe-Taylor, J.: Large margin dags for multiclass
classification. Adv. Neural Inf. Process. Syst. 12(3), 547–553 (2000)

18. Sturm, J.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmet-
ric cones. Optim. Methods Softw. 11(1–4), 625–653 (1999)

19. Wang, L., Shen, X.: On L1-norm multiclass support vector machines. J. Am. Stat.
Assoc. 102(478), 583–594 (2007)

20. Wang, L., Zhu, J., Zou, H.: Hybrid huberized support vector machines for microar-
ray classification and gene selection. Bioinformatics 24(3), 412–419 (2008)

21. Ye, G.B., Chen, Y., Xie, X.: Efficient variable selection in support vector machines
via the alternating direction method of multipliers. In: Proceedings of the Interna-
tional Conference on Artificial Intelligence and Statistics (2011)

22. Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped
variables. J. Roy. Stat. Soc. Ser. B (Stat. Method.) 68(1), 49–67 (2006)

23. Zhang, H., Liu, Y., Wu, Y., Zhu, J.: Variable selection for the multicategory SVM
via adaptive sup-norm regularization. Electron. J. Stat. 2, 149–167 (2008)

Tree-Based Response Surface Analysis

Siva Krishna Dasari1(B), Niklas Lavesson1, Petter Andersson2,
and Marie Persson1

1 Department of Computer Science and Engineering,
Blekinge Institute of Technology, 371 79 Karlskrona, Sweden

siva.krishna.dasari@bth.se
2 Engineering Method Development, GKN Aerospace Engine Systems Sweden,

Department 9635 - TL3, 461 81 Trollhättan, Sweden

Abstract. Computer-simulated experiments have become a cost effec-
tive way for engineers to replace real experiments in the area of product
development. However, one single computer-simulated experiment can
still take a significant amount of time. Hence, in order to minimize the
amount of simulations needed to investigate a certain design space, dif-
ferent approaches within the design of experiments area are used. One
of the used approaches is to minimize the time consumption and sim-
ulations for design space exploration through response surface model-
ing. The traditional methods used for this purpose are linear regression,
quadratic curve fitting and support vector machines. This paper analy-
ses and compares the performance of four machine learning methods for
the regression problem of response surface modeling. The four methods
are linear regression, support vector machines, M5P and random forests.
Experiments are conducted to compare the performance of tree mod-
els (M5P and random forests) with the performance of non-tree models
(support vector machines and linear regression) on data that is typical
for concept evaluation within the aerospace industry. The main finding
is that comprehensible models (the tree models) perform at least as well
as or better than traditional black-box models (the non-tree models).
The first observation of this study is that engineers understand the func-
tional behavior, and the relationship between inputs and outputs, for
the concept selection tasks by using comprehensible models. The second
observation is that engineers can also increase their knowledge about
design concepts, and they can reduce the time for planning and conduct-
ing future experiments.

Keywords: Machine learning · Regression · Surrogate model · Response
surface model

1 Introduction

The design phase is an important step of product development in the manufac-
turing industry. In order to design a new product, the engineers need to evaluate

c© Springer International Publishing Switzerland 2015
P. Pardalos et al. (Eds.): MOD 2015, LNCS 9432, pp. 118–129, 2015.
DOI: 10.1007/978-3-319-27926-8 11

Tree-Based Response Surface Analysis 119

suitable design concepts. A concept is usually defined by a set of design vari-
ables, or attributes. The design variables represent various design choices such
as the material type or thickness of a specific part. During the design phase,
several concepts are defined by providing different attribute values. Engineers
may opt to use a combination of computer aided design (CAD) modeling and
computer-simulated experiments instead of real experiments, in order to reduce
the time, cost and risk. The simulations contribute to a better understanding
of the functional behavior and predict possible failure modes in future product
use [15]. They are used to identify interesting regions in the design space and to
understand the relationship between design variables (inputs) and their effect on
design objectives (outputs) [12]. However, one single computer-simulated exper-
iment can take a significant amount of time to conduct. For instance, to design
a part of an aero engine, an engineer has to simulate, in order to select an opti-
mal product design, several variants where sets of parameters are studied with
respect to different aspects, such as strength and fatigue, aero performance and
producibility. Conducting simulations for each concept is impractical, due to
time constraints. In order to minimize the time consumption and simulations,
engineers use methods such as design of experiments and surrogate models, or
response surface models, for design space exploration [6].

Surrogate modeling is an engineering method used when an outcome of inter-
est cannot be directly measured [14]. The process of surrogate model generation
includes sample selection, model generation and model evaluation. Sample selec-
tion is used to select a set of input samples using different types of sampling
strategies (e.g., random sampling) for model generation [7]. The next step is
to construct surrogate models from a small set of input samples and their cor-
responding outputs. The purpose of surrogate modeling is to find a function
that replaces the original system and which could be computed faster [7]. This
function is constructed by performing multiple simulations at key points of the
design space; thereafter the results are analyzed and then the selection of an
approximation model to those samples follows [7]. In machine learning, this type
of learning of an approximation function from inputs and outputs is called a
supervised learning problem. The approximation function is real valued so the
problem is delimited to supervised regression learning. The challenge of surro-
gate modeling is the generation of a surrogate that is as accurate as possible
by using the minimum number of simulation evaluations. This motivates the
generation of surrogate models in an efficient way that can be used in concept
selection.

Statistical approaches have been used to construct surrogate models using
a technique called response surface methodology [4]. Engineers use statistical
regression analysis to find the relationship between inputs and outputs. They
usually generate regression functions by fitting a curve to a series of data points.
Another engineering design strategy to generate surrogate models is the use of
a black box model (e.g., support vector machines) [10]. The problem with black
box models is the lack of information about the functional behavior and the
mapping between inputs and outputs. Black box models can be accurate but

120 S.K. Dasari et al.

they are not comprehensible, and there is a need to generate accurate and com-
prehensive surrogate models in order to understand the model behaviour. In this
study, we use machine learning algorithms for response surface analysis, and we
addresses the supervised regression problem with tree models. Tree models are
used to create comprehensible models that are easy to interpret [22], since they
reveal the mapping process between inputs and outputs. We can thus interpret
and learn about the approximation function between the inputs and the outputs.
The motivation for selecting tree methods in this study is, tree has a graphical
structure, and tree model representation follows the divide and conquer app-
roach and this structure provides the information about important attributes.
Mathematical equations and non-linear models are difficult to understand due to
the model representations [9]. We hypothesize that comprehensible models can
be used to increase the understanding about design spaces with few simulation
evaluations while maintaining a reasonable accuracy level. In our study, we used
M5P tree and random forest tree methods for response surface modeling. These
two methods have their tree nature in common, thus, we refer to them as “tree
based learning” in this study.

2 Aim and Scope

The focus of this study is to use supervised machine learning algorithms for
response surface models. The goal of this study is to empirically investigate
how tree models perform on design samples from concept selection tasks, and
to determine which regression tree induction approach yields the best perfor-
mance. We hypothesize that tree models will create accurate and comprehensive
models for response surfaces. The tree algorithms are applied to real-world data
from the aerospace industry. Tree methods (M5P and random forests) are com-
pared with non-tree methods (support vector machines and linear regression)
to explore potential differences in various aspects of performance which is accu-
racy of the response surface models. This study will not focus on the choice of
sampling strategy or dataset generation strategies in order to optimize the learn-
ing process. Instead, performance is measured on pre-existing and anonymized
real-world data.

3 Related Work

Gorissen et al. presents a surrogate modeling and adaptive sampling toolbox for
computer based design. This toolkit brings together algorithms (support vector
machines, kriging, artificial neural networks) for data fitting, model selection,
sample selection (active learning), hyper parameter optimization, and distrib-
uted computing in order to empower a domain expert to efficiently generate an
accurate model for the problem or data at hand [10].

Ahmed and Qin used surrogate models for design optimization of a spiked
blunt body in hypersonic flow conditions. This study constructed four surro-
gate models, namely a quadratic response surface model, exponential kriging,

Tree-Based Response Surface Analysis 121

gaussian kriging and general exponential kriging based on the values of drag
and heating responses. The authors concluded that exponential kriging surro-
gate produces a relatively better prediction of new points in the design space and
better optimized design [1]. Haito et al. used surrogate model for optimization
of an underwater glider and compared several experimental design types and
surrogate modeling techniques in terms of their capability to generate accurate
approximations for the shape optimization of underwater gliders. The authors
concluded that combination of multi-island genetic algorithm and sequential
quadratic programming is an effective method in the global exploration, and
showed that the modified method of feasible direction is an efficient method in
the local exploration [12].

Robert et al. introduced the use of the treed Gaussian process (TGP) as
a surrogate model within the mesh adaptive direct search framework (MADS)
for constrained black box optimization. Efficiency of TGP method has been
demonstrated in three test cases. In all test cases, MADS-TGP is compared with
MADS alone and MADS with quadratic models. Finally, the authors concluded
that TGP is taking more execution time to compare with other two methods but
TGP provides the quality of the solution for one of the test cases. For the other
two test cases, TGP gives better solutions compared to the other methods [11].

Machine learning methods such as support vector machines, artificial neural
networks have already been used extensively for surrogate models [1,10]. These
methods are black box models and there are no comprehensible models that
have been developed using machine learning for surrogate models. To the best
knowledge of the authors, tree-based models from machine learning for response
surface analysis have not been investigated for concept selection tasks in product
development. Thus, this study is focused on tree methods to generate surrogate
models.

4 Background

In many modern engineering problems, accurate simulations are used instead of
real experiments in order to reduce the overall time, cost, or risk [7]. It is impos-
sible to evaluate all possible concepts by conducting simulations to identify the
most suitable concept. For instance, an engineer gets requirements to design a
product, but he or she might not have enough time to test all concepts by con-
ducting simulations. Thus, engineers can run few simulations using few concepts
to generate a surrogate model to predict unseen concepts for design space explo-
ration. Design optimization, design space exploration, and sensitivity analysis
are possible through surrogate model generation [6].

Engineers choose a set of concepts using suitable sampling strategies. Latin
hypercube sampling (LHS) is one of the most common sampling strategies cur-
rently used to select input concepts for surrogate model generation. The concepts
can be changed by many different input variables such as the materials for var-
ious parts, thickness, colors, lengths, etc. The different variants of concepts are
represented in 3D using CAD software. CAD/CAE (computer aided engineering)

122 S.K. Dasari et al.

is the use of computer systems to assist in the creation, modification, analysis,
or optimization of a design [2]. Through a CAD model, we can get outputs from
each concept or design, which indicates how the design performs, for example
strength, stiffness, weight etc. The final step is surrogate model generation based
on inputs and outputs.

4.1 Methodology

In this section, we briefly introduce the studied machine learning methods for
response surface modeling and the common performance metrics for regression
problems. In this study, we use root mean-squared error (RMSE) [22] and the
correlation coefficient [17] to evaluate the predictive performance. The RMSE
is calculated as the sum of squared differences of the predicted values and the
actual values of the regression variable divided by the number of predictions. This
RMSE gives an idea to the engineer about the difference between actual values
and predicted values. The correlation coefficient (CC) measures the strength of
association between the predicted values and the actual values [17]. The following
equations show the RMSE [22] and the correlation coefficient (CC) [17].

RMSE =
1
N

n∑

i=1

(ŷ − y)2 (1)

Where ŷ is the predicted value and y is the actual value.

CC =
n∑

i=1

(
ŷi − ¯̂y

)
(yi − ȳ)

√
∑n

i=1

(
ŷi − ¯̂y

)2 (yi − ȳ)2
(2)

Where ŷi is the predicted value; yi is the actual value; ¯̂y is the mean value of
the predicted values; and ȳ is the mean value of the actual values.

The main purpose of this study is to investigate the performance of tree mod-
els for response surface analysis. Hence, we have selected the M5P algorithm and
the RF algorithm. The M5P and random forests (RF) algorithms are tree models
and these two models show the functional behavior between the inputs and the
outputs in a comprehensible way. To compare tree model performance against a
traditional benchmark, we have selected two more models linear regression (LR)
and support vector machines (SVM). These algorithms are regression methods,
but these two algorithms do not show the function behavior between inputs and
outputs.

Linear Regression is a statistical method for studying the linear relation-
ship between a dependent variable and a single or multiple independent vari-
ables. In this study, we use linear regression with multiple variables to predict a
real-valued function. The linear regression model is considered in the following
form [22].

x = w0 + w1a1 + w2a2 + . . . + wkak (3)

Tree-Based Response Surface Analysis 123

Where x is the class; a1, a2, . . . ak are the attribute values; w0, w1 . . . wk

are weights. Here, the weights are calculated from the training data. The linear
regression method is used to minimize the sum of squared differences between
the actual value and the predicted value. The following equation shows the sum
of squares of the difference [22].

n∑

i=1

⎛

⎝x(i) −
k∑

j=0

wja
(i)
j

⎞

⎠

2

(4)

Where the equations shows the difference between the ith instance’s actual class
and its predicted class.

M5P. Quinlan developed a tree algorithm called M5 tree to predict continu-
ous variables for regression [16]. There are three major steps for the M5 tree
construction development: (1) tree construction; (2) tree pruning; and (3) tree
smoothing. Detailed descriptions for these three steps are available in [16]. The
tree construction process attempts to maximize a measure called the standard
deviation reduction (SDR).

Wang modified the M5 algorithm to handle enumerated attributes and
attribute missing values [21]. The modified version of the M5 algorithm is called
the M5P algorithm. The SDR value is modified to consider missing values and
the equation is as follows [21].

SDR =
m

|T | × β(i) ×
⎡

⎣sd(T) −
∑

j∈L,R

|Tj |
|T | × sd(Tj)

⎤

⎦ (5)

Where T is the set of cases; Tj is the jth subset of cases that result from tree
splitting based on set of attributes; sd(T) is the standard deviation of T ; and
sd(Ti) is a standard deviation of Ti as a measure error; m is the number of
training cases without missing values for the attribute; β(i) is the correction
factor for enumerated attributes; TL and TR are the subsets that result from the
split of an attribute.

SVM. This method is used for both classification and regression and it is pro-
posed by Vapnik [20]. In the SVM method, N-dimensional hyperplane is created
that divides the input domain into binary or multi-class categories. The sup-
port vectors are located near to the hyperplane, and this hyperplane separates
the categories of the dependent variable on each side of the plane. The kernel
functions are used to handle the non-linear relationship. The following equation
shows the support vector regression function [5].

ȳi =
n∑

j=1

(αj − α∗
j)K(xi, xj) + b (6)

where K is a kernel function; αj is a Lagrange multiplier and b is a bias. Detailed
descriptions of these concepts of SVM can be found in [18,20].

124 S.K. Dasari et al.

Random Forest. This method is an ensemble technique developed by Breiman.
It is used for both classification and regression [3], and it combines a set of
decision trees. Each tree is built using a deterministic algorithm by selecting a
random set of variables and random samples from a training set. To construct
an ensemble, three parameters need to be optimized: (1) ntree: the number of
regression trees grown based on a bootstrap sample of observations. (2) mtry:
the number of variables used at each node for tree generation. (3) nodesize: the
minimal size of the terminal nodes of the tree [3].

An average of prediction error estimation of each individual tree is given
by mean squared error. The following equation shows the mean squared error
(MSE) [3].

MSE = n−1
n∑

i=1

[Ŷ (Xi) − Yi]2 (7)

Where Ŷ (Xi) is the predicted output corresponding to a given input sample
whereas Yi is the observed output and n represents the total number of out of
bag samples.

5 Experiments and Analysis

In this section, we present the experimental design used to compare the methods
for response surface modeling. We use the algorithm implementations available
from the WEKA platform for performance evaluation [22]. The experimental
aim is to determine whether tree models are more accurate than mathematical
equation-based models. To reach this aim, the following objectives are stated:

1. To evaluate the performance of LR, M5P, SVM and RF for response surface
modeling.

2. To compare tree models and non-tree models on the task of design space
exploration.

5.1 Dataset Description

The algorithms are evaluated on two concept-selection data sets obtained from
the aerospace industry. These datasets are from simulations and sampled by
using LHS. The first dataset consists of 56 instances with 22 input features and
14 output features. The second data set includes 410 instances defined by 10
input features and three output features. In the company which is aerospace
industry, engineers generate one regression model for each output feature. For
this single output model, we have 14 sub data sets for the first dataset, and
three sub datasets for the second dataset. We generate 14 new single-target
concept-selection data sets, D1-1 to D1-14 by preserving its input features and
values, and selecting a different output feature for each new data set. Using the
same procedure as for the first data set, we generate three new single-target
concept-selection data sets, D2-1 to D2-3.

Tree-Based Response Surface Analysis 125

Table 1. Performance comparison on 17 datasets

Data

set

LR M5P RF SVM LR M5P RF SVM

RMSE (rank) CC (rank)

D1-1 0.5787(2) 0.2059(1) 2.0553(4) 0.9553(3) 0.995(2) 0.9994(1) 0.9700(4) 0.9908(3)

D1-2 10.8545(3) 5.2926(1) 10.4724(2) 11.6372(4) 0.8273(4) 0.9640(1) 0.8900(2) 0.8373(3)

D1-3 0.2838(3) 0.2726(2) 0.3155(4) 0.2545(1) −0.1562(2) −0.0232(1) −0.3133(4) −0.1696(3)

D1-4 0.0062(1) 0.0062(1) 0.0171(3) 0.0091(2) 0.9922(1) 0.9922(1) 0.9688(3) 0.9859(2)

D1-5 0.2414(3) 0.2252(2) 0.2720(4) 0.2178(1) −0.0585(3) 0.1302(1) −0.2878(4) 0.1817(2)

D1-6 0.0051(2) 0.0050(1) 0.0151(4) 0.0080(3) 0.9945(2) 0.9947(1) 0.9724(4) 0.9884(3)

D1-7 0.1416(3) 0.1421(1) 0.1714(4) 0.1442(2) −0.6527(4) −0.0952(1) −0.3265(3) −0.1366(2)

D1-8 0.0232(2) 0.0127(1) 0.0459(4) 0.0315(3) 0.9792(2) 0.9938(1) 0.9661(4) 0.9766(3)

D1-9 0.0907(2) 0.0888(1) 0.1067(4) 0.0928(3) −0.6381(4) −0.0125(1) −0.3362(3) −0.0495(2)

D1-10 0.0232(2) 0.0122(1) 0.0464(4) 0.0318(3) 0.9801(2) 0.9945(1) 0.9727(4) 0.9777(3)

D1-11 4.4332(3) 3.9521(2) 5.5322(4) 2.9258(1) 0.9805(3) 0.9846(2) 0.9747(4) 0.9916(1)

D1-12 0.0196(1) 0.0199(2) 0.0254(4) 0.0237(3) 0.8211(1) 0.8175(2) 0.6747(4) 0.7251(3)

D1-13 0.0419(1) 0.0419(1) 0.0482(3) 0.0466(2) 0.1186(1) 0.1137(2) −0.0592(3) −0.0984(4)

D1-14 0.1549(2) 0.1648(4) 0.1248(1) 0.1580(3) 0.4980(3) 0.4335(4) 0.7143(1) 0.5057(2)

D2-1 0.0676(4) 0.0647(2) 0.0602(1) 0.0661(3) 0.6655(4) 0.6995(2) 0.7482(1) 0.6853(3)

D2-2 0.1270(3) 0.0673(1) 0.0757(2) 0.1306(4) 0.5190(4) 0.9031(1) 0.8639(2) 0.5194(3)

D2-3 1.2226(2) 1.1370(1) 1.2752(4) 1.2469(3) 0.4312(3) 0.5445(1) 0.4918(2) 0.4296(4)

Avg.

rank

2.29 1.47 3.29 2.58 2.64 1.41 3.05 2.70

5.2 Evaluation Procedure

We use cross-validation to maximize training set size and to avoid testing on
training data. Cross-validation is an efficient method for estimating the error [13].
The procedure is as follows: the dataset is divided into k sub samples. In our
experiments, we choose k = 10. A single sub-sample is chosen as testing data
and the remaining k − 1 sub-samples are used as training data. The procedure
is repeated k times, in which each of the k sub-samples is used exactly once
as testing data and finally all the results are averaged and single estimation is
provided [13]. We tuned the parameters for RF and SVM. For RF, we use a tree
size of 100, and for SVM, we set the regularization parameter C to 5.0, and the
kernel to the radial basis function. These parameters are tuned in WEKA [22].
We start with a C value of 0.3 and then increase with a step size of 0.3 until
the performance starts to decrease. We select the number of trees starting from
a low value and then increase up to 100 for improved accuracy.

5.3 Experiment 1

In this section we address the first objective. For this purpose, we trained the
four methods with 10 fold cross-validation on datasets D1-1 to D1-14 and D2-1
to D2-3. For this experiment, we normalized the D2-1, D2-2 and D1-14 datasets.
Table 1 shows the RMSE values, CC values and the ranks for the four methods.

126 S.K. Dasari et al.

Analysis: For 11 out of 17 datasets the use of the M5P tree method yields the
best results with respect to the RMSE metric. The LR and SVM algorithms
outperformed the other algorithms for three datasets each, and the last method:
RF yields the lowest RMSE for only two datasets. When it comes to the CC
performance metric, M5P tree yields the best performance for 11 datasets, and
LR yields the best performance for three datasets. The other methods, RF and
SVM, yield the best CC for two datasets.We observe that tree models (M5P in 11
cases and RF in 2 cases) are performing better in a majority of cases compared
to the other models for LHS sampled datasets. The reason for this could be that
tree models divide the design space into regions and create a separate model for
each region, whereas SVM and LR create single model over the entire design
space. Tree models are in general regarded as more comprehensible models than
the other investigated models [9]. We observe that tree methods could be used
to gain knowledge of design samples for design space exploration, by finding
the decision paths from the root of the tree to the top branches. For instance,
an engineer using a tree method to predict the output value y based on the
input values x1, x2, x3, . . . , xn, can increase his understanding of the relationship
between inputs and output by analyzing their mapping. On the other hand,
when the engineer wants to predict a new y value for various concepts, there
is a possibility to reduce the time because the engineer has already reached an
understanding about the model, and can also make informed decisions regarding
future experiments.

Our experiment requires statistical tests for comparing multiple algorithms
over multiple datasets. The Friedman test is a non-parametric statistical test
that can be used for this purpose [8]. It ranks the algorithms for each dataset
based on the performance. The best performing algorithm gets a rank of 1 and
the second best algorithm gets a rank of 2 and so on, and finally it compares the
average ranks of the algorithms [8]. The common statistical method for testing
the significant differences between more than two sample means is the analysis
of variance (ANOVA) [19]. ANOVA assumes that the samples are drawn from
normal distributions [8]. In our study, the error measure samples cannot be
assumed to be drawn from normal distribution hence we violate the ANOVA
parametric test. The hypothesis is:

Ho: LR, M5P, SVM and RF methods perform equally well with respect to pre-
dictive performance

Ha: There is a significant difference between the performances of the methods.

The statistical test produces a p-value of 0.0003 for RMSE, and a p-value
of 0.0016 for CC. The p-value is less than the 0.05 significance level. We there-
fore reject the null hypothesis and conclude that there is a significant difference
between the performances of methods. Furthermore, we conducted post a hoc
test for pairwise comparisons to see the individual differences. For this pur-
pose, we used the Nemenyi test [8]. Table 2 shows the p-values for the pairwise
comparison.

Tree-Based Response Surface Analysis 127

0.25

0.27

0.29

0.31

0.33

0.35

0.37

0.39

0.41

0.43

50 53 55 57 60 63 65 67 70 73 75 77 80 83 85 87 90 93 95 97 10
0

10
3

10
5

10
7

11
0

11
3

11
5

11
7

11
9

12
0

R
es

po
ns

e
va

lu
es

Design variable X values

Design objective CO1

LR

M5P

RF

SVM

Actual values

0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.39

0.4

0.41

0.42

50 53 55 57 60 63 65 67 70 73 75 77 80 83 85 87 90 93 95 97 10
0

10
3

10
5

10
7

11
0

11
3

11
5

11
7

11
9

12
0

R
es

po
ns

e
va

lu
es

Design variable X values

Design objective CO2

LR

M5P

RF

SVM

Actual values

2440

2450

2460

2470

2480

2490

2500

2510

2520

50 53 55 57 60 63 65 67 70 73 75 77 80 83 85 87 90 93 95 97 10
0

10
3

10
5

10
7

11
0

11
3

11
5

11
7

11
9

12
0

R
es

po
ns

e
va

lu
es

Design variable X values

Design objective CO3

LR

M5P

RF

SVM

Actual values

224

225

226

227

228

229

230

231

232

233

50 53 55 57 60 63 65 67 70 73 75 77 80 83 85 87 90 93 95 97 10
0

10
3

10
5

10
7

11
0

11
3

11
5

11
7

11
9

12
0

R
es

po
ns

e
va

lu
es

Design variable X values

Design objective CO4

LR

M5P

RF

SVM

Actual values

Fig. 1. Plots for four design objectives using four methods

5.4 Experiment 2

In this section, we address the second objective to compare tree models and
non-tree models on the task of design space exploration. We created 14 vali-
dation datasets contain 22 features with 30 instances. The input data has the
form of input 30 instances for design variable (input) X values equally distrib-
uted between 50 and 120. This input set was created based on six existing con-
cept instances provided by an engineer, by incrementing the value of one of its
inputs with a predefined step size and within a predefined interval, to explore

Table 2. Pairwise comparisons

Pairwise comparison RMSE p-value CC p-value

M5P-RF 0.0002 0.0015

M5P-SVM 0.0394 0.0182

M5P-LR 0.4611 0.0665

LR-SVM 0.6296 0.9667

RF-SVM 0.4611 0.8848

LR-RF 0.0394 0.6296

128 S.K. Dasari et al.

the response, or impact, on different design objectives (outputs) when varying
a specific design variable, which design variable X values are unequally distrib-
uted in the range from 50 to 120. In general, the experiment produced as many
as 14 different design objectives, but in Experiment 2 we focus on four design
objectives.

The four selected design objectives are identified by the engineer as challeng-
ing outputs (design objectives CO1 to CO4), i.e., more difficult to predict and
of higher priority. One of the design variables is defined by the engineer as the
key input (here called design variable X value). These four design objectives and
response variables have high importance in order to build a particular part in the
flight engine. For example, if the product is aircraft engine, then the design vari-
ables can be length, width, curvature etc., and the design objective is to find the
shape for aircraft wing. Figure 1 shows four design objectives (sub-plots), design
variable X values on x-axis and response value on y-axis. For design objectives
CO1, CO3 and CO4, the result of predictions is same for LR and M5P. The
first observation is that RF accurately predicts the actual values, at least in the
case of design objectives CO1 to CO3. The RF plot appears to have changing
trends approximately following that of the labeled dataset (Actual value). The
predicted output values of RF are also closest to the actual value for the majority
of instances. The other models predicted output values that seems completely
monotonic, and appear to almost follow a straight line. For the design objec-
tive CO4, SVM fits well to the actual values. These observations indicate an
advantage for RF over the other models with regard to fitting the challenging
outputs.

6 Conclusions and Future Work

The main goal was to investigate the performance of tree models for response
surface modeling. We studied two tree methods (M5P and RF) and two non-
tree methods (LR and SVM). Experiments were conducted on aerospace concept
selection datasets to determine the performance. The results show that tree
models perform at least as well as or better than traditional black-box models.
We addressed the single-output regression problem for response surface models.
Our future work will contrast this work with a multi-output regression approach
to explore tree-based surrogate model comprehensibility further.

Acknowledgments. This work was supported by the Knowledge Foundation through
the research profile grants Model Driven Development and Decision Support and Scal-
able Resource-efficient Systems for Big Data Analytics.

References

1. Ahmed, M., Qin, N.: Comparison of response surface and kriging surrogates in
aerodynamic design optimization of hypersonic spiked blunt bodies. In: 13th Inter-
national Conference on Aerospace Sciences and Aviation Technology, 26–28th May,
Military Technical College, Kobry Elkobbah, Cairo, Egypt (2009)

Tree-Based Response Surface Analysis 129

2. Bell, T.E., Bixler, D.C., Dyer, M.E.: An extendable approach to computer-aided
software requirements engineering. IEEE Trans. Softw. Eng. 1, 49–60 (1977)

3. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
4. Carley, K.M., Kamneva, N.Y., Reminga, J.: Response surface methodology. Tech-

nical report, DTIC Document (2004)
5. Chen, K.Y., Wang, C.H.: Support vector regression with genetic algorithms in

forecasting tourism demand. Tour. Manag. 28(1), 215–226 (2007)
6. Couckuyt, I., Gorissen, D., Rouhani, H., Laermans, E., Dhaene, T.: Evolutionary

regression modeling with active learning: an application to rainfall runoff modeling.
In: Kolehmainen, M., Toivanen, P., Beliczynski, B. (eds.) ICANNGA 2009. LNCS,
vol. 5495, pp. 548–558. Springer, Heidelberg (2009)

7. Crombecq, K., Couckuyt, I., Gorissen, D., Dhaene, T.: Space-filling sequential
design strategies for adaptive surrogate modelling. In: The First International
Conference on Soft Computing Technology in Civil, Structural and Environmental
Engineering (2009)

8. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach.
Learn. Res. 7, 1–30 (2006)

9. Freitas, A.A.: Comprehensible classification models: a position paper. SIGKDD
Explor. Newsl. 15(1), 1–10 (2013). http://doi.acm.org/10.1145/2594473.2594475

10. Gorissen, D., Couckuyt, I., Demeester, P., Dhaene, T., Crombecq, K.: A surrogate
modeling and adaptive sampling toolbox for computer based design. J. Mach.
Learn. Res. 11, 2051–2055 (2010)

11. Gramacy, R.B., Le Digabel, S.: The mesh adaptive direct search algorithm with
treed Gaussian process surrogates. Groupe d’études et de recherche en analyse des
décisions (2011)

12. Gu, H., Yang, L., Hu, Z., Yu, J.: Surrogate models for shape optimization of under-
water glider, pp. 3–6, February 2009

13. Kohavi, R., et al.: A study of cross-validation and bootstrap for accuracy estimation
and model selection. In: IJCAI, vol. 14, pp. 1137–1145 (1995)

14. Nikolos, I.K.: On the use of multiple surrogates within a differential evolution
procedure for high-lift airfoil design. Int. J. Adv. Intell. Paradigms 5, 319–341
(2013)

15. Pos, A., Borst, P., Top, J., Akkermans, H.: Reusability of simulation models.
Knowl.-Based Syst. 9(2), 119–125 (1996)

16. Quinlan, J.R., et al.: Learning with continuous classes. In: Proceedings of the 5th
Australian Joint Conference on Artificial Intelligence, Singapore, vol. 92, pp. 343–
348 (1992)

17. Quinn, G.P., Keough, M.J.: Experimental Design and Data Analysis for Biologists.
Cambridge University Press, Cambridge (2002)

18. Scholkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Reg-
ularization, Optimization, and Beyond. MIT Press, Cambridge (2001)

19. Sheskin, D.J.: Handbook of Parametric and Nonparametric Statistical Procedures.
CRC Press, Boca Raton (2003)

20. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (2000)
21. Wang, Y., Witten, I.H.: Inducing model trees for continuous classes. In: Proceed-

ings of the Ninth European Conference on Machine Learning, pp. 128–137 (1997)
22. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-

niques. Morgan Kaufmann, San Francisco (2011)

http://doi.acm.org/10.1145/2594473.2594475

A Single-Facility Manifold Location Routing
Problem with an Application to Supply Chain

Management and Robotics

Emre Tokgöz1(&), Iddrisu Awudu1, and Theodore B. Trafalis2

1 School of Business and Engineering, Quinnipiac University,
Hamden, CT 06518, USA

{Emre.Tokgoz,Iddrisu.Awudu}@quinnipiac.edu
2 School of Industrial and Systems Engineering, University of Oklahoma,

Norman, OK 73071, USA
ttrafalis@ou.edu

Abstract. The location routing problem (LRP), a problem formulated for
determining locations of facilities and the vehicle routes operating between these
facilities, is the combination of the vehicle routing (VRP) and the facility
location problems (FLP) in Euclidean space. The manifold location routing
problem (MLRP) is an LRP in a Riemannian manifold setting as introduced in
[14]. In seeking further advancements in the solution of LRP, MLRP improves
the accuracy of the distance calculations by using geodesic distances. The
shortest path distances on Earth’s surface can be determined by calculating
geodesic distances in local neighborhoods by using Riemannian geometry. In
this work, we advance the theoretical results obtained for MLRP in [14] by
incorporating support vector machines (SVM), dynamic programming, parallel
programming, data mining, and Geographic Information Systems (GIS). The
theory will be explained on a supply chain problem with a robotics paradigm.

Keywords: Manifold location routing problem � Riemannian manifold �
Geodesics � Heuristics � Supply chain management � Geographic information
systems � Data mining � Support vector machines � Robotics

1 Introduction

Allocating a facility and transportation from this facility location to the customers are two
important problems in supply chain management. Location routing problem (LRP), a
combination of the vehicle routing (VRP) and facility location (FLP) problems in
Euclidean space, is solved to determine the best location of a facility and the corre-
sponding cost effective operations from this facility to its suppliers and demand points
[6]. LRP is a cost minimization mixed integer nonlinear programming problem that can
be solved in a discrete or a continuous (planar) surface platform. It employs the Weber
problem (WP) as a sub-problem for minimizing the Euclidean distance between a facility
and a given set of customers on the plane. FLP and VRP are both well-known NP-hard
problems.We refer to [5, 9] for overviews of FLP and VRP respectively. The most recent

© Springer International Publishing Switzerland 2015
P. Pardalos et al. (Eds.): MOD 2015, LNCS 9432, pp. 130–144, 2015.
DOI: 10.1007/978-3-319-27926-8_12

improvement on the location routing problem is introduced in [14] by assuming manifold
surfaces.

The surface assumption in the statements of LRP had been either planar or spherical
(see for example [1, 6, 10, 12]) before the manifold surface assumption introduced in
[14]. Manifold location routing problem (MLRP) an LRP with manifold surface
assumption, is introduced in [14]. The manifold surface assumption is a more realistic
surface assumption than the planar or spherical surface assumptions used for solving
the LRPs in the literature noting that the surface of earth is a manifold surface. MLRP
employs geodesics on the Riemannian manifold surface to determine the shortest path
distance between the facilities, suppliers, and demand points. For an overview of
MLRP we refer to [14].

In Sect. 2, information about the use of support vector machines (SVM), dynamic
programming, parallel programming, data mining, and Geographic Information Systems
(GIS) are explained. In addition, incorporation of these concepts to the MLRP intro-
duced in [14] are explained in this section. The assumptions, notation and formulation of
the MLRP are explained in Sect. 3. The solution methodology for MLRP is explained in
Sect. 4. MLRP algorithm details are explained in Sect. 5. Section 6 is dedicated to a
supply chain management problem as an example to the MLRP formulated in this work.
Section 7 is devoted to the summary of the ideas presented in this work.

2 A New Manifold Location Routing Problem

In this section, incorporation of the support vector machines (SVM), dynamic pro-
gramming, parallel programming, data mining, and Geographic Information Systems
(GIS) concepts to improve (i.e. advance) the statement of the MLRP are explained.

2.1 Riemannian Geometry and Geodesics

A Riemannian manifold (RM) is a differentiable manifold M in which each tangent
space is equipped with an inner product. The inner product defines a Riemannian
metric that has smooth variation from point to point. Bernhard Riemann introduced the
corresponding geometry [11] in which the metric properties vary from point to point
(See for example [2]). The change of a Riemannian manifold surface (RMS) is mea-
sured by determining how much it deviates from being planar (corresponding to cur-
vature 0) in a local neighborhood. Sn, n-dimensional sphere, with curvature 1, and R

n,
n-dimensional Euclidean space with curvature 0 are commonly used Riemann mani-
folds in applications. If the curvature of a surface changes from a flat to a spherical
surface then the curvature changes from 0 to 1.

In [14], the distances between customers and a facility to be allocated are measured
on compact connected Riemannian Manifold Surfaces (CCRMS); a generalization of
planar surfaces. The shortest path geodesic distances are the shortest distances between
the customers and a possible location of the facility to be allocated. Therefore the planar
WP is changed to the Manifold WP (MWP) Restatement of the WP is considering
CCRMS to determine the shortest path geodesics is used for distance calculations. The
main contribution in [14] is to provide a heuristic algorithm solution to the MLRP by

A Single-Facility Manifold Location Routing Problem 131

using Riemannian surfaces and geodesic distances. A special case of the MLRP is the
planar LRP when the curvature of the Riemannian surface is zero in 2-dimensional
space. In the case when the road surface changes from flat to mountain, the curvature
varies from zero (corresponding to the flat surface) to a positive curvature at each local
neighborhood throughout the surface towards the mountain. In this case, the geodesics
are the roads that connect certain intersections in the local regions. The shortest path
geodesic between two locations on this surface is the geodesic with the shortest distance
between them. This consideration is possible by using a one-to-one and onto map
u : U � M ! R

n called homeomorphism. By using a homeomorphism, each open
neighborhood U in the topology of the manifold M can be mapped to an open neigh-
borhood φ (U) in the Euclidean space. A connected Riemannian manifold carries the
structure of a metric space whose distance function is the arc-length of a minimizing
geodesic. Let M be a connected Riemannian manifold and γ: [a,b] → M be a param-
eterized differentiable curve in M with the velocity vector γ′. The length of γ between a
and b is defined by the equality

l cð Þ ¼ Z
M
hðc0

tð Þ; c0
tð ÞÞdt ¼ Z b

a
rcðtÞdt ð1Þ

where ∇ is the Levi-Civita connection; See for example [2, 4, 8] for details.

2.2 Weighted Support Vector Machines (WSVM)

Given two class sets, the basic idea of weighted support vector machines (WSVM) is to
find a maximal margin separating hyper-plane giving the greatest separation between
the classes in a high dimensional feature space. WSVM is particularly useful for
reducing the effect of noise/outlier while determining the separating hyper-plane
between two data classes [15]. In this work, SVM is employed for domain reduction
from RMS to MMR by using the different signatures of the demand and supply points.
We assign signature −1 to demanding customers and +1 to suppliers. The amount
demanded by each demander is assigned as its signature and the amounts of goods
supplied by each supplier is assigned to be its weights. This domain reduction will be a
valuable contribution to the solution of the multi-facility Weber problem noting that
LRP is an NP-hard problem [13]. On the contrary to the general WSVM, outliers plan
an important role in the facility allocation solution since the maximum marginal region
is a part of the facility allocation solution to be explained later. The kernel trick [15] can
be employed for determining an SVM solution with the corresponding MMR. The
facility is planned to receive from suppliers and distribute to demanding customers via
robots. A robot in this context is a machine capable of carrying out a complex series of
actions automatically, especially one programmable by a computer.

The weights wi assigned to the demanding customers and suppliers play an
important role in the allocation of the facilities. The existing customer data is con-
sidered to be the training data set represented by

ci; si; wið Þf g; ci 2 R
N; si 2 �1; 1f g; wi 2 R& i ¼ 1; 2. . .n

132 E. Tokgöz et al.

In particular, the quadratic WSVM programming problem is [15]

minU qð Þ ¼ 1
2
qTqþC

Xn

i¼1
wini; 1� i� n

subject to

si \q;u cið Þ[þ bð Þ� 1� ni; 1� i� n

ni � 0; 1� i� n
ð3Þ

A common technique to solve this minimization problem is by solving its corre-
sponding dual problem [15]. We assume each existing customer has a demand list
consisting of a fixed number of products.

2.3 Weighted Network Design, Dynamic Programming and Parallel
Programming

The discrete locations of the facility will be determined by designing a weighted
customer network. This weighted network is formed by the weights assigned to the
customers in the WSVM quadratic programming problem formulation. In this network,
the demand and supply points are the vertices, and the edges are the geodesics between
these nodes. The distances between the nodes are the weights assigned to the edges.
After determining the MMR and the corresponding separating hyper-plane as a result
of the WSVM, a set (k number) of discrete feasible discrete locations are determined
for facility allocation in MMR. Dynamic programming is employed to determine the
best location of the facility by calculating the distances to the suppliers and demanding
customers. Parallel programming is employed for

• Implementation of pathway calculations between the facility, customers, and
suppliers;

• Projections of customer locations from the manifold surface to Euclidean surface;
• Solving the 2-objective functions (4) and (5) is formulated below.

3 Manifold Location Routing Problem (MLRP)

We assume the following for the MLRP introduced in this work:

• Supply and demand points, and the facility are assumed to be located on a CCRMS;
• Demand points are assigned signature −1 and suppliers are assigned +1 signature

for the SVM solution;
• Only robots are assumed to operate between suppliers, demanding customers, and

the facility to be allocated;
• A set of robots are assumed to operate only between the facility and the suppliers,

and the rest of the robots are assumed to operate between the demanding customers
and the facility;

A Single-Facility Manifold Location Routing Problem 133

• Operating robots ensure that the transportation problem is balanced at all times;
• The surface of the domain is well defined and accessible through GIS by the robots

to determine and update the pathways;
• Parallel programming is employed by the robots to determine the supply levels of

the facility with supply and demand tables structured for the demanding customers
and suppliers.

• Distances between the customers and possible locations of the facility are calculated
by using geodesic distances;

• Customers and suppliers have known demands and locations;
• Robots are the operating vehicles that are capacitated and homogeneous;
• Facility to be allocated is incapacitated;
• All the robots have the same capacity;
• The number of robots to be operated do not exceed the upper bound of the number

of robots;
• The number of robots to be used will be derived as a result of the problem stated;
• There is no fixed cost for operating robots;
• Each robot route starts and finishes at the facility to be allocated;

The following notions will be used for the model formulation and the rest of the
paper:
M CCRMS corresponding to the local region on Earth’s surface.
C Set of demanding customers’ ci, i 2 I1 = {1, 2…m1}.
S Set of suppliers’ si, i 2 I2 ¼ 1; 2. . .m2f g.
φ Homeomorphism defined for projection from M to R

2.
ak Demander locations on M with the coordinates ck ¼ u x1k

� �
; u y1k

� �� �
on R

2.
a0 Facility location on M with the Euclidean coordinate c0 = (φ (x0), φ (y0)) on R

2.
bk Supplier locations on M with the coordinates dk ¼ u x2k

� �
; u y2k

� �� �
on R

2.
E1 Set of demanding customers and the facility with the facility indexed to be 0.
E2 Set of suppliers and the facility with the facility indexed to be 0.
γij Parametric geodesic on M connecting demanding customers’ ai and aj.
bij Parametric geodesic on M connecting suppliers’ bi and bj.
V1 Set of robots operating between demanding customers and the facility v1 = 1,

2… n1 with V1j j � n1.
V2 Set of robots operating between suppliers and the facility v2 = 1, 2… n2 with

V2j j � n2.
vimax The maximum capacity of robot vi.
D The demand set with di 2 D corresponding to the demander ci 2 C, i 2 I1.
K The supplier set ti 2 D corresponding to the supplier si 2 S, i 2 I2.

dijk ¼
1 if nodes i and j are connected via route k

0 otherwise

(

Similar to the 1-objective mixed integer nonlinear programming (MINLP) model
introduced in [14], the following 2-objective MINLP supply chain management

134 E. Tokgöz et al.

problem is formulated as a balanced transportation problem with transportation
assumed to be via robots:

min
X

i;j2E1; v2V1

Z
M

c
0
ij tð Þ

��� ��� dzdijv ð4Þ

min
X

i;j2E2; v2V2

Z
M

b
0
ij tð Þ

��� ��� dzdijv ð5Þ

subject to

X
j2Ep

dijv �
X

j2Ep
djiv ¼ 0 8i 2 Ep; v 2 Vp for all p ¼ 1; 2 ð6Þ

X
i2E1;j2C1

dijvdi � vimax 8v 2 V1 ð7Þ
X

i2E2;j2C2
dijvti � vimax 8v 2 V2 ð8Þ

X
v2V1;i2U1;j2E1�U1

dijv � 1 8U1 � C ð9Þ
X

v2V2;i2U2;j2E2�U2
dijv � 1 8U2 � S ð10Þ

X
v2V1;i2E1

dijv ¼ 1 8j 2 C ð11Þ
X

v2V2;i2E2
dijv ¼ 1 8j 2 S ð12Þ

X
j2E1

d0jv � 1 8v 2 V1 ð13Þ
X

j2E2
d0jv � 1 8v 2 V2 ð14Þ

X
j2I1 dj �

X
i2I2 ti � 0 8i; j 2 E1;E2 ð15Þ

dijv 2 0; 1f g 8i; j 2 E1;E2; v 2 V1;V2 ð16Þ

The minimization of the total transportation cost on the manifold setting M is
indicated by the objective functions (4) and (5). Traffic flow for visiting each demander
and supplier by the same robot is managed by constraints (6) when p = 1 and p = 2
respectively. During the transportation, the maximum capacity of the vehicles for
suppliers and demanding customers cannot be violated by constraints (7) and (8).
Existences of sub-tours are declined by constraints (9) and (10) ensuring that there exist
at least one robot leaving any subset of demanding customers and suppliers. Each
demander and supplier belongs to one and only one tour as a result of the constraints
(11) and (12) in their respective groups. Each robot leaves the facility either once or
never used for transportation as a result of constraints (13) and (14) noting that not all
the robots are necessarily used for transportation. The transportation of supply and

A Single-Facility Manifold Location Routing Problem 135

demand is balanced by the constraint stated in (15). The conditions for decision
variables are stated in (16). Two of the continuous variables are the locations of
the customers and suppliers in the Euclidean space and the third continuous variable is
the parameter z for the geodesic on the manifold M. The numerical results known in the
literature for the MLRP are incomparable with the numerical results obtained in this
work since the known data sets used for the LRP are not for general manifold settings.
This difference in numerical results arises naturally from the change in the surface
assumption from planar surfaces to the Riemannian manifold surfaces.

4 Solution Methodology

Solutions to the LRP in the Euclidean space are obtained by using sequential, iterative,
and hierarchical methods (see for example [3, 7, 11, 12]). In this section, a similar
solution methodology to the one used in [14] is implemented with various additional
concepts included to solve the MLRP stated in this work.

4.1 Main Steps of the Algorithm

The first step of the algorithm for solving MLRP is mapping the demanding customers’
and suppliers’ locations from M to R

2 by using homeomorphisms. A homeomorphism
(for example orthogonal projection) can be used for projecting demander locations and
another homeomorphism can be used for supplier location projections. In addition the
geodesic distances on the manifold surface between the suppliers and demanding
customers are calculated by using the inner product defined on M and mapped from M
to R

2. These geodesic distances include all possible roads between the suppliers’
network and the demanding customers’ network within the compact connected domain
on the surface of M. These lengths correspond to the lengths of the roads in the network
formed by the customers in the Euclidean space. Therefore the metric choice on M
determines the metric to be used in the Euclidean space.

In [14] the location of the facility for the MLRP solution is determined by using a
heuristic approach with a method named linked chain method (LCM). LCM is defined
to be a method of chaining z open balls with the center of the ith open ball being the
best location of the center of the step (i−1)st open ball, i = 0,1,…,z. The center of each
Bi is determined by solving the routing problem within the disk obtained by the interior
of Bi for all i. The radius of the circle Bi is determined by calculating the distance
between the ith and (i−1)st open balls. The radius of each consecutive circle is modified
dynamically. The stopping criteria for adding circles to the LCM is when a sufficiently
small distance between the (z−1)st and zth circles is obtained. In this work, the second
step of the algorithm is designed to first reduce the domain from M to MMR and then
solving the LRP in the Euclidean space by employing dynamic programming. The
initial location of the facility is determined randomly “close” or on the separating
hyper-plane from k feasible locations within MMR that are also feasible locations on M
for the facility allocation. In this step WSVM is initially employed for domain
reduction from M to MMR with the separating hyper-plane determined.

136 E. Tokgöz et al.

The third step of the algorithm is projecting the results obtained in the second step
from R

2 to M and determining a feasible location of the facility on M. The cost
effective facility location determined on R

2 may or may not be a feasible location on
M, therefore a local neighborhood search is necessary on M for the best allocation of
the facility in the case when the solution is not feasible on M.

The fourth and last step of the algorithm is robots’ service to the existing demanding
customers and suppliers. Every robot that serves to the demanding customers keep track
of the existing orders of the customers online as an order table. A robot is assigned to
fulfill the orders of the customers in order to fulfill the existing demands received in
order. Therefore robots are required to data mine for updating the routes to serve
customers based on the updated demand tables of the customers. These robots report the
goods demanded by the demanding customers to the facility and add this data to the
supply table. Parallel computing and updating the corresponding demand tables are
necessary for supply chain’s organizational management. Similarly robots that are
required to pick-up from suppliers have to data mine to keep track of the demand tables
and pick-up goods from suppliers to keep the transportation balanced. Updating the
routes is a necessity for pick-ups from the suppliers based on their supply tables and
changing routes of pick-ups. Parallel computing and updating the corresponding supply
tables are necessities for organizational skills. The main steps of the algorithm are
summarized in the following table and its details will be explained in Sect. 5.

Fig. 1. Proposed algorithm to solve the MLRP

A Single-Facility Manifold Location Routing Problem 137

4.2 Computational Complexity of the Algorithm

It is well known that LRP is an NP-hard problem noting that both routing and location
problems are NP-hard on the Euclidean surface [13]. Similarly, the MLRP introduced
in [14] is an NP-hard problem. Therefore the MLRP that we introduced for the supply
chain management problem that we introduced in this work is also an NP-hard prob-
lem. The main computational challenges for solving the MLRP are pathway length
calculations (the integrals givens in (4) and (5)) between the suppliers and demanding
customers on the RMS and solving the routing problem in the Euclidean space at every
circle of the LCM. The time complexity of projection from R

2 to M and determining
the best location of the facility on the manifold can be a constant, therefore can be
negligible in computational complexity calculations in the case when the feasible
solution is within a closed region on the RMS. It can also be the complexity of the
proposed algorithm in the case when the feasible location of the facility is too far from
the solution on the CCRMS after using the proposed algorithm.

5 MLRP Algorithm Details

In this section, we explain the details of the heuristic algorithm given in Fig. 1 for
solving the Manifold Location Routing Problem (MLRP). These details include pro-
jection of the demander locations; supplier locations; the robot routes from the mani-
fold to the planar surface; determining the location of the facility after solving the
WSVM by applying dynamic and parallel programming; and mapping back the
locations of the location of the facility to the manifold setting.

5.1 Projection from M to R
2

The first step of allocating a facility on a local Earth surface (on M) is by projecting the
customer locations and all possible route lengths between these customers from the
surface of M to R

2. This initial step is necessary because calculations on a Riemannian
manifold are not easy and require projection from M to R

2. We use the same projection
map used in [14] to map from M to R

2. Therefore we use the following homeomor-
phism to map the locations of the demanding customers and suppliers from the Rie-
mannian manifold surface M to the Euclidean surface R

2

u :M ! R2

aj 7! x1j cosh; y
1
j sinh

� �
bi 7! x2i cosh; y

2
i sinh

� � ð17Þ

where aj represents the locations of the demanding customers, bi represents the loca-
tions of the suppliers, and θ are randomly generated angles for suppliers and demand
locations in local regions [2]. The choice of the homeomorphism changes the customer
locations in the Euclidean space that would affect the LRP solution in the Euclidean

138 E. Tokgöz et al.

space. Our choice of homeomorphism defined in (17) yields to projection of customer
locations to a circular setting. The radius of the circles formed by the customers can be
easily obtained from (17) by using the formula

Rh
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2k þ y2k

q
ð18Þ

that depends on projection angle θ. Another homeomorphism that can be employed for
projection can be the orthogonal projection. Figure 2 displays the projection of the
customers from surface of the compact connected Riemannian manifold M to the
Euclidean space by using the homeomorphism introduced in (17). Figure 3 displays the
projected customer locations on R

2.

All possible pathway lengths among customers are calculated by using (4) and (5),
and the corresponding geodesic functions can be pre-determined by using GIS (Geo-
graphic Information Systems). The geodesics determined between customers on the
RMS are projected from M to R

2 and the lengths of these geodesics are assigned to be
the edge lengths between the nodes of demander-supplier-facility network formed in
R

2. It is important to note that the metric used on the manifold defines the metric used
on the RMS. This is due to the fact that the norm we use for the distance calculations is
the norm used on the projected Euclidean surface.

5.2 Facility Location on R
2 with WSVM, Dynamic Programming,

and Parallel Programming

In this section the allocation of the facility is explained with the corresponding WSVM
solution. The MMR region is determined first with the corresponding hyper-plane
solution. The next step is to determine the set of discrete locations where the contin-
uous FLP becomes discrete FLP. The location of the facility is set after applying
dynamic and parallel programming. Figure 4 displays the paths that can be determined
as a result of a possible discrete location chosen that is close to the separating

0

2

4

6

8

12345678

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Projection of Customer Locations from the Manifold Surface to 2D Surface

Fig. 2. Projected customer locations from M
to R

2

1

2

3

4

5

6

7

8

1234567
8

Customer Locations on 2D Surface

Fig. 3. Projected customer locations on R
2

A Single-Facility Manifold Location Routing Problem 139

hyper-plane. Parallel programming is applied for k discrete locations. The blue spots
represent the obstacles within the domain.

1

2

3

4

5

6

7

8

1
2

3
4

5
6

7
8

The Method to Solve the Routing Problem

f

Fig. 4. A solution to the routing problem is sketched starting from one of the randomly chosen
feasible facility locations after applying WSVM solution. Dynamic and parallel programming is
used for facility allocation. In this figure an initial location of the facility f0 is pointed (Color
figure online).

1

2

3

4

5

6

7

8

1
2

3
4

5
6

7
8

f0
f1

Fig. 5. Second phase of determining the best robot routes from the facility to a customer by
dynamic programming.

1

2

3

4

5

6

7

8

1
2

3
4

5
6

7
8

f0
f1

f2

f3

Fig. 6. Fourth phase of determining the best robot routes from the facility to a customer by
dynamic programming.

140 E. Tokgöz et al.

Figures 4, 5 and 6 display the neighborhood geodesic search that robots can follow.
Dynamic and parallel programming are implemented to determine the location of the
facility.

5.3 Projection from R
2 to M

The third step of the algorithm is to map the shortest path distribution routes and the
facility location back to the RM surface by using the inverse map u�1 of the home-
omorphism φ defined in (17):

u�1 : R2 ! M
xk; ykð Þ 7! u�1ðxkcoshÞ;u�1ðykcoshÞð Þ ð19Þ

Customer location data is pre-existing on M, therefore it is not necessary to map the
customer data from the Euclidean surface back to the RM surface.

5.4 Data Mining and Transportation System

We consider a balanced transportation problem as the last step of the algorithm. The
robots follow the geodesic paths to pick-up goods from suppliers and travel to dis-
tribute goods to demand points for supply chain management. The transportation
problem is assumed to be balanced for efficient demand-supply flow within the net-
work. The robots update and keep track of the supply and demand tables of demanding
customers and suppliers. Robots can update their routes by using GIS information that
is assumed to be achievable online and calculate the geodesic distances accordingly.

6 An Example

Allocation of a facility for serving its customers and receiving goods from suppliers
based on the MLRP solution with the WSVM approach will be explained in this
section. In this example, we assume there are 3 suppliers, 6 demand points, and a

Mountain Area

Park Area

Graph (b)Facility to be
allocated

Red_stars:
Demanding
customers

Euclidean
path

Graph (a)

Green stars: Suppliers

Fig. 7. Graph (a) Network formed by the Euclidean distances in the Euclidean space. Graph
(b) Network formed in the Euclidean space by mapping the routes from RM surface.

A Single-Facility Manifold Location Routing Problem 141

facility satisfies the assumptions stated for the MLRP. The geodesic distances between
the customers, suppliers, and facility are calculated by using functions generated ran-
domly. This information can be obtained by using GIS data in real life applications.

In Fig. 7 we consider the initial phase of the routing problem with the corre-
sponding possible routes for the formed networks on the Euclidean and RM surfaces.
In this setting, the initial location of the facility is determined by using the MMR region
and the corresponding separating hyper-plane solution. In Fig. (7-a) the Euclidean
robot routes are calculated on the planar setting with the MMR represented by two
solid lines and the separating hyper-plane in the middle by a dashed line. In Fig. (7-b)
the routes are the geodesics projected from the RM surface to the Euclidean surface.
These geodesics are length minimizing with respect to the routes considered on the RM

surface. These differences between the routes would have a big impact on the supply
chain cost optimization since the routes can be effected by areas such as parks,
mountains etc. Figure 7-b contains more realistic information than Fig. 7-a based on the
path lengths calculated on Earth’s surface. The MMR region and the separating
hyper-plane have curved structure on M.

Both Figures 8-a and 8-b follow the corresponding counterparts given in Fig. 7.
Robot routes for both pick-up and delivery are displayed from the finalized location of
the facility after applying dynamic and parallel programming in Fig. (8-a) and the
corresponding geodesic routes and distances on RM surface in Fig. (8-b). The distri-
bution and pick-up routes can change from Figs. 8-a to 8-b. This is due to the fact that
geodesic distances can make a big impact on the allocation direction of the facility. For
example, there is a difference in the final location of a robot before it returns back to the
facility after serving customers between Figs. 8-a and 8-b. In Fig. 8-a, the robots visits
c3 as the last customer however in Fig. 8-b the same robot has to visit c2 last.

The choice of the Riemann metric plays an important role in the distance calcu-
lations in the Euclidean space since it is assigned to be the distance between customers
in the Euclidean space as pointed out in [14]. It is important to note that the change in
the homeomorphism does not make a difference in the allocation of the facility since it
is a 1–1 and onto map used to determine a location on the RMS. However the metric
choice can make a difference in the computational complexity of the algorithm chosen.

Graph (b)

Location of the
facility

Shortest
geodesic
routess1

c1

c2

s2
s3

c5

c4

c3

Initial location
of the facility

Separating
hyper-plane

Shortest
Euclidean
route

Graph (a)

c1 s1

c2

s2 s3

c5

c4

c3

Fig. 8. Graph (a) Shortest path route determined from the location of the facility that is
determined by the MMR solution by using Fig (7-a) Graph (b) Shortest path route determined in
the Euclidean space by mapping the routes from RM surface from the new location of the facility.

142 E. Tokgöz et al.

This is due to the fact that a homeomorphism if chosen to be a complicated function
will yield to more calculations. Figure 9 below describes the first two phase imple-
mentations of MLRP by using the information provided in Figs. 8-a and 8-b. Parallel
programming is employed for distance calculations between suppliers, customers, and
the facility. Dynamic programming and GIS are implemented for determining the road
to follow on the existence surface.

7 Summary

In this work we introduced weighted support vector machines (SVM), dynamic pro-
gramming, parallel programming, data mining, and Geographic Information Systems
(GIS) as a part of the Manifold Location Problem introduced in [14]. In [14], the
facility allocation was determined by employing a heuristic approach. In this work we
employed WSVM to determine the location of a facility by employing dynamic and
parallel programming techniques. Demanding customers are assigned −1 and suppliers
are assigned +1 as a part of the WSCM approach. The MMR and separating
hyper-planes are also determined as a part of this solution. The location of the facility is
determined by designing a weighted network of the demanding customers and sup-
pliers. These weights are used for the WSVM solution. A basic application of this
theory is explained on a supply chain management problem in which the robots follow
the geodesic paths to pick-up goods from suppliers and travel to distribute goods to
demanding customers. The transportation problem is assumed to be balanced for
efficient demand-supply flow within the network. The robots update and keep track of
the supply and demand tables of demanding customers and suppliers. Robots can
update their routes by using GIS information that is assumed to be achievable online
and calculate the geodesic distances accordingly. The LRP is solved by following a
similar method used in [14].

Acknowledgement. Dr. Theodore Trafalis was supported by RSF grant 14-41-00039 and he
conducted research at National Research University Higher School of Economics.

Initial routing – 1st phase
for suppliers
Figure (8-a): Path followed s1 s3 s2

: Path lengths 1.02 1.6 1.65

Figure (8-b): Path
followed

s1 s2 s3

: Path lengths 1.5 1.5 1.8

Initial routing – 2nd phase
for suppliers
Figure (8-a): Path followed s1 s2 s3

: Path lengths 1.02 1.5 1.65

Figure (8-b): Path
followed

s3 s2 s1

: Path lengths 0.8 1.8 1.5

Initial routing – 1st phase
for customers
Figure (8-a): Path followed c3 c1 c2 c5 c4

: Path lengths 1.2 1.9 1.45 2.3 1.1

Figure (8-b): Path followed c2 c1 c3 c4 c5

: Path lengths 1.2 1.92 1 1.55 2.6

Initial routing – 2nd phase
for customers
Figure (8-a): Path followed c2 c1 c3 c4 c5

: Path lengths 0.7 1.45 1.9 0.9 1.1

Figure (8-b): Path followed c3 c2 c1 c4 c5

: Path lengths 0.99 2.89 2.378 1.62 1.92

Fig. 9. Customer-supplier-facility distance calculations for the first two phases where dynamic
and parallel programming are used for calculations on the Euclidean and RM surfaces for solving
the LRP problem.

A Single-Facility Manifold Location Routing Problem 143

References

1. Aly, A., Kay, D., Litwhiler, J.: Location dominance on spherical surfaces. Oper. Res. 27,
972–981 (1979)

2. Do Carmo, M.P.: Differential geometry of curves and surfaces. Prentice Hall Inc.,
Englewood Cliffs (1976)

3. Aras, N., Yumusak, S.: Altınel, IK: solving the capacitated multi-facility Weber problem by
simulated annealing, threshold accepting and genetic algorithms. In: Doerner, K.F.,
Gendreau, M., Greistorfer, P., Gutjahr, W.J., Hartl, R.F., Reimann, M. (eds.) Metaheuristics:
Progress in Complex Systems Optimization, pp. 91–112. Springer, USA (2007)

4. Cheeger, J., Ebin, D.G.: Comparison Theorems in Riemannian Geometry. North Holland
Publishing Company, American Elsevier Publishing Company Inc., Amsterdam, New York
(1975)

5. Daskin, M.S.: What you should know about location modeling. Naval Res. Logis. 55, 283–
294 (2008)

6. Drezner, Z., Wesolowsky, G.O.: Facility location on a sphere. J. Oper. Res. Soc. 29, 997–
1004 (1978)

7. Gamal, M.D.H., Salhi, S.: Constructive heuristics for the uncapacitated continuous
location-allocation problem. J. Oper. Res. Soc. 52, 821–829 (2001)

8. Jost, J.: Riemannian Geometry and Geometric Analysis, 6th edn. Springer, New York
(2011)

9. Laporte, G.: What you should know about the vehicle routing problem. Naval Res. Logis.
54, 811–819 (2007)

10. Prodhon, C., Prins, C.: A survey of recent research on location-routing problems. Euro.
J. Oper. Res. 238(1), 1–17 (2014)

11. Riemann, B: Grundlagen für eine allgemeine Theorie der Functionen einer veränderlichen
complexen Grösse. Inauguraldissertation, Göttingen (1851)

12. Salhi, S., Nagy, G.: Local improvement in planar facility location using vehicle routing.
Ann. Oper. Res. 167, 287–296 (2009)

13. Sherali, H.D., Noradi, F.L.: NP-hard, capacitated, balanced p-median problems on a chain
graph with a continuum of link demands. Math. Oper. Res. 13, 32–49 (1988)

14. Tokgöz, E., Alwazzi, S., Theodore, T.B.: A heuristic algorithm to solve the single-facility
location routing problem on Riemannian surfaces. Comput. Manage. Sci. 12, 397–415
(2014). doi:10.1007/s10287-014-0226-6. Springer

15. Yang, X., Song, Q., Wang, Y.: A weighted support vector machine for data classification.
Int. J. Pattern. Recog. Artif. Intell. WSPC 21(5), 961–976 (2007)

144 E. Tokgöz et al.

http://dx.doi.org/10.1007/s10287-014-0226-6

An Efficient Many-Core Implementation
for Semi-Supervised Support Vector Machines

Fabian Gieseke(B)

Institute for Computing and Information Sciences, Radboud University Nijmegen,
Toernooiveld 212, 6525 EC Nijmegen, The Netherlands

fgieseke@cs.ru.nl

Abstract. The concept of semi-supervised support vector machines
extends classical support vector machines to learning scenarios, where
both labeled and unlabeled patterns are given. In recent years, such semi-
supervised extensions have gained considerable attention due to their
huge potential for real-world applications with only small amounts of
labeled data. While being appealing from a practical point of view, semi-
supervised support vector machines lead to a combinatorial optimization
problem that is difficult to address. Many optimization approaches have
been proposed that aim at tackling this task. However, the computational
requirements can still be very high, especially in case large data sets are
considered and many model parameters need to be tuned. A recent trend
in the field of big data analytics is to make use of graphics processing
units to speed up computationally intensive tasks. In this work, such a
massively-parallel implementation is developed for semi-supervised sup-
port vector machines. The experimental evaluation, conducted on com-
modity hardware, shows that valuable speed-ups of up to two orders of
magnitude can be achieved over a standard single-core CPU execution.

Keywords: Semi-supervised support vector machines · Non-convex
optimization · Graphics processing units · Big data analytics

1 Introduction

The classification of objects is a fundamental task in machine learning and sup-
port vector machines (SVMs) [4,20,22] belong to the state-of-the-art models to
address such scenarios. In their original form, support vector machines can only
take labeled patterns into account. However, such labeled data can be scarce
in real-world applications, whereas unlabeled patterns are often available in
huge quantities and at low cost. Semi-supervised learning schemes aim at tak-
ing both labeled and unlabeled patterns into account to improve the models’
performances [6,28]. The corresponding extension of support vector machines
takes the additional unlabeled part of the data into account by searching for
the partition of the unlabeled patterns into two classes such that a subsequent
application of a support vector machine yields the best overall result [2,14,23].

c© Springer International Publishing Switzerland 2015
P. Pardalos et al. (Eds.): MOD 2015, LNCS 9432, pp. 145–157, 2015.
DOI: 10.1007/978-3-319-27926-8 13

146 F. Gieseke

Various authors have demonstrated the usefulness of this concept. One main
drawback, however, is the computational runtime needed to solve or to approx-
imate the underlying combinatorial task. A quite recent trend in big data ana-
lytics is to resort to graphics processing units (GPUs) to speed up the involved
computations. These devices, which have formerly only been used in the context
of computer graphics, can nowadays also be applied to accelerate general-purpose
computations (e.g., multiplication of matrices). While modern GPUs offer mas-
sive parallelism (e.g., thousands of compute units on a single device), the specific
hardware properties have to be taken into account in order to achieve a satisfying
performance. In some cases, this requires a careful redesign of a given algorithm
to make it amenable to such devices.

Contribution: We propose a massively-parallel variant of the single-core
implementation for semi-supervised support vector machines recently pro-
posed by Gieseke et al. [12]. The experimental evaluation shows that a single
GPU device can yield speed-ups of up to two orders of magnitude over the
corresponding CPU single-core implementation. Since modern desktop comput-
ers can accommodate multiple many-core devices, one can dramatically reduce
the practical runtime needed to train these models given standard commodity
hardware.

2 Background

We start by providing the mathematical background of semi-supervised support
vector machines and the key ideas of general-purpose computations on GPUs.

2.1 Semi-Supervised Support Vector Machines

Let Tl = {(x1, y
′
1), . . . , (xl, y

′
l)} ⊂ X × R be a set of labeled patterns and Tu =

{xl+1, . . . ,xl+u} ⊂ X a set of unlabeled ones, where X is an arbitrary set.
Support vector machines are of the form [18,20,22]

inf
f∈H, b∈R

1
l

l∑

i=1

L(
y′

i, f(xi) + b
)

+ λ||f ||2H, (1)

where λ > 0 is a regularization parameter, L : R × R → [0,∞) a loss function
and ||f ||2H the squared norm in a reproducing kernel Hilbert space H ⊆ R

X =
{f : X → R} induced by a kernel function k : X ×X → R. The first term of the
objective measures how well the model fits the data, whereas the second term
penalizes “complex” models. Popular choices for the loss functions are, e.g., the
square loss L(y, t) = (y − t)2 or the hinge loss L(y, t) = max(0, 1 − yt), where
the latter one yields the concept of a classical support vector machine [19,22].

Semi-Supervised Extension. Given few labeled patterns only, support vector
machines might yield an unsatisfying classification accuracy. For many real-world

An Efficient Many-Core Implementation for Semi-Supervised SVMs 147

(a) Supervised (b) Semi-Supervised

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
0.0
0.2
0.4
0.6
0.8
1.0
1.2

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

(c) Prediction Space

Fig. 1. Support vector machines only take labeled patterns (red squares and blue tri-
angles) into account. In contrast, semi-supervised support vector machines make use of
additional unlabeled patterns (black points) by enforcing the model not to go “through”
the induced high-density areas, see Figure (b). This corresponds to penalizing predic-
tions for the unlabeled patterns that are close to zero, see Figure (c), where the top
figure corresponds to the supervised and the bottom one to the semi-supervised model
(Color figure online).

scenarios, however, additional unlabeled patterns Tu = {xl+1, . . . ,xl+u} ⊂ X
are available and can often be obtained without much additional effort. The
concept of semi-supervised support vector machines addresses these scenarios.
In a nutshell, one searches for the partition of the unlabeled patterns into two
classes such that a subsequent (slightly modified) support vector machine yields
the overall best result [2,14,23]. From a mathematical point of view, one searches
for a partition vector y∗ = (y∗

1 , . . . , y
∗
u)T ∈ {−1,+1}u, an offset term b∗ ∈ R,

and a model f∗ ∈ H that are optimal w.r.t.:

minimize
f∈H, b∈R,y∈{−1,+1}u

1
l

l∑

i=1

L(
y′

i, f(xi) + b
)

+
λ′

u

u∑

i=1

L(
yi, f(xl+i) + b

)
+ λ||f ||2H

Here, λ′ > 0 is an additional parameter that determines the influence of the
unlabeled patterns. Using the hinge loss and given a fixed (f, b) ∈ H × R, the
optimal partition vector y is given as yi = sgn(f(xl+i) + b) [9]. This leads to
the effective loss defined on the unlabeled patterns, which is given by Le(f(x)+
b) = max(0, 1 − |f(x) + b|) and which penalizes predictions “around” zero, see
Figs. 1(c) and 2(a). The representer theorem [19] shows that any optimal solution
(f, b) ∈ H × R for the induced continuous problem has the form

f(·) =
n∑

j=1

cjk(xj , ·) + b (2)

with c = (c1, . . . , cn)T ∈ R
n, b ∈ R, and n = l + u. Thus, using ||f ||2H =∑n

i=1

∑n
j=1 cicjk(xi,xj), the overall problem can be formulated as continuous

(non-convex) optimization task of the form:

minimize
c∈Rn, b∈R

1
l

l∑

i=1

L(
y′

i, f(xi) + b
)

+
λ′

u

u∑

i=1

Le
(
f(xl+i) + b

)
+ λ||f ||2H (3)

148 F. Gieseke

To avoid unbalanced solutions, an additional balancing constraint is usually
considered. In the remainder of this work, we follow Chapelle and Zien [9] and
include a constraint of the form 1

u

∑u
i=1 f(xl+i)+ b ≈ bc, where bc is an estimate

of the expected ratio between both classes (obtained via the labeled patterns or
fixed by the user). By centering all patterns w.r.t. to the mean of the unlabeled
patterns in feature space, this constraint can simply be enforced by fixing b = bc.1

Related Work. The concept of semi-supervised support vector machines stems
from Vapnik and Sterin [23], who named it transductive support vector machines.
The first practical approaches that tackled the combinatorial nature of the task
have been proposed by Joachims [14] and Bennet and Demiriz [2]. The former
approach is based on a label-switching strategy, which is also related to more
recent techniques [1,21]; the latter approach makes use of mixed-integer pro-
gramming solvers to obtain a globally optimal solution. Various other optimiza-
tion approaches have been proposed, including semi-definite programming [3,26],
branch-and-bound strategies [7], or gradient-based techniques [9,12]. We refer to
Chapelle et al. [6,8] and Zhu and Goldberg [28] for an overview.

Few GPU-based implementations have been proposed for support vector
machines and their variants. For instance, Catanzaro et al. [5] resort to GPUs for
speeding up the training phase of standard support vector machines. Wen et
al. [24] make use of this implementation to accelerate a local search scheme that
addresses a variant of the problem outlined above. In particular, the approach is
based on small subsets of the data and resorts to Catanzaro et al.’s implemen-
tation to speed up the intermediate SVM tasks. To the best of our knowledge,
no GPU-based implementation that is specifically devoted to the task induced
by semi-supervised support vector machines has been proposed so far.

2.2 Massively-Parallel Computations on GPUs

Modern graphics processing units are based on thousands of compute units.
Originally, such devices were only used to accelerate computer graphics. Nowa-
days, however, they can also be used for so-called general-purpose computations
on graphics processing units (GPGPU) such as matrix multiplications. Various
adaptations of standard machine learning tools have been proposed in recent
years and the potential of such massively-parallel implementations has been
demonstrated for different application domains [5,11,13,25].

In contrast to CPUs, which exhibit complex control units and function mech-
anisms that are optimized for sequential code execution, GPUs rely on simplified
control units and are generally designed for “simple tasks” that are executed in
a massively-parallel manner [10]. Two key ingredients for an efficient GPGPU
implementation are (1) exposing sufficient parallelism to the many-core device
and (2) reducing the memory transfer between the host system and the device(s).
1 More precisely, we assume

∑u
i=1 Φ(xl+i) = 0, where Φ(x) = k(x, ·) is the feature

mapping induced by the kernel k. Centering the data can be achieved by adapting
the kernel matrices in the preprocessing phase, see, e.g., Schölkopf and Smola [20].

An Efficient Many-Core Implementation for Semi-Supervised SVMs 149

The tasks assigned to a GPU are executed in parallel based on the single instruc-
tion multiple data-paradigm (SIMD), meaning that all threads can only execute
the same instruction in a single clock cycle, but have access to different memory
locations. Most of the GPGPU implementations aim at “separating” the com-
putationally intensive parts from the remaining computations such that these
parts can be conducted efficiently on the many-core device.

3 Optimization on Many-Core Systems

In its original form, the continuous objective associated with semi-supervised
support vector machines is not differentiable, which rules out the use of, e.g.,
gradient-based optimization techniques. One way to tackle this problem is to
resort to differentiable surrogates for the objective [9]. In this section, we build
upon our previous work [12] and describe the modifications needed to make the
implementation amenable to an efficient execution on modern GPUs.

3.1 Differentiable Objective

Following Gieseke et al. [12], we consider the modified logistic loss L(y, f(x)) =
1
γ log (1 + exp(γ(1 − y′

if(xi)))) as replacement for the hinge loss and Le(f(x)) =

exp(−3(f(xl+i))
2) as replacement of the effective loss defined on the unlabeled

patterns [9,27], see Fig. 2. This yields

Fλ′(c) =
1
l

l∑

i=1

1
γ

log

(

1 + exp

(

γ(1 − y′
i

n∑

i=1

cik (xi, ·))
))

(4)

+
λ′

u

n∑

i=l+1

exp

⎛

⎝−3

(
n∑

i=1

cik (xi, ·)
)2

⎞

⎠ + λ

n∑

i=1

n∑

j=1

cicjk(xi,xj)

as new differentiable objective. As pointed out by Gieseke et al. [12], one can
compute the objective value Fλ′(c) in O(n2) time for a given vector c ∈ R

n.
This also holds true for the gradient ∇Fλ′(c), which can be written as

∇Fλ′(c) = Ka + 2λKc (5)

with a ∈ R
n and coefficients defined as

ai =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−1
l

· exp(γ(1 − f(xi)y′
i))

1 + exp(γ(1 − f(xi)y′
i))

· y′
i for i ≤ l

−6λ′

u
· exp

(−3(f(xi))2
) · f(xi) for i > l

,

To reduce the computational complexity and memory requirements, one can
integrate kernel matrix approximation schemes such as the subset of regressors
framework [18], which replaces (2) by f̂(·) =

∑r
k=1 ĉjk

k(xjk
, ·) + b, where R =

150 F. Gieseke

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2

(a)

0

0.2

0.4

0.6

0.8

1

1.2

-3 -2 -1 0 1 2 3

(b)

Fig. 2. Figure (a) shows the hinge loss L(y, t) = max(0, 1 − yt) (black) and a differ-
entiable surrogate L(y, t) = 1

γ
log(1 + exp(γ(1 − yt))) with y = +1 and γ = 20 (blue).

Figure (b) shows the associated effective loss function L(t) = max(0, 1 − |t|) (black)
along with its differentiable surrogate L(t) = exp(−st2) with s = 3 (blue) (Color figure
online).

{j1, . . . , jr} ⊆ {1, . . . , n} is a subset of indices. This leads to a runtime of O(nr ·
kT) for computing all involved matrices and to O(nr) per function and gradient
evaluation, where kT depicts the runtime to conduct a single kernel computation
k(xi,xj) [12]. In the following, we consider this kernel matrix approximation
scheme, where the non-approximation case can be obtained by setting r = n.

3.2 Algorithmic Framework

Following Gieseke et al. [12], we consider a particular instance of the quasi-
Newton family of optimization tools, called the L-BFGS method [17]. As jus-
tified below, this variant is particularly well-suited for the aspired many-core
implementation since the optimization-related matrices (approximations of the
Hessian’s inverse) are updated on the fly based on a small amount of past iter-
ations. This will lead to a linear instead of a quadratic memory and time con-
sumption for all steps that will be executed on the host system.

General Optimization Workflow. We consider a simple, yet effective way to
take advantage of both the resources of the host system as well as the ones of
the many-core device: First, all computationally intensive tasks are conducted
on the GPU device (e.g., the computation of kernels matrices, matrix-vector
multiplications, centering patterns in feature space). Note that all kernel matrices
as well as auxiliary matrices for centering the data in feature space are only
materialized on the GPU (only the labeled and unlabeled training patterns
have to be copied to the device). Second, most of the linear-time operations are
conducted via the CPU. The reason for this is that the overhead for invoking a
GPU call is usually larger than the actual computation time on the host system.2

2 A linear-time operation on, e.g., n = 10000 elements does not yield sufficient paral-
lelism for a modern GPU with thousands of compute units.

An Efficient Many-Core Implementation for Semi-Supervised SVMs 151

Algorithm 1. GPU-QN-S3VM
Require: A set Tl = {(x1, y′

1), . . . , (xl, y′
l)} of labeled and a set Tu = {xl+1, . . . ,xn} of unlabeled

training patterns, model parameters λ′, λ, and a sequence 0 = α1 < α2 < . . . < ατ .

1: Copy training data from host to device [host
O(dn)−−−−→ gpu]

2: Initialize all kernel matrices [gpu: O(nr · kT) time]
3: Center data in feature space [gpu: O(nr) time]
4:
5: Initialize c = 0 ∈ R

n [host: O(n) time]
6: for i = 1 to τ do
7: c0 = c [host: O(n) time]
8: Initialize H0 = δI [host: O(n) time]
9: j = 0
10: while termination criteria not fulfilled do

11: Copy candidate solution cj to device [host
O(n)−−−−→ gpu]

12: Compute Fλ′·αi
(cj) and ∇Fλ′·αi

(cj) [gpu: O(nr) time; host: O(n) time]

13: Copy Fλ′·αi
(cj) and ∇Fλ′·αi

(cj) back to host [host
O(n)←−−−− gpu]

14: Compute Hj on the fly (m rank-1 updates) [host: O(n) time]
15: Compute search direction pj = −Hj∇Fλ′·αi

(cj) [host: O(n) time]

16: Update cj+1 = cj + βjpj [host: O(n) time]
17: j = j + 1
18: end while
19: c = cj

20: end for

In general, the overall process consists of (1) invoking the outer optimization
engine (which resorts to function and gradient calls) and (2) the function and gra-
dient calls themselves. For the sake of exposition, we briefly sketch the involved
steps as well as the runtimes and involved memory transfers between host and
device, see Algorithm 1: In Steps 1–3, the training data (assuming X = R

d)
are copied from host to device and all involved matrices are materialized on
the GPU (data centering is done by adapting the kernel matrices). The initial
candidate solution c is initialized on the host system in Step 5. Afterwards, the
local search takes place (Steps 6–20). Since α0 = 0, the first iteration corre-
sponds to the initialization of c via a purely supervised model. Note that, for
each iteration, only linear-time operations are conducted on the CPU and only
a linear amount of data is transferred between host and device (Steps 8–18). The
computationally intensive parts are conducted on the GPU (Step 12). Assum-
ing m to be constant, all operations on the host system take linear time per
iteration.3

GPGPU Implementation. The above framework resorts to function and gra-
dient calls in each iteration, which are mostly conducted on the GPU. However,
a series of linear-time operations is needed for both the objective and gradient
calls (e.g., operations to avoid numerical instabilities [12]). Since these opera-
tions do not yield sufficient parallelism for today’s many-core devices, we con-
duct these operations on the host system as well (the experimental evaluation
confirms that the runtime for these steps is very small). For all matrix-vector

3 Nocedal and Wright [17] point out that small values for the parameter m are usually
sufficient to achieve a satisfying convergence rate in practice (e.g., m = 3 to m = 50).

152 F. Gieseke

multiplications, we resort to highly-tuned linear algebra packages available for
GPUs (see Sect. 4). For the remaining computations, we make use to several
manually designed GPU kernels. Due to lack of space, we only mention the key
techniques applied:

(1) Fusion of Operations: The objective and gradient calls involve a series of
matrix and array operations. To achieve a satisfying performance, it is crucial
to fuse all these operations as much as possible such that unnecessary data
movements from global memory of the GPU device to the compute units
are avoided.

(2) Memory Access: For the remaining GPU kernels, all memory operations are
conducted in a coalesced manner if possible. This is, in particular, important
for various operations that yield one- or two-dimensional sums of arrays (e.g.,
for the data centering preprocessing step).

Again, despite the space needed for the training data, only O(n) additional
space is allocated on the host system; all remaining arrays are initialized on
the GPU.

4 Experiments

The potential and possible pitfalls of semi-supervised support vector machines
have already been analyzed extensively in the literature [6,8,28]. We therefore
focus on the computational speed-ups that can be achieved using modern GPUs.

4.1 Experimental Setup

We make use of commodity hardware for all experiments. In particular, the test
system is a standard desktop computer with an Intel(R) Core(TM) i7--3770
CPU running at 3.40 GHz (4 cores; 8 hardware threads), 16 GB RAM, and a
Nvidia GeForce GTX770 GPU having 1536 shader units and 4 GB RAM. The
operating system is Ubuntu 12.04 (64 Bit) with kernel 3.8.0--44 and CUDA
5.5 (graphics driver version 319.23).

Both the CPU-based implementation as well as its many-core analog are
implemented in Python (version 2.7.6) using efficient linear algebra packages for
computations involving matrices. For the CPU implementation, these compu-
tations are efficiently supported via the NumPy package (version 1.9.1), which, in
turn, resorts to linear algebra routines (linked against blas and lapack libraries).
For the many-core approach, we resort to manually designed CUDA [10] kernels
that are invoked via PyCUDA [16] (version 2014.1) as well as to scikit-cuda
(version 0.5.0), which provides Python interfaces to, e.g., CUBLAS [16]. The
L-BFGS scheme is implemented via the fmin l bfgs b procedure provided by
the SciPy [15] package (version 0.15.1) with parameters m = 25, pgtol = 0.0001,
and factr = 1012 being fixed for all experiments.

An Efficient Many-Core Implementation for Semi-Supervised SVMs 153

u

(a) cpu-qn-s3vm

u

(b) gpu-qn-s3vm

u

(c) cpu-qn-s3vm

u

(d) gpu-qn-s3vm

Fig. 3. Runtime analysis of cpu-qn-s3vm and gpu-qn-s3vm given the mnist8m (top row,
classes 1 and 7) and the epsilon data set instance (bottom row); model parameters
are fixed to λ = 0.001 and λ′ = 0.1. Further, the number l = 100 labeled patterns are
used, whereas the number u of unlabeled patterns is varied from 5000 to 40000.

We focus on a direct runtime comparison between the implementation
described in Gieseke et al. [12] and its GPU variant, called cpu-qn-s3vm and
gpu-qn-s3vm, respectively.4 Note that we do not take other implementations
into account since (a) the runtime performance of the CPU version has been
evaluated extensively in the literature [12] and since (b) the practical runtime
heavily depends on the involved parameters (such as stopping criteria). A mean-
ingful comparison therefore has to take both the runtimes and the associated
classification accuracies into account, which we leave over for future work.5 For
all comparisons, single floating point precision is used for both implementations.

We make use of both a linear and an RBF kernel function [20] and resort
to dense data set instances for all runtime experiments. In particular, we con-
sider subsets of the mnist8m and the epsilon data sets.6 Further, we set
r = min(5000, n) such that thousands of unlabeled patterns can be considered.

4.2 Results

For the sake of exposition, we focus on two data set instances; it is worth pointing
out, however, that similar runtime results were observed for other data sets as
4 Our CPU version is a manually tuned variant of the publicly available code [12]

(version 0.1), which is by a factor of two faster than the original version.
5 The most significant part of the runtime of cpu-qn-s3vm is spent on matrix opera-

tions (see below), which are efficiently supported by the NumPy package; we therefore
do not expect significant performance gains using a pure, e.g., C implementation.

6 Available at http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/.

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

154 F. Gieseke

well in the course of the experimental evaluation (especially in case of larger
data sets with more than 10,000 patterns).

Runtime Analysis. The optimization process of the GPU variant takes place
both on the host system and on the many-core device. As described in Sect. 3,
only linear-time operations are conducted on the host system, whereas the com-
putational intensive parts are executed on the GPU. In Fig. 3, the runtimes of
the different phases for both cpu-qn-s3vm and gpu-qn-s3vm are shown for a
varying number u of unlabeled patterns on two data sets. The total runtime
corresponds to the training time, which is, in turn, split up into (1) array com-
putations, (2) remaining computations, and (3) copy operations between host
and GPU (only for gpu-qn-s3vm). The most significant part of the runtime of
cpu-qn-s3vm is spent on array computations.

It can be clearly seen that the GPU implementation can greatly speed up
these computationally intensive parts. The analysis of gpu-qn-s3vm also shows
that both the runtime for the copy operations as well as the one for the remaining
computations on the host system are very small compared to the overall runtime
of cpu-qn-s3vm (which is an important ingredient for achieving good speed-
ups). Thus, one can basically separate the computational intensive parts (kernel
matrix computation, fitness and gradient evaluations, . . .) from the remaining
parts of the optimization process. This is in line with the algorithmic framework
depicted in Algorithm 1, since only linear-time operations have to be performed
on the host system and since only O(n) data are moved from host to device and
back per iteration.

n

Fig. 4. Runtime comparison
between the CPU implementation
and its many-core variant for
λ = 1, λ′ = 1, σ = 1 · s.

Speed-Ups and Model Parameters.
Semi-supervised support vector machines are
sensitive w.r.t. to appropriate assignments
for the involved model parameters. For this
reason, an exhaustive tuning phase (based
on, e.g., cross-validation and grid-search) is
usually conducted, which requires significant
computational resources. The GPU imple-
mentation can greatly reduce the practical
runtime needed for this phase. To investigate
the practical benefits of the GPU framework
in this context, we consider the epsilon data
set and vary the model parameter assignments. In particular, we make use of
an RBF kernel with kernel width σ, where we consider multiples of an approxi-
mate of the average distance s between all training patterns [12]. In Fig. 4, the
runtimes and the induced speed-ups of gpu-qn-s3vm over cpu-qn-s3vm are pro-
vided for λ = 1, λ′ = 1, and σ = 1 · s. It can be seen that a valuable speed-up
(green, dotted) of about 80 can be achieved (GPU vs. single CPU core). Similar
results are obtained for other parameter assignments as well, see Fig. 5 (a single
parameter assignment was changed for each plot).

An Efficient Many-Core Implementation for Semi-Supervised SVMs 155

n

(a) λ = 0.001
n

(b) λ′ = 0.001
n

(c) σ = 0.1 · s

n

(d) λ = 1000
n

(e) λ′ = 1000
n

(f) σ = 10 · s

Fig. 5. Runtime comparisons between cpu-qn-s3vm and gpu-qn-s3vm for varying u
and different model parameters (single CPU core vs. single GPU device).

5 Conclusions

Modern graphics processing units offer massive parallelism and can effectively
reduce the practical running time in case the specific hardware properties are
taken into account. We propose a massively-parallel implementation for semi-
supervised support vector machines and show that practical speed-ups of about
up to 80 can be achieved (GPU vs. single CPU core). Since standard desktop
computers can nowadays easily accommodate up to four such GPU devices,
one can significantly reduce the training time (grid search), even compared to
powerful multi-core CPUs. To the best of our knowledge, the implementation
provided is the first one that directly addresses the optimization task induced by
semi-supervised support vector machines. We expect this implementation to be
useful for real-world applications as well as for future extensions of this learning
concept (e.g., stability analysis based on many models).

Acknowledgements. The author would like to thank the anonymous reviewers for
their careful reading and detailed comments. This work has been supported by the
Radboud Excellence Initiative of the Radboud University Nijmegen. The author also
would like to thank NVIDIA for generous hardware donations.

References

1. Adankon, M., Cheriet, M., Biem, A.: Semisupervised least squares support vector
machine. IEEE Trans. Neural Netw. 20(12), 1858–1870 (2009)

2. Bennett, K.P., Demiriz, A.: Semi-supervised support vector machines. In: Advances
in Neural Information Processing Systems, vol. 11, pp. 368–374. MIT Press (1999)

3. Bie, T.D., Cristianini, N.: Convex methods for transduction. In: Advances in Neural
Information Proceedings Systems, vol. 16, pp. 73–80. MIT Press (2004)

156 F. Gieseke

4. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin
classifiers. In: Haussler, D. (ed.) Proceedings 5th Annual Workshop on Computa-
tional Learning Theory, pp. 144–152. ACM, New York (1992)

5. Catanzaro, B., Sundaram, N., Keutzer, K.: Fast support vector machine training
and classification on graphics processors. In: Proceedings of the 25th International
Conference on Machine Learning, pp. 104–111. ACM, New York (2008)

6. Chapelle, O., Schölkopf, B., Zien, A. (eds.): Semi-Supervised Learning. MIT Press,
Cambridge (2006)

7. Chapelle, O., Sindhwani, V., Keerthi, S.S.: Branch and bound for semi-supervised
support vector machines. In: Advances in Neural Information Processing Systems
19, pp. 217–224. MIT Press (2007)

8. Chapelle, O., Sindhwani, V., Keerthi, S.S.: Optimization techniques for semi-
supervised support vector machines. J. Mach. Learn. Res. 9, 203–233 (2008)

9. Chapelle, O., Zien, A.: Semi-supervised classification by low density separation.
In: Proceedings of the 10th International Workshop on Artificial Intelligence and
Statistics, pp. 57–64 (2005)

10. Cheng, J., Grossman, M., McKercher, T.: Professional CUDA C Programming.
Wiley, New Jersey (2014)

11. Coates, A., Huval, B., Wang, T., Wu, D.J., Catanzaro, B.C., Ng, A.Y.: Deep learn-
ing with COTS HPC systems. In: Proceedings of the 30th International Conference
on Machine Learning, pp. 1337–1345. JMLR.org (2013)

12. Gieseke, F., Airola, A., Pahikkala, T., Kramer, O.: Fast and simple gradient-based
optimization for semi-supervised support vector machines. Neurocomputing 123,
23–32 (2014)

13. Gieseke, F., Heinermann, J., Oancea, C., Igel, C.: Buffer k-d trees: processing mas-
sive nearest neighbor queries on GPUs. In: Proceedings of the 31st International
Conference on Machine Learning, JMLR W&CP, vol. 32, pp. 172–180. JMLR.org
(2014)

14. Joachims, T.: Transductive inference for text classification using support vector
machines. In: Proceedings of the International Conference on Machine Learning,
pp. 200–209 (1999)

15. Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: open source scientific tools for
Python (2001–2015). http://www.scipy.org/

16. Klöckner, A., Pinto, N., Lee, Y., Catanzaro, B., Ivanov, P., Fasih, A.: PyCUDA
and PyOpenCL: a scripting-based approach to GPU run-time code generation.
Parallel Comput. 38(3), 157–174 (2012)

17. Nocedal, J., Wright, S.J.: Numerical Optimization, 1st edn. Springer, New York
(2000)

18. Rifkin, R., Yeo, G., Poggio, T.: Regularized least-squares classification. In:
Advances in Learning Theory: Methods, Models and Applications. IOS Press
(2003)

19. Schölkopf, B., Herbrich, R., Smola, A.J.: A Generalized Representer Theorem. In:
Helmbold, D.P., Williamson, B. (eds.) COLT 2001 and EuroCOLT 2001. LNCS
(LNAI), vol. 2111, pp. 416–426. Springer, Heidelberg (2001)

20. Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Reg-
ularization, Optimization, and Beyond. MIT Press, Cambridge (2001)

21. Sindhwani, V., Keerthi, S.S.: Large scale semi-supervised linear SVMs. In: Pro-
ceedings of the 29th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, pp. 477–484. ACM, New York (2006)

22. Steinwart, I., Christmann, A.: Support Vector Machines. Springer, New York
(2008)

http://www.scipy.org/

An Efficient Many-Core Implementation for Semi-Supervised SVMs 157

23. Vapnik, V., Sterin, A.: On structural risk minimization or overall risk in a problem
of pattern recognition. Autom. Remote Control 10(3), 1495–1503 (1977)

24. Wen, Z., Zhang, R., Ramamohanarao, K.: Enabling precision/recall preferences
for semi-supervised SVM training. In: Proceedings of the 23rd ACM International
Conference on Information and Knowledge Management, pp. 421–430. ACM, New
York (2014)

25. Wen, Z., Zhang, R., Ramamohanarao, K., Qi, J., Taylor, K.: Mascot: fast and
highly scalable SVM cross-validation using GPUs and SSDs. In: Proceedings of
the 2014 IEEE International Conference on Data Mining (2014)

26. Xu, L., Schuurmans, D.: Unsupervised and semi-supervised multi-class support
vector machines. In: Proceedings of the National Conference on Artificial intelli-
gence, pp. 904–910 (2005)

27. Zhang, T., Oles, F.J.: Text categorization based on regularized linear classification
methods. Inf. Retr. Boston 4, 5–31 (2001)

28. Zhu, X., Goldberg, A.B.: Introduction to Semi-Supervised Learning. Morgan and
Claypool, San Rafael (2009)

Intent Recognition in a Simulated Maritime
Multi-agent Domain

Mohammad Taghi Saffar(✉), Mircea Nicolescu, Monica Nicolescu,
Daniel Bigelow, Christopher Ballinger, and Sushil Louis

Computer Science and Engineering Department, University of Nevada Reno, Reno, NV, USA
msaffar@unr.edu, bigelowdc@gmail.com

{mircea,monica,caballinger,sushil}@cse.unr.edu

Abstract. Intent recognition is the process of determining the action an agent is
about to take, given a sequence of past actions. In this paper, we propose a method
for recognizing intentions in highly populated multi-agent environments. Low-
level intentions, representing basic activities, are detected through a novel formu‐
lation of Hidden Markov Models with perspective-taking capabilities. Higher
level intentions, involving multiple agents, are detected with a distributed archi‐
tecture that uses activation spreading between nodes to detect the most likely
intention of the agents. The solution we propose brings the following main contri‐
butions: (i) it enables early recognition of intentions before they are being real‐
ized, (ii) it has real-time performance capabilities, and (iii) it can detect both single
agent as well as joint intentions of a group of agents. We validate our framework
in an open source naval ship simulator, the context of recognizing threatening
intentions against naval ships. Our results show that our system is able to detect
intentions early and with high accuracy.

Keywords: Intent recognition · Scene understanding · Action recognition ·
Multi-agent system · Activation spreading · HMM

1 Introduction

Plan recognition is the process of selecting the most suitable plan that an agent is under‐
taking based on a sequence of observed atomic actions [1]. Usually a plan is formally
defined as a set of low-level actions with a partial order relation defined to represent
ordering between these low-level actions, and the observable evidence for a plan is a
sub-sequence of one of the many different ways of linearization of the low-level actions
which satisfy the ordering. The body of work in this area like [2, 3] has little prediction
power in the sense that it is required to observe the whole plan or many low-level actions
to robustly detect the underlying plan. Another important shortcoming is that previous
approaches like [4, 5] do not consider (soft) real-time constraints that are inherent to the

This work has been supported by the Office of Naval Research, under grant number
N00014-09-1-1121.

© Springer International Publishing Switzerland 2015
P. Pardalos et al. (Eds.): MOD 2015, LNCS 9432, pp. 158–170, 2015.
DOI: 10.1007/978-3-319-27926-8_14

nature of applications such as human robot interaction. Another limitation of current
systems is that they cannot detect collective plans effectively.

In this paper we propose a new distributed hierarchical architecture to detect indi‐
vidual or collective intentions in a crowded simulated multi-agent system. Our approach
brings several key contributions: (i) the system has predictive power, which means it
can detect intentions well before they are being realized, (ii) the system works in real-
time, processing data while it is being gathered and (iii) the system can detect intentions
of individual agents towards other agents, as well as joint intentions. The basic idea of
our method is that the hierarchical structure of activities is represented as an intercon‐
nected network of nodes representing various actions. The observation of certain basic
actions increases the strength of corresponding nodes, which begin to send activation to
nodes that represent related activities. Activities that accumulate the highest level of
activation are considered most likely to be performed by the agent. Nodes may corre‐
spond to either low-level (one-on-one agent) intentions or high-level (joint) intentions.
Low-level intentions are detected using a new formulation of Hidden Markov Models
(HMM), which are implemented to run in parallel on GPU with CUDA technology [6]
for higher speed. To detect joint intentions we use a distributed network of connected
nodes, where the lowest level nodes get their activation values from HMMs and higher
level nodes receive activation from lower level nodes.

The rest of this paper is organized as follows. In the next section a brief overview of
previous research is presented. Section 3 introduces the infrastructure of the proposed
approach, which we later use to implement and evaluate our intent recognition system.
The following section introduces our formulation for low-level intent recognition based
on HMMs. Section 5 describes our distributed activation spreading network (ASN) to
detect multi-agent intentions followed by experimental results in Sect. 6. Finally the last
section provides conclusions and future directions to extend this work.

2 Previous Work

As stated in [7], it is not enough to simply recognize the intentions of each individual
agent towards others. To obtain a good prediction of joint intents, it is also necessary to
infer the shared plan of the agents as a group. [8, 9] utilize HMMs for intent recognition,
however the problem domain has only a few number of agents. In [10], Banerjee et al.
present a formalization of multi-agent plan recognition by representing a plan library as
a set of matrices and observation of actions as another matrix. The matching in this
formalism is NP-Complete and cannot handle goal abandonment or plan interleaving.
In [4], Zhuo et al. focus on the problem of partial observability. Using the formulation
in [10], they assume that some actions are unknown and try to marginalize on these
unknown actions while finding the best match in the plan base. This work still cannot
handle plan interleaving and does not scale well to large plan libraries. In [11], the
authors proposed a theoretical framework with a combined top-down and bottom-up
approach. In the top-down approach the system reasons about global goals and their
decomposition into plans. In bottom-up the system observes atomic actions and merges
them into plan segments. No experimental evaluations were provided in this work. Some

Intent Recognition in a Simulated Maritime Multi-agent Domain 159

new approaches in plan recognition use dynamic networks of connected nodes such as
Dynamic Neural Fields [12] or semi-Markov decision process graphs [13] to represent
tasks for applications like active learning, intent inference and joint intention under‐
standing. Dynamic Neural Fields (DNF) [14, 15] have first been introduced as a simpli‐
fied mathematical model for neural processing based on recurrent interactions, which
neglects the temporal dynamics of individual neurons and uses average firing rate. The
main idea behind DNF-models for intent representation is that a distributed network of
reciprocally connected neurons forms a complex dynamical system, which can represent
and process intent-related information in its activation patterns.

3 Infrastructure

We evaluate our approach for multi-agent intent recognition in the context of detecting
threatening intentions against Navy ships, using an open-source naval ship simulator [16]
as the base for our simulation framework. We built a fully functioning test-bed for intent
recognition systems on top of this simulator. The open source naval simulator [16] is very
appropriate for our problem, as it supports the simulation of multiple ships, operates in
real-time, and is deterministic (which allows for precise reproduction of experiments).
A snapshot of the simulation environment is shown in Fig. 1(a).

Fig. 1. (a) Screen-shot of the simulator environment. (b) Intent recognition system architecture

For better modularity and for decoupling the intent recognition system from the
simulator, we created separate processes for controlling the simulation and for intent
recognition. These two components would communicate via the Robot Operating
System (ROS) [17], using its publish/subscribe approach. To make the experiments
realistic we implemented a visibility module to filter out any information that is hidden
from the viewpoint of an entity in the simulator (ships, oil platforms, airplanes, heli‐
copters, etc.). This module considers any landscape in the line of sight between two
entities and publishes local state vectors for each pair of entities. The state vector
contains the following local information: the distance between the entities (dist), the
angle of line connecting them (cross angle), the direction (orientation) and speed of
movement for each entity, and finally a visibility flag showing if the second entity is
visible from the first entity’s viewpoint. Finally, another component was added to the

160 M.T. Saffar et al.

simulator for visualizing detected intentions. The components and their connections are
shown in Fig. 1(b).

4 Low-Level Intent Recognition

Following previous work in using HMMs for intent recognition [8, 9], our HMM
formalism is based on the idea of perspective taking. As shown in Fig. 1(b), the input
to this layer is simply the local perspective state generated by the visibility module and
the output is the recognized intention for each pair of entities. We use HMMs to capture
pairwise interactions between entities. An intention that an agent can have towards any
other agent is represented as a set of Hidden Markov Models. An HMM is a probabilistic
method to model a Markov process with unobserved states, and consists of a set of hidden
states, a probability distribution on transitions between hidden states (transition proba‐
bility), a set of visible or observable states, and a probability distribution on observing
visible states given that the system is in a particular hidden state (emission probability).
In our particular low-level intent recognition problem, each possible low-level intention
is modeled as a separate set of HMMs. In each HMM, we are trying to recognize the
intention of only a single entity (actor) towards another entity (target). We denote the

intention of actor towards target as in which represents the kth low-level

intention in our system and m is the total number of low-level intention types. Any low-

level intention has a set of corresponding HMMs that have different

number of hidden states ranging from 1 to hidden states.
Previous work [11] suggests that to accurately model an intention as a HMM, we

need to have a meaningful interpretation of hidden states such as sub-activities of the
particular intention being modeled. This break-down typically requires expert knowl‐
edge about the domain at hand, which is not always available. In addition, in many
domains it is possible to have multiple ways of accomplishing an intention, which is
precluded if we allow only a single model for each intention. Following these observa‐
tions we therefore employ a set of HMMs for each low-level intention in our
system. These models have different numbers of hidden states. To detect the intention
of an actor towards a target, we use cross-validation to select the best model for each
intention.

For our particular naval ship domain we are interested in detecting the following
5 different low-level intentions: approach (one boat heads directly to another), pass
(one boat passes another in opposite directions), overtake (one boat passes another
in the same direction), follow (one boat maintains the same distance and heading
with respect to another) and intercept (one boat heads toward a point of another
boat’s trajectory). A schematic representation of these intentions is shown in
Fig. 2(a). Formally the set of observable states is a set of tuples of the form

 in which is the change in distance between actor
and target, is the change in the angle between the actor’s current direc‐
tion of movement and the straight line from actor towards target,

Intent Recognition in a Simulated Maritime Multi-agent Domain 161

 are the orientations of actor towards target and orienta‐
tion of target towards actor respectively, and finally is
the difference in headings for the actor and the target. Figure 2(b) shows the observ‐
able states defined above. The set of all possible tuples T forms the alphabet of
observable states and contains a total of 72 different tuples.

For each one of the 5 intentions, we created 4 different models with different number
of hidden states ranging from 1 to 4. We chose 4 because we believe that the low-level
intentions we are trying to detect at this stage are not complex enough to need more than
4 hidden states. To train the HMM models, we generated 20 different two-boats exam‐
ples for each intention in our simulator, each with randomized starting boat configura‐
tions. We then computed observable variables for each frame of each generated example,
and trained our models with the Baum-Welch algorithm [18].

Fig. 2. (a) Low-level intentions in naval ship domain. (b) Local state vector for a sample
configuration of entities (Observable states are changes in these measurements not their absolute
value)

Once the HMMs for each intention have been trained, recognizing intent becomes
a problem of pattern classification. At runtime, we calculate the observable variables for
each agent in a scene with respect to every other agent, and we determine the model that
is most likely to have generated a given sequence of observables with the forward algo‐
rithm [19], which, given an HMM and a sequence of observable variables, returns the
log-likelihood of the given HMM generating that particular sequence. We compute this
likelihood for each trained model and choose the one with the highest probability.

The approach to intent recognition presented so far is shown to work quite well in
the work presented in [8, 9]. However, it is subject to some constraining assumptions.
First, while the algorithm will work in its current form for scenarios involving multiple
agents, the forward algorithm is computationally complex and the intent recognition
process cannot scale to scenarios involving many agents while still performing in real-
time. Since this approach is based on the idea of perspective taking, for number of
entities in the environment we need to detect number of intentions. If we have
number of low-level intentions and for each low-level intention we have different

162 M.T. Saffar et al.

HMMs, then for detecting each intention we need to apply the forward algorithm for
 HMMs, which means that for each frame we have to run the forward algorithm

 times, which becomes infeasible for real-time intent recognition.
Second, the HMM-based approach to intent recognition assumes that each agent’s
intention towards each other agent is completely independent of all other intentions.
While this simplifying assumption is not a problem for low-level intentions such as
passing, overtaking, or approaching, it presents difficulties when attempting to model
intentions that involve coordinated efforts among multiple agents.

In our early experiments with the ship simulator, we discovered that without paral‐
lelization, the HMM method tends to stop performing in real-time when more than 5
agents are present in the scenario. However we can take advantage of the independence
assumption and parallelize each step of our algorithm. We calculate the observable
variables independently and in parallel for each pair of agents in the scene, using a
CUDA kernel. Once each sequence of observable variables has been calculated, we use
the parallel implementation of the forward algorithm presented in [20] to calculate the
log-likelihood for each intention, for each pair of agents simultaneously. Once this has
been done, another CUDA kernel is used to choose the most likely intention for each
pair of agents (or no intention, if all likelihoods are below a certain threshold). This
parallelization significantly increases the speed of the intent recognition process.

5 High-Level Intent Recognition

As discussed in Sect. 2, the general approach to multi-agent plan recognition defined by
[10] is to maintain a library of joint plans and search for plans that contain the list of
observed actions as a subsequence. In the naval ship domain, a joint plan for creating a
Blockade might involve at least three agents performing an intercept. The problem with
using a plan library is twofold. First, plan libraries might become quite large, slowing
the search process, which becomes an issue if real-time computation is desired. Second,
goal abandonment or plan interleaving is not easily supported. In this paper we propose
to address these problems by using activation spreading in a hierarchical intent network
for the task of high-level intent recognition. An ASN can be represented as a set of
neurons that are connected to each other via synaptic connections. Mathematically, an
ASN is a directed graph in which is a finite set of vertices
(neurons) and is a set of directed edges (synapses) connecting two
vertices. For simplicity, we use the notation to represent an edge from to . Each
vertex has an activation value and each edge has a weight . There is also a
firing threshold and a decay factor associated with the network. Our basic approach
for activation spreading inference is shown in Fig. 3.

Intent Recognition in a Simulated Maritime Multi-agent Domain 163

Fig. 3. Our basic activation spreading inference algorithm

The activation spreading network allows us to encode complex, possibly hierarchi‐
cally structured intentions, through the topology of the network. In the network, low-
level nodes correspond to the low-level intentions recognized by the HMM approach
discussed in Sect. 4. We create one low-level node for each pair of agents and each low-
level intention that can occur between them. In our work, this means that for each pair
of nodes , we will have 5 low-level nodes associated with the five different intentions.
Nodes that represent higher-level intentions receive activations from the low-level nodes
or other high-level intentions. For simplicity we use 1 as the weights for the connecting
edges, the decay factor is set to 0.95 and the firing threshold is set to 0. For example,
for the Blockade example, we would connect all the low-level nodes corresponding to
the intercept intention (from all entities to a given target) to a higher-level node, repre‐
senting Blockade. It is also relatively simple to encode multiple intentions in a single
network as shown in Fig. 4. To recognize high-level intentions we run the algorithm
from Fig. 3 by running it in a continuous loop, where at each step activation is set on
the low-level nodes (based on the maximum likelihood selection of forward probabilities
of HMMs with different number of hidden states for each low-level intention at this
time-step) and propagated through the graph as described above. At each time step acti‐
vation values decay based on the following formula. . Activation will accu‐
mulate in the various nodes and detecting an intention can be done by checking that the
activation level of a node is above a certain threshold.

Fig. 4. Activation network to detect blockade and hammer and anvil intentions

Encoding intentions in activation networks addresses the problem of maintaining a
library of plans to recognize, as well as the problem of performing an exhaustive search
of that plan library. Using a topology-based approach to encoding intentions, it is
possible to add new intentions without a significant increase in the size of the network.

164 M.T. Saffar et al.

In our method, we simply need to monitor the activation levels of the nodes corre‐
sponding to high-level intentions to determine if such an intention is likely. This also
solves the problem of simultaneous execution of plans, as the structure of the network
will encode all possible recognizable intentions, and activation will spread appropriately
from any firing low-level nodes. However, it is still necessary to encode each high-level
intention by hand, and specify the topology of the network accordingly. In the naval
ship domain, it is very desirable to also assign a general threat level to the state of the
scene, in addition to particular high-level intentions. To do that we add a threat level
node to our activation network for each target agent and we connect it to all hostile
intentions (low-level intentions like intercept, approach, etc. and high-level intentions
like Blockade and Hammer and Anvil) towards that target. The degree of threat for each
agent will then be proportional to the activation level of its corresponding Threat Level
node.

6 Experimental Results

To test the baseline accuracy of the HMM-based approach to low-level intent recogni‐
tion, we trained models for 5 different intentions: approach, pass, overtake, follow, and
intercept. We then generated 200 two-agent scenarios using the simulation system,
resulting in 40 test scenarios for each of the individual intentions. All of our statistics
represent the average performance of the intent recognition system over the 40 relevant
scenarios. For a quantitative analysis of the intent recognition system, we used three
standard measures for evaluating HMMs [21]: Accuracy rate is the proportion of test
scenarios for which the final recognized intention was correct. Average early detection

is where is the number of test scenarios, is the total runtime of test scenario

, and is the earliest time at which the correct intention was recognized consistently

until the end of scenario . Average correct duration is where is the total time

during which the correct intention was recognized for scenario .
For reliable intent recognition, we want the accuracy rate and the average correct

duration to be close to 100 %, and the average early detection to be close to 0 %. The
results of our experiments are shown in Table 1. As can be seen, the system is able to
detect all intentions correctly and for most of the simulation time. It also performs well
in terms of early detection for the approach, intercept, and follow behaviors, recognizing
them consistently within the first 12 % of the completion of the action.

The poor performance of pass and overtake intentions on early detection rate is
mainly because of the lack of distinguishing observable variables in our HMM-based
module. This is especially true when the agents have come close to each other. The only
difference between pass and overtake at this point would be change in angle from target
to actor which is likely not enough for a distinct classification.

Intent Recognition in a Simulated Maritime Multi-agent Domain 165

Table 1. Performance of low-level intent recognition system

Intention Accuracy (%) Average early detection (%) Average correct duration (%)

Approach 100 8.95 90.9

Pass 100 68.0 96.5

Overtake 100 56.8 64.6

Follow 100 1.92 99.3

Intercept 100 11.3 88.8

To evaluate the effectiveness of parallelizing the intent recognition process, we
implemented both serial and parallel versions of the HMM-based intent recognition
algorithm and ran them on 17 scenarios containing varying numbers of agents. We then
recorded the average frame rate over each scene. The performance of the serial imple‐
mentation quickly drops below an acceptable frame rate for real-time systems, but the
parallel implementation maintains a speed of about 40 frames per second.

To evaluate the performance of our proposed approach for multi-agent intent recog‐
nition, we first need to create more complex scenarios involving multiple agents. To this
end, we created 7 different scenarios in our simulator in which naval vessels needed to
recognize potentially hostile intentions (approach and intercept) as enemy ships maneu‐
vered to attack. In all of the scenarios there are high-value target ships (vessels, aircraft
carriers and oil platforms) which could be the target of coordinated attacks.

In scenario 1 (16 ships in total), a convoy of naval vessels is attempting to traverse
the straits. As they do so, a pair of other ships passes close by to the convoy, creating a
distraction. Shortly after this, more ships break free of a group of trawlers, and begin a
suicide run towards the convoy in an attempt to damage it.

Scenario 2 (17 ships) is constructed similarly: a group of naval vessels is attempting
to exit the harbor. As they travel towards the harbor mouth, a ship that had been behaving
like a fishing boat comes about and begins a run towards the naval vessels.

In scenario 3 (7 ships), the naval vessels are traveling through a channel, while
passing some container ships. As this happens, a small boat accelerates to a position
behind one of the container ships and hides there until it is abreast of the navy vessels.
At this point, it breaks from hiding and attacks the navy vessels.

In scenario 4 (14 ships, 1 oil platform and a helicopter), two naval vessels are patrol‐
ling around an oil platform. There is a helicopter on the platform. A small boat starts a
suicide run towards one of these vessels to create a diversion and at the same time another
boat breaks free from a fishing boat swarm to attack the oil platform.

In scenario 5 (an aircraft carrier, a jet fighter and 16 ships), an aircraft carrier and
another naval vessel are moving in a congested area with big tankers and fishing boats.
A boat hides behind a tanker waiting for the carrier to get close to attack it. Another boat
starts a suicide run towards the carrier from the other side at the same time.

Scenario 6 and 7 are examples of scenarios in which more complex intentions (in
which agents must cooperate to perform a task) may occur. In scenario 6 (4 ships), a

166 M.T. Saffar et al.

naval vessel is attempting to pass through a channel when some other ships emerge from
hiding behind nearby islands and intercept it, forming a blockade. Scenario 7 (7 ships)
begins similarly, but once the channel is blocked by the blockading ships, an additional
pair of ships approaches from behind in order to attack and cut off its escape.

In performing a quantitative analysis of the more complex scenarios, we first define
key intentions as those intentions that make up actions that are threatening to the naval
vessels in the scene. The accuracy rate for our system is 100 % for key intentions in
complex scenarios, which means all key intentions were correctly recognized in all
complex scenarios. In addition, it can be seen in Table 2 that the early detection rate for
the key intentions is below 9 %. In every case, the key intentions were recognized almost
as soon as they began. It is worth mentioning that we have the ground truth for intentions
in each of the scenarios. The total time that a particular intention is active is the total
time for that particular intention to be active in the ground truth. The system is able to
detect the intention with the highest likelihood without any pre-segmentation of the
observation trace: as new behaviors are performed in the scenario, the system is capable
of transitioning from one detected intention to another. We only use the ground truth
information for the qualitative evaluation.

Table 2. HMM-based intent recognition in complex scenarios

Scenario Key intentions Average early detection ratio for key intentions (%)

1 approach, intercept 1.50

2 approach, intercept 2.31

3 approach, overtake 3.03

4 Intercept 0.00

5 approach, intercept 5.04

6 approach, intercept 4.23

7 approach, overtake,
intercept

8.40

In order to quantitatively evaluate our activation network based approach to high-
level intent recognition, we designed two scenarios, scenario 6 and 7, in which cooper‐
ative intentions were taking place. Table 3 shows the results for each of the three inten‐
tions we wanted to recognize. Blockade 1 refers to the blockade executed in the blockade
scenario, and blockade 2 refers to the blockade executed as the first step of the hammer
and anvil scenario. As shown in the table, the activation network based approach
performed very well for each intention. All of them were classified correctly, therefore
the accuracy rate of our ASN-based approach to multi-agent intent recognition is 100 %
and each was recognized within the first 6 % of the scene.

Intent Recognition in a Simulated Maritime Multi-agent Domain 167

Table 3. ASN-based intent recognition

Scenario Early detection rate (%)

Blockade 1 3.12

Blockade 2 3.10

Hammer and anvil 5.23

Figure 5 shows activation levels for nodes in our ASN corresponding to high-level
intentions, the threat level and the detection threshold values we are using to detect high-
level intentions. It is important to note that the absolute value as thresholds for detecting
hammer and anvil is actually equal to the initial threshold value for that intention plus
any positive difference between the activation level of blockade and the blockade
threshold. This is because hammer and anvil is placed higher in the topology of the
network compared to blockade and the weight of their connection is 1, therefore the
minimum activation level for hammer and anvil is always greater than or equal to the
blockade activation level. If we used a fixed threshold we might wrongly detect a
hammer and anvil if the activation level of the blockade node becomes greater than
hammer and anvil fixed threshold. It is difficult to perform a quantitative analysis of the
threat level indicator, due to the ambiguity inherent in defining a “level of threat” for
any given scenario. However, it can be seen in Fig. 5 that the activation level of the
threat level node does behave as expected. That is, as the number of hostile low-level
intentions increases, so does the threat level.

Fig. 5. Activation levels for the blockade and hammer and anvil in scenarios 6 and 7

7 Conclusion and Future Work

In this paper we presented a novel approach to multi-agent intent recognition for the
real-time domain of naval ships. The proposed approach consists of two components -
for detecting low-level single actor intentions and for recognizing high-level multi-agent

168 M.T. Saffar et al.

(joint) intentions. The low-level intent recognition system is based on the idea of
perspective taking for intent recognition, by utilizing Hidden Markov Models (HMMs)
with local perspective observable states. In order to be suitable for real-time processing,
this part of the system is implemented by parallelizing different parts of the recognition
algorithm as CUDA kernels. We also showed that the HMM-based approach is not
enough to represent and recognize joint plans and intentions, and for this purpose we
proposed using Activation Spreading Networks (ASNs). We showed how ASNs can be
used to encode high-level intentions and how the activation spreading algorithm can be
modified for intent recognition. We conducted several experiments to evaluate the
performance of our approach in the naval ship simulator environment. Our experimental
results show that the proposed approach is able to detect intentions reliably under
different circumstances, while also being able to detect these intentions very early.

As future work, we plan to extend this approach by adding learning capabilities in
order to automatically generate the activation spreading network from a training set,
rather than manually encoding its topology. Another shortcoming of the ASN approach
is that in its current form, it is not able to represent any sequential constraints between
actions in different plans. We will try to solve this issue by introducing different types
of nodes and edges for the activation network. We will also investigate ways to handle
missing information, which is inevitable in real world problems because of partial
observability of the environment or failing sensors.

References

1. Kautz, H.A., Allen, J.F.: Generalized plan recognition. AAAI 86, 32–37 (1986)
2. Geib, C.W., Goldman, R.P.: A probabilistic plan recognition algorithm based on plan tree

grammars. Artif. Intell. 173(11), 1101–1132 (2009)
3. Levine, S.J., Williams, B.C.: Concurrent plan recognition and execution for human-robot

teams. In: Twenty-Fourth International Conference on Automated Planning and Scheduling
(2014)

4. Zhuo, H.H., Li, L.: Multi-agent plan recognition with partial team traces and plan libraries.
IJCAI 22(1), 484 (2011)

5. Zhuo, H.H., Yang, Q., Kambhampati, S.: Action-model based multi-agent plan recognition.
In: Advances in Neural Information Processing Systems, pp. 368–376 (2012)

6. Luebke, D.: CUDA: Scalable parallel programming for high-performance scientific
computing. In: 5th IEEE International Symposium on Biomedical Imaging: From Nano to
Macro, ISBI 2008, pp. 836–838 (2008)

7. Demiris, Y.: Prediction of intent in robotics and multi-agent systems. Cogn. Process. 8(3),
151–158 (2007)

8. Kelley, R., King, C., Tavakkoli, A., Nicolescu, M., Nicolescu, M., Bebis, G.: An architecture
for understanding intent using a novel hidden markov formulation. Int. J. Humanoid Robot.
5(2), 203–224 (2008)

9. Kelley, R., Tavakkoli, A., King, C., Nicolescu, M., Nicolescu, M., Bebis, G.: Understanding
human intentions via hidden markov models in autonomous mobile robots. In: The 3rd ACM/
IEEE international conference on Human robot interaction, pp. 367–374 (2008)

10. Banerjee, B., Kraemer, L., Lyle, J.: Multi-agent plan recognition: formalization and
algorithms. In: AAAI (2010)

Intent Recognition in a Simulated Maritime Multi-agent Domain 169

11. Azarewicz, J., Fala, G., Heithecker, C.: Template-based multi-agent plan recognition for
tactical situation assessment. In: Artificial Intelligence Applications, pp. 247–254 (1989)

12. Erlhagen, W., Mukovskiy, A., Bicho, E.: A dynamic model for action understanding and goal-
directed imitation. Brain Res. 1083(1), 174–188 (2006)

13. Hayes, B., Scassellati, B.: Discovering task constraints through observation and active
learning. In: IROS (2014)

14. Wilson, H.R., Cowan, J.D.: A mathematical theory of the functional dynamics of cortical and
thalamic nervous tissue. Kybernetik 13(2), 55–80 (1973)

15. Amari, S.: Dynamics of pattern formation in lateral-inhibition type neural fields. Biol. Cybern.
27(2), 77–87 (1977)

16. Nicolescu, M., Leigh, R., Olenderski, A., Louis, S., Dascalu, S., Miles, C., Quiroz, J., Aleson,
R.: A training simulation system with realistic autonomous ship control. Comput. Intell.
23(4), 497–516 (2007)

17. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.:
ROS: an open-source robot operating system. In: ICRA Workshop on Open Source Software
(2009)

18. Baum, L.E., Petrie, T., Soules, G., Weiss, N.: A maximization technique occurring in the
statistical analysis of probabilistic functions of Markov chains. Ann. Math. Stat. 41, 164–171
(1970)

19. Rabiner, L.: A tutorial on hidden Markov models and selected applications in speech
recognition. Proc. IEEE 77(2), 257–286 (1989)

20. Liu, C.: cuHMM: a CUDA Implementation of Hidden Markov Model Training and
Classification. Johns Hopkins University, Baltimore (2009)

21. Nguyen, N.T., Phung, D.Q., Venkatesh, S., Bui, H.: Learning and detecting activities from
movement trajectories using the hierarchical hidden Markov model. In: CVPR, pp. 955–960
(2005)

170 M.T. Saffar et al.

An Adaptive Classification Framework
for Unsupervised Model Updating
in Nonstationary Environments

Piero Conca1(B), Jon Timmis1, Rogério de Lemos2,3, Simon Forrest4,
and Heather McCracken4

1 The University of York, York, UK
pieroconca@gmail.com, jon.timmis@york.ac.uk

2 University of Kent, Canterbury, UK
3 CISUC, University of Coimbra, Coimbra, Portugal

4 NCR Labs, Dundee, UK

Abstract. This paper introduces an adaptive framework that makes
use of ensemble classification and self-training to maintain high classifi-
cation performance in datasets affected by concept drift without the aid
of external supervision to update the model of a classifier. The updating
of the model of the framework is triggered by a mechanism that infers the
presence of concept drift based on the analysis of the differences between
the outputs of the different classifiers. In order to evaluate the perfor-
mance of the proposed algorithm, comparisons were made with a set
of unsupervised classification techniques and drift detection techniques.
The results show that the framework is able to react more promptly
to performance degradation than the existing methods and this leads
to increased classification accuracy. In addition, the framework stores a
smaller amount of instances with respect to a single-classifier approach.

1 Introduction

Due to the dynamic nature of the world, there are several real-world applications
in which the distribution of the data collected from a system is expected to
change. This phenomenon, known as concept drift, may degrade the performance
of a classifier whose model is not updated according to the distribution of the
changing data [15].

Several approaches have been developed to cope with datasets containing
concept drift [8]. They make use of supervision, namely, intermittent informa-
tion about the true classes of the data instances that is used to measure the
performance of a classifier and potentially update its model [15].

Some of the existing techniques resort to ensemble classification, a tech-
nique which combines multiple classifiers with a technique of decision fusion and
provides increased generalisation with respect to single classifiers [13]. For the
problem of concept drift, a common approach consists of training the classifiers

The first author would like to thank the NCR corporation for sponsoring this project.

c© Springer International Publishing Switzerland 2015
P. Pardalos et al. (Eds.): MOD 2015, LNCS 9432, pp. 171–184, 2015.
DOI: 10.1007/978-3-319-27926-8 15

172 P. Conca et al.

at different time steps, while supervision is used to assess their performances
and therefore to re-compute their weights accordingly, or to create and delete
classifiers [4]. Another class of techniques, semi-supervised techniques, combines
classification with clustering to limit the amount of supervision required and
therefore reduce the costs and, more generally, the problems associated with
labelling [11].

Although supervision can be employed in several applications, there are cer-
tain scenarios in these applications in which the classes of the instances ceased
to be known, after the initial supervision that generates a model. We claim that
this problem should be investigated in more detail to identify the cases in which
the information provided by the unlabelled data can be used to update a clas-
sification model in the presence of concept drift. For this purpose, we propose
an adaptive framework that consists of an ensemble classifier, a mechanism of
self-training and a mechanism of drift inference. The adaptive framework is able
to handle concept drift because it incorporates self-training, namely, the combi-
nation of input vectors and their respective classes generated by the ensemble
to train new classifiers, which are added to the ensemble to update its model.
The framework also features a technique of drift inference that analyses the dif-
ferences between the decisions of the classifiers to determine when to trigger
the replacement of old classifiers with new ones. A set of experiments involv-
ing different classification techniques and data distributions is performed. The
experiments show that the contributions of the framework are: reduced storage
requirements with respect to a single classifier and quick adaptation to con-
cept drift which leads to higher classification performance than the comparative
techniques.

The rest of the paper is organised as follows. Section 2 describes classification
approaches that use different amounts of supervision. Section 3 describes a set of
unsupervised techniques for classification and drift detection. Section 4 defines
the major aspects of the adaptive framework, from the ensemble of classifiers
to the replacement strategy. The results of the experiments are illustrated in
Sect. 5. Section 6 presents the conclusions of this work.

2 Classification and Detection of Concept Drift

Concept drift is a growing area of research in machine learning, and several
approaches have been presented to deal with this problem. The main differences
between these approaches are: the use of mechanisms for change detection, the
memory management strategy, the learning strategy, the use of single rather
than ensemble classifiers and the types of classification techniques, among others
[8]. However, the aspect that is more relevant to our work is the amount of
supervision that is used to update a model. The classification techniques that
deal with concept drift can be classified into supervised, semi-supervised and
unsupervised techniques.

Supervised techniques receive information about the true class of each
instance after classification. This information, which may be delayed, is used

An Adaptive Classification Framework for Unsupervised Model Updating 173

to measure the classification performance and update the model accordingly.
Ensemble classifiers, which consist of a collection of classifiers and a technique
to fuse their decisions (e.g., weighted or majority voting), represent a large class
of supervised techniques [12]. An approach consists of training classifiers using
chunks of data containing instances along with their respective classes that are
provided intermittently. Supervision is used to assess the performance and, there-
fore, recompute the weights of the existing classifiers and to create or delete
classifiers.

There are cases in which providing supervision for every instance is not feasi-
ble. That could be due, for example, to the rate at which instances are presented
or to the costs associated with labelling [11]. Semi-supervised techniques update
a classification model by means of small amounts of labelled data and generally
larger amounts of unlabelled data.

In some scenarios, a classification model can be updated without using super-
vision. For example, the concept of self-training, initially developed for the prob-
lem of semi-supervised learning of static distributions, has also been used to deal
with this problem [14]. In this context, unlabelled instances and their predicted
classes that are determined by a model are used to generate an up-to-date model
of the data. A potential avenue for classifying changing data with no supervision
could be the combination of on-line clustering and semi-supervised clustering. In
particular, semi-supervision could form an initial set of clusters from data with
labels and then those clusters could be updated to concept drift using on-line
clustering.

The majority of methods for drift detection measure the error rate of a clas-
sifier and, therefore, require supervision in order to operate [10]. There are other
methods that do not make use of supervision to detect drift. These methods,
which generally operate on the features of the data, are related to the areas of
signal processing, comparison of density estimations, statistical analysis, among
others [6]. These methods generally compare the similarity between two datasets
recorded at different times in order to reveal the presence of concept drift.

3 Related Work

A set of unsupervised techniques for model updating and drift detection are
described, respectively, in Sects. 3.1 and 3.2. They are used for the comparisons
of the experimental part (Sect. 5).

3.1 Classification Techniques: Unsupervised Model Updating

A single-classifier technique that uses self-training and a fixed-size window to
classify data streams with no supervision is described in [14]. The window ini-
tially contains instances with their true classes and are used to train a model.
Then, only unlabelled instances are generated. Each of these is classified and is
added to the window along with its predicted class. Then, the oldest instance

174 P. Conca et al.

within the window is discarded and a new model is generated. These steps are
repeated for every instance that is presented.

As mentioned in Sect. 2, classification of data with concept drift and no super-
vision could be tackled by combining on-line clustering with semi-supervision.
The on-line clustering techniques CluStream and DenStream [1,3] use a two-
level clustering approach: rather than to store a large numbers of instances in
memory, a set of micro-clusters maintains statistics about the instances that
have been observed, which are discarded; high-level clustering is then applied to
the set of micro-clusters. Semi-supervised clustering is used to aid the formation
of clusters by means of a set of labelled instances. A method consists of forming
clusters that contains only instances from a specific class [2]. That class can also
be used as a label to the cluster. This information could be used to classify new
instances based on the cluster they are associated with.

3.2 Unsupervised Drift Detection Techniques

For unsupervised data, concept drift can be detected by measuring the similarity
between the distributions of two different datasets generated at different points
in time [6]. The technique by Hido et al. measures the error of a classifier trained
on that data to detect drift [9], while the method Friedman-Rafsky builds a tree
from the data and then measures the interconnection between nodes associated
with different datasets [7].

4 The Adaptive Framework

This section provides an outline of the adaptive framework by describing the
characteristics of the ensemble classifier, the technique of self-training and the
mechanism of drift inference.

The backbone of the framework being proposed consists of an ensemble con-
taining a fixed set of classifiers of the same type, while majority voting is adopted
to fuse the decisions of the classifiers. This approach was adopted for its simplic-
ity, as it should simplify the analysis of the functioning of the framework. The
ensemble is divided in two pools of classifiers: mature and näıve. Only mature
classifiers take part to the voting, while näıve classifiers are iteratively trained
with new data. Näıve classifiers can become mature if concept drift is detected.

The operation of the framework is divided into a training phase and an on-
line phase. Supervision about the true classes of data instances is limited to the
training phase, which has the purpose of training the mature classifiers. In this
phase the data distribution does not change. During the on-line phase, affected
by concept drift, only feature vectors are provided without any information about
their classes. New classifiers are generated at runtime combining these feature
vectors and the classes that the voting system assigns to them. A description of
the pseudo-code of both phases and the mechanism of drift inference follows.

An Adaptive Classification Framework for Unsupervised Model Updating 175

4.1 Pseudo-code of Training, Testing and Inference of Drift

The inputs to the training procedure are the training set Dtraining and the thresh-
old thtraining, as shown in the pseudo-code of the Algorithm 1 (line 1). The result
is a set of mature classifiers that fill the pool EM, which is initially empty (line
2). The instances Di of the set Dtraining are couples in the form (xi, yi) where xi

is a vector of features (xi1 , . . . , xim) and yi is its class. A while loop then iterates
through the instances of Dtraining (line 6). Data instances Di from Dtraining are
copied, one at a time, into the temporary storage Dtemp (line 7), until Dtemp

contains at least thtraining instances of class “+1” and thtraining instance of class
“−1” (line 9). When this happens, a new classifier is trained and added to EM

and Dtemp is emptied (lines 11–13). The purpose of the parameter thtraining is to
avoid the collection of datasets containing only instances of a single class, which
would not allow the training of new classifiers. If there are no instances left in
Dtraining, EM is returned (line 16).

When EM has been created, supervision ceases. In order to deal with drift,
ineffective classifiers need to be replaced with new classifiers to avoid degrada-
tion of classification performance. For some aspects, the online testing procedure
(Algorithm 1, line 18) is similar to the training phase. The major difference is
that the instances used to train new classifiers, in this case, are generated at
runtime by coupling feature vectors xi with their respective decisions generated
by the ensemble voting(xi) (lines 23–24). When at least thonline instances with
associated class “+1” and thonline instances with class “−1” are gathered (line
27), a new classifier is created and added to the ensemble, and an existing classi-
fier is deleted. The combination of new data and decisions by the existing model
allows the framework to incrementally update its model in order to deal with the
changing distribution. The classifiers that are created in the first iterations of
the on-line phase serve to populate the pool of näıve classifiers EN and to make
the inference of drift operative. When EN contains �ratioNaiveMature ∗|EM|� clas-
sifiers (lines 31–32), every new classifier generated is initially added to the näıve
set (line 34). However, if concept drift is not inferred by InferDrift() then the
oldest näıve classifier in the pool is deleted (line 40). If drift is inferred, a mature
classifier is deleted and a näıve one is promoted to mature (lines 35–38).

The framework introduces a technique of drift inference that monitors the
similarity between näıve and mature classifiers. For simplicity let us assume that
the speed of drift and the time to collect the data that trains a classifier are such
that the change of p(x) is neglectable during that time. If concept drift modifies
p(x), the models of the näıve classifiers, trained on new data, are expected to
differ from those of the mature classifiers, trained with older distributions. The
similarity between two classifiers is estimated by measuring the Hamming dis-
tance between their decisions over a time window. In fact, if the vectors collected
allow to generate a good estimate of the underlying data distribution, then the
Hamming distance represents a computationally undemanding measure of the
similarity between two classification models. In particular, the framework uses a
symmetric matrix H in which the element Hij contains the Hamming distance
between the classifiers i and j.

176 P. Conca et al.

Algorithm 1. Pseudo-codes of the procedures of training, testing and inference
of drift.
1: procedure Train(Dtraining, thtraining)

2: EM ← ∅
3: i ← 1

4: j ← 1

5: Dtemp ← ∅
6: while i ≤ |Dtraining| do
7: Dtemp ← Dtemp ∪ {Di}
8: i ← i+ 1
9: if

(|{Dk ∈ Dtemp|class(Dk) = +1}| ≥ thtraining

) ∧(|{Dk ∈ Dtemp|class(Dk) = −1}| ≥ thtraining

)
then

10: train(EMj
, Dtemp)

11: EM ← EM ∪ {EMj
}

12: j ← j + 1
13: Dtemp ← ∅
14: end if

15: end while
16: return EM

17: end procedure

18: procedure Test(EM, EN, Dtest, thonline)

19: i ← 1
20: j ← 1
21: Dtemp ← ∅
22: while i ≤ |Dtest| do
23: Di ← (xi,voting(EM,xi))
24: Dtemp ← Dtemp ∪ {Di}
25: updateHammingMatrix(H,Di, EM, EN)

26: i ← i+ 1
27: if (|{Dk ∈ Dtemp|class(Dk) = +1}| ≥ thonline) ∧

({Dk ∈ Dtemp|class(Dk) = −1}| ≥ thonline) then
28: train(Ej , Dtemp)

29: j ← j + 1

30: drift ←InferDrift(H,FIFOID, thID)
31: if |EM| ≤ |EN| then
32: EN ← EN ∪ {Ej}
33: else
34: EN ← EN ∪ {Ej}
35: if drift = true then

36: deleteClassifier(EM)
37: El ← select (EN)

38: EM ← EM ∪ {El}
39: else
40: deleteClassifier(EN)

41: end if

42: end if

43: Dtemp ← ∅
44: end if

45: end while

46: return

47: end procedure

An Adaptive Classification Framework for Unsupervised Model Updating 177

48: procedure InferDrift(H,FIFO ID, thID)
49: temp ← 0
50: for j in [1, . . . , |EM|] do
51: for i in [1, . . . , i] do
52: temp ← temp + Hij

53: end for
54: end for
55: dM ← 2 ∗ temp/(|EM| ∗ (|EM| + 1))
56: for j in [|EM| + 1, . . . , |EM| + |EN|] do
57: for i in [|EM| + 1, . . . , i] do
58: temp ← temp + Hij

59: end for
60: end for
61: dN ← 2 ∗ temp/(|EN| ∗ (|EN| + 1))
62: for i in [|EM| + 1, . . . , |EM| + |EN|] do
63: for j in [|EM| + 1, . . . , |EM| + |EN|] do
64: temp ← temp + Hij

65: end for
66: end for
67: dMN ← temp/(|EN| ∗ (|EM|))
68: pop(FIFO ID)
69: if dMN > dN ∧ dMN > dM then
70: attach(FIFO ID, 1)
71: else
72: attach(FIFO ID, 0)
73: end if
74: return sum(FIFO ID) > �FIFO IDsize ∗ thID�
75: end procedure

After a new classifier has been created the procedure InferDrift() is
invoked (lines 28, 30 and 48). It calculates the mean distances between mature
classifiers (dM, lines 50–55), between näıve classifiers (dN, lines 56–61) and
between mature and näıve classifiers (dMN, lines 62–67). If dMN is higher than
both dM and dN, a 1 is added to a First-In-First-Out (FIFO) queue of size
FIFOIDsize , otherwise a 0 is added to the queue (lines 69–72). Drift is inferred if
the sum of the values within the FIFO queue is higher than �FIFO IDsize ∗ thID�
(line 74), where the parameter thID controls the sensitivity of the technique.

The replacement strategy determines how the pools of classifiers are updated.
When drift is inferred, the näıve classifier with minimum Hamming distance from
the other näıve classifiers is promoted and the mature classifier having maximum
Hamming distance from the näıve classifiers is deleted.

5 Experiments

Two experiments are presented here to evaluate the classification performance
and the use of memory resources of the adaptive framework, as well as its capa-
bility to detect concept drift. Two datasets are employed, they feature different

178 P. Conca et al.

distributions and concept drift characteristics. Moreover comparisons are pre-
sented in order to place the framework in the context of existing methods.

5.1 Evaluation of the Classification Capabilities of the Framework

This experiment evaluates the classification performance and the memory con-
sumption of the framework on a dataset with different characteristics. Its dis-
tribution is similar to that of the dataset presented in [5] and consists of four
“clusters” of points C1, C2, C3 and C4, each with a bivariate Gaussian distribu-
tion. Cluster C1 is labelled with class “+1”, while the remaining clusters have
class “−1”. A concept drift containing high-overlapping between the classes and
different drift schemata is generated by changing the mean values (μx and μy)
and the standard deviations (σx and σy) of the clusters according to the pat-
terns of Table 1. Initially, a model is trained using 500 instances generated from
a stationary distribution corresponding to instance i = 1 of Table 1. The data
Dtest used to evaluate the framework consists of 106 instances.

Table 1. Concept drift of the dataset used to evaluate the classification performance
of the framework and the comparative techniques (from [5]).

0 < i/|Dtest| ≤ 1/3

cluster μx μy σx σy

C1 8 5 1 1

C2 2 5 1 1+6i/|Dtest|
C3 5 8 3−6i/|Dtest| 1

C4 5 2 3−6i/|Dtest| 1

1/3 < i/|Dtest| ≤ 2/3

cluster μx μy σx σy

C1 8−9(i/|Dtest|−1/3) 5 1 1

C2 2 5 1 3

C3 5+9(i/|Dtest|−1/3) 8 1 1

C4 5+9(i/|Dtest|−1/3) 2 1 1

2/3 < i/|Dtest| ≤ 1

cluster μx μy σx σy

C1 5−9(i/|Dtest|−2/3) 5+9(i/|Dtest|−2/3) 1 1

C2 5−9(i/|Dtest|−2/3) 2 1 3−6(i/|Dtest|−2/3)

C3 8 8 1 1

C4 8 2 1 1

In order to identify potential advantages and disadvantages of the framework
(FW), its performance is compared against the performances of a set of alter-
native methods that do not require supervision to update their models, these

An Adaptive Classification Framework for Unsupervised Model Updating 179

techniques are: the single classifier that uses self-training (SC-NO) and the clus-
tering algorithms CluStream (CS) and DenStream (DS) with semi-supervision,
described in Sect. 3. In order to avoid the training of a new model for every
instance that is observed, the single classifier uses nonoverlapping windows for
this experiment. The measure of accuracy, calculated as the number of instances
that are correctly classified divided by total number of instances, is used to
evaluate the performance of the techniques. In particular, if a technique is able
discriminate between the classes then its accuracy at the end of a run is expected
to be close to 1. By contrast, due to the imbalance of this dataset, values of accu-
racy around 0.75 or smaller are associated with a poor ability to classify points
of different classes correctly. The parameters of the techniques are determined
empirically in order to provide a combination of good model representation in
the training phase and good ability to update the model during concept drift.
The parameters of the framework are configured as follows: thtraining = 23,
thonline = 25, ratioNaiveMature = 0.4, FIFO IDsize = 10 and thID = 0.1. The single
classifier has a window of size 500. Clustream has an horizon of 1000 instances,
1000 micro-clusters with a radius of 2 units and k = 4. DenStream has the fol-
lowing parameters: μ = 4, β = 0.03, the initial number of micro-clusters is 500,
ε and θ of the low-level DBSCAN have, respectively, values 0.5 and 3, while ε
and θ of the high-level DBSCAN have values 1.2 and 1. For the descriptions
of the parameters of Clustream and DenStream the reader is referred to their
respective articles [1,3].

The framework and the single classifier are tested on the technique of SVM.
The values of accuracy are calculated over two hundred runs, this value was
determined using the A-test, a statistical technique that evaluates the similarity
between two sets of values. In this context, by comparing different sets, each
containing the values of accuracy of multiple runs, the A-test is used to determine
how many times the experiment must be repeated in order to obtain results with
low variability [16]. The values of accuracy of the framework and the comparative
methods show that the framework and the single classifier are the only techniques
that are able to classify this dataset (Fig. 1). In particular, both techniques
classify the data correctly in 93 out of 200 runs. Morevoer, their performances
in terms of accuracy have been compared using the Mann-Whitney test, which
measures the likelihood of two sets of values being generated from the same
distribution without making any assumption about the type of distribution of
the data. According to the Mann-Whitney test, the distributions of the values
of accuracy of the two techniques are not statistically significantly different with
a confidence level of 0.995, and therefore their performances on this dataset are
not distinguishable. An analysis of the results of Clustream showed that this
technique is able to provide high accuracy only for two runs, however the values
across these runs are affected by large variations.

An analysis of the memory consumption of the framework and the single
classifier revealed that the framework maintained in memory, on average, 103
instances in order to train a new classifier, and it never used more than 310
instances. By contrast, the single classifier is not able to maintain high per-

180 P. Conca et al.

0

0.2

0.4

0.6

0.8

1

FW
SVM

SC-NO
SVM

CS DS

A
cc
ur
ac

y

Techniques

Fig. 1. Distributions of the values of accuracy of the framework and the comparative
techniques.

formance with window sizes smaller than 400 instances and, however, the best
results are obtained when 500 instances are stored. This means that the frame-
work uses, on average, a number of instances that is four to five times smaller
than that of a single classifier. However, the framework makes use of multiple
classifiers, which could increase the computational cost with respect to using
only a classifier. However, this depends on the classification technique that is
adopted. A tecnique whose training time increases considerably for large inputs
could benefit from the use of multiple classifiers trained on fewer instances.

5.2 Evaluation of the Concept Drift Detection Capabilities
of the Framework

This experiment evaluates the capability of the framework to detect drift. For
this reason, a dataset is presented with the goal of highlighting the characteristics
of the inference of drift with respect to the comparative methods. Different from
the previous experiment which employed a distribution with a gradient, for this
experiment the distribution of each class is uniform and has a squared shape
with edges of unitary length. The position of the center of class “+1” is fixed
and has coordinates (1,1). The position of the center of class “−1”, with initial
coordinates (3,1), does not change for the first 250,000 instances, after that it
drifts linearly to the position (4,1) which is reached when 500,000 instances have
been generated. The initial absence of concept drift has the purpose of evaluating
the specificity of the inference of drift. The concept drift that follows is such that
it would not affect the performance of a previously established linear model that
separates the classes, in fact class “−1” moves away from class “+1”. This phase
is aimed at verifying the capability of framework to recognise this particular
type of concept drift. After that, the center of class “−1” moves in the opposite
direction and reaches the final position (2,1) when 1,000,000 instances have been
observed. In this part of the dataset, since the distance between the centers of
the classes decreases, a model operating on the data needs to be updated in
order to avoid performance degradation.

An Adaptive Classification Framework for Unsupervised Model Updating 181

0

0.1

0.2

0.3

0.4

FW
NB

H
NB

FR
NB

FW
SVM

H
SVM

FR
SVM

S
en

si
tiv

ity

0.5

0.6

0.7

0.8

0.9

1

FW
NB

FW
SVM

H
NB

H
SVM

FR
NB

FR
SVM

S
pe

ci
fic
ity

Techniques

0
0.1

0.2

0.3

0.4

0.5

0.6

0.7

D
el
ay

0.7

0.75

0.8

0.85

0.9

0.95

1

A
cc

ur
ac

y

Techniques

FW
NB

H
NB

FR
NB

FW
SVM

H
SVM

FR
SVM

Techniques

FW
NB

H
NB

FR
NB

FW
SVM

H
SVM

FR
SVM

Techniques

Fig. 2. Distributions of the values of sensitivity, specificity, delay of detection and
classification accuracy of the framework with the different unsupervised drift detection
techniques.

0.88
0.9

0.92
0.94
0.96
0.98

1

0 0.25 0.5 0.75 1

ac
cu

ra
cy

percentage of completion of the run

mechanism of drift inference

0

1

0 0.25 0.5 0.75 1

dr
ift

de
te
ct
io
n

percentage of completion of the run

0.88
0.9

0.92
0.94
0.96
0.98

1

0 0.25 0.5 0.75 1

ac
cu

ra
cy

percentage of completion of the run

Friedman-Rafsky

0
0.2
0.4
0.6
0.8
1

0 0.25 0.5 0.75 1

dr
ift

de
te
ct
io
n

percentage of completion of the run

Fig. 3. Comparison of the values of accuracy and the detection of drift over a run of
the technique of drift inference and the Friedman-Rafsky method.

The inference of drift of the framework is compared against the technique
by Hido et al. (H) and the technique by Friedman and Rafsky described (FR)
in Sect. 3. In order to provide a fair comparison, each comparative technique
is integrated within an instance of the framework and when it detects concept
drift the model is actually updated. The batch of instances collected in the
first iteration is stored in memory and its similarity with subsequent batches is
estimated, one at a time. When the distributions of two batches are different

182 P. Conca et al.

according to technique being used, drift is detected and the data batch stored
in memory is replaced with the last batch observed.

The parameters of the instances of the framework are configured as follows:
thtraining=45, ratioNaiveMature=1.0, thID=1.0, thonline=100 (when SVM are use
in place of näıve Bayes, thonline=400), while FIFO IDsize has the value 40 for the
inference of drift and 60 for the comparative methods. Sensitivity, specificity
and delay of detection of the detection techniques are measured. Moreover, clas-
sification accuracy at the end of a run is also recorded. Sensitivity measures
the ability to detect drift when this is ongoing and is calculated by the formula

TP
TP+FN (TP=drift present and detected; FN= drift present and not detected).
Specificity measures the rate of false alarms and is expressed by the formula

TN
TN+FP (TN=drift absent and not detected; FP= drift absent but detected).
Delay of detection is calculated as the ratio between the number of instances
before drift is detected and the total number of intances. For this experiment,
the framework uses näıve Bayes (NB) and SVM classifiers.

The results, shown in Fig. 2, highlight that the framework has higher speci-
ficity than the comparative methods. This means that drift is detected only when
it is ongoing. However, the framework has lower sensitivity and higher delay of
detection than the other two methods. This is caused by the fact that during the
first part of the dataset the classes are separable, hence the Hamming distances
between the decisions of the classifiers in the ensemble are null and drift is not
detected, but that does not affect the classification accuracy. However, in the
second part of the concept drift, the center of class “−1” moves towards the
center of class “+1”, the Hamming distances are no longer null and drift can
be inferred. When this happens, the framework reacts promptly to performance
degradation as shown in Fig. 3 and this leads to a higher accuracy than the
comparative methods (Fig. 2).

6 Conclusions

This paper has introduced an adaptive framework which deals with the problem
of classification of data affected by concept drift without the aid of external
supervision. The framework uses feedback of its decisions, namely self-training,
for training new classifiers. In this way, the model of new classifiers combines
information regarding concept drift, but also memory about previous states. The
iterative replacement of old classifiers with new classifiers allows the model of the
framework to adapt to concept drift. In order to perform replacement only when
drift occurs, a mechanism for inferring drift analyses the differences between the
decisions of the classifiers of the ensemble.

A set of experiments featuring different classification techniques and differ-
ent datasets has been performed with the purpose of evaluating the ability of
the framework to deal with concept drift. The outcome of that experiments has
shown that our framework affords good classification performance, but it stores
fewer instances with respect to a single-classifier approach. This result may be
related to the property of incremental learning that characterises ensemble meth-
ods. In fact, the same amount of data that is required to train a single classifier

An Adaptive Classification Framework for Unsupervised Model Updating 183

with high accuracy is split into smaller batches, each of which trains a member
of the ensemble. Although these classifiers may be less accurate than a single-
classifier, the generalisation that follows from their combination provides the
same level of classification performance. Moreover, the technique of drift infer-
ence of the framework affords quicker model updating and, therefore, smaller
performance degradation with respect to the comparative methods, thus provid-
ing higher classification accuracy.

There are several directions in which the framework could be developed. One
possibility would consist of changing the values of its parameters (parametric
optimization) or the set of features (adaptive feature selection) at runtime. In
fact, the initial parametric setting of the framework and its classifiers might
need retuning to classify effectively data affected by concept drift. The frame-
work could also learn new combinations of input features to obtain better dis-
crimination between the classes and therefore higher classification performance.
Another interesting possibility would be the use of different classification tech-
niques. Adding new techniques could be useful, for instance, to process new types
of data or different types of concept drift.

References

1. Aggarwal, C.C., Watson, T.J., Ctr, R., Han, J., Wang, J., Yu, P.S.: A framework
for clustering evolving data streams. In: Proceedings of the Twenty-nineth Inter-
national Conference on Very Large Data Bases, VLDB 2003, vol. 29, pp. 81–92.
VLDB Endowment, Berlin (2003)

2. Basu, S., Banerjee, A., Mooney, R.J.: Semi-supervised clustering by seeding. In:
Proceedings of the Nineteenth International Conference on Machine Learning,
ICML 2002, pp. 27–34. Morgan Kaufmann Publishers Inc., San Francisco (2002)

3. Cao, F., Ester, M., Qian, W., Zhou, A.: Density-based clustering over an evolving
data stream with noise. In: Proceedings of the Sixth SIAM International Conference
on Data Mining, SDM 2006, pp. 328–339. SIAM (2006)

4. Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F.
(eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000)

5. Ditzler, G., Polikar, R.: An ensemble based incremental learning framework for
concept drift and class imbalance. In: The 2010 International Joint Conference on
Neural Networks (IJCNN), pp. 1–8, July 2010

6. Dries, A., Rückert, U.: Adaptive concept drift detection. Stat. Anal. Data Min.
2(5–6), 311–327 (2009)

7. Friedman, J.H., Rafsky, L.C.: Multivariate generalizations of the Wald-Wolfowitz
and Smirnov two-sample tests. Ann. Stat. 7, 697–717 (1979)

8. Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on
concept drift adaptation. ACM Comput. Surv. (CSUR) 46(4), 44 (2014)

9. Hido, S., Idé, T., Kashima, H., Kubo, H., Matsuzawa, H.: Unsupervised change
analysis using supervised learning. In: Washio, T., Suzuki, E., Ting, K.M.,
Inokuchi, A. (eds.) PAKDD 2008. LNCS (LNAI), vol. 5012, pp. 148–159. Springer,
Heidelberg (2008)

10. Gonçalves Jr., P.M., de Carvalho Santos, S.G., Barros, R.S., Vieira, D.C.: A com-
parative study on concept drift detectors. Expert Syst. Appl. 41(18), 8144–8156
(2014)

184 P. Conca et al.

11. Li, P., Wu, X., Hu, X.: Mining recurring concept drifts with limited labeled stream-
ing data. ACM Trans. Intell. Syst. Technol. 3(2), 29:1–29:32 (2012)

12. Nishida, K., Yamauchi, K., Omori, T.: ACE: Adaptive classifiers-ensemble system
for concept-drifting environments. In: Oza, N.C., Polikar, R., Kittler, J., Roli, F.
(eds.) MCS 2005. LNCS, vol. 3541, pp. 176–185. Springer, Heidelberg (2005)

13. Polikar, R.: Ensemble based systems in decision making. IEEE Circ. Syst. Mag.
6(3), 21–45 (2006)

14. Sahel, Z., Bouchachia, A., Gabrys, B., Rogers, P.: Adaptive mechanisms for classi-
fication problems with drifting data. In: Apolloni, B., Howlett, R.J., Jain, L. (eds.)
KES 2007, Part II. LNCS (LNAI), vol. 4693, pp. 419–426. Springer, Heidelberg
(2007)

15. Tsymbal, A.: The problem of concept drift: Definitions and related work. Technical
report, Trinity College Dublin, Ireland (2004)

16. Vargha, A., Delaney, H.D.: A critique and improvement of the “CL” common
language effect size statistics of McGraw and Wong. J. Educ. Behav. Stat. 25(2),
101–132 (2000)

Global Optimization with Sparse and Local
Gaussian Process Models

Tipaluck Krityakierne1(B) and David Ginsbourger1,2

1 Department of Mathematics and Statistics, IMSV,
University of Bern, Bern, Switzerland

{tipaluck.krityakierne,ginsbourger}@stat.unibe.ch
2 Idiap Research Institute, Martigny, Switzerland

ginsbourger@idiap.ch

Abstract. We present a novel surrogate model-based global optimiza-
tion framework allowing a large number of function evaluations. The
method, called SpLEGO, is based on a multi-scale expected improve-
ment (EI) framework relying on both sparse and local Gaussian process
(GP) models. First, a bi-objective approach relying on a global sparse GP
model is used to determine potential next sampling regions. Local GP
models are then constructed within each selected region. The method
subsequently employs the standard expected improvement criterion to
deal with the exploration-exploitation trade-off within selected local mod-
els, leading to a decision on where to perform the next function evalua-
tion(s). The potential of our approach is demonstrated using the so-called
Sparse Pseudo-input GP as a global model. The algorithm is tested
on four benchmark problems, whose number of starting points ranges
from 102 to 104. Our results show that SpLEGO is effective and capable
of solving problems with large number of starting points, and it even
provides significant advantages when compared with state-of-the-art EI
algorithms.

Keywords: Black-box optimization · Expected improvement · Kriging

1 Introduction

In real world engineering optimization problems, the objective function is often
a black box whose derivatives are unavailable, and function values are obtained
from time-consuming simulations. To reduce the computational cost, in surro-
gate model-based optimization, the objective function is approximated with an
inexpensive surrogate (also known as response surface model or metamodel). An
auxiliary optimization problem on this surrogate is then solved in each iteration
to determine at which point to evaluate the objective function next. The new
data point is used to update the surrogate, and thus it is iteratively refined.
Several popular response surface models such as radial basis functions, Gaussian
process models (kriging), polynomials, and support vector regression have been
successfully applied in this context (see, e.g. [5,8,10,13,14,19,23]).
c© Springer International Publishing Switzerland 2015
P. Pardalos et al. (Eds.): MOD 2015, LNCS 9432, pp. 185–196, 2015.
DOI: 10.1007/978-3-319-27926-8 16

186 T. Krityakierne and D. Ginsbourger

Thanks to its flexibility and efficiency, the EGO (Efficient Global Optimiza-
tion) algorithm proposed by Jones [8] has become a very popular GP-based
global optimization algorithm. It is based on the expected improvement criterion
and more generally on ideas from Bayesian Optimization, following the seminal
work carried out by Mockus and co-authors (see [9] and references therein). While
EGO provides an elegant way to model the objective function and deal with the
exploration versus exploitation trade-off, the computational cost and the storage
requirements, nevertheless, have become major bottlenecks obstructing its prac-
tical application. Although quantifying complexity of EGO with hyperparameter
re-estimation is a difficult task, EGO is known to be very slow and crash when
the total number of observation points exceeds a few thousands. This is due to
the training and prediction costs of GP that scale as O(N3) and also the storage
that scales as O(N2), where N is the number of data points in the training set.

To circumvent this limitation, a number of sparse GP models have been
proposed in the literature of GP regression (e.g. [3,15,16,21]). The idea behind
these sparse models is generally to use a small number (M << N) of inducing
points (also known as support points) to represent the full data points; as a result,
the number of computations and storage requirements are reduced to O(NM2)
and O(NM), respectively. It is known that these approaches are related and can
also be viewed within a single unifying framework. See [11] for details.

While some recent publications put a focus on Bayesian Optimization with a
large number of points [18,22], to the best of our knowledge, no attempt has yet
been made to integrate sparse GP within a global optimization framework. This
work is intended as a contribution to the new area of applying GP-based global
optimization to a larger number (typically, tens of thousands) of data points,
which can be viewed somewhat as an extension to Bayesian Optimization.

In Sect. 2, we give necessary background regarding GP regression, Sparse
Pseudo-input Gaussian Process models, as well as EI and EGO. In Sect. 3, we
introduce the Sparse and Local EGO (SpLEGO) framework. A simple exam-
ple of application on a one-dimensional problem and several numerical experi-
ments that illustrate algorithm effectiveness in higher dimensions are presented
in Sect. 4. Some comments on the proposed method as well as perspectives of
future work are also given in this section. Finally, we conclude our work in Sect. 5.

2 Background

2.1 Problem Formulation and Notation

We consider a global optimization problem of the form:

min
x∈D

f (x) (1)

where f : D ⊂ R
d → R is assumed continuous and D = [a,b] =

∏d
i=1 [ai, bi]

(ai, bi ∈ R : ai < bi). The objective function f is assumed to be expensive
and without any derivative information available (referred to as “black box”
henceforth).

Global Optimization with Sparse and Local Gaussian Process Models 187

The goal of this paper is to develop a GP-based global optimization algorithm
that can find near globally optimal solutions when the number of starting points
(or allowable function evaluations) is relatively large.

2.2 Gaussian Process Modeling

Suppose that we have observed the vector of outputs f (X) = [f (x1) , ..., f (xN)]T

at the training input points X = {x1, ..., xN}. Assume a Gaussian Process prior
f ∼ GP(μ0 (·) ,K (·, ·)) where μ0 and K are a given mean function and covariance
kernel, respectively. For a fixed x ∈ D, the posterior of f (x) knowing f (X) is
f (x) |f (X) ∼ N (

μN (x) , σ2
N (x)

)
. Taking μ0 (·) = 0, we have [12]

μN (x) = K (x,X) K (X)−1
f (X) (2a)

σ2
N (x) = K (x,x) − K (x,X) K (X)−1

K (X,x) , (2b)

where K (X,x) is defined as [K (x1,x) , ..., K (xN ,x)]T . K (X) := K (X,X)
(assumed invertible here) is defined analogously. One example (among many
others, see [20]) of a commonly used covariance kernel is the squared exponential:

K (x,x′) = σ2 exp

(

−1
2

d∑

k=1

θk (xk − x′
k)2

)

, (3)

where Ψ =
{
σ2, θ1, ..., θd

}
are the hyperparameters, whose values are often

obtained by maximizing the log marginal likelihood:

L (Ψ) = −1
2

log |KΨ (X)| − 1
2
f(X)T

K−1
Ψ (X) f(X) − N

2
log (2π) . (4)

Evaluating any of Eqs. 2a, 2b or 4 relies on the inversion of the N × N
covariance matrix KΨ (X), and so GP modelling is prohibitively expensive when
the size of the training data set becomes large.

2.3 Expected Improvement and EGO

As in most surrogate-based optimization methods, EGO [8] starts by construct-
ing a space-filling design in the decision space {x1, ..., xN0} ⊂ D, for some
N0 ≥ 1. The objective function is then evaluated at these design points and
an initial GP model is fitted. The algorithm selects the next function evaluation
point(s) by maximizing the expected improvement (EI) criterion, which depends
both on the prediction μN0 (x) and on the associated uncertainty σ2

N0
(x) from

Eqs. 2a and 2b.
More generally, for N ≥ N0, let fmin = min {f (x1) , ..., f (xN)} be the

current best objective function value. EI, defined as the expectation of the
improvement brought by evaluating f at a candidate point, can be calculated
analytically:

188 T. Krityakierne and D. Ginsbourger

EIN (x) = EN [max (0, fmin − f(x))] (5a)
= (fmin−μN (x))Φ

(
fmin−μN (x)

σN (x)

)
+σN (x)φ

(
fmin−μN (x)

σN (x)

)
, (5b)

where EN is the expectation taken with respect to posterior distribution given
the first N observations, and Φ and φ are the standard Gaussian cdf and pdf,
respectively. In EI algorithms such as EGO, at each iteration a function evalua-
tion is performed at a point maximizing EI, i.e. xN+1 ∈ argmaxx∈D EIN (x), and
the GP model is then updated with the new evaluation result. Figure 1 shows an
example of GP model based on five observations (Left) and the corresponding EI
criterion (Right). By assigning large values to inputs x whose f (x) is likely to be
less than fmin and/or whose prediction variance is high, the EI criterion provides
a good balance between exploration of unexplored regions and exploitation of
promising regions with low predictive mean.

0 0.2 0.4 0.6 0.8 1

−10

−5

0

5

10

(a) GP Predictive distribution
0 0.2 0.4 0.6 0.8 1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

(b) EI criterion

Fig. 1. A GP model and the corresponding expected improvement function. In Panel
(a) the dots represent the training data. The black dashed line is the (unobserved)
objective function. The shaded area represents the point-wise mean (middle red line)
plus and minus twice the prediction standard deviation at each input value. In Panel
(b), the point that attains the max EI is depicted by a blue triangle (Color figure
online).

One remark regarding EI-optimal points shall be given before we turn to the
next section. Let us consider the bi-objective optimization problem:

min
x∈D

F (x) =
(
μN (x) , −σ2

N (x)
)
. (6)

Since EI is decreasing in μN (·) and increasing in σN (·), if x maximizes the
EI criterion then x is automatically in the Pareto set of the bi-objective problem
above. In situations when the EI formula (Eq. 5b) is not applicable, using this
Pareto optimality property instead can come in handy, as we will see in Sect. 3.

2.4 Sparse Pseudo-input Gaussian Process

To circumvent the time-complexity, storage bottlenecks, and potential singular-
ity problems for a large covariance matrix, a number of computationally efficient

Global Optimization with Sparse and Local Gaussian Process Models 189

sparse GP approximations have been proposed in the machine learning litera-
ture. In this section, we give a brief review of a particular method called Sparse
Pseudo-input Gaussian Process (SPGP) [16]. The SPGP method is based on a
low-rank approximation to the full GP covariance using a small set of induc-
ing points X̄ = {x̄1, ..., x̄M}. In SPGP, the inducing points are referred to as
“pseudo-inputs” since they do not need to be a subset of the input training data
but are rather inferred along with the kernel hyperparameters.

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

(a) Inducing points No. 1

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

(b) Inducing points No. 2

Fig. 2. SPGP predictive distribution obtained using different sets of inducing points

We first give two examples of SPGP predictive distribution using different
sets of inducing points in Fig. 2. The black dots correspond to 25 training points.
The locations of the inducing points are shown as crosses. The shaded areas
represent the point-wise SPGP predictive means plus and minus twice the stan-
dard deviations at each input value. Again, the dashed black line represents the
(unobserved) objective function. We can see that the predictive distribution is
significantly influenced by the locations of the inducing points.

Coming to the SPGP equations, let us assume a zero mean GP prior on
the objective function, f ∼ GP (0,K (·, ·)). Without going into the details of its
derivation, it turns out that SPGP can be considered as a standard GP with a
particular covariance function [16]:

KS(x, x′) = Q(x, x′) + δx,x′ [K(x, x) − Q(x, x)] , (7)

where Q(x, x′)=K
(
x, X̄

)
K

(
X̄

)−1
K

(
X̄,x′) and δx,x′ is Kronecker’s delta. After

matrix simplifications, the predictive mean and variance of SPGP boil down to
formula involving only calculations with matrices of manageable dimensionality:

μS (x) = K
(
x, X̄

)
H−1K

(
X̄,X

)
Λ−1f (X) (8a)

σS2 (x) = K (x,x) − K
(
x, X̄

) (
K

(
X̄

)−1 − H−1
)

K
(
X̄,x

)
, (8b)

where Λ = diag (K (X) − Q (X)) and H = K
(
X̄

)
+ K

(
X̄,X

)
Λ−1K

(
X, X̄

)
.

Consequently, the pseudo-inputs X̄ can be considered as extra hyperparameters

190 T. Krityakierne and D. Ginsbourger

of the model and can be estimated jointly with the kernel hyperparameters (of
size Md + |Ψ |) by maximizing the log marginal likelihood as in Eq. 4. Note that
since here KS

Ψ,X̄
(X) can be written as a sum of a low rank part and a diagonal

part, it can be inverted in O (
NM2

)
. See [16] for more details.

3 Sparse and Local GP for Global Optimization

We wish to have an EGO-like algorithm that offers expected improvement but
can also handle a large number of starting points. One natural extension of
EGO in such a situation is to partition the whole decision space into smaller
subregions, D = ∪r

i=1Ri, e.g. where each region Ri would contain no more than
k training input points. Local GP models could then be constructed, and a point
wi ∈ Ri maximizing the local EI(i) could be identified within each region Ri.
Finally, one could take the best point among all wi (with the largest local EI)
as an approximation to the solution point corresponding to the true global EI.

While this may seem simple and appealing at first glance, such an approach
would actually raise a few issues, and could be very computationally expensive in
practice especially because of the potentially large number of local GP models to
build and maintain. Our proposed algorithm, called SpLEGO (Sparse and Local
EGO), on the other hand, takes advantage of space partitioning while remaining
at a more reasonable computational cost through some kind of pruning.

Given XN = {x1, ..., xN} and YN = {f (x1) , ..., f (xN)}, the specific steps
of SpLEGO are given in Algorithm 1.

Algorithm 1. SpLEGO Framework
1. Build a sparse GP model using M << N inducing points IIP = {x̄1, ..., x̄M}.
2. Identify center points for local models, V = {v1, ..., vr}:

(a) Generate a Quasi-random sequence, e.g. Sobol sequence, Q = {u1, ..., uq} ⊂ D.
(b) Compute the sparse predictive mean and variance for all u ∈ Q.
(c) Identify the Pareto front with the two objectives, F1 (x) = μS (x) and F2 (x) =

−σS2 (x). Let v1, ..., vr ∈ Q be the points in the Pareto set.

3. For i = 1 : r,

(a) Identify a subregion Ri around vi.
(b) Build a local GP model.
(c) Calculate local EI(i). Let wi ∈ argmaxx∈Ri EI(i)(x), i.e. wi ∈ Ri maximizes the

local EI(i) using the local GP in Step 3b. Note that the global fmin = minYN

is used as a threshold when calculating all local EI(i)’s.

4. Let i0 ∈ argmax1≤i≤r EI(i)(wi), xN+1 ← wi0 and yN+1 ← f(xN+1).
5. Update XN+1 ← XN ∪ {xN+1}, YN+1 ← YN ∪ {yN+1}, and N ← N + 1.
6. Go back to Step 1.

To grasp a big picture of the entire domain, SpLEGO first constructs a sparse
global GP model (Step 1 of Algorithm 1). Following the same philosophy of EI

Global Optimization with Sparse and Local Gaussian Process Models 191

criterion that favors regions with high uncertainty and low mean predictions,
non-dominated points are then identified from a space filling sequence, where
evaluations are done on the the two competing objectives (mean and variance)
obtained from the sparse GP model (Step 2).

From the trade-off point-of-view, input points in a vicinity of Pareto-optimal
points define interesting regions. Thereby, local GP models are built within each
of these regions (Step 3b). Finally, the next evaluation point is taken as the point
that attains the overall maximum local EI across all subregions (Step 4).

Steps 3a and b of Algorithm1 need further clarification. While different
approaches can be used to define a subregion Ri in Step 3a, in this work we
define Ri to be a hyperrectangle

[
min

(
X(i)

N ∪ {vi}
)

, max
(
X(i)

N ∪ {vi}
)]

, where

X(i)
N ⊂ XN is a set of k-nearest input neighbors of vi, and the minimum and

maximum are taken component-wise. Next, two possibilities of a local GP model
in Step 3b are presented:

V1. Exact Local GP: Use the k points in X(i)
N (with their corresponding exact

observations) to build a local GP in the region Ri.
V2. Globalized Local GP: Use a combination of the k points in X(i)

N and M
noisy inducing points in IIP from Step 1.

The details of the GP posterior used in version V2, which combines exact
responses from the ith local model (1 ≤ i ≤ r) and noisy responses from the
inducing points of the SPGP model, are as follows: Let X(i)

N =
{
x(i)

N,1,x
(i)
N,k

}

and f
(
X(i)

N

)
=

[
f

(
x(i)

N,1

)
, ..., f

(
x(i)

N,k

)]T

be the exact k input-output obser-

vations from region i. Let X̄M = {x̄1, x̄M} be the (noisy) inducing points,
with SPGP predictive means μS(X̄M) and variances τ2 = σS2(X̄M). Writing

X̃
(i)

N =
[
X(i)

N , X̄M

]
and Δ = diag(τ2), the predictive mean and variance of the

combined local GP in region i are given by

μ
(i)
N (x) = K

(
x, X̃

(i)

N

) [

K
(
X̃

(i)

N

)
+

(
0 0
0 Δ

)]−1
[

f
(
X(i)

N

)

μS(X̄M)

]

(9a)

σ
(i)2
N (x) = K(x,x)−K

(
x,X̃

(i)
N

)
⎡
⎣K
(
X̃

(i)
N

)
+

⎛
⎝0 0
0 Δ

⎞
⎠
⎤
⎦

−1

K
(
X̃

(i)
N ,x

)
. (9b)

One can view Step 3b as a refinement phase. The difference between the two
versions is the use of inducing points in SpLEGO-V2. While SpLEGO-V1 focuses
on refining the selected regions of interest using only the exact evaluation points
in the region Ri, SpLEGO-V2 uses information from both the nearby exact
observations and the sparse global model.

Let us remark that although it seems out of reach here to specify the com-
plexity of EGO or SpLEGO, the overall complexity of a typical step of the two
algorithms are dominated by O(N3) and max

{O (
NM2

)
,O (

k3
)
,O (

dN2
)}

,
respectively. Therefore, when N 	 M, k, d (which is our case), it appears that
SpLEGO will be more efficient than EGO.

192 T. Krityakierne and D. Ginsbourger

4 Applications

4.1 A Didactic Example

Figure 3 illustrates the application of SpLEGO with a simple didactic example.
SPGP is used in Step 1 of the algorithm. Panels (a) and (b) correspond to Steps
1 and 2. Panel (c) corresponds to Step 3a. Here, four Pareto optimal points are
used to define the same number of subregions Ri with k = 3 points each. Finally,
Panel (d) corresponds to Step 3c where the local EI(i)’s are calculated within
each Ri.

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

(a) SPGP with five inducing points.

−10 −5 0 5
−12

−10

−8

−6

−4

−2

0

μS

−σS2

(b) A Pareto front for two objectives:
SPGP mean and negative variance.

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

(c) Pareto optimal points (green dots)
and their subregions Ri (blue lines).

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

1.5

2

(d) Local EIs and points attaining
their maxima (blue triangles).

Fig. 3. A step-by-step application with a simple didactic example (Color figure online)

4.2 Numerical Experiments

Test Problems. SpLEGO is assessed on four benchmark problems. The test
functions have between 4 and 10 dimensions and are summarized in Table 1.

Global Optimization with Sparse and Local Gaussian Process Models 193

Table 1. Summary of test problems

Problem Domain N1 N2

Rastrigin [6] [−20, 20]10 100 0

Hartmann [4] [0, 1]6 400 5 × 200

Ackley [1] [−1, 3]10 280 4 × 280

Shekel [4] [0, 10]4 5000 1 × 5000

Initial Data. To examine method applicability, we create the initial data in a
way that the points are packed in some regions but not completely filling the
space. The initial designs are composed of two types of samples:

I1: Latin Hypercube Designs of size N1

I2: clusters of uniformly distributed points of size N2.

The total number of initial points is therefore N0 = N1 + N2, where N1, N2

for each test problem are given in Table 1. For example, the initial design of
Hartmann-6D consists of N0 = 1400 points: a Latin Hypercube Design (N1 =
400) and five clusters of 200 uniformly distributed points (N2 = 1000).

Experimental Results. Ten trials are performed for both EGO and SpLEGO.
Parameter values used in numerical experiments for SpLEGO are M = 20, q =
500, k = 50 (Steps 1, 2, and 3a of Algorithm 1). Here, we implement SpLEGO-
V2. The plots of the average best objective function value (min1≤n≤N f (xn))
versus number of sample size N (starting from N0) are shown in Fig. 4. The
top left panel of Fig. 4 corresponds to Rastrigin-10D. With a relatively small
initial design of size N0 = N1 = 100 we did not expect SpLEGO to work
that well; nevertheless, we see that our method outperforms EGO on this test
problem. With a larger number of initial data, SpLEGO again outperforms EGO
on Hartmann-6D and Ackley-10D (top right and bottom left panels). Finally, the
bottom right panel illustrates the feasibility of using our method for very large
N0 (size 104) on Shekel-4D test function. Note that EGO is no longer feasible.
For this test function, the results based on two versions of SpLEGO are shown.

Recall that while SpLEGO-V1 only relies on exact points from the neighbour-
hood Ri, SpLEGO-V2 incorporates furthermore the inducing points of SPGP
when fitting local GPs. The algorithm achieves better results with SpLEGO-
V2 for this example, note however that, in general the results may vary from
problem to problem.

4.3 Comments and Perspectives of Future Work

Since SPGP relies on a set of inducing points (which is changed in every iter-
ation), whether or not SPGP leads to regions containing the global minimum
is still an open problem. Nevertheless, the presented results are promising for

194 T. Krityakierne and D. Ginsbourger

100 150 200 250 300 350 400 450
60

70

80

90

100

110

120

130

sample size (N)

be
st

 o
bj

. v
al

ue
Rastrigin−10D (100,0)

SpLEGO−V2
EGO

1400 1410 1420 1430 1440 1450
−3.3

−3.2

−3.1

−3

−2.9

−2.8

−2.7

−2.6

−2.5

−2.4

−2.3

sample size (N)

be
st

 o
bj

. v
al

ue

Hartmann−6D (400, 5x200)

SpLEGO−V2
EGO

1080 1090 1100 1110 1120 1130
−20.5

−20

−19.5

−19

−18.5

−18

−17.5

−17

sample size (N)

be
st

 o
bj

. v
al

ue

Ackley−10D (280, 4x200)

SpLEGO−V2
EGO

1 1.001 1.002 1.003 1.004 1.005

x 10
4

−4.2

−4

−3.8

−3.6

−3.4

−3.2

−3

−2.8

−2.6

−2.4

sample size (N)

be
st

 o
bj

. v
al

ue

Shekel−4D (5000,5000)

SpLEGO−V1
SpLEGO−V2

Fig. 4. Average best function value (10 trials) versus the number of sample size N .
Initial sample size is N0 = N1 + N2 where (N1, N2) is specified in each figure.

future research. One way to possibly improve the method is to incorporate also
secondary non-dominated fronts in Step 3 when building local GP models and
calculating local EIs. For example, in Fig. 5a, the first point on the secondary
non-dominated front (μS ≈ −5, −σS2 ≈ −2) looks more promising than the last
point on the Pareto front (μS ≈ 0, −σS2 ≈ −12). As expected, this point on
the secondary front turns out to be the point at x = 0.8 in the decision space
(Fig. 5b). In this example, we see that considering also the second front allows
the algorithm to find a much wider spread of solutions.

In addition, Step 3c can be modified to allow SpLEGO to perform expen-
sive function evaluations in a (synchronous or asynchronous) parallel way [7].
Instead of selecting only one point per iteration, several points from the pool of
{wi : i = 1, ..., r} could be selected (in order of maximum local EI, from largest
to smallest) and sent to the compute nodes. Once all the nodes have been taken,
the next points wait in queue until the next node becomes available. Also, sev-
eral candidate points may be considered for those regions with high potential,
and possibly an arbitrage may be done between points from different subregions
depending both on local EI and multipoint EI values [2].

One final remark about SPGP is that since Md+|Ψ | hyperparameters need to
be estimated, the standard SPGP method becomes no longer affordable for high
dimensional data sets. Fortunately, [17] addresses this limitation by performing
supervised dimensionality reduction in which the input space is projected to a
low dimensional space. Problems of up to 102 dimensions and 104 number of
training input points were considered in [17]. Consequently, this extension may

Global Optimization with Sparse and Local Gaussian Process Models 195

−10 −5 0 5
−12

−10

−8

−6

−4

−2

0

μS

−σS2

(a) A Pareto front for two objectives:
SPGP mean and negative variance

0 0.2 0.4 0.6 0.8 1

−10

−5

0

5

10

(b) Pareto optimal point (green dots),
second optimal (magenta dots), and its
subregion Ri (blue line)

Fig. 5. Secondary non-dominated front and the corresponding subregions (Color figure
online)

allow SpLEGO to be applied to solve global optimization problems where both
the number of data points N and the input dimension d are large.

5 Conclusions

In this paper, SpLEGO, an extension of the EGO algorithm for handling a large
number of starting points, was introduced and demonstrated on several test
problems. SpLEGO is based on a multi-scale EI framework for global optimiza-
tion that uses both sparse and local GP models. First, in the global scale, the
space is partitioned using a Pareto-front approach with respect to the predic-
tive mean and variance obtained from the sparse model. In the local scale, the
algorithm zooms in specific regions around Pareto-optimal points, builds local
GP models, and the next sample point is defined as the overall EI-optimal point
among the maximizers of the several local EI criteria. The already obtained
results demonstrate the effectiveness and robustness of our proposed method,
yet there is still much room for improvement, particularly in developing adapted
models and subregions for higher-dimensional problems, and also in handling
the case of clustered points using some dedicated preliminary approach.

References

1. Ackley, D.H.: A Connectionist Machine for Genetic Hillclimbing. Kluwer, Dor-
drecht (1987)

2. Chevalier, C., Ginsbourger, D.: Fast computation of the multipoint expected
improvement with applications in batch selection. In: Giuseppe, N., Panos, P. (eds.)
Learning and Intelligent Optimization, pp. 59–69. Springer, Heidelberg (2014)

3. Csató, L., Opper, M.: Sparse on-line gaussian processes. Neural Comput. 14(3),
641–668 (2002)

196 T. Krityakierne and D. Ginsbourger

4. Dixon, L.C.W., Szegö, G.P.: The global optimization problem: an introduction.
Towards Glob. Optim. 2, 1–15 (1978)

5. Forrester, A.I.J., Keane, A.J.: Recent advances in surrogate-based optimization.
Progr. Aerosp. Sci. 45(1), 50–79 (2009)

6. Hansen, N., Finck, S., Ros, R., Auger, A., et al.: Real-parameter black-box opti-
mization benchmarking 2009: noiseless functions definitions (2009)

7. Janusevskis, J., Le Riche, R., Ginsbourger, D., Girdziusas, R.: Expected improve-
ments for the asynchronous parallel global optimization of expensive functions:
potentials and challenges. In: Hamadi, Y., Schoenauer, M. (eds.) LION 2012.
LNCS, vol. 7219, pp. 413–418. Springer, Heidelberg (2012)

8. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive
black-box functions. J. Glob. Optim. 13(4), 455–492 (1998)

9. Mockus, J.: Bayesian approach to global optimization. Springer, The Netherlands
(1989)

10. Myers, R.H., Anderson-Cook, C.M.: Response Surface Methodology: Process and
Product Optimization using Designed Experiments, vol. 705. Wiley, New York
(2009)

11. Quiñonero-Candela, J., Rasmussen, C.E.: A unifying view of sparse approximate
gaussian process regression. J. Mach. Learn. Res. 6, 1939–1959 (2005)

12. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. The
MIT Press, Cambridge (2006)

13. Regis, R.G., Shoemaker, C.A.: A stochastic radial basis function method for the
global optimization of expensive functions. INFORMS J. Comput. 19(4), 497–509
(2007)

14. Roustant, O., Ginsbourger, D., Deville, Y.: DiceKriging, DiceOptim: two R pack-
ages for the analysis of computer experiments by kriging-based metamodeling and
optimization. J. Stat. Softw. 51, 1–55 (2012)

15. Smola, A.J., Bartlett, P.: Sparse greedy gaussian process regression. In: Advances
in Neural Information Processing Systems, vol. 13. Citeseer (2001)

16. Snelson, E., Ghahramani, Z.: Sparse gaussian processes using pseudo-inputs. In:
Schölkopf, B., Weiss, Y., Platt, J. (eds.) Advances in Neural Information Processing
Systems, vol. 18. MIT Press, Cambridge (2006)

17. Snelson, E., Ghahramani, Z.: Variable noise and dimensionality reduction for sparse
gaussian processes. In: Proceedings of the 22nd International Conference on Uncer-
tainty in Artificial Intelligence (2006)

18. Snoek, J., et al.: Scalable bayesian optimization using deep neural networks (2015).
arXiv preprint arXiv:1502.05700

19. Sóbester, A., Leary, S.J., Keane, A.J.: On the design of optimization strategies
based on global response surface approximation models. J. Glob. Optim. 33(1),
31–59 (2005)

20. Stein, M.L.: Interpolation of Spatial Data: Some Theory for Kriging. Springer, New
York (1999)

21. Titsias, M.K.: Variational learning of inducing variables in sparse gaussian
processes. In: International Conference on Artificial Intelligence and Statistics, pp.
567–574 (2009)

22. Veenendaal, G.V.: Tree-GP: a scalable bayesian global numerical optimization algo-
rithm. Master’s thesis, Utrecht University, The Netherlands (2015)

23. Wang, G.G., Shan, S.: Review of metamodeling techniques in support of engineer-
ing design optimization. J. Mech. Des. 129(4), 370–380 (2007)

http://arxiv.org/abs/1502.0570

Condense Mixed Convexity and Optimization
with an Application in Data Service

Optimization

Emre Tokgöz1(B) and Hillel Kumin2

1 School of Engineering, Quinnipiac University, Hamden, CT 06518, USA
Emre.Tokgoz@quinnipiac.edu

2 School of Industrial and Systems Engineering, University of Oklahoma,
Norman, OK 73071, USA

hkumin@ou.edu

Abstract. Elements of matrix theory are useful in exploring solutions
for optimization, data mining, and big data problems. In particular,
mixed integer programming is widely used in data based optimization
research that uses matrix theory (see for example [13]). Important ele-
ments of matrix theory, such as Hessian matrices, are well studied for con-
tinuous (see for example [11]) and discrete [9] functions, however matrix
theory for functions with mixed (i.e. continuous and discrete) variables
has not been extensively developed from a theoretical perspective. There
are many mixed variable functions to be optimized that can make use
of a Hessian matrix in various fields of research such as queueing the-
ory, inventory systems, and telecommunication systems. In this work
we introduce a mixed Hessian matrix, named condense mixed Hessian
matrix, for mixed variable closed form functions g : Zn × R

m → R, and
the use of this matrix for determining convexity and optimization results
for mixed variable functions. These tasks are accomplished by building
on the definition of a multivariable condense discrete convex function and
the corresponding Hessian matrix that are introduced in [14]. In addi-
tion, theoretical condense mixed convexity and optimization results are
obtained. The theoretical results are implemented on an M/M/s queue-
ing function that is widely used in optimization, data mining, and big
data problems.

Keywords: Continuous convexity · Discrete convexity · Hessian
matrix · Optimization · Data mining

1 Convexity and Optimization of Real and Discrete
Variable Functions

Matrix theory is widely used by researchers to solve problems in big data, data
mining, and optimization. In particular, a continuous variable functions’ Hessian
matrix can be used for determining local and global convexity results that help

c© Springer International Publishing Switzerland 2015
P. Pardalos et al. (Eds.): MOD 2015, LNCS 9432, pp. 197–208, 2015.
DOI: 10.1007/978-3-319-27926-8 17

198 E. Tokgöz and H. Kumin

determine local and global optimization results. An important and well-known
implementation of the Hessian matrix is to determine a closed form optimization
solution for multivariable C2 functions in R

m. The convexity of a multivariable
C2 function f : Rm → R can be determined by observing the positive definiteness
of the corresponding Hessian matrix

Hf =
[

∂2f

∂xi∂xj

]

m×m

(1)

It is well known [11] that f is convex if and only if Hf is positive semi-definite.
A function f with positive definite Hessian matrix Hf has a unique minimum
point.

Discrete convexity and the discrete analogue of the Hessian matrix in Z
n

are introduced for multi-variate discrete functions by several researchers (see for
example [9]). The classical definition states that a discrete function of a single
variable is convex if its first forward difference is increasing or at least non-
decreasing, as defined in [1,3] and others in the literature. Some of the discrete
convex function definitions and their introducers are; discretely convex functions
in [7], integrally-convex functions in [2], M �-convex functions in [10], L�-convex
functions, L-convex functions and M -convex functions in [4], strongly discrete
convex functions in [16], and D-convex and semi-strictly quasi D-convex func-
tions in [15]. Discrete Hessian matrices corresponding to multivariable discrete
L, L#, M, and M# functions are introduced in [5,8]. Condense discrete convex-
ity of multivariable discrete functions introduced in [14] is a generalization of
the integer convexity definition introduced in [3] from one dimensional discrete
space to multi-dimensional discrete space. In [14], a condense discrete convex
set U is defined to be the set of points that coincides with a real convex set on
the integer lattice which is large enough to support the second difference of a
given condense discrete function. The union of condense discrete convex sets is
assumed to be a condense discrete convex set, and a condense discrete convex
function is defined as follows:

Definition 1. A discrete function g : U → R on a condense discrete convex
set U ⊂ Z

n is defined to be condense discrete convex if its quadratic expression
1
2xT Ax in the neighborhood U is strictly positive where A is the symmetric
coefficient matrix of the quadratic expression of g. g is called condense discrete
concave if −g is condense discrete convex. A is called the discrete coefficient
matrix of g.

The condense discrete convexity of a function g : Zn → R for n ≥ 1 and its
corresponding positive definite discrete Hessian matrix

Hg = [∇ijg]n×n (2)

are shown to be equivalent where the first difference of g is defined by

∇ig (x) = g (x + δi) − g (x)

Condense Mixed Convexity and Optimization with an Application 199

and the second difference of g is defined by

∇ij (g (x)) = g (x + δi + δj) − g (x + δi) − g (x + δj) + g (x) (3)

with δi representing the integer vectors of unit length at the ith position of the
function g [14].

The convexity of a discrete variable function can differ based on the way the
discrete convexity is defined. For instance, in [16], an adaptation of Rosenbrock’s
function g : Z2 → R

g(x, y) = 25(2y − x)2 +
1
4
(2 − x)2 (4)

is shown to fail the discrete convexity definition of Miller [7], whereas in [14], the
function defined in Eq. (4) is shown to be a condense discrete convex function in
Z

2. For further details of condense discrete convexity and optimization results
see [14].

In this paper, our main goals include introducing condense mixed convex-
ity the concept of and a Hessian matrix for condense mixed convex functions
defined in Z

n × R
m. The results introduced in this work can be used for data

mining, big data, and optimization applications. Mixed integer programming is
widely used in data based optimization research that uses matrix theory (see for
example [13]). The Hessian matrix we introduce in this work will be particularly
useful for determining closed form convexity and optimization of functions with
multiple mixed variables. The condense mixed convexity will be constructed by
using the definitions and results obtained for condense discrete convexity in [14].
An M/M/s queueing system optimization problem with an algorithmic mixed
convexity solution is introduced in the last section for data service optimiza-
tion where the number of servers is assumed to be the discrete variable and the
service rate is assumed to be the continuous variable.

2 Condense Mixed Convexity and Minimization

In this section, function and set definitions of condense mixed convexity, and local
and global minimum of a C1 condense mixed convex function are introduced.
In addition, mixed convexity and corresponding minimization results are stated
and proven.

Definition 2. Let V1 ⊆ Z
n be a condense discrete convex set and V2 ⊆ R

m be a
real convex set. A condense mixed convex set is the set of the form V = V1×V2 ⊆
Z

n × R
m. Throughout this paper, g will be assumed to be a C2 function with

respect to its real variables unless stated otherwise, and the indices i, j, and k,
l will be used for the integer and real variables, respectively.

A mixed function g : V → R on a condense mixed convex set V ⊆ Z
n × R

m

is defined to be condense mixed convex if its quadratic expression

g (x, y) =
1
2
xT Ax + xT By +

1
2
yT Cy + dT x + eT y + f (5)

200 E. Tokgöz and H. Kumin

in the neighborhood V is strictly positive where d and e are constant coefficient
vectors of x and y, respectively, and f is a constant. A and C are assumed to
be symmetric coefficient matrices of the quadratic expression of g with respect
to x and y, respectively. h is called condense mixed concave if −h is condense
mixed convex. The quadratic expression of the function mentioned above is the
quadratic form of the function within a local neighborhood.

Proposition 1. Let g : V → R be a condense mixed convex function defined on
a condense mixed convex set V ⊆ Z

n × R
m with its quadratic expression given

in (5). The coefficient matrix Hg corresponding to g is the symmetric matrix

Hg =

⎡

⎣
[∇ij (g)]n×n

[
∂

∂yk
∇j (g)

]

n×m[
∇i

∂
∂yl

(g)
]

m×n

[
∂2g

∂yk∂yl

]

m×m

⎤

⎦ (6)

Proof. The symmetry of the matrix [∇ij (g)]n×n in the mixed Hessian matrix
Hg follows from [14]. Clearly

∂2g

∂yk∂yl
=

∂2g

∂yl∂yk

yields to a symmetric matrix. The off diagonal block matrices of Hg satisfy the
symmetry condition

∂

∂yk
(∇jg (x, y)) =

∂

∂yk
(g (x + δj , y) − g (x, y))

=
∂

∂yk
g (x + δj , y) − ∂

∂yk
g (x, y)

= ∇j
∂

∂yk
g (x, y)

for all j and k. Therefore Hg is a symmetric matrix.

By the definition of condense mixed convex function,

∇ij (g (x)) = aij

holds for all i and j [14]. Therefore

A = [aij]n×n = [∇ijg]n×n

Straightforward calculations indicate
[

∂2g

∂yk∂yl

]

m×m

= C

Condense Mixed Convexity and Optimization with an Application 201

The off diagonal elements satisfy

∂

∂yk
∇j (g (x, y)) =

∂

∂yk

(
(x + δj)

T
By − xT By + dT (x + δj) − dT x

)

=
∂

∂yk

(
xT By + δT

j By − xT By + dT δj

)

=
∂

∂yk

(
δT
j By + dT δj

)

= bjk

Proposition 2. The coefficient matrix Hg of a condense mixed convex function
g : V → R given in Proposition 1 satisfies the properties of the mixed Hessian
matrix corresponding to real convex functions. That is, Hg is linear with respect
to the condense mixed functions, symmetric, and vanishes when g is mixed affine.

Proof. Let gt : Wt → R, t = 1, 2, be condense mixed functions where Wt are
mixed convex sets (for t = 1, 2) with the corresponding coefficient matrices

Hgt
=

[
Agt

Bgt

Bgt
Cgt

]

, t = 1, 2

Note that
∂

∂yk
∇j (g1 + g2) =

∂

∂yk
{g1 (x + δj , y) + g2 (x + δj , y) − [g1 (x, y) + g2 (x, y)]}

=
∂

∂yk
(g1 (x + δj , y) − g1 (x, y)) +

∂

∂yk
(g2 (x + δj , y) − g2 (x, y))

indicating
[

∂

∂yk
∇j (g1 + g2)

]

n×m

=
[

∂

∂yk
∇j (g1)

]

n×m

+
[

∂

∂yk
∇j (g2)

]

n×m

= Bg1 + Bg2

Therefore, by using the symmetry property obtained in Proposition 1,

Hg1+g2 =

⎡

⎣
[∇ij (g1 + g2)]n×n

[
∂

∂yk
∇j (g1 + g2)

]

n×m[
∂

∂yk
∇j (g1 + g2)

]

m×n

[
∂2

∂yk∂yl
(g1 + g2)

]

m×m

⎤

⎦

=

[
Ag1+g2 Bg1 + Bg2

Bg1 + Bg2
∂2g1

∂yk∂yl
+ ∂2g2

∂yk∂yl

]

=
[
Ag1 + Ag2 Bg1 + Bg2

Bg1 + Bg2 Cg1 + Cg2

]

=
[
Ag1 Bg1

Bg1 Cg1

]

+
[
Ag2 Bg2

Bg2 Cg2

]

= Hg1 + Hg2

202 E. Tokgöz and H. Kumin

which also proves the linearity of the second difference operator with respect
to the condense discrete functions. The symmetry condition is proven in
Proposition 1.

Considering the condense mixed affine function g, i.e.

g (x, y) =
n∑

i=1

dixi +
m∑

k=1

wkxk

the second difference operator vanishes since ∇i (g) = bi and ∇ij (g) = 0 for all
i and j. Similarly ∇i

∂
∂yk

= 0 and ∂2

∂yk∂yl
= 0 for all i, k, and l.

Now assume we have a mixed quadratic function of the form

g (x, y) =
1
2
xT Ax + xT By +

1
2
yT Cy

Next the strict condense mixed convexity of mixed variable functions will be
defined.

Theorem 1. A function g : V → R is strict condense mixed convex if and only
if the corresponding mixed Hessian matrix Hg is positive definite in V .

Proof. In the case when m = 0 the proof follows from Theorem 1 in [14]. In the
case when n = 0 the result is well known from real convexity theory. Consider
the mixed function

g (x, y) =
1
2
xT Ax + xT By +

1
2
yT Cy

= ax2 + 2bxy + cy2

where a, b, c ∈ R and (x, y) ∈ Z × R. We prove the case for a 2 × 2 matrix and
the (n + m)× (n + m) matrix case follows similarly. Let z = (x, y) . Suppose Hg

is positive definite.

Case 1. If we let z = (1, 0) , then

g (z) = ax2 + 2bxy + cy2 = a > 0

Case 2. If we let z = (0, 1) , then

g (z) = ax2 + 2bxy + cy2 = c > 0

To show Hg > 0 for any z �= 0 consider the following cases.
Case 1. If we let x = (x, 0) with x �= 0. Then,

g (x) = ax2 + 2bxy + cy2 = ax2 > 0 ⇔ a > 0

Case 2. If we let x = (x, y) with y �= 0. Let x = ty for some t ∈ R. Therefore
we have

g (x) =
(
at2 + 2bt + c

)
y2

Condense Mixed Convexity and Optimization with an Application 203

where g (z) > 0 ⇔ ϕ (t) = at2 + 2bt + c > 0 since y �= 0. Note that

ϕ′ (t) = 2at + 2b = 0

⇒ t∗ = − b

a
ϕ′′ (t) = 2a.

If a > 0 then

ϕ (t) ≥ ϕ (t∗) = ϕ

(

− b

a

)

=
−b2

a
+ c

=
1
a

det
[
a b
b c

]

Therefore if a > 0 and the determinant given above is positive then ϕ (t) > 0
for all t ∈ R. Conversely, if g (z) > 0 for every z �= 0 then ϕ (t) > 0 for some t,
therefore

ϕ (t) > 0 ⇒ a > 0, and 4b2 − 4ac = −4 det (Hg) < 0
ϕ (t) > 0 ⇔ a > 0 and det (Hg) > 0

which completes the proof.
To obtain minimization results for a given condense mixed convex function,

the given condense mixed convex function will be required to be C1 with respect
to all of its variables.

Following [14], let
Z

n × R
m =

∞∪
i=1

Si × ∞∪
j=1

Rj

where Si ×Rj are non-empty sufficiently small condense mixed convex neighbor-
hoods to support a quadratic expression of g, ∩

i∈I
Si �= ∅ for all Si where Si have

at least one common element for all i ∈ I, I is a finite index set, and {(si, rj)}
is a singleton in Z

n × R
m.

The partial derivative operator of a C1 mixed function g : Zn ×R
m → R will

be denoted by

Dg (x) :=
(

∂g

∂x1
,

∂g

∂x2
, ...,

∂g

∂xn
,

∂g

∂y1
,

∂g

∂y2
, ...,

∂g

∂ym

)

x

Definition 3. The local minimum of a condense mixed C1 function g : Zn ×
R

m → R is the minimal value of g in a local neighborhood ∪
i∈I

Si × ∪
j∈I

Rj which is

also the smallest value in a neighborhood M = N ×R where I is a finite index set
and R = ∪

j∈I
Rj . The global minimum value of a condense mixed convex function

g : Zn ×R
m → R is the minimum value of g in the entire mixed space Z

n ×R
m.

Define the set of local minimums of a C1 condense mixed convex function g
by

Θ = {ρ = (ρ1, ..., ρn, α1, ..., αm) : ρi ∈ {�γi� , �γi�} ⊂ Z ∀i, αj ∈ R ∀j} ⊂ Z
n × R

m

204 E. Tokgöz and H. Kumin

where Dg (γ, α) = 0 holds for (γ, α) ∈ R
n+m. In this paper, the solutions in

Θ where ρi = �γi� or ρi = �γi� are considered for the multivariable mixed
function g.

Lemma 1. Let g : M → R be a C1 condense mixed convex function in M ⊂
Z

n × R
m. Then there exists a local minimum value in M such that

g0 = min
β∈Θ

{g (β)}

Proof. Let g : M → R be a C1 strict condense mixed convex function. Suppose
Dg (x, y) = 0 holds in some neighborhood

S = ∪
i∈I

Si × ∪
j∈I

Rj ⊆ M

for all (x, y) ∈ M. Therefore, the local minimum of the C1 function g is obtained
when the system of equations

∂g (x)
∂xi

= lim
t→0

g (x + tδi) − g (x)
t

= 0

∂g (x)
∂yj

= 0

are solved simultaneously for all i, 1 ≤ i ≤ n, and for all j, 1 ≤ j ≤ m. This
indicates the existence of a (γ, α) ∈ R

n+m. For the integer variables in the
domain Z

n, we take the ceiling and floor of the components of γi to obtain the
minimal point which consist of integer numbers �γi� or �γi� for all i, 1 ≤ i ≤ n.
This gives a local minimum point (β, α) ∈ Θ since there exists a unique minimum
value of a real convex function and the corresponding value g0 = min

β∈Θ
{g (β)} .

Suppose Dg (x, y) �= 0 for some x and y. Then either Dg (x, y) > 0 or
Dg (x, y) < 0 holds which in either case the minimum value is obtained for
the boundary values of M for x and y satisfying Dg (x, y) �= 0.

The following theorem for condense mixed convex functions has a similar
statement to the results obtained for real and condense discrete convex functions.
It is evident that a condense mixed convex function can have more than one
global minimum point.

Theorem 2. Let g : Zn × R
m → R be a C1 strict condense mixed convex func-

tion which has local and global minimum points. Then the set of local minimum
points of g form a set of global minimum points and vice versa.

Proof. Suppose g : Zn ×R
m → R is a C1 condense mixed convex function. Let
∞∪

i=1
Si × ∞∪

j=1
Rj = Z

n × R
m

where Si × Rj are sufficiently small condense mixed neighborhoods supporting

quadratic expression of g for all i and j, and
∞∩

i=1
Si = ∅. Let Φ1 be the set of local

minimum points of g in Z
n × R

m, and Φ2 be the set of global minimum points
of g in Z

n × R
m.

Condense Mixed Convexity and Optimization with an Application 205

Let g : Zn × R
m → R be a C1 condense mixed convex function and suppose

g has global minimum points in Z
n ×R

m. Noting that g is strict mixed convex,
there exists a collection of

Si × Rj ⊂ ∪
i∈I0

Si × ∪
j∈I0

Rj

where the global minimum points are located. Considering the quadratic expres-
sion of g in the neighborhood Si × Rj , the solution set of Dg (z) = 0 gives the
set of local minimums in Si × Rj . Therefore for all z2 ∈ Φ2 there exists a set of
vectors z1 ∈ Φ1 such that min

z1∈Φ1
g (z1) = g (z2) which indicates Φ2 ⊂ Φ1 since

∪
i∈I0

Si × ∪
j∈I0

Rj ⊂ Z
n × R

m

Now suppose there exists a vector z0 = (x0, y0) in a local neighborhood

M1 = ∪
i∈I1

Si × ∪
j∈I1

Rj

such that z0 /∈ Φ2 (Note that z0 is not necessarily an element of Φ1 since it is a
local minimum in a local setting). z0 is a local minimum which is not a global
minimum in M1, therefore there exist z1 and z2 such that g (z0) > g (z1) >
g (z2) in

M2 = ∪
j∈J

(

∪
i∈Ij

Si

)

× ∪
j∈J

(

∪
i∈Ij

Ri

)

⊃ M1

where z2 becomes the new local minimum of the local neighborhood M2. There-
fore z2 is the new local minimum of M2 where z0 is not a local minimum of M2.
Suppose z2 is a local minimum that is not a global minimum otherwise it would
be an element of Φ2. Continuing to enlarge the local obtained neighborhoods in
this way to the entire space Z

n ×R
m, a set of points in a local neighborhood V

of Zn ×R
m is obtained where local minimum points z ∈ Φ1 satisfy g (z) < g (z)

for all z ∈ Z
n − V . Therefore z ∈ Φ2 and hence Φ1 ⊂ Φ2 which completes the

proof.

3 Applications in Data Service Optimization

Consider a parallel channel queueing system in which data arrive according to
a Poisson process with the arrival rate λ. In each channel, service follows the
same negative exponential distribution with the service rate μ. Data does not
wait for service by the server if there is a free channel. Otherwise it joins the
queue and waits for service. The queue discipline is FIFO. It is well known that
steady-state exists for this system if ρ = λ

sμ < 1 [6]. Assuming this to be the
case, the expected number in the system is found to be

E (s, μ) = sρ +
ρPs

(1 − ρ)2

206 E. Tokgöz and H. Kumin

where

Ps =

(
λ
μ

)s

P0

s!
and

P0 =

⎡

⎢
⎣

⎛

⎜
⎝

s−1∑

j=0

(
λ
μ

)j

j!

⎞

⎟
⎠ +

(
λ
μ

)s

s!

(
1

1 − ρ

)
⎤

⎥
⎦

−1

Let the discrete decision variables be the number of servers s and the contin-
uous decision variable be the service rate μ. Assume that there are fixed costs
c1, c2, and c3 associated with the number of servers, the service rate, and the
expected number of data in the system [6]. Thus, we can define the following
closed form optimization problem:

min
(s,μ)∈Z×R

Ψ(s, μ) = c1s + c2μ + c3E (s, μ) = c1s + c2μ

+ c3

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λ

μ
+

λμ
(

λ
μ

)s

(s − 1)! (sμ − λ)2
[(

s−1∑

j=0

(
λ
μ

)j

j!

)

+

(
λ
μ

)s

s!

(
sμ

sμ−λ

)]

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(7)

subject to : μ > 0, λ > 0, s = 1, 2, 3, ...

where c1, c2, and c3 are arbitrary positive constants and λ < sμ. The mixed
convexity of this problem can be determined by applying the condense mixed
convexity definition, and therefore by determining the conditions under which
the corresponding mixed Hessian matrix is positive definite. Noting that the
second difference, the second differential, and difference of the differential of the
linear term c1s + c2μ are zero, the Hessian matrix would have the form

HΨ =

[∇11 (Ψ) d
dμ (∇1 (Ψ))

∇1

(
d

dμ (Ψ)
)

d2Ψ
dμ2

]

=

[∇11 (E) d
dμ (∇1 (E))

∇1

(
d

dμ (E)
)

d2E
dμ2

]

that solely depends on the expected value. The following algorithm, requiring
symbolic programming, can be implemented for determining both theoretical
and numerical computational mixed convexity results. This algorithm can be
particularly useful for functions with complex structures such as the one given
in Eq. (7). We do not implement the computations for Eq. (7) in this work due
to space limitation.

Condense Mixed Convexity and Optimization with an Application 207

Algorithm.

syms c1 c2 c3 alpha mu rho s

rho = lambda/mu

PSI(s,mu) = c1*s + c2*mu + c3*(lambda/mu + lambda*mu*(rho^s)/(fact(s-1)

*(s*mu-lambda)^2*(sum(rho^j/fact(j),0,s-1)+((rho^s)/fact(s))

*(s*mu/(s*mu-lambda))))

d1M = diff(PSI,mu)

d2M = diff(PSI,mu,2)

Difference1 = PSI(s+1,mu)-PSI(s,mu)

diff_Difference1 = diff(Difference1,mu,1)

Difference2 = PSI(s+2,mu)-2PSI(s+1,mu)+PSI(s,mu)

DetH = d2M*Difference2 - (diff_Difference1)^2

If (DetH>0) then PSI is condense mixed convex

else PSI is not condense mixed convex

The optimization problem can be reorganized to have a more complicated
structure: It is possible to assume that the arrival rate λ is a continuous decision
variable in addition to the existing variables s and μ; therefore, the minimization
problem will have domain (s, μ, λ) ∈ Z × R

2. The linear costs can be assumed
nonlinear functions with variables c1, c2 and c3 which would yield to an opti-
mization problem with the decision variables (s, μ, λ, c1, c2, c3) ∈ Z × R

5.

References

1. Denardo, E.V.: Dynamic Programming. Prentice-Hall, Englewood (1982)
2. Favati, P., Tardela, F.: Convexity in nonlinear programming. Ric. Operativa 53,

3–44 (1990)
3. Fox, B.: Discrete optimization via marginal analysis. Manag. Sci. 13, 210–216

(1966)
4. Fujishige, S., Murota, K.: Notes on L-/M-convex functions and the separation

theorems. Math. Prog. 88, 129–146 (2000)
5. Hirai, H., Murota, K.: M-convex functions and tree metrics. Jpn. J. Indus. Appl.

Math. 21, 391–403 (2004)
6. Kumin, H.: On characterizing the extrema of a function of two variables, one of

which is discrete. Manag. Sci. 20, 126–129 (1973)
7. Miller, B.L.: On minimizing nonseparable functions defined on the integers with

an inventory application. SIAM J. Appl. Math. 21, 166–185 (1971)
8. Moriguchi, S., Murota, K.: Discrete Hessian matrix for L-convex functions. IECE

Trans. Fundam. E88–A, 1104–1108 (2005)
9. Murota, K.: Discrete Convex Analysis. SIAM, Philadelphia (2003)

10. Murota, K., Shioura, A.: M-convex function on generalized polymatroid. Math.
Oper. Res. 24, 95–105 (1999)

11. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)
12. Stoer, J., Witzgall, C.: Convexity and Optimization in Finite Dimensions I.

Springer, Berlin (1970)
13. Tawarmalani, M.: Convexification and Gobal Optimization in Continuous and

Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Appli-
cations. Springer, USA (2002)

208 E. Tokgöz and H. Kumin

14. Tokgöz, E., Nourazari, S., Kumin, H.: Convexity and optimization of condense
discrete functions. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol.
6630, pp. 33–42. Springer, Heidelberg (2011)

15. Ui, T.: A note on discrete convexity and local optimality. Jpn. J. Indust. Appl.
Math. 23, 21–29 (2006)

16. Yüceer, U.: Discrete convexity: convexity for functions defined on discrete spaces.
Disc. Appl. Math. 119, 297–304 (2002)

SoC-Based Pattern Recognition Systems
for Non Destructive Testing

Omar Schiaratura2(B), Pietro Ansaloni1, Giovanni Lughi1, Mattia Neri1,
Matteo Roffilli1, Fabrizio Serpi1, and Andrea Simonetto1

1 Bioretics S.r.l., Pula, Italy
info@bioretics.com

http://www.bioretics.com
2 CRS4 S.c.a.r.l., Pula, Italy
omar.schiaratura@crs4.it

http://www.crs4.it

Abstract. Non Destructive Testing (NDT) is one of the most important
aspect in modern manufacturing companies. Automation of this task
improves productivity and reliability of distribution chains. We present
an optimized implementation of common pattern recognition algorithms
that performs NDT on factory products. To the aim of enhancing the
industrial integration, our implementation is highly optimized to work
on SoC-based (System on Chip: an integrated circuit that integrates all
components of a computer into a single chip.) hardware and we worked
with the initial idea of an overall design for these devices. While perfectly
working on general purpose SoCs, the best performances are achieved on
GPU accelerated ones. We reached the notable performance of a PC-
based workstation by exploiting technologies like CUDA and BLAS for
embedded SoCs. The test case is a collection of toy scenarios commonly
found in manufacturing companies.

Keywords: Non-destructive testing · SoC · ARM · CUDA · OpenCL

1 Introduction

In order to create a product of high quality and to meet customer’s expectations,
the manufacturer needs to fulfill specific requirements planned for achieving a
successful product. In this context, quality is intended as how much a product is
suitable for the purpose it has been developed. That is, how much the product
has the properties and the capabilities the producer warrants and how much it
meets market needs [1].

In this scenario, most of the potential defects are visual patterns that prevent
the perceived quality. Nowadays, these defects can be detected by automatic
systems via destructive quantitative measures taken over samples, and matched
to standard ranges. Unfortunately, these measures are not easy to obtain, and
even if they are taken, they result in having a negative impact on the process

c© Springer International Publishing Switzerland 2015
P. Pardalos et al. (Eds.): MOD 2015, LNCS 9432, pp. 209–221, 2015.
DOI: 10.1007/978-3-319-27926-8 18

210 O. Schiaratura et al.

layout as well as on costs [2]. In many production chains, the aforementioned
measures could be taken by a human-like analysis on images of the products.

Pattern Recognition algorithms have shown to be reliable in such analysis
and to have great performances even in difficult operative conditions found in
industrial environments [3]. These techniques, mainly when based on Machine
Learning, are greed for computational power (GFlops) that should be yielded by
devices often in a non server farm environment. Thus, it is absolutely necessary to
use the last generation of HPC technologies that can enable those methodologies
in a as little as possible space, typically the dimension of a credit card.

SoCs allow optimal exploitation of the packaging space and permit the cre-
ation of modular systems (serial, parallel and distributed ones) depending on the
required computational power. The advantage is that you do not need to invest
in proprietary (es. DSP, FPGA), very expensive (es. blade server), or big form
factor infrastructures.

In fact, when the issues related to the computational power are solved with
traditional HPC systems, these introduce new problems such as electrical power
consumption, the physical space they need, and a suitable cooling apparatus. In a
research environment, physical space is not relevant, since there are laboratories
with HPC clusters aimed at computational purposes.

In an industrial context you could need an integrated system in a short
physical space, able to perform material recognition in real time on a moving
machine, as well as to take care of power consumption.

An embedded COTS based system1, developed on top of a SoC, yields a low
impact solution concerning cost, physical space, power consumption and low
overheating.

2 State of the Art

Embedded systems introduce new challenges as well as new issues to face. They
have particular characteristics that affect the whole development and testing
process. This complex domain includes:

1. a development process that considers both the hardware and the software
parts of the whole system;

2. complex specifications;
3. platform-dependent constraints (CPU, memory, power consumption, periph-

erals);
4. quality constraints;
5. very short time-to-market constraint.

Each application sector needs to take into account the difficult identification of
general tools and techniques, so ad-hoc methods are needed.

1 Commercial Off The Shelf: products that are commercially available and can be
bought “as is”.

SoC-Based Pattern Recognition Systems for Non Destructive Testing 211

Table 1. Technical features of SoCs.

Model CPU # of
Cores

Clock
(Mhz)

RAM
(MB)

Extensions GPU Cost (e) Advantages

Raspberry Pi ARM11
Broadcom
BCM2835

1 700 512 vfp Broadcom
Video-
Core IV

45, 00 diffusion, sdk
aimed at
graphics

Wandboard Cortex A9
Freescale
i.MX6
Quad

4 792 2048 vfp, NEON Vivante
gc2000,
gc355,
gc320

100,00 top-notch
performance

Intel Galileo x86 Intel
Quark
x1000

1 400 256 / / 60,00 x86 compatibility

lime A20 Cortex A7
Allwiner
A20

2 1000 / vfp, NEON dual core
Mali
400

33,00 good price-
performance
ratio

Nvidia Jetson
TK1

Cortex A15 4 1900 2048 vfp, NEON,
Cuda

Kepler 192,00 high performance

NDT-VT2 literature is filled with methodologies, techniques and instruments
that support traditional product testing, but few examples can be found con-
cerning testing with advanced pattern recognition and machine learning systems.
The most advanced systems in industry, are based on proprietary PLCs solutions
that are difficult to maintain or modify. Hence, the necessity to design a new
system (Table 1).

ARM based SoCs have a BUS internal structure that interconnects the fol-
lowing devices:

1. more than one CPU Core;
2. GPU core;
3. interfaces for sensor, debug and/or development systems (i.e. PC, monitor,

HD, etc.).

Technical features of different kind of platforms available have been evaluated,
choosing the most promising ones. The choice has been made based on the
following criteria:

1. diffusion of the platform, documentation and support;
2. advanced CPU extensions availability;
3. ease of interfacing with external devices;
4. computational power of the CPU and number of cores.

The Raspberry Pi platform has a good support for the developers, the most
complete and the best documented HW/SW video features, while its computa-
tional unit performance suffers from the quite old ARM11 vfp3 architecture.

The Lime is a good low cost alternative, considering its dual core CPU, its
Mali card, and the support for the NEON4 technology.

2 Non Destructive Testing - Visual Testing.
3 Vector Floating Point: an ARMv11 floating point architecture.
4 Arm general purpose SIMD engine.

212 O. Schiaratura et al.

The Wandboard and Jetson TK1 are the top-notch solutions amongst the
ARM based systems. They include both a quad core CPU and multiple GPUs,
as well as a sufficient amount of RAM. The last one has also Cuda support.

The Intel Galileo suffers from a performance gap when compared to its com-
petitors. Its price is high and lacks of video support, but the system is Arduino
platform compatible; it can execute x86 standard code without x86 advanced
optimizations.

3 System Implementation

A complete NDT system can be represented as in Fig. 1. In details, the I/O
part receives an analog or digital signal as input (receiver transducer) from an
external hardware like a video camera, an X-ray machine, an infrared sensor,
and so on.

The signal, typically analog, is amplified by the interface and then converted
to a digital form. After conversion, the obtained digital signal, is processed by a
micro-controller that will pass it to the classification sub-system.

Fig. 1. Block diagram of a NDT system. The smaller block on the left side is the
classification subsystem; transducers on right side represent the I/O subsystem.

We have been focused on HW optimizations in the classification sub-system
expanded in Fig. 2 with highlight of the modules composing the classification
parts.

Part of the system shown in Fig. 1 has been simulated implementing an ad-
hoc framework in the Python programming language with the support of the
openCV library. The framework task is to extract the objects of interest from
the images and then input them to the classification system.

The process of classification can be summarized as follows:

1. the image is processed and isolated from the background (i.e. objects of inter-
est are selected);

SoC-Based Pattern Recognition Systems for Non Destructive Testing 213

2. the image is subdivided in even-sized segments, and on each segment the
following operations are performed:
(a) each segment is resized and then transformed via mathematical opera-

tors (i.e. Fourier, Wavelet or Ranklet). These transforms yield underlying
texture characteristics of the segment (features) useful for classification
purpose [4];

(b) the classification algorithm (SVM [5], Neural Networks, etc.), that also
takes in input a model of the defects, classifies the processed segment;

(c) finally, the signal is normalized and an output is sent, that indicates the
state of the analyzed segment (good or bad).

The system in Fig. 2 is very modular, and each block has an independent
interface, so it can be easily replaced without or with minor change to other
blocks. Transformation and classification blocks are the ones that need an opti-
mized implementation. Our choice (see [6] for a detailed description of the work-
flow) for the transformation is a Haar DWT of computational complexity O(n).
The second one is a SVM classifier which has O(n2) complexity for each sample,
using a polynomial kernel function.

Fig. 2. Serial workflow (sx) and with optimized loops (dx).

The classification stage was improved in several ways:

1. grouping the segments and making different logic units process them. Code
distribution is done over different SoCs connected to each other in a serial or
parallel configuration;

214 O. Schiaratura et al.

2. executing parallel code for each segment, so that the code is distributed over
the cores (SMP);

3. speeding up the computationally more expensive parts via vectorized instruc-
tions (SIMD - NEON), and GPU processing.

4 Evaluating GPU for Classification Problems

Systems like Wandboard and Jetson TK1 allow using complex GPGPU lan-
guages like CUDA [7], OpenCL [8] and GLSL [9], which would enable to combine
CPU and GPU in compute-intensive tasks. The first one supports OpenCL and
GLSL, while the second supports CUDA, GLSL and OpenCL with limitations.
The OpenCL Jetson TK1 API is only available for Android operating systems.
GLSL support on Wandboard isn’t complete, and doesn’t handle 32 bit float
textures.

Using OpenCL makes it possible to write code that runs transparently on
both GPUs and CPUs at the cost of a performance degradation in case of CPUs-
only systems.

CUDA is a more mature architecture, but it is only available in Nvidia HW.
GLSL is more complex to program and optimize, while it best fits on graphics-

visualization code. We are using BLAS [10] implementations in our applications:
we adopt cuBLAS, clBLAS, ATLAS, handmade GLSL and OpenCL code.

For the classification system’s peculiarity, it is also interesting to exploit the
GPU in the data acquisition from the camera, in conjunction with the CPU for
the execution of the classifier, so that objects acquisition and elaboration can be
done in real time.

4.1 OpenCL

To support clBLAS on ARM, we made a porting of AMD source code on ARM
freescale i.MX6 quad which supports the complete openCL EP5 1.1 specifica-
tions.

At this time, our porting is able to execute scalar product (dot), matrix
product (gemm) and matrix product between vectors (ger). The dot product
has some stability issues yet, while the matrix-vector product (gemv) is under
working.

4.2 GLSL

GLSL is the shading language of the openGL [11] library that enables GPUs to
be used like CPUs for computing purpose, but the following is also important
to understand other GPGPU technologies.

GPUs work following the SPMD paradigm6. SPMD approach is called stream
processing and is similar to that used in FPGAs. The program is seen as an
5 Embedded Profile.
6 Single Program Multiple Data is a kind of parallel architecture.

SoC-Based Pattern Recognition Systems for Non Destructive Testing 215

atomic operation that is executed over a continuous stream of input data. GPUs
have more logical units that operate simultaneously executing parallel threads,
as many as the computational units they contain.

Within shaders, it is possible to use SIMD instructions, exploiting thread
innate internal parallelism.

4.3 How to Solve Main Limitations of GP Computing

There are several limitations for shaders to be run on a GPU architecture:

1. maximal dimension for computed data,
2. data transfer from main to GPU memory,
3. more complex programs to be written.

As the graphic card memory is limited and usually smaller than the main one,
when computing is there executed, data dimension is bounded from memory
space. To avoid an out of memory during computations, we had implemented a
block version of linear algebra algorithms like gemv, and we allocate memory only
when needed, interleaving memory allocation with computational parts (Fig. 3).

Fig. 3. gemv memory schema (y = Ax). Each GPU cycle threats the dark color parts
of data and blue internal buffer is used as global memory to merge results each time
(Color figure online).

Data saved in the main memory (CPU memory) need to be uploaded first
to the GPU memory in order to be used. While the GPU is optimized for data
transfer from CPU to GPU memory, exploiting DMA and buffering techniques,
it is too slow when it transfers back from the GPU to the CPU memory. We
have optimized the flows of the program and reordered the operations needed to
allow the few memory data transfer as possible; in the classification parts, the
matrices are uploaded to the GPU memory, only the first time and the results
are transferred back to CPU memory only at the end of computation.

216 O. Schiaratura et al.

To obtain the best optimization of the architecture, data has been mapped
to textures of dimension equal to a power of 4, with a 0 padding of unnecessary
data (Table 2).

Table 2. Test performance on Jetson TK1 GLSL matrices - Near computation time
the whole time with data transfer in secs *100.

Op 256 Whole 1024 Whole 4096 Whole

SDOT 0,29 10,83 0,28 10,78 0,25 10,76

SGEMV 0,25 11,61 0,85 15,33 7,51 31,66

SGER 0,23 12,03 0,31 13,83 2,03 26,68

SGEMM 0,36 13,18 3,04 01,92 37,89 2166

There are usually some additional limitations in the use of some SoCs, that
have been found:

1. openGLES [12] is needed in place of openGL;
2. limited number of cycles within a shader;
3. limits in the type of data and subroutines.

4.4 GPGPU Code Implementations

In Table 3 are shown the architecture and SW used for testing. The OS versions
for ARM systems are the ones supported by manufacturer, and for the reference
architecture the one that has better support in the major number of technologies
than other OSs.

We consider four fundamental operations, executed in single precision:

1. dot - scalar product between vectors,
2. gemv - product between matrix and vector,
3. gemm - product between matrices,
4. ger - matrix product between two vectors.

The tests have been run with vectors of dimension 256, 1024, 4096 and in
some cases of 8192. In addition, square matrices of dimension 256, 1024 and 4096
have been used too. Next to the computation time for GPUs implementations,
it’s shown the whole time including the data transfer time from GPU to CPU.

In Tables 4, 5 and 6 are shown the results of the matrix product operations
(capable of exploiting better the GPUs HW), for the two best ARM architectures
and two control architectures.

Scalar product suffers from the fact that the algorithm cannot exactly run
parallel. It consists of an initial parallel phase and then a reduction phase.

The results are identical to the CPU vector optimized BLAS, with the same
error with respect to non optimized plain CPU code. The errors affect the seventh

SoC-Based Pattern Recognition Systems for Non Destructive Testing 217

Table 3. Platforms used for GPU algorithms evaluations.

Architecture Operating
system

Compiler Supports

Jetson TK1 ARM HF
Ubuntu 14.04
based

Gcc-4.8 armhf Cuda, GLSL

Wandboard quad ARM SF
Ubuntu 12.04
based

Gcc4.6 arm OpenCL, limited GLSL

Intel core 2 1,6 ghz Ubuntu 14.10
x86 64

Gcc 4.8 x86 64 OpenCL, GLSL, Cuda

Nvidia GeForce 320M Mac OSX 10.9

Intel I7 2,7 GHZ Ubuntu 11.04
x86 64

Gcc 4.6 x86 64 SW OpenCL, GLSL

Intel GMA 3000 Mac OSX 10.7

Table 4. Test performance on SGEMM with 256× 256 matrices in secs.

Board C code blas openCL Cuda GLSL

Wandboard 0,13 0,24 0,16 0,19 X X X X

Jetson TK1 0.12 0.012 X X 0,00010 0,0026 0,0036 0,13

Core2 1,6 Mhz 0,013 0,0059 0,0051 0,042 0,0022 0,011 0,041 0,61

Core I7 2,7 Ghz 0,0072 0,0029 0,0042 0,0062 X X 0,019 0,24

significant digit in the 10 numerical base. The C vector version has a greater
propagation error, which is solved using the Kaham sum vectors algorithm [13].

These errors rarely affect the classification phase, and they are difficult to
detect in the experimental phase as well. Overall, these errors usually have a
negligible impact on the final result.

Platforms that support GLSL show performance boosts compared to CPU
implementations.

Increasing matrix dimension, the memory transfer bottleneck impact
decreases. With 4096× 4096 matrices the speed up is 200x considering the whole
time, while the CPU blas implementation lacks in performance.

For shorter matrices dimensions, the GPU execution time is near CPU time,
but transfer degrades the whole performance of the systems.

The Jetson TK1 board confirms its more powerful GPU and great perfor-
mance of CUDA GPUs.

5 Evaluation of the Classifier Performances

Algorithm performances have been evaluated through the execution of several
benchmarks:

218 O. Schiaratura et al.

Table 5. Test performance on SGEMM with 1024× 1024 matrices in secs.

Board C code blas openCL Cuda GLSL

Wandboard 17,18 28,67 0,16 0,28 X X X X

Jetson TK1 1,22 0,54 X X 0,00019 0,026 0,030 1,02

Core2 1,6 Mhz 1,15 0,34 0,0067 0,12 0,071 0,062 0,032 0,66

Core I7 2,7 Ghz 0,41 0,19 0,0033 0,025 X X 0,019 0,26

Table 6. Test performance on SGEMM with 4096× 4096 matrices in secs.

Board C code blas openCL Cuda GLSL

Wandboard 1110,39 1827,5 0,2 3,38 X X X X

Jetson TK1 90,33 34,89 X X 0,016 0,21 0,39 21,67

Core2 1,6 Mhz 71,09 21,52 0,0065 1,49 0,0029 0,11 0,0062 2,30

Core I7 2,7 Ghz 27,88 11,85 0,0032 0,39 X X 0,022 0,56

Table 7. Execution of a test prediction expressed in seconds.

Board # of Cores Block C Block Blas GPU CUDA

Galileo 1 878,98 X X

Raspberry Pi 1 363,50 96,94 X

Lime A20 1 194,17 83,39 X

Lime A20 2 95,40 45,65 X

Wandboard 1 109,12 20,62 X

Wandboard 2 61,22 14,83 X

Wandboard 4 36,74 12,10 X

Jetson TK1 1 19,16 7,28 5,16

Jetson TK1 2 14,00 7,28 X

Jetson TK1 4 9,45 7,28 X

Xeon E54440 2.83 Ghz 1 9,70 1,70 X

Xeon E54440 2.83 Ghz 2 5,53 1,37 X

Xeon E54440 2.83 Ghz 4 3,00 1,19 X

Core i7 4790k 4,00 Ghz 1 6,03 0,89 0,66

Core i7 4790k 4,00 Ghz 2 3,94 0,65 X

Core i7 4790k 4,00 Ghz 4 1,97 0,53 X

1. on a GPU cluster x86 with a generic model for image recognition. The same
tests have been done, in a second moment, on SoC systems;

2. toy test on SoC systems, GPGPU and CPU x86.

SoC-Based Pattern Recognition Systems for Non Destructive Testing 219

Table 8. Different execution times for the single SVM and Wavelet transform in pre-
diction.

Board # of Cores Wavelet Block C SVM Block Blas SVM Cuda SVM

Galileo 1 39,94 839,03 X X

Raspberry Pi 1 15,24 348,26 81,70 X

Lime A20 1 34,94 159,22 48,45 X

Lime A20 2 ” 60,46 10,70 X

Wandboard 1 8,69 100,43 11,93 X

Wandboard 2 ” 52,52 6,14 X

Wandboard 4 ” 28,05 3,41 X

Jetson TK1 1 3,78 15,44 3,56 1,44

Jetson TK1 2 ” 10,28 3,56 X

Jetson TK1 4 ” 5,73 3,56 X

Xeon E54440
2.83 Ghz

1 0,80 8,91 0,90 X

Xeon E54440
2.83 Ghz

2 ” 4,73 0,57 X

Xeon E54440
2.83 Ghz

4 ” 2,20 0,39 X

Core i7 4790k
4,00 Ghz

1 0,38 5,65 0,55 0,28

Core i7 4790k
4,00 Ghz

2 ” 3,56 0,27 X

Core i7 4790k
4,00 Ghz

4 ” 1,59 0,15 X

The tests have been executed both with standard optimizations for the com-
piler and with Blas libraries, the latter giving the best performance.

A camera has been installed on the systems for the tests over SoCs, while
the ad-hoc framework realized with Python simulates the rest of the system. In
addition, the moving objects to be recognized have been simulated by a video
stream.

Image pre-processing can be efficiently implemented on SoCs hardware using
high optimized library as OpenCV [14].

Tables 7 and 8 show results for a classification problem. The first table shows
elapsed time against the number of threads, while the second one shows elapsed
time separately for classification (SVM) and feature extraction (Wavelet).

The classifier was implemented in standard C, in multi-threading and with
a Blas implementation, while the Wavelet transform was executed in single core
mode with the compiler optimizations.

The training phase was executed off-line on a standard PC to obtain the
model used for the classification.

220 O. Schiaratura et al.

In prediction phase, the model is read from the disk and is written in XML
format, and this results in a longer time for the system to start up.

In order to obtain more accurate results, classification and pre-processing
cycles were repeated for 1000 times, introducing each time numerical noise in
the original image, so that classification of different objects could have been
simulated by introducing vanishing cache coherency.

As expected, Wandboard and Jetson TK1 are the fastest boards, since they
have a shorter reading time of the model than the SoC competitors. The Rasp-
berry Pi on a single core was competitive with the Lime A20, thanks to a more
efficient I/O system (shorter reading time from the disk), even though it is one
generation behind the Lime if considering ARM architecture.

Results for x86 high-end systems are showed too.
The differences in performance of this architecture from the others are many,

but mainly they are due to a faster clock and a CPU/Memory system opti-
mized for high performance, while the ARM architecture is optimized for power
consumption.

We argue that overall performances are quite satisfactory, if considered to be
the result of preliminary tests, and a margin of improvement is expected.

Actual results are comparable with the theorized ones.
As a basis for comparison, a quad-core i7 2,7 GHz should have a computa-

tional power peak of 86 GFlops (8 operations for each clock cycle and core),
while an ARM Cortex A8 quad-core 1 GHz has a 18 GFlops peak.

6 Conclusion

We had highly optimized the design of our pattern recognition software to embed
it in an ARM SoC based HW.

For a real time environment, the best choice is the use of a device based on
ARM Cortex A8 and further, while for a general purpose detection is sufficiently
powerful an ARMv6 architecture. The Cortex A15 based boards like Jetson
provide the best performance both in only CPU and CPU-GPU computations.
The internal classifier, which is based on linear transformations, is the most
computational power consumptive, so we focused on it the most optimization
effort.

This statement is valid when using a Wavelet transform as a feature selec-
tion part, where using other transformations like Ranklets needs more powerful
computational units to obtain the same performance. The wavelets are very effi-
cient and its CPU SIMD optimized implementations are sufficient for all fields
of utilization.

Due to GPU utilization, it would be interesting evaluating CNNs (Convo-
lutional Neural Networks) [15] approach to our problems and the utilization of
Wavelet scattering networks [16].

A focus on the acquisition process, especially for real time camera acquisition
images, must be necessary to avoid its influence on classification time, to perform
this last in real time during acquisitions without performance losses.

SoC-Based Pattern Recognition Systems for Non Destructive Testing 221

The use of graphics boards APIs make it possible. The choice of the operating
system is Linux due to the manufacturers’ support; almost all producers have its
customized and optimized version for device drivers and they provide for source
code and specifications on how to use Linux on boards. Even if the performance
tuning is code dependent, we have focused on optimizing vector and matrix
linear algebra operations when possible, without penalizing the whole system
performance, so the results can be generalized over other systems and SoC based
HW, thanks to our modular frameworks.

Acknowledgments. The authors acknowledge partial financial support from
Sardegna Ricerche and from the Sardinian Regional Authority under grant number
G28F14000010002 for project “COACH - Choice on a Chip” (call “Incentivo Ricerche
Polaris”).

References

1. Montgomery, D.C.: Introduction to Statistical Quality Control, 5th edn. McGraw-
Hill, New York (2009)

2. Hocken, R.J., Pereira, P.H. (eds.): Coordinate Measuring Machines and Systems,
2nd edn. CRC Press, Boca Raton (2012)

3. Chen, C.H. (ed.): Handbook of Pattern Recognition and Computer Vision, 4th
edn. World Scientific Publishing, River Edge (2010)

4. Tian, D.P.: A review on image feature extraction and representation techniques.
Int. J. Multimedia Ubiquit. Eng. 8(4), 385–396 (2013)

5. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)
6. Roffilli, M.: Advanced Machine Learning Techniques for Digital Mammography.

Technical report UBLCS-2006-12, University of Bologna (2006)
7. Wilt, N.: “The CUDA Handbook”. All day (2013)
8. Khronos OpenCL Working Group: “The OpenCL specifications”. Howes, L., Mun-

shi, A. (eds.) (2014)
9. Rost, R.J., Licea-Kane, B.M., Ginsburg, D., Kessenich, J.M., Lichtenbelt, B.,

Malan, H., Weiblen, M.: OpenGL Shading Language, 3rd edn. Addison Wesley,
Reading (2009). Paperback

10. NetLib Home of BLAS. http://www.netlib.org/blas/. Accessed 26 February 2015
11. Shereiner, D.: OpenGL Programming Guide, 7th edn. Addison-Wesley, Reading

(2013). Paperback
12. Ginsburg, D., Purnomo, B., Shreiner, D., Munshi, A.: OpenGL ES 3.0 Program-

ming Guide, 2nd edn. Addison-Wesley, Reading (2014). Paperback
13. Kahan, W.: Further remarks on reducing truncation errors. Commun. ACM 8

(1965)
14. Pulli, K., Baksheev, A., Kornyakov, K., Eruhimov, V.: Real-time computer vision

with OpenCV. Commun. ACM 51, 61–69 (2012)
15. Convolutional Neural Networks. http://deeplearning.net/tutorial/lenet.html.

Accessed 26 February 2015
16. Bruna, J., Mallat, S.: Invariant Scattering Convolution Networks (2012)

http://www.netlib.org/blas/
http://deeplearning.net/tutorial/lenet.html

Node-Immunization Strategies in a Stochastic
Epidemic Model

Juan Piccini(B), Franco Robledo, and Pablo Romero

Facultad de Ingenieŕıa, Universidad de la República, Julio Herrera y Reissig 565,
11300 Montevideo, Uruguay

{piccini,robledo,romero}@fing.edu.uy

Abstract. The object under study is an epidemic spread of a disease
through individuals. A stochastic process is first introduced, inspired in
classical Susceptible, Infected and Removed (SIR) model. In order to
jeopardize the epidemic spread, two different immunization strategies
are proposed. A combinatorial optimization problem is further formal-
ized. The goal is to minimize the effect of the disease spread, choosing
a correct immunization strategy, subject to a budget constraint. We are
witness of a counter-intuitive result: in non-virulent scenarios, it is bet-
ter to immunize common individuals rather than communicative ones.
A discussion is provided, together with open problems and trends for
future work.

Keywords: Epidemic model · Susceptible · Infected and removed
model · Stochastic process · Combinatorial optimization problem

1 Introduction

Ironically, a cornerstone in the mathematical analysis of epidemiology has not
been published in the scientific literature. The work by Lowell Reed and Wade
Frost on Susceptible, Infected and Removed (SIR) model was considered by
its authors as too slight a contribution [4]. The most valuable aspects of SIR
model is its simplicity: closed formulas are met, an epidemic spread can eas-
ily be carried out on a computer, and it connects deterministic and stochastic
models in an elegant fashion. For those reasons, SIR model is the starting point
in teaching and understanding epidemic propagation. However, it assumes a
full-mixed population with random contacts. Several subsequent authors in the
field believe a more realistic model is inspired by networks, where nodes rep-
resent individuals, and the epidemic spread takes places in the links [14]. The
interest of the topic is increased with the current threaten of bioterrorism as a
letal weapon over an induced pandemia [13]. The reader can find other author-
itative works about SIR epidemics on graphs in the related literature [10–12].
Simulations carried-out on small-world networks confirm that there exists an
extinction threshold [10–12,15]. There, the epidemic propagation is carried out
through graphs with either potential or exponential degree distribution as distin-
guished characteristics. However, for social network applications an asymmetric
c© Springer International Publishing Switzerland 2015
P. Pardalos et al. (Eds.): MOD 2015, LNCS 9432, pp. 222–232, 2015.
DOI: 10.1007/978-3-319-27926-8 19

Node-Immunization Strategies in a Stochastic Epidemic Model 223

right-tailed distribution shows to be more suitable. Specifically, if nodes repre-
sent people and links are contacts, most individuals have a reduced number of
neighbors, that keep in contact daily. Aspects such as network awareness and
node-ageing has been suggested by Barabasi in order to define realistic evolu-
tionary network models [1]. Explicit characterizations of extinction and prob-
ability distribution of the epidemic outbreak are currently available by means
of percolation theory. Kena and Robins use percolation techniques and random
mixing using classical SIR model [7]). An empirical study using SIR model is per-
formed by Macdonald and Shakarian. They find centrality measures and detect
main spreaders of a disease [9]. The goal of this work is to develop immunization
methods to cope with an epidemic propagation. As a mathematical framework, a
realistic stochastic process for epidemic propagation is here introduced, together
with a score for different immunization strategies. This process is more realistic
than classical SIR model.

This article is organized in the following manner. In Sect. 2, classical SIR
model is described as a reference to study epidemic propagation. In order to
introduce a more realistic model for disease propagation, a stochastic process is
introduced in Sect. 3. A combinatorial problem is formally presented in Sect. 4.
There, the goal is to choose among a set of feasible immunization strategies, in
order to minimize the peak of the epidemic spread. There, the precise mean-
ing of “peak” will be formalized in terms of the underlying stochastic process.
Two extremal immunization strategies are proposed. On one hand, we consider
a greedy immunization notion, were nodes with the highest degree are immu-
nized first, called HighDegree. On the other, we pick nodes with low degree
uniformly at random, called LowFirst. Section 5 introduces classical random
graphs as opposite to lattices, as well as efficiency measures for simple graphs.
Two random graphs are generated in this work as a case study for disease prop-
agation. Section 6 introduces two massive random graphs used in the simulation
of the stochastic process. Then, the performance of strategies HighDegree and
LowDegree is analyzed on the lights of these graphs. Finally, Sect. 7 contains
concluding remarks and trends for future work.

The main contributions of this article are summarized in the following items:
– We propose a realistic stochastic process to simulate and understand the evo-

lution of an disease spread.
– A combinatorial optimization problem is formally presented, where the deci-

sion variable involves a set of immunization strategies, and the goal is to
minimize the infection in the population subject to a budget constraint.

– A greedy notion for the previous combinatorial problem is introduced, where
nodes with high degree are immunized first.

– We explicitly show that greedy is not the best option; indeed, a better result
is achieved when nodes with low degree are immunized in some scenarios
(precisely, in two graphs with 2000 nodes). We will discuss how this counter-
intuitive result is possible, in terms of the underlying topology and different
virus-types.

– Open problems are presented, arising from the stochastic process and the
global optimum for the combinatorial problem.

224 J. Piccini et al.

2 SIR Model

Probably the most-studied class of epidemic models is classical SIR model.
There, individuals are Susceptible (S), Infected (I), or Removed (R). The last
category represents those individuals that are immune after being recovered of
the disease. Iinfected individuals have random contacts with others (from any
of the three states) at a mean rate β. They are removed (recovered) at a mean
rate γ. If a susceptible receives a contact, it turns infected.

If we consider a big population of n individuals, SIR epidemic model can be
described by the following system of non-linear differential equations:

ds

dt
= −βis,

di

dt
= βis − γi,

dr

dt
= γi,

being s(t) = S(t)/n, i(t) = I(t)/n, r(t) = R(t)/n the respective proportions of
classes at time t. The last equation can be omitted, since s + i + r = 1 [5]. The
model assumes standard incidence and recover (I-output) at a rate γI/n. This
represents a waiting time (or residence time in class I) of e−γt time units, with
mean 1/γ. Since such period is small, the model lacks of a vital dynamics (i.e.,
natural death and birth). Therefore, it is suitable just to describe diseases with
fast propagation and conclusion. Furthermore, they provide immunity to infected
individuals, for instance, influenza. In computer viruses, we can interpret this as
an antivirus program that, once updated, infection is no longer allowed.

SIR model is suitable for a completely-mixed population, where the assump-
tion of uniformly random contact selection is plausible. All individuals have the
same number of contacts in a given time unit, and those contacts are equally
likely to propagate the disease. However, in real-life applications, we rarely meet
all the requirements that must be fulfilled to apply SIR model. Individuals do
not contact randomly, and full-mixtures should be replaced by networks [10–
12]. Links represent those pair of individuals with a potential epidemic spread
between them. Neighboring nodes represent individuals that potentially contact
during the disease (i.e. in real life, partners, mates, friends, people that travel
together occasionally, among others). The approach from Percolation Theory
gives us information about asymptotic size of infected population, usually under
some assumptions such that random mixing or same types of mixing [7]. An
overview of mixing and its relation with percolation theory can be found at [6].

It is neither consistent nor realistic to assume the infection probability
between pairs of nodes to be identical. It is possible to find some pairs that
have higher probability of infection than others. Furthermore, it is not realistic
to assume that an infectious-susceptible contact is equivalent to an infection. The
capacity of the infectious to spread susceptible with which it has contact may
vary over time. The existence of a link between infected and susceptible nodes
is not a guaranteed contagion of the susceptible one. The time-window during
which an infected node can spread has a non-deterministic (nor fixed) length. In
fact, an infected node does not have to contact all its susceptible neighbors at
a time. This is our motivation to propose a more realistic stochastic process for
disease propagation, in the sense that includes the previous concerns.

Node-Immunization Strategies in a Stochastic Epidemic Model 225

3 Stochastic Process

We are given a simple graph G = (V,E), where nodes represent individuals
and links are relation between nodes (i.e., possible infection channels). Time is
slotted, and the starting point (t = 0) is defined as follows:

– Certain selected nodes V ∗ ⊂ V , called immunized nodes, are removed, and
the process takes place in the subgraph induced by V ′ = V − V ∗, denoted by
G′. Observe that V ∗ = ∅ implies no immunization at all.

– A single infected node x0 ∈ V ′ is chosen uniformly at random (the zero case).
All nodes from V ′ but x0 are susceptible nodes.

Infected nodes might affect neighboring nodes from G′ over time, and then sus-
ceptible nodes may become infected ones. If a node is infected at time ti, it can
affect neighboring susceptible nodes during a random time-window [ti, t′i]. It is
reasonable to assume that although this time-window is random and this length
varies from an infected node to another, it fluctuates around a mean value. There-
fore, we represent the time-window picking a normal distribution with parame-
ters (μ, σ), where μ > 0 represents the mean length of the time-window and σ
denotes its standard deviation. Time t′i is then picked using the rule t′i = ti+|Xi|,
being Xi a normally distributed random variable, Xi ∼ N(μ, σ). The parameters
(μ, σ) are called the virus-type of the disease. Once t′i is reached, that infected
node is in removed state. When an infected node contacts a susceptible one, the
probability of spread varies over time, depending on the state of the infected
node. An infected node will affect a susceptible neighboring node at t ∈ [ti, t′i]
if and only if its infectivity profile f(t) > u, being f(t) = exp

{
− 1

(t′
i−t)(t−ti)

}
a

bump function and u a random number in the compact set [0, 1]. Function f rep-
resents the capacity of the node to spread the disease. This is in agreement with
real life, where the infectivity is first monotonically increasing, then it presents
a maximum, and later it is monotonically dicreasing.

Definition 1. The number of infected nodes {Xt}t∈N is the stochastic process
under study.

We want to minimize the overall effect of the disease spread. Formally:

Definition 2. The peak of the disease spread in graph G with immunization set
V ∗ and virus-type (μ, σ) is the first moment of the maximum achieved by the
process: p(G,V ∗, μ, σ) = E(maxt∈N{Xt})

4 Node Immunization Problem and Heuristics

In this paper, we formulate the performance of different immunization strategies
by means of a combinatorial optimization problem. Given a simple graph G =
(V,E) and virus-type (μ, σ), we want to minimize the peak of the epidemic spread

226 J. Piccini et al.

p(G,V ∗, μ, σ) among all feasible immunization sets V ∗. The Node Immunization
Problem is formulated as follows:

min
V ∗

p(G,V ∗, μ, σ) (1)

s.t.

|V ∗| ≤ N (2)

The reasons leading to include Constraint (2) in the combinatorial prob-
lem are twofold. The first reason is related with a real budget constraint. Even
though the desease is propagated through links, the protection takes place in the
nodes. The second is related with a requirements associated with immunization
heuristics: In order to fix the constraint N , let C be the number of nodes that
can be immunized with the available resources.

The critical degree is the first degree g∗ such that an epidemic spread occurs
(the peak exceeds the 5 % of total population), once we remove all nodes from
the set V ∗ = {v ∈ V : deg(v) ≥ g∗}. Now, let us focus on the development of
naive immunization strategies suitable for the combinatorial problem. A small
number of individuals with a big link action will have a higher impact than a
highly populated group with a sparse number of links. If we immunized these
nodes, we would remove its edges of the graph. At first glance, the best nodes
to protect should be those with the highest degree.

Nevertheless, the link density is not the only matter, but the quality of those
links. This means that if a node-group has several links but they are mostly
locally defined (like a clique or quasi-clique), then the immunization of those
nodes will not mine the link structure, in the sense that it should be better
to immunize a set of nodes V ∗ with large amount of external links. This sug-
gests another approach: instead of immunizing nodes of higher degree, immunize
randomly chosen nodes (those likely to have low degree, since these nodes are
the majority of the population). In order to have a strong contrast with the
greedy notion, we will choose nodes with low degree. Specifically, the following
immunization strategies will be considered in this article:

– HighDegree: the greedy notion, where nodes are sort in terms of degree
(nodes with the same degree are sort randomly). The immunization takes place
in nodes with the highest degree, meeting at the same time Constraint (2).

– LowDegree: analogously, but nodes with the lowest degree are selected first,
meeting Constraint (2).

– Raw: when no immunization takes place (V ∗ = Φ), we have Raw immu-
nization strategy, which is the cheapest one in practice (but naturally, its
performance is low as we will see in Sect. 6).

5 Random Graphs and Efficiency

Let G = (V,E) a graph with |V | = n, |E| = m. There are Cm
n(n−1)/2 possible

spanning subgraphs with m edges in the complete graph Kn. In Erdös-Rënyi

Node-Immunization Strategies in a Stochastic Epidemic Model 227

rule for random graph generation, a number t < n(n−1)
2 is fixed, and a subgraph

with t edges is selected uniformly at random. This type of random graphs have
typically low diameter, since the random connection between nodes connects
every pair of nodes with the same probability [3]. Also, the number of clusters is
small, because if a is connected to b and b is connected to c, the probability of the
a−c connection is the same that for every pair of nodes. This kind of graph is the
example of networks with purely random connections, leading to homogeneous
Random Mixing. On the other hand we have Lattices: highly regular graphs
with high diameter where the connection a − c has higher probability provided
a is connected to b and b is connected to c. From Lattices we can obtain other
kind of random graphs (by “rewiring ”pairs of nodes at random) that inherits
these properties. In order to measure the presence of clusters the concepts of
Global and Local Efficiency are introduced in [8]. Let us consider a simple graph
G = (V,E) with adjacency matrix A = (ai,j) and distance matrix D = (di,j).

Definition 3. The efficiency between nodes vi and vj is ei,j = 1
di,j

.

Definition 4. The mean efficiency Eff(G) is the normalized expected value
over all node pairs: Eff(G) = 1

n(n−1)

∑
i�=j

1
di,j

.

The mean efficiency Eff(G) is maximized when G = Kn is the complete graph.

Definition 5. The global GEff(G) is the ratio between the mean efficiency of

G and Kn: GEff(G) =
Eff(G)
Eff(Kn)

.

Note that 0 ≤ GEff(G) ≤ 1 and GEff(G) makes sense even if G is not
connected. An analogous notion is considered locally for single nodes.

Definition 6. Let vi be a node, Ni its neighbor set and Gi the subgraph induced
by Ni. The Local Efficiency is the mean of GEff(Gi), i = 1, . . . , n:

LEff(G) =
1
n

n∑

i=1

GEff(Gi)

This concept measures the fault tolerance of the graph G. In other terms,
it represents the efficiency of the communication between neighbors of a node i
when it is removed. On one hand, random graphs present low diameters and then
low values of di,j . This implies high values of Global Efficiency. The low proba-
bility of clusters implies low Local Efficiency. On the other, Lattices present low
values of Global Efficiency (high diameters) but high values of Local Efficiency.

6 Performance Analysis

In order to test the effectiveness of different immunization strategies, two graphs
with 2000 nodes have been generated. These graphs were built choosing a prede-
termined node-degree distribution, and using Havel-Hakimi theorem. To avoid

228 J. Piccini et al.

the pure exponential or potential node-degree distributions, we use Gamma
distribution (rounded to closest integer values). Let us consider the candidate
degrees (d1 ≥ d2 ≥ · · · ≥ d2000) of a graph. Havel-Hakimi theorem helps to
determine whether such graph exists:

Theorem 1. The sequence d1 ≥ d2 ≥ · · · ≥ d2000 is graphic if and only if the
sequence is graphic d2 − 1 ≥ d3 − 1 · · · ≥ dd1+1 − 1 ≥ dd1+2 · · · ≥ dp is graphic.

Once we have a graphic sequence, a recursive method to produce the graph
is offered by the work from Bayati [2]. This method generates a graph chosen
uniformly at random from the set of all graphic graphs with 2000 nodes and
prescribed degrees. In this way, we generated two graphs with 2000 nodes, called
2000A and 2000B. These graphs present low values of Global Efficiency as Lat-
tices, and low values of Local Efficiency, as Random Graphs:

GEff(2000A) = 0.2564,

LEff(2000A) = 0.0079,

GEff(2000B) = 0.2158
LEff(2000B) = 0.0043.

Both graphs are sketched in Fig. 1.

Fig. 1. Left: Graph 2000A. Right: Graph 2000B

Simulations were carried-out for different virus-types (μ, σ) in both graphs.
In order to perform a faithful comparison of both strategies, one-hundred inde-
pendent simulations were considered with tf = 100 time slots for each graph,
using Crude Monte Carlo. The time-window is generated using a normal distribu-
tion with parameters (μ, σ), with mean μ ∈ {3, 5, 10, 20} and standard deviation
σ = 1. Higher values for μ imply that an infected individual will have more time
to infect contacted susceptible individuals. When μ is extremely large, the exis-
tence of a link will practically guarantee a positive infection if the neighbor node

Node-Immunization Strategies in a Stochastic Epidemic Model 229

is susceptible. Figure 2 presents the temporal evolution of Xt in a 100-run average
(or mean-epidemic), for HighDegree (red) and LowDegree (blue), with Raw as
a reference (green) for the set of virus types (μ, σ) ∈ {(3, 1), (5, 1), (10, 1), (20, 1)}
in Graph 2000A.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0

100

200

300

400

500

600

700

800

900

1000

1100

1200

Time

C
a
se

s

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

Time

C
a
s
e
s

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

Time

C
a
s
e
s

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 1000

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

Time

C
a
s
e
s

Fig. 2. Performance in Graph 2000A for virus types (3, 1), (5, 1), (10, 1) and (20, 1).
HighDegree (red), LowDegree (blue), Raw (green) (Color figure online).

All simulations for HighDegree were carried out using the critical node set
V ∗ for the set of removed nodes. Analogously, LowDegree is performed choosing
nodes whose degree is below the critical one g∗ (see Section refcop).

Curiously enough, LowDegree outperforms both HighDegree and Raw
heuristics for virus type (20, 1). Therefore, the graph connectivity has low sensi-
bility to a high-degree node-deletion via immunization. This fact suggests that
nodes with higher degree tend to connect each other. Therefore, the deletion of
their links do not undermine the link-structure of the graph as much if we elim-
inate the links of the N low degree nodes. For virus-type (10, 1), an epidemic
spread takes place in HighDegree if we remove all nodes with degree d ≥ 7.
With virus type (5, 1) the situation is similar to the previous case, as it could
be expected if the topology is in fact relevant. For less virulent diseases it is

230 J. Piccini et al.

expected to get a lower influence in the underlying network topology. As the
disease is less virulent and the topological influence is decreased, HighDegree
tends to be more effective.

An analogous performance analysis is carried out in Graph 2000B.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

Time

C
a
s
e
s

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

Time

C
a
s
e
s

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

Time

C
a
s
e
s

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

Time

C
a
s
e
s

Fig. 3. Performance in Graph 2000B for virus types (3, 1), (5, 1), (10, 1) and (20, 1).
HighDegree (red), LowDegree (blue), Raw (green) (Color figure online).

Figure 3 presents the temporal evolution Xt of infected individuals in a 100-
run average (or mean-epidemic). As in previous instances, the difference between
both strategies tends to vanish when the disease is less virulent (less influence
of the underlying topology). This points out a huge amount of internal links
between nodes with the highest degree.

7 Concluding Remarks

The effects of an epidemic propagation under two different immunization heuris-
tics has been discussed. For that purpose, we built two massive random graphs
(with Gamma degree distribution and using the strength of Havel-Hakimi theo-
rem), and develop a SIR-based model simulations with different virulence levels.

Node-Immunization Strategies in a Stochastic Epidemic Model 231

Two “opposite” heuristics have been proposed. On one hand a greedy notion,
called HighDegree heuristic, immunizes N nodes with the highest degree first.
The intuition here is that they could infect more neighbors in the same time-
window. On the other hand, LowDegree heuristic picks N nodes with lower
degree uniformly at random, and immunizes them. They are computationally
efficient, since the number of elementary operations is linear with the order
of the input graph. If we do not immunize nodes we have Raw heuristic. As
expected, both heuristics outperform Raw.

A counter-intuitive result is that LowDegree heuristic outperforms
HighDegree in some scenarios. A possible explanation would be the follow-
ing: when we have low values of μ, the number of infected individuals from the
neighbor-set Ni is small, and only infected nodes of high degree have a chance
to spread disease, since they have a number of contacts many times greater
than low-degree nodes and this compensate the low number of trials (time). So,
deletion of high-degree nodes is more effective and HighDegree is better.

On the other hand, when we have high values of μ low degree nodes ended
by infecting all its neighbors further nodes of high degree, because they have
comparatively few neighbors and more time to each one. Graph with a low
local efficienct are highly sensible to node deletions, regardless of the degree (see
Sect. 5). The deletion of low-degree nodes disconnects the graph more effectively,
and LowDegree is better. As real social networks are adequately modeled by
random graphs, simulations will assist in order to study virtual versions of real
epidemics. This tool provides a systematic way to produce essays of control and
disease prevention, which is an essential element to design adequate strategies
to cope with epidemics.

As a future work, we will develop a greedy randomized heuristics in order
to find outstanding immunization strategies. More sophisticated ideas should be
considered in order to detect high-performance immunization strategies, under-
standing the underlying graph topology as an input of the heuristic. It is worth to
remark that the problem is purely combinatorial when the virus-type is increased
without bound, and can be expressed in terms of graph theory and network con-
nectivity. The complexity of this combinatorial problem is still open.

References

1. Barabasi, A.: Linked: The New Science of Networks. Perseus Publishing,
Cambridge (2002)

2. Bayati, M., Kim, J.H., Saberi, A.: A sequential algorithm for generating random
graphs. In: Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P. (eds.) RANDOM
2007 and APPROX 2007. LNCS, vol. 4627, pp. 326–340. Springer, Heidelberg
(2007)

3. Bollobás, B.: Random Graphs. Academic Press, London (1985)
4. Fine, P.E.: A commentary on the mechanical analogue to the reed-frost epidemic

model. Am. J. Epidemiol. 106(2), 87–100 (1977)
5. Hethcote, H.W.: The mathematics of infectious diseases. SIAM Rev. 42(4), 599–

653 (2000)

232 J. Piccini et al.

6. Keeling, M.J., Eames, K.T.: Networks and epidemic models. J. Royal Soc. Interface
2(4), 295–307 (2005)

7. Kenah, E., Robins, J.M.: Network-based analysis of stochastic SIR epidemic models
with random and proportionate mixing. J. Theor. Biol. 249(4), 706–722 (2007)

8. Latora, V., Marchiori, M.: Efficient behavior of small-world networks. Phys. Rev.
Lett. 87, 198701 (2001)

9. Macdonald, B., Shakarian, P., Howard, N., Moores, G.: Spreaders in the network
SIR model: an empirical study (2012). CoRR abs/1208.4269

10. Newman, M.E.J.: Spread of epidemic disease on networks. Phys. Rev. E 66(1),
016128 (2002)

11. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev.
45(2), 167–256 (2003)

12. Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Random graphs with arbitrary
degree distributions and their applications. Phys. Rev. E 64(2), 026118 (2001)

13. Roberts, F.S.: Bioterrorism: Mathematical Modeling Applications in Homeland
Security. Frontiers in Applied Mathematics. Society for Industrial and Applied
Mathematics, Philadelphia (PA) (2003)

14. Santhanam, G.R., Suvorov, Y., Basu, S., Honavar, V.: Verifying intervention poli-
cies to counter infection propagation over networks: a model checking approach.
In: AAAI (2011)

15. Shirley, M.D., Rushton, S.P.: The impacts of network topology on disease spread.
Ecol. Complex. 2(3), 287–299 (2005)

http://arxiv.org/abs/1208.4269

An Efficient Numerical Approximation
for the Monge-Kantorovich Mass

Transfer Problem

M.L. Avendaño-Garrido(B), J.R. Gabriel-Argüelles, L. Quintana-Torres,
and E. Mezura-Montes

Universidad Veracruzana, Xalapa, Veracruz, Mexico
{maravendano,jgabriel,lquintana,emezura}@uv.mx

Abstract. The approximation scheme for the Monge-Kantorovich mass
transfer problem on compact spaces proposed in [7] is improved. The
upgrade presented is inspired on a meta-heuristic algorithm called Scat-
ter Search in order to reduce the dimensionality of the problem. The
new approximation scheme solves finite linear programs similar to the
transport problem but with lower dimension. A numerical example is
presented and compared with the scheme studied in [7].

Keywords: Mass transfer problem · Finite linear program · Transport
problem · Meta-heuristic algorithm

1 Introduction

In the late XVIII century, Gaspard Monge proposed the mass transfer problem
(see [18]). Monge wanted to find an optimal transportation plan to move a
mound to a hole. The cost of that transportation plan was in function of the
distance. The solution assigns each particle of the mound its corresponded place
in the hole.

In the mid XX century, Leonid Kantorovich proposed the problem of translo-
cation of masses (see [14]). That problem consisted in minimizing the work to
move an initial mass distribution to a final mass distribution. The problem was
considered in compact metric spaces, Borel sets and a non-negative continu-
ous cost functions. Kantorovich found that if the cost function is a distance,
the translocation mass problem is a generalization of the Monge problem (see
[13]). Hence, this problem is called the Monge-Kantorovich (MK) mass transfer
problem. The MK problem is widely studied in [21] by Villani.

In several works, approximations schemes for the MK problem are posed
as: Anderson et al. studied an algorithm on the unit interval [0,1] (see [1,2]),
Hernández-Lerma and Lasserre gave a general approximation scheme based on
infinite-dimensional linear programs, that scheme can be applied to the MK
problem (see [12]), González-Hernández et al. proposed a general approximation
scheme for the MK problem on Polish spaces (see [9]). Recently, Gabriel et al.
c© Springer International Publishing Switzerland 2015
P. Pardalos et al. (Eds.): MOD 2015, LNCS 9432, pp. 233–239, 2015.
DOI: 10.1007/978-3-319-27926-8 20

234 M.L. Avendaño-Garrido et al.

studied a numerical approximation scheme on compact spaces (see [7]) and Bosc
and Mèrigot have proposed others numerical approximations for the MK problem
(see [4,17], respectively).

The MK problem appears in several areas of mathematics as Differential
Geometry, Stochastic Control, Information Theory, Matrix Theory, Probability
Theory among others (see [20]). Moreover, the Kantorovich metric is defined
trough a MK problem and it is used in different applications as: probability
metrics [19], control of cancer radiotherapy [11], image registration and warping
[10], limit theorems and recursive stochastic equations [20], computers science
[5], phylogenetic trees [6], among others.

This work presents an improvement to the approximation scheme for the
MK problem on compact spaces given in [7]. The proposed improvement uses
a meta-heuristic algorithm called Scatter Search (see [16]) in order to make the
algorithm more efficient. The new scheme solves Linear Programs (LP) seem to
Transport (T) problems but with lower dimension, in Sect. 3 more details are
given.

2 The MK Problem and Its Numerical Approximation

In this section, the MK problem is described and the scheme to obtain an approx-
imation for it given in [7] is detailed as well.

Let X1 and X2 be two metric spaces, endowed with the corresponding Borel
σ-algebras B(X1) and B(X2), respectively, a measurable function c : X1 ×X2 →
R and two probability measures ν1 and ν2 on X1 and X2, respectively.

Consider the linear space of finite signed measures M(X1×X2) on B(X1×X2)
endowed with the topology of weak convergence and the convex cone of non-
negative measures M+(X1 × X2) in M(X1 × X2).

If μ is in M(X1 ×X2), the marginals of μ on X1 and X2 are denoted by Π1μ
and Π2μ, and are given by

Π1μ(A) := μ(A × X2) and Π2μ(B) := μ(X1 × B),

for all A ∈ B(X1) and B ∈ B(X2).
The MK problem is stated as follows:

MK minimize: 〈μ, c〉 :=
∫

X1×X2

cdμ (1)

subject to: Π1μ = ν1, Π2μ = ν2, μ ∈ M+(X1 × X2). (2)

A feasible solution for the MK problem is a measure μ in M(X1 × X2) that
satisfies (2) and 〈μ, c〉 is finite. If the set of feasible solutions for the MK problem
S is non empty, the problem is consistent, in that case its optimum value is

inf(MK) := inf{〈μ, c〉|μ ∈ S}.

The MK problem is solvable, if there exists a feasible solution μ̂ that attains
the optimum value. Moreover, μ̂ is the optimal solution for the MK problem and
its minimum is 〈μ̂, c〉.

An Efficient Numerical Approximation for the MK Mass Transfer Problem 235

Let X1 and X2 be compact metric spaces and c(x, y) a continuous function
as in [7].

Remark 1. By the Proof of Proposition 3.1 in [7], for a given sequence of positive
numbers {εn} such that εn ↓ 0, there exists two probability measure sequences
{νn

1 } on B(X1) and {νn
2 } on B(X2), with supports on finite sets contained in Xn

1

and Xn
2 respectively, where

⋃

n

Xn
1 and

⋃

n

Xn
2 are denumerable dense sets in X1

and X2, respectively. Moreover, the sequences {νn
1 } and {νn

2 } weakly converges
to ν1 and ν2, respectively.

Hence, for each positive integer n, it is defined the following MK problem:

MKn minimize: 〈μ, c〉
subject to: Π1μ = νn

1 , Π2μ = νn
2 , μ ∈ M+(X1 × X2).

Taking the set Xn = Xn
1 × Xn

2 , each MKn problem can be discretized by a
transportation problem Tn as:

Tn minimize:
∑

(x,y)∈Xn

cxyλ
n
xy

subject to:
∑

y∈Xn
2

λn
xy = an

x , for all x ∈ Xn
1 ,

∑

x∈Xn
1

λn
xy = bny , for all y ∈ Xn

2 ,

λn
xy ≥ 0, for all (x, y) ∈ Xn.

where cxy = c(x, y), an
x = νn

1 ({x}) and bny = νn
2 ({y}) with x ∈ Xn

1 and y ∈ Xn
2 .

Remark 2. For each n, as νn
1 and νn

2 are probability measures, we have that
∑

x∈Xn
1

an
x =

∑

y∈Xn
2

bny = 1,

hence, the respective Tn problem has an optimal solution (see [3]).

If {λ̂n
xy} is the optimal solution of Tn problem, it is defined the measure:

μ̂n(·) =
∑

(x,y)∈Xn

λ̂n
xyδ(x,y)(·)

where δ(x,y) denotes the Dirac measure concentrated at (x, y) in X1 × X2.
In practice, for each n, the previous approximation scheme can be imple-

mented by solving the Tn problem. Nevertheless, as n increases the machine
execution time becomes high and it is difficult to compute it.

236 M.L. Avendaño-Garrido et al.

3 Improvement Scheme

To decrease the time of execution, an approximation scheme inspired on a meta-
heuristic algorithm called Scatter Search (see [8]) is implemented. Such proposal
reduces the number of variables of the Tn problem and it allows to obtain much
better approximations in less time.

Meta-Heuristic Algorithm. A sequence of linear programs (LPn) is con-
structed under the following steps:

1. For n given, resolve the Tn problem and take as reference set

Rn = {(x, y) such that μ̂n(x, y) �= 0}.

2. Add additional points to Rn using a deterministic method to construct the
set R̃n+1 such that R̃n+1 ⊂ Xn+1.

3. Using the set R̃n+1 construct the following LPn+1 problem

LPn+1 minimize:
∑

(x,y)∈R̃n+1

cxyλ
n+1
xy

subject to:
∑

y:(x,y)∈R̃n+1

λn+1
xy = an+1

x

for all x such that (x, y) ∈ R̃n+1,
∑

x:(x,y)∈R̃n+1

λn+1
xy = bn+1

y

for all y such that (x, y) ∈ R̃n+1,

λn+1
xy ≥ 0 for all (x, y) ∈ R̃n+1,

and resolve it. Take as new reference set

Rn+1 = {(x, y) such that μ̂n+1(x, y) �= 0},

where
μ̂n+1(·) =

∑

(x,y)∈R̃n+1

λ̂n+1
xy δ(x,y)(·)

with {μ̂n+1} the optimal solution of the LPn+1 problem.
4. Repeat Steps 2 and 3 until stop condition.

Remark 3. The extreme points set of the Tn+1 problem is the extreme points
set of the LPn+1 problem, if the variables λn+1

xy with (x, y) in (R̃n+1)c are the
non-basic variables of the Tn+1 problem, where the set (R̃n+1)c is given by
Xn+1 − R̃n+1 (see [3]).

An Efficient Numerical Approximation for the MK Mass Transfer Problem 237

Note that the decisive condition is “the variables λn+1
xy with (x, y) in (R̃n+1)c

are the non-basic variables of the Tn+1 problem”. That is, the most significant
step is constructing the set R̃n+1 such that it let be satisfied with card(R̃n+1) <<
card(Xn+1) as possible. The Scatter Search is used because it does not involve
randomness and without randomness it is easier to satisfy the above condition.

Considering the meta-heuristic algorithm the convergence and the conver-
gence order of the new scheme can be established and proved. Moreover, they
are equivalent to the convergence and the convergence order of the proposed
scheme in [7].

4 Numerical Example

Finally, the proposed scheme is illustrated with an example and it is compared
with the scheme given in [7]. In the example, X1 and X2 are [0, 1] with the usual
topology, ν1 = ν2 are the Lebesgue measure and the sets Xn

1 = Xn
2 are given by

{
k

2n
with 0 ≤ k ≤ 2n

}

.

The cost function is c(x, y) = xy, this function is an example in [15] because
it satisfies conditions of existence and uniqueness.

By Remark 3 the minimum value of the Tn and LPn problems are the same.
However, the comparison is based on their number of variables. As card(Xn

1) =
card(Xn

2) = 2n, the Tn problems have (2n)(2n) variables, that is, the cost of
solving the Tn problems increases quickly when n increases. In Table 1 the num-
ber of elements in R̃n that are taken to construct the LPn problem is showed.
It can be noted that the number of variables of the LPn problem is remarkably
much lower than the number of variables of the Tn problem. The results of the

Table 1. Number of variables of the problems

Problem No. variables Optimum value

T8 65536 0.1666679

LP8 —– —–

T9 262144 0.166667

LP9 1024 0.166667

T10 1048576 0.1666667

LP10 2048 0.1666667

T11 4194304 —–

LP11 4096 0.1666667

T12 16777216 —–

LP12 8192 0.1666667

238 M.L. Avendaño-Garrido et al.

Fig. 1. Solution of the cost function c(x, y) = xy.

LP8 problem are not presented because it requires the solution of the T7 prob-
lem. The results for the T11 and T12 problems are not reported because of the
hight cost of their implementation.

On the other hand, the sets introduced in the proposed scheme are illustrated
graphically to show their performance at each iteration. The algorithm is started
with n = 3 because it is suitable to show the sets Xn, R̃n and Rn+1. If n larger
than 3 is taken, it is difficult to visualize the sets. In the first image of Fig. 1, the
points in the set X3 are in blue square, the points in the set R3 are in red circle
and the points in the set R̃4 are in green triangle. In the second and third images
of Fig. 1, next two iterations are showed. In the remaining images of Fig. 1, only
the points in sets R6, R7 and R8 are showed because the points are too close
and it is difficult to visualize them.

5 Conclusion and Future Work

The MK problem solution can be approximated by the finite LP solution. The
finite LP is obtained using a meta-heuristic algorithm inspired on Scatter Search
and it has remarkably lower dimension that the respective T problem used in
the approximation scheme studied in [7]. The convergence and the convergence
order of the new scheme can be established as a consequence of the main results

An Efficient Numerical Approximation for the MK Mass Transfer Problem 239

in [7]. Finally, a numerical example is presented to illustrate the new scheme and
to compare it with the previous scheme.

As future work, the meta-heuristic algorithm inspired on Scatter Search could
be applied to solve the Kantorovich-Rubinstein mass transshipment problem and
the Kantorovich metric.

References

1. Anderson, E., Nash, P.: Linear Programming in Infinite-dimensional Spaces. Wiley,
New York (1987)

2. Anderson, E., Philpott, A.: Duality and an algorithm for a class of continuous
transportation problems. Math. Oper. Res. 9, 222–231 (1984)

3. Bazaraa, M.S., Jarvis, J.J., Sherali, H.D.: Linear Programming and Network Flows.
Wiley-Interscience, New Jersey (2010)

4. Bosc, D.: Numerical approximation of optimal transport maps. SSRN (2010)
5. Deng, Y., Du, W.: Kantorovich metric in computer science: a brief survey. Electron.

Notes Theoret. Comput. Sci. 353(3), 73–82 (2009)
6. Evans, S., Matsen, F.: The phylogenetic kantorovich-rubinstein metric for envi-

ronmental sequence samples. J. Roy. Stat. Soc.: Ser. B (Stat. Methodol.) 74(3),
569–592 (2012)

7. Gabriel, J., González-Hernández, J., López-Mart́ınez, R.: Numerical approxima-
tions to the mass transfer problem on compact spaces. IMA J. Numer. Anal. 30,
1121–1136 (2010)

8. Glover, F.: A template for scatter search and path relinking. In: Hao, J.-K., Lutton,
E., Ronald, E., Schoenauer, M., Snyers, D. (eds.) AE 1997. LNCS, vol. 1363, pp.
1–51. Springer, Heidelberg (1998)

9. González-Hernández, J., Gabriel, J., Hernández-Lerma, O.: On solutions to the
mass transfer problem. SIAM J. Optim. 17, 485–499 (2006)

10. Haker, S., Zhu, L., Tannenbaum, A., Angenent, S.: Optimal mass transport for
registration and warping. Int. J. Comput. Vision 63, 225–240 (2004)

11. Hanin, L., Rachev, S., Yakovlev, A.: On the optimal control of cancer radiotherapy
for non-homogeneous cell population. Adv. Appl. Probab. 25, 1–23 (1993)

12. Hernández-Lerma, O., Lasserre, J.: Approximation schemes for infinite linear pro-
grams. SIAM J. Optim. 8, 973–988 (1998)

13. Kantorovich, L.: On a problem of monge. J. Math. Sci. 133(4), 225–226 (2006)
14. Kantorovich, L.: On the translocation of masses. J. Math. Sci. 133(4), 1381–1382

(2006)
15. Levin, V.: Optimality conditions and exact solutions to the two-dimensional

monge-kantorovich problem. J. Math. Sci. 133(4), 1456–1463 (2006)
16. Mart́ı, R., Laguna, M., Glover, F.: Principles of scatter search. Eur. J. Oper. Res.

169, 359–372 (2006)
17. Mèrigot, Q.: A multiscale approach to optimal transport. Computer Graphics

Forum 30(5), 1583–1592 (2011)
18. Monge, G.: Mémoire sur la théorie des déblais et des remblais. De l’Imprimerie

Royale, Paris (1781)
19. Rachev, S.: Probability Metrics and the Stability of Stochastic Models. Wiley, New

York (1991)
20. Rachev, S., Rüschendorf, L.: Mass Transportation Problems, vol.I and II. Springer,

New York (1998)
21. Villani, C.: Optimal Transport: Old and New, vol. 338. Springer, Heidelberg (2008)

Adaptive Targeting for Online Advertisement

Andrey Pepelyshev1(B), Yuri Staroselskiy2, and Anatoly Zhigljavsky1,3

1 Cardiff University, Cardiff, UK
{pepelyshevan,ZhigljavskyAA}@cardiff.ac.uk

2 Crimtan, London, UK
yuri@crimtan.com

3 University of Nizhnii Novgorod, Nizhnii Novgorod, Russia

Abstract. We consider the problem of adaptive targeting for real-time
bidding for internet advertisement. This problem involves making fast
decisions on whether to show a given ad to a particular user. For intelli-
gent platforms, these decisions are based on information extracted from
big data sets containing records of previous impressions, clicks and sub-
sequent purchases. We discuss several strategies for maximizing the click
through rate, which is often the main criteria of measuring the success of
an advertisement campaign. In the second part of the paper, we provide
some results of statistical analysis of real data.

Keywords: Online advertisement · Real-time bidding · Adaptive
targeting · Big data · Click through rate

1 Introduction

Online advertising is an important form of marketing where advertisements
shown to a user may depend on the user browsing behaviour. Advertising plat-
forms collect big data which may include records of previous conversions, clicks,
impressions, visited webpages, account information and search requests. A large
part of online advertisements goes through prominent technology companies like
Google, Yahoo, Bing and Facebook, which are able to collect enormous amounts
of data on the user behaviour, see e.g. [4,6,8,12,19]. Some part of online adver-
tisement spend goes through independent ad exchanges where advertising plat-
forms have less information about users [14]. The present paper deals with the
latter case.

Ad exchanges as well as search providers use Real-Time Bidding (RTB),
which is a popular way of delivering online advertising, see [3,9,13,20]. As
reported in [5], spending on RTB in the US during 2014 increased by 137 %
and reached $10 billion and RTB has 45 % of the total spend in online advertis-
ing. In contrast to traditional advertising on TV and fixed contracts on showing
fixed advertisements on specific websites, RTB enables a demand side to find a
favorable ad campaign and submit a bid for a request depending on parameters
of the request and behaviour data (i.e. a track record of a user). In our case the
demand side is represented by an advertising platform whose core business is
c© Springer International Publishing Switzerland 2015
P. Pardalos et al. (Eds.): MOD 2015, LNCS 9432, pp. 240–251, 2015.
DOI: 10.1007/978-3-319-27926-8 21

Adaptive Targeting for Online Advertisement 241

in delivering efficient advertisements on websites, see [14]. Marketing managers
expect that online advertising brings customers at cheaper costs and granular
targeting capabilities although the traditional offline advertisement is continued.

Fig. 1. The scheme of real-time bidding for online advertising.

In Fig. 1 we show the scheme of the RTB system, which consists of 4 compo-
nents: a user, a webpage with embedded ad place, demand partners (advertising
platforms) and ad campaigns; see [17,20] for more detail.

The process of delivering online advertisements occurs billions times each
day and consists of the following steps:

– A user comes to a webpage of a web site, where advertisement can be delivered
using auction via an ad exchange.

– The web site via the ad exchange notifies several demand partners that there
is a possibility to show an ad via bid request (real time auction). Each bid
request contains information about user (user id, time of request, IP, geo,
user agent) and information about the site (site, url, minimal bid). To make
efficient decision demand side can store and analyze information about bid
requests. Due to the enormous amount of bid requests storage and analysis of
this data is a true big data challenge.

– If a demand partner decides to deliver an ad for the given request, it responds
with a bid and a particular advertisement. The demand partners are usually
required to return a bid in a short time (e.g. 100 ms) while the webpage is
loaded by a user. The bid is given in a certain currency (often USD) multiplied
by 1000, corresponding to the commonly adopted cost-per-mille pricing model.

– The website via the ad exchange decides which demand partner won the auc-
tion (based on their bids) and delivers the ad of the winner. Note that ad
exchanges are working as the second price auction model; that is, the winner
pays the second highest bid.

– If a demand partner wins, it delivers the ad and can store information about
ad delivery in order to analyze historical efficiency. Note that the user is given
the right to opt out from targeted advertisement delivery via demand platform
site opt out or via ad itself. In such case the demand partner doesn’t store
user related information.

242 A. Pepelyshev et al.

– If the user clicks on the delivered ad, the advertiser can store the information
about clicks.

– If the user visits the advertised site which contains code of the advertiser, the
demand partner can store the information about the visit and can use it to
optimize campaign efficiency further.

– If the user buys a product on the advertised site, the demand partner can
store the purchase information to evaluate optimization strategies on historical
data.

The advertiser has to solve the problem of maximizing either the click through
rate (CTR) or the conversion rate by targeting a set of requests under several
constraints:

(i) Budget (total amount of money available for advertising),
(ii) Number of impressions (total amount of ad exposures),
(iii) Time (ad campaign is restricted to certain time period).

Campaign size in programmatic segment varies between $5000 and $500000
per month and the advertisement company running a campaign needs to choose
from 5 mln to 500 mln requests out of 50 bln available ones.

One of the main characteristics of an ad campaign is average cost-per-action
(CPA) or average cost per conversion. To identify those parameters of bid request/
impressions, which caused the click/conversion, we have to use all logs.

The problem of adaptive targeting for ad campaigns was addressed in pro-
ceedings of the annual WWW conference and in a dozen of papers, however,
many of them deal with the sponsored search, see e.g. [8,12,19]. Some papers,
for example [2,16], use the look-alike idea implying that a new request will
lead to the click/conversion if the new request is similar to (look like one of)
the previous successful requests. In 2014 two Kaggle contests were organized
[see https://www.kaggle.com/c/avazu-ctr-prediction and https://www.kaggle.
com/c/criteo-display-ad-challenge] on algorithms for predicting the CTR using
datasets with subsampled non-click records (the CTR for one dataset is about
17 %). The algorithms proposed by many teams are based on different
approaches, mainly, ensembles of field-aware factorisation machines (FFM) [15],
follow-the-regularized-leader (FTRL) methodology [11], gradient boosting
machines (GBM) [7], and are now publicly available, give approximately the
same performance with respect to the logarithmic loss criterion

logloss = −1/N

N∑

i=1

(yi log(pi) + (1 − yi) log(1 − pi)),

where N is the size of the test set, pi is the predicted probability of click for the
i-th request, and yi = 1 if the i-th request leads to click and yi = 0 otherwise.

All the main strategies mentioned above make learning either about the
parameters of the model (like in FFM and FTRL) or the response function
directly depending on X. This learning constitutes the main objective at the
initial phase of any advertisement campaign. At a later stage in the campaign,

https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/criteo-display-ad-challenge
https://www.kaggle.com/c/criteo-display-ad-challenge

Adaptive Targeting for Online Advertisement 243

when either models or estimates of the response function can be considered
satisfactory, they are used for improving the selection of users with the purpose
to increase (or even maximize) the CTR. The cost of impressions on the learning
stage should be kept on the lowest level but it should be increasing as the choice
of users becomes more intelligent since we should be prepared to pay higher price
for the users that are more likely to click on our ad.

The present paper is organized as follows. In Sect. 2 we present the formal
description of the problem of maximizing the CTR and propose an adaptive
strategy which consists of estimating the preference characteristic for a new
request and suggesting a relevant bid price; this strategy is based on the ‘look-
alike’ principle and does not use any parametric models similar to those used by
FFM and FTRL. In Sect. 3 we perform an analysis of data provided to us by an
advertising platform. Specifically, we give the descriptive statistics in Sect. 3.1
and perform the multidimensional scaling in Sect. 3.2. Finally, we evaluate the
performance of the proposed strategy in Sect. 3.3 and investigate the sensitivity
of the strategy to the choice of factors in Sect. 3.4. Conclusions are given in
Sect. 4.

2 Adaptive Strategy for Maximizing the CTR
of an Ad Campaign

Suppose that the ad we want to show is fixed. Consider the problem of max-
imization of the click through rate by an adaptive targeting procedure which
should yield the decision whether to show or not the ad to a request from a
webpage visited by a user. If the procedure decides to show the ad, it has to
propose a bid.

The adaptive decision should depend on the current sample of impressions
and clicks which contain the users to whom we have shown the ad before and
who have clicked on the ad. We will treat the sample size N as time. We can
increase the size of the sample by including all our previous impressions of the
same advertisement, so that N could be very large.

Features of an i-th request: Xi = (xi,1, . . . , xi,m), i = 1, . . . , N , where m is
the number of features (factors). We equate the i-th request to Xi. Suppose that
the requests leading to the click on the ad are Xj1 , . . . , XjK , where 1 ≤ j1 <
j2 < . . . < jK ≤ N and K = K(N) < N . Our running performance criterion of
the advertising campaign is the click through rate (CTR) defined by pN = K/N .
It is clear that the CTR pN changes as N grows.

We make the following important assumption of independence: if we choose
a request with features X = (x1, . . . , xm) then the probability of a click is pX ;
different events (‘click’ or ‘no click’) are independent. We assume that all possible
vectors X = (x1, . . . , xm) belong to some set X (which is partly discrete and
possibly has difficult structure). We also assume that for any two points X and
X ′ ∈ X we can define some kind of measure d(X,X ′) which can be considered
as distance (it does not have to satisfy mathematical axioms of the distance
function). The properties we require for d(X,X ′) are: (a) d(X,X ′) ≥ 0 for all

244 A. Pepelyshev et al.

X,X ′ ∈ X; (b) d(X,X) = 0 for all X ∈ X; (c) small values of d(X,X ′) indicate
on a large degree of similarity between X and X ′; (c′) large values of d(X,X ′)
indicate on a large degree of dissimilarity between X and X ′; (d) d(X,X ′) = ∞
if X and X ′ can be considered as unrelated (or totally dissimilar).

If X is a discrete set with all features X = (x1, . . . , xm) ∈ X given on the
nominal scale then we can use the Hamming distance

d(X,X ′) =
m∑

j=1

δ(xj , x
′
j), δ(xj , x

′
j) =

{
1 xj = x′

j ,

0 xj �= x′
j ,

or the weighted Hamming distance d(X,X ′) =
∑m

j=1 wjδ(xj , x
′
j), where the

coefficients wj are positive and proportional to the importance of the j-th feature
(factor), j = 1, . . . , m.

The purpose of the strategy for maximizing the CTR is to adapt the feature
sets for the new requests we will be showing the ad to increase pN as N increases.
Formally, if we assume that N → ∞ then our aim is devising a strategy such that
limN→∞ pN is maximum. In practice, we are given Ntotal, the total number of
requests to be exposed to an ad. Correspondingly, we want to maximize pNtotal

.
The natural adaptive strategy is an evolutionary one which prefers new

requests in the vicinity of the requests that were successful previously, i.e. which
follow the look-alike idea. To define the preference criterion, for all N we need
an estimator p̂N (X) of the function p(X), which is defined for all X ∈ X. We do
not need to construct the function p̂N (X) explicitly; we just need to compute
values of p̂N (X) for a given X, where X is a request which is currently on offer
for us. We hence suggest the following estimator p̂N (X):

p̂N (X) =
∑K

k=1 exp{−λNd(X,Xjk)}
∑N

i=1 exp{−λNd(X,Xi)}
+ εN , (1)

where λN and εN are some positive constants (possibly depending on N). The
sum in the numerator in (1) is taken over all users which have clicked on the
ad. If all these (good) requests are far away from X then the value p̂N (X) will
be very close to zero. The constant εN is a regularization constant. As εN > 0
there is always a small probability assigned to each X, even if in the past there
were no successful requests that were similar to X. Theoretically, as N → ∞,
we may assume that εN → 0.

Alternative way of determining the estimator of p(X) is the logistic model
constructed by the FFM and FTRL approaches [11,15] or the tree-based model
constructed by the GBM methodology [7].

Using an estimator p̂N (X) for p(X), we can suggest how much the advertis-
ing platform can offer for the request X in the bidding procedure. For example,
the demand side can offer larger bids if p̂N (X) ≥ p∗, where p∗ is the desired
probability we want to reach. Another strategy: the amount of money the adver-
tising platform offer for X is proportional to the difference p̂N (X)−K/N , if this
difference is positive.

Adaptive Targeting for Online Advertisement 245

In the strategy above, we can remove old data from the sample by always
keeping the sample size equal to N0 (assuming N0 < N); in this case the esti-
mator (1) changes to

p̂N,N0(X) =
∑K

k=1 1[jK≥N−N0] exp{−λd(X,Xjk)}
∑N

i=N−N0
exp{−λd(X,Xi)}

+ ε; (2)

in this estimator there is no need to change λ and ε as the sample size is constant
(it is always equals N0). In (2), 1[jK≥N−N0] is the indicator of the event jK ≥
N − N0.

3 Analysis of Real Data

Since descriptive statistics for big data are important tools for understanding
the data structure, see [1], we show some figures for two ad campaigns named as
ad campaign 1 and ad campaign 2. For different subsets of data, we depict the
estimator of the CTR computed as p̂ = K/N with the 95 %-confidence interval
(p̂ − 1.96

√
p̂(1 − p̂)/N, p̂ + 1.96

√
p̂(1 − p̂)/N), where K is the number of clicks

and N is the number of impressions in the selected subset. We use the descriptive
statistics to study the influence of each factor on the CTR that helps us to reduce
the number of factors for the adaptive strategy.

The estimated CTR for all data is p̂ = 1.7 · 10−4 for ad campaign 1 and
p̂ = 2.4 · 10−4 for ad campaign 2. These values will serve as a baseline for
comparing the CTRs for different subsets of data.

3.1 Descriptive Statistics of the CTR for Two Ad Campaigns

In Fig. 2 we show the CTR on different days. We can see that CTR slightly
depends on days. We can observe that the largest CTR of ad campaign 1 was
on Dec 20 and the few preceding days, which can be explained by Christmas
shopping. The CTR of ad campaign 2 is larger at weekends since the structure
of bid requests is different at weekends.

Fig. 2. The click through rate multiplied by 104 at different days for ad campaign 1
(left) and ad campaign 2 (right).

In Fig. 3 we show the CTR at different hours. We can see that the CTR for
ad campaign 1 is larger from 22:00 to 22:59, which can be explained by activity

246 A. Pepelyshev et al.

of certain group of users. The CTR for ad campaign 2 is higher from 9:00 to
9:59 and from 19:00 to 19:59, when a group of users usually use internet in the
morning and the evening.

Fig. 3. The click through rate multiplied by 104 at different hours for ad campaign 1
(left) and ad campaign 2 (right).

In Fig. 4 we can see that the CTR is nearly the same for many websites
except very few websites where the CTR is larger. It is quite natural that the
largest CTR is for the website http://www.preloved.co.uk, which is a large clas-
sified advertising site. Another large CTR occurs for the website http://www.
express.co.uk, which is a portal of the newspaper “Sunday Express”; however,
the confidence interval is wide because the number of impressions is small. It is
worth noting that the CTR for the websites of other newspapers, “Independent”
and “Telegraph”, is very close to the average value.

Fig. 4. The click through rate multiplied by 104 for 25 websites with largest numbers
of requests for the ad campaign 2.

In Fig. 5 we can observe that the CTR does not depend on ad exchange but
depends on the user agent. Specifically, the CTR is larger than average for MSIE
and smaller than average for Safari.

In Fig. 6 we can see that the CTR for some cities and postcodes significantly
differs from the average value. In particular, we can observe that the CTR for
London is large but the CTR for Uxbridge and Trowbridge is small. However, the
largest CTR occurs for the postcode PO standing for Portsmouth but the number
of requests with postcode PO is quite small. The second largest CTR is for the
postcode EC standing for Eastern Central, an area in central London. Also the
CTR is well above average for postcodes CV (Coventry) and BN (Brighton).

http://www.preloved.co.uk
http://www.express.co.uk
http://www.express.co.uk

Adaptive Targeting for Online Advertisement 247

Fig. 5. The click through rate multiplied by 104 for different ad exchanges and user
agents for the ad campaign 2. The x-tick labels of the left plot are the identification
numbers of ad exchanges.

Fig. 6. The click through rate multiplied by 104 for 25 cites and 33 postcodes with
largest numbers of requests for the ad campaign 2.

3.2 Multidimensional Scaling

In Fig. 7 we show the multidimensional scaling (MDS) performed by the SMA-
COF algorithm (see [10]) where we have used the Hamming distance for mea-
suring the closeness between points X,X ′ ∈ X. The MDS finds the association
between the original high-dimensional points and points in a smaller dimension
preserving the similarity of distances between points. Formally, the MDS for the
dimension 2 is a solution of

min
z1,...,zn∈R2

n∑

i=1

n∑

j=1

(Dij − ||zj − zi||2)2

where Di,j is the distance between the i-th request and the j-th request. We
considered the set X with 7 factors: website, ad exchange, city, postcode, device
type, user agent, user behaviour category. Since the multidimensional scaling is
a hard computational problem we extract a subsample of the points from the
data. We repeated the MDS for different subsamples and found that the pattern
of 2D points very much repeats.

In Fig. 8 we show the supervised multidimensional scaling proposed in [18]
with α = 0.2, which is a solution of

min
z1,...,zn∈R2

1−α

2

n∑

i=1

n∑

j=1

(
Dij−||zj−zi||2

)2+α
∑

i,j:yj>yi

(yj−yi)
2∑

s=1

(
Dij−(zjs−zis)

)2
,

where yi = 1 if the i-th request led to the click and yi = 0 otherwise. Certainly,
the supervised multidimensional scaling gives better separation between the

248 A. Pepelyshev et al.

Fig. 7. The multidimensional scaling by SMACOF algorithm.

two groups: the users that have clicked on the ad and the users that haven’t.
However, the results of supervised scaling are hard to use in the adaptive strategy
considered above. On the other hand, the classification obtained from unsuper-
vised scaling are easy to use in such procedures.

Fig. 8. The supervised multidimensional scaling.

3.3 Evaluation of the Adaptive Strategy

To investigate the performance of the adaptive strategy for the database of
requests for ad campaign 2, we split the database of impressions into 2 sets: the
training set Xp(T) of past records with dates until the certain time T (where T
is interpreted as the present time) and the test set Xf (T) of future records with
dates from the time T . We also define the set

L(r) = {Xj from Xp(T): minclicked X̃i∈Xf (T) d(Xj , X̃i) ≤ r};

that is, L(r) is a set of requests where we have shown the ad and the minimal
distance to the set of clicked requests from the set of past records is not greater

Adaptive Targeting for Online Advertisement 249

than r. In other words, the set L(r) is an intersection of the set of our requests
with the union of balls of radius r centered around the clicked past requests.
Here we also consider Xj with 7 factors: website, ad exchange, city, postcode,
device type, user agent, user behaviour category.

Fig. 9. The click through rate multiplied by 104 for the sets L(r), r = 0, 1, . . . , 5, for
several values of T .

In Fig. 9 we show the click through rate for the sets L(r), r = 0, 1, . . . , 5,
for several values of T . Recall that the ad campaign 2 starts on 2015-02-01 and
finishes on 2015-02-17.

It is natural that the CTR for the set L(r) decreases as r increases. We
can observe that the CTR for L(0) and L(1) is very large but the number of
impressions from L(0) and L(1) is small.

To be specific, for the time moment T=2015-02-08 the size of the set L(r)
is 10455 for r = 0, 107805 for r = 1, 800002 for r = 2, 1732279 for r = 3, and
1928722 for r = 4; and the number of clicked impressions in the set L(r) is 16
for r = 0, 54 for r = 1, 189 for r = 2, 403 for r = 3 and 447 for r = 4.

Overall we can see that the CTR for L(1) is significantly larger than the
CTR for L(2) at all times T .

3.4 The CTR for Different Choices of Factors

Let us perform the sensitivity analysis of the CTR for sets L(r) for the ad
campaign 2. In Table 1 we show the CTR for several sets L(r) with T=2015-
02-08 and different choices of factors. We can observe that the device type has
no influence and the ad exchange has a small influence on the CTR for sets
L(0) and L(1), consequently such factors can be removed from the model (and
computations). The postcode has no influence on the CTR for the set L(0) but
has some influence on the CTR for the set L(1).

250 A. Pepelyshev et al.

Table 1. The CTR multiplied by 104 for several sets L(r) with T=2015-02-08 and dif-
ferent choices of factors. Abbreviation of factors are Be:behaviour category, We:website,
Ex:ad exchange, Ci:city, Po:postcode, De:device type, Ag:user agent.

Factors CTR[L(0)] CTR[L(1)] CTR[L(2)] CTR[L(3)] CTR[L(4)]

Be,We,Ex,Ci,Po,De,Ag 15.3 5.01 2.36 2.33 2.32

We,Ex,Ci,Po,De,Ag 5.13 2.43 2.35 2.33 2.33

Be, Ex,Ci,Po,De,Ag 11.69 2.81 2.35 2.31 2.33

Be,We, Ci,Po,De,Ag 12.29 3.89 2.31 2.29 2.33

Be,We,Ex, Po,De,Ag 7.62 2.46 2.32 2.32 2.33

Be,We,Ex,Ci, De,Ag 14.96 2.45 2.32 2.32 2.33

Be,We,Ex,Ci,Po, Ag 15.27 5.09 2.38 2.33 2.32

Be,We,Ex,Ci,Po,De 4.87 3.37 2.20 2.33 2.33

Be,We,Ex,Ci, Ag 14.93 2.48 2.32 2.32 2.33

Be,We, Ci, Ag 11.99 2.38 2.29 2.33 2.33

Be,We, Ci,Po, Ag 12.27 3.88 2.34 2.29 2.33

In contrast, the user agent, the user behaviour category, and the city are very
influential factors. It is very surprising that the postcode has no influence but
the city has a big influence on the CTR for the set L(0). However, the postcode
is highly important to have the large value of the CTR for the set L(1).

4 Conclusions

We have considered the problem of maximizing the CTR from the view-point
of an advertising platform working with independent ad exchanges. We have
discussed and studied an adaptive strategy which is based on the look-alike
idea. We have tested the performance of the strategy. In particular, we have
found out that the strategy of showing ads to requests from the set L(1) yields
the CTR which is 2.5 times larger than the CTR for the original ad campaign.

Acknowledgement. The paper is a result of collaboration of Crimtan, a provider of
proprietary ad technology platform and University of Cardiff. Research of the third
author was supported by the Russian Science Foundation, project No. 15-11-30022
“Global optimization, supercomputing computations, and application”.

References

1. Abello, J., Pardalos, P.M., Resende, M.G. (eds.): Handbook of Massive Data Sets,
vol. 4. Springer Science and Business Media, New York (2002)

2. Aly, M., Hatch, A., Josifovski, V., Narayanan, V.K.: Web-scale user modeling
for targeting. In: Proceedings of the 21st International Conference Companion
on World Wide Web, pp. 3–12. ACM (2012)

Adaptive Targeting for Online Advertisement 251

3. Chakraborty, T., Even-Dar, E., Guha, S., Mansour, Y., Muthukrishnan, S.: Selec-
tive call out and real time bidding. In: Saberi, A. (ed.) WINE 2010. LNCS, vol.
6484, pp. 145–157. Springer, Heidelberg (2010)

4. Edelman, B., Ostrovsky, M., Schwarz, M.: Internet advertising and the generalized
second price auction: selling billions of dollars worth of keywords. Am. Econ. Rev.
97(1), 242–259 (2007)

5. eMarketer: US programmatic ad spend tops $10 Billion this year, to double by 2016
(2014). http://www.emarketer.com/Article/US-Programmatic-Ad-Spend-Tops-
10-Billion-This-Year-Double-by-2016/1011312

6. Evans, D.S.: The online advertising industry: economics, evolution, and privacy. J.
Econ. Perspect. 23(3), 37–60 (2009)

7. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann.
Stat. 29(5), 1189–1232 (2001)

8. Jansen, B.J., Mullen, T.: Sponsored search: an overview of the concept, history,
and technology. Int. J. Electr. Bus. 6(2), 114–131 (2008)

9. Google: the arrival of real-time bidding. Technical report (2011)
10. de Leeuw, J., Mair, P.: Multidimensional scaling using majorization: SMACOF in

R. SMACOF. J. Stat. Softw. 31(3), 1–30 (2009)
11. McMahan, H.B.: Follow-the-regularized-leader and mirror descent: equivalence the-

orems and L1 regularization. In: International Conference on Artificial Intelligence
and Statistics, pp. 525–533 (2011)

12. McMahan, H.B., Holt, G., Sculley, D., et al.: Ad click prediction: a view from the
trenches. In: Proceedings of the 19th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 1222–1230 (2013)

13. Muthukrishnan, S.: Ad exchanges: research issues. In: Leonardi, S. (ed.) WINE
2009. LNCS, vol. 5929, pp. 1–12. Springer, Heidelberg (2009)

14. Nicholls, S., Malins, A., Horner, M.: Real-time bidding in online advertising
(2014). http://www.gpbullhound.com/wp-content/uploads/2014/09/Real-Time-
Bidding-in-Online-Advertising.pdf

15. Rendle, S.: Factorization machines. In: 2010 IEEE 10th International Conference
on Data Mining (ICDM), pp. 995–1000. IEEE (2010)

16. Tu, S., Lu, C.: Topic-based user segmentation for online advertising with latent
dirichlet allocation. In: Cao, L., Zhong, J., Feng, Y. (eds.) ADMA 2010, Part II.
LNCS, vol. 6441, pp. 259–269. Springer, Heidelberg (2010)

17. Wang, J., Yuan, S., Shen, X., Seljan, S.: Real-time bidding: a new frontier of
computational advertising research. In: CIKM Tutorial (2013)

18. Witten, D.M., Tibshirani, R.: Supervised multidimensional scaling for visualiza-
tion, classification, and bipartite ranking. Comput. Stat. Data Anal. 55(1), 789–801
(2011)

19. Yang, S., Ghose, A.: Analyzing the relationship between organic and sponsored
search advertising: positive, negative or zero interdependence? Mark. Sci. 29(4),
602–623 (2010)

20. Yuan, S., Wang, J., Zhao, X.: Real-time bidding for online advertising: measure-
ment and analysis. In: ADKDD (2013)

http://www.emarketer.com/Article/US-Programmatic-Ad-Spend-Tops-10-Billion-This-Year-Double-by-2016/1011312
http://www.emarketer.com/Article/US-Programmatic-Ad-Spend-Tops-10-Billion-This-Year-Double-by-2016/1011312
http://www.gpbullhound.com/wp-content/uploads/2014/09/Real-Time-Bidding-in-Online-Advertising.pdf
http://www.gpbullhound.com/wp-content/uploads/2014/09/Real-Time-Bidding-in-Online-Advertising.pdf

Outlier Detection in Cox Proportional Hazards
Models Based on the Concordance c-Index

João Diogo Pinto1, Alexandra M. Carvalho1, and Susana Vinga2(B)

1 Instituto de Telecomunicações, Instituto Superior Técnico,
Universidade de Lisboa, Lisboa, Portugal

2 IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
susanavinga@tecnico.ulisboa.pt

Abstract. Outliers can have extreme influence on data analysis and
so their presence must be taken into account. We propose a method to
perform outlier detection on multivariate survival datasets, named Dual
Bootstrap Hypothesis Testing (DBHT). Experimental results show that
DBHT is a competitive alternative to state-of-the-art methods and can
be applied to clinical data.

1 Introduction

Survival analysis, the field that studies time-to-event data, has become a relevant
topic in clinical and medical research. In many medical studies time to death is
the event of interest, hence, it is usually named survival time. However, other
important measures may also be considered, such as the time between response
to treatment or the time to the onset of a disease.

Survival analysis is specifically tailored to deal with unknown survival times
for a subset of the study group, a phenomenon called censoring. The most com-
mon type is right-censoring, addressed in this work; it occurs when the event
is beyond the end of the follow-up period. Survival data is typically denoted
by D = {(X1, Y1), . . . , (XN , YN)}, where each Xi is a p-dimensional vector of
covariates and Yi = (ti, δi), where ti is the event or censoring time and δi the
censoring indicator.

There are several definitions of an outlier. Hawkins [4] defines it “as an obser-
vation that deviates so much from other observations as to arouse suspicion that
it was generated by a different mechanism than the remaining data”. In the sur-
vival field, Nardi and Schemper [6] define outlying observations as individuals
whose survival time is too short, or too long, with respect to the values of its
covariates.

In this work, we propose to perform outlier detection in survival analysis
taking profit from Harrel’s concordance c-index [3] and extending the work in
[5]. The concordance c-index measures the model’s ability of predicting a higher
relative risks to individuals whose event occurs first. The relative risk is estimated
from the output of the model for each individual; in a Cox Proportional hazards
model, for instance, the relative risk corresponds to the hazard ratio.
c© Springer International Publishing Switzerland 2015
P. Pardalos et al. (Eds.): MOD 2015, LNCS 9432, pp. 252–256, 2015.
DOI: 10.1007/978-3-319-27926-8 22

Outlier Detection in Cox Proportional Hazards Models 253

2 DBHT

Bootstrapping [2] is a resampling technique to unveil the underlying distribution
of the data. It is used when this distribution is unknown or simplifying assump-
tions are not reasonable. Given a dataset D with N observations, one bootstrap
sample is obtained by sampling, with replacement, N observations from D.

We propose to improve the bootstrap hypothesis test (BHT) described in [5].
In the BHT method, the procedure removes one observation from the dataset and
then assesses the impact of each removal on concordance. This has the undesired
effect that, with less observations to fit, concordance tends to increase, which
potentially increases the number of “false positives”, signalling inliers as outliers.

The proposed method, called dual bootstrap hypothesis test (DBHT), over-
comes this problem. In starts by generating two histograms from two antagonistic
versions of the bootstrap procedure – the poison and the antidote bootstraps –
and then compare them using a statistical test. The antidote bootstrap excludes
the observation under test from every bootstrap sample. On the other hand,
the poison bootstrap works by forcing the observation under test to be part of
every bootstrap sample. Both the poison and antidote bootstraps have the same
number of observations in each bootstrap sample.

The general strategy is as follows. For each observation i we make the hypoth-
esis that the observation is “poison” (meaning that the observation is an outlier).
To test it, we compare the histograms of concordance variation ΔC between
the antidote and poison bootstraps. If the observation is indeed an outlier, we
expect the antidote bootstrap to push the histogram for higher values of ΔC.
Conversely, we expect the poison bootstrap to generate lower values of ΔC. The
more the poison histogram is to the left of the antidote histogram, the more out-
lying the observation is. We consider ΔCantidote and ΔCpoison two real random
variables with the following hypothesis:

H0 : E [ΔCantidote] > E [ΔCpoison] ;
H1 : E [ΔCantidote] ≤ E [ΔCpoison] .

To calculate the p-value of the test we use a independent two sample Welch’s
t-test.

DBHT is a soft-classifier and a single-step method with the output being an
outlying measure for each observation. From this, it is possible to extract the k

Algorithm 1. Dual Bootstrap Hypothesis Test
Input: input dataset D, the survival model and number of bootstrap samples B.
Output: a p-value for each observation
for all di ∈ D do

D−i = D \ di {remove observation i from the original dataset}
Generate B poison bootstrap samples
Generate B antidote bootstrap samples from D−i

Compute the B values of ΔCpoison and store them in vector psn
Compute the B values of ΔCantidote and store them in vector ant
From psn and ant compute the p-value using a t test for equality of means

end for
return the vector of p-values

254 J.D. Pinto et al.

most outlying observations. Pseudo-code of the DBHT procedure can be found
in Algorithm 1.

In Fig. 1, poison and antidote histograms for an outlier (on the left) and inlier
(on the right) can be found.

3 Results

Herein, we assess the performance of DBHT in 12 synthetic datasets. Its perfor-
mance is compared with two concordance-based methods [5] – one step deletion
(OSD) and Bootstrap hypothesis test (BHT) – and with outlier detection meth-
ods commonly employed on survival data, namely, martingale residuals (MART),
deviance residuals (DEV) , likelihood displacement statistic (LD) and DFBETAS
(DFB).

The model chosen to recreate survival times was the Cox proportional haz-
ards. The simulated observations were generated from two different Cox models,
a general trend model β = βG and an outlier model β = β′. From the Cox hazard
function, the distribution of T is given by F (t|X) = 1 − exp [−H0(t) · exp(βX)].
The vector of covariates X characterizing each individual was generated from a
three-dimensional normal distribution with zero mean with identity covariance
matrix. The survival times were generated using the methodology explained
in [1], each observation time as function of the covariate vector X given by
T = H−1

0 [− log(U) · exp(−βX)], where U is a uniform random variable distrib-
uted in the interval [0, 1].

Fig. 1. On the left, contrast between antidote (blue) and poison (red) bootstrap his-
tograms of concordance variation, for a typical outlier. On the right, antidote (blue)
and poison (red) bootstrap histograms of concordance variation, for a typical inlier
(Colour figure online).

Several scenarios were simulated. For each one, the vector of covariates was
given by Xi ∼ N(0, I), where I is the identity matrix. Each simulated dataset
contains 100 observations with hazard functions

hi(t) =

{
h0(t) exp{βGX} 1 ≤ i ≤ n − k

h0(t) exp{β
′
X} n − k < i ≤ n,

Outlier Detection in Cox Proportional Hazards Models 255

Table 1. Outlier configurations used in the simulated data (left). Average of TPR
(middle) and average of AUC (right) grouped by outlier scenarios.

Scen. Θ
′ ||β′ ||/||βG|| β

′
MART DEV LD DFB OSD BHT DBHT MART DEV LD DFB BHT DBHT

1 180° 1 (-1,-1,-1) 0.29 0.36 0.43 0.36 0.47 0.43 0.47 0.70 0.70 0.74 0.68 0.78 0.82
2 180° 0.2 (-0.2,-0.2,-0.2) 0.22 0.25 0.31 0.29 0.32 0.31 0.34 0.65 0.65 0.70 0.64 0.71 0.75
3 180° 5 (-5,-5,-5) 0.50 0.58 0.59 0.52 0.63 0.59 0.65 0.80 0.80 0.78 0.77 0.86 0.90
4 135° 0.2 (-0.143,0,-0.283) 0.22 0.23 0.30 0.28 0.30 0.29 0.32 0.64 0.64 0.69 0.63 0.71 0.73
5 135° 5 (-3,6,0,-7.07) 0.44 0.54 0.52 0.48 0.58 0.53 0.58 0.78 0.77 0.74 0.75 0.82 0.84
6 90° 0.2 (-0.245,0,-0.245) 0.21 0.22 0.28 0.26 0.27 0.26 0.28 0.63 0.63 0.67 0.63 0.68 0.71
7 90° 5 (6.12,0,-6.12) 0.40 0.50 0.40 0.41 0.44 0.37 0.42 0.76 0.76 0.66 0.73 0.70 0.72
8 0° 0.2 (0.2,0.2,0.2) 0.18 0.18 0.23 0.22 0.22 0.20 0.23 0.62 0.62 0.66 0.62 0.65 0.68
9 0° 5 (5,5,5) 0.32 0.36 0.18 0.25 0.09 0.06 0.07 0.74 0.72 0.61 0.69 0.60 0.60

10 180° 10 (-10,-10,-10) 0.53 0.63 0.64 0.57 0.68 0.60 0.70 0.83 0.83 0.80 0.81 0.87 0.92
11 0° 10 (10,10,10) 0.38 0.46 0.24 0.32 0.14 0.11 0.12 0.78 0.76 0.61 0.73 0.59 0.61
12 135° 10 (-7.15,0,-14.15) 0.49 0.60 0.54 0.51 0.60 0.52 0.60 0.80 0.80 0.74 0.78 0.81 0.86

where the pure model βG = (1, 1, 1) and β
′

taking 12 different vectors; see
Table 1.

When assessing the performance of outlier detection methods on the simu-
lated data it has to be taken into account that the observations are randomly
generated from distributions: the inliers from the general distribution βG, and
the outliers from an outlying distribution β′. It may happen that observations
initially intended to be inliers may be drawn from the lower or upper tail of
the distribution and may configure an outlier, and vice-versa. Our performance
assessment assumes that for each scenario the observations generated from gen-
eral distribution are inliers and the observations generated from the outlying
distribution are outliers.

We used two metrics to analyse the results, the true positive rate (TPR), also
known as sensitivity, and the area under the ROC curve (AUC). For datasets
with k outliers the TPR will measure for each scenario the fraction of true outliers
found in the top-k most outlying observations indicated by each method. The
AUC provides us a threshold-independent outlier detection ability. The AUC is
not applicable to the output of the OSD method, because it does not provide
an outlying score for every observation. The TPR and AUC are the mean of 50
runs per simulation configuration. Results are depicted in Table 1.

4 Conclusion and Future Work

DBHT has shown promising results, being the best method in nine of the 12
simulated outlier scenarios. On the three scenarios where β′ is collinear with βG,
the performance of DBHT, BHT and OSD is poor; in these scenarios outliers
have the same hazard direction as inliers, and so concordance fails to capture
them as it does note take into account the difference in predicted hazards. This
kind of outliers are typically very well detected by residual-based methods, so
DBHT may be useful when used jointly with these methods. Future applications
include outlier detection for oncological patients.

256 J.D. Pinto et al.

Acknowledgments. Work supported by Fundação para a Ciência e a Tecnolo-
gia (FCT) under contracts LAETA (UID/EMS/50022/2013) and IT (UID/EEA/
50008/2013), and by projects CancerSys (EXPL/EMS-SIS/1954/2013) and InteleGen
(PTDC/DTP-FTO/1747/2012). SV acknowledges support by Program Investigador
(IF/00653/2012) from FCT, co-funded by the European Social Fund through the Oper-
ational Program Human Potential.

References

1. Bender, R., Augustin, T., Blettner, M.: Generating survival times to simulate Cox
proportional hazards models. Stat. Med. 24(11), 1713–1723 (2005)

2. Efron, B.: Bootstrap methods: another look at the jackknife. Ann. Stat. 7, 1–26
(1979)

3. Harrell, F.E., Califf, R.M., Pryor, D.B., Lee, K.L., Rosati, R.A.: Evaluating the
yield of medical tests. Jama 247(18), 2543–2546 (1982)

4. Hawkins, D.M.: Identification of Outliers, vol. 11. Springer, The Netherlands (1980)
5. Pinto, J., Carvalho, A.M., Vinga, S.: Outlier detection in survival analysis based on

the concordance c-index. In: Proceedings of BIOINFORMATICS, pp. 72–82 (2015)
6. Nardi, A., Schemper, M.: New residuals for COX regression and their application

to outlier screening. Biometrics 55(2), 523–529 (1999)

Characterization of the #k–SAT Problem
in Terms of Connected Components

Giuseppe Nicosia and Piero Conca(B)

Department of Mathematics and Computer Science,
University of Catania, Catania, Italy

{nicosia,conca}@dmi.unict.it

Abstract. We study the #k–satisfiability problem, that is the prob-
lem of counting the number of different truth assignments which satisfy
random Boolean expressions having k variables per clause. We design
and implement an exact algorithm, which we will call Star, that solves
#k–SAT problem instances. We characterize the solution space using
the connected components of a graph G, that is a subgraph of the n
dimensional hypercube representing the search space.

1 Introduction

Standard experimental methods for studying NP–complete problems use a ran-
dom generator of the problem instances and an exact algorithm, possibly opti-
mized by means of heuristics, to solve the instances [1,2]. By analyzing the results
with ad hoc measures (e.g. number of recursive calls), one can obtain important
information about the problem (e.g. hard and easy distributions, phase transi-
tions, topological characterization of the search space, etc.) [3].

Statistical physics models can serve as a source of inspiration for under-
standing NP–complete problems. As a matter of fact, during the last decade,
theoretical computer science has witnessed the development of several new
methodologies based on statistical physics for investigating the nature and prop-
erties of NP–complete problems [4–6]. This, for example, has lead to the deter-
mination of the computational complexity of k–satisfiability from characteristic
phase transitions [7].

Thanks to this connection between such different fields, new algorithms capa-
ble of producing notable results have been developed. For instance, it has been
shown the existence of an intermediate phase below the phase transition thresh-
old in k–SAT problems and a powerful class of optimization algorithms have
been presented and tested successfully on the largest existing benchmark of k–
satisfiability [8].

In our work, we apply the experimental method to the analysis of #k–SAT
problem, i.e. the problem of counting how many truth assignments satisfy a
given instance of k–SAT [9]. In particular, we designed and implemented an
exact algorithm and, for our experiments, we used the A. van Gelder’s k–SAT

c© Springer International Publishing Switzerland 2015
P. Pardalos et al. (Eds.): MOD 2015, LNCS 9432, pp. 257–268, 2015.
DOI: 10.1007/978-3-319-27926-8 23

258 G. Nicosia and P. Conca

problem instance generator, mkcnf.c1. Algorithms for counting the number of
solutions to instances of SAT have been proposed in [10–12], and the computa-
tional complexity has been studied in [13].

Our research shows that the number of solutions grows exponentially in prox-
imity of the threshold of the transition phase. This result is confirmed by the
rigorous work presented in [14].

2 #k–SAT Problem

When we face a problem we want to known if a solutions exists and, in this
case, we may also want to know how many solutions exist and if it is possible to
produce all the solutions [15].

Let the relation R(x, y) = “y satisfies x” be a polynomially-balanced,
polynomial-time-decidable binary relation. The counting problem associated
with R consists of determining the number of pairs (x, y) ∈ R [16]. In this
context, #P is the class of all counting problems associated with polynomially–
balanced polynomial–time–decidable relations.

As a particular example, #SAT is defined as the problem of computing the
number of different truth assignments that satisfy a Boolean expression [16]. An
interesting problem associated with it is the #k–SAT problem. An instance of the
#k–SAT problem consists of a set V of variables with | V |= n, a collection C of
clauses over V , where | C |= m, such that each clause c ∈ C has | c |= k literals.
The problem consists of finding all the different satisfying truth assignments for C.

It can be shown that #SAT is #P–complete [16], i.e. it belongs to the class
#P, and any other problem in #P can be reduced to #SAT in polynomial time.

3 Counting the Solutions of k–SAT

We present now our novel algorithm to count the solutions of an instance of k–SAT
by describing the pseudo-code of the algorithm and the procedure it uses.

3.1 Sorting the Clauses

First, we present a preprocessing procedure which determines the frequency of
variables, i.e. how many times a variable occurs in clauses, and the frequency–
weight of clauses, i.e. the sum of the frequencies of the variables occurring in it.
We then sort the clauses in nonincreasing order.

3.2 The Algorithm Star

The algorithm being proposed, that we call “Star”, uses a list L to compute
the number of solutions of an instance of #k–SAT. In particular, the list L has
size n, which is the number of boolean variables representing partial solutions.
1 Available at ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/contributed/

UCSC/instances.

ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/contributed/UCSC/instances
ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/contributed/UCSC/instances

Characterization of the #k–SAT Problem 259

Procedure Preprocessing (V , C, k)

compute the frequency f(i) of every variable i ∈ V ,
1 ≤ i ≤ n.
compute the frequency–weight Φ(j) of every clause
j ∈ C, 1 ≤ j ≤ m, where Φ(j) =

∑k
h=1 f(var(cj,h)).

sort C respect to Φ such that Φ(1) ≥ Φ(2) ≥ . . . ≥
Φ(m).

end Preprocessing
Comment : cj,h represents the hth literals of the jth clause,
while the function var(cj,h) returns the corresponding
variable of the literal.

For any v ∈ L, the ith boolean variable v[i] can assume one of the following
values: 0 (false), 1 (true) or “∗”; where the symbol “∗” denotes the possibility of
a variable to be true or false independent of the values of the others variables.

Let us inspect, now, the code of the recursive algorithm Star. The algorithm
has three parameters: the list L of current partial solutions, the index i of a
clause, and a pointer P which is the index of an element–vector v of L that
the procedure will process in the next recursive call. Three different cases are
possible.

– In the first case, v (pointed by P) satisfies the i-th clause ci, so we move to the
next element–vector in L. In this way, a new region of the search space can
be explored. The number of solutions and the length of L remain unchanged.

– In the second case, v has at least a “∗” value for one of the variables occurring
in a literal of ci, (e.g., the literal ci,j) and the other variables occurring in the
clause have values which do not satisfy the clause. In this case we create a
copy v′ of v and insert it in L after v. In vector v, “∗” is replaced with the
value that makes the literal ci,j true, while the “ ∗ ” in v′ is replaced with the
value that makes ci,j false.

The function value of(ci,j) returns the value that if assigned to the variable
j makes ci,j true. In this way, v satisfies the clause ci and we can move to the
next element–vector in L.

This is the expansion case. The number of solutions remains the same,
however the length of L is increased by one. In particular, the set of solutions
represented by the old v is substituted by two modified copies, in such a way
that the variable var(ci,j) of the literal ci,j is given both boolean values true
and false. Thus, a compact representation of a group of solutions is partitioned
into two subgroups, without loss of solutions. In particular, notice that only
one element of v has been changed, from “∗” to a boolean value, and all the
boolean values already set remain unchanged. So, it now satisfies clause i and
all clauses that were previously satisfied.

– In the last case, vector v does not satisfy the clause ci, therefore it is deleted
from L and the next vector is analyzed. If L if empty, the procedure is termi-
nated because the given k–SAT instance is unsatisfiable.

260 G. Nicosia and P. Conca

Algorithm. Star(L, i, P)

if is empty(L) then

return null;

if P.v satisfies ci then /* case 1 */

P ← P.next;

else

for j = 1 to k do

if P.v[ci,j] == “ ∗ ” then /* case 2 */
Let Q be a copy of P ;

Q.v[ci,j] ← ¬value of (ci,j);

P.v[ci,j] ← value of (ci,j);

Q.next ← P.next;

P.next ← Q;

P ← P.next;

goto label 1;

endif

endfor

Q ← P ; /* case 3 */

P ← P.next;

free(Q);

endif

if is not empty(P); → label 1

return Star(L, i, P)

elif (i < m)

P ← L;

return Star(L, i + 1, P);

else

return L;

endif

end Algorithm

This is the contraction case. The length of L is reduced and, in turn, the
search space is reduced and the number of candidate solutions decreases.

If i = m and the pointer P is null, the algorithm terminates and returns the
list L of solutions.

3.3 The Main Program

By inspecting the code of the main program Counting–#k–SAT, we see that,
first, there is a call to the preprocessing phase using the parameters V, C and k
to initialize the list of solutions.

Characterization of the #k–SAT Problem 261

Initially, the list L contains only a vector {∗}n that represent the space of all
the possible solutions. The first call to the algorithm Star uses the parameters
(L, 1, P). The last step of the main program Counting–#k–SAT is to process the
list � returned by the Algorithm Star, to obtain the number of solutions, ns, of
the input instance. We observe the number of solutions of the k–SAT instance
is given by ∑

v∈L

2num(v)

where num(v) returns the number of stars in v.

Counting-#k-SAT (V , C, k)
Input: A set of n variables, V , and a set of m k–clauses,
C.
Output: ns, the number of solutions.

Preprocessing(V, C, k)
L.vector ← {∗}n;
L.next ← null;
P ← L;
� ← Star(L, 1, P);
ns ← PostProcessing(�);
G ← MakeGraph(�);
DFS(G);
end Counting-#k-SAT

Later in the paper, we will discuss the last two statements of the main program.

3.4 An Example

Let us consider the following formula of 3–SAT:

F = (A ∨ B ∨ C) ∧ (A ∨ ¬B ∨ C) ∧ (A ∨ B ∨ ¬C). (1)

Initially, we have:
L → ∗ ∗ ∗. (2)

We examine the first clause. The second case of the star algorithm applies,
and let us choose A as a variable with assigned “∗” value. We have:

L → 1 ∗ ∗ → 0 ∗ ∗. (3)

Now we consider the second element of L. The value that is assigned to A,
that is “0”, does not satisfy the formula. The remaining values are “∗”, therefore,
the second case applies. At this point, we choose the variable B and obtain:

L → 1 ∗ ∗ → 01∗ → 00 ∗ . (4)

262 G. Nicosia and P. Conca

Let us consider the third element of L. Again, the second case applies and,
by choosing C (the only variable left), we obtain:

L → 1 ∗ ∗ → 01∗ → 001 → 000. (5)

Then we consider the fourth element of L. The third case applies, since the
assignment “0, 0, 0” does not satisfy the first clause, and this element is elimi-
nated. At this point, the first clause has been analyzed. The space of solutions
is represented by:

L → 1 ∗ ∗ → 01∗ → 001. (6)

We now analyze the second clause case and the first element of L. Since A
has value 1, the second clause is satisfied. The third case applies and we move
to the next element. In this case A is given the value 0 and B the value 1. C has
the value “∗”; the second clause is not satisfied by the assigned values and one
of its literals has value “∗”. Therefore, the second case applies:

L → 1 ∗ ∗ → 011 → 010 → 001. (7)

We move on to the third element of L. The third case applies and the element
is deleted from L. We obtain:

L → 1 ∗ ∗ → 011 → 001. (8)

Moving on to the third element of L we see that the third case of the algorithm
Star applies. Therefore, the list remains unchanged.

We now consider the third clause. Using the first and second element of L
we are in the first case of the algorithm. With the last element of L we are in
the third case, so it is deleted from L. Thus, we have:

L → 1 ∗ ∗ → 011. (9)

that represents the set of satisfying truth assignments. It turns out that we have
5 assignments which satisfy 1, these are:

L → 100 → 101 → 110 → 111 → 011 (10)

4 Correctness of the Program

We now prove that the algorithm being presented is correct, i.e. it finds all and
only the truth assignments that satisfy the formula. We begin by observing that
algorithm Star analyzes the clauses of a formula sequentially. Each clause is
processed only once and when it has been processed, the program moves to the
next one.

Lemma 1. When working with the ith clause, all the elements in L represent
truth assignments which satisfy the first i−1 clauses. Moreover, all the elements
in L that precede the one pointed by P represent truth assignments which satisfy
the ith clause. If P is null, all the elements in L satisfy the ith clause.

Characterization of the #k–SAT Problem 263

Proof. We prove the lemma by induction on the number of clauses, h, analyzed
by algorithm Star.

If h = 0, L is null and the lemma is vacuously true. Let us assume that
algorithm Star is analyzing clause i, and the recursive call is being called with the
following arguments: Star(L, i, L). By induction, all the elements in L represent
truth assignments which satisfy the first i − 1 clauses. While working with the
ith clause, if the second case and the third case of the algorithm do not apply,
all the elements remain unchanged. Moreover, when P moves forward it leaves
behind elements which also satisfy the ith clause. If P points to an element
which does not satisfy ci, the element is deleted. Then, P moves forward leaving
behind only elements which satisfy ci. If P points to an element v for which the
second case applies, the element splits in L is replaced by two other elements.
The first one, which is going to be left behind by P, is obtained by replacing
a star symbol “∗” with a boolean value in order to satisfy clause ci. All other
variables remain unchanged. Therefore, any clause previously satisfied by v are
also satisfied by this new element, which, by construction, satisfies ci as well.
The lemma is proven.

Theorem 1. The algorithm Star is correct.

Proof. Let us prove that when the algorithm returns, the elements in L represent
all and only the truth assignments which satisfy the m clauses.

We observe that Star terminates when i = m and P is null. Therefore,
from the lemma above, all the elements in L represent truth assignments which
satisfy the m clauses. It remains to be proved that these are the only truth
assignments which satisfy the given clauses. This is guaranteed by the fact that
the algorithms considers the whole search space and elements are deleted when
they do not satisfy a clause.

We also remark that if the given formula is unsatisfiable, the algorithm is
still correct. Indeed, if it halts because L is empty, without having examined all
the clauses, that is because it could not find truth assignments which satisfy a
first group of clauses.

5 Computational Complexity

The computational complexity of our algorithm is exponential. It is possible to
build an example of a formula that would force the program to require exponen-
tial time to count all the satisfying assignments. Consider an instance of #2–SAT
with 2n variables e n clauses defined as follows: (A∨B)∧(C ∨D)∧(E ∨F)∧
Applying the algorithm Star to such an instance, one can see that after having
examined the first clause L will contain two clauses. After having examined the
second clause, it will contain 4 clauses, and so on. When Star returns L it will
have 2n elements, and the algorithm would have made 3 ∗ 2n recursive calls.

In general, for an instance of #k–SAT with k ∗n variables and n clauses, the
number of recursive calls might be (k + 1) ∗ kn which is asymptotically better
than a brute force search with complexity 2kn.

264 G. Nicosia and P. Conca

6 Experimental Results

Given a combinatorial problem P, a solution space of P is defined by a couple
(S, f) where S is a finite set of configurations (or nodes) and f a cost func-
tion which associates a real number to each configurations of S. Two common
measures are the minimum and the maximum costs which give rise to combina-
torial optimization problems. The search space for the k–SAT problem is (S, f)
where S is the set of all possible truth assignments (configurations) and the cost
function for k–SAT computes only the number of satisfied clauses from truth
assignment s for formula F :

fsat(s) = #SatisfiedClauses(F,s),

for s ∈ S. Given a search space (S, f), a search landscape is defined by a triplet
(S, n, f) where n is a neighborhood function

n : S → 2S − {0}

It can be conveniently viewed as weighted graph H = (S, n, f) where the
weights are defined on the nodes, not on the edges. The search Landscape H
for the k–SAT problem is a n dimensional hypercube (with n being the number
of boolean variables). Combinatorial optimization problems are often hard to
solve since such problems may have large and complex search landscapes. The
notion of landscape is an important concept which might help understand the
behavior of search algorithms and heuristics and to characterize the difficulty of
a combinatorial problem. In the program Counting–#k–SAT, the statement

G ← MakeGraph(�);

builds a graph G from the list of solutions returned by Star. G is a subgraph
of the n dimensional hypercube H. Finally, the statement DFS(G) calls the
procedure Depth First Search to compute the connected components (CCs) of
G, and the number of vertices of each connected component. The CCs of G,
give us some interesting topological information on the structure of the solution
space. As a case study, let us consider the problem #3–SAT with | V |= 10
variables. We use A. van Gelder’s k–SAT problem instance generator to create
satisfiability formulas.

In Fig. 1 we can see how the total number of solutions and the connected
components’ cardinality decrease rapidly as the ratio between number of clauses
and number of variables increases. The curve of number of CCs has the shape
of a bell in which the maximum is located at α = 3.0 and has a long tail on the
right hand side. Each point in the plot has been averaged over 10000 different
instances. Moreover, for the 3–SAT problem the phase transition is located at
α = 4.256 where the number of CCs is about 2 and the CC’s cardinality is lower
than number of CC. One can observe that for α = 0.5 and 1.0 there is only one
CC, which contains all the solutions to the problem instance. In this case, the
total number of solutions is equal to the cardinality of the CC.

Characterization of the #k–SAT Problem 265

Fig. 1. Number of solutions, number of connected components and CCs’ cardinality
versus α for #3–SAT problem with n = 10 variables.

Fig. 2. Number of Solutions, number of connected components and CC’s cardinality
at phase transition αc(3) = 4.256 versus number of variables n for #3–SAT problem.

For α > 1.0 we do not have just one CC, but we have several with high
cardinalities. When α reaches the critical value 3.0 the number of CCs starts
decreasing, and they have smaller and smaller cardinalities. These results are
consistent with known theoretical results [6].

266 G. Nicosia and P. Conca

Fig. 3. Number of solutions for #2sat problem.

Fig. 4. Number of solutions for #3–sat problem.

If instead we set α = 4.256 and let n vary from 10 to 45, we obtain the
results shown in Fig. 2. It can be observed that in this case the number of CCs
is basically constant (it varies on average from 2.25 to 3.33). The number of
solutions and the cardinality of the CCs grow, instead, exponentially.

Figures 3 and 4 show the number of solutions for #2–SAT and #3–SAT
respectively, for n ranging between 25 to 60. In the semi–log plot we can observe

Characterization of the #k–SAT Problem 267

Fig. 5. Star Algorithm’s computational effort for the #3–sat problem.

straight lines with increasing slope as the number of variables increases. For these
results we generated from 50000 to 100000 random instances for each value of n.

The algorithm Star has been used to determine experimentally the phase
transition between hard and easy distributions of instances for the #3–SAT
problem. We found, for our algorithm, a threshold value α#c(3) = 1.5, repre-
senting the ratio between the number of clauses and the number of variables.
Such experimentally found value (see Fig. 5) tells us that the closer we are to
the threshold, the harder it becomes to solve the counting problem computa-
tionally. The further we are from such value, the easier it becomes to count all
the satisfying assignments.

7 Final Comments

In this paper we have introduced a new exact algorithm for the counting problem
#k–SAT. The found experimental results are consistent with the theoretical
results found during the last years [5–8]. The given algorithm not only determines
the number of solutions but it also presents (for some values of n and α) the
graphs of the solutions. To our knowledge, this is the first time that the solution
space of k–SAT is characterized in terms of connected components. For 3–SAT
we have seen how for the phase transition, αc = 4.256, the number of connected
components is independent from the number of variables. Experimental results
seem to point out that our algorithm makes its biggest computational effort for
#3–SAT, in the proximity of α#c = 1.5.

268 G. Nicosia and P. Conca

References

1. Ermon, S., Gomes, C.P., Selman, B.: Computing the density of states of boolean
formulas. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 38–52. Springer,
Heidelberg (2010)

2. Ermon, S., Gomes, C., Selman, B.: A flat histogram method for computing the
density of states of combinatorial problems. In: Proceedings of the Twenty-Second
International Joint Conference on Artificial Intelligence, pp. 2608–2613 (2011)

3. Montanari, A., Shah, D.: Counting good truth assignments of random k-SAT for-
mulae. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA ’07, pp. 1255–1264 (2007)

4. Mitchell, D., Selman, B., Levesque, H.: Hard and easy distributions of SAT prob-
lems. In: AAAI, vol. 92, pp. 459–465 (1992)

5. Hogg, T., Huberman, B.A., Williams, C.P.: Phase transitions and the search prob-
lem. Artif. Intell. 81(1), 1–15 (1996)

6. Monasson, R., Martin, O., Zecchina, R.: Statistical mechanics methods and phase
transitions in optimizations problems. Theor. Comput. Sci. 265(1), 3–67 (2001)

7. Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., Troyansky, L.: Deter-
mining computational complexity from characteristic phase transitions. Nature
400(6740), 133–137 (1999)

8. Mézard, M., Parisi, G., Zecchina, R.: Analytic and algorithmic solution of random
satisfiability problems. Science 297(5582), 812–815 (2002)

9. Vaisman, R., Strichman, O., Gertsbakh, I.: Model counting of monotone con-
junctive normal form formulas with spectr. NFORMS J. Comput. 27(2), 406–415
(2015)

10. Birnbaum, E., Lozinskii, E.L.: The good old Davis-Putnam procedure helps count-
ing models. J. Artif. Intell. Res. 10, 457–477 (1999)

11. Dubois, O.: Counting the number of solutions for instances of satisfiability. Theor.
Comput. Sci. 81(1), 49–64 (1991)

12. Zhang, W.: Number of models and satisfiability of sets of clauses. Theor. Comput.
Sci. 155(1), 277–288 (1996)

13. Littman, M.L., Pitassi, T., Impagliazzo, R.: On the complexity of counting satis-
fying assignments. Unpublished manuscript, vol. 328, p. 329 (2001)

14. Boufkhad, Y., Dubois, O.: Length of prime implicants and number of solutions of
random CNF formulae. Theor. Comput. Sci. 215(1), 1–30 (1999)

15. Garey, M.R., Johnson, D.S.: Computers and Intractability, vol. 29. W.H. Freeman,
New York (2002)

16. Papadimitriou, C.H.: Computational Complexity. John Wiley and Sons Ltd.,
Chichester (2003)

A Bayesian Network Model for Fire Assessment
and Prediction

Mehdi Ben Lazreg(B), Jaziar Radianti, and Ole-Christoffer Granmo

Centre for Integrated Emergency Management,
University of Agder, Grimstad, Norway

{mehdi.b.lazreg,jaziar.radianti,ole.granmo}@uia.no
http://www.ciem.uia.no

Abstract. Smartphones and other wearable computers with modern
sensor technologies are becoming more advanced and widespread. This
paper proposes exploiting those devices to help the firefighting operation.
It introduces a Bayesian network model that infers the state of the fire
and predicts its future development based on smartphone sensor data
gathered within the fire area. The model provides a prediction accuracy
of 84.79 % and an area under the curve of 0.83. This solution had also
been tested in the context of a fire drill and proved to help firefighters
assess the fire situation and speed up their work.

Keywords: Bayesian network · Indoor fire · Smartphone sensors

1 Introduction

The international association of fire and rescue services reported approximately
a million fires in buildings or domestic houses around the world in 2012 alone.
These fires unfortunately left 23.7 thousand victims [9]. Thousands of people
around the world are affected directly or indirectly by fire. Such facts have
previously motivated numerous works in the field of automated fire detection
that tried to find some solution to prevent fires and limit the casualties.

During a fire, people tend to leave the building, however, there are potential
rescuers going in and trapped victims inside carrying smartphones. In this paper,
we propose a model for fire assessment and prediction based on a Bayesian
network and smartphone sensors. The number of smartphone user has been
growing considerably and is expected to grow even further. Moreover, these
smartphones are more and more equipped with advanced sensor technology. The
sensor data is gathered from the smartphone located in the fire zone and fed to
the Bayesian network. Bayesian networks are capable of handling uncertainty in
data which is a common issue when dealing with fire incidents [14]. In addition,
they can be adapted to deal with different fire scenarios. To assess the fire status
in a specific room, the Bayesian network uses the sensor data along with the
estimated state of the fire in neighbouring rooms. The model follows the fire

c© Springer International Publishing Switzerland 2015
P. Pardalos et al. (Eds.): MOD 2015, LNCS 9432, pp. 269–279, 2015.
DOI: 10.1007/978-3-319-27926-8 24

270 M.B. Lazreg et al.

development from its ignition until it reaches a fully developed status in addition
to forecasting its development.

The topic of automated fire detection and prediction has been extensively
studied in the review by Mahdipour et al. [1]. In their review of the subject they
showed that most studies focus on detecting fire and reducing the rate of false
fire alarm. Various methods have been investigated, including image and video
processing, computer vision and statistical analysis to enhance fire detection.
These methods focus only on detecting the fire, whereas our method not only
detects but follows the development of the fire. Other researches have focused
on detecting and predicting fire development by means of wireless sensor net-
works in context of outdoor and residential area fires. Bahrepour et al. [3] use
wireless sensor network (combination of temperature, ionisation, CO and photo-
electric sensors) along with machine learning techniques that includes decision
tree neural network and näıve Bayes to detect outdoor and indoor fire. Ma [4]
used sensor network (temperature, smoke thickness and CO) and neural network
fusion algorithm to compute the probability of a fire generated by coal occurs.
Nonetheless, those methods are limited only on detecting the fire and they did
not take into consideration the sate of the fire in neighbouring rooms as a factor
in the fire’s propagation. Matellini et al. [5] used Bayesian networks to model the
fire development within dwellings from the point of ignition through to extin-
guishment. Cheng et al. [6] modelled the building as a direct acyclic graph and
used Bayesian networks to model fire dynamics in the building and determine
the probability of the fire spread from a room to another. However, these meth-
ods do not use sensors as a basis for detecting and predicting the fire, but only
use the state of the fire in different rooms of the building to deduce its devel-
opment. Combining Bayesian network with sensor technology with taking into
consideration the state of the fire in neighbouring rooms to assess and predict
the fire state can be considered as the main contribution of this paper.

The paper is organised as follows: Sect. 2 provides a brief introduction to
Bayesian networks. Section 3 presents the fire assessment and prediction model.
In Sect. 4, we evaluate the model based on two criteria: its performance for
assessing the fire and its usefulness in case of fire. We finally conclude this work
in Sect. 5, and reveal the possible future direction.

2 Bayesian Network

A Bayesian Network (BN) represents a set of random variables and their condi-
tional dependencies using a directed acyclic graph (DAG) [7]. In brief, a BN is
composed of [14]:

– Directed acyclic graph: contain a set of nodes and directed edges connecting
one node to another in a way that starting from a node A there is no sequence
of edges that loops back to node A. In a BN, the nodes may represent an
observable quantity, latent variable, unknown parameter or hypotheses. The
edges represent the causal relationship between two events represented by two
nodes: an edge directed from node A to node B implies that the occurrence

A Bayesian Network Model for Fire Assessment and Prediction 271

of an event represented by node A has a direct impact on the occurrence of
another event represented by node B. In a DAG, family terminology is used
to describe the relationship between nodes. Hence the parents of A (pa(A))
are a set of nodes that have an edge directed to A. The children of A are a
set of nodes that are reached by an edge generated from A.

– A set of probabilities: each node in the DAG is assigned a probability dis-
tribution if it is a root node or a conditional probability distribution if it is
not. Those probabilities express the likelihood that the event symbolised by
a certain node accrues.

Bayesian network is based on the fundamental assumption of causal Markov
condition [8]. This assumption specifies that each node in the DAG of the BN
is conditionally independent of its non-descendent nodes given its parents. To
further explain this assumption, let us consider a DAG = (V,E) where V repre-
sents the set of nodes in the DAG and E is the set of edges between those nodes.
Let X ∈ V be a node in this DAG. Let child(X) be the set of all the children
of X and pa(X) the set of all parents (direct causes of X). The causal Markov
condition can be expressed formally as follows

∀X,Y ∈ V ;Y /∈ child(X) ⇒ P (X|Y, pa(X)) = P (X|pa(X)). (1)

From Eq. (1), it can be concluded that for any BN composed of a set of nodes
{X1,X2, ...,Xn} the joint probability is given by

P (X1,X2, ...,Xn) = P (Xn|X1,X2, ...,Xn−1)P (X1,X2, ...,Xn−1)
= P (X1)P (X2|X1)...P (Xn|X1,X2, ...,Xn−1)

=
n∏

k=1

P (Xk|pa(Xk)).

3 Fire Assessment and Prediction Model Based
on Bayesian Network

3.1 Fire Assessment

A fire is a dynamic process that evolves through time. Its status at a present
time t depends on that at previous time steps [6]. One might then think of
using a dynamic Bayesian network (DBN) to capture fire dynamics. However,
for each node a DNB keeps other nodes for each time step. Thus, DBN is more
complicated and consequently more process consuming [14]. Since we intend to
run the application on mobile devices with limited power and battery life, the
application of a simple BN is preferable. The Bayesian network presents each
room in the building by a node (see Fig. 1(b)). This choice was motivated by the
work done by Cheng et al. [6] and Granmo et al. [15] who also used Bayesian
network to model indoor hazards.

A fire normally goes through five stages (dormant, growing, developed, decay-
ing and burnt out) [6]. In this research, we only focus on the first three stages for

272 M.B. Lazreg et al.

two main reasons. First, this choice simplifies the classification process. Second,
it allows us to model the fire at it most dangerous stages (growing and devel-
oped). Therefore, the fire in a room R can be dormant, growing or developed.
Let S be a set representing the fire state in a room

S = {dormant, growing, developed} .
Smartphones come with a variety of sensors. The most appropriate in case

of fire are: temperature, humidity, pressure and light from which the visibility
can be deduced. Let O be the set of observed sensor data in R

O = {temperature, humidity, visibility, pressure} .

(a) BN at time 0 (b) BN at time t

Fig. 1. BN for real time fire assessment

At time 0, the fire state in R influences the observed sensor’s values recorded
in that room. This is modelled by edges going from the node representing the fire
status in the BN to the nodes representing each sensor (Fig. 1(a)). Furthermore,
to model the dynamic aspect of the fire at a time t > 0, we added to the model
in Fig. 1(a) a node that represents the status of the fire in a room at previous
time step. Moreover, the fire in R depends also on the situation of the fire in
neighbouring rooms. Therefore, a node representing the fire state in the neigh-
bouring room at previous time step is added to the BN. Note that the graph in
Fig. 1(b) only represented one neighbouring room for simplicity. In reality, R can
have multiple neighbours. In that case edges are added between each neighbour
and R. If we had used a DNB to model the fire we would end up with 12600
nodes for a 30 min fire simulation for each room in the building instead of the 7
nodes that we have in our model.

Let Rt be the random variable representing the state of the fire in R and
Nt that of the neighbouring room at a time t. The BN infers the fire state in R

A Bayesian Network Model for Fire Assessment and Prediction 273

at time 0 based on the value of temperature, humidity, visibility and pressure
collected by the phone sensors placed in R. At a time t, we add the fire state
in R at (t − 1) and the fire state in the neighbouring room N as a factor in the
inference process (Fig. 1). This inference is performed using the joint probability
distribution of the random variable in the network expressed as follows

P (R0, O) = P (R0|O)P (O) if t = 0 (2)

P (Rt, Rt−1, Nt−1, O) =
P (Rt−1)P (Nt−1)P (Rt|Rt−1, Nt−1)P (Rt|O)P (O)

P (Rt)
if t > 0.

(3)

Finally, at each time step the probability distribution of a node representing the
fire state in a room at a time t will be passed to the node that represents its former
state as virtual evidence for the next iteration. Unlike normal evidence or soft evidence
where the evidence of an observed event is deterministic like in the case of tempera-
ture provided by a sensor-, the virtual evidence uses a likelihood ratio to present the
confidence toward the observed event. In our case, since the observed state of the fire
at a time t is derived from the BN with a certain probability and thus uncertain, it
is more appropriate to pass it to the node presenting the previous state as a virtual
evidence. The whole process of fire assessment for a single room R is summarised in
Algorithm 1.

Fig. 2. BN for fire forecasting

3.2 Fire Prediction

In addition, the BN should be able to forecast the state of the fire at a future time
(t+n). For this we designed a BN illustrated in Fig. 2. The network in Fig. 2 is similar
to the network designed for fire assessment. The only difference is the lack of node
representing the sensor data since the sensor data provided by the smartphone sensors
is only known at the present time. Thus, at each future time step (t + n) the state of
the fire in room R is inferred from the state of the fire in R and its neighbouring rooms
in the previous time step (t + n − 1). The joint probability distribution would be as
follows

P (Rt+n, Rt+n−1, Nt+n−1) = P (Rt+n−1)P (Nt+n−1)P (Rt+n|Rt+n−1, Nt+n−1). (4)

The probability distribution of the fire in R at time (t + n) is then passed to the node
representing the probability distribution of the fire in R at time (t + n − 1) as virtual

274 M.B. Lazreg et al.

Algorithm 1. Algorithm for fire assessment using BN
1 Loop
2 forall the oi ∈ O do
3 oi = registered sensor data
4 end
5 forall the si ∈ S do
6 If (t=0) infer P (R0 = si|O))
7 Else infer P (Rt = si|O, Rt−1, Nt−1))

8 end
9 virtual evidence(Rt−1)= Rt

10 t + +

11 EndLoop

Algorithm 2. Algorithm for fire prediction using BN
1 while t ≤ T do
2 forall the si ∈ S do
3 infer P (Rt = si|Rt−1, Nt−1)
4 end
5 virtual evidence (Rt−1)= Rt

6 t + +

7 end

evidence. This process is done recursively until a final time T in the future is reached
(t + n = T). The whole process of fire prediction is summarised in Algorithm 2.

As Algorithms 1 and 2 suggest we need to infer P (Rt|O, Rt−1, Nt−1)) from Eqs. 3
and 4. To do that we need to compute P (Rt, Rt−1, Nt−1, O)) and P (O) with are respec-
tively known as the most probable explanation and the probability of evidence prob-
lem. These problem are difficult problems known to be NP-complete and PP-complete
problem respectively [14]. Therefore, Eqs. 3 and 4 cannot be solved directly to obtain
the probability of each state of the fire due in general to high computational com-
plexity. However, different algorithms have been developed to approximate a solu-
tion for those equations. We used one of the fastest and most precise of them: the
Estimated Posterior Importance Sampling algorithm for Bayesian Networks (EPIS-
BN) [12]. It is based on using loopy belief propagation [13] to compute an approxima-
tion of the posterior probability over all nodes of the network. The loopy belief prop-
agation is based on approximating the problem of computing P (Rt|O, Rt−1, Nt−1))
by computing P (Rt|Rt−1, Nt−1)) and P (O|Rt = si) where P (Rt|O, Rt−1, Nt−1)) =
αP (Rt|Rt−1, Nt−1))P (O|Rt). Then, it uses importance sampling to refine this approx-
imation. Importance sampling allows to approximate a function by another function
called importance function. It is used to approximate P (O|Rt).

A Bayesian Network Model for Fire Assessment and Prediction 275

4 Test Results and Discussion

4.1 Test Settings

We used the third floor of the University of Agder building as the scenario for our
model. The floor contains 5 classrooms, 30 offices, 7 group rooms, 4 computer labs,
2 meeting rooms, 12 corridors and 3 stairways used as escape routes from the fire.
The building is an interesting case study since it is large enough to be a challenge for
firefighters in the event of a fire: based on our meeting with firefighter they stated that
they rarely phase a fire spreading in a building of this amplitude. Each room in the
building will be represented by a BN as described in Figs. 1 and 2.

The network described in the previous section is trained and tested using data
obtained from several fire simulations runs produced using the fire dynamics simulator
(FDS) [11]. The FDS permits the imitation of the geometry of a building and its
material properties, the definition of fuel that triggers fire, and the placement of devices
such as visibility and temperature sensors in the simulated environment in such a way
that fire parameter data can be measured and collected. A user needs first to build a
3D space object called mesh to make a fire simulation, which will be used to construct
the 3D building geometry being the target of fire simulations. The user can define the
fire cause and starting point and thermal properties of the building material. For our
BN experiments, we created a model of the third floor of our university building that
follows all the real dimensional size and the detailed rooms and furniture.

For completing the model, the user can place devices and sensors such as sprin-
klers, smoke detectors, heat flux gauges and produce the quantity outputs, for example,
temperature, visibility and so on. The type of sensors placed in each room in this 3D
university building is in line with our research goals, i.e. to get information about the
temperature, humidity, visibility, and pressure. We run this simulation twice with dif-
ferent starting points of the fire. During those simulations, all defined sensors would
register all the data produced in this simulation. The output of the fire parameters
produced by FDS comes as a table containing the value of temperature, humidity, visi-
bility and pressure in each room at each second for 30 min as well as the corresponding
fire state to those values.

As we have seen in Sect. 2 the BN is composed of a DAG (described in Figs. 1
and 2) and for each node a probability distribution representing the likelihood that an
event represented by that node accuses. We trained one BN based on the table pro-
duced by the FDS simulations for all the rooms (we ended up with 128 fire examples).
This allows to learn those probability distributions. This includes P (Rt|Rt−1, Nt−1),
P (temperature|Rt), P (pressure|Rt).... Once learned those probabilities are used in
the inference process to solve Eqs. 3 and 4. The building structure is then loaded into
the app. It consist of a table with the room its location and neighbours. Copies of the
trained BN nodes are then created for each room based on this table.

Further, We simulate two another set of fire scenarios to test the BN. The lines
containing the sensor data are retrieved consecutively from the table produce by FDS
and fed as evidence to the Bayesian network. The results of this test are the probabilities
of each fire state in each room as a function of time. Thus, the BN prediction varies
from room to room and from time step to time step.

We have implemented the BN using JSMILE, a Java interface of SMILE (Structural
Modelling, Inference, and Learning Engine) [10]. It allows the creation, editing and use
of Bayesian network for probabilistic reasoning and decision making under uncertainty.

276 M.B. Lazreg et al.

4.2 Performance Testing

First, we present the results of a test on a specific scenario from the scenarios we used
to test our BN. The results for two representative rooms (R1 and R2) are presented in
Figs. 3 and 4. These Figures show the probability of a dormant, growing and developed
fire in the two rooms as a function of time as well as the actual state of the fire (black
line). Room R1 is the neighbouring room toe the fire starting point whereas room R2 is
located on the opposite side of the building and thus it is the furthest room to the fire
starting point. For R1 (Fig. 3), the predicted probabilities match the actual state of the
fire. The delay of detecting the growing phase of the fire is 3 s. For Room R2 (Fig. 4),
the BN is not sure about its fire state predictions, especially during the growing phase
of the fire. This can be due to a conflict between the sensors’ data obtained from the
simulation and the fire state in neighbouring rooms: the neighbouring rooms experience
a developed fire that should propagate to R2 however the sensors’ data suggest that
the fire is dormant in the mentioned room. In spite of not distinguishing between the
growing and developed state of the fire in room R2, the BN was able to at least detect
that there is fire in the room (regardless of its state) with a delay of 30 s. In the
remaining rooms, the results vary from room to room but they similar to the results
presented for room R1 and R2 with delays to detect the growing and developed state
of the fire varying from 3 to 67 s.

Overall the test set, to calculate the overall accuracy of our model, we first take
the most probable state as the predicted state. Then, for each room we compute the
percentage of the correct classifications. Finally, we average the result over all the
room in the building, The overall accuracy of the Bayesian network is then 84.79 %.
The model also has an overall area under the curve (AUC) of 0.83. The AUC allows
to test the ability of the BN to predict each state of the fire. The AUC can be viewed
as the probability that the model gives a higher probability to the fire state that is
actually correct. An AUC of 0.83 means that, given an instance from the test set, the
model has an 83 % chance of giving a higher probability to the correct state of the fire
for that instance. The AUC is a useful metric even if the state of the fire are imbalanced
(in our case the growing state is less frequent the two other states). It was extended to
evaluate multi class classification problem by Hand et al. [2] who proposed to use the
formula in Eq. 5 where c in the number of classes and A(i, j) is the AUC of the binary
classification of two classes i and j out of the c classes:

AUC =
2

c(c − 1)

∑

i<j

A(i, j). (5)

4.3 Game Scenario Testing

As mentioned in the previous section, we implemented the BN model in an Android
app, and tested this fire development and prediction app in a serious game. We used
a fire scenario simulated by FDS to get the sensor data and feed them to the BN. In
this game, a group of players (9 persons), acting as firefighters, conducted a search
and rescue operation, while another group (13 persons) played victims trapped in the
rooms during the indoor fire hazard, with one person acted as the MCU (Medical Care
Unit). The game took place at the University of Agder (UiA) and two game sessions of
30 min each had been planned, i.e. one without and one with app support. We focused

A Bayesian Network Model for Fire Assessment and Prediction 277

Fig. 3. Fire state probabilities in room R1

Fig. 4. Fire state probabilities in room R2

on a hypothetical situation where the fire had grown, and several victims were trapped
inside.

We hypothesised that the rescue operation with app support (2nd session) would be
faster than without app support (1st session). The game goal was to search for victims
trapped in the 3rd floor, and rescuing them by moving them all the way to the MCU
located by the main entrance of the UiA building. All victims that were saved had to
be reported to the CM, who monitored the overall progress of the rescue operation
performed by all three rescuer groups. No exact script was given to them as how to
act, communicate and interact, except that they were informed on the outline of the
roles, tasks, scenarios, prior to the game.

In the session without app, the players should check the room one by one and
reported to MCU if the room was clearnobody inside. The communication mode was
walkie-talkie software on the smartphone. In that session, each burning room would be
marked over time by a fire marker, based on a predefined fire spread. In the scenario
with the app, the fire information was available on the smartphone and users could
observe the fire spread from room to room by the mean of a heat map. The BN-based
fire assessment and prediction app served as a decision support and a basis for rescuers
to act while saving the victims. The deployment of the app was conducted in two ways:
by sending the app directly to the players to download in advance, and by preparing
ten devices with the app installed. The app usage was explained in the briefing, and
repeated before the 2nd session was started. In fact, familiarising the players with the
app was crucial to the success/failure of the game goal.

The quantitative data collected from this game is about the number of victims
saved in the first and second sessions. The game testing shows that the rescue process

278 M.B. Lazreg et al.

Fig. 5. Number of saved victims as function of time

was faster with the app. Figure 5 shows the time and the number of victims being
saved without the fire assessment/prediction app (left) and with the app (right). The
horizontal axis indicates the duration of the game in minutes while the vertical axis
shows the number of victims saved, as registered by the MCU. The rescue process took
15 min in the first experiment, and 13 min in the second experiment. This time was
counted from the moment the first victim was found. In the second session, 11 victims
were saved in the last 8 min. On the contrary, the saved victims were spread over a
longer time during the first round. There was a longer delay before the rescuers could
find the first victim in the second experiment (Fig. 5, right). The reason for this was
that the players needed some adjustment to use the app, and some of them experienced
technical issues at the beginning of the app use. Further, most of the players relied more
on the real-time fire assessment than on the prediction feature while performing their
rescue task. This is due to the fact that the rescuers (as they reported in the briefing)
had to deal with the real-time assessment of fire situation while trying to save the
victim at the same time, and thus could not spend time on “additional” task such as
checking where fire would develop in the future.

Hence, we learnt from the game that being able to see how the fire develops over
time was useful in a fire situation to decide where the safest place to escape is, but there
was a barrier in practice regarding the usage of the prediction feature. The interview
with real firefighters who were present during the game indicated that placing the app
with the firefighters’ leader, who normally does not go inside the building, can relieve
the firefighter from that extra task. The leader can then inform the team members
about the future fire situation while the firefighters can concentrate on finding the
victims. This could be a better design for future testing the usefulness of fire prediction
feature.

5 Conclusion

This paper proposes a model that uses smartphone sensors along with Bayesian network
to assess fire situation and predict its development. The Bayesian network infers the
probability of each state of the fire based on the sensor data collected from smartphones
in the fire area and the state of the fire in the previous time step. It provides an
overview of the fire situation along with forecasting its development. The test of the
model performance shows that the computed probabilities match the actual state of
the fire in 84.79 % of the cases and an area under the curve of 0.83. This solution

A Bayesian Network Model for Fire Assessment and Prediction 279

also helps facilitate and speed up the work of firefighters in order the save more lives
as revealed from field experience. The future directions of this work would be to use
smoke and temperature sensors in the building alongside the smartphones as well as
figuring out the optimal number of sensors needed inside the building to still achieve
an acceptable prediction accuracy of the fire. We also plan to develop our model to
include fire development from one floor to another.

References

1. Elham, M., Chitra, D.: Automatic fire detection based on soft computing tech-
niques: review from 2000 to 2010. Artif. Intell. Rev. 42(4), 895–934 (2014)

2. David, H., Till, R.: A simple generalisation of the area under the ROC curve for
multiple class classification problems. Mach Learn. 45(2), 171–186 (2001)

3. Bahrepour, M., van der Zwaag, B.J., Meratnia, N., Havinga, P.: Fire data analysis
and feature reduction using computational intelligence methods. In: Phillips-Wren,
G., Jain, L.C., Nakamatsu, K., Howlett, R.J. (eds.) IDT 2010. SIST, vol. 4, pp.
289–298. Springer, Heidelberg (2010)

4. Ma, X.-M.: Application of data fusion theory in coal gas fire prediction system. In:
International Conference on Intelligent Computation Technology and Automation
(ICICTA) (2008)

5. Matellini, D.B., Wall, A.D., Jenkinson, I.D., Wang, J., Pritchard, R.: A bayesian
network model for fire development and occupant response within dwellings. In:
IEEE Conference on Prognostics and System Health Management (PHM) (2012)

6. Cheng, H., Hadjisophocleous, G.V.: The modelling of fire spread in buildings by
bayesian network. Fire Saf. J. 44(6), 901–908 (2009)

7. Stephenson, T.A.: An Introduction to Bayesian Network Theory and Usage. IDIAP
researsh institue Martigny, Switzerland (2000)

8. Hausman, D.H., Woodward, J.: Independence Invariance and the Causal Markov
Condition. Oxfor University Press, Oxford (1999)

9. Brushlinsky, N.N., Ahrens, M., Skolov, S.V., Wagner, P.: World fire statistics. In:
International Association of Fire and Rescue Service (2014)

10. Druzdzel, M.J.: SMILE: structural modeling, inference, and learning engine and
GeNIe: a development environment for graphical decision-theoretic models. In:
Proceedings of the Sixteenth National Conference on Artificial Intelligence and the
Eleventh Innovative Applications of Artificial Intelligence Conference Innovative
Applications of Artificial Intelligence (1999)

11. Kevin, M., Howard, B., Ronald, R.: Fire dynamics simulator technical reference
guide. National Institute of Standards and Technology (2007)

12. Yuan, C., Druzdzel, M.J.: An importance sampling algorithm based on evidence
pre-propagation. In: The Conference on Uncertainty in Artificial Intelligence (2003)

13. Murphy, K., Weiss, Y., Jordan, M.: Loopy belief propagation for approximate
inference: an empirical study. In: Proceedings of the Fifteenth Annual Conference
on Uncertainty in Artificial Intelligence (1999)

14. Van Harmelen, F., Lifschitz, V., Porter, B.: Handbook of Knowledge Representa-
tion, 1st edn. Elsevier, San Diego (2008)

15. Granmo, O.-C., Radianti, J., Goodwin, M., Dugdale, J., Sarshar, P., Glimsdal,
S., Gonzalez, J.J.: A spatio-temporal probabilistic model of hazard and crowd
dynamics in disasters for evacuation planning. In: Ali, M., Bosse, T., Hindriks,
K.V., Hoogendoorn, M., Jonker, C.M., Treur, J. (eds.) IEA/AIE 2013. LNCS, vol.
7906, pp. 63–72. Springer, Heidelberg (2013)

Data Clustering by Particle Swarm Optimization
with the Focal Particles

Tarık Küçükdeniz(B) and Şakir Esnaf

Department of Industrial Engineering, Engineering Faculty,
Istanbul University, Istanbul, Turkey
{tkdeniz,sesnaf}@istanbul.edu.tr

Abstract. Clustering is an important technique in data mining.
In unsupervised clustering, data is divided into several subsets (clus-
ters) without any prior knowledge. Heuristic optimization based clus-
tering algorithms tries to minimize an objective function, generally a
clustering validity index, in the search space defined by the dimensions
of the data vectors. If the number of the attributes of the data is large,
then this will decrease the clustering performance. This study presents
a new clustering algorithm, particle swarm optimization with the focal
particles (PSOFP). Contrary to the standard particle swarm optimiza-
tion (PSO) approach, this new clustering technique ensures high quality
clustering results without increasing the dimensions of the search space.
This new clustering technique handles communication among the parti-
cles in a swarm by using multiple focal particles. The number of focal
particles equals to the number of clusters. This approach simplifies the
candidate solution representation by a particle and therefore reduces the
effect of ‘curse of dimensionality’. Performance of the proposed method
on the clustering analysis is benchmarked against K-means, K-means++,
hybrid PSO and the CLARANS algorithms on five datasets. Experimen-
tal results show that the proposed algorithm has an acceptable efficiency
and robustness and superior to the benchmark algorithms.

Keywords: Data clustering · Clustering analysis · High dimensional
data · Particle swarm optimization · Focal particles

1 Introduction

Advances in technology has made information easy to capture and inexpensive
to store, thus the amount of data stored in various databases increased dramat-
ically. These data contain useful but hidden information that may be critical for
the decision-making processes of the enterprises. Data mining is the general name
of the techniques that are used to extract information from a very large amount
of data [11]. Clustering is a major technique in data mining, which refers to a
process of dividing data into several subsets while maintaining maximum simi-
larity among the data within the same cluster and keeping minimum similarity
among different clusters. Its applications can be seen in customer segmentation,
c© Springer International Publishing Switzerland 2015
P. Pardalos et al. (Eds.): MOD 2015, LNCS 9432, pp. 280–292, 2015.
DOI: 10.1007/978-3-319-27926-8 25

Data Clustering by Particle Swarm Optimization with the Focal Particles 281

document clustering and information retrieval, web data analysis, image segmen-
tation, anomaly detection, biology, medicine and many other areas. Clustering
is an unsupervised process, thus true knowledge about the class that each data
object belongs to is not known by the clustering algorithm. If the true class label
of data is known to the algorithm and used in the analysis then the method is
named classification.

When we look at the history of clustering techniques, we see that many
unsupervised clustering algorithms have been developed. K-means is one of the
well-known of them. K-means clustering algorithm is easy to implement and
very efficient, however suffers from several drawbacks. The objective function
of the K-means is not convex hence it may contain many local minima. The
outcome of the K-means algorithm is heavily dependent on the initial choice
of the centroids [2]. In order to achieve better clustering performance, fuzzy
c-means (FCM) clustering algorithm is introduced by Bezdek [4].

Clustering is also an application field in mathematical optimization when it
is done by searching for the global minima of a clustering performance func-
tion. This approach makes it possible to apply heuristic algorithms to clustering
analysis. Particle swarm optimization (PSO) is a population based heuristic
algorithm, which maintains a population of particles where each particle repre-
sents a potential (candidate) solution to an optimization problem. Merwe and
Engelbrecht used PSO in data clustering [22]. They also developed an hybrid
approach, which combines PSO and K-means algorithm to achieve better clus-
tering performance.

Merwe and Engelbrecht’s original PSO data clustering approach inspired
many works. Ji et al. clustered mobile networks by applying PSO to weighted
clustering algorithm [12]. Correea et al. categorized sample types of biological
databases with PSO [7]. Chen et al. tested PSO clustering algorithm on four
different datasets. They analyzed the performance of standard PSO clustering
algorithm in their paper [6]. Cui et al. applied PSO to the document clustering
problem [8]. Attributes of documents defined as the dimensions of the particles.
Omran et al. applied PSO to the image classification problem [18,19]. Their
algorithm is a binary PSO model which dynamically adjusts the number of clus-
ters. Kumar and Arasu proposed a particle swarm optimization based clustering
method to medical databases [14]. Their modified particle swarm optimization
based adaptive fuzzy K-modes algorithm produces good results in terms of pre-
cision and accuracy. Rana et al. gives a detailed literature review of PSO appli-
cations to data clustering [20]. Readers can also refer to [16] for further literature
survey on nature inspired metaheuristic algorithms for data clustering.

Although each of these studies provide a number of improvements and inno-
vations for clustering applications of PSO, all of them remains faithful to the
Merwe and Engelbrecht’s standard particle representation. But this representa-
tion creates a disadvantage by increasing the dimensions of the particles by the
number of features of a data vector times the number of desired clusters (Fig. 1).
Most stochastic optimization algorithms, including particle swarm optimization,
suffer from this ‘curse of dimensionality’, which simply put, implies that their

282 T. Küçükdeniz and Ş. Esnaf

performance deteriorates as the dimensionality of the search space increases [23].
Bouveyron et al. advises dimension reduction or subspace clustering as the pri-
mary ways of avoiding the curse of dimensionality [5].

Fig. 1. Particle structure of the standard PSO. Each particle contains the centroids
for all clusters.

The proposed method in this study,unlike the standard PSO approach,
achieves high quality clustering results without increasing the number of dimen-
sions. To do so, instead of a whole representation of a candidate solution by
a particle (including all centroids of all clusters as in Fig. 1), in the proposed
method, each particle represents only one centroid in the search space. There-
fore, the number of dimensions of a particle equals the number of data vector
features. Despite this major change in the particle representation, the proposed
version of PSO’s adherence to the standard PSO principles is provided by the
changes made in the structure of the communication between particles.

One of the main configurational properties of PSO is topology or structure
of connections between particles. Several approaches are developed to obtain
good performance. In the gbest model, each particle is connected to all other
particles (Fig. 2a). In the lbest model, each particle is connected to a predefined
number of other particles (Fig. 2b). In star topology, which is a lbest model, one
of the particles in the swarm become the focal particle and all other particles
are connected to this focal particle (Fig. 2c). Therefore, all communication in
the swarm is transmitted through this focal particle.

The proposed PSO variant in this study, addresses a star topology based
new PSO clustering method. In this method there are several focal particles in
the swarm. Other particles are connected to their nearest focal particle and all
communication passes through these focal particles. There are several studies
about focal particles in PSO [13,21]. However, we couldn’t find any study on
multiple focal particles in a swarm with dynamically changing neighborhoods
among particles.

In this study, we aim to prove that, by decreasing the number of dimensions
with the help of this multiple focal particle topology, our proposed PSO variant
achieves high quality clustering results with less computation cost than other
heuristics in high dimensional datasets. In the following sections, first data clus-
tering is defined as an optimization problem. Then, in the third section, particle
swarm optimization technique is introduced and the method of data cluster-
ing with particle swarm optimization is explained. In the fourth section particle
swarm optimization with the focal particles method is introduced. This method

Data Clustering by Particle Swarm Optimization with the Focal Particles 283

a) gbest b) lbest

c) Star

Fig. 2. Swarm topologies: gbest topology - Each particle is connected to each other. lbest
topology - Each particle is connected to a number of other particles. Star topology -
Each particle is connected to a focal particle.

is applied on five datasets and, results and the conclusion is given at the end of
this study.

2 Data Clustering

When the data clustering problem is treated as an optimization problem, the aim
is to find optimal centroids of clusters rather than finding optimal partition of
the data vectors [1]. The dataset to be clustered is represented as a set of vectors
D = {x1, x2,, xm} where m is the number of data objects xi. A data object
can have any number of dimensions. These dimensions of data is called attributes
or features. A cost function is to be defined for clustering optimization problem.
In clustering analysis these cost functions are validity indexes. A comprehensive
review of the clustering methods can be found in [15,16,24].

2.1 Validity Indexes

Several validity indexes are defined to assess the performance of the clustering
algorithms. In optimization based data clustering, these validity indexes (or sim-
ilarity indexes) are used to calculate the fitness of the current solution. The most
basic validity index is the sum of distances between the data vectors and their
assigned cluster centroids in the vector space. This index is called clustering
error index [1] and given in the Eq. (1).

284 T. Küçükdeniz and Ş. Esnaf

Je =
Nc∑

j=1

[
j

d(xi, oj)] (1)

where d is the distance of the data vector xi to its assigned centroid. Nc denotes
the number of clusters (provided by the user). oj denotes the centroid vector of
cluster Cj .

Another validity index is quantization error (2) from [22].

Jq =

Nc∑

j=1

[
∑

∀xi∈Cj
d(xi,oj)

|Cj |]

Nc
(2)

Here | Cj | is the number of data vectors belonging to cluster Cj . This
quantization error is the average distances of the data vectors to their assigned
centroids. The quantization error used in the Eq. (2) allows for division by zero.
In our study, if a division by zero was encountered, the fitness of the particle
was approximated to infinity.

One another well-known validity index is Silhouette value. The silhouette
value for each point is a measure of how similar that point is to points in its
own cluster, when compared to points in other clusters. Higher silhouette means
a better assignment of data vectors to clusters. Formula for silhouette value is
given in (3).

S(xi) =
b(xi) − a(xi)

max{a(xi), b(x,)} (3)

where a(xi) is the average distance from the ith point to the other points in the
same cluster as i, and b(xi) is the minimum average distance from the ith point
to points in a different cluster, minimized over clusters. Silhouette value is in
between −1 and +1. There are several other validity indexes for data clustering,
a brief list of them can be seen in [16].

The distance parameter in the Eqs. (1) and (2) can be Euclidian, cosine or
any other distance metric. In data clustering euclidian distance, given in the
Eq. (4), is one of the most frequently used metric. But at some special occasions
like document clustering, cosine distance is more suitable [25].

d(xi, oj) =

√
√
√
√

Nd∑

k=1

(xik − ojk)2 (4)

Here Nd is the data dimension, i.e. the number of attributes of each data
vector.

3 Particle Swarm Optimization

Swarm optimization algorithms are inspired by the efforts to model the social
systems of birds and bees. Particle swarm optimization is developed by Kennedy

Data Clustering by Particle Swarm Optimization with the Focal Particles 285

and Eberhart in 1995 [9]. In PSO, each particle represents a position in Nd dimen-
sional space. PSO algorithm moves particles through this multi-dimensional
search space to search for an optimal solution. A particle’s movement is affected
by three factors; (1) Particle’s own velocity vector, �vi - (2) Particle’s best position
found thus far, �pi - (3) Best position found by the particles in the neighborhood
of that particle, �yi.

In the first step of the algorithm, velocity of a particle is calculated as in (5)
and then this value is added to the current position of the particle as given
in (6). If �xi is the current position of the particle, �vi is the current velocity of
the particle and �pi is the personal best position of the particle then the velocity
of the particle for the next iteration is;

�vi,k(t + 1) = w�vi,k(t) + c1r1,k(t)(�pi,k(t) − �xi,k(t))
+ c2r2,k(t)(�yi,k(t) − �xi,k(t))

(5)

�xi(t + 1) = �xi(t) + �vi(t + 1) (6)

where w is the inertia weight, c1, c2 are positive constants, called the cognitive
and social acceleration factors respectively. r1,k(t), r2,k(t) � U(0, 1), and k =
1, ..., Nd [22].

3.1 Data Clustering with Particle Swarm Optimization

In PSO, every particle represents a candidate or potential solution. The model
employed by the particle should point a solution of the problem by its own.
In Merwe and Engelbrecht’s [22] method, a particle is constructed as in 7.

�xi = (oi1, oi2, ..., oij , ...oiNc
) (7)

where oij corresponds to the jth centroids represented by the ith particle. Thus,
if a data vector consists of Nd dimensions, then a particle will have Nd × Nc

dimensions.
PSO algorithm tries to minimize an objective function iteration by iteration.

In data clustering mode, this objective function should be chosen carefully to
achieve a good clustering result at the end of the iterations or when a termina-
tion criteria for the PSO is reached. Merwe and Engelbrecht [22] have chosen
quantization error (2) as the fitness function.

4 Particle Swarm Optimization with the Focal Particles

As it is explained before, in PSO, a particle is a representation of a whole solu-
tion, thus a particle should have Nd × Nc dimensions. This usually yields the
so-called ‘curse of dimensionality’ problem. To overcome this ineffectiveness, we
have developed a new clustering approach, namely particle swarm optimization
with the focal particles (PSOFP). In this new approach each particle represents
only one centroid in the search space. If Nc is the number of clusters, then Nc

286 T. Küçükdeniz and Ş. Esnaf

number of particles are chosen as the final representatives of clustering solu-
tion. These particles are the focal particles to which all other particles in the
swarm are connected to their nearest. This neighborhood structure is similar to
Fig. 3. This approach results in less dimensionality in particles. Therefore, it is
expected to have less computational cost than the standard approaches. In the
next section we have benchmarked PSOFP’s performance with other clustering
algorithms.

f0

f1

Fig. 3. f0 and f1 are the focal particles. There are 13 particles in total. This is an
example for a two cluster problem.

In PSOFP, a particle is constructed as in (8).

�xi = (oi) (8)

where �xi is a centroid in the search space. Algorithm 1 displays the pseudo code
of PSOFP algorithm. To start PSOFP, a swarm with l particles are initialized
with the particle formation given in (8). Swarm initialization of PSOFP is similar
to the standard PSO. Then, randomly selected Nc number of these particles are
labeled as focal particles. The swarm size should be bigger than Nc. At each
iteration, the fitness value of each particle is calculated. To do this calculation,
first centroid locations represented by the focal particles are combined together
to make a candidate solution. Then, for each non-focal particle, the particle’s
position vector (the centroid it represents) is overwritten to the corresponding
place in the candidate solution. This process is illustrated in the Table 1.

In this illustrative example, a swarm with 8 particles is initialized. We are
trying to cluster our data vectors into three clusters. Thus, the first three parti-
cles are assigned as the focal particles. The data vectors are in two dimensions,
therefore each particle has two dimensions. To calculate the fitness value of the
fourth particle,

– First a candidate solution is built by the focal particles as: {10; 18; 45; 26;
21; 34}. The first two columns of the candidate solution is the centroid of the
first cluster and the third and the fourth terms are the centroid of the second
cluster, the last part is the centroid of the third cluster.

– Then, we calculate the nearest focal particle to the fourth particle using the
selected distance metric. It is the second focal particle in this example.

– In the candidate solution, places belonging to the second focal particle is
replaced with the current particle’s position: {10; 18 ; 38; 30; 21; 34}. Fitness
of the fourth particle is calculated by using this final candidate solution.

Data Clustering by Particle Swarm Optimization with the Focal Particles 287

Table 1. An illustrative example for the PSOFP fitness calculation process.

Particle Nr. Focal? Position vector (x1; x2)

1 True 10; 18

2 True 45; 26

3 True 21; 34

4 False 38; 30

5 False 12; 22

6 False 5; 52

7 False 15; 42

8 False 45; 22

Another difference from the standard PSO is, focal particles in PSOFP will
not have their own inertia weight component. Focal particles are only affected
by their own personal best and the best performances of the other particles that
are connected to these focal particles. At the end of each iteration, particles,
including the focal, move in the search space. When these movements finishes,
the neighborhood structure of the swarm is to be updated. Each particle, except
focal ones, will be connected to its nearest focal particle. To do this, the distances
among focal and non-focal particles are calculated again.

5 Application and Results

Table 2 shows the datasets used for benchmarking. IRIS, WINE, CMC and Ges-
ture Data are from UCI benchmark datasets. RAND1 is a randomly gener-
ated dataset which includes 500 × U(0, 100), 1000 × U(500, 1500) and 1000 ×
U(2500, 3000) values.

Table 2. Benchmark datasets

Name Data vectors Data attributes Clusters

IRIS 150 4 3

WINE 178 13 3

CMC 1473 9 3

Gesture Data 4833 18 5

RAND1 2500 25 3

The following methods are used for benchmarking:

– Standard K-Means Clustering Algorithm

288 T. Küçükdeniz and Ş. Esnaf

Require:
· Dataset: D = {x1, x2,, xm}
· The number of clusters: Nc

Initialisation:
· Initialize the position �xi and velocity �vi of l > Nc number of particles

randomly. Each particle contains one randomly generated centroid vector (oi) in
the search space.

· Define the set of focal particles SF , where the number of focal particles
equal to Nc

foreach iteration do
forall the particle i do

· xi: Position of the particle i
· fi: The index of the focal particle that particle i is connected to
· xfi : Position of the focal particle that particle i is connected to
· xSF : All focal particles' positions
· generate a candidate solution by replacing the xfi in the xSF with the
xi

· calculate the fitness of particle: J(xi)by a clustering validity index

// Compare the particles current fitness with its pbest:
if J(xi) < J(pi) then

pi=xi

end

end
forall the particle i do

· Define neighborhood : If i is non-focal then assign i to its nearest focal
particle
· yi=MIN(pi ∈ Si

neigh) where Si
neigh is the neighborhood of i

· Change the velocity of the particle i according to the equation (5)
if vi > vmax then

vi = vmax// Check if the velocity is out of limits

end
Calculate the position of i according to the equation (6)
if xi > xmax then

xi = xmax// Check if the position is out of limits

end
if xi < xmin then

xi = xmin// Check if the position is out of limits

end

end

end
Algorithm 1. Pseudo code for PSOFP algorithm

– K-means++ Algorithm: Arthur and Vassilvitskii’s K-means++ algorithm [3],
is an improvement to the standard K-means for choosing better initial values
and therefore avoiding poor results.

Data Clustering by Particle Swarm Optimization with the Focal Particles 289

– Merwe’s [22] hybrid PSO data clustering method: In hybrid PSO, the result
of K-means clustering feed into PSO as a particle, i.e. the solution of K-means
algorithm is where the PSO starts.

– CLARANS: Ng and Han [17] introduced the algorithm CLARANS (Cluster-
ing Large Applications based upon RANdomized Search) in the context of
clustering in spatial databases. Authors considered a graph whose nodes are
the sets of k medoids and an edge connects two nodes if they differ by exactly
one medoid.

We have paralleled the benchmarking tests on a 16 processor computer. Due
to the random nature of k-means and particle swarm algorithms, all methods
have been run 160 times. The test computer had 16 Intel Xeon E5 2.90 Ghz
processors with 30 GB of RAM. 8 parallel runs are done at the same time. We
also tried paralleling the fitness evaluation process in a single run. But due to the
high information preprocessing overhead, parallel evaluation of fitness functions
in a single run was slower than the serial evaluation. Our test computer was on
the Amazon EC2 cloud computing servers. We refer to [10] for a discussion on
parallelization in data mining applications.

PSO and PSOFP algorithms are initialized with 100 particles. Permitted
maximum iteration count is 4000, but iterations stop when there is less than
0.0001 improvement in the global best value during the last 250 iterations. Equa-
tion 5 is used for velocity calculations, w = 0.90, c1 = c2 = 2.05. In standard
PSO, the gbest model is chosen. Selection of the fitness function is an important
process in heuristic optimization. We choose quantization error (2) as the fitness
function. Quantization error and Silhouette values of each method is reported
in the Table 3. CPU time column is the mean CPU time for 160 runs. Mean
and Min. columns of quantization error represent the average and the best value
obtained from 160 runs. Max. column of Silhouette value represents the best
value achieved among 160 runs for the Silhouette index. S.D. column gives the
standard deviation of runs.

When we refer to the quantization error, proposed PSOFP algorithm out-
performs all other algorithms on the benchmark datasets. The mean value of the
quantization error of PSOFP on five datasets is 3.71 %, 4.16 %, 4.06 % and 1.65 %
lower than the K-means, K-means++, PSO Hybrid and CLARANS algorithms
respectively. When we compare the best valued achieved by each algorithm (min-
imum values), PSOFP is 7.64 %, 7.59 %, 6.42 % and 7.78 % better than these
algorithms. Standard deviation is an indicator of the representation strength of
reported average errors. In all datasets, except RAND1, standard deviation of
PSOFP is lower than the benchmarking algorithms. This shows that proposed
PSOFP is a robust clustering technique. Silhouette value is another useful index
to analyze the clustering performance. Values nearer to +1 is better for the
Silhouette index. Silhouette values of PSOFP is equal or slightly better than
the benchmarking algorithms. Only, in RAND1 dataset CLARANS algorithm is
2.23 % better than the PSOFP on the average.

As the CPU time column of the Table 3 indicates, due to the less number of
dimensions of the search space in the PSOFP method, PSOFP is much faster,

290 T. Küçükdeniz and Ş. Esnaf

at the same time more successful in the term of clustering validity, than the
standard PSO. Its computational time is 45.03 %, 5.00 %, 39.66 %, 64.54 % and
9.25 % less than the standard PSO algorithm in WINE, IRIS, CMC, Gesture
and RAND1 datasets respectively. Although CLARANS algorithm gives better
results than the PSOFP on RAND1 dataset, its computational time in this
dataset is 4.3 times higher than the PSOFP.

Table 3. Benchmark results over 160 runs for each method.

Dataset Algorithm CPU time Quantization error Silhouette

Mean Min S.D. Mean Max S.D.

WINE K-Means 0.53 101.58 97.87 3.91 0.726 0.73 0.01

K-Means++ 0.45 99.84 97.87 3.43 0.729 0.73 0.02

PSO Hybrid 668.75 100.67 97.87 3.73 0.728 0.73 0.01

CLARANS 14,937.00 99.61 97.15 2.11 0.726 0.74 0.02

PSOFP 367.61 96.72 95.51 1.59 0.726 0.75 0.14

IRIS K-Means 0.44 0.65 0.64 0.02 0.724 0.74 0.06

K-Means++ 0.35 0.65 0.64 0.01 0.725 0.74 0.05

PSO Hybrid 257.98 0.65 0.64 0.01 0.730 0.74 0.04

CLARANS 356.86 0.65 0.64 0.00 0.730 0.74 0.02

PSOFP 245.08 0.61 0.53 0.02 0.735 0.74 0.13

CMC K-Means 11.38 3.83 3.83 0.00 0.645 0.65 0.01

K-Means++ 9.66 3.83 3.83 0.00 0.645 0.65 0.01

PSO Hybrid 832.80 3.83 3.83 0.00 0.645 0.65 0.01

CLARANS 654.77 3.83 3.83 0.00 0.645 0.65 0.01

PSOFP 502.53 3.83 3.82 0.002 0.643 0.65 0.00

Gesture K-Means 15.54 1.51 1.47 0.021 0.534 0.60 0.001

K-Means++ 12.56 1.50 1.47 0.023 0.523 0.60 0.001

PSO Hybrid 1,470.71 1.59 1.37 0.046 0.532 0.70 0.003

CLARANS 867.90 1.54 1.48 0.025 0.535 0.67 0.002

PSOFP 521.51 1.46 1.19 0.02 0.536 0.71 0.00

RAND1 K-Means 25.11 369.23 334.71 134.11 0.952 0.98 0.11

K-Means++ 24.74 388.58 334.71 160.07 0.905 0.98 0.33

PSO Hybrid 682.72 360.31 334.71 114.50 0.947 0.98 0.21

CLARANS 2,664.28 334.80 334.71 0.00 0.978 0.98 0.00

PSOFP 619.60 354.26 334.71 85.67 0.957 0.98 0.10

6 Conclusions

In this study a new approach is presented for clustering analysis using parti-
cle swarm optimization with the focal particles. In standard PSO, each particle

Data Clustering by Particle Swarm Optimization with the Focal Particles 291

is a representation of the final solution, however, this increases the number of
dimensions a particle has. In PSOFP, each particle is a representation of only
one point in the search space, therefore the number of dimensions are lower
than the standard PSO. We analyzed the performance effect of this dimension-
ality reduction to the clustering performance. We selected three small and two
large datasets and benchmarked proposed PSOFP algorithm with the standard
K-means, K-means++, hybrid PSO and CLARANS algorithms. Each algorithm
has run 160 times. The Amazon EC2 cloud computing platform is used and 8
parallel runs has been made each time. Also, we tried paralleling the objective
function evaluation of particle swarm optimization. This approach didn’t accel-
erate the clustering analysis due to the high information overhead among parallel
processes.

Quantization error and Silhouette values are chosen as the performance cri-
teria for benchmark tests. The results indicated that while maintaining better
or equal clustering performance with the benchmarking algorithms, PSOFP was
faster than the standard PSO algorithm. This shows that the dimensionality
reduction approach of the PSOFP is an efficient and robust strategy in heuristic-
based data clustering analysis.

As the future work, an improved fully parallel approach for focal particles
can be studied. We employed Euclidian distance as the distance metric in our
calculations. But cosine metric is also known to be a good representative for the
similarity among data objects in high dimensional space. The performances of
the algorithms can be compared by using cosine distance metric.

References

1. Abdel-Kader, R.: Genetically improved PSO algorithm for efficient data clustering.
In: Second International Conference on Machine Learning and Computing (2010)

2. Ahmadyfard, A., Modares, H.: Combining PSO and k-means to enhance data clus-
tering. In: International Symposium on Telecommunications, IST 2008, pp. 688–
691. IEEE (2008)

3. Arthur, D., Vassilvitskii, S.: k-means++: the advantages of careful seeding. In:
Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 1027–1035. Society for Industrial and Applied Mathematics (2007)

4. Bezdek, J.C.: Fuzzy Mathematics in Pattern Classification. Cornell University,
Ithaca (1973)

5. Bouveyron, C., Girard, S., Schmid, C.: High-dimensional data clustering. Comput.
Stat. Data Anal. 52(1), 502–519 (2007)

6. Chen, C.-Y., Ye, F.: Particle swarm optimization algorithm and its application to
clustering analysis. In: 2004 IEEE International Conference on Networking, Sensing
and Control, vol. 2, pp. 789–794. IEEE (2004)

7. Correa, E.S., Freitas, A.A., Johnson, C.G.: A new discrete particle swarm algorithm
applied to attribute selection in a bioinformatics data set. In: Proceedings of the 8th
Annual Conference on Genetic and Evolutionary Computation, pp. 35–42. ACM
(2006)

8. Cui, X., Potok, T.E., Palathingal, P.: Document clustering using particle swarm
optimization. In: Proceedings of the 2005 IEEE Swarm Intelligence Symposium,
SIS 2005, pp. 185–191. IEEE (2005)

292 T. Küçükdeniz and Ş. Esnaf

9. Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In:
Proceedings of the Sixth International Symposium on Micro Machine and Human
Science, New York, NY, vol. 1, pp. 39–43 (1995)

10. Garćıa-Pedrajas, N., de Haro-Garćıa, A.: Scaling up data mining algorithms: review
and taxonomy. Prog. Artif. Intell. 1(1), 71–87 (2012)

11. Hatamlou, A., Abdullah, S., Nezamabadi-pour, H.: A combined approach for clus-
tering based on k-means and gravitational search algorithms. Swarm Evol. Comput.
6, 47–52 (2012)

12. Ji, C., Zhang, Y., Gao, S., Yuan, P., Li, Z.: Particle swarm optimization for mobile
ad hoc networks clustering. In: IEEE International Conference on Networking,
Sensing and Control, vol. 1, pp. 372–375. IEEE (2004)

13. Kennedy, J., Mendes, R.: Population structure and particle swarm performance
(2002)

14. Kumar, R.S., Arasu, G.T.: Modified particle swarm optimization based adaptive
fuzzy k-modes clustering for heterogeneous medical databases. J. Sci. Ind. Res. 74,
19–28 (2015)

15. Maimon, O.Z., Rokach, L.: Data Mining and Knowledge Discovery Handbook, 1st
edn. Springer, US (2005)

16. Nanda, S.J., Panda, G.: A survey on nature inspired metaheuristic algorithms for
partitional clustering. Swarm Evol. Comput. 16, 1–18 (2014)

17. Ng, R.T., Han, J.: Efficient and effective clustering methods for spatial data mining.
In: Proceedings of VLDB, pp. 144–155 (1994)

18. Omran, M., Salman, A., Engelbrecht, A.P.: Image classification using particle
swarm optimization. In: Proceedings of the 4th Asia-Pacific Conference on Simu-
lated Evolution and Learning, Singapore, vol. 1, pp. 18–22 (2002)

19. Omran, M.G., Salman, A., Engelbrecht, A.P.: Dynamic clustering using particle
swarm optimization with application in image segmentation. Pattern Anal. Appl.
8(4), 332–344 (2006)

20. Rana, S., Jasola, S., Kumar, R.: A review on particle swarm optimization algo-
rithms and their applications to data clustering. Artif. Intell. Rev. 35(3), 211–222
(2010)

21. Reyes-Sierra, M., Coello, C.A.C.: Multi-objective particle swarm optimizers: a sur-
vey of the state-of-the-art. Int. J. Comput. Intell. Res. 2(3), 287–308 (2006)

22. Van der Merwe, D.W., Engelbrecht, A.P.: Data clustering using particle swarm
optimization. In: The 2003 Congress on Evolutionary Computation, CEC’03, vol.
1, pp. 215–220. IEEE (2003)

23. van den Bergh, F., Engelbrecht, A.P.: A cooperative approach to particle swarm
optimization. IEEE Trans. Evol. Comput. 8(3), 225–239 (2004)

24. Xu, R., Wunsch, D.: Survey of clustering algorithms. IEEE Trans. Neural Netw.
16(3), 645–678 (2005)

25. Zhao, Y., Karypis, G.: Comparison of agglomerative and partitional document
clustering algorithms. Technical report, DTIC Document (2002)

Fast and Accurate Steepest-Descent
Consistency-Constrained Algorithms

for Feature Selection

Adrian Pino Angulo(B) and Kilho Shin

Graduate School of Applied Informatics, University of Hyogo, Kobe, Japan
apinoa85@gmail.com, yshin@ai.u-hyogo.ac.jp

Abstract. Realizing a good balance to the fundamental trade-off
between accuracy and efficiency has been an important problem of fea-
ture selection. The algorithm of Interact was an important break-
through, and the algorithms of Sdcc and Lcc were stemmed from
Interact. Lcc has fixed a certain theoretical drawback of Interact in
accuracy, while Sdcc has improved accuracy of Interact by expanding
the search space. However, when comparing Sdcc and Lcc, we find that
Sdcc can output smaller feature sets with smaller Bayesian risks than
Lcc (advantages of Sdcc) but can show only worse classification accu-
racy when used with classifiers (disadvantages). Furthermore, because
Sdcc searches answers in much wider spaces than Lcc, it is a few ten
times slower in practice. In this paper, we show two methods to improve
Sdcc in both accuracy and efficiency and actually propose two algo-
rithms, namely, Fast Sdcc and Accurate Sdcc. We show through
experiments that these algorithms can output further smaller feature
sets with better classification accuracy than Sdcc. Their classification
accuracy appears better than Lcc. In terms of time complexity, Fast
Sdcc and Accurate Sdcc improve Sdcc significantly and are only a
few times slower than Lcc.

1 Introduction

Feature selection is important not only to find good models that describe specific
phenomena with a small number of explanatory variables but also to improve
efficiency and accuracy of machine learning algorithms.

In this paper, we study feature selection from the efficiency and accuracy
points of view. By efficiency, we simply mean the time complexity of algorithms.
By contrast, the meaning of accuracy is not explicit. In this paper, when we say
that a feature selection algorithm is more accurate than another, we mean that
classifiers on average exhibit a better classification accuracy when used with the
former than when used with the latter.

In large, feature selection includes two main approaches, namely, the filter
approach and the wrapper approach. The filter approach only takes advantage
of intrinsic properties of datasets for feature selection. By contrast, the wrapper
approach specifies a particular classifier algorithm and aims to select feature sets
c© Springer International Publishing Switzerland 2015
P. Pardalos et al. (Eds.): MOD 2015, LNCS 9432, pp. 293–305, 2015.
DOI: 10.1007/978-3-319-27926-8 26

294 A. Pino Angulo and K. Shin

that optimize the performance of the classifier. Despite of this difference, both of
the approaches share the same framework that is composed of two basic gears: a
search strategy and an evaluation function. In the well known survey by Molina
et al. [1], the search strategy is further decomposed into search organization
and generation of successors, and an evaluation function is referred to as an
evaluation measure.

The search strategy represents sequences of theoretical and/or heuristic deci-
sions on feature sets leveraging responses of the evaluation function. The eval-
uation function, on input of feature sets, evaluates their appropriateness. In
the filter approach, an evaluation function is a mathematical function, while it
returns the results of running a specified classifier in the wrapper approach.

Fig. 1. The basic framework of feature selection of the filter and wrapper approaches.
F is the entire feature set of a dataset D, and F̃ denotes the current best feature
subset.

Figure 1 depicts this framework. In Initialization, the current best feature set
F̃ is set to an appropriate initial value. For example, we let F̃ = ∅ for forward
selection and F̃ = F for backward elimination, where F denotes the entire
feature set of the dataset D input. In Generation, the search strategy generates a
feature set T that is to be investigated and then requests the evaluation function
to evaluate T . In Update & Decision, based on μ(T) returned from the evaluation
function, the search strategy updates F̃ , if necessary, and decides whether it
should continue the search or should terminate it by outputting F̃ .

In the remainder of this paper, we are interested in the filter approach
and assume that an evaluation function is a statistical or information theo-
retic function. An important requirement for such evaluation functions is that
it can evaluate interaction among features: more than one features are said
to interact with one another, when they are not relevant to classes individu-
ally but show strong relevance to classes as a set. For example, a simple sum
of individual relevance scores such as μ(T) =

∑
F∈T SU(F,C) cannot evaluate

Fast and Accurate Steepest-Descent Consistency-Constrained Algorithms 295

interaction among features, where SU(F,C) denotes the symmetric uncertainty
between a feature F and the class C: We let F1 and F2 be binary features
such that Pr(F1 = a, F2 = b) = 1

4 for a = 0, 1 and b = 0, 1 and determine
the class label by C = F1 ⊕ F2; Although F1 and F2 determine C, we have
μ({F1, F2}) = SU(F1,C) + SU(F2,C) = 0.

A consistency measure, by contrast, can evaluate interaction among features.
We introduce the Bayesian risk as an example. To illustrate, for a dataset D,
we view a feature of D as a random variable and a feature set T as a joint
variable. Then, we let ΩT denote the sample space of T , C denote a variable
that describes classes and Pr D denote the empirical probability distribution of
D. With these notations, the Bayesian risk is defined by

Br(T) = 1 −
∑

x∈ΩT

max{Pr D[T = x,C = y] | y ∈ ΩC}.

This function is also referred to as the inconsistency rate in [2]. The Bayesian
risk has two important properties, that is, determinacy and monotonicity, and
we introduce the notion of consistent feature sets to explain the properties.

Definition 1. For a dataset D described by F , a feature subset T � F is con-
sistent, iff, Pr D[C = y | T = x] = 0 or 1 for all x ∈ ΩT and y ∈ ΩC.

Then, the determinacy and monotonicity properties are described as follows.

Determinacy. Br(T) = 0, if, and only if, T is consistent in D.
Monotonicity. Br(T) ≥ Br(U), if T � U � F .

Formally, a consistency measure is defined as a function that returns real
numbers on input of feature sets that has the determinacy and monotonicity
properties. The consistency-based feature selection, on the other hand, is char-
acterized by use of consistency measures as the evaluation function.

Interact [2] is the first instance of consistency-based feature selection algo-
rithms that have practical performance in both time efficiency and prediction
accuracy. Lcc [3] is a modification of Interact to fix the problem that Inter-
act may return irrelevant feature sets because of accumulation of errors. Sdcc
[4] is a further modification of Lcc, which aims to select better feature sets
than Lcc by enlarging the search range of Lcc based on the steepest descent
method. In fact, it can be verified through experiments that Sdcc can select fea-
ture sets smaller in size with smaller Bayesian risks. However, it has been also
shown that, in combination with classifiers, the feature sets selected by Sdcc
could only exhibit lower prediction accuracy than those selected by Lcc. At the
same time, Sdcc is much slower than Lcc because of its larger search range.
The objective of this paper is to solve these problems of Sdcc. In fact, we will
propose two new algorithms, namely Fast Sdcc and Accurate Sdcc, which
drastically improve Sdcc in both prediction accuracy and time-efficiency.

2 Sdcc and Lcc: A Comparison

In this section, we identify the problems of Sdcc that we address in this paper.

296 A. Pino Angulo and K. Shin

2.1 The Algorithms of Interact, Lcc and Sdcc

Interact [2] was an important breakthrough in the research of consistency-
based feature selection. It selects an answer from a small number of candidates,
to be specific, |F| feature subsets. Nevertheless, it can exhibit high accuracy
when used with classifiers. Figure 2(a) depicts the algorithm: Interact receives
a dataset D that is described by a feature set F and a threshold δ; In Initialization,
Interact sorts the features in F into (F1, . . . , F|F|) in the increasing order of
the symmetric uncertainty SU(F,C) and then sets F̃ to F ; Starting from i = 1,
Interact lets T = F̃\{Fi} and computes Br(T)−Br(F̃), which is non-negative
by the monotonicity property; If Br(T) − Br(F̃) ≤ δ, Interact judges that
the feature Fi is not important and eliminates it from F̃ ; Interact repeats the
steps of Generation, Query and Update & Decision until it tests all the features.

Although Interact presented good balance between accuracy and efficiency,
Shin and Xu [3] have found that Br(T) − Br(F̃) can accumulate, and conse-
quently, Interact may output feature sets whose Bayesian risks are high for a
certain class of datasets. They also proposed a new algorithm, namely, Linear
Consistency Constrained (Lcc), that solves this problem. Figure 2(b) depicts
the algorithm.

The difference of Lcc from Interact is slight: The criteria to eliminate Fi

is on Br(T) instead of on Br(T) − Br(F̃). Therefore, an output F̃ of Lcc is
minimal in the sense that both of Br(F̃) ≤ δ and G � F̃ ⇒ Br(G) > δ hold.

Steepest Descent Consistency Constrained (Sdcc) [4] is further stemmed
from Lcc and aims to improve the prediction performance of Lcc by expanding
the search range of Lcc. Figure 2(c) depicts the algorithm of Sdcc. Lcc is based
on Interact. The size of F̃ decreases by one for each iteration: When F̃ is the
current best feature subset, Sdcc asks the evaluation function to calculate the
Bayesian risk scores of all of the subsets that are obtained by eliminating a single
feature from F̃ . If the minimum of the Bayesian risks computed is no greater
than δ, Sdcc updates F̃ with one of the subsets that yield the minimum. The
outputs of Sdcc are minimal in the same sense as stated above. Hence, if F̃ is
the final output, Sdcc evaluates (|F| + |F̃ |)(|F| − |F̃| + 1)/2 feature subsets.

Both in Lcc and Sdcc, the parameter δ is used to pursue a good balance of
the fundamental tradeoff between the size and the Bayesian risk value of outputs.
The greater δ is, the more likely the algorithms output feature sets smaller in
size with greater Bayesian risks.

2.2 Comparison of Sdcc with Lcc Based on Experiments

Figure 3 shows experimental results to compare Sdcc with Lcc. As we expected,
the feature sets that Sdcc select are smaller in size and better in the collective
Bayesian risk than those selected by Lcc (Fig. 3(a) and (b)): Lcc eliminates
the first feature F that satisfies Br(F̃ \ {F}) ≤ δ from F̃ , while Sdcc tests all
F ∈ F̃ and eliminates the feature F that minimizes Br(F̃ \ {F}). Therefore, an
increase of the Bayesian risk by eliminating a single feature for Sdcc is smaller

Fast and Accurate Steepest-Descent Consistency-Constrained Algorithms 297

Fig. 2. The algorithms of Interact, Lcc and Sdcc

298 A. Pino Angulo and K. Shin

than for Lcc, and hence, Sdcc can eliminate more features and can approach
δ closer.

By contrast, when we applied the Näıve Bayes classifier to those feature
sets, the prediction accuracy (measured by AUC-ROC) obtained from Lcc were
better than that from Sdcc (Fig. 3(c)). This finding may confuse us, because
Sdcc searches answers in wider ranges than Lcc and hence should be better.

Fig. 3. Comparison between Sdcc and Lcc.

Also, the table below shows a comparison in run-time in seconds between
Lcc and Sdcc with eight datasets from Table 1 using a PC with Intel Core i3
2.6 GHz. Sdcc turns out to be 10 to 400 times slower than Lcc.

Arr Opt Wav Mfa Mfo Mka Mpi Sem

Lcc 0.398 1.268 0.632 1.388 0.729 0.665 0.976 0.787

Sdcc 43.83 14.04 6.557 107.2 6.638 5.054 140.3 127.6

2.3 Problems of Sdcc

We decompose the aforementioned problems of Sdcc in accuracy and efficiency
into more concrete problems.

With respect to the problem in accuracy, the difference between Sdcc and
Lcc that may justify it is that, while Sdcc only considers the collective relevance
of feature sets, Lcc evaluates the relevance of the individual member features
in addition. To illustrate, we use an example depicted by Fig. 4. Figure 4 is
the Hasse diagram of F = {F1, F2, F3, F4}, and the gray nodes represent the
feature subsets whose Bayesian risk is zero. Furthermore, we assume δ = 0.
Lcc investigates Br({F2, F3, F4}),Br({F1, F3, F4}),Br({F1, F4}) and Br({F1})
and finally outputs {F1, F4}. On the other hand, the solid lines represent an
example of the paths that Sdcc can track. In the first iteration, Sdcc finds
Br({F1, F2, F3}) = Br({F1, F2, F4}) = Br({F1, F3, F4}) = 0 and updates F̃ by
one of them arbitrarily. If it uses {F2, F3, F4}, it finally outputs {F2, F4}.

Fast and Accurate Steepest-Descent Consistency-Constrained Algorithms 299

Compared between these two outputs, {F1, F4} could be better because of
SU(F1,C)+SU(F4,C) = 0.5 > SU(F2,C)+SU(F4,C) = 0.4. Therefore, the first
problem of Sdcc can be described as follows.

Problem 1. Sdcc selects a minimal feature set with Br(F) ≤ δ arbitrarily.
A possible cause of low efficiency of Sdcc is because:

Problem 2. Sdcc performs unnecessary investigation of Br(T) ≤ δ.
For example, Sdcc verifies Br({F2, F3}) > 0 in the second iteration, and

this is totally unnecessary, because it has verified Br({F1, F2, F3}) > 0 in the
first iteration: Br({F2, F3}) > 0 is inferred by monotonicity.

Fig. 4. An example of search paths by Sdcc.

3 Fast Sdcc and Accurate Sdcc

Fast Sdcc and Accurate Sdcc are developed to solve Problems 1 and 2.
Figure 5 depicts the algorithm of Fast Sdcc. In each iteration of Repeat,

Fast Sdcc finds F that minimizes Br({F̃ \ {F}) first and then minimizes
SU(F,C), and eliminate it from F̃ . The following are the differences from Sdcc.

1. The features in F are sorted in the incremental order of SU(F,C) (Line 1).
2. The variable ξ′ holds the smallest Br(F̃ \{F}) evaluated so far in the current

iteration, and F ′ is the first feature with Br(F̃ \ {F ′}) = ξ′ (Line 15).
3. SU(F ′,C) is the smallest value of SU(F,C) assuming Br(F̃ \ {F}) = ξ′.
4. The variable ξ holds Br(F̃). If Br(F̃ \ {F}) = ξ is observed, F ′ is set to F ,

and the current iteration of Repeat is terminated (Line 11 to 13).
5. For a feature F ∈ F , δ(F) is Br(F̃ \ {F}) that has been computed the most

recently for some F̃ (Line 10).
6. Therefore, if δ(F) ≥ ξ′, Br(F̃ \ {F}) ≥ ξ′ always holds by the monotonicity

property, and Fast Sdcc does not compute Br(F̃ \ {F}) (Line 9).

300 A. Pino Angulo and K. Shin

Fig. 5. The algorithms of Fast Sdcc (left) and Accurate Sdcc (right)

Item 4 solves Problem 1 of Sdcc, and Item 6 solves Problem 2. In partic-
ular, Fast Sdcc behaves identically to Lcc, if δ = 0.

Fast Sdcc jointly uses Br(F̃ \{F}) and SU(F,C). In this regard, Accurate
Sdcc (Fig. 5) aims to use these measure in more flexible way by leveraging

ϑα(F̃ , F) = α · SU(F,C) + (1 − α) · Br(F̃ \ {F}) − Br(F)
δ − Br(F)

,

where α satisfies 0 ≤ α ≤ 1. If Br(F̃ \ {F}) ≤ δ, 0 ≤ ϑα(F̃ , F) ≤ 1 holds.
This function may remind the reader of the well known feature selection

algorithm of mRMR [5]. mRMR tries to find an optimal balance between the
accumulative relevance to classes and the internal correlation of features through
a similar evaluation function. In contrast, the function above finds a balance
between the collective relevance (measured by the Bayesian risk) and the accu-
mulative relevance (measured by the symmetric uncertainty)

In each iteration of Repeat, Accurate Sdcc finds F that minimizes
ϑα(F̃ , F) under the condition of Br(F̃ \{F}) ≤ δ. This can be proven as follows.
For convenience, we let F̃ = (F1, F2, . . . , Fk).

1. As the features in F are sorted (Line 1), SU(Fi) ≥ SU(Fj) holds for i > j.

Fast and Accurate Steepest-Descent Consistency-Constrained Algorithms 301

2. When Accurate Sdcc starts to evaluate Fi, ϑ′ = minj=1,...,i−1 ϑα(F̃ , Fj),
ξ′ = minj=1,...,i−1 Br(F̃ \ {Fj}) and Br(F̃ \ {Fk}) = ξ′ hold (Line 16 & 18).

3. δ(Fi) < ξ′ is necessary for ϑα(F̃ , Fi) < ϑ′ (Line 9): Otherwise, ϑα(F̃ , Fi) ≥
ϑα(F̃ , Fk) ≥ ϑ′ follows from Br(F̃ \ {Fi}) ≥ δ(Fi) ≥ Br(F̃ \ {Fk}) and
SU(Fi,C) ≥ SU(Fk,C).

4. If Br(F̃ \ {Fi}) = ξ, ϑα(F̃ , Fj) ≥ ϑα(F̃ , Fi) holds for any j > i. Hence, Fi

yields the minimum ϑα(F̃ , F) (Line 15 and 16).

4 Experimental Evaluation

We investigate the performance of the Fast Sdcc and Accurate Sdcc through
experiments using the datasets described in Table 1. We run Fast Sdcc, Accu-
rate Sdcc, Sdcc and Lcc on these datasets with the same δ that varies in
{0, 0.01, . . . , 0.1}. For α of Accurate Sdcc, we use 0.75, which has turned
out to optimize the algorithm through experiments. Figure 6 shows the accuracy
value of each classifier when α is modified. Note that when α is 1, Accurate
Sdcc is equivalent to a simple filter based on SU ranking and when α is 0, the
output is the same that Fast Sdcc. The values plotted in the charts of this
section are the averages across the 16 datasets.

Fig. 6. Classification accuracy by AUC-ROC and size for different values of α.

4.1 Comparison in Classification Accuracy

To compare the feature selection algorithms in terms of classification accuracy,
we use three classifiers, namely, Näıve Bayes (NB), C4.5 and Support Vector
Machine (SVM). The procedures of the experiments are as follows.

1. We run the 4 feature selection algorithms on the 16 datasets with the 11
values of δ and obtain 4 · 16 · 11 = 704 datasets with the selected feature sets.

302 A. Pino Angulo and K. Shin

Table 1. Datasets used in the experiments. The columns headed by #Ex., #Ft. and
#Cl. show the number of examples, features and class labels, respectively

2. For each dataset obtained, we perform the ten-fold cross validation with the
3 classifiers and compute the averages of the obtained AUC-ROC measure-
ments.

Figure 7 shows the plots of these values. For every classifier, inferiority of
Sdcc to the other three seems evident. When using NB, as δ increases Fast and
Accurate Sdcc algorithms do not drastically output different results in terms of
accuracy as Sdcc and Lcc do it. This means that even when low quality sets are
feasible outputs, Fast and Accurate Sdcc seems to better avoid be trapped by
local optima. Recently, in [6] was proposed to use δ = 0.01.

Fig. 7. Classification accuracy by AUC-ROC.

The accuracy reached by the three learning algorithms fixing δ = 0.01 is max-
imum when Accurate Sdcc is used. Figure 8 shows the plots of the averaged ranks
to apply the Bonferroni Dunn multiple comparison test. When a plot of a feature
selection algorithm falls in the gray area of each chart, the algorithm is statis-
tically significantly inferior to the top ranked algorithm with the significance
level 10%. Therefore, the observed inferiority of Sdcc is verified. We compare
the other three. With NB, Fast Sdcc and Accurate Sdcc perform the best.
In particular, the difference from Lcc is statistically significant for many values
of δ. With C4.5 and SVM, we observe that Accurate Sdcc outperforms the

Fast and Accurate Steepest-Descent Consistency-Constrained Algorithms 303

Fig. 8. Ranking of classification accuracy.

Fig. 9. Size, ratio of number of evaluation and Bayesian risk.

other two, but its superiority cannot be statistically verified by the Bonferroni
Dunn test, which is known to be relatively conservative.

Overall, we can conclude that Fast Sdcc and Accurate Sdcc improve the
accuracy performance of Sdcc significantly, and their performance are at least
comparable with and probably better than that of Lcc. Fast Sdcc and Accu-
rate Sdcc consistently select feature sets smaller in size than Lcc (Fig. 9).

4.2 Comparison in Time-Efficiency

We measure the time-efficiency of the algorithms by the number of times in which
the algorithms compute Bayesian risks since the time to compute Bayesian risks
is dominating in the entire execution time of the algorithms. Chart in the center
of Fig. 9 shows plots of the averaged ratios of Sdcc to the other algorithms.

We see that Fast Sdcc and Accurate Sdcc compute as many Bayesian
risks as Lcc for δ = 0, that is, they are as fast as Lcc. This is because Fast
Sdcc and Accurate Sdcc give up further search in each iteration of Repeat
when they detect the first occurrence of Br(F̃ \ {F}) = Br(F) (Lines 12 to 14
in Fig. 5), and hence, they behave exactly the same as Lcc. For δ > 0, the chart
indicates that Sdcc computes Bayesian risks 30 times more than Fast Sdcc,
while it does about 20 to 30 times more than Accurate Sdcc.

Also, Table 2 shows the actual run-time of the algorithms for each dataset
measured in seconds for δ = 0.01. The averaged run-time ratios of Sdcc and
Lcc, Fast Sdcc and Accurate Sdcc are 45.7, 34.6 and 33.4, respectively, and
are very closed to the ratios in the numbers of computation of Bayesian risks.

304 A. Pino Angulo and K. Shin

Consequently, we can conclude that Fast Sdcc and Accurate Sdcc are
20 to 30 times faster than Sdcc and a few times slower than Lcc.

Table 2. Run-time (sec.) with δ = 0.01 (Intel Core i3 2.6 GHz and 8 GB memory)

Arr Opt Wav Mfa Mfo Mka Mpi Sem

FSdcc 0.504 1.239 0.971 1.586 0.927 0.694 1.399 1.420

ASdcc 0.532 1.268 0.930 1.448 0.929 0.691 1.468 1.452

Lcc 0.398 1.268 0.632 1.388 0.729 0.665 0.976 0.787

Sdcc 43.839 14.041 6.557 107.201 6.638 5.054 140.312 127.602

5 Conclusion

We have identified two important problems of Sdcc and have proposed two new
feature selection algorithms, namely, Fast Sdcc and Accurate Sdcc, that fix
the problems and improve the performance of Sdcc in both accuracy and effi-
ciency. The degree of improvement is remarkable. Our experiments have shown
that the improvement in accuracy is statistically significant, and Fast Sdcc and
Accurate Sdcc are about 20 and 30 times faster than Sdcc. Compared with
Lcc, Fast Sdcc and Accurate Sdcc are only a few times slower but exhibit
comparable or better accuracy. Besides, the size of outputs by Fast Sdcc and
Accurate Sdcc is fairly smaller than Lcc and the difference between Fast
Sdcc and Lcc is statistically significant.

Acknowledgment. This work was partially supported by the Grant-in-Aid for Sci-
entific Research (JSPS KAKENHI Grant Number 26280090) from the Japan Society
for the Promotion of Science.

References

1. Molina, L., Belanche, L., Nebot, A.: Feature selection algorithms: a survey and
experimental evaluation. In: Proceedings of IEEE International Conference on Data
Mining, pp. 306–313 (2002)

2. Zhao, Z., Liu, H.: Searching for interacting features. In: Proceedings of International
Joint Conference on Artificial Intelligence, pp. 1156–1161 (2007)

3. Shin, K., Xu, X.M.: Consistency-based feature selection. In: Velásquez, J.D., Ŕıos,
S.A., Howlett, R.J., Jain, L.C. (eds.) KES 2009. LNCS, vol. 5711, pp. 342–350.
Springer, Heidelberg (2009)

4. Shin, K., Xu, X.M.: A consistency-constrained feature selection algorithm with the
steepest descent method. In: Torra, V., Narukawa, Y., Inuiguchi, M. (eds.) MDAI
2009. LNCS, vol. 5861, pp. 338–350. Springer, Heidelberg (2009)

Fast and Accurate Steepest-Descent Consistency-Constrained Algorithms 305

5. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information: criteria
of max-dependency, max-relevance and min-redundancy. IEEE Trans. Pattern Anal.
Mach. Intell. 27(8), 1226–1238 (2005)

6. Shin, K., Fernandes, D., Miyazaki, S.: Consistency measures for feature selection:
a formal definition, relative sensitivity comparison, and a fast algorithm. In: 22nd
International Joint Conference on Artificial Intelligence, pp. 1491–1497 (2011)

Conceptual Analysis of Big Data Using Ontologies
and EER

Kulsawasd Jitkajornwanich1(✉) and Ramez Elmasri2

1 Geo-Informatics and Space Technology Development Agency (Public Organization),
Ministry of Science and Technology of Thailand, 120 The Government Complex,

Chaeng Wattana Road, Lak Si, Bangkok 10210, Thailand
kulsawasdj@gistda.or.th

2 Department of Computer Science and Engineering,
The University of Texas at Arlington, 701 S Nedderman Dr, Arlington, TX 76019, USA

elmasri@cse.uta.edu

Abstract. Large amounts of “big data” are generated every day, many in a “raw”
format that is difficult to analyze and mine. This data contains potential hidden
meaningful concepts, but much of the data is superfluous and not of interest to
the domain experts. Thus, dealing with big raw data solely by applying a set of
distributed computing technologies (e.g., MapReduce, BSP [Bulk Synchronous
Parallel], and Spark) and/or distributed storage systems, namely NoSQL, is
generally not sufficient. Extracting the full knowledge that is hidden in the raw
data is necessary to efficiently enable analysis and mining. The data needs to be
processed to remove the superfluous parts and generate the meaningful domain-
specific concepts. In this paper, we propose a framework that incorporates
conceptual modeling and EER principle to effectively extract conceptual knowl‐
edge from the raw data so that mining and analysis can be applied to the extracted
conceptual data.

Keywords: Conceptual modeling · Big data · NoSQL · Distributed computing

1 Introduction

Enormous amounts of data are rapidly generated every day in almost every application
domain. These raw data could be thought of as a huge data warehouse, which contains
hidden and meaningful information. However, to analyze the available raw data directly
from its original formats is not easy as the data is often in a format that is difficult to
analyze and is usually ‘big’.

Although there is no formal definition of big data, 3 V definition: volume, variety,
and velocity, is often used to describe big data by its characteristics [1, 28]. In any given
domain, big data contains potential hidden meaningful concepts as well as superfluous
data that are not of interest to the domain experts. As a result, dealing with big data
solely by applying a set of distributed computing technologies such as MapReduce [2],
BSP (Bulk Synchronous Parallel) [3], and Spark [4]; and/or distributed storage systems
namely NoSQL databases [7] may not be an efficient way to discover the knowledge

© Springer International Publishing Switzerland 2015
P. Pardalos et al. (Eds.): MOD 2015, LNCS 9432, pp. 306–317, 2015.
DOI: 10.1007/978-3-319-27926-8_27

hidden in the data. To enable analysis, the big data need to be pre-processed so that the
superfluous parts are removed (also known as a “cleaning” of the raw data) and the
meaningful domain-specific knowledge is extracted.

Ontology, a specification of conceptualization [14], has practically been used in
knowledge modeling as it allows domain-specific knowledge to be formalized and
reasoned about in a logical way. ER (Entity-Relationship) and EER (Enhanced-ER)
models/diagrams are excellent tools to communicate concepts, and can also be easily
converted to relational tables. Our goal is to enable big data in any given domain to be
analyzed by utilizing conceptual modeling (through ontologies) and EER to represent
the domain-specific knowledge in the data. The formalized concepts are developed based
on consulting with domain experts in the area of knowledge covered by the raw data.

An overview of our framework is shown in Fig. 1. The advantages of our framework
include the capture of domain-specific conceptual knowledge (which is typically much
smaller in size, compared to the raw data), accommodating existing traditional analysis
as well as facilitating new knowledge discovery, and better system performance by
applying distributed technologies (e.g., map-reduce, HDFS [Hadoop Distributed File
System], etc.) to clean and convert the raw data. Our framework also offers more robust
and user-friendly analysis by storing the final conceptual knowledge in a relational
database.

The organization of this paper is as follows. We describe our framework in Sect. 2.
A case study that adopted the framework is discussed in Sect. 3. We use big raw rainfall
data in our case study. Finally, conclusion and future work are discussed in Sect. 4. In the
case study, we briefly describe formalization of rainstorm ontology concepts [10–12] and
translate them into EER. The mapping algorithms are implemented and the comparison
experiments are performed. We also give some examples of how analysis and mining can
be done on the resulting conceptual storm data.

2 Framework Description

There are four main components in our framework as shown in Fig. 1, each of which is
described in the following subsections.

2.1 Developing and Formalizing Domain-Specific Concepts into an Ontology
with the Assistance of Domain Experts

The first process is to study a particular domain (where the big raw data comes
from), come up with the domain-specific concepts, and formalize them into an
ontology. This requires a literature review in the application domain as well as
working with the domain experts to determine the important concepts that are
needed. Investigation as to how their research is currently conducted using the tradi‐
tional data processing methods is also required; some traditional methods (or more
complex analysis) could be improved (or realized) by utilizing available big data
analysis tools such as map-reduce/Hadoop [6].

Conceptual Analysis of Big Data Using Ontologies and EER 307

Big Raw Data

Ontology

Concepts
EER

Conceptual Data
(3) Mapping Algorithms in

Distributed Computing and/or

Storage Frameworks

Relational

Tables

input

Users

(2) (2)

output

(4)
Domain

Experts

Fig. 1. Framework architecture

The developed ontology must satisfy the domain experts’ requirements and capture
not only the essential concepts that they are looking for but also other potential concepts–
which may not have been previously identified, but could be of benefit to them. This
can also help the domain users to better understand their own datasets. The hidden insight
and conceptual relationships can consequently lead them to the knowledge that was not
previously discovered. Thus, further complex analysis and mining can be applied.

2.2 Translating the Domain-Specific Ontology to EER and Mapping the EER
to Relational Tables

In the context of big data, an RDBMS (Relational Database Management System) is
usually not a preferred option and often labeled as incompatible with the needs of big
data analysis and mining. Their key features, however, are well recognized, in term of
user-friendly analysis capabilities. The concepts of NoSQL databases, on the other hand,
spread rapidly and caught a lot of attention as tools for big data storage and analysis/
mining in the past few years [8, 9, 23] (as of now, there are more than 200 different
NoSQL databases available in the market [7]). The main advantages of NoSQL data‐
bases include high availability, fast key-value access, horizontal scalability, fault-toler‐
ance, and dynamic/semi-structured datatype support.

However, the emerging of NoSQL does not primarily intend to replace the conven‐
tional relational database but instead complement it as one application may work for
one system but not for the other depending upon the application scenario. Some features
of RDBMS are not readily available on NoSQL such as strong consistency, full support
on relational features (e.g., join, group by) across partitions/nodes, normalization, and
fully-developed declarative query language [29, 30].

Our framework combines the benefits from both systems (RDBMS and NoSQL)
together. We use a distributed storage system (HDFS) during the processing steps and
load the final conceptual outputs into a relational database.

To store the final conceptual outputs in a relational database, we translate the formal‐
ized domain concepts from the previous process to an EER model, which will later be
mapped to relational tables. The general ideas of ontology-to-EER translation are as follows:

308 K. Jitkajornwanich and R. Elmasri

– An object in ontology becomes an entity in EER, and a class becomes an entity type.
– A datatype property (a relation between an object and a data value [31]) in ontology

becomes an attribute or derived attribute of an entity in EER.
– An object property (a relation between objects [31]) in ontology becomes an attribute

(of an entity) that is generally a foreign key. However, in some cases depending on
the application ontology, an object (or datatype) property can be mapped to an entire
new entity to better suit the required types of analysis (e.g., storm centers as we will
see in Sect. 3.2: Fig. 4).

– Other ontology concept specifications are translated through the use of EER features
such as primary and foreign keys, cardinality and participation constraints, special‐
ization and generalization, stored procedures, UDFs, triggers, etc.

The EER-to-relational tables mapping process is done by using the techniques
described in [14].

2.3 Designing and Implementing Mapping Algorithms to Convert the Raw Data
to the Conceptual Data

To design mapping algorithms, four main factors are taken into account: (1) structure
and format of the big raw data, (2) choices of distributed computing/storage framework,
(3) domain-specific ontology, and (4) EER model corresponding to the ontology.

Understanding the structure and format of the big raw data helps in optimizing the
computation, I/O, and buffer usage in the raw data-to-conceptual data mapping algo‐
rithms. Three aspects of big raw data are considered: data representation (i.e., examining
how the raw data is formatted and interpreted), data transmission (i.e., determining
delivery method, transmission frequency, and downtime period of the raw data), and
data integrity (i.e., ensuring the consistency of the raw data). Next, we make a decision
as to which distributed technology should be used. The selected technology should take
full advantage of the characteristics of the raw data as well as other available resources
(e.g., hardware). The ontology is used to ensure the formalized domain concepts are
correctly identified. Finally, the corresponding EER model is used to convert the final
conceptual outputs into relational database-compatible format. In addition, since the
final conceptual data is now stored in a relational database, the verification process can
also be done through SQL.

2.4 Performing Analysis and Mining on the Conceptual Relational Data

After the algorithms are executed on the big raw datasets, we now have the extracted
conceptual data stored in a relational database. The size of the conceptual relational outputs
are usually significantly reduced when compared to the size of the big raw data as the
superfluous parts are removed and the raw data is summarized/converted into meaningful
domain-specific concepts. The analysis and mining tasks can then be easily conducted by
a domain user on the conceptual knowledge base both directly via SQL [5] and indirectly
by extracting the conceptual data from the relational database.

Conceptual Analysis of Big Data Using Ontologies and EER 309

3 Case Study: Rainfall Precipitation Data

In this section, we show a case study by which the proposed framework has been adopted.
Our big raw data is rainfall precipitation datasets, MPE (Multisensors Precipitation
Estimate) [24], retrieved from NOAA: National Weather Service (NWS) [21, 22] in the
hydrology domain. We describe how each process of the framework is applied to our
big raw rainfall data in the following subsections.

3.1 Rainstorm Formalization

In the hydrology domain, rainfall precipitation data is one of the hydrological observa‐
tion types that most hydrologists work with (they also work with other types of datasets,
such as soil moisture, river/stream levels, and watersheds). Rainfall-related analysis
usually involves three characteristics of the data: rainfall statistical properties, correla‐
tion among storm characteristics (such as DDF: Depth-Duration-Frequency [13]), and
focusing on the extreme precipitation values. However, the majority of these tasks are
based on a location-specific analysis [13, 15, 16]. This prevents the analysis tasks from
extracting storm-specific (or called ‘overall’ [10–12]) spatio-temporal aspects of the
storms, which include storm movement (trajectory) and speed. After consulting with the
hydrology experts, we introduced a partial rainstorm ontology that can eliminate this
limitation and also support traditional location-based analysis. In the resulting ontology,
three formalizations of rainstorms are introduced [10]: local storm, hourly storm, and
overall storm.

Our ontology formalization considers the raw data framework, which we briefly
describe now. The rainfall precipitation data is recorded hourly in a text file format. The
data is reported for a regular grid structure called HRAP: Hydrologic Rainfall Analysis
Project [17, 18], where each grid location is approximately 4 km by 4 km (see Fig. 2).
Each grid (site) location has a unique identifier, from which a lat/long coordinate can
be derived. The format of the raw data contains four attributes: row number in the text
file, site location, precipitation value, and observation time. Each line in the data file
represents a precipitation value at a particular site during a particular hour.

4 km

SiteID = 355879

 - HRAP: (370, 210)

 - Lat/Long: (31.7513, -106.2566) 4 km

Fig. 2. Example of site location in HRAP

9:00

hs1

10:00

hs2

11:00

hs3

Grouping
window

Spatial
window

Storm

center

Storm

track

Fig. 3. An overall storm and its hourly storms

310 K. Jitkajornwanich and R. Elmasri

Informally, a local storm is a site-specific storm, which considers each site location
independently when analyzing a storm. An example of local storms is the sequence of
storms (separated by a certain number of hours with zero precipitation—inter-event time
[15, 19, 20]) that occurred at site location 586987 last month. An hourly storm has an
orthogonal concept to local storm. It considers a specific time point (hour) instead of a
particular site location, and includes all contiguous locations that have precipitation during
the same hour. The last storm formalization, overall storm, considers both location and time
together when analyzing a storm. The result is the capture of storm as a whole, allowing
storm movement, speed, and other overall storm characteristics that could not be found in
most hydrology papers to be materialized [13, 15, 16, 19, 20]. An overall storm can be
viewed as a sequence of hourly storms as they progress through time, as long as they have
a spatial overlap from one hour to the next. The combination of hourly storms that form an
overall storm satisfies two requirements: grouping window and spatial window [10].
Figure 3 shows an example of how an overall storm moves over time.

Each of the three types of rainfall concepts will have specific features. We will
discuss these in the next section, when we develop the EER diagram for these concepts.

3.2 Ontology Translation and Mapping

To translate the domain ontology to an EER model for storing the final conceptual
outputs in a relational database, we take into account the formalized domain-specific
concepts and the characteristics of the raw rainfall data, and use the methodology
described in [14]. Our rainstorm ontology is translated to an EER, which later be mapped
to the database schema (as shown in Figs. 4 and 5) containing 8 relational tables.

LocalStormHours stores local storms information for each hour of every site;
its characteristics are summarized into LocalStorms. Each local storm is uniquely
identified by (YearID, LSID); YearID indicates a particular year where the local
storms are identified. HourlyStormSites and HourlyStorms contain precipita‐
tion value for each site of an hourly storm, and its statistics, respectively. Each hourly
storm can be uniquely identified by (DatetimeUTC, HSID) as the rainfall data files
are recorded hourly and each file is independent from others.

OverallStormHourlyStorms stores information of all hourly storms
combined into an overall storm. The primary key (denoted by underline) for this table
is (DateTimeUTC, HSID) because an hourly storm can belong to only one overall
storm. Technically, this table could be further mapped to HourlyStorms by having
(YearID, OSID) as a foreign key (denoted by arrow) to OverallStorms. However,
we mapped it into a separate table because the hourly storm statistics (Hourly-
Storms) is calculated at the end. Having a separated OverallStormHourly-
Storms, we do not need to wait until hourly storm identification is concluded in order
to identify overall storms. Hourly storm and overall storm identifications can run
concurrently. OverallStormTracks contains track information of the overall
storms for each hour. Note that the OverallStormTracks table is derived from the
relationships among the entity types: Overall Storm, Hourly Storm,
Centers, and Time Point in Fig. 4.

Conceptual Analysis of Big Data Using Ontologies and EER 311

Fig. 4. EER diagram for rainstorm ontology

3.3 Implementation of Storm Identification System

In this process, we developed mapping algorithms designed specifically to take full
advantage of the structure and format of the big raw rainfall data in extracting its domain-
specific ontology. The map-reduce (MR) paradigm is selected as our distributed
computing framework as it is one of the well-known and efficient tools in analyzing big
data across multiple machines. Our implemented mapping algorithms are called MR-
based Storm Identification System [11, 12]. Three main components of the system consist
of MR-based- local storm identification (MR-LSI), hourly storm identification (MR-
HSI), and overall storm identification (MR-OSI). With map-reduce, we can efficiently
utilize our cluster of 19 servers as we can see in our comparison experiment between
previous (non-MR) approach and MR-based approach (see Table 1).

To compare the system performance of the MR-based approach [11, 12] with the
previous (non-MR) approach, we use a rainfall dataset (MPE) from October 2010 to
December 2011 covering 37,413 site locations in Texas, retrieved from NOAA-NWS
[10]. In the non-MR approach, the dataset is resided in a relational database and the
identification process is done on a single server. The server runs on Microsoft Windows
Server 2008 Enterprise OS with 2.83 GHz Intel Xeon quad-core processors, 20 GB of
RAM, 500 GB of local disk, and 10 TB of external disk. In the MR-based approach, we
use the same dataset but is in a textual format (which covers much more site locations
[i.e., Texas and some surrounding areas]). The experiment is done on a Hadoop cluster
of 1 master node and 18 worker nodes. All nodes have the same hardware specification
(except local disks: 1.5 TB in worker node and 3 TB in master node): 3.2 GHz Intel
Xeon quad-core processors and 4 GB of RAM. The cluster is operated by Rocks Cluster
6.3 OS and has Hadoop 1.0.3 installed in every node.

312 K. Jitkajornwanich and R. Elmasri

Fig. 5. Database schema corresponding to the rainstorm EER

The computational time comparison between the non-MR implementations and the
MR-based implementations is shown in Table 1. The experiments of the two approaches

Table 1. Comparison of processing time between non-MR and MR-based approaches

Conceptual Analysis of Big Data Using Ontologies and EER 313

give the same results but the MR-based approach is executed significantly faster. The
MR-based approach allows programs to be executed distributedly on multiple machines
and hence the efficiency of the storm analysis is increased.

3.4 Conceptual Analysis of Rainfall Data

In this section, we show some examples of how rainfall data can be analyzed by using
our extracted storm data. From the experiment mentioned in Sect. 3.3, we extend it to
the entire rainfall dataset for 16 years from 1997 to 2012. The conceptual storm data is
extracted, summarized, and stored in a relational database. The size of the conceptual
storm data is less than 1 % of the size of the raw rainfall data as shown in Table 2.

We divide the analysis and mining tasks into two groups: (1) traditional hydrology
analysis and (2) more flexible/robust analysis and mining [26]. We only discuss the first
of these in this paper due to space limitations.

Most traditional rainfall analysis is based on location, meaning each site or region
(set of sites) is considered separately when analyzing a storm. The goal is to investigate
characteristics of storms at a particular location. These analyzed characteristics will then
be used in creating an efficient/cost-effective hydraulic control structure (e.g., storm
drain [to route localized runoff] and parking lot design for effective draining) and
designing river flow or flooding prediction models [25]. As mentioned, the traditional
rainfall analysis can be divided into three categories [13, 15, 16, 25]: (1) storm statistical
properties, (2) relationships between/among characteristics of storms, and (3) focusing
on extreme precipitation values of storms. Some examples of the first item are as follows
(for more examples in other analyses, please refer to [26]).

Table 2. Number of (conceptual) storm records in each component and year

In storm statistical properties analysis, each characteristic of storms is analyzed
separately for its statistical properties. The storm characteristics include inter-event
time, total rainfall, and duration. There are six main statistics studied: mean

314 K. Jitkajornwanich and R. Elmasri

(average) inter-event time between storms, mean total rainfall at a particular loca‐
tion, number of storms during the study period, total duration of all local storms,
distribution of total rainfall values over the various storms, and distribution of storm
durations [15]. Each statistical property is analyzed for a particular inter-event time.
Most statistics can directly be calculated using pre-computed attributes (such as
query SQL1). For statistics that were not pre-computed, they can also be easily
calculated by using SQL (see SQL2). In our analysis, we use h = 6 h as the inter-
event time. To determine the statistical properties for other inter-event times (h = 8,
12, 16, …), we just need to change the inter-event-count parameter [26] in the local
storm identification program and re-run it.

SQL1. Determine mean total rainfall, number of storms, total duration for a given
location

1: SELECT (AVG(TotalRainfall)|COUNT(*)|SUM(Duration))

2: FROM LocalStorms

3: [WHERE (SiteID = < site > |SiteID IN < region >)]

SQL2. Determine mean storm inter-event time for a given location (a site or region)

1: SELECT AVG(L2.Start–L1.Stop)

2: FROM LocalStorms L1 JOIN LocalStorms L2

3: ON L1.YearID = L2.YearID AND L1.LSID = L2.LSID-1

4: [WHERE (SiteID = < site > |SiteID IN < region >)]

4 Conclusion and Future Work

In this paper, we propose a generalized analysis framework for big data in a given domain
by utilizing conceptual modeling and EER. We show how the framework can be applied
through a case study by using big raw rainfall datasets in the hydrology domain. In the
rainfall case study, we overviewed the formalization of the partial rainstorm ontology
and translated it into an EER. The MR-based storm identification system is implemented
based on the developed rainstorm ontology. Finally, we show some examples of how
traditional hydrology analysis can be done by utilizing SQL capabilities over the
conceptual storm data. In addition to traditional hydrology analysis, we are working on
more complex mining tasks [27], such as pattern matching of storms based on storm
shape and trajectory, directional analysis of storm progression using Markov models,
and other approaches to identify and classify storms based on their characteristics. These
results will be communicated in future work.

Although our ontology-guided framework can accommodate a domain-specific and
user-friendly analysis of big data by converting raw data to conceptual data, the extracted

Conceptual Analysis of Big Data Using Ontologies and EER 315

conceptual data may be too large to fit in a relational database, even if it is distributed
or parallel. Thus, there are options to either perform an analysis in a finer sub-domain
or convert the EER/relational tables concepts to a NoSQL system; in the latter option,
some RDBMS features might be sacrificed.

References

1. Embley, D.W., Liddle, S.W.: Big data—conceptual modeling to the rescue. In: 32nd
International Conference on Conceptual Modeling (2013)

2. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. In: 6th
Symposium on Operating Systems Design and Implementation (2004)

3. Valiant, L.G.: A bridging model for multi-core computing. In: 16th Annual European
Symposium (2008)

4. Apache. Apache Spark™. http://spark.apache.org
5. Zou, B., Ma, X., Kemme, B., Newton, G., Precup, D.: Data mining using relational database

management systems. In: 10th Pacific-Asia Conference (2006)
6. Lam, C.: Hadoop in Action. Dreamtech Press, New Delhi (2011)
7. Edlich, S.: List of NOSQL Databases. http://nosql-database.org
8. Amazon. Amazon DynamoDB. http://aws.amazon.com/dynamodb
9. MongoDB. http://www.mongodb.org

10. Jitkajornwanich, K., Elmasri, R., Li, C., McEnery, J.: Extracting storm-centric characteristics
from raw rainfall data for storm analysis and mining. In: 1st ACM SIGSPATIAL International
Workshop on Analytics for Big Geospatial Data (2012)

11. Jitkajornwanich, K., Gupta, U., Elmasri, R., Fegaras, L., McEnery, J.: Using mapreduce to
speed up storm identification from big raw rainfall data. In: 4th International Conference on
Cloud Computing, GRIDs, and Virtualization (2013)

12. Jitkajornwanich, K., Gupta, U., Shanmuganathan, S.K., Elmasri, R., Fegaras, L., McEnery,
J.: Complete storm identification algorithms from big raw rainfall data. In: 2013 IEEE
International Conference on Big Data (2013)

13. Overeem, A., Buishand, A., Holleman, I.: Rainfall depth-duration-frequency curves and their
uncertainties. J. Hydrol. 348, 124–134 (2008)

14. Elmasri, R., Navathe, S.: Fundamentals of Database Systems, 6th edn. Pearson Education,
New Delhi (2010)

15. Asquith, W.H., Roussel, M.C., Cleveland, T.G., Fang, X., Thompson, D.B.: Statistical
characteristics of storm interevent time, depth, and duration for eastern New Mexico,
Oklahoma, and Texas. Professional Paper 1725, US Geological Survey (2006)

16. Lanning-Rush, J., Asquith, W.H., Slade, Jr., R.M.: Extreme precipitation depth for Texas,
excluding the trans-pecos region. Water-Resources Investigations Report 98–4099, US
Geological Survey (1998)

17. NOAA’s national weather service. The XMRG File Format and Sample Codes to Read
XMRG Files. http://www.nws.noaa.gov/oh/hrl/dmip/2/xmrgformat.html

18. Consortium of universities for the advancement of hydrologic science, Inc. (CUAHSI). ODM
Databases. http://his.cuahsi.org/odmdatabases.html

19. Asquith, W.H.: Depth-duration frequency of precipitation for Texas. Water-Resources
Investigations Report 98–4044, US Geological Survey (1998)

20. Asquith, W.H.: Summary of dimensionless Texas hyetographs and distribution of storm depth
developed for texas department of transportation research project 0–4194. Report 0–4194-4,
US Geological Survey (2005)

316 K. Jitkajornwanich and R. Elmasri

http://spark.apache.org
http://nosql-database.org
http://aws.amazon.com/dynamodb
http://www.mongodb.org
http://www.nws.noaa.gov/oh/hrl/dmip/2/xmrgformat.html
http://his.cuahsi.org/odmdatabases.html

21. National Oceanic and Atmospheric Administration (NOAA). National Weather Service River
Forecast Center: West Gulf RFC (NWS-WGRFC). http://www.srh.noaa.gov/wgrfc

22. Unidata. What is the LDM? https://www.unidata.ucar.edu/software/ldm/ldm-6.6.5/tutor-ial/
whatis.html

23. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., Chandra, T.,
Fikes, A., Gruber, R.E.: Bigtable: a distributed storage system for structured data. In: 7th
USENIX Symposium on Operating Systems Design and Implementation (2006)

24. NOAA. MPE: Multisensor Precipitation Estimate. http://www.erh.noaa.gov/marfc/Maps/
xmrg/index_java.html

25. Mishra, S.K., Singh, V.P.: Soil Conservation Service Curve Number (SCS-CN)
Methodology. Kluwer Academic Publishers, Boston (2003)

26. Jitkajornwanich, K.: Analysis and modeling techniques for geo-spatial and spatio-temporal
datasets. Doctoral Dissertation, The University of Texas at Arlington (2014)

27. Cheng, T., Haworth, J., Anbaroglu, B., Tanaksaranond, G., Wang, J.: Spatio-Temporal Data
Mining. Handbook of Regional Science. Springer, Heidelberg (2013)

28. IBM Big Data and Analytics Hub. Understanding Big Data: e-book. http://
www.ibmbigdatahub.com/whitepaper/understanding-big-data-e-book

29. Jin, R. NoSQL and Big Data Processing: Hbase, Hive and Pig, etc. http://www.cs.kent.
edu/~jin/Cloud12Spring/HbaseHivePig.pptx

30. Widom, J. NoSQL Systems: Overview. http://openclassroom.stanford.edu/Main-Folder/
courses/cs145/old-site/docs/slides/NoSQLOverview/annotated.pptx

31. World Wide Web Consortium (W3C). OWL Web Ontology Language Guide. http://
www.w3.org/TR/owl-guide/

Conceptual Analysis of Big Data Using Ontologies and EER 317

http://www.srh.noaa.gov/wgrfc
https://www.unidata.ucar.edu/software/ldm/ldm-6.6.5/tutor-ial/whatis.html
https://www.unidata.ucar.edu/software/ldm/ldm-6.6.5/tutor-ial/whatis.html
http://www.erh.noaa.gov/marfc/Maps/xmrg/index_java.html
http://www.erh.noaa.gov/marfc/Maps/xmrg/index_java.html
http://www.ibmbigdatahub.com/whitepaper/understanding-big-data-e-book
http://www.ibmbigdatahub.com/whitepaper/understanding-big-data-e-book
http://www.cs.kent.edu/%7ejin/Cloud12Spring/HbaseHivePig.pptx
http://www.cs.kent.edu/%7ejin/Cloud12Spring/HbaseHivePig.pptx
http://openclassroom.stanford.edu/Main-Folder/courses/cs145/old-site/docs/slides/NoSQLOverview/annotated.pptx
http://openclassroom.stanford.edu/Main-Folder/courses/cs145/old-site/docs/slides/NoSQLOverview/annotated.pptx
http://www.w3.org/TR/owl-guide/
http://www.w3.org/TR/owl-guide/

A Parallel Consensus Clustering Algorithm

Olgierd Unold(B) and Tadeusz Tagowski

Department of Computer Engineering, Faculty of Electronics,
Wroclaw University of Technology, Wyb. Wyspianskiego 25,

50-370 Wroclaw, Poland
olgierd.unold@pwr.edu.pl

Abstract. Consensus clustering is a stability-based algorithm with a
prediction power far better than other internal measures. Unfortunately,
this method is reported to be slow in terms of time and hard to scalability.
We presented here consensus clustering algorithm optimized for multi-
core processors. We showed that it is possible to obtain scalable per-
formance of the compute-intensive algorithm for high-dimensional data
such as gene expression microarrays.

Keywords: Clustering · Consensus clustering · Multi-core · Microarray
data analysis

1 Introduction

Following the survey by Handl et al. [11], clustering can be viewed as a process
of making a choice of: (a) a distance function, (b) a clustering algorithm, and
(c) a validation method. However, according to the same article of Handl et al.,
the subject literature pays more attention to clustering algorithms, rather than
to validation methods. Meanwhile, however, the identification of an adequate
validation measure seems to be a central part of clustering, especially clustering
biological data.

Microarray data analysis involves, among others, clustering of high-
dimensional gene expression microarray data [2]. A wide range of clustering
methods for microarray data analysis have evolved, ranging from partitional and
hierarchical clustering, biclustering, flat and partition-based clustering, fuzzy
clustering, model-based clustering, optimization-based clustering, network-based
clustering, ensemble clustering, to hybrid approaches [19]. As noted in [11], clus-
tering post-genomic data has to struggle with high-dimensional data, often with
noise and/or missing values. Moreover, clustering prediction is expected to dis-
cover the inherent biological structure in a data [12]. In the light of above-
mentioned facts, the use of internal, data-centric validation measures appears to
be the most fundamental issue in clustering biological data, including microarray
data.

The research is financed by Wroclaw University of Technology statutory grant.

c© Springer International Publishing Switzerland 2015
P. Pardalos et al. (Eds.): MOD 2015, LNCS 9432, pp. 318–324, 2015.
DOI: 10.1007/978-3-319-27926-8 28

A Parallel Consensus Clustering Algorithm 319

In the literature, a number of internal clustering validation measures (ICVMs
for short) have been proposed (e.g. [11,15]). The stability-based methods [3–
7,9,10,13,14,17] are those approaches, among the different ICVMs, which are
less biased than standard internal validation methods when comparing clustering
with different similarity measures. Moreover, Giancarlo et al. [8] showed, that
stability-based methods outperform other internal measures on microarray data
in terms of prediction. The main drawback is that the stability-based ICVMs are
the slowest in terms of time. Giancarlo et al. reported also a lack of scalability
for the most precise internal validation measures. Consensus clustering (CC for
short), by Monti et al. [17], turned out to be a stability-based method with the
best precision, although the method is placed among the slowest.

Based on the above considerations, this paper focuses on a multi-core consen-
sus clustering algorithm (MCCC for short), which parallelizes all calculations.
The MCCC algorithm has been written as a R statistical programming language
package [21], including the code for parallel execution on several CPUs.

2 Consensus Clustering

Original Consensus clustering method proposed by Monti et al. in [17] performs
multiple runs of a single clustering algorithm in order to produce a set of consen-
sus matrices. The multiple runs are performed on re-sampled parts of the given
data set. Consensus matrices are then used to assess stability of resulting clus-
ters for each proposed number of clusters. By analysing contents of consensus
matrices, and changes in empirical cumulative distributions of those matrices it
is possible to find the best suited number of clusters for given data.

Algorithm 1. Consensus-Clustering (D, Resample, H, P , a, kmin, kmax)
1: input: D is the input dataset
2: input: Resample is the re-sampling scheme used for extracting a subset of the

dataset
3: input: H is the number of Resample and an algorithm a runs performed on D
4: input: P is the percentage of rows extracted each time in the sub-sampling pro-

cedure
5: input: a is the clustering algorithm used
6: input: kmin and kmax set a range of expected number of clusters in the dataset
7: output: Mk

s is the consensus matrices for each kmin ≤ k ≤ kmax

8: for kmin ≤ k ≤ kmax do
9: initialize to empty connectivity matrices

10: for 1 ≤ h ≤ H do
11: perform Resample on D and assign to D(h)

12: group elements in D(h) in k clusters using algorithm a
13: build a connectivity matrix based on clustering algorithm’s a results for k
14: end for
15: using connectivity matrices build a consensus matrix Mk

s for k
16: end for
17: return Mk

s

320 O. Unold and T. Tagowski

To produce consensus matrices the procedure needs a dataset, a re-sampling
method for perturbation of the data set, a clustering algorithm, number of runs
of the algorithm, percentage of vectors taken from the dataset in each resampling
procedure, and a range of expected number of clusters. Having those parameters,
the procedure performs for each expected number of clusters multiple runs of
re-sampling and clustering algorithms on the data, so as all clustering algorithms
are performed on a perturbed part of the dataset. For each expected number of
clusters two matrices keep the results of clustering algorithms. First matrix,
called an identity matrix, identifies how many times two vectors where placed
in the same clusters in all the runs of clustering algorithm for given expected
number of clusters. Second matrix, called a connectivity matrix, says how many
times two points were in the re-sampled dataset in all the runs. The quotient of
those matrices is the aforementioned consensus matrix. The procedure can be
described by the pseudo-code Algorithm 1.

2.1 Multi-core Implementation of Consensus Clustering

Procedure of consensus clustering described in [17] is the natural candidate for
parallelization. It requires many repeated and independent runs of one clustering
algorithm for each proposed number of clusters. Results of those multiple runs
are then processed in order to build consensus matrices for each proposed number
of clusters.

Algorithm 2. MultiCore-Consensus-Consensus (D, H, P , a, kmin, kmax, c)
1: input: D is the input dataset
2: input: H is the number of sub-sampling steps performed on D
3: input: P is the percentage of rows of the dataset randomly extracted each time in

the sub-sampling procedure
4: input: a is the clustering algorithm to perform on each sub-sampled dataset
5: input: kmin and kmax set a range of probable number of clusters in the dataset
6: input: c is the number of cores to use for parallelization
7: output: Mk

s is the consensus matrices for each kmin ≤ k ≤ kmax

8: for kmin ≤ k ≤ kmax dividing iterations among c cores do
9: initialize to empty connectivity matrices

10: for 1 ≤ h ≤ H do
11: using P perform subsampling on D and assign to D(h)

12: group elements in D(h) in k clusters using algorithm a
13: build a connectivity matrix based on clustering algorithm’s a results for k
14: end for
15: using connectivity matrices build a consensus matrix Mk

s for k
16: end for
17: return Mk

s

High computational complexity of clustering algorithms and iterational char-
acter of consensus methods exhibit coarse-grained parallelism and therefore are
easy to parallelize. Our implementation aims at speeding up consensus meth-
ods by parallel implementation that uses widely available multi-core processors.

A Parallel Consensus Clustering Algorithm 321

We present a multi-core consensus consensus algorithm (MCCC) that is a par-
allel version of the method proposed in [17]. The procedure of MCCC algorithm
is described by the pseudo-code Algorithm 2.

Multicore Consensus Clustering was implemented using R language and was
based on a serial implementation proposed in [22]. R packages foreach and
doMC that enable parallel loop iterations using child processes were used. Note
that the outermost loop in Consensus Clustering is a very good candidate for
parallelization. This loop involves many reapeated runs of clustering algorithm,
as well as creation of consensus matrices which is computationally intensive.
Those tasks are easy to parallelize because they do not need to communicate
and are indepentent. During a start of the loop a number of child processes is
createad. Each process is assigned with a number of iterations and then parallel
processing can take place, because processes are divided among multiple cores by
an operating system’s scheduler (in our case Linux). All of those processes can
share memory addresses that contain a dataset, therfore copying of large memory
regions is not needed [23]. When all child processes finish their iterations, the
results are collected and sent back to the parent.

The parallelization is more effective when difference between kmin and kmax

is large, because each process is assigned with more work. When each process
has more work to do, the time needed to spawn processes and send back results
is becoming smaller as a part of a whole runtime. It is also true when number
of subsampling and algorithm runs (H) is large, as each iteration takes more
time to finish. Inner clustering algorithm runtime and dataset dimensions are
also important because of the same reason.

3 Results and Discussion

To illustrate the utility of our MCCC algorithm we performed simulations on
microarray data. All simulations were performed on two processors: Intel Xeon
X5650 2.67 GHz with 6 cores and 24 GB RAM. In our simulations, we have
chosen K-means clustering algorithm, which is one of the most popular of par-
titional cluster algorithms [16]. The details of these algorithm are not reported
here. We have performed experiments with kmin = 2, kmax = 30, H = 250,
P = 0.8, and number of cores c = 1, 2, 4, 8, 12. The choice of the values of P and
H was justified by the results reported in [9].

We used 5 published datasets of different sizes, each noted as Leukemia,
Lymphoma, NCI60, Novartis, and St. Judge. It is worthy of mention that these
datasets has become a benchmark standard in the microarray classification com-
munity [9]. Each column of a dataset corresponds to a gene, and each row to an
element to be clustered. Details of the datasets are listed in Table 1. Note that
Lymphoma and NCI60 datasets were preprocessed as proposed in [5].

Results of the runtime experiments over 5 datasets are given in Fig. 1. Here,
each point is the arithmetic mean (log scale) of the timing results of the 10 con-
secutive runs. The speedup of the multi-core algorithm over single one is given in
Table 2. Our multi-core CC algorithm performs up to ca. 9 times (using 12 cores)
faster than the one-core CC algorithm. Note that the best results are gained

322 O. Unold and T. Tagowski

Table 1. Key features of the datasets used in the experiments.

Dataset Experiments Genes Classes Reference

Leukemia 38 100 3, acute leukemia [11]

Lymphoma 80 100 3, lymphoma tumor [1]

NCI60 57 200 8, cancer [18]

Novartis 103 1000 13, tissue [20]

St. Jude 248 985 6, acute leukemia [25]

Table 2. Speedup of the multi-core consensus clustering over the one-core consensus
clustering. Datasets are ordered by increasing size.

Dataset Size 1 core 2 cores 4 cores 8 cores 12 cores

Leukemia 38 × 100 1.00 1.89 3.45 6.12 7.94

Lymphoma 80 × 100 1.00 2.13 3.89 6.89 8.98

NCI60 57 × 200 1.00 2.11 3.86 6.91 8.97

Novartis 103 × 1000 1.00 2.03 3.76 6.68 8.81

St. Jude 248 × 985 1.00 1.99 3.69 6.53 8.49

10

100

1000

1 2 4 8 12
Number of cores used

Lo
g

of
 a

ve
ra

ge
 ru

nt
im

e
(s

ec
on

ds
)

Dataset

Leukemia

Lymphoma

NCI60

Novartis

St Jude

Log of average runtime for different datasets
 with respect to number of cores used

Fig. 1. Runtime performance of multi-core consensus clustering with k-means algo-
rithm on the microarray datasets. Figure shows the dependency of the runtime (log
scale) on the number of cores used. Each point averages the results from 10 repeated
clusterings.

A Parallel Consensus Clustering Algorithm 323

for medium-size datasets, i.e. Lymphoma and NCI60, 2.13x, 3.89x, 6.89x, 8.98x
speedup, and 2.11x, 3.86x, 6.91x, 8.97x speedup, respectively. The acceleration of
big data (St. Jude 248× 985) is faster than for small data (Leukemia 38× 100) -
1.99x, 3.69x, 6.53x, and 8.49x speedup for St. Jude, and 1.89x, 3.45x, 6.12x, 7.94x
speedup for Leukemia (although not statistically significant, Wilcoxon signed
rank, p = 0.6857).

4 Conclusion

We presented here stability-based clustering software optimized for multi-core
processors. We showed that it is possible to obtain scalable performance of the
compute-intensive algorithm for high-dimensional data such as gene expression
microarrays.

Note that the Table 2 shows that the acceleration of computation is not directly
proportional to the number of cores. More cores means less speed up. This is in
accordance with the well known Amdahl’s law which says that the speedup of a
multi-core algorithm is limited by the time needed for the sequential fraction of it.
Each time you increase the number of processors the speedup ratio will diminish.

According to [9], the modified, fast version (FC) of consensus clustering guar-
antees a speed-up of at least one order of magnitude with respect to the standard
algorithm. It would be of interest to compare multi-core FC with single one and
with multi-core CC. No less interesting would be to parallelize both fast and
standard consensus algorithms using GPUs. Some work has already been done
in this direction [24].

Acknowledgement and Author’s Contributions

Calculations have been carried out using resources provided by Wroclaw Centre
for Networking and Supercomputing (http://wcss.pl).

OU and TT designed the study and wrote the manuscript. TT implemented
the algorithm and performed the experiments. All authors read and approved
the final manuscript.

Availability and Requirements

Project name: mc-consensus, Project home page: https://github.com/vogatt/
mc-consensus.

Operating system: Linux, Programming language: R.
License: GNU GPL, any restrictions to use by non-academics: none.

References

1. Alizadeh, A., et al.: Distinct types of diffuse large B-cell lymphoma identified by
gene expression profiling. Nature 403, 503–511 (2000)

2. Allison, D.B., et al.: Microarray data analysis: from disarray to consolidation and
consensus. Nat. Rev. Genet. 7(1), 55–65 (2006)

3. Ben-Hur, A., Elisseeff, A., Guyon, I.: A stability based method for discovering
structure in clustered data. In: Pacific Symposium on Biocomputing, vol. 7 (2001)

http://wcss.pl
https://github.com/vogatt/mc-consensus
https://github.com/vogatt/mc-consensus

324 O. Unold and T. Tagowski

4. Bertrand, P., Bel Mufti, G.: Loevinger’s measures of rule quality for assessing
cluster stability. Comput. Stat. Data Anal. 50(4), 992–1015 (2006)

5. Dudoit, S., Fridlyand, J.: A prediction-based resampling method for estimating the
number of clusters in a dataset. Genome Biol. 3(7), research0036 (2002)

6. Garge, N., et al.: Reproducible clusters from microarray research: whither? BMC
Bioinform. 6(Suppl 2), S10 (2005)

7. Giancarlo, R., Utro, F.: Algorithmic paradigms for stability-based cluster valid-
ity and model selection statistical methods, with applications to microarray data
analysis. Theoret. Comput. Sci. 428, 58–79 (2012)

8. Giancarlo, R., Scaturro, D., Utro, F.: Computational cluster validation for microar-
ray data analysis: experimental assessment of clest, consensus clustering, figure of
merit, gap statistics and model explorer. BMC Bioinform. 9(1), 462 (2008)

9. Giancarlo, R., Utro, F.: Speeding up the Consensus Clustering methodology for
microarray data analysis. Algorithms Mol. Biol. 6(1), 1–13 (2011)

10. Giurcaneanu, C.D., Tabus, I.: Cluster structure inference based on clustering stabil-
ity with applications to microarray data analysis. EURASIP J. Appl. Sig. Process.
2004, 64–80 (2004)

11. Handl, J., Knowles, J., Kell, D.B.: Computational cluster validation in post-
genomic data analysis. Bioinformatics 21(15), 3201–3212 (2005)

12. Kustra, R., Zagdanski, A.: Data-fusion in clustering microarray data: balancing
discovery and interpretability. IEEE/ACM Trans. Comput. Biol. Bioinf. 7(1), 50–
63 (2010)

13. Lange, T., et al.: Stability-based validation of clustering solutions. Neural Comput.
16(6), 1299–1323 (2004)

14. Levine, E., Domany, E.: Resampling method for unsupervised estimation of cluster
validity. Neural Comput. 13(11), 2573–2593 (2001)

15. Liu, Y., et al.: Understanding of internal clustering validation measures. In: 2010
IEEE 10th International Conference on Data Mining (ICDM). IEEE (2010)

16. MacQueen, J.: Some methods for classification and analysis of multivariate observa-
tions. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics
and Probability, vol. 1, pp. 281–297 (1967)

17. Monti, S., et al.: Consensus clustering: a resampling-based method for class discov-
ery and visualization of gene expression microarray data. Mach. Learn. 52(1–2),
91–118 (2003)

18. NCI 60 Cancer Microarray Project. http://genome-www.stanford.edu/NCI60
19. Pirim, H., et al.: Clustering of high throughput gene expression data. Comput.

Oper. Res. 39(12), 3046–3061 (2012)
20. Ramaswamy, S., et al.: Multiclass cancer diagnosis using tumor gene expression

signatures. Proc. Natl. Acad. Sci. USA 98, 15149–15154 (2001)
21. RDevelopment Core Team: R: A language and environment for statistical comput-

ing, pp. 1–1731. R Foundation for Statistical Computing, Vienna, Austria (2008)
22. Simpson, T., et al.: Merged consensus clustering to assess and improve class dis-

covery with microarray data. BMC Bioinform. 11(1), 590 (2010)
23. Stevans, W.R.: Advanced Programming in the UNIX Environment. Pearson Edu-

cation, India (2011)
24. Unold, O., Tagowski, T.: A GPU-based consensus clustering. Glob. J. Comput.

Sci. 4(2), 65–69 (2014)
25. Yeoh, E.J., et al.: Classification, subtype discovery, and prediction of outcome in

pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell
1, 133–143 (2002)

http://genome-www.stanford.edu/NCI60

Bandits and Recommender Systems

Jérémie Mary, Romaric Gaudel, and Philippe Preux(B)

CRIStAL (UMR CNRS), Université de Lille, Villeneuve d’Ascq, France
{jeremie.mary,romaric.gaudel,philippe.preux}@univ-lille3.fr

Abstract. This paper addresses the on-line recommendation problem
facing new users and new items; we assume that no information is avail-
able neither about users, nor about the items. The only source of infor-
mation is a set of ratings given by users to some items. By on-line, we
mean that the set of users, and the set of items, and the set of ratings
is evolving along time and that at any moment, the recommendation
system has to select items to recommend based on the currently avail-
able information, that is basically the sequence of past events. We also
mean that each user comes with her preferences which may evolve along
short and longer scales of time; so we have to continuously update their
preferences. When the set of ratings is the only available source of infor-
mation, the traditional approach is matrix factorization. In a decision
making under uncertainty setting, actions should be selected to balance
exploration with exploitation; this is best modeled as a bandit problem.
Matrix factors provide a latent representation of users and items. These
representations may then be used as contextual information by the ban-
dit algorithm to select items. This last point is exactly the originality
of this paper: the combination of matrix factorization and bandit algo-
rithms to solve the on-line recommendation problem. Our work is driven
by considering the recommendation problem as a feedback controlled
loop. This leads to interactions between the representation learning, and
the recommendation policy.

1 Introduction

We consider the online version of the problem of the recommendation of items to
users as faced by websites. Items may be ads, news, music, videos, movies, books,
diapers,... Being live, these systems have to cope with users about whom we have
no information, and new items introduced in the catalog which attractiveness is
unknown. Appetence of new users towards available items, and appeal of new
items towards existing users have to be estimated as fast as possible. Currently,
this situation is handled thanks to side information available on the users, and
on the items (see [2,21]). In this paper, we consider this problem from a different
perspective. Though perfectly aware of the potential utility of side information,
we consider the problem without any side information, only focussing on esti-
mating the appetences of new users and the appeal of new items as fast as pos-
sible; the use of side information can be mixed with the ideas presented in this
paper. Side information being unavailable, we learn a latent representation of
c© Springer International Publishing Switzerland 2015
P. Pardalos et al. (Eds.): MOD 2015, LNCS 9432, pp. 325–336, 2015.
DOI: 10.1007/978-3-319-27926-8 29

326 J. Mary et al.

each user and each item using the currently available ratings. As already argued
by others (e.g. [16]), this problem fits perfectly into the sequential decision mak-
ing framework, and more specifically, the bandit setting [9,10,20]. A sequential
decision making problem under uncertainty faces an exploration vs. exploitation
dilemma: the exploration is meant to acquire information in order to perform
better subsequently by exploiting it; collecting the information has a cost that
can not be merely zeroed, or simply left as an unimportant matter. However, in
rather sharp contrast with the traditional bandit setting, here the set of bandits
is constantly being renewed; the number of bandits is not small, though not
being huge (from a few dozens to hundreds arms in general, up to dozens of
millions in some applications): this makes the problem very different from the
2-armed bandit problem; we look for efficient and effective ways to address this
task, since we want the proposed solution to be able to cope with real applica-
tions on the web. For obvious practical and economical reasons, the strategy can
not merely consist in repeatedly presenting all available items to users until their
appetences seem accurately estimated. We have to consider the problem as an
exploration vs. exploitation problem in which exploration is a necessary evil to
acquire information and eventually improve the performance of the recommen-
dation system (RS for short). To summarize, we learn a latent representation
of each user and each item, from which a recommendation policy is deduced,
based on the available ratings. This learning process is continuous: the represen-
tation and the recommendation policy are updated regularly, as new ratings are
observed, new items are introduced into the set of items, new users flow-in, and
the preferences of already observed users change.

This being said, comes the problem of the objective function to optimize.
Since the Netflix challenge, at least in the machine learning community, the
recommendation problem is often reduced to a matrix factorization problem,
performed in batch, learning on a training set, and minimizing the root mean
squared error (RMSE) on a testing set. However, the RMSE comes with heavy
flaws. Other objective functions have been considered to handle certain of these
flaws [7,19].

Based on these ideas, our contribution in this paper is the following:

We propose an original way to handle new users and new items in recom-
mendation systems: we cast this problem as a sequential decision making
problem to be played online that selects items to recommend in order
to optimize the exploration/exploitation balance; our solution is then
to perform the rating matrix factorization driven by the policy of this
sequential decision problem in order to focus on the most useful terms
of the factorization. This is the core idea of the contributed algorithm
we name BeWARE.
The reader familiar with the bandit framework can think of this work
as a contextual bandit learning side information for each user and each
item from the observed ratings, assuming the existence of a latent space
of dimension k for both users and items. We stress the fact that learning
and updating the representation of users and items at the same time

Bandits and Recommender Systems 327

recommendations are made is something very different from the tra-
ditional batch matrix factorization approach, or the traditional bandit
setting.
We also introduce a methodology to use a classical partially filled rating
matrices to assess the online performance of a bandit-based recommen-
dation algorithm.

After introducing our notations in the next section, Sect. 3 briefly presents
the matrix factorization approach. Sect. 4 introduces the necessary background
in bandit theory. In Sects. 5 and 6, we present BeWARE considering in the case
of new users and new items. Sect. 7 provides an experimental study on artificial
data, and on real data. Finally, we conclude and draw some future lines of work
in Sect. 8.

2 Notations and Vocabulary

UT is the transpose of matrix U, and Ui denotes its ith row. For a vector u and
a set of integers S, uS is the sub-vector of u composed of the elements of u which
indices belong to S. Accordingly, U being a matrix, US is the sub-matrix made
of the rows of U which indices belong to S. #u is the number of components
(dimension) of u, and #S is the number of elements of S.

Now, we introduce a set of notations dedicated to the RS problem. As we
consider a time-evolving number of users and items, we will note n the current
number of users, and m the current number of items. These should be indexed
by a t to denote time, though often in this paper, t is dropped to simplify the
notation. Without loss of generality, we assume n < N and m < M , that is
N and M are the maximal numbers of ever seen users and items (those figures
may as large as necessary). R∗ represents the ground truth, that is the matrix
of ratings. r∗

i,j is the rating given by user i to item j. We suppose that there
exists an integer k and two matrices U of size N × k and V of size M × k such
that R∗ = UVT . We denote S the set of elements that have been observed, and
R denote the matrix s.t. ri,j = r∗

i,j + ηi,j if (i, j) ∈ S, where ηi,j is a noise with
zero mean and finite variance. The ηi,j are i.i.d. In this paper, we assume that
R∗ is fixed during all the time; at a given moment, only a submatrix made of
n rows and m columns is actually useful. This part of R∗ that is observed is
increasing along time. That is, the set S is growing along time. J (i) (resp. I(j))
denotes the set of items rated by user i (resp. the set of users who rated item
j). Û and V̂ denote estimates (with the statistical meaning) of the matrices U
and V respectively. ÛV̂T is denoted by R̂. We use the term “observation” to
mean a triplet (i, j, ri,j). The RS receives a stream of observations. We use the
term “rating” to mean the value associated by a user to an item. It can be a
rating as in the Netflix challenge, or an information meaning click or not, sale
or not, . . . For the sake of legibility, in the online setting we omit the t subscript
for time dependency. S, Û, V̂, n, m should be subscripted with t.

328 J. Mary et al.

3 Matrix Factorization

Since the Netflix challenge [4], many works in RS have been using matrix fac-
torization: the matrix of observed ratings is assumed to be the product of two
matrices of low rank k: R̂ = ÛV̂T [11]. Û is a latent representation of users,
while V̂ is a latent representation of items. As most of the values of the rating
matrix are unknown, the decomposition can only be done using the set of obser-
vations. The classical approach is to solve the regularized minimization problem
(Û, V̂)

def
= argminU,Vζ(U,V), where ζ(U,V)

def
=

∑
∀(i,j)∈S

(
ri,j − Ui · VT

j

)2 +
λ · Ω(U,V), in which λ ∈ R

+ and is a regularization term. ζ is not convex. The
minimization is usually performed either by stochastic gradient descent (SGD),
or by alternate least squares (ALS). Solving for Û and V̂ at once being non con-
vex, ALS iterates and at iteration, ALS alternates an optimization of Û keeping
V̂ fixed, and an optimization of V̂ keeping Û fixed.

In this paper we consider ALS-WR [22] whose regularization term

Ω(U,V)
def
=

∑
i #J (i)||Ui||2 +

∑
j #I(j)||Vj ||2 depends on users and items

respective importance in the matrix of ratings.
This regularization is known to have a good empirical behavior — that is

limited overfitting, easy tuning of λ and k, low RMSE.

4 Bandits

Let us consider a bandit machine with m independent arms. When pulling arm
j, the player receives a reward drawn from [0, 1] which follows a probability

distribution νj . Let μj denote the mean of νj , j∗ def
= argmaxj μj be the best arm

and μ∗ def
= maxj μj = μj∗ be the best expected reward (we assume there is only

one best arm). {νj}, {μj}, j∗ and μ∗ are unknown.
A player aims at maximizing the sum of rewards collected along T consecutive

pulls. More specifically, by denoting jt the arm pulled at time t and rt the
reward obtained at time t, the player wants to maximize the cumulative reward
CumRewT =

∑T
t=1 rt. At each time-step but the last one, the player faces the

dilemma:

– either exploit by pulling the arm which seems the best according to the esti-
mated values of the parameters;

– or explore to improve the estimation of the parameters of the probability
distribution of an arm by pulling it.

Li et al. [13] extend the bandit setting to contextual arms. They assume that a
vector of real features v ∈ R

k is associated to each arm and that the expectation
of the reward associated to an arm is u∗ ·v, where u∗ is an unknown vector. The
algorithm handling this setting is known as LinUCB. LinUCB consists in playing
the arm with the largest upper confidence bound on the expected reward:

jt = argmax
j

û.vT
j + α

√
vjA−1vT

j ,

Bandits and Recommender Systems 329

where û is an estimate of u∗, α is a parameter, and A =
∑t−1

t′=1 vjt′ .vT
jt′ + Id,

where Id is the identity matrix. Note that û.vT
j corresponds to an estimate of the

expected reward, while
√
vjA−1vT

j is an optimistic correction of that estimate.
While the objective of LinUCB is to maximize the cumulative reward, the-

oretical results [1,13] are expressed in term of cumulative regret (or regret for

short) RegretT
def
=

∑T
t=1(r

∗
t − rt), where r∗

t = maxj u∗.vT
jt

stands for the best
expected reward at time t. Hence, the regret measures how much the player loses
(in expectation), in comparison to playing the optimal strategy. Standard results
prove regrets of order Õ(

√
T) or O(ln T), depending on the assumptions on the

distributions and depending on the precise analysis1.
Of course LinUCB and other contextual bandit algorithms require the con-

text (values of features) to be provided. In real applications this is done using
side information about the items and the users [17] –i.e. expert knowledge, cat-
egorization of items, Facebook profiles of users, implicit feedback . . . The core
idea of this paper is to use matrix factorization techniques to build a context
online using the known ratings. To this end, one assumes that the items and the
arms can be represented in the same space of dimension k and assuming that
the rating of user u for item v is the scalar product of u and v.

We study the introduction of new items and/or new users into the RS. This
is done without using any side information on users or items.

5 BeWARE of a New User

Let us consider a particular recommendation scenario. At each time-step t,

1. a user it requests a recommendation to the RS,
2. the RS selects an item jt among the set of items that have never been rec-

ommended to user it beforehand,
3. user it returns a rating rt = rit,jt for item jt.

Obviously, the objective of the RS is to maximize the cumulative reward
CumRewT =

∑T
t=1 rt. In the context of such a scenario, the usual matrix factor-

ization approach of RS recommends item jt which has the best predicted rating
for user it. This corresponds to a pure exploitation, or greedy, strategy which is
well-known to be suboptimal to optimize CumRewT : to be optimal, the RS has
to balance the exploitation and exploration.

Let us now describe the recommendation algorithm we propose at time-
step t. We aim at recommending to user it an item jt which leads to the best
trade-off between exploration and exploitation in order to maximize CumRew∞.
We assume that the matrix R is factored into ÛV̂T by ALS-WR which termi-
nated by optimizing Û holding V̂ fixed. In such a context, the UCB approach is
based on a confidence interval on the estimated ratings r̂it,j = Ûit · V̂T

j for any
allowed item j.

1 Õ means O up to a logarithmic term on T .

330 J. Mary et al.

We assume that we already observed a sufficient number of ratings for each
item, but only a few ratings (possibly none) from user it. As a consequence the
uncertainty on Ûit is much more important than on any V̂j . In other words, the
uncertainty on r̂it,j mostly comes from the uncertainty on Ûit . Let us express
this uncertainty.

Let u∗ denote the (unknown) true value of Uit and let us introduce the k×k
matrix:

A
def
= (V̂J (it))

T · V̂J (it) + λ · #J (it) · Id.

As Û and V̂ comes from ALS-WR (which last iteration optimized Û),

Ûjt = A−1V̂T
J (it)

RT
it,J (it)

.

Using Azuma’s inequality over the weighted sum of random variables (as
introduced by [18] for linear systems), it follows that there exists a value C ∈ R

such as, with probability 1 − δ:

(Ûit − u∗)A−1(Ûit − u∗)T ≤ C
log(1/δ)

t

This inequality defines the confidence bound around the estimate Ûit of u∗.
Therefore, a UCB strategy selects item jt:

jt
def
= argmax

1≤j≤m,j /∈J (it)

Ûit · V̂T
j + α

√
V̂jA−1V̂T

j ,

where α ∈ R is an exploration parameter to be tuned. Figure 1(a) provides a
graphical illustration of the link between the bound, and this choice of item jt.

Our algorithm, named BeWARE.User (BeWARE which stands for “Bandit
WARms-up REcommenders”) is described in Algorithm 1. The presentation is
optimized for clarity rather than for computational efficiency. Of course, if the
exploration parameter α is set to 0 BeWARE.User makes a greedy selection for
the item to recommend. The estimation of the center of the ellipsoid and its size
can be influenced by the use of an other regularization term. BeWARE.User uses
a regularization based on ALS-WR. It is possible to replace all #J (.) by 1. This
amounts to the standard regularization: we call this slightly different algorithm
BeWARE.ALS.User. In fact one can use any regularization as long as Ûit is a
linear combination of observed rewards.

6 BeWARE of New Items

In general, a set of new items is introduced at once, not a single item. In this case,
the uncertainty is more important on items. We compute a confidence bound
around the items instead of the users, assuming ALS terminates with optimizing

Bandits and Recommender Systems 331

O

k

Û it

ell
ip
so

id

V̂2

V̂1

ũ(1)

(a) New user.

O

k

Ûit

V̂j

ṽ(j)

(b) New items

Fig. 1. (a) The leftmost part of this figure illustrates the use of the upper confidence
ellipsoid for item selection for the new user it who enters the game at time t. Items and
users are vectors in R

k. (One may suppose that k = 2 in this figure to make it in the
plane.) Red dots represent items. The blue ellipse represents the confidence ellipsoid of
the vector associated to the new user. The optimistic rating of the user for an item j
is the maximum dot product between V̂j and any point in this ellipsoid. By a simple
geometrical argument based on iso-contours of the dot product, this maximum value
is equal to the dot product between V̂j and ũ

(j)
it

. Optimism leads to recommend the

item maximizing the dot product 〈ũ(j)
it

, V̂j〉. (b) This figure illustrates the use of the
upper confidence ellipsoid for item selection in the context of a set of new items. The
setting is similar to the case of a new user except that the vector associated to the user
is known (represented by a blue dot) while each item now has its confidence ellipsoids.
The optimistic RS recommends the item maximizing the scalar product 〈Ûit , ṽ

(j)〉.

Algorithm 1.BeWARE. User: for a user it, recommends an item to this user.
Input: it, λ, α
Input/Output: R, S

1: (Û, V̂) ← MatrixFactorization(R)
2: A ← (V̂J (it))

T · V̂J (it) + λ · #J (it) · Id.

3: jt ← argmax
j /∈J (it)

Ûit · V̂T
j + α

√
V̂jA−1V̂T

j

4: Recommend item jt and receive rating rt = rit,jt
5: Update R, S

V̂ keeping Û fixed. With the same criterion and regularization on V̂ as above,
at timestep t:

V̂j = B(j)−1(ÛI(j))TRI(j),j ,

with B(j)
def
= (ÛI(j))T ÛI(j) + λ · #I(j) · Id.

So the upper confidence bound of the rating for user i on item j is:

Ûi · V̂T
j + α

√
ÛjB(j)−1ÛT

j .

332 J. Mary et al.

This leads to the algorithm BeWARE.Items presented in Algorithm 2. Again,
the presentation is optimized for clarity rather than for computational efficiency.
BeWARE.Items can be parallelized and has the complexity of one step of ALS.
Figure 1(b) gives the geometrical intuition leading to BeWARE.Items. Again,
setting α = 0 leads to a greedy selection. The regularization (line 4) can be
modified.

Algorithm 2.BeWARE.Items: for a user it, recommends an item to this user
in the case where a set of new items is made available.

Input: it, λ, α
Input/Output: R, S

1: (Û, V̂) ← MatrixFactorization(R)
2: ∀j /∈ J (it), B(j) ← (ÛI(j))

T ÛI(j) + λ · #I(j) · Id
3: jt ← argmax

j /∈J (it)

Ûit .V̂
T
j + α

√
ÛitB(j)−1ÛT

it

4: Recommend item jt and receive rating rt = rit,jt
5: Update R, and S

7 Experimental Investigation

In this section we evaluate empirically BeWARE on artificial data, and on real
datasets. The BeWARE algorithms are compared to:

– greedy approaches (denoted Greedy.ALS and Greedy.ALS-WR) that always
choose the item with the largest current estimated value (respectively given
a decomposition obtained by ALS, or by ALS-WR),

– the UCB1 approach [3] (denoted UCB.on.all.users) that considers each reward
rit,jt as an independent realization of a distribution νjt . In other words,
UCB.on.all.users recommends an item without taking into account the infor-
mation on the user requesting the recommendation.

The comparison to greedy selection highlights the needs of exploration to have
an optimal algorithm in the online context. The comparison to UCB.on.all.users
assesses the benefit of personalizing recommendations.

7.1 Experimental Setting

For each dataset, each algorithm starts with an empty R matrix of 100 items
and 200 users. Then, the evaluation goes like this:

1. select a user uniformly at random among those who have not yet rated all
the items,

2. request his favorite item among those he has not yet rated,

Bandits and Recommender Systems 333

3. compute the immediate regret (the difference of rating between the best not
yet selected item and the one selected by the algorithm),

4. iterate until all users have rated all items.

The difficulty with real datasets is that the ground truth is unknown, and
actually, only a very small fraction of ratings is known. This makes the evaluation
of algorithms uneasy. To overcome these difficulties, we also provide a comparison
of the algorithms considering an artificial problem based on a ground truth
matrix R∗ considering m users and n items. This matrix is generated as in [6].
Each item belongs to either one of k genres, and each user belongs to either one
of l types. For each item j of genre a and each user i of type b, r∗

i,j = pa,b is
the ground truth rating of item j by user i, where pa,b is drawn uniformly at
random in the set {1, 2, 3, 4, 5}. The observed rating ri,j is a noisy value of r∗

i,j :
ri,j = r∗

i,j + N (0, 0.5).
We also consider real datasets, the NetFlix dataset [4] and the Yahoo!Music

dataset [8]. Of course, the major issue with real data is that there is no dataset
with a complete matrix, which means we do no longer have access to the ground
truth R∗, which makes the evaluation of algorithms more complex. This issue
is usually solved in the bandit literature by using a method based on reject
sampling [14]. For a well constructed dataset, this kind of estimators has no bias
and a known bound on the decrease of the error rate [12]. For all the algorithms,
we restrict the possible choices for a user at time-step t to the items with a
known rating in the dataset. However, a minimum amount of ratings per user is
needed to be able to have a meaningful comparison of the algorithms (otherwise,
a random strategy is the only reasonable one). As a consequence, with both
datasets, we focus on the 5000 heaviest users for the top ∼250 movies/songs.
This leads to a matrix R̃∗ with only 10% to 20% of missing ratings. We insist
on the fact that this is necessary for performance evaluation of the algorithms;
obviously, this is not required to use the algorithms on a live RS.

We would like to advertize that this experimental methodology has a unique
feature: this methodology allows us to turn any matrix of ratings into an online
problem which can be used to test bandit recommendation algorithms. We think
that this methodology is an other contribution of this paper.

7.2 Experimental Results

Figure 2(a) and (b) show that given a fixed factorization method, BeWARE
strategies outperform greedy item selection. Looking more closely at the results,
BeWARE.items performs better than BeWARE.user, and BeWARE.user is the
only BeWARE strategy beaten by its greedy counterpart (Greedy.ALS-WR) on
the Netflix dataset. These results demonstrate that an online strategy has to
care about exploration to tend towards optimality.

While UCB.on.all.users is almost the worst approach on artificial data
(Fig. 2(a)), it surprisingly performs better than all other approaches on the Net-
flix dataset. We feel that this difference is strongly related to the preprocessing of
the Netflix dataset we have done to be able to follow the experimental protocol

334 J. Mary et al.

0 1000 2000 3000 4000

0
20

00
40

00
60

00
80

00
10

00
0

t

C
um

ul
at

ed
 R

eg
re

t

Random

Greedy.ALS

Greedy.ALS−WR
BeWARE.ALS.users

BeWARE.users
BeWARE.ALS.items
BeWARE.items

UCB on all users

(a) Artificial dataset.

0 1000 2000 3000 4000

0
10

00
20

00
30

00
40

00
50

00

t

C
um

ul
at

ed
 R

eg
re

t

Random
Greedy.ALS

Greedy.ALS−WR

BeWARE.ALS.users
BeWARE.users

BeWARE.ALS.items
BeWARE.items
UCB on all users

(b) Netflix dataset.

0 1000 2000 3000 4000

0
50

00
0

10
00

00
15

00
00

20
00

00

t

C
um

ul
at

ed
 R

eg
re

t

Random
Greedy.ALS
Greedy.ALS−WR
BeWARE.ALS.users
BeWARE.users
BeWARE.ALS.items
BeWARE.items
UCB on all users

(c) Yahoo!Music dataset.

Fig. 2. Cumulated regret (the lower, the better) for a set of 100 new items and 200 users
with no prior information. Figures are averaged over 20 runs (for Netflix and artificial
data, k = 5, λ = 0.05, α = 0.12 whereas for Yahoo!Music, k = 8, λ = 0.2, α = 0.05).
On the artificial dataset (a), BeWARE.items is better than the other strategies in
terms of regret. On the Netflix dataset (b), UCB on all users is the best approach and
BeWARE.items is the second best. On the Yahoo!Music dataset (c), BeWARE.items,
Greedy.ALS-WR and UCB all 3 lead to similar performances.

(and have an evaluation at all). By focusing on the top ∼250 movies, we only
keep blockbusters that everyone enjoys. With that particular subset of movies,
there is no need to adapt the recommendation user per user. As a consequence,
UCB.on.all.users suffers a smaller regret than other strategies, as it considers
users as n independent realizations of the same distribution. It is worth noting
that the regret of UCB.on.all.users would increase with the number of items
while the regret of BeWARE scales with the dimensionality of the factorization,
which makes BeWARE a better candidates for real applications with much more
items to deal with.

Last, on the Yahoo! Music datatset (Fig. 2(c)), all algorithms suffer the same
regret.

7.3 Discussion

In a real setting, BeWARE.items has a desirable property: it tends to favor
new items with regards to older ones because they simply have less ratings
than the others, hence larger confidence bounds. So the algorithm gives them a
boost which is exactly what a webstore is willing. Moreover, the RS then uses
at its best the novelty effect associated to new items. This natural attraction
of users for new items can be very strong as it has been shown during the
Exploration & Exploitation challenge at ICML’2012 which was won by a context
free algorithm [15].

The computational cost of BeWARE is the same as doing an additional step
of alternate least squares; moreover some intermediate calculations of the QR
factorization can be re-used to speed up the computation. So the total cost of
BeWARE.Items is almost the same as ALS-WR. Even better, while the online
setting requires to recompute the factorization at each time-step, this factoriza-
tion changes only slightly from one iteration to the other. As a consequence,

Bandits and Recommender Systems 335

only a few ALS-WR iterations are needed to update the factorization. Overall
the computational cost remains reasonable even in a real application.

8 Conclusion and Future Work

In this paper, we have bridged matrix factorization with bandits to address in a
principled way the balance between exploration and exploitation faced by online
recommendations systems when considering new users or new items. We think
that this contribution is conceptually rich, and opens ways to many different
studies. We showed on large, publicly available datasets that this approach is also
effective, leading to efficient algorithms able to work online, under the expected
computational constraints of such systems. Furthermore, the algorithms are quite
easy to implement.

Many extensions are currently under study. First, we work on extending
these algorithms to use contextual information about users, and items. This will
require combining the similarity measure with confidence bounds; this might be
translated into a Bayesian prior. We also want to analyze regret bound for large
enough number of items and users. This part can be tricky as LinUCB still does
not have a full formal analysis, though some insights are available in [1].

An other important point is to work on the recommendation of several items
at once and get feedback only for the one. There has been some work in the non
contextual bandits on this point [5].

Finally, we plan to combine confidence ellipsoid about both users and items.
We feel that such a combination has low odds of providing better results for real
applications, but it is interesting from a theoretical perspective, and should lead
to even better results on artificial problems.

Acknowledgements. Authors acknowledge the support of INRIA, and the stimulat-
ing environment of the research group SequeL.

References

1. Abbasi-yadkori, Y., Pal, D., Szepesvari, C.: Improved algorithms for linear sto-
chastic bandits. In: Proceedings of NIPS, pp. 2312–2320 (2011)

2. Agarwal, D., Chen, B.-C., Elango, P., Motgi, N., Park, S.-T., Ramakrishnan, R.,
Roy, S., Zachariah, J.: Online models for content optimization. In: Proceedings of
NIPS, pp. 17–24 (2008)

3. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed
bandit problem. Mach. Learn. 47, 235–256 (2002)

4. Bennett, J., Lanning, S., Netflix, N.: The Netflix prize. In: KDD Cup and Workshop
(2007)

5. Cesa-Bianchi, N., Lugosi, G.: Combinatorial bandits. J. Comput. Syst. Sci. 78(5),
1404–1422 (2012)

6. Chatterjee, S.: Matrix estimation by universal singular value thresholding. pre-
print (2012). http://arxiv.org/abs/1212.1247

http://arxiv.org/abs/1212.1247

336 J. Mary et al.

7. Dhanjal, C., Gaudel, R., Clémençon, S.: Collaborative filtering with localised rank-
ing. In: Proceedings of AAAI (2015)

8. Dror, G., Koenigstein, N., Koren, Y., Weimer, M.: The Yahoo! music dataset and
kdd-cup 2011. In: Proceedings of KDD Cup (2011)

9. Feldman, S.: Personalization with contextual bandits. http://engineering.
richrelevance.com/author/sergey-feldman/

10. Kohli, P., Salek, M., Stoddard, G.: A fast bandit algorithm for recommendations
to users with heterogeneous tastes. In: Proceedings of AAAI, pp. 1135–1141 (2013)

11. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender
systems. Computer 42(8), 30–37 (2009)

12. Langford, J., Strehl, A., Wortman, J.: Exploration scavenging. In: Proceedings of
ICML, pp. 528–535. Omnipress (2008)

13. Li, L., Chu, W., Langford, J., Schapire, R.E.: A contextual-bandit approach to
personalized news article recommendation. In: Proceedings of WWW, pp. 661–
670. ACM, New York (2010)

14. Li, L., Chu, W., Langford, J., Wang, X.: Unbiased offline evaluation of contextual-
bandit-based news article recommendation algorithms. In: Proceedings of WSDM,
pp. 297–306. ACM (2011)

15. Mary, J., Garivier, A., Li, L., Munos, R., Nicol, O., Ortner, R., Preux, P.: ICML
exploration and exploitation 3 - new challenges (2012)

16. Shani, G., Heckerman, D., Brafman, R.I.: An MDP-based recommender system. J.
Mach. Learn. Res. 6, 1265–1295 (2005)

17. Shivaswamy, P.K., Joachims, T.: Online learning with preference feedback. In:
NIPS Workshop on Choice Models and Preference Learning (2011)

18. Walsh, T.J., Szita, I., Diuk, C., Littman, M.L.: Exploring compact reinforcement-
learning representations with linear regression (2012). CoRR abs/1205.2606

19. Weston, J., Yee, H., Weiss, R.J.: Learning to rank recommendations with the
k-order statistic loss. In: Proceedings of RecSys, pp. 245–248. ACM (2013)

20. White, J.M.: Bandit Algorithms for Website Optimization. O’Reilly, USA (2012)
21. Yue, Y., Hong, S.A., Guestrin, C.: Hierarchical exploration for accelerating con-

textual bandits. In: Proceedings of ICML, pp. 1895–1902 (2012)
22. Zhou, Y., Wilkinson, D., Schreiber, R., Pan, R.: Large-scale parallel collaborative

filtering for the netflix prize. In: Fleischer, R., Xu, J. (eds.) AAIM 2008. LNCS,
vol. 5034, pp. 337–348. Springer, Heidelberg (2008)

http://engineering.richrelevance.com/author/sergey-feldman/
http://engineering.richrelevance.com/author/sergey-feldman/
http://arxiv.org/abs/1205.2606

Semi-Naive Mixture Model for Consensus
Clustering

Marco Moltisanti(B), Giovanni Maria Farinella, and Sebastiano Battiato

Image Processing Laboratory – Dipartimento di Matematica e Informatica,
Università degli Studi di Catania, Catania, Italy

{moltisanti,gfarinella,battiato}@dmi.unict.it

Abstract. Consensus clustering is a powerful method to combine mul-
tiple partitions obtained through different runs of clustering algorithms.
The goal is to achieve a robust and stable partition of the space through a
consensus procedure which exploits the diversity of multiple clusterings
outputs. Several methods have been proposed to tackle the consensus
clustering problem. Among them, the algorithm which models the prob-
lem as a mixture of multivariate multinomial distributions in the space
of cluster labels gained high attention in the literature. However, to make
the problem tractable, the theoretical formulation takes into account a
Naive Bayesian conditional independence assumption over the compo-
nents of the vector space in which the consensus function acts (i.e., the
conditional probability of a d−dimensional vector space is represented
as the product of conditional probability in an one dimensional feature
space). In this paper we propose to relax the aforementioned assumption,
heading to a Semi-Naive approach to model some of the dependencies
among the components of the vector space for the generation of the final
consensus partition. The Semi-Naive approach consists in grouping in a
random way the components of the labels space and modeling the con-
ditional density term in the maximum-likelihood estimation formulation
as the product of the conditional densities of the finite set of groups
composed by elements of the labels space. Experiments are performed to
point out the results of the proposed approach.

1 Introduction

The definition of clustering encloses a wide range of different techniques, all
of them aiming to group similar objects according to a similarity or distance
function. The factors in this definition, together with the choice of the cluster
model (e.g. connectivity model, centroid model, distribution model, etc.) lead to
the high variability in the clustering algorithms family [4]. Among the different
employments of clustering algorithms, the Bag-of-Words model is one of the
most popular, especially in Computer Vision community. In that field, the feature
vectors, which may be extracted using different techniques, are used as the inputs
for clustering. Then, the normalized histograms of the labels distribution over
each image are computed and used as a representation of the image itself. This
representation is powerful in terms of compactness, because it needs less space
c© Springer International Publishing Switzerland 2015
P. Pardalos et al. (Eds.): MOD 2015, LNCS 9432, pp. 337–346, 2015.
DOI: 10.1007/978-3-319-27926-8 30

338 M. Moltisanti et al.

than the original image and the representation, and in terms of the semantic
meaning of the representation. The collection of all the clusters is also called a
vocabulary, and it can be used to represent other images. This representation
can be used in different ways. For example, in [1,5] it used to build textons in
order to focus on the textures of the considered images. In [2], the clustered
space is used to learn a set of linear discriminant classifiers to perform red-eyes
removal on face images. In [3], two vocabularies built on different feature spaces
are aligned in order to achieve a compact representation which takes into account
different aspects of the image (i.e. gradients and textures).

In [13], Kleinberg defines some desirable properties, proving that there is no
clustering function able to satisfy them all together:

Scale-Invariance: insensitivity to changes in the units of distance measure-
ments;

Richness: every partition of the data space S should be a possible output of
the algorithm;

Consistency: changing the distance function to reduce intra-cluster distances
and augment inter-cluster distances, the output partition should be the same.

Finding a consensus partition, though, poses new problems, according to Topchy
et al. [19]:

1. Find a “good” consensus function, able to solve the label correspondence
problem and to deal with all the component partitions;

2. Ensure the diversity of input clustering;
3. Estimate the how “good/bad” the input clusterings can be in order to obtain

a successful combination.

Although these questions have been addressed in supervised classification
researches, it is not possible to apply those solutions in a straightforward manner
in an unsupervised context, basically because of the absence of labeled data.

The choice of the combination technique is critical in order to produce a
clustering ensemble. A wide review of different approaches is given in [10],
especially focusing on different consensus functions. Among others, it is note-
worthy to mention the methods based on categorical clustering including the
co-association-based hierarchical methods [7–9,19], hypergraph algorithms [11,
12,18] and boosting framework [17].

In this paper we extend the method proposed in [19] using a Semi-naive
Bayesian approach instead of a pure Naive Bayesian in the derivation of the
consensus function. The Semi-naive formulation for classification problems has
been well investigated in the machine learning field [14,20,21]. An interesting
application of this approach can be found in [15], where the Semi-naive classifier
is employed for keypoint recognition purposes.

The paper is structured as follows: in Sect. 2 we recall the Consensus Clus-
tering method proposed in [19]. In Sect. 3 the proposed semi-naive bayesian
approach is explained. Finally, in Sect. 5 we draw the conclusions and give hints
for some future works.

Semi-Naive Mixture Model for Consensus Clustering 339

2 Consensus Clustering via Expectation-Maximization

Topchy et al. [19] modeled the problem using a Gaussian Mixture Model (GMM)
in order to find the consensus partition by solving a Maximum Likelihood opti-
mization. Given N data points, X = {x1,x2, . . . ,xN}, they consider the out-
comes of H different clustering algorithms, each of which establish a partition
in the feature space. They refer to the partitions as H = {π1, π2, . . . , πH}. It is
straightforward that every clustering algorithm assigns each data point xi to a
partition:

xi → {π1 (xi) , π2 (xi) , . . . , πH (xi)}, i = 1, . . . , N

Therefore, each data point xi has two representation: the first is a d−dimensional
vector that lies in original the feature space, while the second is a vector with
H elements that belongs to the labels space (Table 1). The vector composed by
the labels for the i−th data point will be named yi. The whole labels set will
be denoted as Y = {y1, . . . ,yN}.The rationale behind this approach is that
the labels can be modeled as random variables, drawn from a GMM. Hence,
the probability for each label yi can be expressed as in Eq. 1, where αm, with
m = 1, . . . , M , are the mixture coefficients and θm are the parameters of each
component of the mixture.

P (yi|Θ) =
M∑

m=1

αmPm (yi|θm) (1)

Using this model under the assumption that the data points are independent
and identically distributed, the consensus partition can be found optimizing as
the partition which maximize the probability, for each yi, of having been drawn
from the m−th mixture. Hence, the problem can be formulated as finding the
GMM’s parameters that maximize the label-to-mixture assignment probability.

Θ∗ = arg max
Θ

log L (Θ|Yi) . (2)

where L is a likelihood function, as defined in Eq. 3

log L (Θ|Y) = log
M∏

m=1

P (yi|θm) =
N∑

i=1

log
M∑

m=1

αmPm (yi|θm) (3)

Table 1. Data representation.

π1 · · · πH

x1 x11 · · · x1d π1 (x1) · · · πH (x1)

x2 x21 · · · x2d π1 (x2) · · · πH (x2)
...

xN xN1 · · · xNd π1 (xN) · · · πH (xN)

Original features Labels

340 M. Moltisanti et al.

To complete the definition of the model, it is needed to specify the conditional
probabilities for the labels vector yi (see Eq. 4) and the probability density for
each component (see Eq. 5). In [19], the authors assume that the components of
yi are conditionally independent.

Pm (yi|θm) =
H∏

j=1

P (j)
m

(
yij |θ(j)m

)
(4)

P (j)
m

(
yij |θ(j)m

)
=

K(j)∏

k=1

ϑjm(k)δ(yij ,k) (5)

Note that the probabilities ϑjm(k) sum up to 1. In Eq. 5, the function δ is a classic
Kronecker delta function and the index k = 1, . . . , K(j) is used to enumerate
the labels in the j−th input mixture.

The solution to the consensus partition problem can be found optimizing
Eq. 1, hypothesizing the existence of a set of hidden variables Z and estimating
the values of each zi using the Expectation-Maximization algorithm. For com-
pleteness sake, in Eqs. 6, 7, 8 we report the formulas to compute the parameters
of the mixture with the EM algorithm.

E [zim] =
α′

m

H∏

j=1

K(j)∏

k=1

(
ϑ′

jm(k)
)δ(yij ,k)

M∑

n=1
α′

n

H∏

j=1

K(j)∏

k=1

(
ϑ′

jn(k)
)δ(yij ,k)

(6)

αm =

N∑

i=1

E [zim]

N∑

i=1

M∑

m=1
E [zim]

(7)

ϑjm(k) =

N∑

i=1

δ (yij , k) E [zim]

N∑

i=1

K(j)∑

k=1

δ (yij , k) E [zim]

. (8)

3 Semi-Naive Bayesian Consensus Clustering

In order to model the problem in a Semi-Naive way, we relax the Bayesian
Naive assumption [15,16], by grouping the labels and imposing that the labels
belonging to the same group are drawn from a probability distribution, while the
groups are conditionally independent. In [19], it is assumed that the labels yi are
conditionally independent, as modeled in Eq. 4, in order to make the problem
tractable. Nevertheless, some relationship among the elements of the vector yi

may exist, because of the intrinsic nature of the data; in facts, yi1, yi2, . . . , yiH

Semi-Naive Mixture Model for Consensus Clustering 341

are the outcomes of the H clustering algorithms run on the i−th data point,
and it is reasonable to suppose that the labels are somehow related one to each
other. Özuysal et al. proposed in [15] a Semi-Naive Bayesian approach to classify
image patches. The key idea is to group the variables in small subsets, assuming
every group to be conditionally independent from each other, and considering
the elements inside the group to not be conditionally independent. We build on
this idea to reformulate the consensus clustering proposed in [19]. Thus, given
the H labels in yi, we create S partitions of size D = H

S mutually conditionally
independent. Thus, the probability becomes:

Pm (mathbfyi| mathbfθm) =
S∏

s=1

P (i)
m

(
Fis|θ(i)m

)
. (9)

In Eq. 9, Fis =
{
yiσ(s,1), yiσ(s,2), . . . , yiσ(s,D)

}
are the labels belonging to

the s−th group, while σ (s, j), j = 1, . . . , D is a random permutation function
within the range 1, . . . , H. The labels Fis are dependent, thus the probability
P

(i)
m

(
Fis|θ(i)m

)
, s = 1, . . . , D has to be expressed as a joint probability over the

elements of yi (see Eq. 10).

P (i)
m

(
Fis|θ(i)m

)
= P (i)

m

(
yiσ(s,1), yiσ(s,2), . . . , yiσ(s,D)|θ(i)m

)
(10)

We define now an enumeration function T to assign a unique numerical label
to each of the elements in Fis, i = 1, . . . , N , s = 1, . . . , S. The values of T lie in
the range {1, . . . , K(1) × K(2) × K(S)}. As shown in Sect. 2, k = 1, . . . , K(j) is
an index referring to the labels in the j−th clustering.

T (Fis) : {1, . . . , K(1)} × {1, . . . , K(2)} × . . . {1, . . . , K(D)} −→ N (11)

We can now formulate the probability density (see Eq. 12) for each group Fis in
the form of a multinomial trial, as in [19].

P (s)
m

(
Fis|θ(s)m

)
=

K(1)×K(2)×K(S)∏

k=1

ϑsm(k)δ(T (Fis)),k) (12)

The consensus partition can still be found using the EM algorithm using the
new equations formulated above. Thus, the expected values for each component
of the hidden variables vectors Z = {z1, . . . , zN} can be computed from Eq. 13
using Eq. 12 as the component probability, together with the mixture weights α
(Eq. 14) and the mixture parameters ϑ (Eq. 15).

E [zim] =
α′

m

S∏

s=1

K(1)×...×K(S)∏

k=1

(ϑsm(k))δ(T (Fis),k)

M∑

n=1
α′

n

S∏

s=1

K(1)×...×K(S)∏

k=1

(ϑsn(k))δ(T (Fis),k)

(13)

342 M. Moltisanti et al.

αm =

N∑

i=1

E [zim]

N∑

i=1

M∑

m=1
E [zim]

(14)

ϑsm(k) =

N∑

i=1

δ (Tis, k) E [zim]

N∑

i=1

K(1)×...×K(S)∑

k=1

δ (Tis, k) E [zim]

. (15)

4 Experimental Results

To test our approach, we used the well-known Two Spirals dataset. This dataset
has been proposed by Alexis Wieland1. The key feature of this dataset is that
the points form two spirals as shown in Fig. 1. For our experiments, we chose to
use 1000 data points.

Fig. 1. Plot of the Two Spirals dataset with 1000 data points.

The experiments have been performed varying the parameters of both the
original Naive [19] and the proposed Semi-Naive algorithms. In the first case, the
parameters are the number of input clusterings H and the number of clusters

1 http://www.cs.cmu.edu/Groups/AI/areas/neural/bench/cmu/.

http://www.cs.cmu.edu/Groups/AI/areas/neural/bench/cmu/

Semi-Naive Mixture Model for Consensus Clustering 343

Naive S=2 S=3 S=4 S=5 S=6 S=7 S=8 S=9 S=10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

Fig. 2. Mean accuracies over 10 different runs, averaging over the parameters K and
H. The first bar on the left represents the accuracy value obtained with the original
Naive method [19], the next bars represent the accuracies obtained using the proposing
method varying the number of groups S.

Naive S=2 S=3 S=4 S=5 S=6 S=7 S=8 S=9 S=10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.63
0.67

0.69

0.62 0.63
0.66

0.63 0.63 0.63 0.63

Fig. 3. Max accuracies over 10 different runs, averaging over the parameters K and
H. The first bar on the left represents the accuracy value obtained with the original
Naive method [19], the next bars represent the accuracies obtained using the proposing
method varying the number of groups S.

344 M. Moltisanti et al.

-10 -5 0 5 10
-15

-10

-5

0

5

10

15
Ground Truth

(a)

-10 -5 0 5 10
-15

-10

-5

0

5

10

15
Naive: Accuracy=0.634

(b)

-10 -5 0 5 10
-15

-10

-5

0

5

10

15
Semi-Naive: Accuracy=0.695

(c)

Fig. 4. Visual comparison of the results.

K to be generated by the runs of the input clusterings. H takes values in the
range {5, . . . , 50}, while K varies in the range {2, . . . , 20}. In addition to these
parameters, the number of groups S has been taken into account, considering
the range {2, . . . , 10}.

The results, obtained over 10 different runs of the experiments, are presented
in Figs. 2 and 3. We computed the accuracy as the ratio between the number of
elements correctly classified over the total number of elements to be classified. As
shown in Fig. 2, the mean values are not very significant, both for the Naive and
Semi-Naive approaches. This is because the algorithms need a fine parameters
tuning step, in order to find the combination that best fits the problem. Hence,
we considered the best results in terms of accuracy over all the runs and over
all the parameters, as shown in Fig. 3. The best accuracy obtained for the Naive
Bayesian method is 0.634, while for the Semi-Naive the best result is 0.695.

It is interesting to visualize how the two methods partition the plane. The
Naive consensus (Fig. 4b) splits the plane in two, as a linear classifier would do,
while the labeling produced by the Semi-Naive consensus (Fig. 4c) has a different
behavior.

5 Conclusions and Future Works

In this paper, we propose a Semi-Naive Bayesian algorithm to tackle the prob-
lem of Consensus Clustering. Our approach derives from the work of Topchy
et al. [19], in which the Consensus problem is modeled using a Gaussian Mix-
ture Model. We extend this method relaxing the assumption on the conditional
independence of the labels, and proposing a formulations where the labels are
organized in groups, and inside each group a correlation among the labels is
imposed.

Future works could involve the application of the proposed method to build
Consensus Vocabularies to better represent images for the food classification

Semi-Naive Mixture Model for Consensus Clustering 345

task, hence extending our recent work [6] based on Naive Bayesian Consen-
sus. Moreover, new experiments could be run on different datasets, with higher
dimensionality to better understand the behavior of the proposed approach.

References

1. Battiato, S., Farinella, G.M., Gallo, G., Rav̀ı, D.: Exploiting textons distributions
on spatial hierarchy for scene classification. J. Image Video Process. 2010(7), 1–13
(2010)

2. Battiato, S., Farinella, G.M., Guarnera, M., Messina, G., Rav̀ı, D.: Red-eyes
removal through cluster based linear discriminant analysis. In: 2010 17th IEEE
International Conference on Image Processing (ICIP), pp. 2185–2188. IEEE (2010)

3. Battiato, S., Farinella, G.M., Puglisi, G., Rav̀ı, D.: Aligning codebooks for near
duplicate image detection. Multimedia Tools Appl. 72(2), 1483–1506 (2014)

4. Estivill-Castro, V.: Why so many clustering algorithms: a position paper. ACM
SIGKDD Explor. Newsl. 4(1), 65–75 (2002)

5. Farinella, G.M., Moltisanti, M., Battiato, S.: Classifying food images represented
as bag of textons. In: 2014 IEEE International Conference on Image Processing
(ICIP), pp. 5212–5216 (2014)

6. Farinella, G.M., Moltisanti, M., Battiato, S.: Food recognition using consensus
vocabularies. In: Murino, V., Puppo, E., Sona, D., Cristani, M., Sansone, C. (eds.)
ICIAP 2015 Workshops. LNCS, vol. 9281, pp. 384–392. Springer, Heidelberg (2015)

7. Fred, A., Jain, A.K.: Robust data clustering. In: IEEE Conference on Computer
Vision and Pattern Recognition, vol. 2, pp. 2–128. IEEE (2003)

8. Fred, A., Jain, A.K.: Data clustering using evidence accumulation. In: International
Conference on Pattern Recognition, vol. 4, pp. 276–280. IEEE (2002)

9. Fred, A., Jain, A.K.: Evidence accumulation clustering based on the K-means
algorithm. In: Caelli, T.M., Amin, A., Duin, R.P.W., Kamel, M.S., de Ridder,
D. (eds.) SPR 2002 and SSPR 2002. LNCS, vol. 2396, pp. 442–451. Springer,
Heidelberg (2002)

10. Ghaemi, R., Sulaiman, N., Ibrahim, H., Mustapha, N.: A survey: clustering ensem-
bles techniques. Eng. Technol. 38(February), 636–645 (2009)

11. Karypis, G., Aggarwal, R., Kumar, V., Shekhar, S.: Multilevel hypergraph parti-
tioning: applications in VLSI domain. IEEE Trans. Very Large Scale Integr. VLSI
Syst. 7(1), 69–79 (1999)

12. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)

13. Kleinberg, J.: An impossibility theorem for clustering. In: Advances in Neural
Information Processing Systems, pp. 446–453 (2002)

14. Kononenko, I.: Semi-naive bayesian classifier. In: Kodratoff, Y. (ed.) EWSL 1991.
LNCS, vol. 482. Springer, Heidelberg (1991)

15. Özuysal, M., Calonder, M., Lepetit, V., Fua, P.: Fast keypoint recognition using
random ferns. IEEE Trans. Pattern Anal. Mach. Intell. 32(3), 448–461 (2010)

16. Pazzani, M.J.: Constructive induction of cartesian product attributes. In: Feature
Extraction, Construction and Selection, pp. 341–354. Springer (1998)

17. Saffari, A., Bischof., H.: Clustering in a boosting framework. In: Proceedings of
Computer Vision Winter Workshop (CVWW), St. Lambrecht, Austria, pp. 75–82
(2007)

346 M. Moltisanti et al.

18. Strehl, A., Ghosh, J.: Cluster ensembles–a knowledge reuse framework for combin-
ing multiple partitions. J. Mach. Learn. Res. 3, 583–617 (2003)

19. Topchy, A., Jain, A.K., Punch, W.: Clustering ensembles: models of consensus and
weak partitions. IEEE Trans. Pattern Anal. Mach. Intell. 27(12), 1866–1881 (2005)

20. Zheng, F., Webb, G.: A comparative study of semi-naive bayes methods in classi-
fication learning. In: Proceedings of the 4th Australasian Data Mining Conference
(AusDM 2005), pp. 141–156 (2005)

21. Zheng, Z., Webb, G.I., Ting, K.M.: Lazy bayesian rules: a lazy semi-naive bayesian
learning technique competitive to boosting decision trees. In: Proceedings of the
16th International Conference on Machine Learning (1999)

Consensus Decision Making in Random Forests

Raja Khurram Shahzad1(B), Mehwish Fatima2, Niklas Lavesson1,
and Martin Boldt1

1 Blekinge Institute of Technology, 371 79 Karlskrona, Sweden
{rks,nla,mbo}@bth.se

2 COMSATS Institute of Information Technology, Lahore, Pakistan
mehwishfatima.raja@gmail.com

Abstract. The applications of Random Forests, an ensemble learner,
are investigated in different domains including malware classification.
Random Forests uses the majority rule for the outcome, however, a deci-
sion from the majority rule faces different challenges such as the decision
may not be representative or supported by all trees in Random Forests.
To address such problems and increase accuracy in decisions, a consensus
decision making (CDM) is suggested. The decision mechanism of Ran-
dom Forests is replaced with the CDM. The updated Random Forests
algorithm is evaluated mainly on malware data sets, and results are com-
pared with unmodified Random Forests. The empirical results suggest
that the proposed Random Forests, i.e., with CDM performs better than
the original Random Forests.

1 Introduction

One of the main challenges for anti-malware vendors is to detect or classify an
unknown malware. The unknown malware are also referred to as zero day mal-
ware. The existing detection techniques, i.e., signature based (pattern matching)
and rule based are incapable of detecting a zero day malware. To address this
problem, researchers have borrowed different approaches from different domains
including supervised learning and investigated their applicability for the malware
detection. In Supervised learning, a model is generated from the labeled data set
for the malware classification. The generated model is commonly referred to as
classifier and is further used to classify malware and benign files. Experimental
results have indicated that a combination of multiple classifiers (ensemble) such
as Random Forests (RF) may perform better in comparison to single classifier.
Random Forests1, is created by generating the desired number of decision tree
classifiers (also known as base learners) [1]. For the classification, an instance
is given to each tree in RF, which then returns its prediction about the given
instance. The decision of each tree is considered as a vote for obtaining the final
decision. The final decision of RF is based on the majority rule, i.e., the class
obtaining the majority of votes is the output. As an ensemble, RF is expected
to perform better in terms of prediction accuracy than single base learners [2].
1 http://www.stat.berkeley.edu/∼breiman/RandomForests/cc home.htm.

c© Springer International Publishing Switzerland 2015
P. Pardalos et al. (Eds.): MOD 2015, LNCS 9432, pp. 347–358, 2015.
DOI: 10.1007/978-3-319-27926-8 31

http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm

348 R.K. Shahzad et al.

Typically, the predictive performance of a classifier is evaluated by estimating
its error rate, i.e., the proportion of misclassified instances. In case of RF, the
error rate may be affected by the presence of noisy features in the data set and
majority of votes to a wrong class [3,4]. The final decision of the RF algorithm
is a multi-classifier decision-making process and is generally referred to as the
group decision-making in the decision theory [5]. The final decision of the group
may vary from the decision of an individual participant in the group. Thus, the
group decision may not be supported by the whole group, which is a drawback
of majority rule in context of unanimous agreement within the group. A unani-
mous decision is critical for problems such as malware classification, where the
misclassification cost is very high in terms of losses to the user.

To address the problems of majority rule, a consensus decision-making
(CDM) method is suggested [5]. For the CDM method, all group members strive
to reach an optimal outcome while catering the concerns of each member as much
as possible. We hypothesize that the prediction accuracy of the RF algorithm can
be improved by incorporating CDM. For integrating CDM in RF, the majority
decision of Random Forests is replaced by CDM. Later, modified RF algorithm
is compared to the baseline, i.e., traditional Random Forests implementation in
WEKA [6] on a number of data sets using different evaluation measures.

The remainder of this paper is organized as follows: Sect. 2 provides a back-
ground of Random Forests and decision-making theory. Section 2.1 discusses
the related work. Section 3 discusses theoretical foundations regarding CDM.
Section 4 presents the experimental setup, while Sect. 5 discusses the results from
the experiment and Sect. 6 concludes the paper.

2 Background

Random Forests is an ensemble of decision trees. For creating a RF, a specific
number of trees are generated through bootstrap sampling. Due to the random
selection of nodes during each tree generation, each tree in RF varies in the
classification accuracy [2,7]. Each generated tree in RF is tested with the out
of bag data, i.e., the data, which is not used for the training. The average mis-
classification of Random Forests is known as the out of bag error estimate. For
the outcome RF uses the (un-weighted) decisions from each tree and provides a
decision based on the majority rule. It is indicated that group decision-making,
where a problem is decomposed into smaller sub-problems, performs better in
multiple problem domains such as decision theory, artificial intelligence, fuzzy
sets theory and expert systems [8].

The group decision-making includes either the majority rule, autocracy
(veto), and consensus vote. Contrary to the majority rule, in the veto, a desig-
nated member of the group or group of specific members may decide the outcome
of the group. Both methods, i.e., majority rule and veto have their benefits and
drawbacks. However, in both methods, the decision from a subgroup of mem-
bers is ignored and outcome of the group cannot be referred as a decision that
is supported by each member of the group. To address this problem, consensus

Consensus Decision Making in Random Forests 349

voting is suggested [5]. In general, the word consensus refers to an agreement2.
However, in case of the group decision-making, the word consensus is distinct
from the common meaning and refers to a process in which all members of the
set C collaborate to reach a solution that is supported by all the members of the
group regardless of their individual assessment [5].

2.1 Related Work

Random Forests: The ideas of random decision forests and Bagging are pre-
sented in 1995 and 1996 respectively [9,10]. These two concepts served as the
base for the development of RF in 1999. In 2001, it is presented that RF does
not over-fit because of Law of large numbers [1]. In 2008, the basic theorem of
RF is further enhanced by a series of theorems that established the universal
consistency of averaging rules [2]. Since the idea of RF is presented, it has been
used in different domains such as medical science, biology, bio-informatics, com-
puter security, image processing, malware classification [11], and many others
[7]. Different variations of Random Forests are also investigated by researchers
to improve the prediction accuracy [12]. Some researchers have calibrated RF
[13], while some have used Random Forests for the selection of important vari-
ables [14]. RF has also been improved for obtaining predictions from imbalance
data sets [15].

Decision Making: A group of individuals, for solving a given task, may select
a suitable option from the set of alternatives using different methods such as
the majority rule [16], multiple winner, proxy voting, and veto [17]. These con-
cepts are further extended by the social choice theory, which is a theoretical
framework to attain a group decision from the participants while considering
the individual preferences [18]. Different theories such as social decision scheme
[19], quantitative decisions [20] and consensus decision-making are investigated.
The idea of consensus decision-making is presented for the selection of a suitable
candidate among multiple candidates using both individual judgment and group
judgment [5].

Malware Classification: The task of malware classification is generally consid-
ered as a binary classification problem. RF algorithm is used for detecting the
malware on computer systems, mobile phones and network data streams. RF has
outperformed other algorithms such as Bagging, boosting, and decision trees for
the detection of unknown malware [21,22].

3 Consensus Decision-Making in Random Forests
Algorithm

This section explains the consensus decision-making algorithm. The consensus
decision-making process can be divided into two stages, i.e., consensus stage and

2 http://www.merriam-webster.com/dictionary/consensus.

http://www.merriam-webster.com/dictionary/consensus

350 R.K. Shahzad et al.

selection stage. The consensus stage consists of several rounds where the prefer-
ences of each expert for the alternatives are evaluated to reach the solution. The
iterative nature of the process helps the experts to reduce the differences between
their opinions before concluding an outcome. The selection stage provides the
subset of the most suitable alternative or a solution set. Different strategies may
be further applied, (if required), to obtain the solution set.

3.1 Consensus Stage

In the consensus stage, decisions from the individual classifiers are collected and
each decision is given a weight, which is further used to calculate the weighted
group decision. The obtained weighted decision is re-evaluated iteratively until
the convergence is achieved. The consensus stage is described as follows:

1. Vector of Classifiers: In Random Forests, k > 1 tree classifiers are generated
from Bootstrapping and a vector of generated classifiers is obtained.

2. Initial decisions (Predictions): Each classifier classifies the given instance and
provides a vector of decisions about the n alternative classes. A decision
matrix of k × n, which gives the decisions from all classifiers about all alter-
native classes is generated.

3. Criterion Weights = Criteria × Predictions: The prediction of each tree clas-
sifier is multiplied with the selected criterion to obtain its weighted decision.
For the experimental purpose, the out of bag error (OOB) [1] is selected as
the criterion to evaluate decisions of generated tree classifiers. If a classifier
is able to correctly predict the classes and OOB for that particular classifier
is zero, the decision of the classifier is multiplied by 1. In all other cases, the
decision of the classifier is multiplied by 1 − OOB. This procedure reflects
the confidence level of the classifiers for each classification.

4. Aggregation: The first aggregation step combines the values for each alterna-
tive class. This generates score vectors, one for each classifier and for each
class after aggregation. These score vectors are used to generate the score
matrix (S).

5. Recursive Aggregation over Classifiers: The OOB of each classifier is used
to indicate the confidence level of the classifier for predictions. Thus, each
classifier defines a vector of confidence for alternative classes. These vectors
are used to construct a matrix R. The diagonals of matrix R are the degree
of confidence that each classifier has in the correctness of its prediction. The
matrix R differs at each step. Consequently, for each step the weighted mean
aggregation is applied over the result of the previous step:

T = R× S

6. Next Iteration: For the next aggregation step, following assignment is per-
formed: S = T . The process is repeated for each class until the convergence
is achieved. Suppose the number of aggregation steps are p, then after p
aggregation steps:

Sp = RT
p × · · · ×RT

1 × CT = (C ×R1 × · · · ×Rp)T

Consensus Decision Making in Random Forests 351

7. Iteration Termination: After the individual judgment, multiple iterations are
performed, which combines the multi-classifier scores per class to obtain the
overall score for each class, which leads to final ranking of all the classes.
However, it is necessary to determine, how the iterations will stop. For this
particular study, if the difference between the sums of two iterations is less
than 1 × e−5, the iterations are stopped and convergence is achieved.

3.2 Selection Stage

The selection stage provides the outcome of the RF. The selection stage receives
the weighted means in the form of decisions from the consensus stage and the
class with the highest weight is considered as the outcome.

3.3 Example and Explanation of Algorithm

Assume, a RF of 10 trees is generated using WEKA from a malware data set,
which contains both malware files and benign files. An instance of malware file is
given to this Random Forests. The task is to perform a binary classification, in
which ‘1’ represents the presence of a malware in the file (or a malware file), and
‘0’ represents a benign file. Each generated tree contains (assumed value) OOB
and has predicted the class of the given instance (see Table 1). For simplicity,
assume that the decision vector of each tree (classifier) contains only outcome.
Table 1 also presents the other required information such as the weight given by
the tree to its decision (W1), i.e., 1 − OOB, and weight given to rest of trees

Table 1. Initial state

Trees P∗ OOB∗∗ Wa
1 Wb

2

T1 0 0.25 0.75 0.027777778

T2 0 0.20 0.80 0.022222222

T3 0 0.15 0.85 0.016666667

T4 0 0.50 0.50 0.055555556

T5 1 0.30 0.70 0.033333333

T6 1 0.65 0.35 0.072222222

T7 1 0.30 0.70 0.033333333

T8 0 0.80 0.20 0.088888889

T9 1 0.25 0.75 0.027777778

T10 1 0.30 0.70 0.033333333
∗Initial Predictions,
∗∗ Mean Absolute Error
a Self Weight, i.e., 1 −OOB
b Weight given to each classifier in RF
(OOBn/9)

352 R.K. Shahzad et al.

individually (W2), i.e., OOB/9. These values are further used for calculating the
weighted aggregated mean and remain constant throughout the process.

To obtain the weighted decision, the prediction of each tree classifier is mul-
tiplied with its W1. It is worth noting that if the OOB of a particular tree is
zero, the decision of the tree will be multiplied by ‘1’. To calculate the score
matrix for each tree; sum of the prediction Pn from each tree is multiplied by
W1, and sum of decisions from other trees is multiplied with the OOB of current
tree. The obtained score is divided by 10 for calculating the aggregated weighted
mean. The score matrix of selected iterations, i.e., initial iteration, ith iteration
and final iteration is shown in Table 2.

Table 2. Score matrix

Trees Initial scores Intermediate scores Final scores Predictions

T1 0.125 0.0560 0.000450078 1

T2 0.100 0.0458 0.000371326 0

T3 0.075 0.0351 0.000287487 0

T4 0.250 0.0995 0.000781605 1

T5 0.190 0.0673 0.000524192 1

T6 0.295 0.1205 0.000941675 1

T7 0.190 0.0673 0.000524192 1

T8 0.400 0.1352 0.001079901 1

T9 0.175 0.0585 0.000450079 1

T10 0.190 0.0673 0.000524192 1
∗ If Score is < 1 × e−5, prediction is class ‘0’ otherwise prediction is
class ‘1’.

The iterations are stopped, if the difference between the sum of ith iteration
and i+1 iteration is < 1× e−5. Moreover, the mean of last iteration is taken and
the score below the mean is considered as the prediction for the class ‘0’ and score
> mean is considered as the prediction for the class ‘1’. In this example initially,
five trees have predicted the class as malware and five trees have predicted
the class as benign. In such cases, majority rule cannot determine an outcome.
When the majority rule is replaced with CDM, majority of trees have indicated
the presence of a malware, which helps in determining the outcome.

4 Experiment

The aim of the experiment is two folds. First, to evaluate the impact of CDM
in the Random Forests algorithm in comparison to the original RF algorithm
for the task of malware classification. Secondly, to validate the generalizability
of modified algorithm. The proposed changes may be used for the multi-class
classification problems, however, the experiments are performed only for the

Consensus Decision Making in Random Forests 353

binary classification. Hereafter, the modified Random Forests with the CDM will
be referred to as Consensus Random Forests (CRF). Two types of experimental
data sets are used, i.e., a generated data sets for the malware classification and
two data sets taken from a machine learning repository [23]. These data sets may
also be categorized according to their size, i.e., number of instances or features.
All data sets are in the Attribute-Relation File Format (ARFF)3, which is a
structured ASCII text file that includes a set of data instances along with a
set of features for each instance [24]. ARFF files are used as an input to models
generated by CRF and RF. The experiments are performed with Random Forests
of different number of trees.

4.1 Data Sets

The data sets from UCI repository are Forest Covertype data set4 and Blogger
data set5. The Forest Covertype data is generally considered as one of the largest
data sets available for machine learning experiments [25]. This data set contains
581012 instances with 54 features. This data set is preprocessed to transform
from multi-classification to binary classification problem6. While Blogger Data
Set is relatively small and contains only 100 instances with six features [26]. The
data set is used to classify users’ trends in cyberspace into two distinct groups,
i.e., professional bloggers (regular bloggers) and seasonal bloggers (irregular blog-
gers).
Malware Data Set is generated for malware classification. The malware data set
contains 800 instances of both malware programs and benign programs for Win-
dows operating system. Malware programs are gathered from Lavasoft7 repos-
itory and benign programs are gathered from two different sources i.e., an on-
line software repository CNET Download.com8 and from a clean installation of
Windows OS. The collected benign files are checked with commercial anti-virus
products to eliminate the probability of false negatives. Out of 800 examples, the
malware class contains 400 instances, and the benign class contains 400 instances.
The generated data sets is disassembled using nsdisasm9 utility of Ubuntu10 to
extract different pieces of information such as byte code, OpCode (operation
code is the part of an assembly instruction that specifies the operation to be
performed), text strings, and other information. The extracted information is
further used to represent the malware and benign examples for the classifica-
tion task [27]. However, OpCode representation as n-gram has produced better
results than other representations. Some researchers showed that 4 -gram, i.e.,

3 http://www.cs.waikato.ac.nz/ml/weka/arff.html.
4 http://archive.ics.uci.edu/ml/datasets/Covertype.
5 http://archive.ics.uci.edu/ml/datasets/BLOGGER.
6 http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/binary.html.
7 http://www.lavasoft.com.
8 http://download.cnet.com/windows.
9 http://manpages.ubuntu.com/manpages/gutsy/man1/ndisasm.1.html.

10 http://www.ubuntu.com.

http://www.cs.waikato.ac.nz/ml/weka/arff.html
http://archive.ics.uci.edu/ml/datasets/Covertype
http://archive.ics.uci.edu/ml/datasets/BLOGGER
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
http://www.lavasoft.com
http://download.cnet.com/windows
http://manpages.ubuntu.com/manpages/gutsy/man1/ndisasm.1.html
http://www.ubuntu.com

354 R.K. Shahzad et al.

n = 4 produces optimal results. Thus, the size of n-gram in the experimental
data set is four, i.e., 4 -gram [4].

From the disassembled output only OpCodes are extracted by using a parser
and other information is discarded. Disassembly and parsing have generated a
large number of OpCode sequences, i.e., n-grams. Many of these sequences may
not have any useful contribution in the classification task. Thus, it is crucial to
select the most contributing sequences without affecting the classifier accuracy.
In the malware detection domain, each generated sequence is analogous to a term
in a text document. Thus, to find the most valuable sequences, Term frequency-
Inverse document frequency Tf -Idf from the text categorization field is used
[28]. Top 1000 sequences of benign and malware are selected by using the Tf -
Idf. These sequences are further used as features to represent a malware or a
benign instance and generate ARFF files.

Table 3. Classification results with 10 trees in random forests

TP rate FP rate Precision Recall F-Measure Accuracy AUC

UCI data sets

Forest covertype data set

RFa 0.953 0.048 0.953 0.953 0.953 0.952 0.989

CRFb 0.953 0.048 0.953 0.953 0.953 0.953 0.989

Blogger data set

RF 0.790 0.330 0.783 0.790 0.782 0.790 0.848

CRF 0.830 0.279 0.827 0.830 0.824 0.830 0.852

Malware data sets

4-gram data set

RF 0.904 0.096 0.906 0.904 0.904 0.903 0.967

CRF 0.916 0.084 0.918 0.916 0.916 0.916 0.974
a Random Forests with majority rule.
b Consensus Random Forests.

4.2 Evaluation Measures

The performance is evaluated using 10-fold cross-validation. Confusion matri-
ces are generated by using the response of both classifiers. The following four
measures define the elements of a confusion matrix from algorithms used in
experiment: True Positive (TP), False Positive (FP), True Negative (TN), and
False Negative (FN). These elements are used to determine the True Positive
Rate (TPR = TP

TP+FN), False Positive Rate (FPR = FP
TN+FP), True Nega-

tive Rate, (TNR = TN
TN+FP), False Negative Rate (FNR = FN

TP+FN), Recall,
and Precision, which are further used to calculate the composite measures, i.e.,
Accuracy (ACC = TP+TN

TP+TN+FP+FN), Area Under ROC (AUC), and F-Measure

Consensus Decision Making in Random Forests 355

Table 4. Classification results with 100 trees in random forests

TP rate FP rate Precision Recall F-Measure Accuracy AUC

UCI data sets

Forest covertype data set

RFa 0.953 0.048 0.953 0.953 0.953 0.963 0.989

CRFb 0.963 0.036 0.963 0.963 0.963 0.963 0.995

Blogger data set

RF 0.850 0.219 0.848 0.85 0.848 0.85 0.839

CRF 0.850 0.219 0.848 0.85 0.848 0.85 0.849

Malware data sets

4-gram data set

RF 0.940 0.060 0.940 0.940 0.940 0.940 0.987

CRF 0.943 0.058 0.943 0.943 0.942 0.942 0.988
a Random Forests with majority rule.
b Consensus Random Forests.

(F1 = 2 · Precision·Recall
Precision+Recall). ACC is the percentage of correctly identified classes.

For some data sets, ACC can be a reasonable estimator of performance (the
performance on the novel data). However, if data sets are imbalanced, the ACC
metric may be used as a complementary metric with area under ROC. ROC is
plotted as a result of TPR on the x-axis in the function of FPR on the y-axis
at different points. AUC is commonly used when the performance of a classifier
needs to be evaluated for the selection of a high proportion of positive instances
in the data set [24]. However, AUC has the benefits of being independent of
class distribution and cost [29]. F-Measure is the harmonic mean of precision
and recall. These evaluation parameters are used to compare the individual per-
formance of RF and CRF.

5 Results and Analysis

The experimental results are presented in Tables 3 and 4. It is worth noting
that presented results are the average result of both classes. Table 3 presents the
results of RF and CRF with 10 trees. Table 4 presents the results of RF and CRF
with 100 trees. Both tables present the results of TP rate, FP rate, Precision,
Recall, ACC, AUC and F-Measure.

The result’s analysis can be broadly divided into two parts, i.e., overall discus-
sion and interpretation of results on all data sets and data set specific discussion
and interpretation. It is worth noting that there is no difference between RF
and CRF in terms of generated number of trees and obtaining the classification.
For both experiments, CRF performs better than RF by increasing the TP and
TN and decreasing the FP and FN. Table 3 suggests the improvement in results
for all data sets except the Forest cover type data set. The Forest cover type

356 R.K. Shahzad et al.

data set is a large data set with 500,000+ instances. Thus, hundreds of instances
classified correctly or incorrectly may not affect the results of the composite
measures if average results are presented. However, in case of middle size data
sets and small size data sets such as malware data set and Blogger data set,
the difference in the number of instances in the elements of a confusion matrix
produces the significant difference in composite measures. When comparing the
results of Tables 3 and 4, it is clearly indicated that the increase in number of
trees, improves the classification results for larger data sets. For the smaller data
set, the difference in results is ignorable. Another factor, which is not presented
in both tables is running time of experiments. Both experiments have consumed
the similar amount of time for the selection of features and generating trees.
However, when the decision part of the CRF is executed, the execution time of
algorithm is significantly affected with the number trees. In the CRF algorithm,
the score matrix for each tree is calculated and this process is performed iter-
atively until the convergence is achieved. Among all the data sets, the longest
time to obtain predictions is for the CRF on the Forest cover type data set as
for every instance, iterations are performed. However, for the other data sets, if
the resources consumed are compared with the improvement in results, the CRF
with 100 trees may be recommended.

It is worth noting that in experiments, the convergence is achieved between 15
to 20 iterations. To verify this, the numbers of iterations are manually increased
from the 20 iterations to 40 iterations; however, no difference in results is found.
The performance of the RF and CRF depends upon the number of selected fea-
tures and quality of selected features for the generation of trees. However, to keep
the selection procedures similar for both algorithm, no further pre-processing was
performed. For these experiments the number of selected features is small. For
the Forest Cover type data set, six features out of 54 are selected for the classi-
fication. For the malware data set, 11 features are selected out of 1000. Another
contributing factor towards the performance of CRF is OOB of generated trees,
which is used for calculating the score matrix. If the generated set of trees in RF
is having a zero OOB, then there may not be a difference in the performance
of RF and CRF. However, if the data is noisy, and generates trees that contain
high OOB, the CRF is more useful as it uses OOB value for the prediction. If
OOB of a tree is high, generally the good prediction results may not be obtained
using RF. However, CRF uses the OOB to change the decision of trees. When
the predicted outcome of a tree is multiplied with its OOB, the distance between
actual class and predicted class increases or decreases. This process continues,
until the prediction of that particular tree falls clearly in one class. This charac-
teristic of CRF moves the borderline cases to a distinct class case and improves
the classification results.

6 Conclusion

Random Forests has attracted researchers due to its randomness during tree gen-
eration and improved classification results compared to single classifiers. How-
ever, for obtaining the final decision, RF uses majority rule, which is not an

Consensus Decision Making in Random Forests 357

optimum option for all situations especially for the malware classification task.
Thus, to improve the decision mechanism, this paper introduces the consensus
decision making in RF. To empirically evaluate the effect of changes, two dif-
ferent experiments are performed. Each experiment contains a large, medium
and small data set. Two different number of trees, i.e., 10 and 1000 are used
for experiments. The experiment results suggest that the modified algorithm
improves the classification accuracy. The results also suggest that the modified
algorithm with increased number of trees may be used for larger data sets. While,
the modified algorithm with 10 trees may be used for medium and small data
sets. For the future work, we plan to extend our experiments for the multi-class
malware classification with more parameterization.

References

1. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
2. Biau, G., Devroye, L., Lugosi, G.: Consistency of random forests and other aver-

aging classifiers. J. Mach. Learn. Res. 9, 2015–2033 (2008)
3. Li, H.-B., Wang, W., Ding, H.-W., Dong, J.: Trees weighting random forest method

for classifying high-dimensional noisy data. In: IEEE 7th International Conference
on e-Business Engineering (ICEBE), pp. 160–163 (2010)

4. Shahzad, R.K., Lavesson, N.: Comparative analysis of voting schemes for ensemble-
based malware detection. J. Wirel. Mob. Netw. Ubiquitous Comput. Dependable
Appl. (JoWUA) 4(1), 98–117 (2013)

5. Tsiporkova, E., Boeva, V.: Multi-step ranking of alternatives in a multi-criteria and
multi-expert decision making environment. Inf. Sci. 176(18), 2673–2697 (2006)

6. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.:
The WEKA data mining software: an update. ACM Spec. Interest Group Knowl.
Discov. Data Min. (SIGKDD) Explor. Newslett. 11, 10–18 (2009)

7. Verikas, A., Gelzinis, A., Bacauskiene, M.: Mining data with random forests: a
survey and results of new tests. Pattern Recogn. 44(2), 330–349 (2011)

8. Vanicek, J., Vrana, I., Aly, S.: Fuzzy aggregation and averaging for group decision
making: a generalization and survey. Knowl.-Based Syst. 22(1), 79–84 (2009)

9. Ho, T.K.: Random decision forests. In: Proceedings of the 3rd International Con-
ference on Document Analysis and Recognition, vol. 1, pp. 278–282. IEEE (1995)

10. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)
11. Shahzad, R.K., Lavesson, N.: Detecting scareware by mining variable length

instruction sequences. In: 10th International Information Security South Africa
Conference, pp. 1–8 (2011)

12. Robnik-Šikonja, M.: Improving random forests. In: Boulicaut, J.-F., Esposito, F.,
Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 359–
370. Springer, Heidelberg (2004)

13. Boström, H.: Calibrating random forests. In: Seventh International Conference on
Machine Learning and Applications, pp. 121–126 (2008)

14. Genuer, R., Poggi, J.-M., Tuleau-Malot, C.: Variable selection using random
forests. Pattern Recogn. Lett. 31(14), 2225–2236 (2010)

15. Khoshgoftaar, T.M., Golawala, M., Van Hulse, J.: An empirical study of learning
from imbalanced data using random forest. In: 19th IEEE International Conference
on Tools with Artificial Intelligence, vol. 2, pp. 310–317 (2007)

358 R.K. Shahzad et al.

16. Risse, M.: Arguing for majority rule. J. Polit. Philos. 12(1), 41–64 (2004)
17. Farrell, D.M.: Electoral Systems: A Comparative Introduction. Palgrave

Macmillan, Basingstoke (2001)
18. Elster, J., Hylland, A.: Foundations of Social Choice Theory. Cambridge University

Press, Cambridge (1989)
19. Davis, J.H.: Group decision and social interaction: a theory of social decision

schemes. Psychol. Rev. 80(2), 97–125 (1973)
20. Davis, J.H., Stasson, M.F., Parks, C.D., Hulbert, L., Kameda, T., Zimmerman,

S.K., Ono, K.: Quantitative decisions by groups and individuals: voting procedures
and monetary awards by mock civil juries. J. Exp. Soc. Psychol. 29(4), 326–346
(1993)

21. Shabtai, A., Moskovitch, R., Feher, C., Dolev, S., Elovici, Y.: Detecting unknown
malicious code by applying classification techniques on opcode patterns. Secur. Inf.
1(1), 1–22 (2012)

22. Shahzad, R.K., Haider, S.I., Lavesson, N.: Detection of spyware by mining exe-
cutable files. In: International Conference on Availability, Reliability, and Security,
pp. 295–302 (2010)

23. Bache, K., Lichman, M.: UCI machine learning repository (2013)
24. Witten, I.H., Frank, E., Hall, M.A.: Data Mining: Practical Machine Learning Tools

and Techniques: Practical Machine Learning Tools and Techniques. The Morgan
Kaufmann Series in Data Management Systems. Elsevier Science, USA (2011)

25. Lazarevic, A., Obradovic, Z.: Data reduction using multiple models integration. In:
Siebes, A., De Raedt, L. (eds.) PKDD 2001. LNCS (LNAI), vol. 2168, pp. 301–313.
Springer, Heidelberg (2001)

26. Gharehchopogh, F.S., Khaze, S.R.: Data mining application for cyber space users
tendency inblog writing: a case study. Int. J. Comput. Appl. 47(18), 40–46 (2012)

27. Shabtai, A., Moskovitch, R., Elovici, Y., Glezer, C.: Detection of malicious code by
applying machine learning classifiers on static features: a state-of-the-art survey.
Inf. Secur. Tech. Rep. 14(1), 16–29 (2009)

28. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing.
Commun. ACM 18, 613–620 (1975)

29. Provost, F.J., Fawcett, T., Kohavi, R.: The case against accuracy estimation for
comparing induction algorithms. In: Proceedings of the Fifteenth International
Conference on Machine Learning. pp. 445–453. Morgan Kaufmann Publishers Inc.
(1998)

Multi-objective Modeling of Ground
Deformation and Gravity Changes

of Volcanic Eruptions

Piero Conca1(B), Gilda Currenti2, Giovanni Carapezza1, Ciro del Negro2,
Jole Costanza3, and Giuseppe Nicosia1

1 Department of Computer Science, University of Catania, Catania, Italy
pieroconca@gmail.com

2 Istituto Nazionale di Geofisica e Vulcanologia (INGV), Catania, Italy
gilda.currenti@ingv.it

3 Istituto Italiano di Tecnologia (IIT), Milan, Italy

Abstract. Inverse modeling of geophysical observations is becoming an
important topic in volcanology. The advantage of exploiting innovative
inverse methods in volcanology is twofold by providing: a robust tool for
the interpretation of the observations and a quantitative model-based
assessment of volcanic hazard. This paper re-interprets the data collected
during the 1981 eruption of Mt Etna, which offers a good case study
to explore and validate new inversion algorithms. Single-objective opti-
mization and multi-objective optimization are here applied in order to
improve the fitting of the geophysical observations and better constrain
the model parameters. We explore the genetic algorithm NSGA2 and the
differential evolution (DE) method. The inverse results provide a better
fitting of the model to the geophysical observations with respect to pre-
viously published results. In particular, NSGA2 shows low fitting error in
electro-optical distance measurements (EDM), leveling and micro-gravity
measurements; while the DE algorithm provides a set of solutions that
combine low leveling error with low EDM error but that are character-
ized by a poor capability of minimizing all measures at the same time.
The sensitivity of the model to variations of its parameters are investi-
gated by means of the Morris technique and the Sobol’ indices with the
aim of identifying the parameters that have higher impact on the model.
In particular, the model parameters, which define the sources position,
their dip and the porosity of the infiltration zones, are found to be the
more sensitive. In addition, being the robustness a good indicator of the
quality of a solution, a subset of solutions with good characteristics is
selected and their robustness is evaluated in order to identify the more
suitable model.

1 Introduction

Mt Etna is one of the best monitored and most studied active volcanoes world-
wide. Since the Eighties a large number of multiparametric geophysical surveys

c© Springer International Publishing Switzerland 2015
P. Pardalos et al. (Eds.): MOD 2015, LNCS 9432, pp. 359–370, 2015.
DOI: 10.1007/978-3-319-27926-8 32

360 P. Conca et al.

have been carried out on the ground surface to gain insights into the activ-
ity of the volcano. One of the first historical dataset dates back to the 1981
eruption, which is remembered because of its intensity in terms of effusive rate
and amount of lava emitted, despite the relatively short time duration of the
eruptive activity. Attempts had been made to separately model the recorded
dataset [2,3,15]. Among the different hypotheses formulated, Bonaccorso [2]
interpreted the geodetic observations (leveling and EDM) by suggesting the acti-
vation of two magmatic intrusions oriented northward: the initial deeper one
starting from the summit craters and the shallower one feeding the final effusive
fractures. This hypothesis was considered later on to implement a computational
model of the 1981 eruption [3], with the purpose of getting a more comprehen-
sive picture of the intrusive mechanism related to the 1981 flank eruption of Mt
Etna through a joint inversion of all the available dataset (microgravity, lev-
eling and EDM). A multi-objective optimization was performed to search the
space of the model parameters and find a solution that closely fits the geophys-
ical measurements [6,13,18]. In order to explain the discrepancy between the
intrusive volumes estimated by geodetic and gravity data, the model was modi-
fied to account for the porosity of the host rock. That model was optimised by
means of the evolutionary multi-objective optimization algorithm NSGA2 [8].
This paper provides insight into the optimization of the computational model
proposed in [3]. In particular, it presents further investigation of the optimization
capabilities of NSGA2 and, in addition, it also applies the single-objective DE
algorithm to evaluate its performance with respect to the NSGA2. The paper
also presents the results of a sensitivity analysis of the model in order to iden-
tify the parameters that have higher influence on its performance. Finally, an
analysis of the robustness of a set of solutions is presented.

2 Single-Objective and Multi-objective Optimization

Geophysical inversion in volcanic areas focuses on exploiting data from differ-
ent monitoring techniques (geodesy, gravimetry, magnetism), physical models
and numerical approaches in order to identify likely magmatic sources and gain
insights about the state of the volcano. Indeed, the geophysical observations col-
lected on a volcano are the surface expressions of processes that occur deeply
within the volcanic edifice. Magma migration and accumulation generate a wide
variety of geophysical signals, which can be observed before and during eruptive
processes. Magma ascent to the Earth’s surface forces crustal rocks apart engen-
dering stress and displacement fields and producing variations in the gravity field
due to modifications in the subsurface density distribution. Ground deformation
and gravity changes are generally recognized as reliable indicators of unrest,
resulting from the uprising of fresh magma toward the surface. Measurements of
these geophysical signals are useful for imaging the spatio-temporal evolution of
magma propagation and for providing a quantitative estimate about the magma
volume rising from depth. Deformation and gravity changes are generally inter-
preted separately from each other using physics-based models, which provide an

Multi-objective Modeling of Ground Deformation and Gravity Changes 361

estimate of the expected geophysical observation produced by volcanic sources.
The consistency of interpretations from different observations is qualitatively
checked only a posteriori. An integrated geophysical inversion based on both
data set should prove a more efficient and accurate procedure for inferring mag-
matic sources and minimizing interpretation ambiguities. The geophysical inver-
sion is formulated as an optimization problem, which searches the magma source
parameters (location, geometry, volume, mass, etc.) m = {m1, . . . , mp} ∈ M in
order to minimize the misfit between the values of geophysical observations and
their respective values estimated by the physics-based forward model. The joint
inversion of different geophysical observables implies that the misfits for each
i-th dataset are simultaneously minimized:

fi (m) = ‖gi (m) − dobs
i ‖ for i = 1, . . . , k. (1)

where fi is an objective function and denotes the difference between the value
calculated through gi(m) (forward model) and the observed value dobs

i for each
i-th geophysical observable. Therefore, the joint inversion of a multiparametric
geophysical dataset can be regarded as a multiobjective optimization problem
(MOP). Solving this problem means to find the set of model parameters m∗ that
satisfies a set of constraints and optimizes the objective function vector, whose
elements are the objective functions:

m∗ = min
m∈M

F (m) with mmin
j ≤ mj ≤ mmax

j and j = 1, . . . , p, (2)

where F (m) = [f1 (m) , f2 (m) , . . . , fk (m)] .

Here, we set up a MOP to infer the models space parameters m of the magmatic
sources by jointly inverting the microgravity, leveling and EDM (Electroptical
Distance Measurements) data gathered spanning the 1981 Etna eruption. Grav-
ity measurements were performed using spring-based relative gravimeters along
a profile circumventing the Etna edifice. Gravity changes were computed by dif-
ferencing the measurements carried out from two surveys in August/September
1980 and July/August 1981, before and after the eruption. Concurrently, lev-
elling surveys were also performed to measure elevation changes of the ground
surfaces. Moreover, discrete horizontal deformation were also measured in Sep-
tember 1980 and May 1982 and in October 1979 and June 1981, using the EDM
networks in the SW and NE area, respectively. The pattern of these geophysical
dataset support the volcanological evidence that the 1981 Etna eruption was
characterized by magma intrusions through fractures into the rocks. This geo-
physical process is simulated mathematically using solutions devised in [11,12]
by solving analytically the elasto-static and gravity equations for modeling dis-
placement and gravity changes induced by rectangular fluid-driven fractures.
Two intrusive sources and two associated surrounding zones of pre-existing
microfractures, which were filled with new magma are considered following the
results reported in Carbone et al. [5]. Since the forward models are nonlinear
operators, it calls for using robust nonlinear inversion methods. In the frame of
multi-objective optimization techniques, we investigate the NSGA2 algorithm.

362 P. Conca et al.

In order to improve the search for solutions, the population of solutions
and the number of generations are increased with respect to the experiments
reported in [3]. In particular, the size of the population has been increased from
500 to 1,000 individuals, while the number of generations has been increased
up to 10,000 from the value of 800. In addition, the single-objective optimiza-
tion technique of Differential Evolution (DE) has also been used to optimize
the parameters of the model. This technique evolves a population of solutions
without calculating the derivatives of the objective function. The parameters
that control the DE algorithm are the scale and the crossover probability that
in our case have, respectively, the values 0.8 and 0.7. The population contains
1,000 individuals and is optimized for 10,000 generations, in order to perform the
same number of objective function evaluations as NSGA2 and therefore provide
a fair comparison. In this context the three misfits used for the multi-objective
optimization (leveling, EDM and gravity) are combined into a single-objective
function which is expressed by the following formula:

φ(xi) =

√(
errleveling(xi)

σleveling

)2

+
(

errEDM(xi)
σEDM

)2

+
(

errgravity(xi)
σgravity

)2

; (3)

where xi is the ith individual and σh are the data uncertainties. An estimate of
the data uncertainty is obtained by the standard deviation of each measurements
dataset, which is of 0.05 m for the leveling, 0.12 m for the EDM, and 35µGal for
the gravity data. The best solutions generated by the optimization techniques
NSGA2 and DE are plotted in Figs. 1 and 2. The figures show that the NSGA2
with a population of 1,000 individuals and 10,000 generations produces better
results with respect to the same algorithm using a population of size 500 and 800
generations. By contrast, the solutions generated by the DE algorithm combine
lower EDM and leveling errors than NSGA2, but are not able to minimize all
measures at the same time, as shown in Fig. 2. The similarity of the output

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0 0.01 0.02 0.03 0.04 0.05

E
D

M
 (

m
)

leveling (m)

NSGA2-pop:500-gen:800
NSGA2-pop:1K-gen:10K

DE
NSGA2-pop:1K-gen:10K-best

NSGA2-pop:500-gen:800-best

Fig. 1. Leveling error and EDM error of the solutions generated by the optimization
techniques NSGA2 with two different parametric configurations and DE.

Multi-objective Modeling of Ground Deformation and Gravity Changes 363

5

10

15

20

25

30

35

0 0.01 0.02 0.03 0.04 0.05

g
ra

v
it
y

(µ
G

a
l)

leveling (m)

NSGA2-pop:500-gen:800
NSGA2-pop:1K-gen:10K

DE
NSGA2-pop:1K-gen:10K-best

NSGA2-pop:500-gen:800-best

Fig. 2. Leveling error and gravity error of the solutions obtained.

values, which are concentrated in a very small region of the space of values,
indicates that these solutions present little differences. This result contrasts with
the large diversity of the solutions provided by NSGA2. Moreover, the values of
several parameters coincide with the bounds of their respective intervals, this
seems to indicate that DE is not able to search the space of parameters effectively.
This could be related to the fact that this technique was natively developed
for unconstrained optimization, and therefore could be more suitable to that
problem rather than constrained optimization. A manual selection, performed
by an expert, of the solutions found is displayed in Table 1. Moreover, a map of
the Etna and the values generated by the these solutions (found by NSGA2 with
a population of 1,000 individuals and 10,000 generations and with a population
of 800 individuals and 500 generations) is displayed in Fig. 3.

3 Sensitivity Analysis

Sensitivity analysis (SA) is an important tool for the study of a model [14].
In fact, SA can help understand the behaviour of a model by evaluating the
impact of its input parameters on the output. This information could be used,
for example, to focus on a subset of parameters when optimization is performed.
Moreover, SA allows to the unveil the relations between different parameters.

Concerning the model of the 1981 eruption of Mt Etna, SA is used to iden-
tify the characteristics of the magmatic intrusions whose variations affect signif-
icantly the output of the model and those which affect it marginally and are,
therefore, less relevant. There are several techniques for SA, in our context the
technique by Morris and the Sobol’ indices were used evaluate the sensitivity of
the model.

364 P. Conca et al.

Valle
del

Bove

Summit
Craters

Randazzo

A

B C

-5

0

5

10

15

20

-40

0

40

80

5

5

10

10

15

15

20

20

25

25BA C
Gravity changes

Elevation changes (levelling measurements)

BA CDist. (km)

Dist. (km)

Δg
 (

m
ic

ro
G

a
l)

Δh
 (

c
m

)

Obs.
Calc.

Obs.
Calc.

Model source

Gravity station

Levelling station

EDM station

Observed

Calculated

Displacement

0 30 cm

Fig. 3. Map of the Etna showing the locations of the measurement stations and the
deformations measured by the EDM sensors and those calculated by the model. The
plots at the bottom show the measured values (blue line) and the calculated values
of, respectively, elevation and gravity changes for the NSGA2-500-800 (red line) and
NSGA-1K-10K (green line) models. The details of the model parameters are reported
in Table 1 (Color figure online).

Multi-objective Modeling of Ground Deformation and Gravity Changes 365

Table 1. Ranges of the values of the parameters and optimal solutions selected by an
expert.

Series Parameter Min. Max. NSGA2 DE NSGA2 [3]

North source

ZN
1 , depth of the top, m b.s.l 20 20 20 20 20

LN , length, m 4,000 8,000 6,251 6,184.2 6,703

HN , height, m 200 500 209.42 200 231.7

WN , tensile opening, m 0.5 2 1.54 2 0.93

φN , azimuth (from the north) −35 −15 −15.69 −31.18 −16

XN , northing of top center, m 4,181,250 4,186,250 4,185,594 4,184,628 4,184,924

YN , easting of top center, m 496,750 499,250 497,887 498,736 497,970

δN , dip (from the east) 45 145 111.67 113.02 88.1

ΔρN , density contrast, Kg/m3 100 500 114.8 100 116.8

North infiltration zone

DN , depth, m 500 2,000 1,430.76 829.43 1,325

HN
I , height, m 100 2,000 335.68 1,999 576.5

U·ρN , thickness·density Kg/m2 0 50,000 18,943.01 4,118.51 13,146.76

South source

ZS
1 , depth of the top, m b.s.l 100 1,000 505.07 841 404

LS , length, m 1,000 5,000 2,446.51 3,024.73 3,589

HS , height, m 500 2000 1,028.12 883.3 1,140

WS , tensile opening, m 2 6 5.43 5.99 5.2

φS , azimuth (from the north) −30 10 −29.05 −16 −30

XS , northing of top center, m 4,180,000 4,181,277 4,181,277 4,180,741.2 4,181,004

YS , easting of top center, m 496,500 501,000 499,533.6 499,844.31 499,998.3

δS , dip (from the east) 45 145 118.4 111.08 131.1

ΔρS , density contrast, Kg/m3 100 500 114.82 100 116.8

South infiltration zone

DS , depth, m 500 2,000 1934.93.79 2,000 1,589

HS
I , height, m 100 2,000 976.65 2,000 1,409

U·ρS , Kg/m2 0 50,000 47,904.93 19,135.64 34,485.43

Objective function and robustness

errleveling 0.0112 0.0144 0.0106

errEDM 0.0595 0.0482 0.0646

errgravity 13.06 13.79 18.15

Global robustness 0.2646 0.2591 0.2618

3.1 Morris Technique

The method by Morris is one of the techniques used to analyse the sensitivity of
the model to variations of its parameters [10]. This global optimization technique
follows a path through the input space by modifying the value of one parameter
at a time and measures the response of the model. In particular, in order to

366 P. Conca et al.

Fig. 4. Sensitivity analysis by means of the Morris method. The parameters on the
upper right corner affect more largely the behaviour of the model.

quantify such response, the mean and the standard deviation of the changes to
the model output are calculated for each variable. Since the mean can assume
negative values, a normalization is performed. The results are shown in Fig. 4.
The points of the plot near the origin of the axes have small values of mean
and standard deviation and are, therefore, associated with parameters whose
variations cause negligible effects to the output of the model. The other points,
especially those in the top right corner, indicate large variations of the mean
and are associated with parameters that strongly affect the model output when
they are varied. The plot also reveals that the relationship between inputs and
outputs are nonlinear since the magnitude of the effect of the variation of a
parameter is related to the values of other parameters. This is suggested by the
fact that large values of standard deviation are observed. In particular, these
parameters control the characteristics of the deeper magmatic intrusion are its
dip (δS), easting position (YS), opening (WS), length (LS) and depth (ZS

1), as
well as northing position (XN), height (HN) and thickness·, density and dip δN of
the model of the shallower magmatic intrusion. These results are in agreement
with those obtained on volcanomagnetic models performed on similar source
geometries [5].

3.2 Sobol’ Indices

Sobol’ indices represent an effective method for estimating the sensitivity of a
nonlinear model [9]. This technique, assuming that the inputs are independent,

Multi-objective Modeling of Ground Deformation and Gravity Changes 367

performs a decomposition of the output variance of the model in order to gen-
erate a set of indices. The higher the value of an index, the more important the
effect of the parameter associated with that index in determining the output of
the model [14,16]. The results, shown in Fig. 5, display the estimated value of
each index along with its maximum and minimum values. They are in accor-
dance with those obtained by the Morris technique, with the exception of the
parameter δS , which in this case is not considered to affect the output.

Fig. 5. Sensitivity analysis by means of the Sobol’ indices.

4 Robustness Analysis

The minimization of the objective function is of primary importance for the
selection of a model. However, it is not the only measure of its quality and a
robustness analysis can help choose among a selection of optimal or sub-optimal
solutions [1]. As a matter of fact, in many applications, if two solutions have the
same objective function value, the solution which undergoes smaller variations
of its objective function value when its parameters are perturbed should be
preferred. For example, in the optimization of a biological model, robust solutions
are preferrable as they mimic the ability of organisms to operate under different
stress conditions [4,17]. In order to measure the robustness of a model, here we
use the method proposed in [17]. Given a solution Ψ , a perturbation is defined
as τ = γ(Ψ, σr), where the function γ having the form of a stochastic noise
with normal distribution and standard deviation σr is applied to the solution Ψ .
A set T consisting of several perturbations τ of Ψ is generated. A sample τ is

368 P. Conca et al.

robust to the perturbation of magnitude dictated by σr if the difference between
the value of the objective function φ in correspondence of τ and the value in
correspondence of the reference solution Ψ is smaller than ε, as expressed by the
following equation:

ρ(Ψ, τ, φ, ε) =

{
1, if |φ(Ψ) − φ(τ)| ≤ ε.

0, otherwise.
(4)

An estimate of the robustness of a system Ψ is obtained by performing a set T
of trials and then calculating the rate of successful trials, which is given by:

Γ (Ψ, T, φ, ε) =

∑

τ∈T

ρ(Ψ, τ, φ, ε)

|T | . (5)

Robustness analysis is global when all the parameters are varied at the same
time, while it is local if a parameter at a time is considered. Although local
robustness allows to evaluate how a solution “reacts” to perturbations of spe-
cific input parameters, we believe that performing a global robustness analysis
in this context is more meaningful, as it allows to observe the result of the joint
perturbation of the parameters of the model (which determine the characteris-
tics of the sources and the infiltration zones). In particular, we calculated the
robustness of the solutions that we found and the robustness of the solution
reported in [3], whose parameters are displayed in Table 1. The parameters of
the robustness analysis have the values: σr = 0.01 and ε = 0.0071, where the
value of ε corresponds to one tenth of the minimum objective function value of
NSGA2 according to the single-objective function (1), while the number of trials
|T | = 10, 000. The NSGA2 instance with a large population size and number of
iterations has the highest robustness, with a value of 0.2646, while the solution
reported in [3] has a slightly smaller robustness with a value of 0.2618 and the
solution obtained by DE has a value of 0.2591, the lowest of the three techniques.

5 Conclusions

This paper has presented the results of the optimization of the conceptual model
of the 1981 eruption at Etna volcano proposed in [3]. This model hypothesizes
that the eruption was generated by two magmatic intrusions that developed in
the northern flank of mount Etna. Two techniques have been used to perform
the optimization of the model: the single-objective Differential Evolution tech-
nique and the multi-objective NSGA2 technique with increased population size
and number of generations with respect to the original paper. The optimization
performed using NSGA2 provides improved solutions with respect to those pre-
sented in [3], while DE was not able to provide good combinations of all output
measures. Moreover, the solutions obtained by DE have very similar characteris-
tics, while those found using NSGA2 feature a high diversity, this provides more
meaningful information regarding the characteristics of a model. An analysis

Multi-objective Modeling of Ground Deformation and Gravity Changes 369

of the robustness of a selection of optimal solutions obtained was performed in
order to evaluate if they were able to provide a stable output when their para-
meters were perturbed. Such analysis revealed that the new solution obtained by
NSGA2 shows slightly higher robustness with respect to the solution previously
obtained, this entails that such solutions are less susceptible to variations of their
values. An analysis of the sensitivity of the model was also performed in order
to identify the parameters that more significantly affect the output of the model
and those which cause little effect on it. Two different methods were used: the
Morris technique and the Sobol’ indices. They revealed that the parameters of
the model that control the characteristics of the deeper magmatic intrusion are
its easting position, opening, length and depth, and the parameters that control
the shallower magmatic intrusion are its position, height and thickness, density
and dip. Moreover, the Morris technique highlighted that the relations between
the input parameters are nonlinear.

The new optimal solution found by NSGA2 (Fig. 3, Table 1), although similar
to the solution reported in [3], shows some differences. Particularly, the north-
ern shallow source has a deeper infiltration zone and the southern source is both
shorter and deeper. Since the sensitivity analysis showed that these parame-
ters are those that may significantly affect the model outputs, the new optimal
solution is preferable to the previous one. Moreover, the Morris and Sobol analy-
ses show that the optimization problem is more sensitive to those parameters,
which directly reflect their influence on the ground surface by controlling the
wavelength and the extent of the geophysical variations. As expected, the sensi-
tivity of the optimization model is also dependent on the network configurations
of the measurement points. Particularly, in the 1981 Etna eruption case study
no measurements were available in the more affected summit area that could
have been helped in better constraining the extension of the source, especially
the length and the position of the shallower intrusion.

A set of directions for the future developments of this study have been out-
lined. The search for solutions could be extended by the use of further opti-
mization techniques, such as the immune-inspired algorithm opt-IA [7]. This
would help shed light on the characteristics of the techniques that are effec-
tive at dealing with this optimization problem. Moreover, the information pro-
vided by the sensitivity analysis could be used to improve the optimization. For
instance, the search for solutions could focus on the parameters that more largely
affect the output of the model and neglect those which produce little or no vari-
ations. In addition, the information about the robustness could be used to select
a set of solutions among the optimal ones found or to guide the optimization
process.

References

1. Bertsimas, D., Brown, D.B., Caramanis, C.: Theory and applications of robust
optimization. SIAM Rev. 53(3), 464–501 (2011)

2. Bonaccorso, A.: The March 1981 mt. etna eruption inferred through ground defor-
mation modeling. Phys. Earth Planet. Inter. 112, 125–136 (1999)

370 P. Conca et al.

3. Carbone, D., Currenti, G., Del Negro, C.: Multiobjective genetic algorithm inver-
sion of ground deformation and gravity changes spanning the 1981 eruption of etna
volcano. J. Geophys. Res. Solid Earth 113(B7) (2008)

4. Costanza, J., Carapezza, G., Angione, C., Lió, P., Nicosia, G.: Robust design of
microbial strains. Bioinformatics 28(23), 3097–3104 (2012)

5. Currenti, G., Del Negro, C., Nunnari, G.: Inverse modelling of volcanomagnetic
fields using a genetic algorithm technique. Geophys. J. Int. 163, 403–418 (2005)

6. Cutello, V., Lee, D., Nicosia, G., Pavone, M., Prizzi, I.: Aligning multiple protein
sequences by hybrid clonal selection algorithm with insert-remove-gaps and block-
shuffling operators. In: Bersini, H., Carneiro, J. (eds.) ICARIS 2006. LNCS, vol.
4163, pp. 321–334. Springer, Heidelberg (2006)

7. Cutello, V., Nicosia, G., Pavone, M.: Exploring the capability of immune algo-
rithms: a characterization of hypermutation operators. In: Nicosia, G., Cutello,
V., Bentley, P.J., Timmis, J. (eds.) ICARIS 2004. LNCS, vol. 3239, pp. 263–276.
Springer, Heidelberg (2004)

8. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: Nsga-ii. IEEE Trans. Evol. Comput. 6, 182–197 (2002)

9. Iooss, B., Lemâıtre, P.: A review on global sensitivity analysis methods. ArXiv
e-prints, April 2014

10. Morris, M.D.: Factorial sampling plans for preliminary computational experiments.
Technometrics 33(2), 161–174 (1991)

11. Okada, Y.: Internal deformation due to shear and tensile faults in a half-space.
Bull. Seismol. Soc. Am. 82(2), 1018–1040 (1992)

12. Okubo, S.: Gravity and potential changes due to shear and tensile faults in a
half-space. J. Geophys. Res. Solid Earth 97(B5), 7137–7144 (1992)

13. Pardalos, P.M., Resende, M.G.: Handbook of Applied Optimization. Oxford Uni-
versity Press, Oxford (2001)

14. Saltelli, A.: Sensitivity analysis for importance assessment. Risk Anal. 22(3), 579–
590 (2002)

15. Sanderson, T., Berrino, G., Corrado, G., Grimaldi, M.: Ground deformation and
gravity changes accompanying the March 1981 eruption of mount etna. J. Volcanol.
Geoth. Res. 16, 299–315 (1983)

16. Sobol, I.: Global sensitivity indices for nonlinear mathematical models and their
monte carlo estimates. Math. Comput. Simul. 55(3), 271–280 (2001). The Second
IMACS Seminar on Monte Carlo Methods

17. Stracquadanio, G., Nicosia, G.: Computational energy-based redesign of robust
proteins. Comput. Chem. Eng. 35(3), 464–473 (2011)

18. Xanthopoulos, P., Pardalos, P., Trafalis, T.B.: Robust Data Mining. Springer Sci-
ence & Business Media, New York (2012)

Author Index

Akrotirianakis, Ioannis 105
Al Khawli, Toufik 93
Andersson, Petter 118
Ansaloni, Pietro 209
Avendaño-Garrido, M.L. 233
Awudu, Iddrisu 130

Ballinger, Christopher 158
Batsyn, Mikhail 65
Battiato, Sebastiano 337
Bigelow, Daniel 158
Birth, Olga 49
Boldt, Martin 347

Caragea, Doina 80
Carapezza, Giovanni 359
Carvalho, Alexandra M. 252
Chakraborty, Amit 105
Chevalier, Clément 37
Conca, Piero 14, 171, 257, 359
Costanza, Jole 359
Currenti, Gilda 359

Dasari, Siva Krishna 118
de Lemos, Rogério 171
del Negro, Ciro 359

El Dor, Abbas 60
Elmasri, Ramez 306
Eppelt, Urs 93
Esnaf, Şakir 280

Farinella, Giovanni Maria 337
Fatima, Mehwish 347
Forrest, Simon 171
Frueh, Aaron 49

Gabriel-Argüelles, J.R. 233
Gaudel, Romaric 325
Gieseke, Fabian 145
Ginsbourger, David 37, 185
Granmo, Ole-Christoffer 269

Jitkajornwanich, Kulsawasd 306

Kalyagin, V.A. 26
Koldanov, A.P. 26
Krityakierne, Tipaluck 185
Küçükdeniz, Tarık 280
Kumin, Hillel 197

Lavesson, Niklas 118, 347
Lazreg, Mehdi Ben 269
Louis, Sushil 158
Lughi, Giovanni 209

Marmin, Sébastien 37
Mary, Jérémie 325
McCracken, Heather 171
Mezura-Montes, E. 233
Migliorati, Giovanni 1
Moltisanti, Marco 337

Neri, Mattia 209
Nicolescu, Mircea 158
Nicolescu, Monica 158
Nicosia, Giuseppe 14, 257, 359

Pardalos, P.M. 26
Parimi, Rohit 80
Pepelyshev, Andrey 240
Persson, Marie 118
Piccini, Juan 222
Pino Angulo, Adrian 293
Pinto, João Diogo 252
Ponomarenko, Alexander 65
Preux, Philippe 325

Quintana-Torres, L. 233

Radianti, Jaziar 269
Robledo, Franco 222
Roffilli, Matteo 209
Romero, Pablo 222

Saffar, Mohammad Taghi 158
Schiaratura, Omar 209
Schlichter, Johann 49
Schulz, Wolfgang 93

Serpi, Fabrizio 209
Shahzad, Raja Khurram 347
Shin, Kilho 293
Siarry, Patrick 60
Simonetto, Andrea 209
Staroselskiy, Yuri 240
Stracquadanio, Giovanni 14

Tagowski, Tadeusz 318
Timmis, Jon 171

Tokgöz, Emre 130, 197
Trafalis, Theodore B. 130

Unold, Olgierd 318

Vinga, Susana 252

Xu, Yangyang 105

Zhigljavsky, Anatoly 240

372 Author Index

	Preface
	Organization
	Contents
	Learning with Discrete Least Squares on Multivariate Polynomial Spaces Using Evaluations at Random or Low-Discrepancy Point Sets
	1 Introduction
	2 Stability and Accuracy of Discrete Least Squares on Polynomial Spaces with Evaluations at Random Points
	3 Stability and Accuracy of Discrete Least Squares on Polynomial Spaces with Evaluations at Low-Discrepancy Point Sets
	4 Numerical Results
	5 Conclusions
	References

	Automatic Tuning of Algorithms Through Sensitivity Minimization
	1 Introduction
	2 Algorithmic Tuning
	3 Methods
	3.1 Robustness and Sensitivity Estimation
	3.2 Morris Method
	3.3 Differential Evolution Algorithm

	4 Sensitive Algorithmic Tuning
	5 Experimental Results
	6 Conclusions
	References

	Step Down and Step Up Statistical Procedures for Stock Selection with Sharp Ratio
	1 Introduction
	2 Stock Selection Problem, Decision Functions and Conditional Risk
	3 Sample Sharp Ratio Statistics
	4 Multiple Test Procedures
	5 Comparative Analysis of Step Up and Step Down Multiple Test Procedures
	6 Concluding Remarks
	References

	Differentiating the Multipoint Expected Improvement for Optimal Batch Design
	1 Introduction
	2 General Context
	2.1 Gaussian Process Modeling
	2.2 The Multipoint Expected Improvement Criterion

	3 Gradient of the Multipoint Expected Improvement
	4 Numerical Tests
	4.1 Computation Time
	4.2 Tests

	5 Conclusion
	References

	Dynamic Detection of Transportation Modes Using Keypoint Prediction
	1 Introduction
	2 Related Work
	3 Transport Mode Detection Using Keypoints
	3.1 Concept of Keypoints
	3.2 Decision Making Process

	4 Case Study and Evaluation
	5 Conclusion and Outlook
	References

	Effect of the Dynamic Topology on the Performance of PSO-2S Algorithm for Continuous Optimization
	1 Introduction
	2 Particle Swarm Optimization
	3 PSO-2S Algorithm
	4 Dynamic Cluster Topology (Dcluster)
	5 Experimental Results
	6 Conclusion
	References

	Heuristic for Site-Dependent Truck and Trailer Routing Problem with Soft and Hard Time Windows and Split Deliveries
	1 Introduction
	2 Insertion Heuristic
	3 Computational Experiments
	4 Conclusions
	References

	Cross-Domain Matrix Factorization for Multiple Implicit-Feedback Domains
	1 Introduction
	2 Related Work on Cross-Domain Recommender Systems
	3 Cross-Domain Implicit-Feedback Matrix Factorization
	4 Experimental Design
	5 Results
	6 Summary and Future Work
	References

	Advanced Metamodeling Techniques Applied to Multidimensional Applications with Piecewise Responses
	Abstract
	1 Introduction
	2 Metamodeling Approaches for Responses with Discontinuity
	2.1 One Shot Approach
	2.2 Iterative Smart Sampling Approach

	3 Numerical Results
	3.1 Two-Dimensional Analytical Function
	3.2 Laser Epoxy Cutting

	4 Conclusions
	Acknowledgements
	References

	Alternating Direction Method of Multipliers for Regularized Multiclass Support Vector Machines
	1 Introduction
	2 Algorithms
	2.1 ADMM for Solving (1) with defined by (2a)
	2.2 ADMM for Solving (1) with defined by (2b) and (2c)
	2.3 Convergence Results

	3 Numerical Results
	3.1 Implementation Details
	3.2 Synthetic Data
	3.3 Real Data

	4 Conclusion
	References

	Tree-Based Response Surface Analysis
	1 Introduction
	2 Aim and Scope
	3 Related Work
	4 Background
	4.1 Methodology

	5 Experiments and Analysis
	5.1 Dataset Description
	5.2 Evaluation Procedure
	5.3 Experiment 1
	5.4 Experiment 2

	6 Conclusions and Future Work
	References

	A Single-Facility Manifold Location Routing Problem with an Application to Supply Chain Management and Robotics
	Abstract
	1 Introduction
	2 A New Manifold Location Routing Problem
	2.1 Riemannian Geometry and Geodesics
	2.2 Weighted Support Vector Machines (WSVM)
	2.3 Weighted Network Design, Dynamic Programming and Parallel Programming

	3 Manifold Location Routing Problem (MLRP)
	4 Solution Methodology
	4.1 Main Steps of the Algorithm
	4.2 Computational Complexity of the Algorithm

	5 MLRP Algorithm Details
	5.1 Projection from M to {\mathbb{R}}^{2}
	5.2 Facility Location on {\mathbb{R}}^{2} with WSVM, Dynamic Programming, and Parallel Programming
	5.3 Projection from {\mathbb{R}}^{2} to M
	5.4 Data Mining and Transportation System

	6 An Example
	7 Summary
	Acknowledgement
	References

	An Efficient Many-Core Implementation for Semi-Supervised Support Vector Machines
	1 Introduction
	2 Background
	2.1 Semi-Supervised Support Vector Machines
	2.2 Massively-Parallel Computations on GPUs

	3 Optimization on Many-Core Systems
	3.1 Differentiable Objective
	3.2 Algorithmic Framework

	4 Experiments
	4.1 Experimental Setup
	4.2 Results

	5 Conclusions
	References

	Intent Recognition in a Simulated Maritime Multi-agent Domain
	Abstract
	1 Introduction
	2 Previous Work
	3 Infrastructure
	4 Low-Level Intent Recognition
	5 High-Level Intent Recognition
	6 Experimental Results
	7 Conclusion and Future Work
	References

	An Adaptive Classification Framework for Unsupervised Model Updating in Nonstationary Environments
	1 Introduction
	2 Classification and Detection of Concept Drift
	3 Related Work
	3.1 Classification Techniques: Unsupervised Model Updating
	3.2 Unsupervised Drift Detection Techniques

	4 The Adaptive Framework
	4.1 Pseudo-code of Training, Testing and Inference of Drift

	5 Experiments
	5.1 Evaluation of the Classification Capabilities of the Framework
	5.2 Evaluation of the Concept Drift Detection Capabilities of the Framework

	6 Conclusions
	References

	Global Optimization with Sparse and Local Gaussian Process Models
	1 Introduction
	2 Background
	2.1 Problem Formulation and Notation
	2.2 Gaussian Process Modeling
	2.3 Expected Improvement and EGO
	2.4 Sparse Pseudo-input Gaussian Process

	3 Sparse and Local GP for Global Optimization
	4 Applications
	4.1 A Didactic Example
	4.2 Numerical Experiments
	4.3 Comments and Perspectives of Future Work

	5 Conclusions
	References

	Condense Mixed Convexity and Optimization with an Application in Data Service Optimization
	1 Convexity and Optimization of Real and Discrete Variable Functions
	2 Condense Mixed Convexity and Minimization
	3 Applications in Data Service Optimization
	References

	SoC-Based Pattern Recognition Systems for Non Destructive Testing
	1 Introduction
	2 State of the Art
	3 System Implementation
	4 Evaluating GPU for Classification Problems
	4.1 OpenCL
	4.2 GLSL
	4.3 How to Solve Main Limitations of GP Computing
	4.4 GPGPU Code Implementations

	5 Evaluation of the Classifier Performances
	6 Conclusion
	References

	Node-Immunization Strategies in a Stochastic Epidemic Model
	1 Introduction
	2 SIR Model
	3 Stochastic Process
	4 Node Immunization Problem and Heuristics
	5 Random Graphs and Efficiency
	6 Performance Analysis
	7 Concluding Remarks
	References

	An Efficient Numerical Approximation for the Monge-Kantorovich Mass Transfer Problem
	1 Introduction
	2 The MK Problem and Its Numerical Approximation
	3 Improvement Scheme
	4 Numerical Example
	5 Conclusion and Future Work
	References

	Adaptive Targeting for Online Advertisement
	1 Introduction
	2 Adaptive Strategy for Maximizing the CTR of an Ad Campaign
	3 Analysis of Real Data
	3.1 Descriptive Statistics of the CTR for Two Ad Campaigns
	3.2 Multidimensional Scaling
	3.3 Evaluation of the Adaptive Strategy
	3.4 The CTR for Different Choices of Factors

	4 Conclusions
	References

	Outlier Detection in Cox Proportional Hazards Models Based on the Concordance c-Index
	1 Introduction
	2 DBHT
	3 Results
	4 Conclusion and Future Work
	References

	Characterization of the #k--SAT Problem in Terms of Connected Components
	1 Introduction
	2 #k--SAT Problem
	3 Counting the Solutions of k--SAT
	3.1 Sorting the Clauses
	3.2 The Algorithm Star
	3.3 The Main Program
	3.4 An Example

	4 Correctness of the Program
	5 Computational Complexity
	6 Experimental Results
	7 Final Comments
	References

	A Bayesian Network Model for Fire Assessment and Prediction
	1 Introduction
	2 Bayesian Network
	3 Fire Assessment and Prediction Model Based on Bayesian Network
	3.1 Fire Assessment
	3.2 Fire Prediction

	4 Test Results and Discussion
	4.1 Test Settings
	4.2 Performance Testing
	4.3 Game Scenario Testing

	5 Conclusion
	References

	Data Clustering by Particle Swarm Optimization with the Focal Particles
	1 Introduction
	2 Data Clustering
	2.1 Validity Indexes

	3 Particle Swarm Optimization
	3.1 Data Clustering with Particle Swarm Optimization

	4 Particle Swarm Optimization with the Focal Particles
	5 Application and Results
	6 Conclusions
	References

	Fast and Accurate Steepest-Descent Consistency-Constrained Algorithms for Feature Selection
	1 Introduction
	2 Sdcc and Lcc: A Comparison
	2.1 The Algorithms of Interact, Lcc and Sdcc
	2.2 Comparison of Sdcc with Lcc Based on Experiments
	2.3 Problems of Sdcc

	3 Fast Sdcc and Accurate Sdcc
	4 Experimental Evaluation
	4.1 Comparison in Classification Accuracy
	4.2 Comparison in Time-Efficiency

	5 Conclusion
	References

	Conceptual Analysis of Big Data Using Ontologies and EER
	Abstract
	1 Introduction
	2 Framework Description
	2.1 Developing and Formalizing Domain-Specific Concepts into an Ontology with the Assistance of Doma ...
	2.2 Translating the Domain-Specific Ontology to EER and Mapping the EER to Relational Tables
	2.3 Designing and Implementing Mapping Algorithms to Convert the Raw Data to the Conceptual Data
	2.4 Performing Analysis and Mining on the Conceptual Relational Data

	3 Case Study: Rainfall Precipitation Data
	3.1 Rainstorm Formalization
	3.2 Ontology Translation and Mapping
	3.3 Implementation of Storm Identification System
	3.4 Conceptual Analysis of Rainfall Data

	4 Conclusion and Future Work
	References

	A Parallel Consensus Clustering Algorithm
	1 Introduction
	2 Consensus Clustering
	2.1 Multi-core Implementation of Consensus Clustering

	3 Results and Discussion
	4 Conclusion
	References

	Bandits and Recommender Systems
	1 Introduction
	2 Notations and Vocabulary
	3 Matrix Factorization
	4 Bandits
	5 BeWARE of a New User
	6 BeWARE of New Items
	7 Experimental Investigation
	7.1 Experimental Setting
	7.2 Experimental Results
	7.3 Discussion

	8 Conclusion and Future Work
	References

	Semi-Naive Mixture Model for Consensus Clustering
	1 Introduction
	2 Consensus Clustering via Expectation-Maximization
	3 Semi-Naive Bayesian Consensus Clustering
	4 Experimental Results
	5 Conclusions and Future Works
	References

	Consensus Decision Making in Random Forests
	1 Introduction
	2 Background
	2.1 Related Work

	3 Consensus Decision-Making in Random Forests Algorithm
	3.1 Consensus Stage
	3.2 Selection Stage
	3.3 Example and Explanation of Algorithm

	4 Experiment
	4.1 Data Sets
	4.2 Evaluation Measures

	5 Results and Analysis
	6 Conclusion
	References

	Multi-objective Modeling of Ground Deformation and Gravity Changes of Volcanic Eruptions
	1 Introduction
	2 Single-Objective and Multi-objective Optimization
	3 Sensitivity Analysis
	3.1 Morris Technique
	3.2 Sobol' Indices

	4 Robustness Analysis
	5 Conclusions
	References

	Author Index

