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      Progresses and Controversies in Invasion 
Biology                     

       Daniel     Sol    

      Invasion biology is concerned with understanding the causes and consequences of 
the human-assisted introduction of organisms outside their native ranges. Ever since 
Elton published the foundational book “The Ecology of Invasions by Animals and 
Plants” (Elton  1958 ), the fi eld has gained enormous importance in ecology. A major 
motivation in developing the discipline has been the growing concern over the envi-
ronmental, economic and social impact caused by some invaders (Martin and Maron 
 2012 ). Non-indigenous species (NIS, hereafter) are an important cause of species 
extinction, as exemplifi ed by the introduction of the Brown snake in Guam (Fritts 
and Rodda  1998 ) or the Nile perch in the African great lakes (Miller  1989 ); alter key 
ecosystem functions, like the nutrients cycle and fi re regimes (Vitousek et al.  1987 ; 
Levine et al.  2004 ; Callaway and Maron  2006 ; Vilà et al.  2011 ); and generate every 
year millions of euros of economic loses (Pimentel et al.  2001 ). 

 Paralleling the concern over the impact of invaders, there has been an increasing 
appreciation that NIS represent unique opportunities for studying a variety of eco-
logical and evolutionary processes as they occur and at unprecedented spatial and 
temporal scales. Thus, biological invasions have contributed to reshape important 
ideas in genetics, behavioral ecology, population dynamics, community ecology 
and evolutionary ecology (Lodge  1993 ; Callaway and Maron  2006 ; Sax et al.  2007 ). 

 In developing the discipline, two fundamental questions have almost monopo-
lized the research agenda: Why are some species invasive and others are not? And 
why are some environments more invaded than others? Despite the enormous prog-
ress in answering these questions, the fi eld remains controversial and has been criti-
cized by its dissociation from the rest of ecology and its lack of rigor in adopting 
and rejecting new hypotheses and theories (Davis  2009 ). Some have even ques-
tioned that the fi eld is useful at all (Valéry et al.  2013 ; but see Blondel et al.  2013 ). 
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 The goal of this chapter is to highlight several conceptual areas that are currently 
dominating the fi eld. Specifi cally, I focus on advancing 11 major themes in invasion 
biology (Table  1 ), which altogether provides the necessary framework to under-
standing what make species successful invaders (invasiveness) and what make eco-
systems more or less susceptible to invasion (invasibility). While these themes 
clearly illustrate the progress made in the fi eld, theoretical and empirical advances 
are needed in all these areas (see also Jeschke et al.  2012 ). Consequently, I also 
highlight controversies and underexploited areas that, if addressed, have the poten-
tial to reshape the fi eld in the near future.

      What Is a Successful Invader? 

 Progress in invasion biology has been hampered by a lack of an unifying framework 
to describe the invasion process, particularly between ecologists working in plants 
and animals (Blackburn et al.  2011 ). However, some consensus has now been 
reached (Richardson et al.  2000 ; Kolar and Lodge  2001 ; Duncan et al.  2003 ; 
Blackburn et al.  2011 ), which sees the invasion process as a sequence of several 
stages. To become a successful invader the organism must fi rstly be deliberately or 
accidentally transported (transport stage) and introduced (introduction stage) to a 
new location by humans; next, the organism must establish a self-sustaining popula-
tion in the novel environment (establishment stage); fi nally, the population must 
increase in abundance and expand their geographic area (spread stage). 

 It is important to recognize the different stages because each stage infl uences 
subsequent stages (Kolar and Lodge  2001 ). The transport/introduction stage, for 
example, determines the size, structure and genetics of the founder population, 
which largely affect the likelihood of establishment. Moreover, the underlying pro-
cesses can vary among stages. For example, while the probability of establishment 
is driven by population dynamics in the context of small populations and novel 

  Table 1    Major biological 
invasions themes discussed in 
the present chapter  

 What is a successful invader? 
 Are biological invasions highly idiosyncratic? 
 Is the establishment success of invaders a paradox? 
 What makes a successful invader? 
 Is growing fast a key feature of successful invaders? 
 Do communities differ in invasibility? 
 Are close relatives bad neighbors? 
 Are introduced species creating an “invasional meltdown”? 
 Does “enemy release” explain the increase and expansion of 
invaders? 
 What is the role of evolution in the invasion process? 
 Are exotics decreasing, maintaining or increasing 
biodiversity? 
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environments, the spread stage is more related to dispersal ability, carrying capacity 
and ecological interactions (Leung et al.  2012 ; Sol et al.  2012b ). Finally, the impact 
of the invader can be expressed at several stages. The impact is potentially greater 
for widespread NIS, yet it also depends on their abundance and per capita effects 
(Parker et al.  1999 ) and hence can also be high even when the NIS are localized 
geographically. 

 It is widely accepted that a small proportion of species are introduced and estab-
lish, and a small proportion of established species spread and becomes a pest. An 
attempt to give numbers to these proportions is the “tens-rule”, which holds that 
over 10 % of species transition between these different stages (Williamson et al. 
 1986 ; Williamson and Fitter  1996 ). The “tens-rule” has been misinterpreted by 
some as if it was a fundamental constant of nature, like the gravitational constant in 
physics. However, this was not the intention of Williamson and co-workers when 
they proposed the concept, as the number has scarce theoretical basis beyond the 
heuristic value of arguing that the probability of transition between invasion stages 
is low.  

    Why Are Biological Invasions Highly Idiosyncratic? 

 The search for general rules that govern invasions has often been unfruitful, with 
many studies -including those related to the search for features that explain inva-
siveness and invasibility- yielding idiosyncratic results (Williamson et al.  1986 ; 
Moles et al.  2012 ). Several factors can contribute to explain such idiosyncrasies, 
besides differences in the quality of the studies, yet the main factors relate to the 
routes toward extinction in introduced populations. 

 For an invader, a negative population growth is perhaps the most obvious route 
toward extinction (Figs.  1  and  2 ). NIS are exposed to novel environmental condi-
tions to which they have had little opportunity to adapt (Figs.  1  and  2 ). If as a result 
there is an adaptive mismatch that negatively affects key fi tness components, then 
the population can decrease over time and end up extinct. It follows that the same 
species can succeed in some environments but not in others, depending on the 
degree of adaptive matching. Likewise, a region can seem to be less resistant to 
invaders than others simply because the adaptive matching of the introduced species 
is higher. This can be accentuated because of the non-random selection of the spe-
cies used in introductions and the places where they were introduced (Blackburn 
and Duncan  2001 ). Because the features of the pool of species introduced may dif-
fer from location to location, the search for traits that make species good invaders 
can yield different results depending on the region investigated.

    Even if the population has the adaptations needed to survive and reproduce in 
the new environment, an introduced population may die out as a result of bad luck 
(Fig.  1 ). This is because most introduced populations start with a reduced num-
ber of individuals, which make them highly vulnerable to extinction by demo-
graphic stochasticity, Allee effects and genetic stochasticity (Fig.  1 ). Indeed, 
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propagule pressure (i.e. variation in the quantity, composition and rate of supply 
of NIS, sensu Ricciardi et al.  2011 ) is the most consistent predictor of the proba-
bility of establishment in plants and animals (Lockwood et al.  2005 ). Thus, a 
same species can have more or less success in a novel environment depending on 
the number of individuals introduced. Likewise, some systems may look like if 
they were highly susceptible to be invaded simply because many species have 
been introduced there and/or the species have been released in larger numbers. 
Islands, for example, often present a higher number of invaders than continents, 
which has led to think that they were more vulnerable to invasions. However, 
quantitative analyses in birds have revealed that the high invasions rates on islands 
is primarily associated with higher propagule pressure rather than higher invasi-
bility (Sol  2000 ; Cassey et al.  2004 ). 
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  Fig. 1    A framework for the invasion process. The invasion process starts with an introduced popu-
lation transported from a relatively distant region ( a ), which generally involves a low number of 
individuals and can have suffered a genetic bottleneck. The population can remain at low numbers 
for some time, even decades (time-lag phase, in red), during which is highly vulnerable to extinc-
tion by accident (i.e. demographic stochasticity, Allee effects and genetic stochasticity) ( b ). The 
establishment of the species is determined by a positive balance between births and deaths, which 
largely depends on the species’ life history ( c ). However, a number of factors in addition of an 
appropriate life history can lead to a negative population growth conductive to extinction ( d ), such 
as an adaptive mismatch or a lack of adaptive plasticity to exploit the available niches. If the popu-
lation is freed from competitors and enemies, it can increase exponentially in numbers (exponen-
tial growth phase, in blue) and start expanding to adjacent areas at a speed limited by dispersal 
capacity and evolutionary dynamics related to assortative mating ( e ). However, even populations 
that have initially increased and expanded can sometimes experience a ‘boom and bust’ in which it 
experiences a decline and can even go extinct ( f )       
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 The idiosyncratic nature of the invasion process implies high uncertainties in 
predicting the outcome of each invasion stage (Leung et al.  2012 ). This is unfortu-
nate because accurately assessing invasion success is essential to prevent and miti-
gate the impact of biological invasions (Kolar and Lodge  2002 , Vall-llosera and Sol 
 2009 ; Leung et al.  2012 ). While it is not currently possible to accurately predict the 
outcome of a particular introduction, ecologists can still make powerful generaliza-
tions about the invasion process (Ehrlich  1989 ; Duncan et al.  2003 ; Callaway and 
Maron  2006 ; Sax et al.  2007 ). As we will see in the next sections, these generaliza-
tions should not be taken as laws, in the sense that physicists use the term, but as 
patterns that are more or less predominant despite containing some exceptions 
(Simberloff  2013 ).  

    Is the Establishment Success of Invaders a Paradox? 

 The invasion success of NIS is in a way paradoxical because we do not expect that 
species that come from distant regions can succeed to establish themselves in envi-
ronments to which they have had little opportunity to adapt (Sax and Brown  2000 ); 
and even more paradoxical is that sometimes the invader attains higher densities 
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  Fig. 2    The problems that a species faces in a novel environment can be metaphorically described 
in terms of adaptive surfaces, representing mean fi tness of a population in the ancestral and novel 
environments as a function of the organism phenotype ( a ). The fi rst problem is that if there is an 
adaptive mismatch, the population will see its mean fi tness reduced ( red dot ) and hence it will run 
a high risk of extinction. The second problem is that natural selection is unlikely to move the popu-
lation up to a new adaptive peak if there is not enough useful heritable variation and the population 
is too small to resist strong selective pressures. These diffi culties are nonetheless reduced when ( b ) 
there is environmental matching between the region of origin and introduction, and hence the 
organism already have the necessary adaptations; ( c ) the new adaptive peak is not very demanding 
in terms of adaptive specializations; and ( d ) the niche of the NIS is so broad that the adaptive peaks 
of the environments of origin and introductions overlap to a great extent. However, there is also the 
possibility that niche adaptive peaks of the environments of origin and introductions are substan-
tially different ( e ), and then we need to invoke general adaptations to environmental changes like 
phenotypic plasticity to understand the persistence of the organism in the novel environment       
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than most native species. This is less a paradox however when considering that, as 
expected by theory, most introduction attempts fail (Williamson et al.  1986 ; Veltman 
et al.  1996 ; Williamson  1996 ; Haight and Polasky  2010 ). 

 Still, the success of some NIS warrants explanation. The success of an invader 
primarily depends on whether individuals are able to reproduce at a higher rate than 
they die, and hence increase in numbers. Having such a positive population growth 
depends in turn on fi nding an appropriate niche in the new environment, that is, 
conditions that the organism can tolerate, resources that are not monopolized by 
native species, and a pressure of enemies that is sustainable (Shea and Chesson 
 2002 ). Thus, in addition of propagule pressure, the success of the invader may 
depend on both its own features and those of the recipient environment. 

 There are several ways by which exotic organisms can acquire a niche in a 
novel environment (Table  2 ). First, if competition for resources is strong and 
environmental adversity is weak, then the success of the invader relies on being 
competitively superior to the species with which its niche overlaps to a greater 
extent (Tilman  2004 ;  Vilà et al. 2005 ). Second, if competition in the invaded com-
munity is weak and environmental adversity is strong, then the invader will only 
succeed if it has the adaptations needed to survive and reproduce in the novel 
environment. Third, if both competitive adversity and environmental adversity 
are weak, then there is no need to invoke adaptations to understand the success; 
this can be understood by neutral processes in which species are ecologically 
equivalent (Weiher and Keddy  1995 ). Finally, if both competitive adversity and 
environmental adversity are strong, then the invader would need the unlikely 
combination of high competitive ability and appropriate adaptations to a demand-
ing environment.

   Although there is evidence for the case-by-case importance of all these scenar-
ios, except perhaps for the latest scenario, there has been little effort to investigate 
to what extent they provide a general solution to the invasion paradox (Sol et al. 
 2012a ). Nevertheless, the few existing studies to date provide greater support for the 
second scenario, in which success depends on being able to fi ll a niche infra-utilized 
by native species. In plants, native and alien species often differ in the environments 
they use, with NIS primarily found in environments that have been modifi ed by 
vegetation clearance, pasture development and livestock grazing (Pouteau et al. 
 2015 ). In birds, many NIS are not only restricted to urban or rural environments, 
where the diversity and abundance of native species are low (Case  1996 ; Sol et al. 

       Table 2    Scenarios accounting for the success of biological invasions   

 Competitive 
adversity 

 Environmental 
adversity  Main process  Profi le invader 

 Scenario 1  Strong  Weak  Biotic resistance  Strong competitor 
 Scenario 2  Weak  Strong  Environmental 

fi ltering 
 Adapted 

 Scenario 3  Weak  Weak  Neutrality  Ecological equivalence 
 Scenario 4  Strong  Strong  Biotic-Environmental  None 
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 2012a ; Barnagaud et al.  2013 ), but they overlap little with native species in traits 
associated with resource use (Sol et al.  2012a ; Barnagaud et al.  2013 ). Although 
these evidence do not deny the possibility that being superior in contest competition 
against native species provide advantages in some cases (e.g. Sol et al.  2012a ; 
Hernández-Brito et al.  2014 ), they do suggest that this is the exception rather than 
the norm.  

    What Makes a Successful Invader? 

 Even when many invaders are restricted to anthropogenic-disturbed environ-
ments, the question remains as to why they are able to survive and reproduce in 
those environments and most native species are not. While understanding failures 
is relatively easy in light of current theories, what makes some species successful 
invaders is less obvious. Why should an organism be able to cope with novel 
environmental pressures to which it has never or rarely been exposed before? One 
obvious possibility is that there is environmental matching between the place of 
introduction and that of origin of the NIS, implying that the species already pos-
sess adaptations to persist in the novel environment (Table  2 , scenario 2; 
Fig.  2a ). Although NIS typically come from distant regions, certain environmen-
tal matching is still expected. This is clear for deliberate introductions as 
humans are more likely to release NIS in environments where they can do better. 
Some environmental matching is expected even for accidental introductions, as 
NIS are more likely to be translocated by humans between the environments that 
people most often frequents. In birds, for example, species that in their places of 
origin occur in urbanized environments are more likely to succeed when intro-
duced outside their native range (Møller et al.  2015 ), probably because these 
species are more readily available for introduction, are more likely to be released 
close to human settlements, and already possess the adaptations needed to persist 
in such environments. Climatic matching is also common among successful 
invaders. In an analysis of 50 terrestrial plant invaders, fewer than 15 % of species 
had more than 10 % of their invaded distribution outside their native climatic 
Niche (Petitpierre et al.  2012 ). Likewise, birds naturalized in Europe occupy a 
subset of the climatic environments they inhabit in their native ranges (Strubbe 
et al.  2013 ). 

 Another explanation for why some NIS are able to persist in novel environments 
is that the environment, albeit different from the native one, is little demanding in 
terms of survival and/or reproduction (Table  2 , scenario 3; Fig.  2b ), providing for 
instance abundant resources and few competitors and enemies. In such  circumstances, 
the fi tness of the population is not expected to decrease substantially, facilitating 
establishment. In urban environments, for example, the availability of food deliber-
ately or accidentally provided by humans and the lack of specialized predators 
might have facilitated the success of some exotic birds escaped from captivity 
(Shochat et al.  2010 ; Sol et al.  2012a ). 
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 Finally, if the NIS has a broad ecological niche, then it is more likely that it can 
fi nd the necessary resources and physical conditions in the novel environment 
(Table  2 , scenario 2; Fig.  2c ). In birds, species that are either dietary or habitat 
generalists are more likely to establish themselves successfully in new regions 
(McLain et al.  1999 ; Cassey et al.  2004 ). In Australian acacias and eucalypt trees, 
invasiveness is so closely associated with environmental tolerance that this feature 
alone can predict over 90 % of occurrences observed outside of Australia (Higgins 
and Richardson  2014 ). Ecological generalism is likely to be a common feature of 
NIS because generalists are more likely to be abundant close to human settlements 
than specialists (Evans et al.  2011 ), and hence more available for introduction. For 
the same token, communities in anthropogenic environments are often composed 
primarily by generalists (Sol et al.  2013 ), which should reduce biotic resistance (see 
below). 

 However, when the new adaptive peak is different from the ancestral one 
(Fig.  2d ), then the population is likely to see their fi tness reduced. Such ‘true’ 
niche shifts differ from the previous scenarios, which are based on ‘niche unfi ll-
ing’ (partial fi lling of the native niche in the invaded range, sensu Petitpierre et al. 
( 2012 )). Although substantial niche shifts do not seem to be the most common 
scenario, at least in terms of climatic tolerance (Petitpierre et al.  2012 ), two lines 
of evidence suggest that some degree of shift still occurs. First, the naturalized 
geographical distributions of some plants and animals are outside those predicted 
by climatic envelops (Sax et al.  2007 ; Petitpierre et al.  2012 ). Second, as dis-
cussed later on, many NIS populations have been reported to produce plastic and/
or evolutionary responses to the new conditions, suggesting that these differ in 
some way from the ancestral ones. What allows species to be successful under 
scenarios of ‘true’ niche shifts is insuffi ciently understood, yet evolutionary the-
ory suggests that phenotypic plasticity might play a central role. 

 Phenotypic plasticity is the capacity of organisms to express different pheno-
types in different context; thus, it facilitates that a population can persist in a new 
environment, thereby bringing it into the realm of attraction of the new adaptive 
peak (Price et al.  2003 ). In a meta-analysis, Davidson et al. ( 2011 ) showed that 
invasive plants were more plastic in a variety of traits than non-invasive species, 
although this plasticity was only evident when resources were abundant. In ani-
mals, much attention has been devoted to a form of plasticity, behavioural fl exibil-
ity. Through innovation and learning, animals can modify their behavior and 
develop responses to many of the problems that they can encounter in a novel 
environment, such as fi nding alternative food sources, developing responses to 
new predators and accommodating the reproduction to the new environmental 
conditions (Sol  2003 ). Indeed, there is evidence for reptiles, birds and mammals 
that the likelihood of establishment in novel regions increases with the size of the 
brain (Sol et al.  2005 ,  2008 ; Amiel et al.  2011 ), which mediates innovative pro-
pensity and learning (Lefebvre et al.  2004 ). Evidence is nonetheless lacking for 
fi sh (Drake  2007 ).  
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    Is Growing Fast a General Feature of Successful Invaders? 

 Life history describes the way organisms allocate time and energy over growth, 
reproduction and survival, thereby determining how the population grows and fl uc-
tuates over time (Stearns  1992 ). Thus, life history has long been related to the way 
organisms respond to environmental changes (Roff  2002 ). The most popular theory, 
proposed by Lewontin and Cohen ( 1969 ) over 40 years ago, is the population growth 
hypothesis. It argues that species with life histories associated with high reproduc-
tive rates should be better invaders because their populations may growth faster and 
hence can more easily avoid the risk of extinction by accident just after the introduc-
tion, when the population is small. Although the population growth hypothesis is 
based on solid demographic theory and has received wide acceptance, the confi -
dence in the hypothesis is undermined by a lack of empirical support. In birds, 
where the theory has received much attention, some studies suggest a positive rela-
tionship between life history correlates of population growth and establishment suc-
cess whereas others report a negative relationship or no relationship at all (Blackburn 
et al.  2009 ). One limitation of the hypothesis is assuming that demographic stochas-
ticity is the main cause of extinction of introduced populations, when this only oper-
ates when the population is extremely small. In addition, the hypothesis ignores that 
a high reproductive effort may entail costs, like increased mortality, that can counter 
the advantages of fast population growth (Stearns  1992 ; Roff  2002 ). Demographic 
models show for instance that while species that prioritize reproduction over sur-
vival can increase faster in numbers when conditions are favourable, they are at the 
same time highly exposed to extinction because their populations exhibit greater 
population fl uctuations (Lande et al.  2003 ). 

 Recent work also suggests that life history can affect the invasion process by addi-
tional mechanisms than those generally considered (see Sol et al.  2012b ). While pri-
oritizing current reproductive effort provides benefi ts in terms of rapid population 
growth, a strategy that prioritize future reproduction can also afford some advantages 
for a species exposed to novel environment (Williams  1966 ; Sol et al.  2012b ). In addi-
tion of reducing population fl uctuations (see above), such a strategy is based on dis-
tributing the reproductive effort in a number of reproductive events, thereby reducing 
the fi tness costs of a reproductive failure. This bet-hedging strategy facilitates popula-
tion persistence when environmental uncertainties increase the probability of repro-
ductive failure due to bad decisions (e.g. settling in an inappropriate habitat). 
Moreover, such a strategy reduces the fi tness costs of skipping a reproduction, allow-
ing the invader to engage in reproductive activities only when conditions are favor-
able (storage effect). This increases the opportunities for acquiring environmental 
information and for improving performance on exploiting the resources and avoiding 
the enemies, particularly in long-lived species with larger brains and enhanced capac-
ity to construct learnt responses. A recent global comparative analysis of avian intro-
ductions evidenced that although rapid population growth may be advantageous 
during invasions under certain circumstances (i.e. low propagule pressure and envi-
ronmental matching), successful invaders are generally characterized by life-history 
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strategies in which they give priority to future rather than current reproduction (Sol 
et al.  2012b ). Such a strategy of expected future returns is generally achieved by 
investing in survival and hence attaining a long reproductive lifespan. However, it can 
also be achieved by reproducing more frequently, which combines the benefi ts of a 
higher reproductive effort with lower costs of losing a breeding attempt. This later 
strategy may explain the invasion success of species like rats and pigeons. Other strat-
egies and mechanisms are likely to emerge in coming years.  

    Do Communities Differ in Invasibility? 

 Species-rich communities have long been thought to be more resistant to the estab-
lishment of NIS, a theory known as the ‘biotic resistance’ hypothesis. As more spe-
cies are present in a community, the niches will be better fi lled and competition for 
resources like food, breeding sites or shelter will be stronger (Elton  1958 ). This 
would reduce the likelihood of establishment of additional species. 

 The existence of ‘biotic resistance’ has been demonstrated in microcosm and meso-
cosm experiments. Levine ( 2000 ), for example, designed a fi eld experiment in which 
exotic plants were introduced into tussocks where the number of resident plant species 
had been manipulated in situ. As species richness increased, the likelihood of germinat-
ing and surviving the breeding season declined in two out of the three studied invaders. 

 However, ecological interactions rarely enable communities to resist establish-
ment of NIS but only limit their abundance, at least in plants (Levine et al.  2004 ). 
Indeed, stochastic niche theory argues that local diversity is rarely limited by com-
petition (Tilman  2004 ). Rather, with the addition of large numbers of propagules of 
novel species, many more species are predicted to coexist locally than ever would 
occur with natural assembly (Tilman  2004 ). 

 Moreover, observations at large spatial scales often show a positive (instead of 
the predicted negative) correlation between exotic and native species richness. In 
the tussocks studied by Levine ( 2000 ), the natural incidence of all three exotic 
plants was greater on more diverse tussocks. Such patterns may suggest that other 
features of the habitat can also be important, if not more important, than biotic resis-
tance. At higher spatial scales the relative effect of biotic interactions diminishes 
and environmental factors gain importance in shaping regional biodiversity. If the 
environmental factors that favours higher number of native species also increase 
niche opportunities for the establishment of NIS, then the existence of a positive 
correlation between exotic and native species richness do not necessarily deny the 
importance of biotic resistance (Shea and Chesson  2002 ). 

 The nature of such environmental factors is not well-known yet, although some 
possibilities have been advanced. First, a structurally heterogeneous region may 
provide a greater array of microenvironments (Davies et al.  2005 ), increasing the 
likelihood that the invader encounters a favourable niche not monopolized by native 
species. In plants, there are more alien plant species and they are more abundant at 
fragment edges than in the interior of fragments (Vilà and Ibáñez  2011 ). Second, 
climatic conditions are also expected to infl uence both native and exotic species 
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richness by limiting the number of species that can persist in the region when these 
conditions are most extreme. This can in part explain why invaders are scarcer on 
the top of mountains (Bartomeus et al.  2011 ). Finally, disturbance, whether tempo-
ral or permanent, is thought to facilitate invasion by simultaneously opening 
resource opportunities and decreasing competition from resident native species 
(Tilman  2004 ). Habitats altered or entirely created by humans may be particularly 
susceptible to invasion, as the resulting communities have had less time to assem-
ble, and hence to adapt to the local conditions and to each other; moreover, these 
communities are also more likely to have fewer species with broader niches and 
lower competitive abilities (Shea and Chesson  2002 ). 

 There is indeed evidence that environmental heterogeneity, climate conditions and 
anthropogenic disturbances can be common factors favouring both native and exotic 
species richness. Bartomeus et al. ( 2011 ), for instance, identifi ed habitat heterogene-
ity, high precipitation, low altitude, elevated human density and anthropogenic distur-
bances as common factors favouring both native and exotic plants in Catalonia (see 
also Pino et al.  2005 ). However, these common factors did not seem to be the whole 
explanation for the positive relationship between exotic and native species richness. 
When these common causes were controlled for with structural equation modelling, 
the positive relationship did not turn out negative (Bartomeus et al.  2011 ). 

 As alternatively, it is possible that the positive correlation between exotic and 
native species richness also refl ects the diffi culties of separating invasibility from 
invasion rate. Human activities may not only create new niche opportunities for 
both exotic and native species adapted to disturbances, but also facilitate the trans-
port (intentionally or unintentionally), introduction and spread of exotic and native 
species adapted to such environments. Rejmánek ( 2003 ), for example, showed that 
a positive native–exotic plant richness association previously reported for North 
American plants turned out negative when human population density was included 
along with latitude in a model predicting exotic species richness. The analyses of 
Bartomeus et al. ( 2011 ) of plants from Catalonia are also consistent with the impor-
tance of human-driven effects. When the comparison was restricted to native plants 
associated with anthropogenic-disturbed ecosystems (i.e. ruderal plants), the posi-
tive relationship between native-exotic species richness became stronger (from an 
R 2  = 0.11 to 0.52) and the fraction explained by common factors also increased sub-
stantially (58.3 %). The important role of human activities in creating a positive 
native-exotic richness association is not surprising given that biological invasions 
are induced by human activities, and highlights the need of distinguishing invasive-
ness from invasion rates when testing the biotic resistance hypothesis.  

    Darwin Naturalization Hypothesis: Are Close Relatives 
Bad Neighbors? 

 In the Origin of species, Darwin ( 1859 ) proposed the hypothesis that NIS should be 
more successful in communities in which their close relatives are absent. The ratio-
nale of the hypothesis is that close relatives are more likely to occupy niches that 
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would otherwise facilitate the establishment of NIS, an idea known as Darwin’s 
naturalization hypothesis (DNH). The DNH has been demonstrated experimentally 
(Jiang et al.  2010 ). Analysing laboratory bacterial communities, Jiang et al. ( 2010 ) 
showed that the frequency of successful invader establishment was best explained 
by average phylogenetic distance between the invader and all resident species, con-
sistent with the absence of empty niches. Invader abundance was also related to 
phylogenetic distance between the invader and its nearest resident relative, possibly 
indicating reduced availability of the optimal resources. 

 However, when we move from the controlled conditions of the laboratory to 
natural conditions the results become less clear, with different studies either sup-
porting or refuting it (Jiang et al.  2010 ; Sol et al.  2014 ). This lack of fi rm support 
comes in part from using a scale of analyses too large for competition to be relevant 
or from not considering the possibility that the adaptations to become invasive are 
little phylogenetically conserved (Sol et al.  2014 ). In addition, the two basic assump-
tions of the hypothesis, that competition is a major process involved in biological 
invasions and that competition is more intense between close-related species, have 
been called into question by some authors (Duncan et al.  2003 ; Levine et al.  2004 ; 
Gilbert and Lechowicz  2005 ). As already mentioned, biotic resistance may reduce 
the establishment of species but rarely enables communities to resist invasion 
(reviewed in Levine et al.  2004 ). In addition, exotic species are unlikely to encoun-
ter close relatives in the recipient community when they come from distant regions 
(Valiente-Banuet and Verdú  2007 ). Finally, the strength of competition will not only 
depend on the presence of close-relatives, but also on their abundance (Tilman 
 1997 ) and the form in which they compete (Sol et al.  2012a ; Jones et al.  2013 ). 
While competition with close-relatives is expected to increase with exploitative 
competition, as a result of increase in niche overlap in species with similar pheno-
types, interference competition can be stronger among species with different pheno-
types (e.g. differences in body size)(Jones et al.  2013 ). 

 Moreover, although competition is often assumed to be the primary source of 
biotic resistance, it is increasingly acknowledged that other mechanisms can also 
underlie the phenomenon and even be more important (Levine et al.  2004 ). The 
pressure from enemies (i.e. pathogens, parasites and predators) appears to be highly 
infl uential in this regard. Exotic birds, for example, appear to be more likely to fail 
on oceanic islands with species-rich mammalian predator assemblages (Cassey 
et al.  2005 ). 

 Not only evidence for the DNH is scarce, but some contrary results have also 
been accumulating showing that introduced organisms more closely related to 
native species are more likely to become invasive. Indeed, this possibility was 
already advanced by Darwin ( 1859 ), as NIS can share with their native relatives 
traits that pre-adapt them to their new environment (Table  2 , scenario 2). As 
example, Duncan et al. ( 2002 ) analysed a complete list of seed-plant species intro-
duced to New Zealand and found that those with congeneric relatives were signifi -
cantly more, not less, likely to naturalize. Again the assumption here is that phylogenetic 
distance refl ects ecological distance, which has been rarely tested. If phylogenetic 
distance accurately measures similarity in traits related to invasiveness, closely 
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related species should generally exhibit similar invasion potential. However, they 
often do not (Sol  2007 ). Although the differences can simply refl ect differences in 
propagule pressure or in place of introduction rather than fundamental intrinsic 
differences (Fig.  2 ), evidence that close-relatives exhibit similar invasion poten-
tial is lacking.  

    Are Introduced Species Creating an “Invasional Meltdown”? 

 The emphasis on biotic resistance has led to under-appreciate the importance of 
positive interactions in the invasion process. Nevertheless, such perception is chang-
ing. In a review of invasions in the Great Lakes, Ricciardi ( 2001 ) showed that direct 
positive (mutualistic and commensal) interactions among introduced species are 
more common than purely negative (competitive and amensal) interactions. In ter-
restrial plants, positive interactions between NIS are also common, albeit in this 
case negative interactions are far more common (Kuebbing and Nuñez  2015 ). 

 The importance of mutualistic interactions is exemplifi ed in ectomycorrhizal 
plants, whose invasion success has been limited in some regions by the absence of 
appropriate fungal symbionts (Traveset and Richardson  2011 ). Positive interactions 
are useful to understand the rapid invasion of some environments, an issue of great 
importance from a conservation perspective. Simberloff and Holle ( 1999 ) coined 
the term “invasional meltdown” to describe situations in which NIS facilitate one 
another’s invasion instead of limiting invasions as the species accumulation 
increases biotic resistance (Ricciardi  2001 ; Simberloff  2006 ). 

 However, a full “invasional meltdown”, in which interspecifi c facilitation leads 
to an accelerating increase in the number of introduced species and their impact, has 
yet to be conclusively demonstrated (Simberloff  2006 ). Better supported is nonethe-
less a weaker version of meltdown that argues that one invader facilitates population 
persistence of one or more other invaders without itself receiving an evident benefi t 
(Simberloff  2006 ). For example, Grosholz ( 2005 ) used fi eld and laboratory experi-
ments to demonstrate that a recently introduced crab favoured the rapid prolifera-
tion of an introduced bivalve that had been rare for nearly 50 years. The effect was 
not direct but occurred through the positive indirect effects of predation by the intro-
duced crab on native bivalves.  

    Does “Enemy Release” Explain the Increase and Expansion 
of Invaders? 

 One of the most puzzling observations in invasions biology is that some NIS per-
form better in their new ranges than in their native ones. A recent analysis indeed 
reported that invasive plants and animals tended on average to be more abundant in 
their introduced ranges (Parker et al.  2013 ). A possible explanation for why NIS can 
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proliferate in the new environment is that they are released from the pressure of co- 
evolved enemies (i.e. pathogens, parasites and predators), an idea known as the 
“enemy release” hypothesis (ERH, Elton  1958 ; Maron and Vila  2001 ). In the case 
of pathogens and parasites, an introduced host can be released from these enemies 
if for instance mortality during the transport mostly affects infected or parasitized 
individuals (Mitchell and Power  2003 ). 

 Although there is little doubt that enemies can be important agents of population 
control, whether NIS are generally released from their enemies remains less clear. 
At a biogeographic scale all NIS will lose some enemies (Colautti et al.  2004 ). 
However, community studies often show that NIS are no generally less affected by 
enemies than native species in the invaded community (Colautti et al.  2004 ). For 
example, Clay ( 1995 ) found that grasses native to the United States have, on aver-
age, fewer pathogen species than co-occurring NIS. In other cases, evidence either 
supporting or contradicting the enemy release hypothesis is inconclusive because 
the study do not quantify the impact of enemies on both NIS and native species, and 
still more rarely include controls that experimentally exclude enemies (Keane and 
Crawley  2002 ). The assumption of the enemy release hypothesis that few specialist 
enemies shift to attack NIS is also frequently falsifi ed (Keane and Crawley  2002 ). 
Many invasive species are generalists unlikely to have co- evolved with enemies. 

 Some release from the pressure of enemies is expected in anthropogenic dis-
turbed environments, where NIS attain highest success, as these environments typi-
cally contain simplifi ed communities in which enemies are scarcer or even controlled 
for humans. However, this should not only benefi t NIS but also native species.  

    What Is the Role of Evolution in the Invasion Process? 

 Evolution has often been dismissed as an important factor in the success of invaders 
because of the idea that genetic variation in small introduced populations should be 
reduced (see Moles et al.  2012 ). Indeed, bottlenecks have been demonstrated in 
many introduced populations. In a literature review, Puillandre et al. ( 2007 ) found 
lower genetic diversity in introduced populations than in native populations in 80 % 
of the 72 studies they examined. Bottlenecks can limit the success of invaders by 
inbreeding depression and by reducing genetic variation available for natural selec-
tion to adapt the population locally (Allendorf et al.  2013 ). 

 However, the predicted genetic reduction is not always observed (Roman and 
Darling  2007 ). In fact, genetic variation can be substantially enhanced when propa-
gule pressure is high (Moles et al.  2012 ), as this increases the probability that indi-
viduals come from different source populations. For example, in a review of aquatic 
invasions, only 16 of 43 invasive species had reduced genetic diversity (Roman and 
Darling  2007 ). Genetic variation can also increase by hybridization. (Ellstrand and 
Schierenbeck  2006 ). Hybridization has for example been suggested to explain the 
rapid spread of mosquitos responsible of the transmission of the West Nile virus 
(Allendorf et al.  2013 ). In occasions, bottlenecks can themselves contribute to rapid 
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adaptation by providing raw material for natural selection through genetic drift and 
epistatic interactions (Sax et al.  2007 ). 

 Another reason why evolution has often been dismissed as an important factor in 
biological invasions is the common believe that adaptive change proceeds slowly. 
However, rapid adaptive evolution has been repeatedly demonstrated in introduced 
populations (Reznick and Ghalambor  2001 ; Moles et al.  2012 ). Reznick and 
Ghalambor ( 2001 ) found that many of the examples of contemporary evolution 
involves biological invasions. Colautti and Barrett ( 2013 ) indeed reported experi-
mental evidence for earlier fl owering in the North American invasive plant  Lythrum 
salicaria . In this species, northern populations had been found to fl ower earlier than 
southern populations. Reciprocal transplant experiments demonstrated the charac-
teristic “home site advantage” in which the organism attains higher fi tness in their 
home region, thereby showing the adaptive nature of earlier fl owering. 

 During the spreading stage, evolution can proceed particularly faster when there 
is heritable variation in traits affecting dispersal. Individuals at the forefront of the 
expansion encounter a low density of individuals and hence will tend to mate assor-
tatively with respect to the dispersal trait (Phillips and Suarez  2012 ), favoring rapid 
evolutionary divergence. In cane toads ( Bufo marinus ) introduced to Australia, the 
annual rate of progress of the toad invasion front has increased about fi vefold since 
the toads fi rst arrived (Phillips et al.  2006 ). This seems to have resulted from selec-
tion for longer limbs: Toads with longer legs move faster and are the fi rst to arrive 
to new areas. 

 The study of biological invasions has largely contributed to the debate of whether 
evolution is contingent or follows consistent routes. Several studies on introduced 
insects and plants have for instance reported the re-establishment of latitudinal 
clines in life history traits similar to those found in their native ranges. A classic 
example is the restitution of the Bergman’s rule (i.e. increase in body size with lati-
tude) in  Drosophila suboscura  introduced to North American (Huey et al.  2000 ). In 
other cases, however, consistent evolutionary routes have been harder to demon-
strate. The EICA hypothesis, for instance, argues that because of the enemy release, 
invaders do not need to invest in defense and can relocate resources to be more 
effi cient and competitive in the novel environment (Blossey and Nötzold  1995 ). 
Despite receiving considerable interest, the EICA hypothesis has surprisingly 
received little unambiguous support. Some studies do provide evidence that intro-
duced species has lost enemy resistance, yet they fail to show that this loss increases 
fi tness (Maron et al.  2004 ). Even in cases that demonstrate fi tness benefi ts, the 
explanatory power of the hypothesis appears to be low. Colautti and Barrett ( 2013 ), 
for example, showed that in introduced  L. salicaria  the fi tness benefi ts of earlier 
fl owering in response to shorter growing seasons is signifi cantly higher than those 
of reducing defense investment. 

 Despite the progress, our understanding of the exact role of evolution in the inva-
sion process is defi cient. Hendry et al. ( 2008 ) conducted a meta-analysis and found 
that plastic responses were more frequent than genetic change when organisms con-
front human-induced changes (mostly involving NIS). There is thus an urgent need 
to understand the mechanisms of rapid evolutionary adaptation rather than simply 
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document new cases. We do not even known at what stage of the invasion process is 
evolution more important, although several lines of evidence suggest that evolution 
should be more relevant at the last stages of the invasion process. At earlier stages, 
selection should lead to weaker evolutionary responses, as the population is smaller, 
and strong selection can lead the population to extinction. Indeed, the often observed 
time-lags in which the population remains at low numbers before explodes (Sakai 
et al.  2001 ) could in part be attributed to insuffi cient opportunities for local 
adaption.  

    Are Exotics Decreasing, Maintaining or Increasing 
Biodiversity? 

 NIS can impact on native species through a variety of mechanisms including preda-
tion, competition, hybridization and habitat alteration (Vilà et al.  2011 ). However, 
their role in reducing biodiversity remains controversial. Biological invasions 
involve both species additions and extirpations, and hence the resulting regional and 
local diversity results from the balance between both processes (Case  1996 ). If 
some areas hold lower species richness than it could really hold because many have 
been unable to colonize the area, then human-assisted invasions may increase diver-
sity with little biodiversity loss. 

 Indeed, empirical work by Sax and collaborators indicate that at the regional 
level, exotic additions have often increased biodiversity, suggesting that at least at 
this spatial scale there is no species saturation (Brown and Sax  2007 ; Sax and 
Gaines  2008 ). Except for birds in oceanic islands, in which the number of native 
extinctions has been largely matched the number of established NIS, an increase in 
species richness has been reported for plants, freshwater fi shes and mammals. Alien 
plants, for example, have doubled native biodiversity in oceanic islands. 

 A relevant question is therefore whether alien species richness will continue to 
increase as new species are added or has instead reached an equilibrium point. 
According to classical island biogeography theory, a saturation point can be main-
tained through the balance between extinctions and colonizations, where the num-
ber of species that colonize lead to the extinction of an equal number of species 
already present (extinction-based saturation)(Sax and Gaines  2008 ). The extinction- 
based saturation does not seem prevalent, however. In both plants and freshwater 
fi sh, species richness has increased because few native species have gone extinct 
whereas many exotic species have become naturalized. Even in birds from oceanic 
islands, where colonizations have largely matched extinctions, this is not extinction- 
based saturation because most extinctions were not caused by the introduced birds 
but by other factors like human hunting or introduced mammals (Duncan and Young 
 2000 ; Owens and Bennett  2000 ). However, the conclusion that extinction-based 
saturations are rare should be taken with caution as there are currently high uncer-
tainties in how long extinctions take to manifest, the so-called extinction debt. 

 Alternatively, a saturation point can be maintained through biotic resistance, 
where species richness restricts additional introductions. Sax and Gaines ( 2008 ) 

D. Sol



193

called this later process colonization-based saturation. Although such type of satu-
ration is in line with the observed reduced local extinction observed in plants and 
fresh-water fi sh, there is little unambiguous indication for species saturation in natu-
ral communities (Sax and Gaines  2008 ). The only fi rm evidence currently available 
comes from the studies of  Anolis  lizards from the Caribbean (Helmus et al.  2014 ). 
While no anole has gone extinct on Caribbean islands in the last decades, except 
possibly one, at least 18 species have established, probably arriving as commensals 
of humans in cargo shipments. As a result, species richness has increased in average 
from 4.72 to 5.41 species. Interestingly, islands impoverished in native species have 
gained the most exotic species, strengthening the species–area relationship by 
which larger islands can harbour more species. This suggests that the communities 
have reached a saturation point, although it remains to be tested whether this has 
been achieved through biotic resistance. 

 As pointed by Sax and Gaines ( 2008 ), a local increase of biodiversity with the 
addition of NIS is not necessarily good from a conservation perspective as many 
unique endemic species may have been lost and replaced by more cosmopolitan 
species. Moreover, rather than the number, the identity of the species and their role 
in the ecosystem appear more relevant to understand how NIS affect the structure 
and function of ecosystems. Four possibilities exist here: (1) all species from the 
community play different roles, so the addition and removal of any species has 
always certain impact on the ecosystem; (2) species belong to different functional 
groups, and hence the replacement of a native species for a NIS should have little 
effect if they belong to the same group (as they do redundant functions) and high 
effect if belongs to a different group; (3) the NIS becomes a key species in the eco-
system, either because replaces a native species playing such a role or because plays 
a role different from all other species; and (4) all species are ecologically equivalent 
and hence there is no effect of the entrance of an invader. Understanding how fre-
quently these alternatives occur is important not only from a conservation perspec-
tive, but also to help guarantee ecosystem services that are essential for human 
societies. While evidence exist for each of these possible outcomes, NIS typically 
lead to an increase, not a decrease, in ecosystem function (Ehrenfeld  2010 ; Vilà 
et al.  2011 ). Particularly troubling is the existence of examples for the third sce-
nario, which can lead to cascade effects through the whole ecosystem. Zebra mus-
sels ( Dreissena polymorpha ), for example, alters aquatic ecosystems by acting as a 
powerful fi lter that increases light and nutrients, allowing the proliferation of plants 
and algae (Ludyanskiy et al.  1993 ).  

    Concluding Remarks 

 The fi eld of biological invasions has experienced an enormous progress in the last 
decades. Much of the progress comes from adopting ecological and evolutionary 
theories as a working framework and from improving the rigor in adopting and 
rejecting new hypotheses and theories. This has led to reject some ideas that were 
taken by granted in the past, like the view that islands are easier to invade than 
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continents or that NIS are competitively superior to native organisms. Although 
many ideas in invasion biology still remain controversial, we now start having a 
reasonable understanding of the processes of invasiveness and invasibility (Fig.  3 ). 
An important advance has been acknowledging that human infl uences are pervasive 
and varied throughout the invasion process, and hence that an anthropocene pespec-
tive is needed if we aim to understand the biogeography of biological invasions 
(Stuart et al.  2012 ).

   Valéry et al. ( 2013 ) have recently called into question the need of the biological 
invasions discipline on the grounds that native species should also be called invasive 
whenever they outbreak. However, as pointed out by Blondel et al. ( 2013 ), there is 
no reason for unifying concepts and terminology to include native species. Rather, 
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as suggests the evidence summarized in this chapter, the discipline of biological 
invasions departs from other disciplines at two levels. The fi rst is the uniqueness of 
the processes that investigates, particularly regarding the importance of anthropo-
genic infl uences, magnitude of distances at which the organisms are moved, and the 
extent of which NIS differentiate from native species and exhibit adaptive mismatch 
respect to the novel environment, all of which requires a specifi c framework (Fig.  3 ). 
The second is the unique focus on preventing and mitigating the impact of organ-
isms outside their native ranges, which makes challenging anticipate consequences. 
While we are still far from being able to predict the outcome of any introduction 
event, for some groups like plants and vertebrates we at least can identify situations 
where the risk is high that the species successfully establishes itself in a new envi-
ronment (Kolar and Lodge  2002 , Vall-llosera and Sol  2009 ; Leung et al.  2012 ). 
Because the entrance of NIS seems inevitable, concern over the impact of invaders 
will continue being an important reason fueling research on biological invasions. 

 Yet, ecologist should avoid at the same time committing the “appeal to nature 
fallacy” of considering that something is good simply because it is natural and bad 
because it is not (Brown and Sax  2005 ). Many invaders are innocuous and have 
come to stay, yet they still have important value for addressing scientifi c questions. 
Indeed, as shown throughout the chapter, NIS offer unique opportunities for study-
ing a variety of ecological and evolutionary processes in real time and at an unprec-
edented scales. Some of the ideas that the discipline has contributed to reshape 
include community assemblage rules, ecological cascades and the speed of contem-
porary evolution (Callaway and Maron  2006 ; Reznick et al.  2008 ; Helmus et al. 
 2014 ). Thus, despite claims for the end of invasion biology, the fi eld still has much 
to offer and I anticipate that the enormous current interest in the discipline will 
continue growing in the coming years.     
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