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Chapter 4
Population Pharmacokinetics

Ayyappa Chaturvedula

Abstract  Population pharmacokinetics is the study of sources and correlates of 
variability in drug exposure and response. The study of population pharmacokinet-
ics represents an important aspect of drug development and plays a key role in find-
ing the right dose to inform product labeling decisions. Application of novel 
mathematical and statistical tools to the study of population pharmacokinetics has 
revolutionized the drug development process. Pharmacostatistical models com-
posed on pharmacokinetic, pharmacodynamic, disease progression, trial design 
aspects, and econometrics are widely used in decision-making at every stage of drug 
development. Nonlinear mixed-effects modeling methodology enables the analysis 
of sparsely collected pharmacokinetic and pharmacodynamic data from large-scale 
late-stage clinical trials to understand drug exposure–response relationships. 
Regulatory authorities such as the US FDA and EMEA have supported and worked 
with pharmaceutical industry to bring about a successful culture of change in drug 
development, which has evolved into a concept called model-based drug develop-
ment (MBDD). MBDD uses modeling and simulation to implement a “learn and 
confirm” paradigm. This chapter is intended to provide the reader with a basic 
understanding of the various methods involved in population pharmacokinetics with 
an emphasis on the current gold standard of nonlinear mixed-effects modeling 
methodology.
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Population pharmacokinetics is defined as the study of the variability in plasma 
drug concentrations between individuals when standard dosage regimens are admin-
istered [1]. Studying the sources and correlates of variability in plasma concentra-
tions provides clinicians with important information for designing appropriate 
dosing regimens. Important sources of interindividual variability in drug exposure 
may be due to various factors such as food, drug–drug interactions, pathophysiolog-
ical conditions, and patient demographics.

During the course of new drug development, it is imperative to understand the 
safety and efficacy of a new chemical entity by taking into account experimental 
results from preclinical and clinical studies. Clinical development of a drug includes 
phase I–IV studies in which a candidate compound progresses through studies in 
healthy volunteers to clinical trials in patient populations. These trials typically 
require collection of several plasma concentrations followed by pharmacokinetic 
data analysis (compartmental or non-compartmental methods) and statistical analy-
sis to test the study hypothesis. This method is known as standard, two-stage popu-
lation pharmacokinetic analysis. The methodology first requires the estimation of 
individual pharmacokinetic parameters and then calculation of the summaries that 
represent population parameters (mean and standard deviation); this is followed by 
hypothesis testing via statistical analysis. This classical clinical pharmacological 
approach is somewhat limited to the early phase clinical trials with healthy popula-
tions where extensive pharmacokinetic sampling is feasible. It is logistically impos-
sible to collect such data in large-scale clinical trials (phase III) where only sparse 
samples (1–2 samples per subject) are collected at intermittent clinical visits. Data 
collected in this manner is not amenable to traditional pharmacokinetic analysis; 
nonetheless, these trials contain plasma concentration data from the relevant patient 
population in which the drug will ultimately be used.

Lack of pharmacokinetic methodology to analyze sparse data limits the utility of 
routine therapeutic drug monitoring from actual patient populations. Other 
approaches such as naïve pooling and naïve averaging of the data have been pro-
posed to handle sparse sample data but were shown to result in large biases in 
parameter estimates or to lack the inference on variability [2].

The pioneering work by Drs. Sheiner and Beal on nonlinear mixed-effects mod-
eling (NLME) approaches set the stage for sparse sample pharmacokinetic data 
analysis. The NLME approach is a parametric model-based approach to study popu-
lation pharmacokinetics. The NLME approach provides unbiased mean pharmaco-
kinetic parameters as well as the estimate of variability by partitioning total 
variability in parameters into between-subject variability and residual variability 
[3]. The software developed to implement this analytical approach was named after 
the analytical method (nonlinear mixed-effects modeling (NONMEMTM)) by the 
University of Southern California and is currently licensed and managed by Icon 
Development Solutions (Baltimore, MD). Currently, NONMEMTM is considered 
the gold standard for population pharmacokinetic analysis; however, other software 
options that use different algorithms for parameter estimation are also available. 
These include Monolix (Lixoft, France), Phoenix (Certara, USA), ADAPT (BMSR, 
University of Southern California, USA), and Pmetrics (LAPK, University of 
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Southern California, USA). Of note, it is now common in the pharmacometrics 
community to use the term NONMEM to describe the software program as opposed 
to the NLME analytical approach. Also, for purposes of clarification, the terms 
“population pharmacokinetics” and “NLME approach” are used interchangeably.

The objective of the current chapter is to describe the basic principles of popula-
tion pharmacokinetic modeling. This will include basic terminology, statistical con-
cepts of error structures, mixed-effects modeling, and methodology used to build a 
population pharmacokinetic model. An in-depth mathematical discussion is beyond 
the scope of this text. For a more extensive discourse, the reader is referred to 
reviews by Ene et al., Bonate et al., and Giltinan et al., as well as the NONMEMTM 
user guide (Icon Development Solutions Inc., MD, USA) [2, 4, 5].

4.1  �Basic Terminology and Concepts

The term “model” in this chapter refers to a mathematical model that describes the 
pharmacokinetics or pharmacodynamics of a drug. These mathematical models origi-
nate from various compartmental model assumptions and are generally in the form of 
differential equations that describe the temporal profile of plasma concentrations that 
result from a particular dosage regimen. For example, the pharmacokinetic profile of 
a drug that is administered as an IV bolus and follows first-order elimination from a 
one-compartment model can be described by the following mathematical equation:
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(4.1)

where Cj represents the concentration at the jth time point and CL and Vd represent 
clearance and volume of distribution, respectively; t is the time elapsed between dose 
ingestion and plasma sample collections. The above model consists of dose as input, 
time as an independent variable, concentration as a dependent variable, and CL and 
Vd as pharmacokinetic parameters. When a clinical pharmacokinetic experiment is 
conducted, post-dose plasma samples are collected from an individual at various time 
points. These data (longitudinal) are then fit to a model such as that described by 
Eq. 4.1 to estimate individual pharmacokinetic parameters CL and Vd. The process 
of estimating the parameters by fitting a model to the data is called “modeling.” Once 
the appropriate pharmacokinetic model is fit to the data and pharmacokinetic param-
eters are estimated, Eq. 4.1 can be used to calculate the resulting plasma concentra-
tions from various inputs (i.e., dose and dosing frequency); this process is referred to 
as pharmacokinetic simulation. Modeling and simulation have become a vital com-
ponent of clinical pharmacology and drug development programs, as they provide 
the tools for building predictive pharmacostatistical models. These predictive models 
are based on prior preclinical and clinical information and assist investigators in plan-
ning future confirmatory (phase III) clinical trials with a greater probability of suc-
cess [6]. Pharmacometrics can be defined as the branch of science that is concerned 
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with the interplay between mathematical models of biology, pharmacology, disease, 
and physiology. Pharmacometric data are used to describe and quantify interactions 
between xenobiotics and patients, including both beneficial and adverse effects [7]. 
This ideology has given birth to a new approach to developing drugs called model-
based drug development (MBDD) [8]. MBDD involves the application of various 
mathematical and statistical modeling and simulation tools to assist in key drug 
development decisions, such as dosage selection and clinical trial design.

Pharmacokinetic modeling and simulation are both math and statistic intensive, 
and a basic appreciation of both is necessary. These topics are briefly addressed here 
but do not represent an exhaustive review of either subject. For more information, 
readers are referred to detailed texts on linear algebra, calculus, mathematical statis-
tics, and probability theory. Nevertheless, a brief refresher is provided in this section 
on the required terminology. Random variables are real-valued functions of a sam-
ple space with a probability distribution function. The value of the random variable 
is determined by the outcome of a particular experiment. Random variables can be 
discrete, such as categorical scoring for a pharmacodynamic effect or continuous 
such as plasma concentrations. Expectation of a random variable and a function of 
a random variable can be calculated from probability theory for both discrete and 
continuous random variables, representing a weighted average of the possible val-
ues that it can take [9]. Random variables can have several probability distributions 
such as Bernoulli, binomial, Poisson, geometric, hypergeometric, and negative 
hypergeometric for discrete variables and uniform, normal, exponential, gamma, 
chi-squared, and Cauchy for continuous variables. Central limit theorem provides 
the theoretical basis that many random phenomena obey – at least approximately – a 
normal probability distribution [9]. Normal distribution of a continuous random 
variable is applicable to many assumptions in population pharmacokinetic model-
ing. A univariate, normal-variable distribution can be characterized by the mean and 
variance of that distribution. Multivariate normal-variable distribution can be char-
acterized by a mean and a variance–covariance matrix [4, 9].

4.1.1  �Methods for Studying Population Pharmacokinetics

Pharmacokinetic parameters in a population differ between individuals due to 
intrinsic and extrinsic factors. Intrinsic factors include age, weight, gender, genet-
ics, and metabolic status of individuals, and extrinsic factors include concomitant 
medications, comorbid conditions, and food. An individual pharmacokinetic model 
consists of individual pharmacokinetic parameters, while a population pharmacoki-
netic model consists of population pharmacokinetic parameters and variability 
parameters. Variability parameters of interest include between-subject variability, 
between-occasion variability, and residual variability arising from errors in analyti-
cal methods, sampling, dosing, etc. For this introductory text, we will not detail the 
intercession variability. Traditionally, various methods have been applied to the 
study of population pharmacokinetics. Although some methods are more common 
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than others, we will discuss a variety of such methods to provide a complete picture 
of their use in the study of population pharmacokinetics. When drug administration 
and sampling schedules are identical in all subjects in a study, one can take average 
plasma concentrations across the same time points and fit a model to the mean data. 
This approach is called naïve average data approach (NAD). It is not a reliable 
method for estimating population pharmacokinetic parameters because the averag-
ing may completely smooth the pharmacokinetic variability and completely change 
the temporal pharmacokinetic profile (bi-peak phenomenon in individual pharma-
cokinetic profile may not be shown in a population average profile). Moreover, this 
method does not provide any information on the between-subject variability. This 
approach is currently only being used for preclinical experiments because other 
sources of variability such as variability between animals or between occasions are 
less than those observed in a clinical setting [2].

In situations where the sampling schedules are different between individuals, a 
naïve pooled approach (NPA) can be used. Using this approach, plasma concentra-
tions from all subjects are pooled and fit to a model as if they originated from a 
single individual [10]. This approach can provide reliable population pharmacoki-
netic parameter data but as with NAD, it does not provide information on parameter 
variability. However, this approach has been shown to provide biased estimates 
when there is higher between-subject variability and heterogeneity in the sampling 
schedules. A standard two-stage (STS) approach involves the fitting of individual 
pharmacokinetic data and summarizing mean and variance data to determine popu-
lation parameters. This method is applicable in situations where extensive sampling 
is performed; however, simulation studies show that this method provides upward 
biases in the variability parameters [3, 11, 12].

An NLME approach has been proposed as the appropriate theoretical mathemati-
cal framework for analyzing longitudinal pharmacokinetic data from clinical pharma-
cology studies [5, 10]. The NLME takes a midway compared to STS, NPD, and NPA 
approaches to appropriately pool the samples from various individuals and fit a popu-
lation model with parameters of typical pharmacokinetic parameters and variability 
parameters. This approach can handle sparse samples in individuals (2–3 per subject) 
and nonuniform study designs and thus can be applied to data from late phase clinical 
trials and data from routine clinical practice. Some important features of NLME that 
differ from traditional methods discussed above include (1) collection of relevant 
pharmacokinetic information from a target population, (2) identification and mea-
surement of variability in drug exposure during development, and (3) determination 
of the sources and estimating the magnitude of unexplained variability in the patient 
population [13]. It is vital to prospectively plan a population pharmacokinetic study 
with regard to study design (sample size, covariate selection), methodology, and ana-
lytical plan. The US FDA recommends population pharmacokinetic study designs 
that include single-trough, multiple-trough, and full-population pharmacokinetic 
sampling designs. The single-trough design has limited utility in that it only allows 
for inferences on drug clearance – and only if the samples are collected around the 
time of the true trough concentration of the drug. This design will not be useful in 
estimating other pharmacokinetic parameters such as absorption rate constant. The 
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multiple-trough design consists of two or more blood samples obtained near the time 
of the trough concentration under steady-state conditions. The full-population phar-
macokinetic sampling design involves the collection of multiple post-dose samples 
(typically 1–6) at various times that may differ between individuals [13].

Pharmacokinetic variability was once considered a nuisance variable when it 
came to data analysis; however, it is now appreciated that the magnitude of random 
variability is important because drug safety and efficacy are inversely proportional 
to the unexplainable variability in a drug’s pharmacokinetic and pharmacodynamic 
profile. The model shown in Eq.  4.1 must take into account errors in individual 
observations. A correct representation of the model is as follows:
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where εj is the error associated with the plasma concentration at the jth time point; 
generally the errors are assumed to be independent and have a normal distribution 
with a mean of zero and some (unknown) variance (σ2). The same model in a popu-
lation context will have at least another level of variability in addition to the residual 
error as described above in Eq. 4.2. This additional level of variability is referred to 
as between-subject variability (BSV) which occurs at the pharmacokinetic param-
eter level. Interindividual differences in pharmacokinetic parameters must be 
accounted for in a population model. A typical population model for a group of 
subjects administered an IV bolus dose is written as follows:
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where Cij represents plasma concentration in the ith subject at the jth time point; 
Dosei and tij represent individual dose and time of sample collection, respectively; 
CLi and Vdi represent individual clearance and volume of distribution, respectively. 
In a population model, we will mathematically relate the individual pharmacoki-
netic parameters to the population parameters as shown in the equations below:

	 CL TVCLi e i= * h1
	 (4.4)

	 Vd TVVdi e i= * h2

	 (4.5)

where TVCL and TVVd are the typical values for population clearance and volume 
of distribution, respectively; ηi represents the difference between the population 
parameter and the individual parameter on a logarithmic scale. One can understand 
this by simply rearranging the variables in Eq. 4.4 or Eq. 4.5:

	
h1i i= ( ) - ( )LOG CL LOG TVCL

	
(4.6)
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The LOG in Eq. 4.6 is a natural logarithm, and hi  is the difference between an 
individual pharmacokinetic parameter and a typical population value. One can see 
from this equation that hi  can be either a positive or a negative value because a 
person can have a clearance value that is greater or less than the population average. 
The hi  is a vital concept to population modeling and mixed-effects concepts; it is 
discussed in greater detail below.

4.1.2  �Fixed Effects, Random Effects, and Mixed Effects

Fixed effects are those variables whose levels represent an exhaustive set of all pos-
sible levels. Random effects are variables whose levels do not exhaust the set of 
possible levels, and each level is equally representative of the other levels [4]. Fixed 
effects are those that can be measured in an experiment; they include dosages and 
covariates such as age, gender, race, and creatinine clearance. Fixed effect parame-
ters relate these fixed effects to the population pharmacokinetic parameters in a 
quantitative manner. For example, if one wants to relate creatinine clearance mea-
sured in individuals to the population clearance of a drug given as an IV bolus, then 
the population model is written as below:
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CRCLi and θ in Eq. 4.7 represent the individual measured creatinine clearance and 
effect of creatinine clearance on the typical population estimate of clearance 
(TVCL), respectively. The individual creatinine clearance is normalized to a refer-
ence value of 120 mL/min in this case. The θ in Eq. 4.7 is a fixed effect parameter. 
The covariate submodel can be in the form of additive, proportional, exponential, or 
power models [14]. Typical values for pharmacokinetic parameters in the model are 
also considered a special case of fixed effects, because they do not vary between 
individuals. Random effect parameter quantifies the random unknown variability in 
the pharmacokinetic parameters and residual variability in the concentrations. 
Random effects in the population model include between-subject random effects, 
which are quantified by between-subject variability, and residual random effects, 
which are quantified by residual variability or intraindividual variability. Because 
plasma concentrations are a result of multivariate normal distributions of pharmaco-
kinetic parameters (i.e., multiple parameters in the model have different distribu-
tions), the parameters that quantify the random effects are represented in a 
variance–covariance matrix or covariance matrix. The hi  is assumed to be normally 
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distributed with a mean of zero and a variance of ωi
2. The population model in 

Eq. 4.3 will include the following covariance matrix to quantify random effects:
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where ω1
2 and ω2

2 represent the variances in η1i and η2i in the population, which rep-
resents between-subject variability in clearance and volume of distribution, respec-
tively. The ω2ω1 or ω1ω2 represent covariance between clearance and volume of 
distribution. Covariance matrices are generally represented as lower triangular matri-
ces because the upper triangular elements are the same as the lower triangular matrix 
elements. The individual parameter estimates in nonlinear mixed-effects modeling 
are estimated using Bayesian methodology, and they are generally referred to as 
empirical Bayes estimates (EBEs). The use of the phrase “empirical Bayes” empha-
sizes that the parameters for the prior distribution are estimated from the data and are 
used as if they were known to obtain the posterior distribution [15]. When there is less 
information in an individual, the model assumes the person to be a typical individual, 
and the individual parameters shrink toward population parameters. The opposite 
occurs when there is more information in an individual subject, which means more 
samples were collected for that person at informative time points. If the population 
model is adequate, the quality of the individual parameter estimates will depend 
heavily on the observed data. The variance of EBE distribution will shrink toward 
zero as the quantity of information at the individual level is reduced; this phenome-
non is defined as η-shrinkage. Similarly, in cases where data are less informative, the 
individual weighted residual (IWRES; discussed below) distribution shrinks toward 
zero, which is defined as ε-shrinkage and is sometimes called “overfitting” [15].

The residual error (i.e., the difference between model predicted and observed 
concentration) can have a structure. Most important error structures encountered in 
pharmacokinetic modeling include additive, proportional, and combination errors. 
Additive error has the following structure:

	
y iij ij ij= +pred e

	
(4.8)

where yij is the observed data in the ith individual at the jth time point; ipredij is the 
predicted concentration in the ith individual at the jth time point and εij is the ran-
dom effect with a mean of zero and a variance of σ2. Additive error is also called 
homoscedastic error; this error is not dependent on the magnitude of the prediction 
(higher or lower concentration). Proportional error, as the name indicates, is propor-
tional to the magnitude of the concentration in the following way:

	
y iij ij ij= +( )pred 1 e

	
(4.9)

This is also equivalent to y i iij ij ij ij= +pred pred *e .
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In this type of error, the higher the concentration, the greater the error, but the 
coefficient of variation (ratio of the standard deviation to the mean) is constant. 
Thus, it is also called a constant coefficient variation model. In this model there is 
an interaction between residual error (εij) and between-subject variability (η), due to 
the dependency of ipredij on the EBEs. A proper estimation algorithm method that 
accounts for η-ε interaction should be used to avoid biases in parameter estimation, 
which will be discussed below. A combination error model combines the additive 
and proportional error models and is also sometimes called a “slope and intercept” 
model as shown below:

	
y iij ij ij ij= +( ) +pred 1 1 2e e

	
(4.10)

where ε1ij and ε2ij represent proportional and additive error components, 
respectively.

A mathematical model containing both fixed and random effects is called a mixed-
effects model. Mixed-effects models can describe a linear or nonlinear relationship 
between an independent variable and a dependent variable. If the function describing 
this relationship is a linear model, then it is a linear mixed-effects model and is com-
monly used to assess bioequivalence data, QTc data, and dose-response relationships 
[16]. The functions that relate the plasma concentrations (dependent variables) to 
time (independent variables) are nonlinear as in Eq. 4.3, and nonlinear mixed-effects 
modeling (NONMEM) methodology is applied. As mixed-effects modeling includes 
random effect parameters, the optimization methods play an important role in esti-
mating the parameters of the model. Several basic estimation algorithms that are 
commonly used in NONMEM methodology will be discussed below.

4.2  �Estimation Methods Used in NONMEM

Parameter estimation in mixed-effects models is complex; hence ordinary least 
square-based methods are not optimal when residual variance is dependent on the 
model parameters [4]. Although estimation methods discussed thus far have focused 
on those available in NONMEMTM, other software packages with slightly different 
(or the same) algorithms are also available. Most of the NLME methods use maxi-
mum likelihood approach for parameter estimation. Likelihood is a conditional 
probability of an event occurring, given that another event has occurred. The prob-
ability of the data to which the model is being fit is written as a function (likelihood 
function) of model parameters; the maximum likelihood estimates (MLEs) repre-
sent where this probability is maximum. Several mathematical approximations 
were developed to calculate likelihood function to linearize the random effects, due 
to the nonlinear dependence on the observations [2].

The first-order (FO) approximation was the first to be used and takes a first-order 
Taylor series expansion of the population model with respect to the random effects 
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around zero. Currently FO is not recommended due to the availability of better 
approximations such as first-order conditional estimation (FOCE) and first-order 
conditional estimation with interaction (FOCEI). FOCE takes a first-order Taylor 
series expansion around the conditional estimates of the interindividual random 
effect (ηi), instead of zero. The FOCEI method accounts for the interaction between 
the between-subject and within-subject variability components and should be used 
when heteroscedastic error models (e.g., proportional error) are used.

A number of newer NLME methods have been introduced based on expectation–
maximization principles such as stochastic approximation expectation maximiza-
tion (SAEM), Monte Carlo importance sampling (IMP, IMPMAP), and Markov 
chain Monte Carlo (MCMC) Bayesian methods in the newer versions of 
NONMEMTM. The EM-based methods are advantageous because they do not use 
linearized approximations (e.g., FO, FOCE) and therefore can theoretically induce 
less bias. MCMC Bayesian methods do not provide point estimates but provide a 
series of fixed effect parameters that are distributed according to their ability to fit 
the data. A comparison among FOCEI, ITS, IMP, IMPMAP, and Bayesian methods 
in a simulated, complex, target-mediated drug disposition model showed that newer 
methods performed similarly to FOCEI in parameter bias and standard error of the 
estimate (SE) [17]. It is important to realize that the calculated objective function 
value that represents the global fit statistic to the data cannot be compared between 
estimation algorithms, as the method of calculation varies significantly. For instance, 
the NONMEMTM software calculates the objective function in first-order 
approximation estimation methods as equivalent to −2* log likelihood, which is 
approximately distributed to the chi-square (χ2) statistic with q degrees of freedom, 
where q is the number of parameters in the model. NONMEMTM objective function 
can be used for hypothesis testing for hierarchical models, such as covariate analy-
sis; this process is called log likelihood ratio testing. The objective function, calcu-
lated using the SAEM method in NONMEMTM, cannot be used for hypothesis 
testing; however, the parameters do represent maximum likelihood estimates. In the 
newer version of NONMEMTM software, multiple estimation methods can be used 
where SAEM is used for parameter estimation and important sampling-based meth-
ods (IMP, IMPMAP) for hypothesis testing and calculation of asymptotic standard 
error of parameters. Readers are referred to the NONMEMTM technical guide for 
mathematical derivations and further information on the differences in objective 
functions [18–20].

4.2.1  �General Principles of Population Pharmacokinetic 
Model Development

Population pharmacokinetic models are hierarchical in nature in that they have a 
structural pharmacokinetic model, a covariate submodel, and a statistical model. 
The structural model consists of the compartmental model equation that describes 
the temporal profile of plasma concentrations. The statistical model includes 

A. Chaturvedula



81

submodels that may incorporate between-subject variability or interindividual 
variability, residual variability or intraindividual variability, and between-occasion 
variability. The structural model is generally based on a prior understanding of a 
drug’s pharmacokinetics from preclinical studies or phase I studies where exten-
sive sampling was performed.

When only sparse data are available, the ability to identify a more complex compart-
mental model is compromised. For example, data from a drug that is optimally described 
by a two-compartment model may fit a one-compartment model better if plasma con-
centrations are missing during the drug’s distribution phase. Identifiability of a model 
and its parameters is an important consideration when framing a structural model. 
Structural identifiability is the ability to uniquely estimate a model’s parameters. 
Parameter identifiability is the ability to estimate a structurally identifiable model [4].

Let us consider a compartmental model that consists only of plasma concentra-
tion samples, yet we desire to estimate both renal and nonrenal clearance. It is 
impossible to separate these two parameters unless either the urine compartment or 
the nonrenal compartment (metabolite) is sampled. These identifiability issues arise 
quickly when the model gets complicated such as parent drug–metabolite models 
where both a parent drug and its metabolite are modeled in an integrated model such 
as in Fig. 4.2. In this model, it is not possible to estimate all three parameters: (1) 
metabolite formation rate, (2) volume of the metabolite compartment, and (3) 
metabolite elimination rate [21]. Generally, some assumptions involving the meta-
bolic fraction or volume of metabolite compartments are made so that only two of 
the three parameters are estimated. Statistical models consist of between-subject 
variability in pharmacokinetic parameters and residual variability that cannot be 
explained by the between-subject variability. An exponential error model is gener-
ally used for between-subject variability in pharmacokinetic parameters to represent 
the log-normal distribution because negative values for pharmacokinetic parameters 
are not meaningful. Residual error models were discussed in the previous section, 
namely, proportional, additive, and combination error models.

First, a base model that includes a structural model with random effect parame-
ters will be finalized. Generally, the base model will not contain any covariates. 
However, it is now common to include weight as a covariate for volume and clear-
ance parameters based on established allometric scaling methods [22, 23]. The base 
model provides individual pharmacokinetic parameters (EBEs), which are used to 
evaluate potential covariate relationships using plots of EBEs versus covariates such 
as age, weight, and gender. When a large number of covariates are present, several 
screening methods are proposed, which use generalized additive modeling and 
Wald’s approximation to the likelihood ratio test [24, 25]. It is important to have an 
extensive discussion between the clinical and pharmacometrics teams to determine 
which covariates should be included in the model; this should be determined by 
clinical relevance and final utility of the model. Covariate modeling represents the 
model-based hypothesis testing framework and actually represents the act of finding 
sources and correlates of variability as per the definition of population pharmacoki-
netics. Two important methods currently used in covariate modeling are stepwise 
addition and full model estimation [26–28].
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Stepwise covariate modeling includes a forward addition step where covariates are 
progressively added based on their statistical significance and a backward elimination 
step where each of the covariate parameters entered in the forward addition step are 
removed, and the statistical result is evaluated. As mentioned, the objective function 
that is used as global goodness of fit is a χ2 statistic. For hierarchical models, the drop 
in objective function value by 3.84 points with an addition of one new parameter addi-
tion compared to the base model (no covariates) is statistically significant (α = 0.05). 
When a significant covariate is removed from the model, the objective function must 
increase by a similar magnitude. In stepwise addition, generally, a lower significance 
step is selected (α = 0.05 or lower) compared to backward elimination (α = 0.01 or 
higher); this is done to control for false positives. There is an automated computer pro-
gram that performs stepwise covariate modeling (SCM); it is available in PsN tools 
[29]. For nonhierarchical models, Akaike criterion can be used for model selection [30].

For full model evaluation, it is recommended to add clinically relevant covariates 
and to construct a full model without statistical significance and then reduce the 
model by backward elimination. In this approach clinical relevance and utility of the 
covariate in clinical practice are more important than statistical significance [27, 
31]. In cases where there is no covariate available but the base model shows clear 
multimodal distribution of EBEs, one can apply mixture models to assign an indi-
vidual to two or more models. Mixture modeling helps to explain such multimodal 
distributions, and also the probability of each mixture population is estimated as a 
parameter [32]. The objective function value (OFV) that is minimized in mixture 
model is the sum of the OFVs for each patient (OFVi), which in turn is the sum 
across the k subpopulations (OFVi, k). The individual probability of belonging to a 
subpopulation can be calculated using the OFV in that individual together with the 
total probability in the population [33]. An example of mixture model for risperi-
done is discussed in the subsequent sections.

4.2.2  �Evaluation of a Population Model

Population pharmacokinetic model development involves fitting several (100 or 
more) models with varying structural, statistical, and covariate models to come up 
with a parsimonious model that has no redundant parameters and is also an irreduc-
ible model. Several model diagnostics are commonly used to make decisions at 
every stage of modeling. Commonly used diagnostics include likelihood-based 
objective function value modulation, basic goodness of fit plots, residual plots, stan-
dard error of estimates, and normalized predicted distribution errors (NPDE). The 
likelihood objective function value is a global objective measure of model fit and can 
be used to retain a parameter in the model using the LRT method for hierarchical 
models. It is important to recognize that the LRT method theoretically does not apply 
to parameters with boundary conditions such as between-subject variability param-
eters and absorption lag time. However, the LRT method is applicable for inclusion 
decisions for covariance parameters (covariance can be a positive or negative value). 
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Diagnostic plots are generally created using XPOSE library in R software, which is 
created specifically for evaluating population pharmacokinetic models [34, 35]. 
These plots will enable the modeler to visually inspect whether the model-predicted 
concentrations match the observed data and to also check model assumptions such 
as normality of random effects, statistical outliers, and covariate relationships.

Population modeling results in individual predictions (IPRED), population pre-
dictions (PRED), residuals (RES, IWRES, CWRES, WRES, etc.), and EBEs. These 
variables are used along with covariates and time after dose to prepare diagnostic 
plots or goodness of fit (GOF) plots. The most commonly reported plots for popula-
tion pharmacokinetic models and those recommended by regulatory guidance agen-
cies are discussed here. PREDs account for explainable between-subject variability 
by covariates, and IPREDs have additional between-subject variability [14]. A plot 
of observed data (DV) versus IPRED and PRED shows any structural model mis-
specifications or need of covariates to explain variability. A line of identity (solid 
line in Fig. 4.1 with a slope of one) and trend line (dark solid line in Fig. 4.1, prefer-
ably a regression line) are recommended for DV versus IPRED or PRED plots. Any 
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deviations between the line of identity and trend line represent potential model mis-
specification. The DV versus PRED plots are more sensitive to covariate effects and 
the modeler looks for perceivable differences and lack of correlations before and 
after inclusion of a particular covariate. The DV versus IPRED plots can look 
artificially better in case of shrinkage (>30 %). Commonly calculated residuals in 
population modeling include individual weighted residuals (IWRES), weighted 
residuals (WRES), and conditional weighted residuals (CWRES).

Residual is defined as the difference between observed concentration and pre-
dicted concentration in an individual. WRES is calculated as the ratio of residual-
to-weight (generally variance) and is calculated based on FO approximation. WRES 
is not appropriate to use with FOCE or FOCEI approximations to the true model. 
CWRES is calculated based on FOCE approximation and have better qualities in 
identifying model misspecification [36]. The time after dose versus CWRES or 
IWERS plot with a horizontal line at 0 and a trend line is recommended for check-
ing the independence of the residuals with the independent variable, which is a 
fundamental assumption in regression analysis. The trend line (preferably a smooth 
line) should be horizontal and must not show any trends (Fig. 4.1, bottom panel). 
The same should be the case with PRED versus residual plots. It is also suggested 
that any individual observations with an absolute CWRES > 6 be identified as statis-
tical outliers, as the CWRES has a mean of zero and unit variance [31]. The SE is 
generated from the variance–covariance matrix during the minimization process; 
95 % confidence intervals of the parameters can be calculated as the parameter esti-
mate ± 2*SE. Generally, SE greater than or equal to 50 % represents a parameter 
with high imprecision [30]. The histograms and Q–Q (quantile–quantile) plots of 
EBEs are used to check the assumption of normality. If all points fall on the line of 
unity, then the normality assumption is satisfied (Fig. 4.2). NPDE is a simulation-
based diagnostic that is used for model discrimination. By derivation, NPDE fol-
lows a standard normal distribution (normal distribution with mean of 0 and standard 
deviation of 1); any deviations from the model-predicted NPDE indicate a mis-
specification of the model [37]. Some other plots that are commonly used in popula-
tion pharmacokinetic model development include IPRED versus time after dose, 
parameter versus parameter correlations, and EBE versus EBE plots [38].

Once a final model is selected, several computing-intensive statistical methods 
are used for qualification and validation. These include visual predictive check 
(VPC), numerical predictive check (NPC), bootstrapping, cross-validation, and 
jack-knifing methods. VPC is a simulation-based diagnostic that takes into 
account all the model components (structural, fixed, and random effects) and is 
used to make model comparisons, suggest model improvements, and support 
appropriateness of a model. VPC is conducted by first simulating several datasets 
with the same design aspects as the clinical trial that generated the observed data 
used for model development. Then percentiles (5th, 50th, and 95th) of the all 
simulated concentrations (not to be confused with IPRED or PRED) and overlay-
ing in a plot with observed data percentiles for the same. The entire distribution 
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of the observed data should match the predicted data from the model [39]. When 
there are major differences in study design, such as different doses and sample 
collection times, it is recommended to use standardized VPC and prediction-cor-
rected VPC, which are preferred over traditional VPCs [40, 41]. Numerical pre-
dictive check is very similar to VPC except instead of a visual display of 
concentrations, a metric (i.e., AUC) is calculated from simulated datasets and 
compared to the observed data. Bootstrapping is a resampling-based technique 
where original data are resampled to create several bootstrap samples; the final 
model is then fit to all the samples to calculate the nonparametric CIs of the 
parameters and distributions. These CIs are generally considered more reliable 
than the parametric SE-based CIs calculated from the variance–covariance matrix. 
Please refer to extensive descriptions on the cross-validation and jack-knifing 
techniques that can identify influential subjects and provide a more robust evalu-
ation of the predictive capabilities of a model [42, 44].
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4.2.3  �Population Pharmacokinetic Modeling of Antipsychotics

In this section, several examples of population pharmacokinetic modeling applied 
to antipsychotic drugs are reviewed. Feng et al. reported an integrated population 
pharmacokinetic model for risperidone after oral administration from highly sparse 
sampling measurements from the CATIE study [43]. Risperidone is an atypical anti-
psychotic with selected antagonistic properties at serotonin 5-HT2 and dopamine 
D2 receptors [44]. The structural model was a one-compartment model with first-
order absorption for risperidone that was linked to the active metabolite (9-hydroxy 
risperidone) compartment by formation clearance. The fraction of parent drug con-
verted to metabolite was estimated as a function of parent clearance. Due to identifi-
ability issues, it was assumed that the volume of the metabolite compartment was 
the same as that of the parent compartment. In this study, a total of 1236 plasma 
risperidone and 9-hydroxy risperidone concentrations were collected in 490 sub-
jects. A clear multimodal distribution in individual risperidone clearance parame-
ters was observed in the base model; this was likely due to the fact that risperidone 
is metabolized by the polymorphic cytochrome P 450 (CYP) 2D6 enzyme [45]. 
Therefore, a mixture modeling approach in the clearance parameter was utilized to 
capture the CYP2D6 polymorphism and explain the multimodal distribution in ris-
peridone clearance. The mixture model was able to capture the CYP2D6 poor 
metabolizers (PM), intermediate metabolizers (IM), and extensive metabolizers 
(EM) successfully. The probability of being a PM, IM, or EM was estimated at 
41 %, 52 %, and 7 %, respectively. The final model identified age as a significant 
covariate affecting 9-hydroxyrisperidone clearance.

Data from the above investigation suggest that older individuals may experience 
higher exposure to the active 9-hydroxy metabolite, thereby placing them at risk for 
toxicity. Combination error models with additive and proportional components 
were separately estimated for risperidone and its 9-hydroxy metabolite. Sherwin 
et al. applied the above model to data from 28 children and adolescents and success-
fully described the data, thereby suggesting that this model may be potentially use-
ful for individualizing risperidone therapy in this population [46].

Thyssen et  al. studied the population pharmacokinetics of oral risperidone in 
children, adolescents, and adults [47]. The modeling was conducted using a pooled 
dataset of 304 pediatric and 476 adult subject plasma concentration samples. 
Different models were developed for risperidone and active antipsychotic fraction 
(calculated as risperidone plus 9-hydroxyrisperidone concentrations at each sample 
collection time point). The structural model consisted of two compartments with 
first-order absorption, with body weight added as a covariate on clearance, and 
volume parameters based on allometric principles. Testing for statistical signifi-
cance by LRT was not performed. In contrast to the study conducted by Feng et al. 
[43] mixture modeling was employed to describe the oral bioavailability of risperi-
done. Data from two subpopulations, representing PMs and EMs were modeled. 
Age and creatinine clearance were identified as significant covariates affecting the 
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risperidone clearance. The probability of being an EM or a PM was estimated at 
19 % and 81 %, respectively. Simulations from the model showed that risperidone 
and the active antipsychotic fraction were similar in children, adolescents, and 
adults.

Like risperidone, clozapine is another atypical antipsychotic; it is used in the 
treatment of refractory schizophrenia. After oral administration, clozapine is exten-
sively metabolized by CYP1A2 to form the pharmacologically active metabolite, 
norclozapine. Ismail et al. characterized the population pharmacokinetics of clozap-
ine and norclozapine in an integrated model [48]. Data from this investigation were 
collected retrospectively and fit to a final model that included one compartment for 
the parent compound and one compartment for the metabolite. The volume for the 
metabolite compartment was fixed to twice the amount of the parent compartment 
to avoid the identifiability issue. The fraction of conversion of clozapine to norclo-
zapine was estimated separately for tablet and suspension formulations and found to 
be 0.015 and 0.4, respectively. Age and gender were significant covariates affecting 
the clearance of norclozapine. Different absorption rate constants were estimated 
for different formulations, with tablet and suspension formulations displaying a 
more rapid absorption compared to tablet formulations [48].

4.3  �Summary and Conclusion

Population pharmacokinetic modeling provides valuable tools for studying the phar-
macokinetics of drugs in a real world patient population. Model development is typi-
cally performed in a stepwise manner in which a hierarchical model is built that 
contains both structural and statistical components. Population pharmacokinetic mod-
eling involves an understanding and mastery of several key disciplines, including 
math, statistics, pharmacology, and pharmacokinetics. Expertise in all of these disci-
plines must be carefully applied to concentration versus time data to synthesize appro-
priate population pharmacokinetic models that can be used to optimize drug therapy.
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