
Model Transformation Configuration
and Variability Management
for User Interface Design

Jean-Sébastien Sottet(B), Alain Vagner, and Alfonso Garćıa Frey

Luxembourg Institute of Science and Technology,
5 av. des Hauts-Fourneaux, Esch/Alzette, Luxembourg

{jean-sebastien.sottet,alain.vagner,alfonso.garcia}@list.lu

Abstract. User Interfaces (UI) design is a complex and multi-faceted
problem, owing to the ever increasing variability of the design options and
the interaction context (devices, user profiles, and their environment).
Moreover, UI design choices stand on users’ needs elicitation, which are
difficult to evaluate precisely upfront and require iterative design cycles
based on trial and error. All this complex variability should be managed
efficiently to ensure moderate design costs. In this article, we propose a
variability management approach integrated into a UI rapid prototyping
process, which involves the combination of Model-Driven Engineering
(MDE) and Software Product Lines. Our approach supports the separa-
tion of concerns through multi-step partial configuration of UI features,
enabling each stakeholder of the UI design process to define the variabil-
ity on the assets she manages. We have implemented this approach in
our existing MDE UI generation Framework.

Keywords: Software engineering · Software product lines · Variability
management · Configuration · Model-driven engineering · Model trans-
formations · Human-computer interaction ·Model-based user interfaces ·
Feature models

1 Introduction

In design and development of User Interfaces (UI) it is often required to produce
several versions of the same product, including different look and feel and user
tasks for different platforms. As stated by [7] interaction design is a complex and
multi-faceted problem. When designing interaction, variability is manifold: vari-
ability of devices, users, interaction environments, etc. Moreover, user require-
ments are difficult to evaluate precisely upfront in UI design processes. Therefore,
the main UI design processes, such as User-Centred Design [13], implement an
iterative design cycle in which a UI variant is produced, tested on end-users, and
their feedback is integrated into design artifacts (e.g., part of the UI, require-
ments, etc.). Since these processes are mostly based on trial and error, some
parts of the UI have to be re-developed many times to fit all the different user
c© Springer International Publishing Switzerland 2015
P. Desfray et al. (Eds.): MODELSWARD 2015, CCIS 580, pp. 390–404, 2015.
DOI: 10.1007/978-3-319-27869-8 23

Model Transformation Configuration 391

requirements. Moreover these processes involve multiple stakeholders with differ-
ent roles (software developers, UI/User eXperience designers, business analysts,
end-users, etc.) that demand a great amount of time to reach consensus. UI vari-
ability has thus a significant impact on the design, development and maintenance
costs of the UI.

To overcome variability issues in software engineering, researchers have pro-
posed to rely on the paradigm of Software Product Lines (SPLs) [10]. The SPL
paradigm allows to manage variability by producing a family of related product
configurations (leading to product variants) for a given domain. Indeed, the SPL
paradigm proposes the identification of common and variable sets of features, to
foster software reuse in the configuration of new products [22].

Model-Driven Engineering (MDE) has already been used to improve the UI
design process [27]. According to [4,11] SPL and MDE are complementary and
can be combined in a unified process that aggregates the advantages of both
methods.

In this paper, we propose an approach to manage UI variability based on
MDE and SPL. Our approach relies on model transformations that support the
expression of the variability. This approach enables the separation of concerns
of the different stakeholders when expressing the UI variability and their design
choices (UI configurations). We considered a Multiple Feature Model approach
in which each feature model represents a particular concern allowing, if needed,
each stakeholder to work independently. We also support the configuration rec-
onciliation to reach a consensus through constraints and dependencies between
UI features. We thus proposed a partial and staged configuration process [12] in
which we produce partial UI configurations that can be refined by all stakeholders
including the users feedback. Finally, we propose to integrate the configuration
inside the transformations, modifying existing UI model transformations and
integrate them into our model-driven UI design process [27]. We illustrate these
concepts with a concrete example of UI variability.

2 Related Work

2.1 Feature Modelling

Feature models (FM) [22] are popular SPL assets that describe both variability
and commonalities of a system. They express, through some defined operators,
the decomposition of a product related features. The feature diagram notation
used in this article is explained in Fig. 1. The E-Shop FM consists of a mandatory
feature “catalogue”, two possible payment methods from which one or both could
be selected, an exclusive alternative of security levels and an optional search
feature. FM constraints can be defined. In this case “credit card” implies a high
level of security.

Features composing a FM depict different parts of a system without any clear
separation. The absence of feature types makes these models popular as there
are no limits for the expression of design artifacts. But at the same time, [8] have

392 J.-S. Sottet et al.

Fig. 1. Feature Model from an E-shop. Source: Wikimedia commons.

demonstrated that depicting information in a single FM leads to feature redun-
dancies due to the tree structure. As a result, separation of variability concerns
into multiple FM seems to be crucial for understanding [18] and manipulating [1]
the many different faces of variability. Each of these FM focuses on a viewpoint
on variability which makes easier to handle variability for each stakeholder.

2.2 SPL Configuration

The configuration process is an important task of SPL management: producing
a particular product variant based on a selection of features to fit the customers’
needs. In this context, a configuration is a specific combination of FM features
such as hierarchical decomposition, operators (Or, optional, etc.) and constraints
of FM.

As stated by [29], when designers and developers configure a system according
to requirements, the enforcement of FM constraints can limit them in their design
choices. Moreover, the separation of the variability in multiple FMs is also a
source of complexity due to many dependencies across FMs. The fusion of all
FMs into one for configuration purposes seems to solve this issue but results in a
large FM that mixes different facets: this may lead to invalid configurations and
thus inefficient products. Some solutions exist to overcome these problems. The
work by [23] proposes an implementation of a configuration composition system
defining a step-by step configuration [12] using partial configurations [5]. Thus,
some portion of a FM can be configured independently, without considering all
the constraints (coming from other configurations) at configuration time. Then,
constraints amongst configurations may be solved by implementing consistency
transformations such as in [1].

2.3 Model-Driven User Interfaces Variability

Model-Driven UI calls for specific models and abstraction. These models address
the flow of user interfaces, the domain elements manipulated during the inter-
action, the models of expected UI quality, the layout, the graphical rendering,
etc. In addition, each model corresponds to a standard level of abstraction as

Model Transformation Configuration 393

identified in the CAMELEON Reference Framework (CRF) [9]. The CRF aims
at providing a unified view on modelling and adaptation of UIs. In the CRF,
each level of abstraction is a potential source of variability. Modifying a model
of a specific level of abstraction corresponds to a specific adaptation of the UI.

For instance in the CRF, the most abstract model, the task model, depicts
the interaction between the user and the features offered by the software. Adding
or removing a task results in modifying the software features. Considering this,
we can assume that there is a direct link between classical feature modelling and
task modelling such as presented in [21]. In this work, a task model is derived
from an initial FM. However the authors did not go any further in describing the
variability related to interaction and UI (graphical components, behavior, etc.).

In [14], the authors present an integrated vision of functional and interaction
concerns into a single FM. This approach is certainly going a step further by
representing variability at the different abstraction levels of the CRF. However,
this approach has several drawbacks. On the one hand, this approach derives
functional variability only from the task model, limiting the functional variability
of the software. On the other hand, all the UI variations are mixed into a single
all encompassing FM which blurs the various aspects for comprehension and
configuration [18].

Finally, Martinez et al. [19] presented an initial experience on the usage
of multiple FMs for web systems. This work showed the feasibility of using
multiple FMs and the possibility to define a process around it. It implements
FMs for a web system, interaction scenario, a user model (user impairments),
and device. However, this approach does not consider the very peculiarity of UI
design models and their variability.

A few works in SPL for UI have been published. A large part is dedicated to
the main variability depiction (using FMs) but they do not directly address the
configuration management. Configuration is a particular issue when considering
end-user related requirements which may be fuzzily defined.

3 UI-SPL Approach

Model-driven UI design is a multi-stakeholder process [15,17] where each model –
representing a particular subdomain of UI engineering– is manipulated by spe-
cific stakeholders. For instance, the choice of graphical widgets to be used (e.g.
radio button, drop-down list, etc.) is done by a graphical designer, sometimes in
collaboration with the usability expert and/or the client. Our model-driven UI
design approach [27] relies on a revised version of the CRF framework (Fig. 2).

It consists of two base metamodels, the Domain metamodel -representing
the domain elements manipulated by the application as provided by classical
domain analyst- and the Interaction Flow Model (IFM) [20]. From these models
we derive the Concrete User Interface model (CUI) which depicts the applica-
tion “pages” and their content (i.e., widgets) as well as the navigation between
pages. The CUI metamodel aims at being independent of the final implementa-
tion of any graphical element. Finally, the obtained CUI model is transformed

394 J.-S. Sottet et al.

Fig. 2. Model-Driven UI design process.

into an Implementation Specific Model (ISM) that takes into account platform
details (here platform refers to UI tool-kits such as HTML/JQuery, Android
GUI, etc.). A last model-to-text transformation generates the code according to
the ISM. This separation allows for separate evolution of CUI metamodel and
implementation specific metamodel and code generation.

We propose a multiple feature models (multi-FM) approach (see Sect. 3.1) to
describe the various facets of UI variability (e.g., UI layout, graphical elements,
etc.). In a second time, (see Sect. 3.2) we introduce our specific view on configu-
ration on this multi-FM and its implementation in our model-driven UI design
approach (see Sect. 4.3).

3.1 Multi-FM Approach

Classical FM approaches combine different functional features [21]. In the specific
context of UI design, we propose to rely on a similar approach for managing
variability of each UI design concern. UI variability is thus decomposed into
FMs (Fig. 3).

Fig. 3. Variability models (FM) coverage on our UI modeling framework.

Each of these FMs is related either to a model, a metamodel, a mapping or
a transformation depending on the nature of the information it conveys.

– Models: Three FMs in Fig. 3 manage variations at the model level (IFM,
Domain and CUI). The FM responsible for the Domain configuration can
be used to express alternatives of a same concept, e.g., using or not the
address, age or photo of a given class “Person”. The IFM variability can
express for instance the possible navigation alternatives to be activated or
not. For instance on a shopping website, shortcuts providing quickly access to
a given product can be configured. The CUI FM represents alternative repre-
sentations of a widget: a panel (i.e., portion of UI displayed on a screen) can
become a full window (i.e., displayed has full-screen) on mobile phones.

Model Transformation Configuration 395

– Mappings: The variability of the mapping between IFM and Domain can be
managed by a mapping FM. Interaction flow elements (UI states) can involve
different concepts of the domain model.

– Transformations: Variability can be expressed also at the level of transforma-
tions. The variability that a transformation could convey (i.e., multiple output
alternatives) can be expressed with FMs. The transformations impacted are
(1) between IFM, Domain and CUI, (2) between CUI and ISM. The variabil-
ity of (1) expresses the possible UI design choices: how an IFM state selection
can be represented: a simple list, an indexed list, a tile list, etc. The variabil-
ity in (2) depends on the target ISM and configures the final representation
to be provided to end-users. For instance, a CUI simple list can be repre-
sented using, as output of the transformation, the following HTML markup
alternatives: “<select>” or “”.

By scoping the FM to a specific concern, our approach allows to focus only on
the variations related to the underlying concern. In our approach, the different
FM enrich the existing UI design process accompanying, step by step, the design
of models and its variability. However, all the concerns are interrelated in the
generation process: the IFM, Domain and CUI are in relation together (deriva-
tion traceability, explicit mapping, etc.). Thus, the FMs are interrelated as well
leading to dependencies and sometimes overlaps between them. As such, the
configuration of the transformation IFM-Domain to CUI is overlapping the FM
of the CUI. If the UI design stakeholders are following an automated approach,
they will rather use the transformation FM. The FM responsible for the CUI
transformation configuration (i.e., elements to be displayed) is directly depen-
dent on the mappings between domain elements and IFM. For instance, if the
picture (Domain) is not mapped to a selection state (IFM), the generated CUI
list would not contain this picture.

3.2 Configuration: The Specific Case of Rapid Prototyping

End-user requirements are crucial in user centred design. They are often not
formally defined: most of the time their are expressed as remarks on a portion
of produced or prototyped UI. Thus, in order to capture end-user requirements
UI designers have to propose various product versions (prototypes) to end-users.
A common practice is to use rapid prototyping. Rapid prototyping is a user-
centred iterative process where end-users give feedback on each produced proto-
type. Prototypes are usually mock-ups of UI drawn with dedicated tools (e.g.,
see balsamiq1). In order to show to the users an interaction experience closest
to reality we should rely on higher fidelity and on living prototypes (i.e., the
user should be able to interact with it). As a result, MDE provides us with semi-
automatic generation capabilities. It allows a quick production of prototypes and
many assessments in a limited amount of time. End-users will thus elicit the way
they prefer interacting with the system, the best widgets and representations for

1 http://balsamiq.com.

http://balsamiq.com

396 J.-S. Sottet et al.

their tasks. In fact, through these iterations they elicit the product configuration
that best fits their needs.

This user-centred process is composed of many iterations that test only a
portion of the UI. If we can test the global interaction experience with the end-
users, the designer may also need to focus on one particular UI part/concern
in isolation. In previous work [26,27], we have tested the global usability of
generated UI prototypes. We will focus here on the configuration of specific
UI parts. In order to perform this, we stand on partial configurations [5]. For
instance, configuring content of a specific page or a specific interaction state.

The partial configuration does not take into account the external feature2

constraints which enter in the partial configuration (e.g., requires, implies,
excludes, etc.). In other words, if another configuration has a feature which
requires/excludes a feature of the partial configuration being set we simply do
not consider it. For the features required or excluded by the partial configu-
ration being set, we do not involve the end-users/designer but rather compute
the consequences: i.e., provide a configuration for these external features. The
constraints that are expressed inside the partial configuration are still to be
considered as in traditional approaches.

We designed a generation process of UI prototypes from partial configurations
and their evaluation with end-users. We divided this process into 4 steps from the
identification of UI parts to be tested to the corresponding prototype generation:

1. Selection of the Model Parts to be Configured: in order to target the
critical portion(s) of the application to be tested with end-users, the selection
should be done on the input design models (e.g., IFM and Domain). Then, we
deduce the impacted FMs and provide for each of them the relevant subset.

2. Combination of the Various FMs Subsets: the subset of FMs previously
selected have to be aggregated (see FMs aggregation [1]) together in order to
produce a unified configuration.

3. Establishment and Use of Configuration UI: the configuration UI can
be derived from the obtained FM. We have developed a FM to CUI transfor-
mation that is used to generate the configuration UI.

4. Executing “Variability Aware” Transformations: we have finally devel-
oped transformation rules that take into account variability rules (that we
will call later variability rules) related to the idea of [25]. The variability rules
allow for a smarter management of FM in transformations. Secondly, these
transformations should also support, with some default heuristics, elements
that have no configuration.

In order to illustrate the process above let’s introduce a simple application
example (Fig. 4). We have realized this application model with our application
modeling tool AME [16,17]. The application3 proposes to search actors that play
in a film, whose name is given by the user; then the user is able to select one
actor to see more detailed information (birth date, photos, etc.). This simple

2 External features refer to features coming from another partial configuration.
3 This example is supported by the Neo4J tutorial: Movie DB, www.neo4j.com.

www.neo4j.com

Model Transformation Configuration 397

Fig. 4. Model of the application realized with our modeling tool AME [16,17].

application is composed by two interaction flow states: one for searching by film
and displaying the list of actors and one for displaying information about the
selected actor.

In this example, the UI designer wants to focus on a specific element to test
and enhance with end-users: test the most appropriated way to select the actor4.
Thus, the designer could propose several variations for the actor selection. The
actor selection is supported by different types of lists as depicted by the CUI
metamodel (tile list, radio-button, etc.) and the information that this list should
convey (actors photo, name, etc.).

The rapid prototyping configuration occurs in the transformation between
IFM, Domain and CUI Models (Fig. 3). This configuration stands on the com-
bination of two FMs (as described in step 2). Firstly, the “CUI transformation
FM” that depicts the variability of the widgets to be generated (see Fig. 5 upper
part CUI decomposition). Secondly, the “Mapping FM” (mapping between IFM
and domain) which depicts the configuration of the information conveyed by the
list of actors (see Fig. 5 right frame Mapping FM). We also added a constraint: to
be efficient a tile list requires to show some pictures (Tile List implies picture).

As a summary, the FMs of the Fig. 5 correspond to the UI designer specific
viewpoint when he/she starts to configure the actors selection.

4 Implementation

In the following section we will illustrate the process described in Sect. 3.2. As
such we introduce the management of design and feature models and the selection
of the part of FM from which we will derive (generate) the partial configura-
tion. Finally, we introduce the transformation rules tuned for supporting partial
configuration.
4 Here, we focus on a widget but other factors are to be adjusted by the interface

designer like style, layout, etc.

398 J.-S. Sottet et al.

Fig. 5. CUI Transformation and Mapping IFM-Domain FM for excerpt List configu-
ration.

4.1 Feature Models: Selection and Reconciliation

The selection of the part to be configured is done through the design models. On
such models the designer is able to select the critical part of the UI. For instance,
it can be a crucial part of the application or a problematic situation (e.g., a
particularly long interaction with many steps, a page with many information to
fill in, etc.). In our simple example, the “ActorList” selection state, related to
the concept it manipulates, is central to the application: it is the main entry
point for the users.

Once the part of the input design model is selected, the relation with the
FM still has to be found. The model transformation gives us a first link to
the target metamodel elements. In fact, the transformation is linking elements
from the input models (previously selected in the IFM and Domain models) to
elements from the target metamodel. Through the transformation scope (e.g.,
CUI List) we are able to scope the variability of the target metamodel5. The
IFM states “selection” are transformed into various types of lists. As a result we
have selected the portion of CUI transformation FM corresponding to List. We
have to do the same for the domain concept mapped to the “selection” state:
as shown on Fig. 4 the selection state actor list is mapping to the attributes of
concept actor name and picture. The selection can be implemented using the
slicing operator defined in Familiar [2].

Once the FM have been selected and rightly scoped (i.e., we obtained FM
portions) we have to aggregate them together. We can use the insert operator
of Familiar using the following Familiar [2] expression see Listing 1.1.

Listing 1.1. Familiar insertion operator for building complete partial configuration.
fml> insert MappingIFMDomain into CUITransformation . CUIList with mand

4.2 Generation of the Configuration UI

Once the aggregated FM is produced for the specific point that needs to be
configured, it is necessary to build a configuration interface. As the FM are
selected and composed on demand, we should significantly improve the produc-
tion time of it by using UI automatic generation. Indeed, this kind of UI can be

5 We designed the transformation FMs in accordance to the transformations them-
selves.

Model Transformation Configuration 399

automatically generated thanks to simple heuristics, see for instance [6,24]. We
implement some of these heuristics in order to produce from a FM a configura-
tion CUI. For instance in Listing 1.2 we generate a label and a check-box (Input
of type ‘checkox’) for each optional feature (using the isInOptionalGroup()). In
the same idea, mandatory features are just shown with a label (no user action is
required). For the groups (XOR, OR, AND), we generate specific elements: XOR
are decomposed into a drop-down list where only one feature can be selected,
OR as a checkbox group. Finally, for each level of the FM hierarchy we generate
a container (panel or a tab) that would help separating the features.

Listing 1.2. Configuration rule for optional feature.
rule FeatureOptionalToCheckBox {

from
source : MM ! Feature (source . isInOptionalGroup ())

to
target : MM2 ! Input (

id<− ’ checkbox_ ’+source . id ,
type <− ’ checkbox ’ ,
content <− source . name) ,

t2 : MM2 ! Label (
content <− source . name ,
” for ” <− target ,
id <− ’ checkbox - label_ ’+source . id)

}

As such, we have generated a configuration (see Fig. 6) for the partial aggre-
gated FMs of Fig. 5. We have thus generated a drop-down list for the selection
of list type, a group of check-boxes for list options (filtered, indexed) and finally
another group of check-boxes for each mapped concept (name and picture).

Fig. 6. Configuration Interface for a given State (here “ActorList”).

The configuration UI is filling a configuration model conforms to a configura-
tion metamodel (a generic configuration metamodel dedicated to our UI design
process). It sets for the selected interaction state - IFM model - (e.g., ActorList)
the value of “WidgetType” to be targeted and the potential options (for a list:
filtered, indexed, etc.).

4.3 Transformations

The implementation of our approach relies on an existing system that derives a
UI from IFM and domain models using successive model transformations [28].

400 J.-S. Sottet et al.

This initial system was not taking into account the configuration of the vari-
ability. We added the possibility of configuring the system using a specific UI
dedicated to specific configurations.

In addition, as mentioned in the Sect. 3.2, we should not freeze the UI gen-
eration until a complete configuration is provided: we rely on partial configu-
ration. As a result, we have kept our initial tool behavior: it should generate
an executable UI even if no explicit configuration is provided for all elements.
A default transformation (see Listing 1.3) is executed if it has no configuration
(i.getConfiguration.oclIsUndefined()): it will, by default, transform a selection
state into a “ListView”. The “getConfiguration” helper uses the explicit link
between the input models (IFM/Domain) and the configuration model. It is
based on a reference of an IFM state previously selected (see Fig. 6 where the
reference to the IFM state model is given - State ActorList).

Listing 1.3. Excerpt of the default transformation used if no configuration is defined.
rule selectionListViewDefault extends widgetEvents {

from

i : SC ! SelectionState (i . getConfiguration . oclIsUndefined ())
to

o : CUI ! ListView (
name <− i . name ,
id <− i . name . regexReplaceAll (’ ’ , ’ ’) ,
widgets <− i . domainElements−>select (e | e . Type = #Image)−>collect (e | thisModule .

↪→image (e))
)

}

We modified our initial tool by adding the configuration as a parameter of
the transformation. This has no impact on the other transformations allowing
us to reuse the rest of the transformation chain up to the application generation:
CUI to ISM and ISM to Code. For each type of widget to be generated a rule is
produced (see the Listing 1.4 for a configuration of a tile list). Each particular
attribute of the widget (i.e., indexed and filtered) is also dependent on the con-
figuration thus introducing additional conditional expressions (ListFilters and
ListDividers conditions in Listing 1.4).

Listing 1.4. Excerpt of Selection to Tile List in CUI transformation including config-
uration helpers.
helper context OclAny def : hasConfig (config : S t r ing) : Boolean = i f (self .

↪→getConfiguration . oclIsUndefined ())
then

false
else

self . getConfiguration . WidgetName=config
endif ;
. . .

rule selectionTileList extends widgetEvents {
from

i : SC ! SelectionState (i . hasConfig (’ T i l e L i s t ’))
using {

conf : Configuration ! Configuration = i . getConfiguration ;
}
to

o : CUI ! TileList (
name <− i . name ,
id <− i . name . regexReplaceAll (’ ’ , ’ ’) ,
icons <− i . domainElements−>select (e | e . Type = #Image)−>collect (e | thisModule .

↪→image (e)) ,
Listfilters <− i f (conf . filtered) then filter else OclUndefined endif ,
listDivider <− i f (conf . indexed) then divider else OclUndefined endif

) ,
filter : CUI ! Filter (

Model Transformation Configuration 401

filterRevealedList <− false) ,
divider : CUI ! Divider (

autodivider <− true)
}

4.4 Example of Product Configuration

In order to perform a configuration, the designer uses the interface provided in
Fig. 6. He/she first selects the input state model element (e.g., selection state
“ActorList”) and the type of widget (e.g., among the type of lists) using the
drop-down menu. In addition he/she can select/de-select the domain elements
manipulated by this state (configuration of the mapping FM), for instance
removing/adding the Actor name and Actor picture that could be displayed
by the list. If the selected type of list is “Tile List”, it needed an attribute of
type image (e.g., the actor picture). As a result, the actor picture will be selected
by default and not de-selectable.

Once the designer has finished and saves the configuration (i.e., as a con-
figuration model), he/she can choose to launch the generation process. The
transformation chain will generate the configured UI part within the rest of the
application. End-users are able to evaluate the configured part inside the whole
application interaction process. This task has to be repeated for each identified
configurations. Figure 7 shows the result of two UIs generated from two different
list configurations. A video summarizing the edition of models and the realiza-
tion of configurations, including the automatic generation of the prototypes, is
available at http://youtu.be/78t11o0jatU.

Fig. 7. At left: List View configuration for actor selection displaying actor names. At
right: Tile List configuration with actor images.

Once a convincing configuration is positively evaluated by the end-users, it
is stored to be used for the final product. The final product configuration should
be done by composing all the relevant configurations, using for instance the
approach by [23].

http://youtu.be/78t11o0jatU

402 J.-S. Sottet et al.

5 Conclusions and Perspectives

We have considered in this article the issue related to UI variability. UI variability
has numerous facets (e.g., graphical design, development, usability, etc.) due to
the diversity of stakeholder profiles (including end-users). Moreover, in UI design,
one encounters frequently the difficulty to align the products with fuzzily defined
user requirements. This complexity can lead to an inefficient UI design process,
which has an impact on the UI design costs.

Therefore, we proposed an approach to manage UI variability based on MDE
and SPL, integrating SPL management into our current MDE UI design process.
Whereas traditional approaches focus on the elicitation of product line from
FMs only, we rather claim that FMs are supporting the design of a product line
completing the existing design choices (i.e., the one made by expert stakeholders
using their design models). In our approach, UI design stakeholders can express
the variability on the models, mappings and transformations by defining multiple
FMs related to each of these assets.

In order to build a viable product, the stakeholders have to confront their
viewpoints when configuring products. The proposed approach is based on
iterative-steps and partial configurations that can be refined by all stakehold-
ers including the end-users. As a result, we have worked on the selection and
aggregation of FM subsets in order to provide a unified frame for building a par-
tial configuration. Then, in order to support such dynamic definition of partial
configuration, we have to automatically derive a configuration UI based on the
sliced and aggregated FMs.

Partial configurations are used to parameterize the transformations: it speci-
fies some design choices. Default transformation heuristics are then used to com-
plete the partial configuration. A partial configuration should be independent
from other partial configurations (i.e., independent from external constraints)
but we should derive all the implications (i.e., required or disabled features) of
the current partial configuration in order to generate a proper product.

More particularly, in the context of rapid prototyping, the UI designer can
focus on a specific point, using partial configurations and test it with end-users.
We implemented this approach in our existing UI model transformations which
are parameterized by partial configurations and based on heuristics to generate
default UI elements for the features that are not configured.

As future work, we have to further explore the merging of partial configura-
tions in order to produce a final product configuration according (e.g., [23]) to
the global product constraints. When trying to solve the global constraints from
each individual partial configurations, we can reach a point where the product
expected by the end-users enforces some of theses constraints. Thus, we will
have to provide some collaborative environment to actually help in reaching
consensus and maybe make compromises amongst the partial configurations. As
such, we plan to further exploit our collaborative infrastructure [15] for partial
configurations reconciliation.

Finally, we discovered that the variability is manifold and multi-dimensional
in the design of UIs and that FMs are of several types. We think that building

Model Transformation Configuration 403

a taxonomy of these different FM could help us in understanding more precisely
UI variability and could lead us to a better reuse of variability assets across
projects and domains.

Acknowledgements. This work has been supported by the FNR CORE Project
MoDEL C12/IS/3977071 and AFR grant agreement 7859308.

References

1. Acher, M., Collet, P., Lahire, P., France, R.B.: Separation of concerns in feature
modeling: support and applications. In: Proceedings of the 11th Conference on
Aspect-oriented Software Development (2012)

2. Acher, M., Collet, P., Lahire, P., France, R.B.: Familiar: a domain-specific language
for large scale management of feature models. Sci. Comput. Program. 78(6), 657–
681 (2013)

3. Acher, M., Lahire, P., Moisan, S., Rigault, J.P.: Tackling high variability in video
surveillance systems through a model transformation approach. In: MISE 2009.
ICSE Workshop, pp. 44–49. IEEE (2009)

4. Batory, D., Azanza, M., Saraiva, J.: The objects and arrows of computational
design. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MOD-
ELS 2008. LNCS, vol. 5301, pp. 1–20. Springer, Heidelberg (2008)

5. Benavides, D., Segura, S., Ruiz-Cortés, A.: Automated analysis of feature models
20 years later: a literature review. Inf. Syst. 35(6), 615–636 (2010)

6. Boucher, Q., Perrouin, G., Heymans, P.: Deriving configuration interfaces from fea-
ture models: A vision paper. In: Proceedings of the Sixth International Workshop
on Variability Modeling of Software-Intensive Systems, pp. 37–44. ACM (2012)

7. Brummermann, H., Keunecke, M., Schmid, K.: Variability issues in the evolution of
information system ecosystems. In: Proceedings of the 5th Workshop on Variability
Modeling of Software-Intensive Systems (2011)

8. Bühne, S., Lauenroth, K., Pohl, K.: Why is it not sufficient to model require-
ments variability with feature models. In: Workshop on Automotive Requirements
Engineering (AURE04), at RE04, Japan (2004)

9. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt,
J.: A unifying reference framework for multi-target user interfaces. Interact. Com-
put. 15(3), 289–308 (2003)

10. Clements, P., Northrop, L.: Software Product Lines. Addison-Wesley Boston,
Boston (2002)

11. Czarnecki, K., Antkiewicz, M., Kim, C.H.P., Lau, S., Pietroszek, K.: Model-driven
software product lines. In: Companion to the 20th Annual ACM SIGPLAN Con-
ference on Object-Oriented Programming, Systems, Languages, and Applications,
pp. 126–127. ACM (2005)

12. Czarnecki, K., Helsen, S., Eisenecker, U.: Staged configuration through specializa-
tion and multilevel configuration of feature models. Softw. Process Improv. Pract.
10(2), 143–169 (2005)

13. DIS, I.: 9241–210: 2010. Ergonomics of human system interaction-part 210: Human-
centred design for interactive systems. International Standardization Organization
(ISO). Switzerland (2009)

14. Gabillon, Y., Biri, N., Otjacques, B.: Designing multi-context uis by software prod-
uct line approach. In: ICHCI 2013 (2013)

404 J.-S. Sottet et al.

15. Garc̀ıa Frey, A., Sottet, J.S., Vagner, A.: A multi-viewpoint approach to support
collaborative user interface generation. In: 19th IEEE International Conference on
Computer Supported Cooperative Work in Design CSCWD (2015)

16. Garćıa Frey, A., Sottet, J.S., Vagner, A.: Ame: an adaptive modelling environ-
ment as a collaborative modelling tool. In: Proceedings of the 2014 ACM SIGCHI
Symposium on Engineering Interactive Computing Systems, pp. 189–192. ACM
(2014)

17. Garćıa Frey, A., Sottet, J.S., Vagner, A.: Towards a multi-stakehoder engineering
approach with adaptive modelling environments. In: Proceedings of the 2014 ACM
SIGCHI Symposium on Engineering Interactive Computing Systems, pp. 33–38.
ACM (2014)

18. Mannion, M., Savolainen, J., Asikainen, T.: Viewpoint-oriented variability model-
ing. In: COMPSAC 2009 (2009)

19. Martinez, J., Lopez, C., Ulacia, E., del Hierro, M.: Towards a model-driven product
line for web systems. In: 5th Model-Driven Web Engineering Workshop MDWE
2009 (2009)

20. OMG: IFML- interaction flow modeling language, March 2013
21. Pleuss, A., Hauptmann, B., Dhungana, D., Botterweck, G.: User interface engi-

neering for software product lines: the dilemma between automation and usability.
In: EICS, pp. 25–34. ACM (2012)

22. Pohl, K., Böckle, G., Van Der Linden, F.: Software Product Line Engineering:
Foundations, Principles, and Techniques. Springer, Heidelberg (2005)

23. Rosenmüller, M., Siegmund, N.: Automating the configuration of multi software
product lines. In: VaMoS, pp. 123–130 (2010)

24. Schlee, M., Vanderdonckt, J.: Generative programming of graphical user interfaces.
In: Proceedings of the Working Conference on Advanced Visual Interfaces, pp. 403–
406. ACM (2004)

25. Sijtema, M.: Introducing variability rules in atl for managing variability in mde-
based product lines. In: Proceedings of MtATL 2010, pp. 39–49 (2010)

26. Sottet, J.S., Calvary, G., Coutaz, J., Favre, J.M.: A model-driven engineering app-
roach for the usability of plastic user interfaces. In: Gulliksen, Jan, Harning, Morton
Borup, van der Veer, Gerrit C., Wesson, Janet (eds.) EIS 2007. LNCS, vol. 4940,
pp. 140–157. Springer, Heidelberg (2008)

27. Sottet, J.S., Vagner, A.: Genius: generating usable user interfaces (2013). arXiv
preprint arXiv:1310.1758

28. Sottet, J.S., Vagner, A.: Defining domain specific transformations in human-
computer interfaces development. In: 2nd International Conference on Model-
Driven Engineering and Software Developement (2014)

29. White, J., Dougherty, B., Schmidt, D.C., Benavides, D.: Automated reasoning
for multi-step feature model configuration problems. In: Proceedings of the 13th
International Software Product Line Conference (2009)

http://arxiv.org/abs/1310.1758

	Model Transformation Configuration and Variability Management for User Interface Design
	1 Introduction
	2 Related Work
	2.1 Feature Modelling
	2.2 SPL Configuration
	2.3 Model-Driven User Interfaces Variability

	3 UI-SPL Approach
	3.1 Multi-FM Approach
	3.2 Configuration: The Specific Case of Rapid Prototyping

	4 Implementation
	4.1 Feature Models: Selection and Reconciliation
	4.2 Generation of the Configuration UI
	4.3 Transformations
	4.4 Example of Product Configuration

	5 Conclusions and Perspectives
	References

