
Computability Assurance for UML Template Binding

José Farinha1(✉) and Pedro Ramos2

1 ISTAR, ISCTE-IUL Lisbon University Institute, Av. Forças Armadas, Lisbon, Portugal
jose.farinha@iscte.pt

2 IT-IUL, ISCTE-IUL Lisbon University Institute, Av. Forças Armadas, Lisbon, Portugal
pedro.ramos@iscte.pt

Abstract. Binding to a template in UML encompasses the substitution of that
template’s parameters by compatible domain elements. However, such compat‐
ibility is scarcely verified by a minimal set of rules in the UML metamodel. As a
consequence, binding to a template can result in badly-formed models. Such
option in the design of UML was certainly intentional, since more stringent rules
could prevent the development of richer semantics for the Bind relationship. But,
while such semantics are not in place, problems may arise in several parts of a
model just because of a bad, yet valid, template parameter substitution. This paper
proposes a new set of validation rules for UML templates, introducing the
requirement of Functional Conformance. Functional Conformance guarantees
well-formedness and computability for elements bound to a template, consistently
with the default semantics of the Bind relationship. It is formulated as OCL
constraints on top of the OMG’s UML metamodel.

Keywords: UML · Templates · Verification · Computability

1 Introduction

Through the concept of Template, UML allows the definition of generic solutions to
recurring problems. An UML template is a model element embodying a patterned solu‐
tion that can be reproduced within any domain model where the addressed problem is
observed. This is achieved by binding a model element of that domain to the template,
through a Bind relationship. In order to have a template reproduction contextualized to
the target (domain) model, a template is a parameterized element. A template parameter
marks an element participating in the template’s specification that, in a reproduction of
that template, must be substituted by an actual element in the target model. Only when
all of the template’s parameters are substituted, it becomes an actual, fully integrated
solution in the target model.

Aiming at getting consistent specifications out of a template reproduction, UML
enforces a set of constraints to template parameter substitutions. One such constraint
imposes that a substitute element must be of the same metaclass as the parametered
element: an attribute must be replaced by an attribute, an operation by an operation, etc.
Another constraint ensures that if a parameter exposes a typed element, its substitute
must have a type that conforms to that parametered element’s type.

© Springer International Publishing Switzerland 2015
P. Desfray et al. (Eds.): MODELSWARD 2015, CCIS 580, pp. 190–212, 2015.
DOI: 10.1007/978-3-319-27869-8_11



Yet, the set of validations falls short in guaranteeing the well-formedness of the
element resulting from the template. For instance, UML allows an operation Op1 be
substituted by an operation Op2 whose signature is not compatible with the former’s. If
Op1 is substituted by Op2, every call to Op1 in the template’s code will be reproduced as
a call to Op2…with a set of arguments aligned to Op1’s signature, which makes calls to
Op2 badly-formed. Also, UML allows the specification of a set of substitutions that are not
mutually consistent. For instance, having a class and one of its attributes exposed as param‐
eters in a template, UML allows the former being replaced by a class C’ and the latter by
an attribute that is not a member of C’. Merely considering the semantics and constraints
that UML declares for the concept of template, according to version 2.1.4 of the standard
[6], it seems the language greatly relies on the modeler’s skills and prudence.

In spite of the permissive set of validations, a bad substitution will generally be
prevented by some well-formedness rule, associated to some element within the bound
element that will try to use the bad substitute. In the example above, the substitution of Op1
by Op2 will generate errors raising from the calls to Op2, which will actually prevent the
substitution. However, the error that will be reported will be detuned from the real source
of the problem. The problem will be reported somewhat like “Arguments to Op2 do not
match that operation’s signature”. But the cause of the problem is the substitution of Op1
by Op2. Hence, although UML is not really trusting in the prudence of the developer, it
certainly trusts in his/her ability to diagnose.

This paper proposes an additional set of constraints for the concept of Template, aiming
at removing the aforementioned disadvantages. The set of constraints was designed with
the following purposes: (1) Guaranteeing the well-formedness and computability of any
element resulting from the application of a template; (2) Reporting problems resulting from
incorrect usages of a template to their real causes, i.e., to inadequate bindings and/or
substitutions.

In (1), ‘well-formedness’ means that none of the components of an element resulting
from the template will violate any constraint imposed by the UML metamodel. ‘Comput‐
ability’ means that every expression within the template or within the bound element
can be processed and evaluated to a value (including Null), i.e., the expression success‐
fully compiles in the scope of the model it belongs to. For simplicity, in this text, the
term ‘computability’ will be used meaning ‘well-formedness’ as well.

To accomplish (2), the proposed constraints establish conformance criteria between
every parametered element and its substitute. The way a parametered element is used
by the template does not participate in the criteria. In that way, any error may be reported
exclusively in terms of the adequacy of a substitute to a parameter, in the context of a
specific binding to the template.

The constraints put forth in this text formulate a concept named Functional Conform‐
ance, a term that aims at denoting the equivalence between two elements, from a third-
party, client perspective. An element (the substitute) conforms functionally to another
element (the parameter) if its characteristics and scope allow it being used instead of the
latter. Functional Conformance is presented through its definition and several illustrating
examples, which should provide an intuitive perception of its effectiveness as a guar‐
antee of computability. A formal demonstration of that effectiveness is postponed to a
future paper.

Computability Assurance for UML Template Binding 191



The structure of the paper is as follows: Sect. 2 provides a brief introduction to the
concept of Template in UML; Sect. 3 points out some problems in assuring that elements
resulting from templates are well-formed and computable; Sect. 4 proposes the concept
of Functional Conformance to ensure computability; Sect. 5 presents related work;
Sect. 6 draws some conclusions on an empirical evaluation of functional conformance
and outlines some prospective benefits of the concept; the appendix includes a set of
OCL constraints that assesses functional conformance.

2 An Introduction to UML Templates

In UML, a template is a parameterized model element that can be replicated and have
its replicas contextualized to the models they are put into. Model elements of several
kinds may be qualified as templates. For instance, classes, packages and operations are
allowed to be declared as templates and, therefore, be reproduced as concrete classes,
packages and operations, respectively.

The complete set of model element types that can be declared as templates – called
templateable elements – is comprehended by the following metaclasses: Classifier,
Package, Operation and StringExpression. Classifier encompasses all kinds of element
that may have instances: Class, Datatype, Association, Use Case, Activity, etc. Package
templates should be used when a model fragment encompassing two or more classifiers
is meant to form a single template and be replicated as a whole. Operation templates
lack of graphical notation but are supported by the UML metamodel. Finally, String‐
Expression templates are used to derive concrete element names or literal strings by
concatenating the values of a template’s parameters. StringExpression templates do not
pose computability problems; therefore, they will not be referred from now on.

In this paper, the term “target” is used to refer to a model, package or class that gives
context to a replica of a template.

Figure 1 shows a class and a package template. A template element is recognized
graphically through the dashed rectangle on the top-right corner, whose purpose is to
declare the template’s parameters.

Fig. 1. Examples of class and package templates.

192 J. Farinha and P. Ramos



Template parameters declare some of the elements participating in the specification
of the template as parametered. Such elements are said exposed as parameters. When
applying a template, its parametered elements must be replaced by elements of the target
model in order to obtain a fully functional and contextualized reproduction of the
template. If any of the parametered elements is not replaced, the reproduction of the
template is also a template – this allows the incremental definition of templates.

In this text, for clarity reasons, parametered element will sometimes be referred
simply as parameter. However, it should be noted this is use of “parameter” in the broad
sense, since there is a strict difference in UML between the parameter and the element
it exposes: the parameter is a “mark” superimposed to the element, which qualifies it as
replaceable when applying the template, and it can supply a default in case such element
is not explicitly replaced.

The UML concept for assigning a target element to a template parameter is Substi‐
tution. It is said that the target element substitutes the parameter. The former is often
called actual parameter and the latter formal parameter. In this text, for simplicity, an
actual parameter will be referred as the substitute.

In Fig. 1, class Array is a template with two parameters, T e k. T’s kind is Class,
meaning it must be substituted by a class. k’s kind is IntegerExpression and therefore
must be substituted by such expressions, including one with a plain literal value. The
package StockManagement is a template with three parameters – Warehouse, Product,
and Stock – all of them exposing classes. When applied to a target package, its parameters
require picking three target classes as substitutes. These substituting classes will receive
the specifications of their respective parametered classes, and any relationships between
these.

Both the name and the kind of a parameter are determined by the element the param‐
eter exposes. In the example in Fig. 1, parameter T exposes a class named ‘T’ (not shown
in the figure) and parameter k exposes an integer expression named ‘k’. Parameters adopt
the names of the elements they expose.

Any model element accessible from a template may be exposed as a parameter. For
instance, in Fig. 2 AlphabeticList is a class-template with one parameter that exposes
another class. The dashed line labeled “exposes” is merely illustrative; there is no
graphical notation in UML that links a parameter to the element it exposes.

Fig. 2. Definition of a template with a class-parameter.

A template may be used to specify elements from scratch or to add specifications to
elements having specifications of their own. For instance, a class-template may be used to

Computability Assurance for UML Template Binding 193



create a class as a replica of itself, as well as to add all its members (features, constraints,
etc.) to an existing class. The application of a template is specified through a Bind relation‐
ship. A Binding is a directed relationship from a bound element to a template. By means
of the Bind relationship, everything specified for the template is also valid for the bound
element.

Figure 3 shows a binding to the AlphabeticList template, by class Alphabeti‐
cList<Person>, which is said anonymous. In that binding, the template parameter (Item)
is substituted by class Person. The UML notation for a substitution is textual, in the
form ‘parameter –> substitute’, placed next to the graphical representation of the
binding. The figure also shows (on the right) the semantics of that binding: class Alpha‐
beticList<Person> receives a reproduction of AlphabeticList’s specification (of all its
features, behaviors, constraints, etc.) with all references to Item replaced by references
to Person. It’s worth noting that, among the features inherited by Alphabeti‐
cList<Person>, this class receives a copy of the association-end connected to Item; such
copy will connect to Person, since this class substitutes Item. Strictly, the association-
end is reproduced as a property and such property will not be part of any association.
Nevertheless, the association symbol linking to Person is shown for a question of clarity.

Fig. 3. A bind and its semantics, producing an anonymous class.

Figure 4 shows another bind to the same template, with a bound class that is not
anonymous, but named Glossary. Strictly according to the semantics of UML for the
Bind relationship, the binding of Glossary to AlphabeticList is equivalent to the diagram
on the right of that figure.

Figure 5 shows a bound class with specifications of its own. In such cases, the bind
merges the specification of the template with the contents of the bound class.

The purpose of the AlphabeticList template is to maintain a list of items sorted
alphabetically. To perform such ordering, its operations use an attribute called Name in
class Item (the use of Name is not observable in the figure). Since the code of Alpha‐
beticList is copied to its bound classes, these will also use a Name attribute. Being Item
substituted by another class, Name must also exist in this class. If it doesn’t, the code of
the bound class will not be compilable. (Notice that class Item is not part of the template;

194 J. Farinha and P. Ramos



thus, Item’s contents will not be copied to the substituting class; this class must have a
Name attribute of its own.) The situation is exemplified in Fig. 6: since Document doesn’t
have a Name attribute (but one called ‘Title’, instead), every expression in the template
referring to Item::Name will not be computable once reproduced in class Bibliog‐
raphy. For instance, expressions ‘it.name’ and ‘iter.name’ will not be computable in
Bibliography.

Situations such as in Fig. 6 require flexibility regarding the attribute corresponding
to Name, in the substituting class. This is achieved exposing Name as another template
parameter. The definition of the template becomes as in Fig. 7.

Since the new parameter in Fig. 7 exposes an attribute, it must be substituted by an
attribute in the target model. For attribute-parameters, UML establishes also that the
type of the substitute must conform to the type of the parametered attribute. Thus, Name
must be substituted by an attribute whose type is String or a subtype of it.

Fig. 4. Another example of binding to a template.

Fig. 5. A bound class with contents of its own.

Computability Assurance for UML Template Binding 195



Note: Although the UML notation for a substitution is textual, in this paper, for clarity
reasons, sometimes it is shown graphically, draw as a dashed arrow (similar to a depend‐
ency) linking the parametered element to its substitute and labeled “substitution”.

= Semantics: 

Fig. 6. A bind that produces non-computable code.

Fig. 7. Definition of a template with a class parameter and an attribute parameter.

196 J. Farinha and P. Ramos



3 Some Limitations of UML Templates

Conformance of kind (class, attribute, package, etc.) and conformance of type (this for
typed elements) are the only restrictions that apply to the substitution of UML template
parameters. Consequently, not computable specifications such as the one previously
shown in Fig. 6 and the one in Fig. 8 are considered valid bindings by UML.

Fig. 8. A bind that produces non-computable code.

Since the referred situations lead to badly-formed elements or non-computable
expressions, some error will be reported. However, that error will not refer the binding,
nor the substitutions it contains, as the source of the problem. Instead, it will refer prob‐
lems within the bound element that are not immediately recognized as consequences of
an erroneous binding or substitution.

For instance, the problem with Fig. 6 is that template AlphabeticList is not applicable
to classes Bibliography and Document. An error message should report that. More
specifically, it could mention that it is because the substitution of Item by Document
cannot be done. Instead of that, the error that is raised by the UML metamodel is about
variables it and iter being unable to access an attribute called ‘Name’.

Similarly, the error raised in Fig. 8 will mention that variables it and iter can’t access
an attribute (Code), instead of the real cause: the incorrect substitution of the attribute
Name of Item by an attribute not pertaining to the substitute of Item (Person). The rule
that would signal correctly the problem would be: considering two parametered elements
Pchild and Pparent being both substituted in a binding, if Pchild belongs to Pparent then the
substitute of Pchild must belong to the substitute of Pparent. Such rule should be a constraint
to substitutions, but no such constraint exists in UML.

Similar problems will arise if a single-valued property is substituted by a multivalued
one, or if an operation is substituted by another with incompatible signature.

The examples given so far show that there are some reasonable constraints missing
in UML templates. Although not strictly necessary to prevent badly-formed elements
resulting from a template, their absence increases the risk of ill-specified binds and
causes a parallax problems in error-reporting. Next section proposes a set of constraints
that would remove these shortcomings of UML templates while ensuring the comput‐
ability of bound elements.

Computability Assurance for UML Template Binding 197



4 Functional Conformance

The concept of Functional Conformance between two model elements is used to express
that if one is used successfully by a template the other will also be used successfully in
a reproduction of that template, if used in the same circumstances and with the same
goals. Taking an example from a domain other than computer science, it can be said that
a piano is functionally conformant to a clavichord, for the purpose of playing a classical
piece of music. The piano may be used in today’s reproductions of a Mozart piece,
substituting the long ago used clavichord. Providing that it is used to play the keyboard
line of the piece (it won’t be functional to play the strings’ part), it will produce the same
results as the clavichord (or even better results). The analogy with template-based soft‐
ware development is: the parametered element in a template is the original “instrument”
to which its substitute is expected to be conformant.

In the scope of a particular binding, an element of the target space functionally
conforms to an element of the template space if it conforms to the former regarding type,
multiplicity, contents, and static nature (is static?), and also if it is visible from the bound
element. The following subsections define these requirements for conformance.

Note: In some figures of this paper conformance is shown graphically as a dashed
arrow, from the parametered element to its substitute, meaning that the latter conforms
to the former. This graphical representation uses the reversed direction of that of the
phrase “conforms to” for the sake of consistency with the direction of the UML notation
for substitution (parametered – > substitute).

4.1 Type Conformance

Type conformance applies to every typed element: properties, expressions, constants,
operation parameters, action pins, etc. This conformity criterion is already partially
enforced by UML, which states that the type of a substituting element must be the same
or a subtype of that of the parametered element. However, this UML rule is incomplete,
for two reasons: (1) UML only applies it to properties and value specifications (expres‐
sions and constants) (see constraints of TemplateParameterSubstitution and operation
isCompatibleTo(), in [6]); (2) this rule should be applied only if the type of the para‐
metered element is not substituted.

Full type conformance should be: (1) imposed on all typed elements; (2) formulated
considering two different scenarios:

• If parametered element eP has a type that is not substituted: element eS conforms in
type to eP if its type is the same or a subtype of eP’s. This is the original UML rule.

• If eP’s type is substituted: element eS conforms in type to eP if its type is the same or
a subtype of the substitute of eP’s type.

The second scenario is exemplified in Fig. 9.

198 J. Farinha and P. Ramos



Fig. 9. Type conformance when the type is substituted.

4.2 Multiplicity Conformance

UML imposes no constraints on template parameter substitution regarding the multi‐
plicity of the involved elements. We propose the criteria of multiplicity conformance.
This rule checks if two elements involved in a substitution are both single valued (upper
multiplicity = 1) or both multivalued (upper multiplicity > 1) and, for the second case,
both elements must have the same kind of ordering (ordered/not-ordered).

The single/multiple valued is important for computability because code that uses a
multivalued element does it through flow control structures and operations that act upon
collections of values (e.g.: foreach x in obj.feature, obj.feature.size(), etc.), while code
using a single-valued element accesses it directly. Therefore, a computable piece of code
that uses a single-valued element becomes non-computable if that element is replaced
by a multivalued one, and vice versa.

For multivalued elements, the ordered/not-ordered nature may also impact comput‐
ability. On ordered elements one can apply operations that assume an ordering of values,
such as the OCL operations first(), last(), and at().Calls to such operations will not
compute if the ordered element is replaced by a non-ordered one. Similarly, some oper‐
ations on non-ordered elements are not applicable to ordered ones, e.g. the OCL oper‐
ation intersection().

Strictly, computability would be compromised only if the code of the template
includes any of these operations depending on ordered/not-ordered. This aspect opens
the possibility for establishing two levels of conformity enforcement – say, strict and
flexible – a subject for future discussion.

It is also worth explaining that the reason why this conformance criteria doesn’t take
into account concrete values of multiplicity, other than 1 and *, is because it is considered
a matter of semantic equivalence, not a requisite for computability. Albeit a legitimate
concern, it is also postponed for future discussion.

Computability Assurance for UML Template Binding 199



4.3 Contents Conformance

This conformance criterion applies to template parameters that expose namespaces:
classes, associations, operations, packages, and all other sub constructs of Namespace
in the UML metamodel (see [6]). This rule is meant to certify that a substituting element
(e.g., a class) contains substituting members (e.g., attributes) to all the members of the
parametered element that the template uses. For instance, if a template has a parameter-
class and uses that class’ attributes a1 and a2 of, then every substitute of the class must
also have attributes a1 and a2 or some substitutes for these. For instance, recalling the
template shown in Fig. 2, the class substituting Item must have an attribute Name.

The definition of this criterion requires the definition of another concept: Implicit
Substitution. In the context of a bind, an element implicitly substitutes another if they
are homonymous, functionally conform and the namespace of the former substitutes the
namespace of the latter. In this definition, “homonymous” refers to having the same
proper name, i.e., the elements have the same identification within the corresponding
namespaces. For example, attributes Item::Name and Person::Name are (properly)
homonymous. The same is true between the operations Item::setName (String) and
Person::setName (String). But not between ::setName (String) and ::setName (String,
String), because in UML an operation is identified by its signature (name and parame‐
ters). If two properly homonymous elements eT and e� are also conformant in type,
multiplicity, etc. (note the recursive definition) and the namespace of eT is substituted
by the namespace of e�, then eT is substituted implicitly by e�. Notice that this definition
is assuming that, even if the bind under consideration doesn’t include an explicit substi‐
tution of eT by e�, such substitution will be made. For example, recalling Fig. 4, previous
statement implies that, even though the modeler doesn’t specify the substitution of
Item::Name by Concept::Name, such substitution is done. Thus, the concept of implicit
substitution is an assumption regarding the semantics of the Bind relationship, regarding
an aspect that UML’s official documentation is silent about. Such assumption certainly
deserves further discussion, yet postponed for another text. For the current purpose,
implicit substitutions are assumed, just on the basis that the automatic substitution of an
element by another with the same characteristics and name (or signature) is a reasonable
option.

Thus, Contents Conformance is defined as: in the context of a template binding,
namespace NS� conforms in contents to a namespace NST if every element in NST

referenced by the template is substituted, explicitly or implicitly, by elements in NS�.
This rule would detect problems such as the one previously shown in Fig. 6. The

substitution of Item by Document would be refused because those elements do not have
conforming contents, since Item::Name is neither substituted nor homonymous of any
attribute in Document (Fig. 10).

The contents conformance requirement assumes two particular forms:

• A corollary named Membership Conformance, preferable to the general rule in
certain, well-known situations;

• A specialisation applicable to operations, named Signature Conformance;

These more specific rules are analyzed in the following subsections.

200 J. Farinha and P. Ramos



Membership Conformance. Erroneous binds such has the one previously show in
Fig. 8 would be prevented by the contents conformance rule. In that figure, Person will
not be accepted as a substitute for Item because its contents don’t fully substitute those
of Item used by the template. Yet, the inadequacy of Person would be reported in a more
specific way rephrasing that violation of contents conformance as: the substitution of
Item by Person is not possible because one of Item’s attributes, Name, is not substituted
by an attribute of Person. Or the problem could be imputed to the substitution of Name
by Code: Code cannot substitute Name because its owning class does not substitute
Name’s owning class. This last report exemplifies the application of the corollary
Membership Conformance, defined as:

An element e� conforms in membership to an element eT if at least one of its name‐
spaces substitutes one of eT’s namespaces, either explicitly or implicitly.

Membership conformance is a sub-rule of (part of) contents conformance. It assesses
the adequacy of a namespace’s member instead of the adequacy of the namespace as a
whole.

In the definition, the use of the plural “namespaces” is because an element may be
inherited or imported and, consequently, be a member of several namespaces. Member‐
ship conformance is satisfied if the namespace substitution required by the rule occurs
for any of these multiple namespaces, a detail that is not so apparent in the general rule
(contents conformance). This is explained bellow.

Figure 11 shows a situation of membership conformance, involving inheritance.
Since Person inherits Name, this attribute is member of Entity and Person, its name‐
spaces. It is required that any of these classes substitutes Item in order to have member‐
ship conformance between Att and Name. It is so indeed (Person substitutes Item).

An element that is member of a template also acquires namespaces by means of bind
relationships. This is due to the fact that the semantics of the bind relationship includes
a generalization (see Fig. 4). Consequently, every element bound to a template becomes
namespace of any non-private member of that template. Figure 12 shows a situation
where membership conformance verifies, involving a bind. In that case, Aged::Date may
substitute Item::Att because that attribute is member of Person and this class substitutes
Item.

Fig. 10. A violation of contents conformance.

Computability Assurance for UML Template Binding 201



As a guideline to choose whether a problem should be reported by contents or by
membership conformance, it should be checked whether contents conformance doesn’t
hold due to a missing substitution or due to an incorrect substitution. For instance, in
Fig. 13 att may not be substituted by wage because that would lead to PersonList sorting
Person objects by wage, while not every object of Person has a wage attribute. This
problem will be detected by the contents conformance requirement (the contents of
Person do not fully substitute those of Item) as well as by membership conformance
(none of the namespaces of att is substituted by a namespace of wage). This problem
would be more appropriately reported as a membership problem: wage cannot substitute
att because the class it belongs to (Employee) doesn’t substitute the class Att belongs to
(Item). In this situation contents conformance doesn’t hold due to a bad substitution.

When contents conformance is not observed due to a missing substitution, explicit
or implicit, of members of the parameter-namespace, then the problem is be better
reported by the general rule (contents conformance). For instance, Fig. 14 would raise
an error message such as: Person cannot substitute Item because their contents do not
conform. The problem could be further diagnosed, more specifically: att is not substi‐
tuted. But this is not a violation of membership conformance. Such corollary is not even
evaluable in the situation, since there is no prospective substitution for att.

Fig. 11. Membership conformance and inheritance.

Fig. 12. Membership conformance and binding.

202 J. Farinha and P. Ramos



Fig. 14. A situation where reporting by contents conformance is preferable to membership
conformance.

Signature Conformance. In UML, an operation is a special case of namespace. An
operation’s parameters are the members of that namespace. Thus, contents conformance
converts to signature conformance when it comes to operations. Signature conformance
checking is intended to assure that, when an operation fooA (pA1, …) is substituted by
fooB (pB1, …), the computability of calls ‘fooA (argA1, …, argAn)’ in a template is
preserved when such calls are replaced by ‘fooB (argB1, …, argBn)’ in the bound element.

Since UML doesn’t consider the concept of substitution between operation param‐
eters, only implicit substitutions occur between elements of such kind. When
fooA (pA1, …) is substituted by fooB (pB1, …), pA1 is implicitly substituted by pB1.

The definition of implicit substitution also assumes a particular form, derived from
the way operation calls in UML identify parameters when passing arguments: by their
position in the signature of the operation, taking into account the direction of the param‐
eters. I.e., when substituting operation OPp by OPs, the ith parameter in the list of
parameters of OPp having direction in or inout will be substituted by the ith parameter
of the same list of OPs. The same applies to the ordered list of out, inout and return
parameters, according to the semantics of CallAction ([6], pp. 250–251). Therefore, to
ensure computability of calls to OPs, the ith in/inout parameter of OPs must be func‐
tionally conformant to the ith in/inout parameter of OPp. The same applies to out/inout/
return parameters.

Fig. 13. A situation where reporting by membership conformance is better than by contents
conformance.

Computability Assurance for UML Template Binding 203



Since operation parameters are elements with type and multiplicity, conformance
regarding those aspects is required. However, due to the contravariant nature of in, out
and inout parameters regarding inheritance (return parameters are covariant), type
conformance must be redefined for operation parameters.

Contravariance means that if class C is specialized by C’, then operation Op (C) is
generalized by Op’ (C’). I.e., while instances of C may be replaced by instances of C’,
calls to Op (C) may not be replaced by calls to Op’ (C’), but rather the other way around:
calls to Op’ (C’) may be replaced by calls to Op (C). Refer to Sect. 2.6 of [1], for a
thorough discussion on covariance and contravariance.

Hence, type conformance between in, out or inout operation parameters is defined
as follows. If pp is an in, out or inout parameter of an operation used by a template and
ps is a prospective substitute for pp, ps conforms in type with pp if:

• In case pp’s type is not substituted (in the binding under consideration), ps’ type is
pp’s type or a supertype of it;

• In case pp’s type is substituted, ps’ type must be the substitute of pp’s type or a
supertype of it.

This rule is the opposite of the general rule of type conformance, previously presented
in Sect. 4.1 and applying all other typed elements in UML.

Additionally, conforming operations must have the same number of parameters.
Indeed, while for other types of namespaces having more members than those that will
participate in the substitution doesn’t spoil computability, that isn’t true for operations.
In Fig. 15, attribute a3 in class Cs does not affect the conformance of Cs to Cp. On the
contrary, parameter p3 makes OPs non-conformant to OPp.

Fig. 15. The number of operation parameters is relevant for functional conformance.

Figure 16 shows examples of signature conformance. Only two operations of
Customer are prospective substitutes to the operation search(): find() and selectBy‐
Name(). Since UML considers the return of an operation as a parameter (with return
direction), it is part of the operation’s signature. That’s why operation setAddress() is
not signature-conformant to search().

204 J. Farinha and P. Ramos



Fig. 16. Signature conformance, examples.

4.4 Staticity Conformance

Since static features are executed by the classifier and non-static by instances of the
classifier, staticity clearly affects computability. Therefore, functional conformance
between two features requires they are both static or both non-static.

4.5 Visibility Requirement

Finally, there is a requirement relevant to computability that doesn’t involve the pair
substitute/substituted, but rather the pair substitute/bound element. That’s why it is not
called “conformance”.

An element may substitute a parameter only if that element is visible from the bound
element.

This requirement is easily understood since the substitutions are done in the code of
the bound element: since the bound element will refer to substitute elements, it needs
visibility of such elements.

4.6 Computability Assurance

An element bound to a template is computable if the template itself is computable and
if, for every parameter substitution, the substitute functionally conforms to the parame‐
tered element.

A formal demonstration is required to prove such statement. This can be done by
demonstrating that every computable expression and statement in a template will be
reproduced as a computable element if all substitutions verify the criteria for conform‐
ance. For lack of space, such demonstration will be provided in a future paper. Appealing
to the reader’s intuition, the following explanation is provided:

According to the semantics of the bind relationship, the template element will be
equal to the bound element except at the points it references a substituted parameter.
At the reproduction of such points, the bound element will be referencing the substi‐
tute. Let’s call those “points of difference”. If the template is computable, only at the

Computability Assurance for UML Template Binding 205



points of difference the bound element could be non-computable. If every substitute
functionally conforms to its parametered element, that substitute will:

• Be successfully used in contexts that are reproductions of its parameter’s contexts;
• Respond successfully to services that are reproductions of its parameter’s services;
• Yield results that are reproductions of its parameter’s results.

Therefore, if at the points of difference the substitutes are doing well, the bound element
is computable at those points and, consequently, fully computable.

5 Related Work

Research aiming at improving the UML Template model is scarce. References [2, 7] are
the pieces of work most affine to the one presented in this paper.

Like current paper, [2] also propose a set of well-formedness rules, additional to that
of standard UML, aiming at strengthen the notion of template as a means to enforce the
correctness of elements bound to a template. [2] is not very specific on the level and/or
kind of correctness that is ensured by the proposed set of constraints. If it were to ensure
computability, it overlooks some important aspects, such as multiplicity, staticity, and
visibility. There are also minor inaccuracies, probably by lapse (for instance, the impo‐
sition that a parametered element must be owned by the template).

Reference [7] proposes the concept of Aspectual Templates (AT) to enforce struc‐
tural conformance between a template and the model it is applied to. [7] states that ATs
have only one parameter, which is a model, and defines a set of constraints to enforce
structural conformance between the parameter and its substitute. Generally speaking,
structural conformance has the same goal as functional conformance in current paper.
But our concept is more complete and comprehensive. More complete because ATs omit
some UML concepts and, by doing so, become too strict on the one hand and too indul‐
gent on the other hand. For instance, by omitting inheritance ATs forbid substitutions
by an inherited feature (too strict). By omitting multiplicity ATs allow a multivalued
property be substituted by a single-valued one (too indulgent). Our approach is also more
comprehensive because it works for any kind of templateable and parameterable element
in UML. Finally, the Apply operation proposed by [7] is roughly the same as binding to
a package-template.

Although with a goal different from current paper’s, [5] also introduces a technique
to validate structural conformance between a template and its bound elements. Although
the proposed extension to UML put some added value in terms of expressiveness, the
conformance verification method overlooks several aspects essential to computability,
such as multiplicity and signature conformance.

Considering the field of Aspect Oriented Modeling, one can find plenty of methods
with the same goal as current paper: how to obtain concrete, correct solutions from
generic ones. Because those methods use approaches and formalisms other than UML
templates, the comparison would be somewhat pointless. The only exception we are
aware of is the Theme/UML approach [3], which uses UML package templates to model
crosscutting functionalities. Theme/UML extends the concept of template to incorporate

206 J. Farinha and P. Ramos



aspect-oriented capabilities. Although it supports the definition of parameters with
owner-member relationships, which resembles contents/membership conformance in
the current paper, it is not clear if substitute elements (which are also organized in owner-
member relationships) are checked against parameters. For further exploration of the
Aspect-Oriented Modeling field a good starting point could be the survey in [8].

6 Conclusions and Future Work

The concept of functional conformance proposed in this paper has been experimentally
applied to a reasonably large set of templates (approximately 50) and application
domains (12, some of them with alternative models). Such experiments showed a success
rate of 100 %, which provides some empirical evidence of the effectiveness of the
approach.

However, the authors believe that a more reliable demonstration should be provided.
With that goal, a formal demonstration is being developed, and will soon be proposed
for publication. Although under development, such demonstration has already yielded
results. Namely, it showed that a previous definition of type conformance for operation
parameters, presented in [4], was not fully accurate. The definition in the current paper
reformulates it. The fact that none of the empirical experiences revealed the problem
clearly endorses formal demonstrations over empirical ones.

The aforementioned experiments also suggested that, when sorting out substitutes
for a parameter, taking into account functional conformance may leverage automatic or
semi-automatic substitution. Therefore, additionally to computability assurance, auto‐
matic binding is a potential benefit of functional conformance. This is a line of work to
develop.

Another perception instilled by these experiments is that UML templates, to some
extent, lack of flexibility. For instance, if a template exposes an association as parameter
it would be useful if one could substitute that association by a chain of two connected
associations, whenever that is the setting in the application domain.

Computability Assurance for UML Template Binding 207



Appendix: OCL Formulation of Functional Conformance

208 J. Farinha and P. Ramos



Computability Assurance for UML Template Binding 209



210 J. Farinha and P. Ramos



Computability Assurance for UML Template Binding 211



References

1. Abadi, M., Cardelli, L.: A theory of objects. Syst. Res. 1–130 (1996)
2. Caron, O., Carré, B.: An OCL formulation of UML2 template binding. In: Baar, T., et al. (eds.)

UML’ 2004 — the Unified Modeling Language. Modeling Languages and Applications.
Lecture Notes in Computer Science, vol. 3273, pp. 27–40. Springer, Berlin, Heidelberg (2004)

3. Clarke, S., Walker, R.J.: Generic aspect-oriented design with THEME/UML. In: Aspect-
Oriented Software Development, pp. 425–458 Addison-Wesley, Boston (2005)

4. Farinha, J., Ramos, P.: Extending UML templates towards computability. In: Modelsward
2015, 3rd International Conference on Model-driven Engineering and Software Development,
SCITEPRESS (2015)

5. France, R.B., et al.: A UML-based Pattern specification technique. IEEE Trans. Softw. Eng.
30(3), 193–206 (2004)

6. OMG Consortium: OMG Unified Modeling Language (UML), Superstructure, v2.4.1. http://
www.omg.org/spec/uml/2.4.1/ (2012)

7. Vanwormhoudt, G., et al.: Aspectual templates in uml (2013)
8. Wimmer, M., et al.: A survey on UML-based aspect-oriented design modeling. ACM Comput.

Surv. 43(4), 1–33 (2011)

212 J. Farinha and P. Ramos

http://www.omg.org/spec/uml/2.4.1/
http://www.omg.org/spec/uml/2.4.1/

	Computability Assurance for UML Template Binding
	Abstract
	1 Introduction
	2 An Introduction to UML Templates
	3 Some Limitations of UML Templates
	4 Functional Conformance
	4.1 Type Conformance
	4.2 Multiplicity Conformance
	4.3 Contents Conformance
	4.4 Staticity Conformance
	4.5 Visibility Requirement
	4.6 Computability Assurance

	5 Related Work
	6 Conclusions and Future Work
	1 Appendix: OCL Formulation of Functional Conformance
	References


