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Abstract. Sign languages (SLs) are visuo-gestural representations used
by deaf communities. Recognition of SLs usually requires manual anno-
tations, which are expert dependent, prone to errors and time consum-
ing. This work introduces a method to support SL annotations based
on a motion descriptor that characterizes dynamic gestures in videos.
The proposed approach starts by computing local kinematic cues, repre-
sented as mixtures of Gaussians which together correspond to gestures
with a semantic equivalence in the sign language corpora. At each frame,
a spatial pyramid partition allows a fine-to-coarse sub-regional descrip-
tion of motion-cues distribution. Then for each sub-region, a histogram
of motion-cues occurrence is built, forming a frame-gesture descriptor
which can be used for on-line annotation. The proposed approach is
evaluated using a bag-of-features framework, in which every frame-level
histogram is mapped to an SVM. Experimental results show competitive
results in terms of accuracy and time computation for a signing dataset.

1 Introduction

Sign languages (SLs) are natural languages used to communicate with and among
the deaf communities, which, like spoken languages, differ from one country to
another. Additionally, SLs are less-resourced languages with very few reference
books describing them (grammar rules, etc.), a limited number of dictionaries
and corpora, and even less dedicated processing tools.

Annotation software are tools used for linguistic studies, that allow
researchers to visualize their data (mainly videos for SLs), annotate them with
linguistic inputs, and analyze these inputs [1]. These corpus-based studies allow
to create statistically-informed models that are useful for SL description, but
also for SL processing. At this moment, such software are limited to only include
automatic processing on the secondary data, the annotations, which are textual
data. They do not include automatic processing on the primary data, the video.
However, there is a growing interest on image and video processing tools, to
characterize particular recorded gestures from local and global primitives such
as motion, shape, body parts interactions, among others [2,3].
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This paper introduces a new proposal to support SLs annotations based on
a motion descriptor that characterize temporal gestures in video sequences. The
proposed approach is developed for French Sign Language corpus annotation. It
starts by computing semi-dense trajectories, provided by point tracking in con-
secutive frames, over a set of gestures recorded in a video. Then, kinematic-cue
words, represented as local mixture of Gaussians, are recursively computed at
each time and for each trajectory during the video. These features are extremely
fast to compute, and the action descriptor is available at each frame, thus allow-
ing prediction on partial video sequences, and then on-line gesture recognition
capability.

2 Sign Language

2.1 Main Linguistic Properties

SLs are visuo-gestural representations that follow specific rules induced by use
and interaction among corporal articulators and the visual perception. This lan-
guage promotes the simultaneous use of a number of articulators, the linguistic
use of the space in front of the signer so-called ‘signing space’, and the omnipres-
ence of iconicity at all levels of the language [4]. The main linguistic specificities
and challenges are the followings:

– Signs can be broken down into smaller constituents whose linguistic nature,
definition and detection are still subject to debate;

– Signs can bear strong modification of their constituents depending on the
context, and modelling all possible variations can require too many different
training examples to keep the categories consistent;

– Signs can be more or less lexicalised, and the most productive ones are built
on the fly and are not indexed in a dictionary, which makes them extremely
difficult to be modelled from a classical approach.

SLs characterization must also consider non-manual activity that convey
meaningful information. For instance, SL production involves non-manual artic-
ulators such as head, face, and torso which are relatively synchronized on dif-
ferent spatial and temporal scales. In fact, the signer uses the signing space
to support and topologically structure his discourse. This spatial and multi-
component property, as well as the importance of the productive signs make the
design of SL processing tools a very challenging task.

2.2 The LSF (French Sign Language) Corpora

The corpora used in this study is extracted from the corpus collected during
DictaSign, a three-year FP7 ICT project that aimed to improve the state of
web-based communication for deaf people [5]. It is composed of nine videos that
contain isolated dates, such as ‘Lundi 2 novembre 2013’ (Monday, November
2nd, 2013). The lexicon is constituted of the seven days, the twelve months, and
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a set of numbers. In LSF, a date is composed of four elements following the
order: DAY NUMBER MONTH YEAR. The day and month signs are simple
gestural units than can present regional variants. These dates are less complex
than SL utterance, but they include various issues such as lexicon variability,
co-articulation. They also include some spatial constraints, but limited to the
image plane. This seems to us good candidates as a first step, to evaluate the
performance of our method on motion description with this kind of data.

3 Background on Motion Descriptors

Motion analysis is a fundamental tool to segment potential region of interest,
quantify, detect, recognize gestures or describe spatio-temporal interactions. One
of the advantages of motion based characterization is the relative independence
to appearance, which has potential applications in uncontrolled conditions.

Motion descriptors based on tracked local space-time trajectories from opti-
cal flow fields, currently provide the best performance to represent gestures and
understand video sequences [6–8]. To recognize human activities, these strate-
gies namely integrates local features along the trajectories to capture shape,
appearance and motion information, namely using HOF (Histograms of Optical
Flow), MBH (Motion Boundary Histograms) and HOG (Histograms of Oriented
Gradients) [7]. This descriptor was also used in [9], but using improved motion
trajectories obtained by correcting the camera motion in video sequences. In gen-
eral, these descriptors are dependent on the appearance and structural image
features computed around trajectories, fact that could be critical in language
recognition in which shape signs and appearance have high inter subject vari-
ability. Additionally, the spatio-temporal volumes are heuristically cut off from
a fixed temporal length (for example: 15 frames in [7]) that may be a problem to
represent series of gestures of a SL utterance that can vary from one subject to
another and also depending of the represented dialog. Besides, the dynamic tra-
jectory information is poorly exploited, i.e., the action descriptors only use the
trajectory as information support to compute static frame features (namely spa-
tial features such as image gradients), neglecting relevant kinematic information
that is naturally available on the trajectory.

Other works have characterized the dynamic of dense beams of trajectories
to describe actions in video sequences. For instance, in [10] a set of k cut tra-
jectories are characterized using first order derivatives in the (x, y) axes, which
may be sensitive to motion direction and to scale. In [11] is firstly considered
strong sparse coding assumptions to filter out motion trajectories. Then, the
remaining trajectories are characterized using Largest Lyapunov Exponent and
the correlation dimension.

Specifically, in the domain of SLs, several works have been focused in the
automatic recognition of atomic gestures by characterizing postures, shape
regions, global movements among others (see [3] for an overview of the domain).
These works include the use of a broad spectrum of methods such as track-
ing of articulated shapes, colour segmentation to characterize postures, and the
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Fig. 1. Pipeline of the proposed approach for SL recognition and annotation support.
(a) First, a set of trajectories are computed. (b) For each trajectory, a set of kinematic-
cue words are computed using recursive Mixture of Gaussian. (c) A pyramidal partition
is applied at each frame to support hierarchical BoW representation, which is in turn
used to recognize particular FSL gestures.

static and temporal characterization shape articulators. In terms of annotation
support, some projects have tried to integrate video analysis modules into anno-
tation software. For instance, Ancolin is a prototype annotation software [12]
developed onto a distributed architecture, that includes several external plugins
for sign language video processing such as colour skin detection, characteriza-
tion of head shape and size, and motion history images to code arm movements.
This video characterization provides additional useful information to the anno-
tation but remains dependent on accurate segmentation of human silhouettes
and is also highly dependent on the user. SignStream [1] is another annotation
software, currently used for linguistic analysis that includes components for 3D
head detection and tracking to estimate head gesture: Currently, this application
includes new modules to automatically characterize hand gestures in ASL using
a tracking system [2]. Additionally, the SLMotion toolkit provides a framework
for automatic and semi-automatic analysis, feature extraction and annotation
of individual sign language videos. The program includes support for exporting
the annotations in ELAN1 format.

4 The Proposed Method

The proposed strategy recognizes SL gestures by using an on-line spatio-
temporal characterization of the signer movements recorded in a video. The Fig. 1
illustrates a pipeline of the proposed approach.

4.1 Computing Semi-dense Trajectories

Point trajectories are useful motion features based on tracking salient points
along the video sequence, allowing in most cases a relevant representation of
action present in the video. The proposed approach requires a set of trajecto-
ries with a suitable trade-off between accuracy and computation time, in order

1 Software widely used for linguistic analysis of video data.
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Fig. 2. Spatio-temporal representation of trajectories and MoG kinematic representa-
tion. Each row represents a spatio-temporal gesture corresponding to two days. The
second and third columns illustrate the dense trajectories and their kinematic descrip-
tors, respectively. The fourth and fifth columns correspond to the semi-dense trajecto-
ries and their kinematic descriptors.

to support fast annotation prediction. In this work were considered two differ-
ent methods to compute motion trajectories (see examples in Fig. 2), described
hereunder:

Dense trajectories [7] are extracted from a dense optical flow field estimated
at multiple spatial scales and regularized using a median filter. Additionally,
a trajectory is considered as outlier and removed if it meets any of the two
following conditions: (1) the standard deviation of the velocity along the
trajectory is above a given threshold, and (2) it presents sudden displace-
ments, corresponding to vectors whose magnitude is larger than a certain
proportion of the overall displacement of the trajectory.

Semi-Dense trajectories [13] are computed from a set of weakly salient
points, tracked using a coarse-to-fine prediction and matching approach,
allowing a high degree of parallelism and dominant movement estimation.
This technique produces high density trajectory beams, robust to large cam-
era accelerations and allowing statistically significant trajectory based rep-
resentation, with a good trade-off between accuracy and performance.

4.2 Gaussian Mixture Representation of Kinematic Features

Each computed trajectory Γ (t) ∈ R
2 represents a particle traveling in the 2d

space (x, y) from time t1 to tn. At each time t, the trajectory motion informa-
tion can be characterized by a collection of kinematic features {F i

t }i, such as the
velocity, acceleration, curvature among others, using finite difference approxi-
mation. In this work, each computed kinematic feature is modelled as a random
variable following a mixture of K Gaussian densities, whose parameters are
defined as:

∑K
k=1 wk

t N (μk
t , σk

t ), where (μk
t , σk

t ) are the mean and standard devi-
ation of each Gaussian mode and wk

t represents the contribution of each mode,
with

∑K
k=1 wk

t = 1.
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Algorithm 1. Recursive Mixture of Gaussian estimated locally for each com-
puted trajectory and for each considered kinematic feature.

for each time t do
for each trajectory Γ do

if |Γ | > 3 then
for each kinematic feature i do

calculate feature Ft = F (i)
for each mode k do

if
∣
∣Ft − μk

t

∣
∣ ≤ λσk

t then

μk
t = μk

t−1 + α(Ft − μk
t−1)

(σk
t )2 = α

(
μk

t−1 − Ft

)2
+ (1 − α) (σk

t−1)
2

ωk
t = ωk

t−1 + α
end if

end for

normalize ωk
t such that

K∑

k=1

wk
t = 1

rank the modes in decreasing order of
ωk
t

σk
t

keep the first B modes such that: B = arg
K

min
b=1

{

b;
b∑

k=1

wk
t > T

}

end for
end if

end for
end for

The MoG representation is herein implemented as described in Algorithm 1
[14]. This algorithm allows an on-line MoG updating and therefore a kinematic
gesture representation is available at each frame. First, the density parameters
are initialized, assigning to the mean the first value of each kinematic feature
computed, to the standard deviation any fixed value and the weight ωt,k being
the same for each mode k. Then, the distributions that are most likely matched
by the current kinematic sample (i.e. when the sample distance to the mode
is less than λ times its standard deviations) are updated. The density para-
meters

{
μk

t , σk
t

}
are updated using a on-line cumulative filter with a learning

rate parameter α ∈ [0, 1] which takes into account the history of the kinematic
measure along the trajectory, with t ≈ 1/α. Each ωk

t is also updated accord-
ing to the matched distribution at each time. After that, the distributions are
sorted in decreasing ordered according to ωk

t

σk
t
. Finally, only the B first distrib-

utions of the MoG are considered. If any distribution is initialized (no existing
one is matched), then the parameters of the distribution with lowest weight are
replaced by the initial values. This recursive representation has the main advan-
tage of computational speed which is essential to on-line annotation tools, the
recent history of each kinematic measure being available at each frame.
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Kinematic Features F t: In order to keep the computation fast, the kinematic
features considered in this work were: the velocity v(t) = Γ ′(t), depicted by its
direction θ(t) = arg v(t) and modulus (speed) s(t) = ||v(t)||. The curvature was
also included; it is related with how rapidly the trajectory is bending to one
side, and corresponds to the normal acceleration when the curvilinear speed is
constant. The curvature is herein implemented as proposed in [15], using finite

difference on consecutive points of Γ as follows: κ(t − 1) =
√

ζ(ζ−b)(ζ−d)(ζ−e)

bde ,
where ζ = (b + d + e)/2, as illustrated in Fig. 1.

Each trajectory is then characterized at time t by the set of kinematic fea-
tures F t = {θ(t), s(t), κ(t)}. The proposed strategy is flexible to include any
other local kinematic measure computed along a 2d trajectory. An additional
advantage of the proposed strategy is that any kinematic feature can access
independently to the recognition or a set of features can be chosen through
a learning stage, in order to reach higher execution times or reduce memory
requirements, preserving a proper accuracy. Figure 2 shows computed trajecto-
ries. The recursive means of computed kinematic features are represented using
a RGB color map representation, the blue being the curvature and the red and
green being respectively the modulus and the direction of the velocity.

4.3 Spatial Pyramid Representation and Codebooks Learning

In SLs, the signs are visuo-gestural representations, which require a temporal
and spatial characterization. In the proposed approach, a regional analysis of
the MoG features are carried out by following a fine-to-coarse partition of each
frame. This spatial pyramid forms a set of partition layers {Li}0≤i≤Nr

(see in
Fig. 1-(c)), whose total number of sub-regions is: s r =

∑Nr

i=0 4i = 4Nr+1−1
3 .

In the training step, different configurations of the spatial pyramid represen-
tation were used to learn the codebooks of kinematic words computed from the
MoG recursive representation. Each codebook is made up by a set of MoG kine-
matic words, formed by the output of a classical k-means algorithm computed
using a random selection of 10% of the MoG features extracted over the whole
training video set. All the feature words are computed with the same α, with n
the number of kinematic measures estimated at each time on each trajectory and
b the number of modes retained from the MoG distribution. Then, each codebook
contains kl representative feature words, each word having a dimension of 3nb.
During a first configuration, a global codebook {D0} was learned from the region
of L0, and then a histogram of motion word occurrences was considered for each
sub-region of the spatial pyramid. This histogram is constructed by counting the
number of times each one of the kl kinematic centroid is closest to the computed
features, based on the Euclidean distance on R

3n. In this case, the total size of
the descriptor is the concatenation of histograms computed for each sub-region,
with size of s r × kl0 . In a second configuration, for each sub-region of the spa-
tial pyramid representation was considered a independent codebook. From the
set of codebooks {Dl}1≤l≤Λ is then computed histogram of occurrences with
variable size according to the size of each regional codebook, resulting a more
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compact descriptor w.r.t the first version. Finally, the labeling of each potential
sign gesture is performed by a Support Vector Machine (SVM) using the stan-
dard LIBSVM [16] implementation, using the one-against-one multi-class SVM
classification with a Radial Basis Function (RBF) kernel.

5 Results

A first exploration over a SL corpus of signatures representing Dates was carried
out to evaluate the proposed approach in the task of sign recognition to support
annotation. The experimental evaluation was performed under a leave-one-out
cross validation scheme by using different segments of the videos. The best per-
formance of the proposed approach was obtained with a pyramid of Nr = 2 levels
and a learning rate of α = 0.25 corresponding, to a time depth of 4 frames. The
number of estimated modes in each MoG was set to 7, taking into account the
5 dominant modes.

Evaluations over the SL dataset were carried out taking into account differ-
ent lexical complexities of the signs. First, the words recognition related with
days and months was performed. Because the approach is based on statistical
representations of spatio-temporal gestures, it was only considered gestures with
more that 5 samples available into the dataset, corresponding to 4 days and 5
months. In Table 1 is shown the performance obtained by the proposed approach
for recognizing these spatio-temporal gestures. In general the proposed approach
is able to recognize different atomic gestures that correspond to localized move-
ments. The best performance of the proposed approach was achieved by using
dense trajectories with a compact spatial pyramid representation of regional
dictionaries. Some mistakes in the recognition may be attributed to regional
variations of gestural signs.

Second, the performance of the approach to recognize dates was evaluated.
Complete dates have more complex lexical structure and they are composed

Table 1. Classification rate of individual gestures corresponding to days and months

Gesture Spatial Configuration Trajectories

Dense Semi-dense

Days Pyr single Dic (L0) 74.07 66.66

Pyr mult Dics 81.48 74

without Sub-regions 70.37 62.96

–

Months Pyr single Dic (L0) 75.05 63.45

Pyr mult Dics 80 72.21

without Sub-regions 65 55.3
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Table 2. Classification rate using different spatial configurations and trajectories for
complete date phrases

Spatial Configuration Trajectories

Dense Semi-dense

Pyr single Dic (L0) 75.03 67.13

Pyr mult Dics 77.21 70.3

Without Sub-regions 72.45 62

by the ordered sign information of day, month and year2. The proposed app-
roach achieves a recognition rate of 75 % on a total of 7 different dates. In
Table 2 is shown the results obtained by using different spatial configurations
and the different types of trajectory. The best results is obtained using a spatial
pyramid configuration of multiple dictionaries learned by region and the dense
trajectories. The both pyramidal representations herein implemented allows a
more robust representation than a global space-frame description, i.e., without a
sub-regional division. Some mistakes are due to the natural variability between
different signers and to the limited number of samples available for each date.

Action Recognition Evaluation: Because the proposed approach is based
on the recognition of spatio-temporal patterns, it can be extended to recog-
nize other motion activities. An additional evaluation was herein considered
in public action recognition datasets. Two different datasets were considered:
the KTH (six action classes, contained in a total of 2 391 videos) and the
UT-Interaction (six different interactions in 120 videos) [17]. Table 3 summa-
rizes the results obtained for the proposed approach with other state-of-the art
approaches. It generally achieves competitive results with the great advantage

Table 3. The right table reports the comparison with state-of-the-art methods using
the KTH database following the original experimental setup [18]. The figures marked
with (∗) have been computed using a k-fold validation with k = 5 [19]. The left table
shows the comparison with state-of-the-art methods using the UT-database using k-
fold validation with k = 10, as described in [17]

2 An example of a considered date is: Vendredi douze septembre mille six cent quatre
vingt dix, which means Friday, September the 12th, 1690.
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of being computationally efficient and usable in real-time applications. In con-
trast, other motion descriptors typically use a lot of features for each trajectory,
including appearance information.

The proposed approach achieved memory efficiency, taking in average 0.30
milliseconds for each frame to build the descriptor. The experiments were carried
out on a single core i3-3240 CPU @3.40GHz.

6 Conclusions

This work introduced a new motion descriptor that is able to recognize motion
gestures related with SLs. The proposed approach allows an on-line support to SL
annotation, by combining trajectory beams and Mixture of Gaussian representa-
tion of kinematic cues. The motion cues are spatially aggregated at each frame
using a pyramid representation. The proposed approach can also be included
as a plugin in SL systems and used as part of more sophisticated SL analysis.
A more exhaustive evaluation with a larger dataset will be performed in order
to increase the statistical samples of each gesture.
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