Time-Varying Surface Reconstruction
of an Actor’s Performance

Ludovic Blache!®) | Mathieu Desbrun?3, Céline Loscos!, and Laurent Lucas

! University of Reims Champagne-Ardenne, Reims, France
ludovic.blache@univ-reims.fr
2 (Caltech, Pasadena, USA
3 INRIA, Sophia-Antipolis, France

Abstract. We propose a fully automatic time-varying surface recon-
struction of an actor’s performance captured from a production stage
through omnidirectional video. The resulting mesh and its texture can
then directly be edited in post-production. Our method makes no
assumption on the costumes or accessories present in the recording. We
take as input a raw sequence of volumetric static poses reconstructed
from video sequences acquired in a multi-viewpoint chroma-key studio.
The first frame is chosen as the reference mesh. An iterative approach is
applied throughout the sequence in order to induce a deformation of the
reference mesh for all input frames. At first, a pseudo-rigid transforma-
tion adjusts the pose to match the input visual hull as closely as possible.
Then, local deformation is added to reconstruct fine details. We provide
examples of actors’ performance inserted into virtual scenes, including
dynamic interaction with the environment.

1 Introduction

Multi-view reconstruction of an actor’s performance is an innovative, non-
invasive technique for computing a 3D avatar of an actor and placing it as an
animated character in a virtual scene. It involves a wirtual cloning system with
a set of multi-viewpoint cameras in an indoor studio that generate an animated
3D model of an actor’s performance, without the need for the traditional mark-
ers typically used in motion capture. From this 3D data, a temporally-coherent
surface mesh needs to be constructed to facilitate post-production editing.

Model-based multi-view reconstruction approaches use a template model rep-
resenting an actor — typically, an articulated mesh of a generic human body. A
high-quality template model is often obtained through reconstruction from an
actor’s 3D scan [1]. Multi-view reconstruction is then achieved by deforming
this template in time according to a set of directives (optical flow or silhouette
matching) extracted from the multi-viewpoint video inputs. Vlasic et al. [2] and
Gall et al. [3] use a predefined skeleton to match the template model with a set
of poses defined by silhouettes or visual hulls, before applying local deformation
of the template to match free-form elements such as clothes or hair.
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Fig. 1. General pipeline. After a model-free reconstruction, we compute a volume
sequence and a template mesh. A motion flow is computed from the volume sequence
(Sect.2.1). The mesh is then animated, according to this motion flow, by a two-step
mesh deformation (Sects.2.2 and 2.3). The animated mesh is finally saved into a file
to be used in a post-production software.

However, assuming a specific template model is often too restrictive to cap-
ture arbitrary motion sequences: for instance, skeleton-based approaches lead to
strong limitations when applied to actors wearing loose costumes (dresses, coats)
or accessories (bags, hats) without ad-hoc handling of additional features. This
restrictive setup is closer to a markerless motion capture than a reconstruction
of the actual scene’s content. In addition, TV production stages are often only
equipped with video cameras, preventing the use of markers or scans.

In this paper we propose a new approach to reconstruct a time-varying mesh
with a fixed connectivity in time from an actor’s performance on a typical TV
production stage with omnidirectional video capture. Moreover, while many
multi-view reconstruction studios use a model-free approach that generates a 3D
model for each frame of the multi-view video sequence, we facilitate subsequent
editing by providing a temporally consistent triangle mesh of the performance
through incremental mesh deformation guided by the estimated motion flow.

1.1 Previous Work

Several approaches have been proposed to achieve temporal consistency from
this kind of model-free reconstruction, which usually produce a sequence of poses
(i.e., a static reconstruction of the scene at each frame of the multi-viewpoint
videos). Li et al. [4] developed a temporally consistent completion of scanned
meshes’ sequences, using a deformation graph, to establish pairwise correspon-
dences between consecutive frames. A mesh-tracking method [5-7] can match
several meshes according to curvature or texture criteria, from which one can
compute the motion flow describing the movements of an actor between two
frames [8]. Nobuhara and Matsuyama [9] computes a motion flow from volumet-
ric data, based on a voxel matching algorithm. This voxel-based approach can be
made drastically more robust for visual hulls if one considers voxels’ orientation
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Fig.2. Our approach at a glance. Starting from two consecutive frames in a
sequence of colorized volumes (a), we first compute a motion flow (b); we then sample
a set of anchor vertices (c) on the current mesh (in grey). To deform the current mesh
towards the next visual hull in yellow (d), we perform a global deformation of the mesh
based on the displacements of the anchors (e), before applying a local optimization to
finely match the target visual hull (f). This process is repeated throughout the whole
sequence to match successive poses (Color figure online).

and texture to help with matching as proposed in Blache et al. [10]. Once the
motion flow is determined, a template structure needs to be animated. Several
types of mesh deformation approaches could be applied in this context. Skeleton-
based animation techniques have been shown especially efficient for motion cap-
ture. However, it cannot handle complex, non-rigid motions. Recently, 3D surface
registration based on energy minimization have been also proven robust for mesh
deformation [11]. Our approach is inspired from these different classes of meth-
ods, but resolves some of their limitations such as noise sensitivity and lack of
genericity.

1.2 Outline

We propose to animate a template mesh derived from the first frame of the
sequence of captured volumes to match the subsequent captured frames. Our
input data are described in Sect. 2. In order to reconstruct high-frequency move-
ments and to be stable even for less accurate input models, we combine motion
flow to ARAP surface modeling, adapted with automatic anchors’ selection
(Sect. 2.1). The global deformation based on ARAP matching [12] will ensure
robustness of the mesh deformation even in the presence of noisy motion flow
(Sect. 2.2). Local adjustments will improve quality both of the mesh and of the
match between the mesh and the volumetric input data (Sect. 2.3). This deforma-
tion process is iterated between pairs of frames until the end of the sequence to
consider. Our approach is markerless, fully automatic through the entire pipeline,
and is robust to a variety of scenes involving actors wearing costumes and acces-
sories. The different steps are illustrated in Fig. 2.

2 Method Overview

Our input is a sequence of digital volumes obtained by a wvisual hull recon-
struction from a multi-view video sequence [13]. Each volume of this sequence
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represents the actor at time t;, so that the set of n volumes represents the motion
of the actor from ¢y to ¢,_1. The reconstructed volumes are binary digital vol-
umes with each voxel tagged as 0 for empty or 1 for covering or straddling the
actor’s spatial occupancy. Straddling (surface) voxels are also assigned an RGB
color based on the video inputs.

We begin by computing a Euclidean distance transform (EDT [14]). Each
voxel of the volume is thus assigned a positive value which corresponds to the
Euclidean distance to the closest boundary of the actor, so that this volumet-
ric description can be seen as a grey-level 3D picture. We construct an initial
(template-like) mesh based on the first volume of the sequence by extracting
its zero levelset using a marching cubes algorithm. Laplacian smoothing and
mesh simplification are then applied to ensure that each resulting triangle is
non-degenerate, thus avoiding numerical artifacts in our subsequent tracking.

2.1 Motion Flow and Anchors’ Selection

In order to compute a motion flow from our set of volumetric images, we use
the method described in [10] to compute voxel matching based on both local
geometry and color between consecutive poses. The result is a set of motion
vectors for each surface voxel throughout the volume sequence. The matching is
performed with a distance function computed between two surface voxels from
two successive frames. This distance is computed according to several criteria:
normal orientation, color and Euclidean distance. We use this matching score
between two voxels as a degree of confidence associated to each vector of the
motion flow, noted w,. We select a set of vertices at time ¢; to be anchor points.
As these anchors will drive the global deformation of the character, we select
the vectors associated with the largest displacements and highest confidence.
Mesh vertices at ¢; are thus ordered according to their corresponding EDT;; +
w values. We then select a fixed percentage (10 % of the total number of vertices
in our implementation) of the highest ranked vertices. A few anchors in static
regions (1 %) are also randomly added to guarantee that the immobile parts of
the actor’s body will not be deformed. This subsampling of the motion flow allows
robustness since a global deformation is derived from two subsequent 3D volumes
by removing the high frequency noise that typically impairs proper tracking.
The scores w, will still be used as weights to adjust how strongly we enforce
the matching of these anchors in the global deformation step for additional
robustness. Note that while this anchors’ sampling method is particularly suited
to our context, it could easily be adapted to other model-based approaches.

2.2 Pseudo-Rigid Mesh Animation

The mesh at t; now needs to be advected in the motion flow based on the displace-
ment of the reduced set of sampled anchors. We use a variational approach to our
global mesh deformation by searching for a As-Rigid-As-Possible (ARAP [12])
deformed mesh M’ with locally rigid transformations, while retaining the final
positions of anchor points as much as possible (Fig. 2e).
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Formulation. We minimize the following energy:
E(M') = Eapap(M') + Eanc(M'),

where Epopap is the As-Rigid-As-Possible energy:

n
Earap(M') =" > 7| (0} — p}) — Ri(pi -, (1)
i=1 jEN(3)

with N (¢) denoting the one-ring neighborhood of i. The terms p; and p} represent
the 3D positions of the vertex i, before and after applying the local transforma-
tion R;. Note that if p; is an anchor, the position pj is initialized by applying
the associated motion vector to the initial position of the vertex. The weight 5,
associated with the edge between p; and p;, can be computed according to the
cotangent weight method, or simply set to 1. Moreover, E4n¢ is a quadratic
energy measuring the error in the displacement of the n, anchors:

Nq

Eanc(M') =" wa, |19 — pill”. (2)
1=1

where the weight w,, of the anchors represents the degree of confidence given to
an anchor point, as described in Sect. 2.1.

Solver. The optimality condition for the minimum of our energy basically mirrors
the result of [12], to which terms coming from the quadratic form (Eq.2) are
added. That is, the optimal positions p’ must satisfy:

> w0t = p)) +wapi = Y %(Ri — R;)(pi — pj) + wa, ps (3)
JEN(3) FEN(3)
where R; is a local rotation best matching p; and its one ring to p;. The global defor-
mation is thus computed by iteratively solving a linear system and an optimal set of
rotations matrices: we begin by computing the set of {p;}; that satisfy the optimal
condition for a fixed set of initial rotations {R;}; by solving a linear system of the
form:
Lp'=b

where L corresponds to the Laplacian operator applied to the mesh M’ in which we
add the w,, weights related to each anchor point (Eq.2) on the diagonal, and b is a
column matrix which contains the righthand side of Eq.3. Optimal rotations R; are
computed through singular value decomposition (SVD) from the positions of p; and pj
as derived in [12]. These two steps are repeated until convergence.

2.3 Local Optimization

After the global deformation step, details of the pose due to non-rigid deformation
(such as cloth folds or hair) can still be missing. Mesh quality may also degrade over
time as large deformation occurs. Local optimization and regularization are thus still
necessary for the mesh to better adjust to the new pose’s silhouette. We therefore
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Fig. 3. Comparison between the temporally inconsistent mesh sequence from a model-
free reconstruction (top) and our animated mesh (bottom).

compute local vertex displacements based on both fitting accuracy and regularization
as follows.

Regularization. We regularize the mesh by applying a spring force per vertex to favor
equi-length edges:

o) =a 32 (= pill = r) o=
JEN(3) pi = pjll
where o is a fixed stiffness coefficient and p; is a vertex from the one-ring neighborhood
of p;, while the rest length 7; is set to the current average length of the edges adjacent
to p;. We prevent shrinking of the shape by using only the tangential component of
the resulting vector.

Silhouette fitting. Using the EDT zero isovalues (Sect.2.1), we also locally inflate
or deflate the mesh towards the visual hull surface by adding a “balloon” force
expressed as:
Fop) = D EDT(pj)ny,
JEN (i)
with np, and EDT(p;) being the normal vector and the EDT value at p;, respectively.
Only the normal component of this force term is used.

Integration. The resulting vectors f, and fs are added to obtain a displacement in time
for each vertex. This displacement is integrated over a fixed 200 time steps between
pose t and try1 by updating position and velocity of each vertex (assumed to be all
of unit mass) using a simple Runge-Kutta explicit integrator.

3 Results and Discussion

We tested our method on several datasets obtained through volumetric visual hull
reconstruction. The cheerleader sequence contains 200 frames with an average 180 x
270 x 170 voxel resolution and a 19234-vertex template. The astronaut sequences con-
tains 25 volumes, with an average 150 x 120 x 330 resolution and a 8048-vertex mesh.
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Fig. 4. Example of free-moving clothes’ tracking in the dancer sequence.

These two datasets come from an indoor studio shoot using a 24-camera rig. The dancer
sequence was generated using the multi-viewpoint images provided by the Grlmage
platform! with an average 150 x 100 x 300 voxel resolution. Due to the low number
of cameras (8 viewpoints) and their low resolution, this dataset produces coarse visual
hulls. We also tested our method on the capoeira sequence, using the multi-view video
inputs described in [1]? with a resolution of 200 x 275 x 200. All timings were achieved
on a 64 bit Intel Core i7 CPU 2.20 GHz. Results from these sequences are presented in
Fig. 6, demonstrating robustness of our approach in light of the coarseness of the input
volumes.

The global deformation (Sect.2.2) needs at most 200 iterations to converge. The
local mesh optimization (Sect.2.3) is applied with equal weights for the two forces fr
and fs. A maximum of 200 iterations is necessary for the numerical integration. The
total mesh processing is performed in an average of 110 seconds for each frame of the
cheerleader sequence, and 80 seconds for astronaut and dancer. Our mesh animation
approach described in Sect. 2.2 leads to a locally rigid deformation, which preserves
the mesh structure during the whole sequence. It should also be noted that our use of
weights based on the reliability of the anchors nicely extends the ARAP modeling tech-
nique, rendering it particularly robust to the inherent noise present in the motion flow.
This improvement does not require higher computational costs since the added anchor
energy we proposed (Eq.2) only adds diagonal elements in the Laplacian-like matrix
involved in the original ARAP method. The final local optimization step (Sect.2.3)
then adapts the mesh to the non-rigid part of the motion, allowing the recovery of
detail in clothes and accessories after the global deformation has been properly recov-
ered. The cheerleader dateset shows that shape of the pom-poms is correctly adjusted
after the global deformation phase (Fig. 2e and ). With the dancer sequence, we show
that the mesh correctly tracks the shape of the moving dress (Fig.4). Our mesh anima-
tion method leads to an adaptation of the template during the sequence, avoiding some
of the model-based inconveniences (as in, e.g., [1]) where the tracked model retains sur-
face details (clothing folds) from the initial pose during the whole sequence. With the
capoeira sequence, the lower quality of the multi-view images and silhouettes produces
a noisy and damaged reconstruction. The visual hulls of this sequence contains many
irregularities such as occlusion artifacts and holes in the character’s shape. Yet, our
template deformation matches the silhouettes better (Fig.5) than [1], which offers a
high quality reconstruction but mostly misses the clothes’ deformation. Quantitatively,

! http://4drepository.inrialpes.fr/.
2 http:/ /resources.mpi-inf.mpg.de/siggraph08 /perfcap/.
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Fig. 5. Capoeira sequence. Our method (a), despite the low quality of the visual
hull, matches the silhouette better than the model-based method proposed in [1] (b).
Left: silhouette overlap. Right: Comparison between visual hull (yellow) and 3D mesh
(grey) (Color figure online).

the average Hausdorff distance computed between the visual hull of the target pose and
the animated template resulting from the model-based method [1] is 0.011933, while
our method obtains an average of 0.003291.

Our temporally coherent mesh is perfect for postproduction editing as it can be
easily placed in a virtual environment as a simple animated character, directly exported
through, e.g., the Alembic file format. A virtual camera (with an arbitrary trajectory)
can then be used without being limited by the characteristics of the shooting studio.
The rendering of the virtual scene is noticeably easier with this animated object than
with mesh sequences when each pose of the sequence needs to be loaded before the
rendering of the corresponding frame. Generating a mesh for which only mesh vertices
evolve in time (Fig. 3) has multiple additional advantages. First, it noticeably reduces
the flickering effect of visual hull reconstruction. Second, vertices can be used to anchor
virtual accessories (e.g. virtual makeup). Third, collision with virtual objects (clothes
or other) and environment is easy to detect and handle as one can rely on temporal
coherence of the vertices. At last, the animated mesh can keep the same texture during
the animation, instead of computing a new one for each frame. For long sequences,
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Fig. 6. Results of our approach for the Cheerleader, Astronaut and Dancer sequences.

Comparison between the original visual hull reconstruction (top) and the temporally
consistent mesh (bottom).
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it is preferable to keep a single UV map for the whole sequence, associated with an
animated texture to prevent a visual texture sliding effect.

In several extreme cases, our local regularization step degrades the details of very
thin features as they are of a size too close to the size of a grid element. A local
optimization with subgrid accuracy could solve this issue, most likely at the cost of a
significantly increased computational complexity. Our approach also assumes that the
initial topology is kept throughout the sequence. However, changes in the topology of
the visual hull could occur in the captured sequence, possibly due to occultations if
not enough view angles are available. Currently, these events are not supported by our
system and requires user interaction to correct. In the future, stereo-matching could
be used to improve the accuracy and quality of the volume sequences. Alternatively,
one could also handle topology changes through, for instance, the method proposed
by Bojsen-Hansen et al. [15]: they proposed a surface-tracking based on a non-rigid
registration and address the issue of topology changes by partially resampling the
mesh.

4 Conclusion

In this paper, we have proposed a new approach for generating a time-evolving triangle
mesh representation from a sequence of binary volumetric data representing an arbi-
trary, possibly complex and unstructured motion of an actor with arbitrary costumes
and accessories. We first compute a motion flow of the sequence from a voxel-matching
algorithm. Using the visual hull as a prior, we then animate a template mesh, gen-
erated by a surface reconstruction of the first volume, via as-rigid-as-possible, detail-
preserving transformations guided by the motion flow and based on a sparse set of
weighted anchors. A final local optimization adjusts the mesh to better match the
mesh shape to the current visual hull, leading to a robust, temporally-consistent mesh
reconstruction of the motion.
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