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Abstract. In this paper, we propose a saliency model that makes two
major changes in a latest state-of-the-art model known as group based
asymmetry. First, based on the properties of the dihedral group D4 we
simplify the asymmetry calculations associated with the measurement
of saliency. This results is an algorithm which reduces the number of
calculations by at-least half that makes it the fastest among the six
best algorithms used in this paper. Second, in order to maximize the
information across different chromatic and multi-resolution features the
color image space is de-correlated. We evaluate our algorithm against
10 state-of-the-art saliency models. Our results show that by using opti-
mal parameters for a given data-set our proposed model can outperform
the best saliency algorithm in the literature. However, as the differences
among the (few) best saliency models are small we would like to suggest
that our proposed fast GBA model is among the best and the fastest
among the best.

1 Introduction

In literature, visual attention has been mainly classified as: top-down, and
bottom-up [16]. Top-down, is voluntary, goal-driven, and slow, i.e., usually in
the range between 100 milliseconds to several seconds [16]. It is assumed that
the top-down attention is closely linked with cognitive aspects such as memory,
thought, and reasoning. For instance, by using top-down mechanisms we can
read this text one word at a time, while neglecting other aspects of the scene
such as, words in other lines. In contrast, bottom-up attention (also known as
visual saliency) is associated with attributes of a scene that draw our attention
to a particular location. These attributes include: motion, contrast, orientation,
brightness, and color [13]. Bottom-up mechanisms are involuntary, and faster
as compared to top-down [16]. For instance, a red object among green objects,
and an object placed horizontally among vertical objects are some stimuli that
would automatically capture our attention in the environment.

In a recent study by Alsam et al. [1,2] it was proposed that asymmetry can
be used as a measure of saliency. In order to calculate asymmetry of an image
region the authors used dihedral group D4, which is the symmetry group of the
square. D4 consists of 8 group elements namely, rotation by 0, 90, 180 and 270
c© Springer International Publishing Switzerland 2015
G. Bebis et al. (Eds.): ISVC 2015, Part I, LNCS 9474, pp. 901–910, 2015.
DOI: 10.1007/978-3-319-27857-5 80



902 P. Sharma and O. Eiksund

degrees and reflection about the horizontal, vertical and two diagonal axes. The
saliency maps obtained from their algorithm show good correspondence with the
saliency maps calculated from the classic visual saliency model by Itti et al. [11].

Inspired by the fact that bottom-up calculations are fast, in this paper, we
use the symmetries present in the dihedral group D4 to make the calculations
associated with the D4 group elements simpler and faster to implement. In doing
so, we modify the saliency model proposed by Alsam et al. [1,2]. For details,
please see Sect. 2.

Next, we are motivated from the study by Garcia-Diaz et al. [8] which implies
that in order to quantify distinct information in a scene, our visual system de-
correlates its chromatic and multi-resolution features. Based on this, we perform
the de-correlation of input color image by calculating its principal components
(details in Sect. 2.3).

2 Method

2.1 Background

Alsam et al. [1,2] proposed a saliency model that uses asymmetry as a measure
of saliency. In order to calculate saliency, the input image is decomposed into
square blocks, and for each block the absolute difference between the block itself
and the result of the D4 group elements acting on the block is calculated. The
sum of the absolute differences (also known as L1 norm) for each block is used as
a measure of asymmetry for the block. The asymmetry values for all the blocks
are then collected in an image matrix and scaled up to the size of original image
using bilinear-interpolation. In order to capture both the local and the global
salient details in an image three different image resolutions are used. All maps
are combined linearly to get a single saliency map.

In their algorithm, asymmetry of a square region is calculated as follows: M
(i.e., the square block) is defined as an n × n-matrix and σi as one of the eight
group elements of D4. The eight elements are the rotations along 0◦, 90◦, 180◦

and 270◦, and the reflections along horizontal, vertical and two diagonal axis of
the square. Asymmetry of M by σi is denoted by A(M) to be,

A(M) =
8∑

i=1

||M − σiM ||1, (1)

where ||1 represents L1 norm. Instead of calculating asymmetry value associated
with each group element and followed by their sum, we believe that the algorithm
can run faster if the calculations in Eq. 1 are made simpler. For this we propose
a fast implementation of these operations pertaining to the D4 group elements.

2.2 Fast Implementation of the Group Operations

Let us assume M as 4 by 4 matrix,
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M =
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e γ2 δ2 f
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⎡
⎢⎢⎢⎢⎢⎣

⎤
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The asymmetry A(M) of the matrix M is measured as the sum of absolute
differences of the different permutations of the matrix entries pertaining to the
D4 group elements and the original. The total number of such differences are
determined to be 40. As the calculations associated with absolute differences are
repeated for the rotation and reflection elements of the dihedral group D4, our
objective is to find the factors associated with these repeated differences.

For our calculations we divide the set of matrix entries into two computational
categories: the diagonal entries (highlighted in yellow) and the rest of the entries
of M . Please note that these calculations can be generalized to any matrix of
size n by n, given that n is even.

For the rest of the entries, first, we can look at |a− b|. This element will only
be possible if we flip the matrix about the vertical axis. This will result in two
parts in the sum, |a− b| and |b− a|, giving a factor 2. Here a and b represents a
reflection symmetric pair, and all other reflection symmetric pairs will behave in
the same way. Now let’s focus on |a− d|. This represents a rotational symmetric
pair. Rotating the matrix counterclockwise will move d onto the position of a
giving a part |a − d| in the sum. Rotating clockwise gives us, |d − a|. As these
differences are not plausible in any other way, this gives us a factor of 2. All
other rotational symmetric pairs will behave in the same way. This means that
the asymmetry for the rest of the entries can be calculated as follows:

2|a − b| + 2|a − c| + 2|a − d| + · · · + 2|g − h|. (2)

For the diagonal entries, we can see that they exhibit both rotation and
reflection symmetries. For instance, we can move β to the place of α and α to β
with one reflection and two rotations. This gives us a factor of 4. The asymmetry
of one set of diagonal entries can be calculated as follows:

4|α − β| + 4|α − γ| + 4|α − δ| + 4|β − γ| + 4|β − δ| + 4|γ − δ|. (3)

The asymmetry for both the diagonal entries and the rest is represented as,

A(M) = 4|α1 − β1| + 4|α1 − γ1| + · · · + 4|γ1 − δ1|
+4|α2 − β2| + 4|α2 − γ2| + · · · + 4|γ2 − δ2|
+2|a − b| + 2|a − c| + · · · + 2|g − h|. (4)

As shown in Eq. 4, the asymmetry calculations associated with the matrix
M are reduced to a quarter for the diagonal entries and one-half for the rest of
the entries. This makes the proposed algorithm at least twice as fast.
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2.3 De-correlation of Color Image Channels

De-correlation of color image channels is done as follows: First, using bilinear
interpolation we create three resolutions (original, half and one-quarter) of the
RGB color image. In order to collect all the information in a matrix the (half
and one-quarter) resolutions are rescaled to the size of original. This gives us a
matrix I of size w by h by n, where w is the width of the original, h is the height
and n is the number of channels (3 × 3 = 9).

Second, by rearranging the matrix entries of I we create a two dimensional
matrix A of size w× h by n. We do normalization of A around the the mean as,

B = A − μ, (5)

where μ is the mean for each of the channels, and B is w × h by n.
Third, we calculate correlation matrix of B as,

C = BTB, (6)

where the size of C is n by n.
Four, the Eigen decomposition of a symmetric matrix is represented as,

C = V DV T , (7)

where V is a square matrix whose columns are Eigen-vectors of C and D is the
diagonal matrix whose diagonal entries are the corresponding Eigen-values.

Finally, the image channels are transformed into Eigenvector space (also
known as principal components) as:

E = V T (A − μ), (8)

where E is the transformed space matrix which is rearranged to get back the
de-correlated channels.

2.4 Implementation of the Algorithm

First, the input color image is rescaled to half the original resolution. Second, by
using the de-correlation procedure described in Sect. 2.3 on resulting image we
get 9 de-correlated multi-resolution and chromatic channels. Third, a fixed block
size (e.g.,12) is selected– as discussed later in Sect. 3.6, this choice is governed
by the data-set. If the rows and columns of the de-correlated channels are not
divisible by the block size then they are padded with neighboring information
along the right and bottom corners. Finally, the saliency map is generated by
using the procedure outlined in Sect. 2.2. The code is open source and will be
available at Matlab Central for the research community.

3 Comparing Different Saliency Models

The performance of visual saliency algorithms is usually judged by how well the
two-dimensional saliency maps can predict the human eye fixations for a given
image. Center-bias is a key factor that can influence the evaluation of saliency
algorithms [15].

http://www.mathworks.com/matlabcentral
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3.1 Center-Bias

While viewing images, observers tend to look at the center regions more as
compared to peripheral regions. As a result of that a majority of fixations fall
at the image center. This effect is known as center-bias and is well documented
in vision studies [17,18]. The two main reasons for this are: first, the tendency
of photographers to place the objects at the center of the image. Second, the
viewing strategy employed by observers, i.e., to look at center locations more in
order to acquire the most information about a scene [19]. The presence of center
bias in fixations makes it difficult to analyze the correspondence between the
fixated regions and the salient image regions.

3.2 Shuffled AUC Metric

Shuffled AUC metric was proposed by Tatler et al. [18] and later used by Zhang
et al. [20] to mitigate the effect of center-bias in fixations. The shuffled AUC
metric is a variant of AUC [7] which is known as area under the receiver operating
characteristic curve. For a detailed description of AUC, please see the study by
Fawcett [7].

To calculate the shuffled AUC metric for a given image and one observer,
the locations fixated by the observer are associated with the positive class (in
a manner similar to the regular AUC metric), however, the locations for the
negative class are selected randomly from the fixated locations of other unrelated
images, such that they do not coincide with the locations from the positive class.
Similar to the regular AUC, the shuffled AUC metric gives us a scalar value in
the interval [0,1]. If the value is 1 then it indicates that the saliency model is
perfect in predicting fixations. If Shuffled AUC <= 0.5 then it implies that
the performance of the saliency model is not better than a random classifier or
chance prediction.

3.3 Dataset

For the analysis, we used the eye tracking database from the study by Judd
et al. [12]. The database consists of 1003 images selected randomly from differ-
ent categories and different geographical locations. In the eye tracking experi-
ment [12], these images were shown to fifteen different users under free viewing
conditions for a period of 3 seconds each. In the database, a majority of the
images are 1024 pixels in width and 768 pixels in height. These landscape images
were specifically used in the evaluation.

3.4 Saliency Models

For our comparison, eleven state-of-the-art saliency models, namely, AIM by
Bruce & Tsotsos [5], AWS by Garcia-Diaz et al. [8], Erdem by Erdem &
Erdem [6], Hou by Hou & Zhang [10], Spec by Schauerte & Stiefelhagen [14],
GBA by Alsam et al. [1,2], Fast GBA proposed in this paper, GBVS by
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Image Fast GBA GBA

AIM Hou GBVS

Itti Judd AWS

LG Spec Erdem

Fig. 1. Figure shows a test image (from database [12]) and the associated the saliency
maps from different saliency algorithms used in the paper.

Harel et al. [9], Itti by Itti et al. [11], Judd by Judd et al. [12], and LG by
Borji & Itti [3] are used. In line with the study by Borji et al. [4], two mod-
els are selected to provide a baseline for the evaluation. Gauss is defined as
a two-dimensional Gaussian blob at the center of the image. Different radii of
the Gaussian blob are tested and the radius that corresponds best with human
eye fixations is selected. Figure 1 shows a test image and the associated saliency
maps from different saliency algorithms.

3.5 Ranking Among the Saliency Models

We compare the ranking of saliency models using the shuffled AUC metric. From
the results in Fig. 2, we note that, first, the Gauss model is ranked the worst
indicating that the shuffled AUC metric counters the effects associated with the
center-bias. Second the AWS model is ranked the best followed by the proposed
Fast GBA model. It is important to note that a majority of the state-of-the-
art saliency models such as: Itti, Hou, Spec, GBA, Fast GBA LG, Erdem,
AIM, and AWS are quite close to each other in terms of their performance.
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Fig. 2. Ranking of different saliency models using the Shuffled AUC metric. The results
are obtained from the fixations data of 463 landscape images and fifteen observers.
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Fig. 3. Average run time across 463 landscape images for different saliency models,
Itti = 0.60, Hou = 0.05, Spec = 0.07, GBA = 20.13, AIM = 31.75, LG = 15.70,
Erdem = 23.35, Fast GBA = 0.65, AWS = 10.27. All run times are in seconds. For
a better visualization we use the natural logarithm of the average run times.

Next, we compare the average run times (for 463 landscape images) of the
saliency models that rank at the same or better than Itti i.e., the classic saliency
model. For a better visualization we use the natural logarithm of the average run
times. For this, we used Matlab R2015 on a 64 bit windows PC with a 3.16 Ghz
Intel processor and 4 GB RAM. From the Fig. 3, we observe that the algorithms,
Hou, and Spec are the fastest. However, among the top six algorithms, the
proposed Fast GBA model is the fastest. Furthermore, it shows that Fast
GBA is nearly 31 times faster than the original GBA algorithm.

3.6 Optimizing the Proposed Fast GBA model

The performance of the proposed model is influenced by the choice of parameters
such as, block size, which depends on the size of an average image in the database
used for testing. To find the optimal parameters for our algorithm we use three
variables: image scaling factor Sf (which rescales the original image in order
to reduce the number of calculations), block size b, number of resolutions Nr
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Fig. 4. The results obtained by using the Shuffled AUC metric for the three variables
are shown in the first row. The figure on the top-left shows the Shuffled AUC values
for Sf = 0.5 , with the red, green, and blue lines depicting the Nr as 1, 2, and 3
respectively, while, the figure on the top-right shows the Shuffled AUC values for the
Sf = 1. In the second row, we show the average run time of the algorithm for the
different values of Sf , b, and Nr (Color figure online).

(different resolutions to capture local and global details). For this analysis, we
use Sf = 0.5 (half size) and Sf = 1, b in the range [12, 50], and Nr = 1, 2, and,
3. The results obtained by using the Shuffled AUC metric for the three variables
are shown in the first row of the Fig. 4. The figure on the top-left shows the
Shuffled AUC values for Sf = 0.5, with the red, green, and blue lines depicting
the Nr as 1, 2, and 3 respectively, while, the figure on the top-right shows the
Shuffled AUC values for the Sf = 1. In the second row of the Fig. 4, we depict
the average run time of the algorithm for the different values of Sf , b, and Nr.
The results indicate that: first, increasing the number of resolutions improves the
performance of the proposed model. Second, based on the figures in the second
row we note that using Sf = 0.5 (i.e., working with an image of half the original
resolution) reduces the run time to less than one second. Third, we observe (in
the figure on top-right) that the Shuffled AUC values for our algorithm exceed
that of the values obtained from the AWS model (i.e., the best saliency model–
represented by the black dashed line) for the following parameters: Sf = 1,
Nr = 3, b = 14, 22, 34, 46 and Sf = 1, Nr = 2 and b = 46. In other words,
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using the optimal parameters (mentioned above) our proposed model outranks
the best saliency model in literature, however, we believe that the difference
between the top 5 algorithms (AIM, LG, Erdem, Fast GBA, and AWS) are
too small to rank one as the best over the rest. Four, from the figure on the
bottom-right, we note that using the optimal parameters increases the run time
to a few seconds (minimum of 1.7 to maximum of 4.7 s) which are still faster than
the run time of AWS model (i.e., 10.2 s). Please note that in order to highlight
the intrinsic nature of the Fast GBA model no GPU computing was employed.

4 Conclusion

In this paper, we improve a state-of-the-art saliency model called group based
asymmetry as follows: first, based on the properties of the Dihedral group D4

we simplify the asymmetry calculations associated with the measurement of
saliency. This results is an algorithm which reduces the number of calculations
by at-least half that makes it the fastest among the six best algorithms used
in this paper. Second, in order to maximize the differences across the different
image features we de-correlated the color image space.

We compare our algorithm with 10 state-of-the-art saliency models. Our
results clearly show that by using optimal parameters for a given data-set our
proposed model can outperform the best saliency algorithm in the literature.
However, as the differences among the (few) best saliency models are small we
would like to suggest that our proposed model is among the best and the fastest
among the best. We believe that our proposed model can be used for calculating
saliency in real-time.
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