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Abstract. This paper describes an algorithm for fracture surface extrac-
tion from particle-based simulations of brittle fracture. We rely on a
tetrahedral mesh of the rest configuration particles and use a simple,
table-lookup approach to produce triangulated fracture geometry for
each rest configuration tetrahedron based on its configuration of bro-
ken edges. Subsequently, these triangle vertices are transformed with a
per particle transformation to obtain a fracture surface in world space
that has minimal deformation and also preserves temporal coherence.
The results show that our approach is effective at producing realistic
fractures, and capable of extracting fracture surfaces from the complex
simulation.

1 Introduction

To animate solids undergoing fracture, computer graphics researchers frequently
use physically-based simulation techniques. These techniques can be grouped
into two types of approaches: finite element methods or particle-based methods.
While both approaches have advantages and disadvantages, one major distinc-
tion between the two is how the domain of interest is discretized for simulation.
In finite element methods, a computational mesh is used to represent the solid
and naturally provides a description of the fracture surface using a subset of
mesh elements. Particle-based methods instead use only a vertex set to rep-
resent the solid, and thus a representation of the fracture surface needs to be
recovered through a post-processing technique.

This work focuses on a new approach for extracting fracture surfaces from
particle-based simulations of brittle fracture. Our approach takes some inspira-
tion from mesh-based approaches, in that we build a tetrahedral mesh of the
initial particle set in rest configuration. As the particles move during simulation,
we dynamically update information on this mesh. In any given time step, we use
a marching tetrahedra approach to locally extract a fracture surface in the rest
space configuration. Each triangle on this fracture surface is then mapped into
the world space using a best fit linear transformation.
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The result is a simple, easily parallelizable approach to extracting fracture
surface geometry that is practical to implement on GPUs and surprisingly effec-
tive. Under the assumption of rigidity, our experiments show this technique can
be employed in a variety of complex simulations. Building the input tetrahedral
mesh is effectively no more overhead than producing the input point cloud (our
approach leverages standard algorithms, such as Delaunay triangulations). The
resulting fracture geometry enables new visualizations of particle-based fracture,
and it also provides some flexibility in defining where the fracture surface occurs.

2 Related Work

Some of the first approaches for animating fracture involved using deformable
models for sheets and cloth [1] and spring-mass networks for 3d solids [2]. O’Brien
and colleagues showed that the finite element method could be effective for
both brittle [3] and ductile [4] fracture. More recent work has improved the
computational efficiency, using quasi-static analysis [5,6] and simplifications of
the finite element method for realtime [7]. In these approaches, meshing becomes
a concern, especially remeshing near the fracture [8]. Mesh-free methods offer
alternatives that avoid remeshing [9–11].

Our work employs the peridynamics-based method of Levine et al. [10] for
fracture simulation, but we provide a new solution for fracture surface extraction.
Instead of building a predefined piece of geometry for each particle, we extract
the surface from a single input mesh. Hirota and colleagues employ a similar
approach, but they require that elements must disconnect when a spring breaks
(compare Fig. 4 [9] to our Fig. 2). We make no such requirements, which leads
to a more complicated case table but further decouples the simulation from
the geometry. This also avoids the need to build an implicit-function for the
geometry, as is commonly done when skinning particles for fluid simulations
[12–14]. Skinning typically builds smooth surfaces that are appropriate for fluids,
but struggles to model the sharp features that occur during fracture.

Cutting a single input mesh allows us to use marching methods for fast
surface extraction. Our approach is similar in spirit to the well-known March-
ing Cubes algorithm [15]. Marching cubes focuses only on the representation of
manifolds that are level sets, but when fracture occurs it is challenging to model
the collection of surfaces as a single level set. Conceptually, our problem is closer
to a multi-material representation. Nielson and Franke [16] first proposed a tech-
nique for calculating a separating surface in a tetrahedron where its vertices are
classified into various classes. Bronson and colleagues [17] extend this idea to
lattice cleave multiple material domains. A key difference in our approach is
that in any given tetrahedron, an edge can be broken but might still be in the
same connected “material” for fracture, necessitating new cases to be developed
herein.
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3 Algorithm Overview

We use a discretized model of the solid object in the form of tetrahedral mesh
where its vertices are the particles we will simulate. To compute a fracture sur-
face, we run a particle simulation, producing time steps k ∈ 0 . . . N , where each
time step tracks the positions of particles and whether any mesh edge is “bro-
ken” during simulation. For each time step k, we march through all tetrahedra
in the input mesh and perform two operations:

1. look up the case associated with the broken edge pattern (more details in
Sect. 3.3) to obtain a set of triangles per tetrahedron, and

2. transform each triangle’s vertices (more details in Sect. 3.4)

3.1 Surface Modeling

In peridynamics, like many spring-mass simulations, particles are simulated,
move around, and may break bonds connecting them. We use bonds to describe
pairs of particles that interact during the simulation, which by design are a
superset of the mesh edges. When a bond that also exists as an edge in the
input tetrahedral mesh is broken (i.e. during fracture), we consider that edge to
be broken. Our conceptual surface model is that each tetrahedron goes through
states of transitions in the rest space. The transition is categorized by the num-
ber of broken edges in the tetrahedron. Since a tetrahedron has 6 edges, there
are 26 = 64 possibilities of how edges of a tetrahedron can be broken. Collapsing
cases by removing rotational symmetries, we can group these possibilities into
11 cases, described as subcases of 7 transitional states – Case 0 through Case 6
– indicating the number of broken edges.

3.2 Face Topologies

Our 11 cases are best described by first examining the possible configurations
for a triangular face of a tetrahedron. The set of face topologies that we use
is shown in Fig. 1. Using the number of broken edges on a tetrahedral face, we
design the four types of face topologies, F0 through F3. The F0 face topology
is used when no broken edge has occurred on a tetrahedral face. This topology
may make a transition to the F1 when one edge of the tetrahedral face becomes
broken, and so on. Note that in the figure we intentionally make the edge breaks
wider in the F1, F2, and F3 topologies so that these broken edges can be seen
easily. Nevertheless, in general these edge cut-points are placed exactly in the
middle of edges and face cut-points are placed inside the face in the rest position,
waiting to be transformed to the world position.

3.3 Case 0 to Case 6

Figure 2 shows all the possible tetrahedral topologies. These can be grouped into
a collection of cases based on the number of broken edges.
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(a) F0 (b) F1 (c) F2 (d) F3

Fig. 1. Face topologies

(a) Case 0
(4×F0)

(b) Case 1
(2×F0 + 2×F1)

(c) Case 2a
(F0+ 2×F1+ F2)

(d) Case 2b
(4×F1)

(e) Case 3a
(3×F1+ F3)

(f) Case 3b
(F0 + 3×F2)

(g) Case 3c
(2×F1 + 2×F2)

(h) Case 4a
(F1 + 2×F2 + F3)

(i) Case 4b
(4×F2)

(j) Case 5
(2×F2+ 2×F3)

(k) Case 6
(4×F3)

Fig. 2. Generic geometry for the 7 transitional cases with their subcases.

Case 0: Its tetrahedral topology is depicted in Fig. 2a; all four faces have the
face topology of F0. For this case, we only generate a boundary surface, without
an interior surface. For other cases, the interior surfaces are shown.
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Case 1: The topology of this case is illustrated in Fig. 2b where only one
edge is broken. As seen in the figure, the four faces of the tetrahedral topology
become the following: the back and the bottom faces have the F0 face topology,
and the left and the right faces both have the F1 face topology.

Case 2: Two edges are broken. There are two cases for where the two broken
edges may appear on a tetrahedron: (a) the two broken edges are on the same
face, and (b) the two broken edges are not on the same face.

An example of Case 2a is shown in Fig. 2c. When occurring on the same face,
these two broken edges create a crack path across the face of the tetrahedron.
Its topology contains one F0 face, two F1 faces, and one F2 face. For Case 2b,
the topology is different. A crack only appears on each broken edge, as exhibited
in Fig. 2d; all four faces have the topology of F1.

Case 3: This case may lead to three subcases. The first subcase (3a) arises
when all three broken edges are on the same face (as seen in Fig. 2e). One
face topology of this case becomes the F3 topology, which has the “Y” crack
pattern on the face. Another subcase (3b) is where all three edges emanating
from a single vertex are broken. Under this circumstance, the tetrahedron breaks
into two pieces, separating that one vertex from the other vertices. Figure 2f
illustrates this subcase. A third subcase (3c) exists when two adjacent faces of
the tetrahedron have two broken edges on each face, and the other two faces
only have one broken edge. Figure 2g illustrates this subcase.

Case 4: There are two subcases for this situation. The first subcase (4a) is
similar to Case 3b where three broken edges happen to share the same vertex.
This subcase extends to have one more broken edge on the tetrahedron (Fig. 2h).
Its topology contains one F1 face, two F2 faces, and one F3 face. The scenario
for the second subcase (4b) is comparable to a cutting plane slicing through a
tetrahedron as shown in Fig. 2i. The tetrahedron is separated into two pieces.

Case 5: Fig. 2j depicts this scenario. The broken edges cut a tetrahedron
into three separate pieces. Since only one edge is not yet broken (appears as the
bottom-back edge in the figure), the back and bottom faces of the tetrahedron
have the face topology of F2, while the other two faces have the topology of F3.

Case 6: An illustration of this case is shown in Fig. 2k. The tetrahedron
breaks into four disjoint pieces, separating four vertices of the tetrahedron com-
pletely. The face topologies of this case are all F3.

3.4 Surface Transformation

The goal of our surface transformation is to make sure that the transformation
of the fracture surface from the rest space to the world space will not lead to any
gaps or discontinuities in the output surface. Our approach guarantees that any
two triangles adjacent in the rest space will stay adjacent in the world space.
We assign every triangle vertex of the fracture surface to a transformation from
only a single particle. Instead of applying the transformation per tetrahedron,
which could create cracks in the output surface, we apply the transformation per
tetrahedral vertex. By doing this we establish a one-to-one relationship between
simulated particle and triangle vertex of the fracture surface. This may cause
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some minimal stretching and deformation to the fracture surface, but the result
is guaranteed to be crack-free.

After the fracture surface is computed in rest space, we use particle positions
from dynamic simulation to find appropriate transformation for the fracture sur-
face. Using Procrustes superposition [18,19], we compute a rigid transformation
for each simulated particle. During the dynamic simulation, we use the informa-
tion on particle bonds to obtain particle connectivity. The direct connectivity
from particle i to its neighbors is used to calculate transformation for the par-
ticle i. From the connectivity between these particles, we compute the initial
particle position in rest space P and the current particle position in world space
Q. Instead of setting transformation from the centroids of P and Q, we trans-
late with the positions of particle i in rest space and world space, respectively.
We then compute the transformation from translated P to translated Q using
Procrustes superposition. If particle i no longer has any neighbors, we translate
its position and use the rotation matrix from the last simulation time step with
neighbors.

4 Results

In this section, we present the results produced by our technique. We evaluate
the technique by creating four experimental setups. The first experiment is a
solid marble sphere flying into a concrete Stanford Armadillo as shown in Fig. 3.
The model of the sphere has roughly twice the particle density of the Armadillo.
Upon the impact, the sphere propelled the Armadillo backward and caused the
body to break apart and the limbs (right arm and tail) to separate from the
body.

The second experiment is a projectile shot through a glass plate. This experi-
ment is similar to one described in [10]. Nevertheless, we didn’t selectively weaken
particle bonds in the glass plate in order to predetermine the fracture pattern.
The result in Fig. 4 captures a characteristic spider pattern on the fracture sur-
face. In addition, Fig. 4c shows separately the interior and the boundary triangles
of the frame 23. The interior fractures appear at the top of the figure, while the
boundary surface is presented at the bottom. Although, from the outside, some
regions of the glass surface appear untouched, there were fractures that occurred
inside these regions, and our method was able to capture these interior fractures.

The third experiment is a vase dropping onto a table. This experiment shows
the effectiveness of per particle transformation over per component transforma-
tion. By using the information on how edges are broken inside the tetrahedral
mesh, as opposed to which connected component defines the fracture surface, we
can compute fractures between pieces of the component that are still attached
to each other. Figure 5 shows the result of the experiment, where Fig. 5b displays
the simulated particles in world space at frame 70. The particles with the same
color belong to the same connected component. As the figure shows, the major-
ity of the vase body at this frame is still in the same component. We compare
the per particle transformation shown in Fig. 5c with the per component trans-
formation shown in Fig. 5a. The per component transformation fails to separate
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(a) frame 110 (b) frame 120 (c) frame 140 (d) Close-up

Fig. 3. A solid sphere is flying into the Stanford Armadillo.

the vase’s body and the right handle, producing an inconsistency with the parti-
cle simulation. Using the per particle transformation, we see the fracture pieces
of the vase are transformed to practically the same locations of the simulated
particles in the world space.

Another advantage of using per particle transformation is that we can avoid
the temporal discontinuities seen in the case of per component transformations.
This problem occurs when a connected component at one frame breaks into
multiple components in the following frame. In such situations, each compo-
nent acquires a new transformation that may be completely different, leading to
sudden changes in the transformation. This situation creates so-called popping
artifacts, as described in [10]. We perform this per particle transformation in
parallel on the GPU, and the added expense is negligible over per component
transformations.

The fourth experiment is a hand chopping a stack of plates, demonstrating a
complex simulation of multiple object interactions (Fig. 6). The fracture patterns
occurred inside the plates in the rest position (from the top to the bottom plates)
are also shown in Fig. 6b. The top plate appeared to have more fractures caused
by the direct impact from the hand.

5 Discussion

In Sect. 3.2, we identified a set of face topologies and used them throughout our
experiments. The face topology of F3 (three broken edges occurring on the face
topology) in this set has some cut-points inside the face, and they can hamper a
smooth topology transition from the F2 topology to the F3 topology, since the
face cut-points begin to appear in the F3 while no face cut-point exists in the F2.
An alternative, second set of the face topologies can help prevent the recreation
of geometry when this topology transition occurs. A comparison between the
previous and the new F3 topologies is shown in Fig. 7. Although the first set has
more cut-points and preserves object mass, the second set has a simpler topology
which contains 3 triangles instead of 6, and can also provide the smooth topology
transition.
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(a) frame 23 (b) frame 35 (c) Inner & Outer surfaces

Fig. 4. A projectile is shot through a glass plate.

(a) Per component (b) frame 70 (c) Per particle

Fig. 5. A vase is dropped on a table.

(a) frame 60 (b) Fractures inside plates in
the rest position

Fig. 6. A stack of plates is smashed by a hand.
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(a) First set (b) Second set

Fig. 7. The F3 face topology of the first and second sets.

Our fracture geometry extraction approach has some limitation. Since our
transformation for the fracture geometry does not perform collision detection,
we rely on a best fit linear transformation, which assumes rigidity. As a result,
if the collision is not carefully evaluated in the simulation, or if the simulation is
not rigid, the geometry can have self-intersection. Nevertheless, in practice, we
have never encountered this problem. We believe that our approach may toler-
ate some ductility in fracture, but the simulated tetrahedral mesh may deform
significantly. Therefore, we may need a more sophisticated approach than per
particle transformations.

We currently place cut-points in the middle of broken edges, which can limit
artistic control of the fracture appearance. For example, a planar cut through the
material is difficult to obtain if it does not align with the mesh. We plan to extend
our approach to allow placing cut-points more effectively so that manipulation
of roughness or smoothness on the fracture cuts becomes feasible.

Similar to many marching algorithms, our algorithm can create a large num-
ber of triangles. One of our cases will produce as many as 48 triangles for a single
tetrahedron. We are currently investigating adaptive approaches that allow us
to coarsen the mesh in regions that do not require detailed geometry.
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