
3D Perception for Autonomous
Robot Exploration

Jiejun Xu(B), Kyungnam Kim, Lei Zhang, and Deepak Khosla

HRL Laboratories, LLC, Malibu, USA
{jxu,kkim,lzhang,dkhosla}@hrl.com

Abstract. We propose an online 3D sensor-based algorithm for
autonomous robot exploration in an indoor setting. Our algorithm con-
sists of two modules, a proactive open space detection module, and a
reactive obstacle avoidance module. The former, which is the primary
contribution of the paper, is responsible for guiding the robot towards
meaningful open spaces based on high level navigation goals. This gen-
erally translates to identifying open doors or corridor vanishing points
in a typical indoor setting. The latter is a necessary component that
enables safe autonomous exploration by preventing the robot from col-
liding with objects along the moving path. Assuming a 3D range sensor
is mounted on the robot, it continues to scan and acquire signal from its
surroundings as it explores in an unknown environment. From each 3D
scan, the two modules function cooperatively to identify any open spaces
and obstacles within the generated point cloud using robust geometric
estimation methods. Combination of the two modules provides the basic
capability of a autonomous robot to explore an unknown environment
freely. Experimental results with the proposed algorithm on both real
world and simulated data are promising.

1 Introduction

The ability to explore unknown and dynamic environments is an essential compo-
nent of an autonomous mobile robot system. The basic problem is the following:
after being deployed into an unknown environment, a robot must continuously
perform sensing operations to decide the next exploration location, and possi-
bly maintain an internal representation of the environment. A well-studied and
related problem is the SLAM (Simultaneous Localization and Mapping) prob-
lem, whose goal is to integrate the information collected during navigation into
an accurate map [1]. However, SLAM does not address the question of where
the robot should go next. Another related and well-known problem is path plan-
ning [2]. Unlike the original problem, where complete or partial knowledge of the
environment is given, exploring an unknown environment is usually performed
in a step-by-step greedy fashion. Instead of planning the entire trajectory of the
mobile robot in advance, we emphasize an exploration strategy which plans one
step (or a few steps) ahead based on the information about the environment
acquired by the onboard sensors. In other words, the main problem we address
c© Springer International Publishing Switzerland 2015
G. Bebis et al. (Eds.): ISVC 2015, Part I, LNCS 9474, pp. 888–900, 2015.
DOI: 10.1007/978-3-319-27857-5 79



3D Perception for Autonomous Robot Exploration 889

in this work is determining where the robot will move next. Specifically we focus
our attention on an indoor environment, such as corridors or warehouses. In such
a setting, the next “good” candidate positions to explore are typically meaningful
open spaces based on high-level navigation goals (e.g., open doors and vanishing
point direction).

Another necessary component for autonomous robot exploration is the “sense
and avoid” capability [3,4]. To ensure safe navigation, a robot must be able to
achieve self-separation and collision avoidance with other objects (e.g., pedestri-
ans and other robots) on its moving path. To this end, we propose a robust online
algorithm consisting of two modules: a proactive open space detection module
and a reactive obstacle avoidance module. We believe an effective combination of
the two modules provides the basic capability to an autonomous robot to freely
explore an unknown environment.

Many 2D-based vision algorithms have been proposed for robot exploration in
both indoor [5,6] and outdoor spaces [7,8]. However, 2D visual information could
be difficult to use in a 3D world, especially when the 3D structure needs to be
inferred for the specific application [9]. The advent of inexpensive 3D (or RGB-
D) sensing hardware such as the Microsoft Kinect, Asus Xtion and PrimeSense
Capri sensors brings new opportunities to capture 3D environment in a more
straightforward manner [10–12]. In this paper, we focus on 3D perception for
the indoor exploration task. Our proposed algorithm functions by continuously
acquiring and processing 3D data as it moves in an unknown environment. From
each 3D scan, the two modules in the proposed algorithm work cooperatively to
identify any open spaces and obstacles within the 3D point cloud using robust
geometric estimation methods. The next moving direction can be determined by
using results from both of these modules. A key benefit of our algorithm is that
it is platform-agnostic and can be applied to both ground-based and aerial (e.g.,
Micro Air Vehicles) robots. We believe our work is applicable to other related
areas, such as search-and-rescue, mapping, and 3D modeling.

2 Related Work

In this section, we provide a brief survey of existing literature related to our
work on indoor exploration, specifically focusing on door detection and obstacle
avoidance. Several visual door detection algorithms have been proposed since it is
a topic of much relevance in both robot navigation and manipulation tasks. Most
of the earlier works focused on extracting 2D appearance and shape features
to recognize doors. For example, Murillo et al. [13] proposed a probabilistic
approach by defining the likelihood of generating the door configurations with
various features. Tian et al. [14] further proposed a more generic geometric-
based approach to detect doors based on stable features, such as edges and
corners. In [15], a dedicated real-time edge-based tracker is used to locate and
track both open and closed doors within a corridor. A similar approach is also
seen in [16]. However, as in most 2D vision algorithms, these approaches are
sensitive to common factors such as illumination changes, occlusion, clutter, and
perspective distortion. On the other hand, recent advances in sensor technology



890 J. Xu et al.

have enabled capture of 3D data with inexpensive range sensors (e.g., Kinect,
Xtion). The additional depth information is especially helpful in detecting open
spaces in indoor environments. In addition, the quality of 3D point cloud data is
less sensitive to the aforementioned environmental factors. Recently, promising
results have been shown by Rusu et al. [17] in detecting doors with only 3D point
clouds. In their work, the main focus was to open and close doors through precise
arm manipulation based on a pre-learned door template. Similarly Derry et al.
proposed a 3D based algorithm to detect doors for assistive wheelchairs control
[18]. Their algorithm imposes a prior assumption on the geometric orientation of
the point cloud. For instance, the corners and boundaries of the doors are defined
based on the assumption that the robot and doors reside on the same surface;
thus it is not applicable to aerial robots. Furthermore, their algorithm only
detects doors from a wall that is mostly front-facing. In contrast, our proposed
algorithm explicitly computes the geometry of the 3D point cloud to detect open
doors independent of robot position and is also capable of detecting doors from
multiple walls at different angles with respect to the robot.

Another research area relevant to this paper is obstacle detection and avoid-
ance. Due to the growing interest in small robots navigating in indoor and other
GPS denied environments, quite a few research works have been carried out to
utilize visual sensors to ensure safe maneuver in these conditions. Techniques
focusing on monocular (2D) sensors have long been the main studied area. This
includes an optical flow-based approach by Zingg et al. [5] and an imitation
learning-based approach by Ross et al. [19]. In the recent years, there has been
much interest in developing similar types of methods for 3D range sensor-based
obstacle avoidance. However, regardless of 2D or 3D vision, a common theme
across most works on obstacle avoidance is the reactive action control for robots.
This means that the control system will react and prevent the robot from collid-
ing with an impending obstacle. However, it does not plan ahead for exploring
far away spaces. Our proposed algorithm overcomes this weakness by coupling
obstacle avoidance with active open space detection in autonomous exploration.

3 Methodology

This section presents the details of our algorithm. We assume a 3D range sensor
is mounted on the robot. In our work, we utilize the Xtion sensor. The device
consists of two cameras and an Infrared (IR) laser light source. The IR source
projects a pattern of dark and bright spots onto the environment. This pattern is
then received by one of the two cameras which are designed to be sensitive to IR
light. Depth measurements can be obtained from the IR pattern by triangulation.
Subsequently, a point cloud is constructed internally in the sensor and is then
requested by our algorithm directly [10]. Note that the returned point cloud is
in real-world scale, and is described in a common metric system. Given the 3D
point cloud, the outputs of the algorithm are the direction of the open space
(e.g., open doors or the vanishing point) and the direction to avoid the obstacle
(if applicable) with respect to the sensor coordinates. Both of these directions



3D Perception for Autonomous Robot Exploration 891

Fig. 1. Examples of vertical plane extraction. Top: input point clouds from an Xtion
sensor. Note that viewing angle w.r.t sensor decreases from top to bottom. Bottom:
extracted vertical planes after the filtering and downsamping step (color indicates dis-
tance from the sensor) (Color figure online).

can be combined to guide the robot towards the next exploration position. We
now describe the two modules of the proposed algorithm.

3.1 Proactive Open Space Detection

Filtering and Downsampling: 3D range sensors typically generate voluminous
data that cannot be processed in its entirety for many real-time applications.
Thus the first step of our algorithm is to reduce the number of points in the point
cloud by filtering and downsampling for efficient subsequent computations. Fil-
tering consists of removing points which lie outside of a specific range. Typically
an Xtion sensor has an effective range of 5 meters. Thus in our work, we remove
all points beyond 5 meters.

In terms of downsampling the point cloud, a typical voxelized grid approach is
taken. A 3D voxel grid is essentially a set of fixed width 3D boxes in space over the
input point cloud data. In each voxel, all the points will be approximated by their
centroid. A 3D voxel grid can be created efficiently with a hierarchical Octree
[20] data structure. Each Octree node has either eight children or no children.
The root node describes a cubic bounding box which contains all points. At every
tree level, this space is further subdivided by a fixed factor, which results in an
increased voxel resolution. In this work, we utilize the VoxelGrid functionality
implemented in the Point Cloud Library (PCL). The size of each voxel is fixed
at 0.05 meter. A significant portion of the points are removed by the end of this
step.

Plane Extraction: In this step, we extract ground surface and walls (e.g., vertical
planes which reside on the ground surface) from the previously processed point
cloud. The ground surface is important as it serves as the key reference for
geometrical estimates. The walls are the candidate search space for open doors



892 J. Xu et al.

in the context of our application. This step is essentially done by fitting a planar
model to the point cloud and finding the ones with sufficient number of points.
To speed up the search process, Random Sample Consensus (RANSAC) [21]
algorithms is used to generate plane model hypotheses. The Point Cloud Library
provides a convenient implementation to extract the planes in their parameter
form ax + by + cz + d = 0. Planes are extracted according to their size in a
sequential order. At each iteration, the set of points (inliers) aligned with the
model hypotheses is selected as the support for the planar model, and they are
archived and removed from the original point cloud. The remaining points will
be used to identify the next best plane. This process continues to detect planes
and remove points until the original point cloud is exhausted or its size reaches
a certain threshold. Note that, for each detected plane, an additional step is
taken to project all inlier points to the plane such that they lie in a perfect plane
model. This makes subsequent computation more efficient and less error prone.

With the extracted planes, the next step is to determine the one that cor-
responds to the ground surface and the ones that correspond to the walls.
Recall that the normal of a plane can be computed using the planar model
coefficient directly. Given the plane (y = 0) with normal n0 =< 0, 1, 0 >, the
angle θ between an arbitrary plane n1 =< a1, b1, c1 > and n0 is computed as

θ = arccos
(

b1√
a2
1+b21+c21

)
180/π. Thus, the ground plane can be identified by

computing the angles between all planes with respect to n0 and keeping the one
pair which is in parallel. If more than one pair is found, the lower plane will be
kept. In our implementation, we allow a ±15◦ to compensate for possible sensor
movements. Similarly we can identify walls by keeping planes which are vertical
to the identified ground surface. A similar strategy has been applied in [22] to
identify walls, ceiling and floor to help maintain a Micro Air Vehicle (MAV) in
the center of a corridor. Naturally this is also applicable to ground-based robots.
Examples of extracted vertical planes from various input point clouds are shown
in Fig. 1. Subsequent steps will operate on these planes for open door extraction.

Open Door Detection: At a high level, our algorithm scans horizontally at a
certain height of the vertical plane (wall) for gaps which are within the width
of a typical door. When a gap of the appropriate width is identified (thmin

g ≤
gs ≤ thmax

g ), a potential open door is detected. In order to detect open gaps, we
first define a specific height hs for scanning. Note that instead of defining the
height with respect to sensor as in [18], we define the height with respect to the
ground surface in the point cloud. After that, we collect a set of points which are
nearby with respect to the reference height. A small distance threshold ths (0.05
meter in our work) is used in our implementation to define the nearby radius. In
actual implementation, our algorithm first goes through each point in the point
cloud and computes its distance to the ground surface. The computation of the
distance between a point and a plane in 3D is as follow:

Let a0x+ b0y + c0z +d0 = 0 be the parameter form of the ground plane, and
xq = (xq, yq, zq) be a point in 3D space. A vector from the plane to the point
xq is given by



3D Perception for Autonomous Robot Exploration 893

w = −
⎡
⎣x − xq

y − yq

z − zq

⎤
⎦. (1)

Projecting w onto the normal vector of the plane n0 =< a0, b0, c0 > gives
the distance D from the point to the plane as

D =
|n0 · w|

|n0|
=

a0xq + b0yq + c0zq + d0√
a2
0 + b20 + c20

.
(2)

Since the point cloud has been previously filtered and downsampled, con-
ducting the above operation on the point cloud is very efficient. A point whose
distance to the ground surface is approximately equal to the defined height (i.e.,
hs ± ths) will be included in the point set. Once the points are collected, the
algorithm computes the dominant direction of the point set (either in X-axis
or Z-axis), and then sorts all the points in the set according to the computed
direction. After that, the algorithm goes through each point sequentially in the
sorted order. All the gaps can be efficiently identified in just one pass by sim-
ply checking the distances between each consecutive pair of points. Whenever
the distance between two consecutive points (p1s, p2s) falls within the pre-defined
width range (0.8 to 1.6 meters in this work), a candidate open space is reported
to be detected. Although it is usually enough to determine open doors in the
indoor setting with one scan, our algorithm scans a wall at two different heights.
An open door is only reported if the two detected gaps are sufficiently close. In
the case when precise open space is required, we can then connect the boundary
points based on the open gaps. In the rare event of a false positive, the obstacle
avoidance module (see Sect. 3.2) will be activated to prevent collisions.

Vanishing Point Estimation: In the case where doors are not available, the robot
should continue to explore the indoor environment via wall following or moving
to the end of the corridor. This can be usually achieved by computing vanishing
points from the sensed data. Typically they are estimated by finding the inter-
secting point of major line segments in 2D images [6,15]. In the 3D case, we take
a more direct approach to approximate vanishing points based on the wall-floor
intersecting line. This line has been shown to provide important geometrical
heuristics in indoor navigation [15,23].

To detect the wall-floor intersecting line, we utilize the identified ground plane
and vertical walls. The computation is carried out with a standard Lagrange
multiplier approach suggested in [24]. Basically the intersecting line from the
two planes is represented by a point on the line x = (x, y, z) and a directional
vector n =< a, b, c > originating from the point. Thus the goal is to identify the
two. Assuming the two planes (the wall and the ground surface) are given by the
normal vectors, n1 =< a1, b1, c1 > and n2 =< a2, b2, c2 >, and arbitrary points
on the two planes are x1 = (x1, y1, z1) and x2 = (x2, y2, z2). The directional
vector of the intersecting line is easily computed as the cross product of the two
normal vectors, i.e., n = n1 × n2.



894 J. Xu et al.

Fig. 2. (a) Left: a corridor snapshot. Right: detected wall-floor intersecting lines and
the derived vanishing point. (b) Example of obstacle extraction. (Second pedestrian is
not kept as he falls out of the predefined 5 m range).

To compute the point x, we introduce another arbitrarily chosen point
x0 = (x0, y0, z0), which could simply be the origin or any other point. The
point x on the intersecting line should be as close as possible to x0. This is a
standard problem for Lagrange multipliers, with one objective function and two
constraints: (x − x1) · n1 = 0 and (x − x2) · n2 = 0 (i.e., x must be on both
planes). The cost function W containing both factors is

W = ‖x − x0‖2 + λ(x − x1) · n1 + μ(x − x2) · n2

= (x − x0)2 + (y − y0)2 + (z − z0)2 + λxa1 + λyb1

+ λzc1 − λx1 · n1 + μxa2 + μyb2 + μzc2 − μx2 · n2

(3)

where λ and μ are the two Lagrange multipliers. In order to solve for x, we
compute the partial derivatives (∂W

∂x , ∂W
∂y , ∂W

∂z , ∂W
∂λ , ∂W

∂μ ) and set them to zero.
This can be rewritten as five linear equations stacking in matrix form

⎛
⎜⎜⎜⎜⎝

2 0 0 a1 a2

0 2 0 b1 b2
0 0 2 c1 c2
a1 b1 c1 0 0
a2 b2 c2 0 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

x
y
z
λ
μ

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

2x0

2y0
2z0

x1 · n1

x2 · n2

⎞
⎟⎟⎟⎟⎠. (4)

Solving the linear system for (x, y, z, λ, μ) gives the point x on the intersecting
line. Together with the directional vector n, the wall-floor intersecting line is then
determined. Finally, the vanishing point is obtained as the furthest point on the
line parallel to the wall-floor intersecting line staring from the origin (i.e., sensor
location). Figure 2(a) shows an example of detected wall-floor intersecting lines
and the vanishing point for the input point cloud.

3.2 Reactive Obstacle Avoidance

In order for the robot to navigate autonomously, an important step is to enable it
to avoid obstacles reliably in its environment. We have developed a variant of the
navigation strategy proposed in [4] to determine an alternate moving direction



3D Perception for Autonomous Robot Exploration 895

for the robot when obstacles are present. The basic idea is to compute and
compare open path lengths available to the robot for different angular directions.
Prior to this step, the obstacles must be first identified. Recall that the ground
plane has been identified and segmented out from the input point cloud for open
space detection as described in Sect. 3.1. The rest of the point cloud contains
points that may correspond to obstacles residing on the current moving path
of the robot. Figure 2(b) shows the remaining points after the ground plane has
been removed from the input point cloud. As can be seen, multiple clusters
are clearly formed based on these points. Following this observation, we simply
perform obstacle checks using these remaining 3D points. Given a point cloud O
consisting of obstacles, a robot with radius r, and the current desired direction of
travel θd, we first define the open path length d(θ) as a function of the direction
of travel θ as: d(θ) = min

p∈ ̂O

(
max(0,

∥∥∥p · θ̂
∥∥∥ − r)

)
, assuming the origin of the

coordinate system coincides with the sensor in the center of the robot. p is a 3D
point in vector form, θ̂ is a unit vector in the direction of the angle θ. Projecting
p on θ̂ through the dot product gives the open path length in the direction of
θ. Subtracting r compensates for the size of the robot and excludes any open
paths which are shorter than the robot radius. Note that we did not go through
every point in the input point cloud as suggested in [4]. Instead, we modified
the original strategy by only considering obstacle points Ô within a certain
range with respect to the desired direction of travel θd. In this work, only points
within ±45◦ with respect to θd are considered. Subsequently the chosen obstacle
avoidance direction θ∗ is calculated as θ∗ = argmaxθ(d(θ)cos(θ−θd)). Essentially
it trades off between: maximizing the open path length and minimizing the
deviating angles.

Algorithm 1 summarizes the proposed autonomous robot exploration algo-
rithm, which includes both proactive open space detection and reactive obstacle
avoidance. Figure 3(a) shows a graphical example of the overall 3D point cloud
processing by the proposed algorithm. Please refer to Figs. 4, 5 and 6 for more
details.

4 Experiments and Results

We have fully implemented the proposed algorithm in C++ under the ROS
(Robot Operating System) framework. Specifically, the proactive open space
detection module and the reactive obstacle avoidance module are implemented in
separate ROS packages complied with the general design principle. Experiments
are carried out with a laptop computer with Intel Core i7 CPU and 8 GB of
RAM. The computer is configured with ROS Hydro, OpenNi driver v1.5.4, and
PCL (Point Cloud Library) 1.6.

We primarily focus on two indoor scenarios, a corridor and a warehouse. In
the first scenario, data is captured live by an Asus Xtion Pro RGB-D sensor
mimicking the behavior of a ground-based robot. In the second scenario, data



896 J. Xu et al.

Algorithm 1. Autonomous Robot Exploration
Input: A point could P captured by a range sensor, and current desired direction θd
Output: Direction θo for nearest open door, direction θv for vanishing point, direction

θa to avoid obstacles if applicable.
1: Pf ← {}, O ← {}, D ← {}, V ← {}, A ← {}
2: Pf ← DistanceF ilter(P )
3: Pf ← V oxelGridDownsample(Pf )
4: Np ← α · |Pf |
5: Find dominant ground plane within Pf ; project nearby points onto the plane (→

Pground)
6: O ← Pf\Pground

7: while Np < |Pf | do
8: G ← {}
9: Extract dominant plane, project nearby points onto plane (→ Pcurr)

10: if Pcurr is a vertical plane then
11: Collect a set of points Ls at predefined height hs ± ths w.r.t. ground plane
12: Scan points in Ls sequentially according dominant direction
13: if ‖p1

s − p2
s‖ ∈ [thmin

g , thmax
g

]
for two consecutive points then

14: gs ←(p1
s, p2

s)
15: G ← {G ∪ gs}
16: end if
17: (Optional) Repeat scanning at different height
18: if gs ∈ G are consistent then
19: D ← {D ∪ mean(G)}
20: end if
21: Compute vanishing point vcurr based on wall-floor intersecting line
22: V ← {V ∪ vcurr}
23: end if
24: Pf ← Pf\Pcurr

25: end while
26: Compute θo based on coordinates of nearest door in D
27: Compute θv based on coordinates of VPs in V
28: Compute θa based on O and θd
29: return θo, θv, and θa

Note: α = 0.2, hs = 0.8, ths = 0.05, thmin
g = 0.8, thmax

g = 1.6

is generated in simulation through Gazebo1 mimicking the behavior of a aerial-
based robot. In particular, we utilize the ROS Hector Quadrotor package2 to
model the dynamics and control of a MAV. Experimental parameters are consis-
tent in both real world and simulated data with minor exceptions. Specifically,
we increase the radius threshold ths from 0.05 to 0.15 when collecting points
for wall-scanning (see Sect. 3.1). This is because simulated point cloud appears
to have different density (i.e.,sparser) compared to real world collected data. In

1 http://wiki.ros.org/gazebo.
2 http://wiki.ros.org/hector quadrotor.

http://wiki.ros.org/gazebo
http://wiki.ros.org/hector_quadrotor


3D Perception for Autonomous Robot Exploration 897

Fig. 3. (a) An integrated view showing various detections from 3D processing: open
doors are marked with text “Door” (in red), yellow arrow indicates the nearest door,
“VP” (in pink) indicates the detected vanishing point, green arrow indicates evading
direction if obstacle is detected. (b) Quantitative results of open doorway detection on
real world data captured with an Xtion sensor and simulated data generated in Gazebo
(Color figure online).

addition, we adjust the distance filter to keep points within 8 meters from the
sensor along the Z-axis, as simulated depth data has larger effective range.

In the first experiment, we focus on evaluating the effectiveness of the proac-
tive open door detection module. Figure 3(b) summarizes the quantitative results
of the proposed algorithm under different test configurations: single wall single
door, single wall multiple doors, and multiple walls multiple doors. For each
configuration, a total of fifteen test cases (at different angles and orientations)
are randomly selected from experimental data. This is essentially done by taking
point cloud snapshots from the 3D data. The first two configurations effectively
cover open doors with angles ranging from 0◦ to 75◦ offset with respect to the
sensor. The third configuration cover angle offset at about 90◦. Overall, detec-
tion precision and recall are very high for real-world data (100% in most cases).
Detection results are slightly lower for simulation data, as the scenes are more
diverse. We observe that most of false positives come from (non-door) open
spaces that coincide with typical door width. Currently, the proposed algorithm
does not provide a means to distinguish the two cases. However, this could be
solved by introducing additional geometrical templates as done in [17]. Figures 4
and 5 show visual examples of detecting open doors in both real world and sim-
ulated data.

We also evaluate the obstacle avoidance module under different indoor set-
tings. In total, we test the algorithm against six types of obstacles (e.g., pedes-
trian, box, and four types of chairs) in three different locations (e.g., corridor,
office, and large conference room). In all cases, the reactive obstacle avoidance
module is able to provide effective evading directions. Figure 6 presents a number
of examples of the algorithm in action. The current implementation allows both
modules to run simultaneously at about 10 Hz on the laptop computer, which
makes it suitable for online applications.



898 J. Xu et al.

Fig. 4. Correctly detected doors from a ground-based robot platform using real world
corridor data. Examples include doors detected at different angles (rows correspond
to roughly 0◦, 45◦, 90◦) and orientations with respect to the range sensor. Detected
doors are indicated by green lines and marked with red text “Door”. Yellow arrows
indicate nearest doors to the robot based on the current scanned point cloud (Color
figure online).

Fig. 5. Correctly detected doors from an aerial platform (i.e., MAV) using simulated
warehouse data. Views from the MAV are shown as well.

Fig. 6. Examples of obstacle avoidance. Green arrow indicates computed optimal mov-
ing direction to avoid collision. (Point cloud on the right is captured with a Capri sensor,
thus lacks the color information) (Color figure online).



3D Perception for Autonomous Robot Exploration 899

5 Discussion and Conclusions

This work presents an online algorithm for autonomous robot exploration in
indoor settings using a 3D range sensor. Our system combines a proactive open
space detection module with a reactive obstacle avoidance module to provide the
basic autonomous functionality for a robot to navigate and explore an unknown
environment. A key advantage of our proposed proactive algorithm’s door detec-
tion capability is that it can detect doors accurately (1) irrespective of robot
position and, (2) simultaneously from multiple walls at different angles with
respect to the robot. By incorporating this accurate detection capability into a
high level proactive controller and combining it with a reactive controller, we
provide the robot with an autonomous exploration strategy. Promising results
with this exploration strategy have been shown for a robot motion in both real
and simulated worlds.

3D sensors are gradually becoming mainstream and available in small form
factor at low cost. This makes them an attractive choice for mobile power-
constrained robotic platforms such as MAV. This paper is a step towards
enabling low-cost MAVs that can explore and map unknown indoor environ-
ments equipped with 3D range sensors. By combining the proposed algorithms
with more traditional 2D sensors (e.g., camera) and algorithms, we can further
improve the exploration and navigation capabilities and also extend navigation
to outdoor settings. A future research direction is to integrate the proposed
algorithms with long-term path planning and control schemes.

Acknowledgements. This material is based upon work supported by Defense
Advanced Research Projects Agency under contract numbers W31P4Q-08-C-0264
and HR0011-09-C-0001. Any opinions, findings and conclusion or recommendations
expressed in this material are those of the author and do not necessarily reflect the
view of the Defense Advanced Research Projects Agency. The views and conclusions
contained in this document are those of the authors and should not be interpreted as
representing the official policies, either expressly or implied, of the Defense Advanced
Research Projects Agency or the U.S. Government.

References

1. González-Baños, H.H., Latombe, J.C.: Navigation strategies for exploring indoor
environments. I. J. Robotic Res. 21, 829–848 (2002)

2. Dudek, G., Jenkin, M.R.M.: Computational principles of mobile robotics.
Cambridge University Press, New York (2000)

3. Lai, J., Mej́ıas, L., Ford, J.J.: Airborne vision-based collision-detection system. J.
Field Robot. 28, 137–157 (2011)

4. Biswas, J., Veloso, M.M.: Depth camera based localization and navigation for
indoor mobile robots. In: RGB-D Workshop in Robotics: Science and Systems
(RSS) (2011)

5. Zingg, S., Scaramuzza, D., Weiss, S., Siegwart, R.: MAV navigation through indoor
corridors using optical flow. In: ICRA. IEEE (2010)



900 J. Xu et al.

6. Bills, C., Chen, J., Saxena, A.: Autonomous MAV flight in indoor environments
using single image perspective cues. In: ICRA, pp. 5776–5783. IEEE (2011)

7. Fraundorfer, F., Heng, L., Honegger, D., Lee, G.H., Meier, L., Tanskanen, P.,
Pollefeys, M.: Vision-based autonomous mapping and exploration using a quadro-
tor mav. In: IROS. (2012)

8. Meier, L., Tanskanen, P., Heng, L., Lee, G.H., Fraundorfer, F., Pollefeys, M.:
Pixhawk: a micro aerial vehicle design for autonomous flight using onboard com-
puter vision. Auton. Robots 33, 21–39 (2012)

9. Celik, K., Chung, S.J., Clausman, M., Somani, A.K.: Monocular vision slam for
indoor aerial vehicles. In: IROS. IEEE (2009)

10. Cruz, L., Lucio, D., Velho, L.: Kinect and RGBD images: challenges and applica-
tions. In: SIBGRAPI Tutorials (2012)

11. Herbst, E., Ren, X., Fox, D.: RGB-D flow: dense 3-D motion estimation using color
and depth. In: ICRA, pp. 2276–2282 (2013)

12. Shen, S., Michael, N., Kumar, V.: Autonomous indoor 3D exploration with a micro-
aerial vehicle. In: ICRA, pp. 9–15. IEEE (2012)

13. Murillo, A.C., Kosecká, J., Guerrero, J.J., Sagüés, C.: Visual door detection inte-
grating appearance and shape cues. Robot. Auton. Syst. 56, 512–521 (2008)

14. Tian, Y., Yang, X., Arditi, A.: Computer vision-based door detection for acces-
sibility of unfamiliar environments to blind persons. In: Miesenberger, K., Klaus,
J., Zagler, W., Karshmer, A. (eds.) ICCHP 2010, Part II. LNCS, vol. 6180, pp.
263–270. Springer, Heidelberg (2010)

15. Sekkal, R., Pasteau, F., Babel, M., Brun, B., Leplumey, I.: Simple monocular door
detection and tracking. In: IEEE International Conference on Image Processing,
ICIP 2013, Melbourne, Australie (2013)

16. Fernández-Caramés, C., Moreno, V., Curto, B., Rodŕıguez-Aragón, J., Serrano, F.:
A real-time door detection system for domestic robotic navigation. J. Intell. Robot.
Syst. 76(1), 119–136 (2013)

17. Rusu, R.B., Meeussen, W., Chitta, S., Beetz, M.: Laser-based perception for door
and handle identification. In: International Conference on Advanced Robotics
(ICAR) (2009)

18. Derry, M., Argall, B.: Automated doorway detection for assistive shared-control
wheelchairs. In: ICRA, pp. 1254–1259 (2013)

19. Ross, S., Melik-Barkhudarov, N., Shankar, K.S., Wendel, A., Dey, D., Bagnell,
J.A., Hebert, M.: Learning monocular reactive uav control in cluttered natural
environments. In: CoRR (2012)

20. Meagher, D.: Geometric modeling using octree encoding. Comput. Graph. Image
Process. 19, 129–147 (1982)

21. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography. Commun.
ACM 24, 381–395 (1981)

22. Lange, S., Sünderhauf, N., Neubert, P., Drews, S., Protzel, P.: Autonomous corridor
flight of a UAV using a low-cost and light-weight RGB-D camera. In: Rueckert, U.,
Joaquin, S., Felix, W. (eds.) Advances in Autonomous Mini Robots. Non-series,
vol. 101, pp. 183–192. Springer, Heidelberg (2012)

23. Pasteau, F., Babel, M., Sekkal, R.: Corridor following wheelchair by visual servoing.
In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS
2013, Tokyo, Japon (2013)

24. Krumm, J.: Intersection of two planes (2000)


	3D Perception for Autonomous Robot Exploration
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Proactive Open Space Detection
	3.2 Reactive Obstacle Avoidance

	4 Experiments and Results
	5 Discussion and Conclusions
	References


