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Abstract. For the purpose of 3D keypoint matching, a Local Reference
Frame (LRF), a local coordinate system of the keypoint, is one impor-
tant information source for achieving repeatable feature descriptions and
accurate pose estimations. We propose a robust LRF for two main point
cloud disturbances: density differences and partial occlusions. To gener-
ate LRFs that are robust to such disturbances, we employ two strate-
gies: normalizing the effects of point cloud density by approximating
the surface area in the local region and using the dominant orientation
of a normal vector around the keypoint. Experiments confirm that the
proposed method has higher repeatability than state-of-the-art meth-
ods with respect to density differences and partial occlusions. It was also
confirmed that the method enhances the reliability of keypoint matching.

1 Introduction

3D object detection and localization using point clouds are basic tasks for robots
working in human living environments. However, the performance of vision sys-
tems for achieving such tasks is sometimes disturbed by two types of conditions.
One is the difference in point cloud density between an object model and a target
object in the input scene, because the distance between a range sensor and the
target object is unknown. The other is the occurrence of missing point clouds,
because in this case objects frequently occlude each other in the input scene.

Model-based methods are among the types of methods typically used for 3D
object recognition. Such methods generally have main four modules, one each
for:
1. Extracting keypoints from the object model and the input scene
2. Describing 3D features
3. Finding corresponding points between the object model and the input scene
4. Estimating position and pose of the object model in the input scene.

After the module 1, a Local Reference Frame (LRF), a local coordinate sys-
tem of the keypoint, is calculated. The LRF consists of three orthogonal unit 3D
vectors. A rigid transformation that aligns corresponding LRFs can be deter-
mined as the pose parameter of the object model in the input scene. In addition,
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Fig. 1. 3D keypoint matching performance. (a) Recall vs. 1-precision curve. Keypoints
were matched to each other by using a SHOT descriptor and four types of LRFs. (b),
(c) Example matching results for SHOT-LRF and the proposed LRF with the SHOT
descriptor. Green/red lines show correct/incorrect correspondences.

most of the 3D features [1,2] are calculated by dividing support regions into
multiple cells according to each axis direction of the LRF, and the geometric
relations of point clouds in the cells are converted to a feature vector. In this
way, a repeatable LRF can enhance not only the accuracy of pose estimation, but
also the reliability of keypoint matching. Figure 1 (a) shows recall vs. 1-precision
curves we obtained in a keypoint matching experiment. In this experiment, we
used a pair of point clouds with different densities and missing region.

We used a SHOT descriptor and four types of LRFs: Mian [3], SHOT [4],
RoPS [2], and BOARD [5]. Note that the only difference among the curves is
due to the methods used to calculate the LRF. Replacing the LRF confirmed
the keypoint matching performance changed. Figure 1 (b) and (c) show keypoint
matching results; (b) shows those obtained with SHOT-LRF and (c) shows those
obtained with the proposed LRF. Many more corresponding points were obtained
for the (c) results than for the (b) results.

These results led us to conclude that we should select a suitable LRF by
considering the disturbances that occur in the application environment. The
purpose of our research is to achieve a repeatable LRF for changing point cloud
density and occlusions.

2 Related Work

There are two types of LRFs. One uses the Eigenvector of a covariance matrix
generated by a point cloud within the support region centered in the keypoint.
The methods described in [3,6] are the simplest of these. With these methods,
Eigenvectors are assigned as each of the LRF axes. However, the directions of
Eigenvectors have sign ambiguities that decrease the uniqueness of the LRF. In
order to solve this problem, the SHOT [4] determines the major direction by
counting the number of 3D points existing on both sides of the support regions.

RoPS [2] and DosSants [7] have been used to tackle the problem of point
cloud density. With these methods, a normalized scatter matrix is used for gen-
erating the LRF. This matrix is normalized by the total area of the local surface,
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which is approximated as the summation of the area of each mesh. However, the
repeatability of the direction of each axis will decrease when point clouds within
the support region are partially missed due to occlusion. This is because in
such cases the point cloud distribution will be changed. The problem with these
Eigenvector-based methods is that all points within the local region contribute
to the calculation of the axis direction.

The other LRFs calculate three axes one by one [1,5,8–12]. These methods
commonly assign the normal vector of a local surface as the z-axis of the LRF
because the direction of it has high repeatability. Therefore, the method used to
calculate the x-axis characterizes each LRF. In the methods proposed in [9,10],
an arbitrary point within the support region is projected onto the tangent plane
of the z-axis. A vector that indicates the projected point from the origin of the
z-axis is assigned as the x-axis of the LRF. However, the uniqueness of the x-axis
direction is not so high because it is difficult to obtain the repeatable projected
point.

The BOARD [5] has solved this problem by detecting the point that has the
most inclined normal vector respective to the z-axis, and it is projected onto the
tangent plane. This method is robust to occlusions because it estimates whether
the most inclined normal vector exists or not in the missing region. The Mesh
HoG [12] determines the dominant orientation of the polar angle on the tangent
plane of the z-axis by using the polar histogram of the surface gradient. This LRF
is also robust to occlusions because “dominant” information has been used for
generating the x-axis. However, it has been reported in [2] that the repeatability
of LRF decreases when point clouds have different densities. Therefore, there is
no method that is robust to density differences and occlusions at the same time.

3 DPN-LRF: Dominant Projected Normal LRF

3.1 Overview

To deal with the effects of differences in point cloud density and those of occlu-
sions, the proposed LRF consists of two strategies. The first is to take into
account the weighting factor for the area of the local surface mesh as reported
in [2]. This is one good solution for solving the problem of point cloud density.
It also uses information about the area of the local surface. We also propose a
method for quickly calculating the weighting factor for the area of the local sur-
face mesh. The other strategy is to determine an x-axis that is robust to partial
occlusions. Since the proposed method assigns the Dominant Projected Normal
vector as the x-axis of the LRF, we named this method DPN-LRF for short.

3.2 Method for Generating the DPN-LRF

The DPN-LRF at the keypoint p and its normal vector n is calculated by using
point cloud {p0,p2, ...,pN} and its normal vectors {n0,n1, ...,nN} within the
support region centered in the p. Figure 2 shows an overview of the method used
to generate the DPN-LRF.
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Fig. 2. Overview of the method used to generate DPN-LRF. At left is a point cloud
within the support region centered on the keypoint (red point). At center top is the
tangent plane of the z-axis of the DPN-LRF; θ shows orientation of the projected
normal vector. At center bottom is the polar histogram. At right is the DPN-LRF on
the point cloud within the support region.

z-axis: This axis is defined as the Eigenvector corresponding to the smallest
Eigenvalue of covariance matrix generated from point cloud around keypoints.
This vector has sign ambiguity, but this problem can easily be solved by deter-
mining that the positive direction is the direction towards the viewpoint. This
vector corresponds to the normal vector n of each point. We used point cloud
within 10 mr (“mr”=mesh resolution) p for calculating covariance matrix.

x-axis: This axis is generated as the dominant orientation of the polar direction
on the tangent plane of the z-axis centered in the p. Here, the orientation θ of
the projected normal vector nprojected onto the tangent plane is voted to a polar
histogram that has 36 bins (covering 360 degrees). To deal with aliasing, each
vote is smoothed by using Gaussian distribution. In this histogram, a direction
that has a high voted value is assigned as the x-axis direction. To generate a
highly accurate axis, Bilinear interpolation is applied by using neighboring bins.
Because this process uses histogram-formed data, the generated x-axis becomes
stable even if point clouds are missed due to occlusions. The voted value is
calculated by multiplication of the following three weighting factors.

w1 is the weighting factor for normalizing density differences in point clouds.
In the corresponding points of the object model and the input scene, the local
surface areas within the support regions are the same even if the point densities
differ. The voting value is normalized by using the local surface area.

First of all, point cloud is converted to triangle meshes {t0, t1, ..., tM}. Here,
the m-th mesh consists of pm,1, pm,2, and pm,3, and the normal vector nm of
tm is calculated as (nm,1 + nm,2 + nm,3)/3. The voting process is performed for
each triangle. The weighting value w1 of the m-th mesh is described by

wm,1 =
(pm,2 − pm,1) × (pm,3 − pm,1)

∑M
m=0(pm,2 − pm,1) × (pm,3 − pm,1)

. (1)

Since a larger mesh represents the local shape more strongly, a large mesh
gets a large weighting value. w2 represents the distance between the keypoint
and the mesh and is described by
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In general, a mesh that is distant from the keypoint is sometimes affected
by the presence of clutter. Therefore, by decreasing the weighing value of such
normal vectors, the effects of noise can be decreased. w3 represents the stability
of the projected normal vector and is defined by

wm,3 = 1 − n · nm. (3)

Here, · represents a dot product. When nm is steeply inclined towards n, the
polar direction of the projected vector becomes stable. Therefore, the weighing
value of the normal vector should become large.

y-axis: This is the perpendicular axis of the z-axis and the x-axis. Therefore, it
is calculated by z-axis × x-axis.

3.3 Fast DPN-LRF Generation from Unorganized Point Cloud

By taking the area of each triangle mesh into account, the LRF can obtain
robustness for differences in point cloud density. Unfortunately, triangle meshes
are not always available, because unorganized point clouds are generally captured
by the range sensor. Therefore, for generating the DPN-LRF, it is necessary
to generate triangle meshes as an additional processing. Moreover, many 3D
features do not require triangle meshes for computing. In practical use, it is
preferable to generate the LRF without triangle meshes.

In this subsection, we propose a method to calculate the DPN-LRF without
triangle meshes. In particular, the area of a triangle mesh is approximated as
the distance between pn and its nearest neighbor. (1) is replaced with

w′
n,1 =

‖pnearest − pn‖
∑N

n=0 ‖pnearest − pn‖
. (4)

Here, pnearest represents the nearest point of pn. Also, (2) and (3) are respec-
tively replaced

w′
n,2 = r − ‖pn − p‖, (5)

w′
n,3 = 1 − n · nn. (6)

The computational cost of the above modified equations is lower than that
of the equations described in Sect. 3.2. Therefore, we named the LRF calculated
using (4) – (6) “Fast DPN-LRF”.

4 Experiments

4.1 Performance for Point Density

To evaluate the various methods’ performance for density differences in point
clouds, we performed an experiment in which LRF repeatability was calculated
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on corresponding points. In this experiment, we used the object models provided
by [3]. For simulating a point cloud captured by a range sensor, we applied the
Hidden Point Removal (HPR) operator [13] to each model. We define these
models as M and present them in Fig. 3.

Fig. 3. Overview of the object models M .

Sparse point clouds S were generated by adding Gaussian noise with a stan-
dard deviation of 0.1 mr and then downsampled to 1.0 – 5.0 mr. We randomly
extracted 1,000 keypoints from each model. The corresponding point in the S is
determined as the nearest point to the keypoint of the M .

Figure 4 shows the percentage of LRF that has error within 10 [deg]. In this
experiment, we compared our methods with the Mian, the SHOT, the RoPS,the
PS-LRF and BOARD methods. In order to estimate the effect of the proposed
weighting factors w1, w2, and w3, we also compared the performance of the DPN
(b). This method do not use weighting factors when the DPN-LRF is generated.
All methods are implemented in C++, and we used the Point Cloud Library
[14]. In this experiment, we tested different values of support radius r (5, 10,
15, and 20 mr). r = 20 mr is best for all method except for z-axis of the PS.
Oprimal radius of this method was 5 mr.

Fig. 4. The relationship between the angular error of z, the x-axis of LRF, and the
point cloud density. The reliability of the z-axis and x-axis are shown in (a) and (b).
The vertical axis represents the percentage of LRF that has error within 10 degrees.

In terms of z-axis repeatability, all methods achieved highly accurate estima-
tion except for the Mian, with which some of the z-axes generated were directed
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toward the opposite side. When the downsampling rate was changed from 1.0 to
5.0 mr, the performance of the BOARD decreased by 2.7 %, while that of DPN
and Fast DPN decreased by 5.7 %. This shows the z-axis repeatability is almost
equal for BOARD-LRF and the proposed methods.

In terms of x-axis repeatability, the performance of the previous methods sig-
nificantly decreased. The decrease was 54.0 % for SHOT and 31.6 % for BOARD,
but was only 21.1 % for DPN and the Fast DPN. Moreover, for a 5.0 mr down-
sampling rate, the repeatability of DPN was 8.1 % higher than that of DPN
(b). This confirmed that the proposed weighting factors helped to increase the
repeatability of the axis direction when the point cloud density was different.

4.2 Performance for Partial Occlusions

To evaluate the methods’ performance for partially missed point clouds within
the support region, we calculated the relationship between the number of miss-
ing points and the LRF repeatability. In this experiment, we used M as the
model data. The scene data was one-sided point clouds generated by using
rotated object models and the HPR operator. Gaussian noise was added to
each target. The range of rotation was 0 – 90 [deg] and the pitch was 10
[deg]. We randomly extracted keypoints pm and ps from the model and the
scene, respectively. Corresponding points were determined as those that satis-
fied |pm−Rps| < 2.5[mr], where R is the rotation matrix. By using this process,
we were able to generate partially missing point clouds in the support region of
corresponding points. Figure 5 shows the relationship between the percentage
of angular error of LRF within 10 [deg] and the missing rate of point clouds
calculated by missing rate = |NM − NS |/max(NM , NS). Here, NM and NS

respectively represent the number of points within the support regions of pm

and ps. A higher value means that a lot of points have been missed. In this
experiment, we calculated the angular error e of LRF by

e = arccos
(

trace(LSL−1
M ) − 1

2

)
180
π

. (7)

This equation proposed by [2]. LS and LM represent corresponding LRFs
and are formed as 3× 3 matrix. If the corresponding LRFs have no error,
trace(LSL−1

M ) will become the identity matrix. In this case, the value e takes
zero.

In this experiment, we used over 20k corresponding points and tested different
values of support radius r (5, 10, 15, and 20 mr). The results for the highest
(optimal) radius for each method are 20, 20, 15, 20, 20, 20, and 20 in order from
‘Mian’ to ‘Fast DPN’.

The stability of the Eigenvector direction is not so high when point clouds
within the support region are partially missed. As a result, the repeatability of
the Eigenvector-based methods Mian, SHOT, and RoPS significantly decreased
when the missing rate was high. In contrast, PS and BOARD has a function
to deal with the missed regions and so its repeatability was higher than that of
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Fig. 5. Relationship between the angular error of LRF and the missing rate. Vertical
axis represents percentage of LRF has error within 10 degree.

Eigen vector-based method. For every missing rate, it was confirmed that the
repeatability of the proposed method is higher than that of the other methods.

4.3 Performance Evaluation for Keypoint Matching

The results obtained from the aforementioned experiments confirmed that the
proposed LRF has higher repeatability than any of the other LRFs to which
it was compared. Therefore, in the application of keypoint matching for object
localization, it can be expected that the reliability of matching will be enhanced
by replacing any of the previous LRF with the proposed one. In this subsection,
we report the performance obtained for each method by recall vs. 1-precision
curves as recommended in [15].

We used point clouds with four types of conditions: (a) Gaussian noise with
a standard deviation of 0.1 mr, (b) Gaussian noise and 3.0 mr downsampling,
(c) Gaussian noise and occlusion, and (d) Gaussian noise, downsampling and
occlusion. In order to eliminate keypoint detector errors, we used 1,000 randomly
extracted corresponding points. Occluded corresponding points are generated by
method used in Sect. 4.2. The results obtained are shown in Fig. 6.

Fig. 6. Recall vs. 1-precision curves for four controlled conditions.

Under condition (a), the best results were obtained with SHOT and the
results obtained with BOARD, DPN, and Fast DPN were also good. This con-
firmed that these LRFs are robust to noise. Under condition (b), the SHOT
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Table 1. Computational time of each LRF.

Method Mian [3] SHOT [4] RoPS [2] PS [9] BOARD [5] DPN Fast DPN

T [msec] 0.12 0.19 0.60 0.24 0.18 0.25 0.27

curve dropped significantly because when the downsampling rate was 3.0 mr,
the x-axis repeatability of SHOT was less than 25 % (see Fig. 4 (b)). In contrast,
the BOARD, DPN, and Fast DPN performances were relatively higher than
those of other LRFs. Under conditions (c) and (d), all methods showed lower
performance than they did under conditions (a) and (b). The DPN and Fast
DPN performances were also relatively higher than those of the other LRFs.

In the all conditions, curves of the DPN-LRF and Fast DPN-LRF are almost
equal. Therefore, it was confirmed that Eq. (4) is a practical solution for approx-
imation of the area of meshes.

4.4 Processing Time Comparison

We calculated the processing time in an experiment for generating LRF. In this
experiment, we measured the average processing time of the LRF at a keypoint
for all methods. The results are shown in Table 1. This experiment is performed
on a desktop with an Intel CORETMi7 860 CPU and 12GB RAM.

Since RoPS and DPN require mesh generation and the mesh generation com-
putation time depends on algorithms, we did not include these methods in the
experiment. Although we were able to improve the Fast DPN processing time
by approximating the area of meshes, it was still slightly slower than that of the
other methods. However, this is not a problem because it requires more LRFs to
get the same number of correct corresponding points by using previous LRFs.

5 Conclusion

We have proposed a novel Local Reference Frame (LRF) for robustly handling
two main point cloud disturbances: density differences and partial occlusions.
The method comprises two types, Dominant Projected Normal (DPN)-LRF and
Fast DPN-LRF. Experiment results confirmed that the method is more robust
to differences in point cloud density and partially missing clouds than other
methods to which it was compared. In a keypoint matching experiment, we also
confirmed that the reliability of matching was enhanced by replacing previous
LRF with the proposed one. This suggests that a good combination of LRF and
3D features will provide even more reliable recognition results. Accordingly, in
future work, we will consider ways of achieving such a combination.
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