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Abstract. This paper presents a prototype 3D image processing and
rendering system that extends an existing interactive 3D image visual-
ization system. The extensions consist of software modules implemented
using graphics processing unit (GPU) programs known as “compute
shaders”. Compute shaders are able to utilize the massively parallel,
general-purpose computing capabilities provided by modern GPUs and
can also be tightly integrated as new stages in a GPU-based volume
and surface rendering pipeline. The compute shaders in this paper are
designed to support the execution of volume image processing algorithms,
as well as to support the interactive editing of the algorithms’ output.
An example volume image processing algorithm known as level set seg-
mentation is implemented and demonstrated. A new editing module is
developed that enables user modification of the segmentation algorithm’s
output by extending a pre-existing volume “painting” interface.

1 Introduction

The general purpose computing capability of GPUs, known as GPGPU, is well-
suited for efficient processing of medical volume images. Volume images are typi-
cally represented as a 3D grid of vozels (i.e. volume elements), and many volume
image processing algorithms are data-parallel in nature, requiring repeated oper-
ations on individual voxels or on a small local neighborhood of voxels. Modern
volume visualization systems provide real-time volume rendering typically by
programming the fragment shader stage of the GPU-based rendering pipeline to
accommodate the 3D grid structure of a volume image. However, few of these sys-
tems are able to integrate general volume image processing algorithms, such as
image filtering and segmentation, into this GPU pipeline in a flexible and modu-
lar manner. Recently, a new programmable stage of the OpenGL [1] pipeline has
been made available on graphics hardware called a “compute shader”. Compute
shaders can execute general purpose numerical calculations and can be inserted
into various stages of the rendering pipeline.

In this paper we describe extensions to our existing interactive volume visu-
alization system [2]. The extensions consist of volume image processing capabil-
ities which are added to the system in a tightly integrated yet modular fashion.
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Our existing system is based on a well-known open source visualization frame-
work called ImageVis3D [3], and combines both volume rendering of 3D medical
images with surface rendering of polygonal meshes, and allows users to define
3D regions within the volume, delineated by surface envelopes, using an intuitive
“volume painting” style interface. The volume image processing extensions are
implemented using general compute shader modules. In this paper, we describe
and demonstrate example volume image processing compute shaders for per-
forming image filtering and segmentation, both necessary components for visu-
alizing noisy volume images and for performing image analysis. We have also
extended the existing system’s front-end volume painting interface. This exten-
sion supports the editing of labelled 3D regions outputted by the segmentation
algorithm (or other volume image processing modules). Finally, we also add a
user-controllable 3D image slice that is rendered together with the volume, allow-
ing the user to edit 3D regions in a slice-by-slice manner and providing precise
painting and editing control in noisy volume images.

2 Related Work

Graphics hardware is typically structured such that the rendering process is exe-
cuted in a staged pipeline fashion and many of the stages are now programmable
using a high-level programming language. These programs are commonly referred
to as “shaders” and examples are vertex, geometry and fragment shaders. The
graphics hardware has quickly evolved resulting in a “unified” shader architec-
ture that provides one large grid of general data-parallel floating-point processors
that can be used by the various stages. This hardware advance coincided with
the emergence of general purpose computing (GPGPU) on the graphics card,
along with APT’s to create GPGPU programs such as CUDA [4]. It is possi-
ble to mix CUDA programs and OpenGL programs in several steps including
mapping and unmapping of a buffer into formats understood by CUDA and
by OpenGL. As mentioned, compute shaders are a recently released stage of
the OpenGL graphics pipeline that not only provide similar general-purpose
computation functionality as that of CUDA, but also can be more tightly and
seamlessly integrated into the pipeline.

As volume images continue to grow in size due to advances in scanning tech-
nology, highly efficient image processing algorithms that can filter and label a
3D image are becomingly increasingly important. Examples of processing algo-
rithms that have been implemented on the GPU include median filtering [5],
an implementation of Canny edge detection [6], nonlinear anisotropic diffusion-
based 3D image denoising using CUDA [7], and level set segmentation [8]. For
a recent and thorough survey of medical volume image processing on the GPU,
the reader is referred to Eklund et al. [9].

3 Vis3D+

In this section we describe the various GPU-based modules that we integrated
to extend the existing interactive volume visualization system. The new modules
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consist of the following: compute shaders providing basic volume image filtering
in the form of Gaussian smoothing and edge detection, a compute shader that
implements a variant of the level set segmentation algorithm [10], and compute
shaders and modifications to an existing volume rendering fragment shader to
extend the existing system’s 3D ROI painting mechanism for use in ROI editing.
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Fig. 1. High-level overview of the extended framework.

Volume processing algorithms, such as filtering, can be inserted into the
processing pipeline of the extended system as long as they are parallelizable
at the 3D grid point level. Furthermore, the filters can be cascaded - the output
of one filtering stage can be used as input to the next. In this paper we imple-
mented Gaussian Filtering to smooth a volume image and edge detection using
a simple image gradient magnitude calculation. The output of these cascaded
image filtering stages are used as input to a level set segmentation algorithm.
We have chosen level set segmentation [10] to showcase our GPU-based volume
image-processing support because it can segment topologically complex objects,
is a highly parallelizable algorithm and fits well with the existing 3D painting
interface. We have used Shader Storage Buffer Objects [1] as buffers, using their
binding points as input or output hooks, allowing different shaders to pick up
the same buffer and process them as they see fit, avoiding copying or moving
data around on the GPU.

Figure 1 shows the extended system, with the left side of the vertical dotted
line showing the extensions added in this paper. A compute shader module
(Fig. 1 lower left) accepts a volume image grid and algorithm global parameters
as input, iteratively executes the algorithm, and generates an output grid which
is then used for volume rendering, if desired. In the extended system, the 3D
painting interface can be used to define 3D regions of interest as an optional
input to any volume image-processing algorithm. The upper middle and upper
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left part of Fig.1 shows an optional input grid generated from the result of
painting a 3D ROI. More complex compute shader programs, such as the level
set segmentation compute shader, can make use of this input. In the case of
the level set segmentation algorithm for example, the algorithm refines the 3D
region and labels this region in an output grid (Fig.1 lower left). The output
grid can then be optionally input to a geometry shader where a Marching Cubes
algorithm will generate a boundary surface representation of the labeled 3D
region.

Fig. 2. Left: paint brush “tip” blob, rendered opaque here, can slide along a 3D slice
clip plane. Right: applying paint strokes to a slice plane (blob envelope is transparent).

We have extended the system’s original 3D painting interface to support
painting a 3D ROI on a 3D user-orientable image slice plane. We alter the volume
ray casting algorithm in the fragment shader to generate a 3D slice plane that
is rendered along with the volumetric data during the volume rendering stage
(Fig.2), achieving the effect of a clipped volume rendering of the data. The
volume ray casting is altered by computing the start of each ray from where it
intersects the clip plane. These starting ray sample points ensure that everything
in front of the plane is clipped away. The starting ray sample points are then
used to look up the corresponding image intensity value in the volume image via
interpolation. These volume image samples are mapped, using a simple transfer
function, to a color and an opacity value and each sample corresponds to a
fragment which will appear as a screen pixel. The fragments are shaded using
the normal vector of the clip plane rather than a normal vector computed from
the volume image. If the fragments are mapped to an opacity equal to 1.0, the ray
casting algorithm is terminated for this ray; otherwise, the ray casting algorithm
continues as usual.

It is often not possible to use a TF to isolate and volume render a target
structure in noisy volumes, preventing the direct painting on the surface of the
structure to create a surrounding envelope. This situation also occurs when the
target structure is adjacent or connected to neighboring structures with similar
intensity characteristics. In these cases, the user can use the image slice-plane
painting approach, along with “flattened” superellipsoid paint blobs (Fig. 2 left),
to define a 3D ROI that envelopes a cross-section of a target anatomical struc-
ture. The thickness of the flattened paint blobs can be precisely controlled by
the user to range from a single slice thickness to many slices thick. The user can
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paint thick envelopes (i.e. several image slices thick) on several cross-sectional
slices of the target structure such that these slice-painted envelopes overlap.
The slice-painted envelopes are automatically blended to form a single envelope
tightly bounding the entire target structure.
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Fig. 3. High-level overview of editing a labelled 3D region via 3D slice paint painting.

Some image processing algorithms, including the level set segmentation algo-
rithm, generate 3D grids with labeled regions. In our extended system, these
labeled regions can be interactively edited by using the painting interface to erase
parts of the region or to add “edit paint” to them. An illustration of this process
is shown in Fig. 3. The left side of the dotted line depicts the slice plane painting
and editing extensions. The volume image-processing algorithm for erasing and
adding of labels to the voxels is described in Sect. 4.4. The appearance of the vox-
els within the labeled region can be controlled with a separate transfer function,
allowing these voxels to be volume rendered using a distinctive “highlight” color.
The altered volume ray-casting algorithm shades the color of voxels that are on
the slice plane using the normal vector of the slice plane. The color of the labeled
voxels is a blend of the highlight color and the color of the voxel intensity value
assigned via the transfer function. The result is the labeled region voxels appear
as semi-transparent and highlighted 2D “paint” (Fig. 2 right). Furthermore, the
user can dynamically set the flattened superellipsoid paint blob thickness to be
just thicker than a single slice plane and the surface of the paint blob can be
made completely transparent. Any voxels on the slice plane that are inside the
blob can therefore also be made to appear as semi-transparent and highlighted
2D paint (Fig. 2 right). Thus, this special slice-plane rendering capability gives
the user the illusion of erasing and adding 2D paint to the labeled 3D region.
The user visually discerns the boundaries of the target structure underneath the
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semi-transparent 2D paint of both the labeled region and the paint blob. Cor-
rections can be made to the labeled region on the current slice plane. The user
can then continue to another oriented slice plane to make further corrections.

4 Implementation

This section provides an overview of the extended system implementation.
Details can be found in [11].

4.1 Initial Level Set Construction

In the level set segmentation method, a surface (in 3D) is defined to be the zero
level set of a continuous function, ¢(t,z,y, z). The movement of the level set
surface is governed by an evolution equation of this function. On a computer,
the level set function ¢ is sampled at points on a regular 3D grid and is referred
to as the ¢-grid. Typically the ¢-grid dimensions are set equal to the input
volume image dimensions. The level set method is initialized by creating an
initial surface envelope that either loosely surrounds the target structure or is
contained inside it [10]. We use the user-painted surface envelope to construct
the initial level set function ¢g. Specifically, to initialize the ¢g-grid, at each grid
point we determine if it is inside, outside, or on the painted envelope boundary
using the blended paint blobs’ defining implicit function [12]. From Li et al. [10]
the initial level set function, ¢g, is defined at each grid point of a 3D grid as:

4 (xaywz) € QO - 8*(20
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where (2 is the volumetric domain, {2y is a subset of the volumetric domain
containing all points inside the painted envelope and 02; is the set of all points
exactly on the boundary of 2y (i.e. the painted envelope boundary surface).
Values inside the painted envelope are marked as —p and outside are marked as
+p, where p is a constant [10]. This initial level set function construction process
is implemented in a separate compute shader, which accepts the array of paint
blobs defining the painted envelope as input and writes out a 3D ¢-grid.

4.2 Level Set Implementation

The level set segmentation algorithm uses edge image features to determine if
the evolving level set surface has reached the boundary of the target structure.
Input volume images are commonly convolved with a smoothing filter to remove
noise before performing edge detection. We currently use two cascaded compute
shaders - a Gaussian filter shader and an edge detection shader - to compute
the edge detected image. The level set evolution is computed inside another
compute shader, updatephi.cs. It takes an input ¢-grid, along with the edge
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detected intensity grid. It then outputs a grid containing updated values of the
function ¢ referred to as ¢-gridOut. As mentioned previously, we use buffer
binding indices as hooks to interchange the input and output ¢-grid buffers,
which avoids copying or moving the grids. The final output of the level set
segmentation algorithm, ¢-gridOut, contains scalar values. This output grid is
sent to a geometry shader that executes the Marching Cubes algorithm and
generates a mesh of triangles representing the zero level set surface.

4.3 Compute Shader Implementation

Shader Buffer Objects containing 3D grids of scalar values are stored as a con-
tiguous one-dimensional array on the GPU. In a GPU thread, we are able to use
the thread identifier to compute a 3D grid point position. Individual threads are
grouped in a local work-group or block. The local work-groups together make up
the larger global work-group. Shader Buffer Objects are stored in the GPU’s L2
Cache and each thread looks up its required data from textures that are backed
by these buffer objects.

In Kuo et al. [13], the authors mention several criteria for stopping the level
set evolution, which is typically evaluated after each iteration of the segmentation
algorithm. We use a simple but often effective stopping condition. The volume of
the segmented 3D region is denoted V and the difference in the volume between
the previous and current iteration is denoted AV. The evolution is stopped
when AV/V falls below a small threshold value (e.g. 0.005). We have utilized
atomic operations in the compute shader threads, supported as of OpenGL 4.3,
to implement the simple stopping condition. Atomic operations write to (or read
from) shared memory uninterrupted; if multiple threads attempt to access the
same location simultaneously, they will be serialized. We use atomic operations
that operate on a special stopping condition buffer that stores the previous and
current computed volume of the segmented region, as well as the number of grid
points that have been processed. When a thread begins executing at a current
time step ¢ (i.e. iteration), it checks the stopping condition (AV/V < 0.005). If
the condition is met, the thread returns. Otherwise the thread uses an atomic
add operation to add 1 to the number of processed grid points. The thread then
executes the level set evolution equation for its assigned grid point. If the ¢
function field value for this grid point is less than 0, we use the atomic add
operation to add 1 to the current segmented region volume; that is, the number
of voxels (i.e. grid points) inside the segmented region is used as a measure of the
region’s volume. When all grid points have been processed, we set the previous
segmented region volume equal to the current volume and then reset the current
volume and number of processed grid points to 0.

4.4 Editing a Labeled 3D Region

The user uses the painting interface to erase or add labels to the labeled region
outputted from the segmentation algorithm in the form of the ¢-grid. Edit com-
pute shaders accept the ¢-grid as input as well as the array of paint blobs defining
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the edit region. In Museth et al. [14], the authors define editing operators based
on level sets, which provide advantages such as avoiding boundary surface self-
intersection and coping with topological genus changes. In this paper, we use a
simple version of the Constructive Solid Geometry (CSG) operations mentioned
in Museth et al. [14]. A remove or erase operation is analogous to the difference
operation in CSG and an add operation is equivalent to a union operation. Both
the erase and add operations are parallelized on the ¢-grid points. For the add
operation, at each ¢-grid point, we read its field value and store it at a corre-
sponding output grid point. Using the array of painted blobs and the blended
blobs’ inside-outside function, we then check if this output grid point is inside
the painted region. If so, we overwrite the field value from the ¢-grid, with a —p
value, making it a part of the labeled region. For the erase operation, at each
¢-grid point, we read its field value and set the corresponding output grid point
to the same value. We then check if this output grid point is inside the painted
region and if its value is less than 0 (i.e. indicating it is currently part of the
labeled region). If so, it is overwritten with a +p value, removing it from the
labeled region.

5 Experimental Results

The paper is concerned with the modular integration of volume image processing
algorithms into an existing volume image rendering pipeline, and with the algo-
rithms’ compute shader implementation. Consequently, in this section we present
experiments to demonstrate a working compute shader implementation of the
level set segmentation algorithm and some rough measurement of its perfor-
mance, rather than on a formal analysis of segmentation accuracy and efficiency.
Level set segmentation has been heavily researched over the years and its accu-
racy measured numerous times. The reader is referred to [15] as a representative
example. In this paper, we currently use the system’s 3D slice plane capability
and visually inspect slices containing the target anatomical structures as well as
the segmentation “paint” to assess segmentation accuracy. In addition, our level
set segmentation implementation currently utilizes simple Gaussian smoothed
gradient magnitude edges to stop the level set evolution. More accurate edges
may lead to improved segmentation performance. We are currently investigating
GPU-based median filtering [5] combined with more sophisticated edge detec-
tors [6] and we plan to collect quantitative data of segmentation accuracy in the
immediate future. Finally, all experiments were performed on a machine with an
NVIDIA GTX 570M graphics card containing 1.5 GB GDDR5 of random access
memory (RAM) and 7 streaming multiprocessors, each with 48 cores.

5.1 Segmenting Synthetic Data Sets

We use two synthetic “cloverleaf” volume images, with voxel values inside the
cloverleaf smoothly graded and background voxels set to 0, and with dimensions
128 x 128 x 128 and 256 x 256 x 256, respectively. We painted an initial envelope
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Fig. 4. Segmenting a 256 x 256 x 256 synthetic cloverleaf data set. (a) Initial painted
level set surface. (b) Final segmentation result. (c)(d) Segmenting a 168 x 160 x 92 CT
image of a human vertebra phantom. (c) Initial painted level set surface. (d) Final
segmentation result.

surrounding the cloverleaf directly in 3D using three paint brush strokes (Fig. 4a).
Figure4b shows the segmentation after 100 iterations. The time required for
the segmentation was 39s. The result is visually very accurate. For the smaller
data set (i.e. 128 x 128 x 128 voxels) only 50 iterations (2.4s) were required
to generate an accurate result. The parameter settings for all tests, real and
synthetic were p = 0.02, v = 5, A = 5, ¢ = 1.5, 7 = 5. See Li et al. [10] for
parameter descriptions.

In a second test, we use a 168 x 160 x 92 CT volume image of a topologically
complex human vertebra phantom (Fig.4c and d) to further validate a working
compute shader implementation of the segmentation algorithm. We painted an
initial envelope without holes, directly in 3D, that surrounds the vertebra. The
level set segmentation algorithm correctly captures the topology of the vertebra.
The segmentation ran for 200 iterations. The approximate time required for the
segmentation was 11s and the result again is visually very accurate.

5.2 Segmenting a Real Data Set

We also ran our segmentation algorithm on a 240 x 240 x 192 MRI brain volume
to segment the lateral ventricle. Segmentation of structures in MRI scans is
challenging due to noise, voxel intensity inhomogeneity and the similar voxel
intensities of neighboring structures. We used the system’s 3D slice painting
facility and painted an envelope on several slices containing the lateral ventricle.
Figure 5a—c shows the initial level set envelope, the segmentation result and an
expert manually segmented guide. The 3D slice painting facility allows the user
to quickly paint a highly accurate initial level set (Fig. 5a) - an important factor
for segmentation algorithm robustness. The segmentation ran for 75 iterations
and required approximately 14s. Figure5d—f shows several 3D slice views to
demonstrate segmentation accuracy.
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Fig. 5. Segmenting the lateral ventricle in a 240 x 240 x 192 MRI brain image. Top row
left: initial 3D slice painted level set surface, middle: final segmentation result, right:
volume rendering of manually segmented ventricle. Bottom row: example image slices
showing segmentation result.
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Fig. 6. (a)(b) Example of erasing paint on a synthetic clover leaf and, (c)(d) adding
paint to the vertebrae segmentation.
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Fig. 7. Editing a 3D image slice of an MR brain volume to correct the lateral ventricle
segmentation by adding paint. The bottom row shows corresponding edge detected
images.
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5.3 Editing

In this section we demonstrate the editing capability. Figure 6 shows a simple
example of direct 3D editing of the cloverleaf (erasing the segmentation) and
the vertebra phantom (adding edit paint). In Fig. 7 we demonstrate editing of
the lateral ventricle segmentation result on a 3D image slice of the MR brain
volume. The ventricle is under-segmented on this slice and is corrected by adding
paint using a small paint brush tip. In this example, a circular brush tip is used.
However, the superquadric brush tip can be shaped to a flattened ellipsoid or
rectangular solid to better match a desired boundary curvature.

6 Conclusions

The paper demonstrates the potential of compute shaders for creating a flexi-
ble and modular software system that tightly integrates interactive 3D medical
image visualization and processing. The prototype system described in this paper
uses a single intuitive painting interface for all selection, initialization and editing
interactions with the data, and supports the processing of noisy volume images
by integrating a 3D slice plane view directly with the volume rendered view.
Further improvements can be made to the framework. The GPU level set imple-
mentation can be further optimized by implementing the narrow band algorithm
using stream compaction as in Roberts et al. [8] to obtain a subset of the current
narrow band as it evolves. Slice-by-slice editing can be labor intensive if many
slices require editing. We intend to experiment with interactively painted “barri-
ers” that reinforce target structure boundaries in regions with no edge features.
The idea is to allow the user to paint thin 3D regions that are then used to
modify the edge detected image used by the level set segmentation algorithm.
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