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Abstract. We introduce CINAPACT-splines, a class of C∞, accu-
rate and compactly supported splines. The integer translates of a
CINAPACT-spline form a reconstruction space that can be tuned to
achieve any order of accuracy. CINAPACT-splines resemble traditional
B-splines in that higher orders of accuracy are achieved by successive
convolutions with a B-spline of degree zero. Unlike B-splines however,
the starting point for CINAPACT-splines is an infinitely smooth and
compactly supported bump function that has been properly normalized
so that it fulfills the partition of unity criterion. We use our construction
to design two CINAPACT-splines, and explore their properties in the
context of rendering volumetric data sampled on Cartesian grids. Our
results show that CINAPACT-splines, while being infinitely smooth, are
capable of providing similar reconstruction accuracy compared to some
well-established filters of similar cost.

1 Introduction

Volume visualization is now a common way to explore three-dimensional images
arising from modalities such as Computational Tomography (CT) or Magnetic
Resonance Imaging (MRI). These images typically consist of arrays of scalar val-
ues that represent information gathered from regularly sampled volumes. The
reconstruction of a continuous approximation from this discrete data is a fun-
damental operation in volume rendering. A careful choice of this reconstruction
method can benefit the rendering process by providing a smooth, precise and
efficient continuous representation of the data. As the primary goal of rendering
is to provide a comprehensible image, accuracy is vital. Smoothness is beneficial
for many rendering applications such as shading and feature line extraction for
which higher order derivatives are required. Finally, rendering is a multi-step
process dealing with large amounts of data. The cost of reconstruction therefore
plays an important role in the efficiency of the visualization procedure.

In visual computing, kernel-based reconstruction methods — such as linear or
cubic interpolation — are well-known. These methods place a modulated kernel
at each of the sample locations to reconstruct values at arbitrary locations. The
accuracy and smoothness of the reconstruction is therefore directly influenced
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by the kernel. Compactly supported piecewise polynomial splines are a popular
choice due to their efficiency. The accuracy and support-size of these kernels
are tightly knit in that more accurate reconstructions require kernels with wider
support. Smoothness is achieved as a by-product, more accurate splines are usu-
ally composed of higher-degree polynomials. This has important implications for
volume rendering where higher order derivatives are sometimes needed. When
the reconstruction kernel does not possess sufficient smoothness, a digital deriv-
ative filter is employed to approximate the derivative at the sample locations,
and then combined with the reconstruction kernel to approximate the deriva-
tive at arbitrary locations [1]. While this method ensures that the approximated
derivative has the same level of smoothness as the reconstruction kernel, it adds
a filtering overhead that adversely affects rendering performance.

In this paper, we introduce a novel family that consists of kernels that are
explicitly constructed to be infinitely smooth (C∞), but can be tuned to achieve
any order of accuracy while maintaining compact support. We call these kernels
CINAPACT-splines; they are a generalization of the recently proposed CIN-
PACT (C∞ and compactly supported) splines of Runions and Samavati [2]
that are based on the Partition of Unity Parametrics (PUPs) framework [3].
CINPACT-splines satisfy the partition of unity criterion and therefore guaran-
tee first-order accuracy. CINAPACT-splines improve upon the accuracy using a
convolution procedure that is similar to the procedure used in the construction of
uniform B-splines. Like the B-splines, CINAPACT-splines also exhibit a trade-off
between higher levels of accuracy and efficiency. Unlike the B-splines however,
CINAPACT splines are infinitely smooth irrespective of the order of accuracy.
Despite this advantage, our tests show that CINAPACT-splines possess approx-
imation characteristics that are comparable to some of the best known kernels.
This makes them ideal candidates for applications like volume rendering.

The remainder of the paper is organized as follows. Before reviewing some
important prior art (Sect. 2) that has inspired the design of CINAPACT-splines,
we summarize key concepts from signal processing that are needed in our con-
struction scheme (Sect. 1.1). The details of our construction procedure and some
concrete examples that of practical significance are presented in Sect. 3. Finally,
Sect. 4 presents some rendering tests that show that CINAPACT-splines, while
being infinitely smooth, yield highly accurate results as compared to some well-
known polynomial-spline kernels.

1.1 Preliminaries

In signal processing, interpolation is a common way to reconstruct an approxima-
tion of a function from its samples. According to Shannon’s sampling theorem,
a band-limited univariate function can be perfectly recovered using an ideal sinc
kernel, if and only if the sampling rate T < π

wmax
, where wmax is the highest

frequency in the band-limited function [4].

Aliasing: As most real-world functions are not band-limited, and applying ideal
reconstruction kernels is not practical owing to their infinite support, aliasing
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issues occur. Pre-aliasing happens when the function is not band-limited or the
sampling rate is not adequately high. Post-aliasing on the other hand, can occur
when the reconstruction kernel is not ideal.

Generalized Sampling Theory: Developed by Blu and Unser [5], this theory
extends Shannon’s sampling theory by allowing a wider range of non-ideal ker-
nels, ψ, while trying to minimize aliasing errors [6]. These kernels constitute an
approximation space that is spanned by uniform shifts of a kernel. Approximated
functions then belong to the following shift-invariant space:

V (ψ, T ) =
{
f̃(x) =

∑

n∈Z

cnψ(x/T − n) : [c] ∈ l2
}
. (1)

Here, cn is the nth component of the set of coefficients [c], and the kernel ψ ∈ L2.

Approximation Order and the Strang-Fix Conditions: The overall quality of
reconstruction is affected by various factors such as the choice of the kernel
ψ, and how the set of coefficients [c] is determined from the available data.
Approximation order is an effective tool for quantifying the quality of a recon-
struction scheme. A reconstruction scheme has approximation order k if there
exists a constant C such that [7]:

‖f − f̃‖2 = CT k‖f (k)‖2, as T → 0. (2)

Here, f (k) is the kth derivative of the function to be approximated, and ‖·‖2
denotes the L2 norm. If a kernel ψ provides a kth order reconstruction, it is
referred to as a kth order kernel. A kth order kernel ψ satisfies the following
Fourier domain conditions (Strang-Fix conditions) [7]:

ψ̂(0) = 1 and ψ̂(α)(β) = 0 for α < k and β ∈ {
2πl | l ∈ Z\{0}}

, (3)

where ψ̂(·) denotes the Fourier transform of ψ. In other words, ψ is a kth order
kernel if and only if its Fourier transform and the derivatives of its Fourier
transform up to order k vanish at integer multiplies of 2π. The Fourier transform
of the ideal kernel, i.e. the sinc function, is a rectangular pulse (or box function)
which is completely localized; the ideal kernel therefore trivially satisfies the
Strang-Fix conditions. Due to the uncertainty principle, the Fourier transform
of a compactly supported kernel is not localized. The Strang-Fix conditions
quantify how the transform decays to zero; the higher the approximation order,
the faster the decay and the more accurate the approximation.

Partition of Unity: In order to ensure that a reconstruction scheme can approxi-
mate a given function with arbitrary accuracy, k must at least be one. Using the
Poisson summation formula, it can be shown that the first approximation order
(k = 1) implies that the integer translates of ψ form a partition of unity [5], i.e.

∑

n∈Z

ψ(x − n) = 1, ∀x ∈ R. (4)
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Interpolation: Once a kth order kernel ψ has been chosen, one needs to ensure
that the coefficients [c] are determined in a way that respects the approximation
order. In applications such as volume rendering, the function f is known through
its idealized samples [f ] only. In this case, it is sufficient to ensure that the
approximation f̃ interpolates the sample values, i.e. f̃(Tn) = fn [5]. As explained
in Sect. 3.1, this is achieved through the application of a discrete interpolation
pre-filter that is completely determined from the integer samples of ψ.

2 Related Work

Reconstruction kernels play an important role in the fields of data visualization
and graphics. In the literature, a variety of kernels that satisfy different desir-
able properties such as simplicity, interpolation, smoothness, compact support,
efficiency, and accuracy, is in use. There is usually a trade-off between different
properties, and the nature of the application dictates the choice of the kernel.
In this section, we look through some of the most common and useful designs of
reconstruction kernels. We focus on univariate kernels with the understanding
that they can be extended to higher dimensional integer grids via a simple ten-
sor product extension. It should be noted that the design methodology behind
CINAPACT splines is general and can also be applied to non-separable multi-
variate kernels such as radial basis functions [8] and box splines [9].

Piecewise polynomial splines are a good alternative to the ideal sinc function.
They are built through junctions of polynomials pieced together at points called
knots [10]. Uniform B-splines, introduced by Schoenberg [11], are well-known
examples of this family. They have good reconstruction characteristics such as
partition of unity, approximation order and compact support of k +1, and Ck−1

continuity for polynomial degree k.
In 2001, Blu et al. introduced a family of compactly supported kernels with

maximal order and minimal support (MOMS) [12]. Using their error kernel [13],
they proved that the minimally-supported kernel of approximation order k+1 is
piecewise-polynomial with degree k and support k + 1. Uniform B-splines are a
well-known member of the MOMS family and have the highest continuity among
their peers [12]. Though all members of the MOMS family have maximal order
for a specified support, the optimal MOMS (O-MOMS) subcategory optimizes
the constant C in Eq. 2. However, these kernels have C0 continuity and thus are
not differentiable. While O-MOMS can provide us with high accuracy, we cannot
neglect the importance of continuity in the quality of reconstruction [14].

Partition of Unity Parametrics (PUPs) is a flexible framework for meta-
modeling introduced by Runions and Samavati [3]. In this framework, any func-
tion R(x) can be employed after proper normalization to satisfy partition of
unity. The general form of PUPs is as follows:

ψ(x) =
R(x)

∑
j∈Z

R(x − j)
, where

∑

j∈Z

R(x − j) �= 0. (5)
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Partition of unity also ensures a first-order approximation which, according to
the Strang-Fix theory, implies a linear relationship between error reduction and
sampling rate increase. Satisfying partition of unity is therefore a necessary
criterion for a kernel. Runions and Samavati suggested B-spline based PUPs
and employed it in the reconstruction of curves and surfaces, and also demon-
strated their advantages in feature sketching and converting planar meshes into
parametric surfaces [3]. In a follow-up work, they used the PUPs framework to
design a new family of C∞ and compactly supported kernels called CINPACT-
splines [2]. These kernels are obtained by truncating an exponential function to
preserve its smoothness while providing compact support. The resulting bump
function is then normalized to satisfy partition of unity. Moreover, this kernel
can be designed to interpolate the tangents of curves and surfaces as well as
their sample points. The bump function used in the design of CINPACT-splines
is defined as:

R(x) :=

{
exp( −kx2

c2−x2 ), x ∈ (−c, c),
0, otherwise.

(6)

The support of R(x) is 2c, and k is a continuous parameter that behaves
like the polynomial degree of a B-spline if chosen correctly [2]. We therefore
refer to k as the degree of the CINPACT-spline. Thus, CINPACT-splines can be
considered to be a potential replacement for B-splines.

Though PUPs can be designed to serve as non-separable filters, their appli-
cation in providing a framework for designing separable filters applicable to
regular grids is the focus of our research. As demonstrated by some of the works
described above, several properties that were believed to be strongly related,
are in fact independent. For instance, Runions and Samavati have shown that
smoothness and support can vary independently [2,3]. The interrelation between
approximation order and level of continuity was also relaxed by the introduc-
tion of O-MOMS [12]. Drawing inspiration from these studies, the question is if
we can design a filter that is infinitely smooth and has arbitrary approximation
order, while preserving other beneficial properties such as compact support.

3 C∞, Accurate and Compact Splines

CINPACT-splines provide two of the most important features for rendering
applications: infinite smoothness and compact support. However, partition of
unity only guarantees a first-order approximation. We need a technique to
increase the approximation order while preserving infinite smoothness and com-
pact support.

Using the Fourier convolution theorem and the Strang-Fix conditions, it can
be readily shown that the convolution of two kernels having approximation orders
a and b, yields a kernel with approximation order a + b. Hence, convolving a
CINPACT-spline with the box-function (B-spline of degree zero and order one)
increases its approximation order by one, and yields a CINAPACT spline with
a minimum guaranteed order of two. Thus, we have
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ψ2(x) :=
R(x)

∑
j∈Z

R(x − j)
∗ β0(x), (7)

where R(x) is the bump function introduced in Eq. 6, β0(x) denotes the B-spline
of degree zero, and the symbol ‘∗’ indicates the continuous convolution operation.
In order to further improve the approximation order, the initial CINPACT-spline
is successively convolved with the box-function. The CINAPACT-spline with a
minimum guaranteed order of L is constructed through the convolution of the
normalized bump-function with the B-spline of degree L − 2:

ψL(x) :=
R(x)

∑
j∈Z

R(x − j)
∗ βL−2(x), where L ≥ 2. (8)

Each convolution adds one unit to the support and increases the approximation
order by one. Although the accuracy of CINAPACT-splines can increase arbi-
trarily, the cost of reconstruction increases exponentially in higher dimensions
as the support size grows.

The infinite smoothness of CINPACT-splines is inherited by CINAPACT-
splines through the convolution. The mth derivative of the CINAPACT spline
ψL(x) is given by

ψL(m)(x) =
(

R(x)
∑

j R(x − j)
∗βL−2(x)

)(m)

=
(

R(x)
∑

j R(x − j)

)(m)

∗βL−2(x). (9)

One difficulty that arises is due to the nature of the convolution integral in
Eq. 8. We are currently unaware of an analytical closed form for this integral. We
therefore use a quadrature method to table the values of CINAPACT splines at
closely sampled locations within their support. The derivatives are also computed
in a similar manner using Eq. 9. Figure 1 shows a second-order CINAPACT spline
of support size four along with its first and second derivatives.

3.1 Interpolation

Similar to B-splines, the kernels within the CINAPACT-spline family are not
interpolative. Recall that a kernel ψ is interpolative if and only if ψ(x) vanishes
at all non-zero integers. For an interpolative kernel, one can simply use the
sample values [f ] as coefficients in Eq. 1. When a kernel is not interpolative,
a discrete pre-filtering operation is necessary to ensure that the approximation
f̃(x) exactly reproduces the sample values. The resulting approximation (for
T = 1) is given by

f̃(x) =
∑

n∈Z

cnψ(x − n), where [c] = [ψ]−1 ⊗ [f ]. (10)

Here, [ψ] is a discrete filter that consists of the integer samples of ψ, i.e. ψn =
ψ(n), and [ψ]−1 is its inverse. The symbol ‘⊗’ denotes the discrete convolution
operation. In practice, for finite dimensional data, the discrete convolution in the
above equation can be applied in the Fourier domain using the discrete Fourier
transform which imposes periodic boundary conditions. Other types of boundary
conditions can also be imposed by suitably padding the data vector [f ].
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Fig. 1. The CINAPACT-spline ψ2(x) (c = 1.5, k = 4) and its first two derivatives.

3.2 Cardinal Kernel Optimization

The interpolative pre-filter and the reconstruction kernel in Eq. 10 can be com-
bined into an interpolative cardinal kernel ψint so that

f̃(x) =
∑

n∈Z

fnψint(x − n), where ψint(x) :=
∑

j∈Z

ψ−1
j ψ(x − j). (11)

This interpolative scheme respects the overall approximation order of ψ. By
inspecting the behaviour of the Fourier transform of the cardinal kernel ψint,
one can also reason about the overall quality of a reconstruction scheme. Using
Eq. 11, we infer that the Fourier transform of the cardinal kernel is

ψ̂int(ω) = ψ̂(ω)/[̂ψ](ω), (12)

where [̂ψ](ω) is the discrete time Fourier transform of the filter [ψ]. We use Eq. 12
to tune the free parameters of CINAPACT-splines as explained below. Since we
are unaware of a closed form Fourier transform of the CINAPACT-splines, we
use the fast Fourier transform to approximate it.

Examples: We present two concrete examples of CINAPACT-splines that can
be tuned to yield cardinal spectra that closely match the spectra of the cubic
B-spline and the cubic O-MOMS. In order to ensure that the kernels are com-
parable, we fix the support size to four using the following two procedures.

1. ψ2
k(x): We set c = 1.5 and L = 2 in Eq. 8. The resulting CINAPACT-spline

has a minimum approximation order of two.
2. ψ3

k(x): We set c = 1 and L = 3 in Eq. 8. The resulting CINAPACT-spline has
a minimum approximation order of three.

In the above constructions, the degree k ∈ R is a free parameter which allows us
to adjust the cardinal kernels’ spectra. Figure 2a and b show the cardinal spectra
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(a) Fourier spectra of the cardinal kernels of ψ2
k.
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(b) Fourier spectra of the cardinal kernels of ψ3
k.
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(c) Comparison of cardinal kernels in the Fourier domain.

Fig. 2. Cardinal kernels of the CINAPACT-splines ψ2
2 and ψ3

1 as compared to the cubic
B-spline and the cubic O-MOMS.
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Fig. 3. Isosurface renderings of the sampled ML function using (a) cubic B-spline, (b)
cubic O-MOMS, (c) ψ2

2 , and (d) ψ3
1 (Color figure online).

Fig. 4. Direct volume rendering results for the engine dataset using (a) cubic B-spline,
(b) cubic O-MOMS, (c) ψ2

2 , and (d) ψ3
1 .
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of ψ2
k and ψ3

k for various values of k. Observe that the CINAPACT-splines ψ2
k

are much more sensitive to the degree parameter as compared to ψ3
k due to the

lower approximation order. Among the values tested for ψ2
k, k = 2 yields the best

spectrum which is compared with the cardinal spectra of ψ3
1 , the cubic B-spline

and the cubic O-MOMS in Fig. 2c. Observe that the cardinal spectrum of ψ3
1 has

the same behaviour as the cubic B-spline even though it has a lower guaranteed
approximation order. More interestingly, the cardinal spectrum of ψ2

2 — despite
the lower approximation order — follows the O-MOMS’ cardinal spectrum with
some overshooting. This suggests that, with careful tuning, CINAPACT-splines
can exhibit higher approximation orders than what is guaranteed; both ψ2

2 and
ψ3
3 resemble fourth-order kernels despite their lower orders.

4 Volume Rendering Tests

We evaluated the accuracy of our proposed kernels ψ2
2 and ψ3

1 by rendering
the 0.5 isosurface of the synthetic function suggested by Marschner and Lobb
(ML) [15], and compared the results to the cubic O-MOMS and B-spline. All of
these kernels have the same support, and hence the same reconstruction cost. In
order to ensure that smoothness related artifacts are clear, we used the analytic
first derivatives of the kernels when computing the gradient for shading. The
results are shown in Fig. 3. At first glance, all the renditions look pretty similar.
This is due to the fact that all four schemes behave similarly in the low-pass
regime as is evident from the plot in Fig. 2c. On closer inspection, we can see
subtle differences between the renditions; the cubic O-MOMS (Fig. 3b) seems
to be slightly better at reconstructing the inner rings of the isosurface as com-
pared to the cubic B-spline (Fig. 3a). However, it is also noticeably less smooth
as indicated by the red circle. The rendition provided by ψ2

2 (Fig. 3c) exhibits
slightly higher undulations in the reproduction of the rings. This is owing to the
overshoot of the cardinal Fourier spectrum (Fig. 2c). As predicted, ψ3

1 (Fig. 3d)
yields a rendition that is very close to the cubic B-spline. Observing the encircled
regions, we see that the ψ3

1 rendition is also slightly smoother.
When testing these four schemes in the context of direct volume rendering

(DVR), we observed a similar trend. Figure 4 shows DVR images obtained from
the engine CT dataset. As predicted by our Fourier analysis, the cubic B-spline
and ψ3

1 renditions (Fig. 4a and d) resemble each other, and the cubic O-MOMS
are ψ2

2 renditions (Fig. 4b and c) are very close to each other.
These results corroborate the fact that both ψ2

2 and ψ3
1 have higher approxi-

mation orders than anticipated, and practically behave like fourth-order B-spline
kernels. It appears that the choice of the parameters c and k may be more influen-
tial than the B-spline degree (L) in determining the exact approximation order.
This topic warrants further investigation.

5 Conclusion

We proposed a construction scheme that generalizes CINPACT-splines [2] to
CINAPACT-splines, kernels that can be tuned to achieve any order of accu-
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racy while maintaining infinite smoothness. We presented two examples of
CINAPACT-splines: ψ2

2 and ψ3
1 , that behave like fourth-order kernels. We also

presented some preliminary results that suggest that, in the context of volume
visualization, CINAPACT-splines may be a good alternative to B-splines due
to their infinite smoothness. In future, we plan to investigate the smoothness
advantage of CINAPACT-splines in more detail; potential applications include
shading and feature-line extraction in a real-time volume rendering environment.
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