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Abstract. Automatic labeling of cerebrovascular territories would
greatly advance our ability to systematically study large datasets and
also provide rapid decision support during the assessment of stroke
patients, for example. Previous attempts have been challenged by the
wide inter-subject variation in vascular topography. We investigate the
use of a probabilistic model that learns the configurational character-
istics of vascular territories to better annotate the cerebrovasculature.
In the George Mason Brain Vasculature database, we identified patients
with MRA reconstructions segmented into seven major regions (left and
right MCA, PCA, and ACA and Circle of Willis). We then augmented
these labels by manually segmenting the MCA territory into an addi-
tional eight regions. Among 54 patients that met the inclusion criteria,
39 reconstructions were used as training input to the MCA, ACA, and
PCA model among the 61 digital reconstructions of human brain arterial
structures available. The model was then validated on an independent
cohort of 15 patients. The MCA segmentation algorithm was trained
and tested using leave-one-out crossvalidation. The algorithm was found
to be 94 ± 5.2% accurate in annotating the seven major regions and
88± 9.3% accurate in annotating the MCA subterritories.

1 Introduction

Advancements in medical imaging and computational methods have led to a
new wave of algorithmic-based techniques to analyze patient data. In the past,
cerebral scans have been studied in a more case-by-case basis, leaving the inter-
pretations subject to debate and reducing analysis efficiency. The inherent lack
of quantification limits the recognition of correlations and patterns, obscuring
meaningful clinical findings within the noise. Digitizing data and automating
interpretation paves the way for deeper and more objective analysis, and in the
case of cerebral angiography, moves towards more unbiased assessments that can
directly improve clinical decision-making.

Previous attempts at automated 3D vessel segmentation [14] and labeling
[1,3,15] have been challenged by the difficulties related to the quality of the images
and the wide inter-subject variability that normally occurs. Image processing
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and computer vision methods can play a major role in solving these issues if
the algorithms are well trained to handle highly variable data. A study [2] con-
ducted at the University of Toronto has investigated the use of Bayesian-based
inference to label cerebral vasculature of mice. An arterial set is initialized with
random labels and then a relaxation algorithm iteratively re-labels segments in
manner that minimizes the data’s energy function, a negated summation of each
label’s posterior probability. Despite being ≥ 75% accurate in recognizing each
of the sample’s 54 territories, the method took an average of 100 ± 18 h to seg-
ment each image. Recently, promising advances [13] have also been achieved for
the automatic segmentation and labeling of the arterial tree from whole-body
MRA data. Labeling of the vascular tree was performed by using a combination
of graph-based and atlas-based approaches.

The characteristics chosen as inputs in the training data have proven to be
a critical element in determining the robustness of an algorithm. Shape recog-
nition, through use of principal component analysis, for example, provides a
reasonably effective and computationally efficient way to quantify cerebral ter-
ritories in segmenting the majority of vasculature sets [5]. The dependence on
consistent arterial structure made by this technique is not resilient to the wide
variation in morphological structure present in cerebral anatomy. Instead, select-
ing spatial features as inputs seem to lead to better results when performing
vascular segmentation because of the visual nature of territorial labeling [2].
Labeling studies based on other modalities such as CT [6] have successfully used
various features such as diameter, curvature, direction, and running vectors of a
branch to infer the labels on abdominal arteries.

In this paper, we propose and test a method to automatically label the major
vascular territories of cerebral reconstructions through use of kernel density esti-
mation (KDE) and Bayesian inference. Through this form of probabilistic estima-
tion, we are able to create accurate approximations of multi-dimensional density
functions describing the cartesian coordinates of the right and left MCA, PCA,
and ACA regions. From these probabilistic distributions, each vascular segment
is evaluated as a function of the likelihoods of each sub-segment. A maximum a
posteriori algorithm decides the appropriate label based on the optimal charac-
terization of the evaluation.

2 Methods

2.1 Dataset Acquisition and Properties

The 3D arterial models were collected from the George Mason Brain Vascula-
ture database [17] which is freely available at http://cng.gmu.edu/brava/ and
contains 61 digital reconstructions created from magnetic resonance angiogra-
phy (MRA) scans of healthy adult subjects (mean age, 31 years; age range, 19
to 64; 36 women). The dataset was created using Neuron Morpho, a plug-in
of ImageJ [5]. Through Neuron Morpho, users are able to trace neurons con-
tained in image stacks and export them in swc format, representing the cerebral
vasculature as a series of interconnected cylindrical segments (segments have
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a specified x, y, and z coordinate, type, radius, and parent segment). Follow-
ing the use of this software, the reconstructions were additionally verified for
accuracy through juxtaposition with 3D renderings of the MRA scans. In the
Brain Vasculature database, each reconstruction is available both unlabeled and
labeled, with the labeled models identifying seven major regions (Fig. 1): Circle
of Willis and the left and right middle cerebral artery (MCA), posterior cerebral
artery (PCA), and anterior cerebral artery (ACA). Vaa3D [9], an open source
tool for 3D bio-image visualization and editing, was used to render and view
these models.

While the arterial data from BraVa is pre-segmented into the seven afore-
mentioned regions, we are interested in further annotating the MCA territory,
a site of interest in stroke patients. To create the necessary training data, we
used Vaa3D’s built-in neuron utilities to expand the MCA territory into eight
additional regions [7] (Fig. 2): (1) Posterior Temporal, (2) Temporo-Occipital,
(3) Angular, (4) Posterior Parietal, (5) Rolandic, (6) Precental, (7) Prefrontal,
and (8) Orbitofrontal. A neurologist from UCLA manually labeled the MCA
regions of training images. Vasculatures in the database were co-registered using
landmark points placed manually so that the relative location of the vessel seg-
ments could be used. Data registration is necessary to properly characterize the
vasculatures anatomical locations with the respective territories.

2.2 Bayesian Labeling Framework

We assume that the labeling framework is presented with a set of unlabeled
vessel segments Si=1...n that can be represented as a tree-structured graph. Each
segment Si is characterized by a state xi in the model that represents the label
probabilities of vascular territories. Because of the natural variations occurring
in the vasculature across subjects, the number of states N for a specific model
varies [x1, . . . , xN ]. A state xi is a M -dimensional discrete vector that associates
a probability to each of the M possible labels of the segment.

To each state xi is associated an observation yi, directly obtained from the
normalized location of the segment and its radius. It differs from the state xi

in the sense that it comes vessel detectors that can be affected by noise and
transient artifacts present in the image, whereas the value xi is obtained through
inference, thus believed to be more robust.

The labeling model is assumed to follow the general properties of a tree-
structured Markov model where each state xi is connected to at most one parent
state xp

i and can have several children states xc
i,1...Nc

where Nc ≥ 0. This means
that the probability of a segment xi given all the states available x1...N depends
only its parent and children states,

p(xi|x{1...N}) = p(xi) p(xi|xp
i ) p(xi|xc

i,1...Nc
) (1)

where p(xi) is the prior distribution and p(xi|xj) represents the conditional
dependency between two connected vessel segments. By introducing observations
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Fig. 1. Figures (a) and (b) show the unlabeled reconstructions of a cerebral vasculature.
Figures (d) and (e) show their respective labels using color mapping. The annotations
were chosen as Pink = LMCA, Blue = RMCA, Cyan = LACA, Red = RACA, Green
= LPCA, Yellow = RPCA, White = Circle of Willis and ICA. The corresponding
graphical representations of the unlabeled and labeled vessel segments are shown in (c)
and (f). The vascular model shown in this figure was composed of 3514 vessel segments
(Color figure online).

yi in the model, the posterior marginal of the state is defined as follows,

p(xi|y{1...N}) ∝ p(yi|xi) p(xi)
∫

p(xi|xp
i ) p(xp

i |y{1...N},1)dxp
i . . .

Nc∏
j

∫
p(xi|xc

i,j) p(xc
i,j |y{1...N}) dxc

i,j (2)

where p(yi|xi) is the likelihood. We propose to use a graphical model to represent
this recursive problem, and Belief Propagation to perform the labeling process.

Graphical Model. The graphical model used in our labeling framework defines
relations between pairs of nodes only. It is usually referred to as Pairwise Markov
Random Field (PMRF) in the literature. As illustrated in Fig. 3, states xi ∈ x
and observations yi ∈ y are represented in the graphical model by white, and
shaded nodes, respectively. Edges represent dependencies between states by two
types of functions: observation potentials φ(xi, yi) that are the equivalent of the
likelihood part p(yi|xi), and compatibility potentials ψij(xi, xj) that embed the
conditional parts p(xi|xj), p(xj |xi) of the Bayesian formulation and can be used
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Fig. 2. Illustration of the additional annotations made by a neurologist on the middle
cerebral artery (MCA) territory indicating the eight sub-territories of interest.

Fig. 3. In this graphical representation, y1, y2, y3 indicate each node’s observational
features and x1, x2, x3 represent their respective states. Messages received by state xi

are denoted by directed arrows.

by conditioning them in either directions during inference. In addition, the prior
distribution over the labels is denoted ψi(xi).

Observation Model. An observation yi represents the label information about
the ith vessel segment that is directly extracted from the image. An observation
yi ∈ RM assigns a likelihood to each possible label with respect to the position
of the segment a, b, c and its radius r using a previously learned kernel density
estimation (KDE) f̂(Si;Θl) (Eq. 3) that is constructed by collecting a total of
N labeled vessel segments {ak, bk, ck, rk}1...N across the training set,

f̂(Si;Θl) =
1
N

N∑
k=1

G(Si; {ak, bk, ck, rk}, Σi) (3)

where G(Si; {ak, bk, ck, rk}, Σi) is a Gaussian kernel centered at {ak, bk, ck, rk}
with standard deviation Σi,l which is common to all the components k of a given
label l. Θl = {{ak

i , b
k
j , c

k
j , r

k
j }1...Nc

, Σi} denotes the parameter set of the KDE
associated with a given label l.
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Observations yi are linked probabilistically to their state xi through a
Gaussian observation potential φ(xi, yi),

φ(xi, yi) = exp(− |yi − xi|2/σ2
o) (4)

where σo is a smoothing parameter.

Compatibility Potentials. Compatibility potentials ψ(xi, xj) define the rela-
tionship between two connected states. They are defined as a Gaussian difference
between their arguments,

ψ(xi, xj) = exp(−|xi − xj |2/σ2
t ) (5)

where the standard deviation σt of the model can be estimated using maximum
likelihood (ML) on training data.

2.3 Labeling Using Belief Propagation

Labeling vessel segments in the 3D vasculature amounts to estimating
p(xi|y{1...N}), the posterior belief associated with the state xi given all obser-
vations y{1...N} accumulated. Thus, labeling is achieved through inference in
our graphical model. One way to do this efficiently is to use Belief Propaga-
tion (BP) [8], a method implemented successfully in numerous computer vision
applications such as for image segmentation [16] and object recognition [10–12].

It is a message passing algorithm for graphical models where messages are
repeatedly exchanged between nodes to perform inference. Following the nota-
tion of BP, a message mij sent from node i to j is written,

mi,j(xj) ←
∫

ψi,j(xi, xj) ψi(xi) φi(xi, yi)
∏

k∈Ni\j
mk,i(xi) dxi (6)

where Ni\j is the set of neighbors of state i where j is excluded, ψi,j(xi, xj) is the
pairwise potential between nodes i, j, and φi(xi, yi) is the observation potential.

After any iteration of message exchanges, each state can compute an approx-
imation p̂(xi|y{1...N}), called belief, to the marginal distribution p(xi|y{1...N}) by
combining the incoming messages with the local observation:

p̂(xi|y{1...N}) ← ψi(xi) φi(xi, yi)
∏
k∈Ni

mk,i(xi) (7)

For tree-structured graphs like ours, the beliefs (Eq. 7) will converge to the
exact solution p(xi|y{1...N}) [4].

3 Experiments

The goal of the experiments presented in this section is to demonstrate the effec-
tiveness of the developed probabilistic labeling algorithm. To evaluate the model,
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Table 1. Results of the probabilistic labeling model on 15 test subjects.

Cerebral territory Accuracy

LACA 88.9± 14.3%

RACA 93.8± 10.3%

LPCA 93.6± 10.3%

RPCA 97.3± 3.2%

LMCA 98.7± 1.7%

RMCA 98.7± 1.4%

Circle of Willis 84.1± 14.4%

Average 94 ± 5.2%

two sets of experiments were ran; the first one using the 7 major vascular terri-
tories provided as part of BraVa, and the second one based on the 8 additional
MCA sub-territories established in this study (as described in Sect. 2.1). In both
experiments, we evaluate the accuracy by finding the percentage of segment
labels in the testing data consistent with the manual annotation.

To quantify the performance of the ACA, MCA, and PCA labeling, we used
39 annotated reconstructions from BraVa as training to build and optimize the
graphical model, utilizing the cartesian data and radii as inputs. The algorithm
was then tested on the data of 15 remaining subjects. The split between the
training and testing set was done randomly. For the MCA subdivision, we tested
the algorithm using leave-one-out crossvalidation. In this method, we train the
model using all subjects except one, and test on the remaining subject, repeating
the process for each set.

Table 1 summarizes the accuracy of the ACA, MCA, and PCA segmentation
over the 15 tested data sets was 94 ± 5.2% (as illustrated in Fig. 5). For the

Fig. 4. Results of the MCA segmentation algorithm on two vascular models. Black
= Posterior Temporal, Red = Temporo-Occipital, Blue = Angular, Cyan = Poste-
rior Parietal, Yellow = Rolandic, Green = Precental, Brown = Prefrontal, Beige =
Orbifrontal (Color figure online).
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Fig. 5. The left and middle columns show the unlabeled models and their respective
probabilistic segmentation results for five subjects obtained from BraVa [17]. The right
column indicates the automated labeling errors in red (Color figure online).
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MCA subdivision, we observed an accuracy of 88 ± 9.3% for the 7 tested sets
(Fig. 4). These results demonstrate that our model is effective in predicting vas-
cular regions in arterial reconstructions. The larger MCA subdivision deviation
is a result of one experiment producing an accuracy of 67 %, indicating that our
model is not totally impervious to the wide variation in vascular topography.
The major artery segmentation algorithm proved to be more consistent in its
results; the accuracy for any test never fell below 79 %.

4 Discussion

The results obtained during our experiments have demonstrated that the use
of a graphical model that combines kernel density estimation (KDE) in con-
junction with belief propagation inference is capable to learn and label vascular
territories automatically with high accuracy. We believe this performance can be
attributed to both the robustness of nonparametric estimation of the likelihood
model and the optimal sharing of information by the message passing algorithm.
Training and labeling times allow for processing of a large cohort of subject data;
reconstructions can be labeled in a matter of seconds, and complete training and
optimization in a few minutes.

In order to fully evaluate how well the model performs in real clinical con-
ditions, a larger, more diverse pool of subjects needs to be tested. Because all
training and test sets were retrieved from a single database, we are exposed
to sampling bias, perhaps overly estimating the accuracy of the results of the
framework on a new dataset where the input features would be extracted with
a vessel segmentation technique different from Neuron Morpho.

More importantly, the ability of our framework to study brain vasculatures
automatically is hindered by pre-processing tasks that require manual input,
preventing large data sets from being analyzed. Being able to automatically label
vascular territories solves a piece of that puzzle, however, more efforts should be
invested in the automatic vessel segmentation process.

In terms of clinical relevance of the developed tool for stroke patients, the
automatic labeling allows us to quantify arterial regions missing due to occlu-
sion and assess brain health. The MCA territory is a common site of occlusion
in ischemic stroke and, through automated labeling, we can identify areas of the
MCA that are frequently targeted and recognize features symptomatic of stroke.
The proposed algorithm provides a framework for the learning and labeling of
other vascular territories as well; whole-body and abdominal vessel segmentation
are also very relevant clinical applications that could benefit from the probabilis-
tic framework presented in this paper.

5 Conclusion

The results indicate that the developed framework, which is based on Bayesian
formulation of the labeling problem, is effective in labeling vascular features in
3D reconstructions using belief propagation algorithm. We anticipate that this
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approach will prove useful for learning arterial characteristics in any setting,
particularly neurovascular, and circumventing the need for manual annotation.
In order to fully automate the labeling process, an effective registration method
should be considered. This requirement will be addressed in future work.
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