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Abstract. This work describes an efficient perception-control coupled system
and its underlying algorithms that enable autonomous exploration of indoor
environments by a Micro Aerial Vehicle (MAV) equipped with a monocular
camera and sonar sensors. The perception subsystem uses inputs from the
camera to detect the vanishing point and doors in corridors. It detects the
vanishing point by grid-based line-intersection voting (GLV) and Mixture-of-
Gaussians (MoG)-based classification, while doors are detected by using simple
but effective geometric scene properties (GSP) with template matching and
temporal filtering. It also detects distance to obstacles, for example walls, using
inputs from one forward-looking and two side-looking sonar sensors. These
algorithms are accurate, computationally efficient, and suitable for real-time
operation on offboard and onboard power-constrained computing platforms. The
control subsystem employs a priority-based planner that combines outputs from
the perception subsystem to compute high-level direction and velocity com-
mands for the MAV. We evaluate our perception-control system on a com-
mercially available AR.Drone 2.0 MAV with offboard processing and
successfully demonstrate collision-free autonomous exploration and flight in
building corridors and rooms at approximately 2 m/s speed.

1 Introduction

Micro Aerial Vehicles (MAVs) require real-time accurate perception and control
capabilities to autonomously navigate in many applications, such as search-and-rescue,
mapping, and unmanned surveillance. Perception and control technologies for MAVs
are an active research area especially due to their widespread availability, flexibility, and
low cost. However, the current state of the art approaches are generally computationally
complex and require a priorimapping and knowledge of the environment to navigate. In
indoor environments, detection of vanishing point and doors in corridors and rooms is a
necessary capability to enable the MAV to autonomously explore (e.g., enter a room
through a door) and plan its flight in real-time. This requires efficient perception and
control algorithms that can be mapped to power-constrained computing platforms.

This work describes a simple yet efficient coupled perception and control approach
primarily designed to work for MAV in indoor environments. The perception sub-
system uses inputs from the camera to detect the vanishing point and doors in corridors
and rooms, while the control subsystem uses this information to plan the flight path and
automatically navigate the MAV.
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Our approach to detecting a vanishing point begins with fast edge detection and
linking followed by grid-based line-intersection voting and Mixture-of-Gaussians
(MoG)-based classification. This is accurate and robust in a variety of illumination and
conditions, and yet more efficient than previous approaches that use computationally
intensive algorithms, such as the Hough transform and Markov modeling [1]. Based on
the detected vanishing point, our door detection algorithm chooses door candidates
using the geometric scene properties, such as door width and relative door orientation,
and intensity profile information, such as the mean and variance of intensities in the
door and its adjacent areas. If no vanishing point is detected, a template matching-based
approach is used to detect door lines that look similar to the last detected door
boundaries. The final door candidates are selected by temporal filtering to eliminate
inconsistent detections.

The topic of door detection using 2D and other sensors has been previously
investigated [2–5]. The work in [2] detects door corners first and then groups the four
corners to form door candidates. The grouped door-corner candidates are then verified
by matching and combining edges and corners. Other work [3, 4] rely on both a camera
and a 2D laser range finder. The method in [3] relies on detection of doorknobs and
frames as additional information. However, these features are not always observable
and limit the applicability of this method. The approach in [5] depends on not only
shape information, but also appearance information, and uses a Bayesian model of
shape and appearance likelihood to verify door candidates formed from detected cor-
ners. The methods, such as in [2, 5], usually need to deal with validation of several
door candidates since there are hundreds of corner groups. Therefore, they are com-
putationally intensive and not suited for real-time applications.

Our door detection approach is different from prior work in several aspects. First, it
is based on linked edge information obtained from a single monocular camera and does
not depend on the appearance of a door or detection of specific door parts, such as

Fig. 1. Our modified AR.Drone 2.0 used in the experiments. From the laptop display, we can
monitor the perception outputs and control commands being executed. Two sample screen
snapshots of live MAV flight are shown here.
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doorknobs and doorframes. Second, it leverages the scene geometry information about
the orientation of door lines and intensity profile of doors compared to its neighboring
areas. This makes our approach work under different illumination conditions and/or
viewing angles in the corridors. Third, it is efficient and can run onboard resource-
limited computing platforms. Finally, it does not require any training.

The perception algorithms described above have been implemented and tested
using a laptop and a quadrotor MAV (AR.Drone 2.0 [6]) for autonomous flight in a
corridor (see Fig. 1). In order to accommodate indoor navigation challenges, such as
unexpected air drifts, self-turbulence, and obstacles during flight, our control strategy
combines a visual sensor for primary navigation with front and side-mounted sonar
sensors to detect obstacles and avoid collision. A sonar sensor measures distances to
obstacles. The control subsystem assigns different priorities to the sensor modalities
and employs a planner that combines outputs from the perception subsystem to
compute high-level direction and velocity commands for the MAV in a closed-loop
manner. Our approach does not require optical flow calculation, complicated learning
strategies, or additional external sensors.

The rest of the paper is organized as
follows. Section 2 describes our pro-
posed perception subsystem and its
underlying algorithms. Section 3 descri-
bed the details of our control subsystem.
Section 4 presents experimental results of
the proposed algorithm on MAV flight in
real-worlds. Finally, Sect. 5 discusses the
results and conclusion.

2 Perception Subsystem

Our perception subsystem consists of
several processes to detect vanishing
point (VP) and doors. Figure 2 illustrates
the perception subsystem block diagram.
Its input is video from a single
front-facing monocular camera mounted
on the MAV. An edge detector is first
applied to each frame of the incoming
video. The detected edge points are then
connected to longer edges through edge
linking. Horizontally-oriented edges are
used to calculate the vanishing point,
while vertically-oriented edges provide
the initial candidates for door lines. If the
vanishing point is available, the door candidates are evaluated using their geometric
properties (e.g., length, location, distance) and intensity profiles. The detected van-
ishing point and doors are used by the MAV to autonomously explore the indoor

Fig. 2. Perception subsystem block diagram
for vanishing point and doors detection using a
single monocular camera.
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environment. Details of the vanishing point and door detection algorithms are descri-
bed below.

Vanishing Point Detection. The vanishing point (VP) is a useful destination for a
MAV in a corridor, but can also be used for guiding the perception subsystem in
finding doors. Due to its importance in our approach, the VP detection must perform
accurately in real-time with high probability of detection and low false positives. To
satisfy these requirements, we have developed an efficient VP detection algorithm that
starts with the edge detection and linking described above and follows with grid-based
line-intersection voting (GLV) and MoG-based classification.

A. Edge Detection
Given each frame in the incoming video, the Canny edge detector [11] is used to detect
possible edge pixels whose intensity gradients fall within a preselected range. In
addition, non-maximum suppression is used within the Canny detector to retain only
thin lines (i.e., edge-thinning). The gradient directions at all edge pixels are calculated
and discretized into N bins. Edge pixels with gradient orientations belonging to the
same bin are linked using connected component analysis. In this way, shorter edges are
connected to form longer lines. Each line’s orientation is calculated and stored as its
geometric feature along with its two end points and length. These line features are later
used for door detection.

B. Grid-based line-intersection voting (GLV) and MoG classification
Based on the long edges detected in the image frame, we now estimate the position of
the vanishing point (VP). This is the point where corridor horizontal lines intersect in
the image frame. To detect the vanishing point in each frame, the previously detected
edge lines are first filtered to remove lines that are too close to the horizontal direction
(left to right). Specifically, if the angle between an edge line and the image horizontal
line is below a threshold (e.g., 5°), this line is ignored for the VP calculation. The
intersections of remaining lines are then calculated. To find the VP, the entire image
area is split into an M × M grid and the number of line intersections within each grid
cell is calculated. The cell with the maximum number of line intersections is assumed
to contain the true vanishing point. This is based on the observation that there are many
lines parallel to the floor of the corridor floor and they mostly intersect at the end of the
corridor.

We define the centroid of intersections within the chosen cell as the vanishing
point. To further reduce false alarms, a mixture of Gaussian (MoG) model is trained to
classify a centroid of the intersections within a grid cell as the VP. The MoG model is
represented as
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where v is a 2-by-1 vector consisting of the number of intersections in the selected VP
grid and the variance of their 2D locations, K is the number of Gaussian components
(e.g., 3), wi is the Gaussian component’s weight and g v li;
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component with a mean µi and covariance matrix
P

i. Given a set of training data with
labeled VP grids, we learn the parameters wi, µi and

P
i. Once a new grid cell is

detected as a candidate VP grid in the image frame, we use the above MoG model to
calculate its probability of containing a true VP.

Our VP detection algorithm is unique in (1) using the grid-based voting to find the
cluster of near-horizontal edge intersections, and (2) using MoG classification for
estimating the confidence of detecting a VP. In addition, our algorithm is computa-
tionally efficient. The first step of Canny edge detection is extremely fast. For a typical
720 × 480 image, it only requires about 2 ms to detect edges. The edge linking step
depends on the complexity of the scene. Its computation is on the order of the number
of edges in the image and typically takes about 20 ms. The other steps in VP detection
require only a few additional milliseconds. Typically our VP detection for a 720 × 480
image takes about 30 ms per frame and therefore achieves real-time 30 fps speed. The
closest prior work to our VP detection approach is described in [12]. It uses the Hough
Transform (HT) to detect lines (HT actually has Canny operators inside) and addi-
tionally requires estimation of parameters. We use the MoG model for estimating the
probability of a VP. In contrast, [12] uses a Markov Model to estimate the probability
of the location of the vanishing point and reduce false alarms, and its inference was
done using the Viterbi algorithm, which increases its computational complexity/time.
We implemented and evaluated the Markov Model according to [12] as a baseline
experiment. Our MoG results are presented in Sect. 5.

Door Detection. We propose a computationally-efficient door detection algorithm that
is based only on edge and geometric shape information. Our algorithm assumes doors
are mostly imaged upright in the video which is a reasonable assumption for a stable
MAV flight. It uses the near-vertical lines obtained from the previous VP detection as
the initial door candidates, and then filters them based on their geometric scene
properties (GSP) to detect doors.

A. Edge Based Door Detection
When a MAV is flying down a corridor, doors are usually aligned along the vertical
direction in each frame. Using this assumption, we first select the edges that are close to
the vertical direction, allowing some small angular deviation of α degree (for example
±10°). In addition, the door line candidates are filtered according to their lengths and
locations of their lower and upper end points. In typical indoor situations, the image
location that divides the left and right walls of a corridor is at the vanishing point and is
usually close to the image center. For simplicity, we detect doors separately on the left
side and right side of this location. For detecting doors on the left side, only edges in
the leftmost portion of the image are considered. In our approach, we used the leftmost
fraction λ% of the image width (e.g., 35 % of the image width). A similar approach is
used for detecting doors on the right side.

The initially filtered vertical edges are further merged by connecting short edges to
form longer lines. Only edges with similar distances to the middle point of the left-most
image border and similar edge orientations are merged, which reduces the number of
candidate door lines and saves computation. This process generates longer vertical lines
that may better represent the candidates of door lines. These candidate lines are further
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validated by a series of filtering (validation) processes described below to detect the
true door that is closest to the MAV on each side of the corridor:

(1) If the candidate line intersects the top or bottom of the image, but the intersection
is outside of the image, it is not a valid candidate and removed.

(2) The distance from the vanishing point to the candidate door line is calculated. If
the door line is too close to the vanishing point (e.g., 10 % of image width), we
assume that it does not belong to a door and is removed.

(3) Each candidate line is paired with another candidate line to form a candidate door.
If the distance between a pair of lines (i.e., the candidate door’s width) falls
outside of a typical door width (e.g., 15 % to 35 % of image width), this candidate
door is invalid.

(4) We use the intensity profile of the candidate door and its adjacent sides to further
filter door hypotheses even further. Specifically, the image area around the pair of
door lines is split into three parts as seen in Fig. 3: the portion to the left of the
door (A), the door (B), and the portion to the right of the door (C). An intensity
profile is calculated for these parts. As illustrated by Fig. 3, a horizontal line is
crossed over the door lines and the pixels along the horizontal line are used to
calculate the intensity profile. One can see that the horizontal line is split into three
segments by the pair of door lines. The mean and variance of intensities within
each segment are calculated. The candidate pair of door lines is filtered according
to their intensity profile and the prior knowledge of the corridor. For example, if
the door is open, its mean intensity is often lower than the other two parts for a
white wall. In addition, the intensity variance within an open door area is often
larger than the other two parts because of the cluttered objects in an office. This
filtering process needs to be adjusted for different scenarios because the prior
knowledge may change.

(5) The above step 4 is processed repeatedly at multiple vertical locations for more
reliable decision, as shown with the red lines in Fig. 3, along the candidate door
lines. The number of iterations that pass the intensity profile filtering is accu-
mulated. If the total number is above a predefined threshold (e.g., 50 %), the pair
of door lines is declared as valid and a door is reported to be detected.

Fig. 3. Calculation of the intensity profile at the adjacent areas of a candidate door.
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In the current implementation, we only find a single door at each side of the
corridor, which usually corresponds to the door closest to the MAV. However, the
above process can be applied iteratively to find more doors.

B. Template Matching for Door Detection
The edge-based door detection method described above requires the vanishing point to
validate door hypotheses. Therefore, it can only be applied when a vanishing point is
successfully detected. However, there might be cases where neither a vanishing point is
detected nor are door hypotheses generated due to low contrast caused by illumination
changes and motion. In such cases, we need other methods to detect doors. One such
method is to apply template matching based on previously detected doors. When a
vanishing point and door are successfully detected in a frame, we extract the narrow
image patch around the door’s boundary as a template and store such templates in a
buffer. This buffer is updated online and it automatically clears old templates after a few
frames (e.g., 5 frames). When a new door is detected, its template is added to the buffer.

When no vanishing point is detected or no door hypotheses are generated in a new
frame, the latest template in the buffer is used to compare against the new image frame
to find a matching image patch. This is achieved using a standard template matching
approach based on normalized correlation [13]. If the matching score is above a pre-
defined threshold (e.g., 0.95), a door line that looks similar to the previously detected
door line is detected. The previously detected door line is then updated with the new
location.

The above template matching method can generally find the new location of a
recently detected door line. However, the template buffer size must be carefully con-
trolled because template matching may fail when the actual door is already too far from
the previously detected location. In such cases, the door hypothesis generated by
template matching should be rejected. When no door is detected for a long period, the
template buffer will become empty and no template matching can be applied.

C. Temporal Filtering of Detected Doors
The door detection generated by all processes discussed above may still be noisy,
considering the large variations and clutter in typical indoor settings. To further reduce
errors, we use a temporal filtering to ensure that the detections are temporally con-
sistent. The filtering process checks if a door is continuously detected in each frame
within a predetermined temporal window. If the door is detected in most of the frames
within this window (e.g., 3 out of 5 frames), it is considered a valid detection.
Otherwise it is rejected as a valid door. This temporal filtering is an optional process for
refining door detection.

Our GSP-based door detection approach depends only on the geometric scene
properties of door edges (e.g., intensity profile, door width, relative location of the
top/bottom points of door lines) instead of complex structures like door corners [2, 5]
or door knobs [3], which are sometimes not observable in the image. Since our
approach only requires the commonly and reliably occurring features of a door (i.e., the
two long edges) to generate door hypotheses, it is readily applicable to real-world
settings. The validation of door hypotheses is based on these general geometric
properties. For corridor scenarios, our algorithm also relies on the generally reliable
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vanishing point position to filter door candidates. In addition, we have added a template
matching process to deal with situations where the vanishing point is not available or
no door hypotheses are found. Finally, our algorithm is efficient because it re-uses the
edges detected by the VP detection step. The only additional computation is the
selection of near-vertical line pairs and validation of the selected pairs. Since we limit
the width of the door with respect to its height, the complexity of the door candidate
selection and validation is on the order of the number of long vertical lines. In typical
corridor scenarios, there are a few dozen such long near-vertical lines and the validation
process usually requires less than 10 ms. The VP detection and door detection together
can run at about 20 fps on a standard quad-core laptop (Sect. 4), which is fast enough
for a normal speed MAV to navigate through the corridor.

3 Control Subsystem

Our control strategy combines a visual sensor for primary navigation with
side-mounted sonar sensors to avoid obstacles that fall outside of the field of view.
Unlike other approaches for MAV control in the prior art that incorporate optic flow to
dictate MAV direction [7, 10], our approach combines feature matching from the
front-facing camera with additional override inputs from the lateral sonar sensors.
While computationally inexpensive, optical flow approaches to control often exhibit
drift in both position and scale. This can present problems in the indoor environment,
where even small errors can lead to collision and loss of control. Instead, we employ a
feature-based approach wherein we receive a target and track its features across frames.
The system (MAV) centers the target in the field of view and then proceeds in its
direction, turning as necessary to maintain the correct heading. This straightforward
approach minimizes the overall calculation required to visually navigate the MAV
toward the target and avoids the need for complicated learning strategies [8] or addi-
tional external sensors [9].

A detailed block diagram of our control methodology is illustrated in Fig. 4. The
system can also receive input from the front-facing camera and user input via the
graphical user interface by clicking the mouse on a location in the field of view.
Additionally, a sonar system is used to allow the MAV to determine its distance from
obstacles to its right and left, which are out of the view of the camera. Based on the
location of the target in camera coordinates relative to the center of the frame, the
system will send a small control command to the MAV. The system immediately
captures another frame of video and issues subsequent commands in an iterative,
closed-loop manner. This continues until the MAV has arrived at the target or the
system has lost the target. The sonar sensors run in a parallel control loop that has
priority over the main control loop and can interrupt commands from the visual input
and issue their own in order to avoid collision.

The standard operation of the system is to detect a vanishing point in a corridor and
move the MAV towards it. The vanishing point is computed from the video frames of
the front-facing camera using the algorithm discussed in Sect. 3. Alternatively, if the
MAV is not in a corridor, the user may use the graphical user interface to choose a
specific location in the scene or the location can be computed automatically based on
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heuristics (e.g., a landmark or a corner table) to which the MAV should fly. In either
case, the input to the system is a location in camera-coordinates for a specific frame.
Once a set of target coordinates has been selected, image information is extracted
around its location for a given radius. Feature keypoints are extracted using a local
feature algorithm (such as SIFT [14] or SURF [15]) for this image region. When a
significant number of keypoints from the target region correspond with keypoints from
the next frame, the target location can be imprinted on the next frame and further
calculations can be made.

For each iteration of the control algorithm, the system computes the difference
between the camera coordinates of the target with the center of the frame; the resulting
vector indicates the direction that the MAV must move in order to acquire its target.
Steering commands are issued if the horizontal difference between the target and the
center of the image exceeds a given threshold. When the target is centered, the MAV
will proceed forward until the originally slight discrepancy between the target and
center of the image frame becomes large and another steering correction is necessary.

The control system contains sonar sensors to avoid collisions with obstacles to the
sides of the MAV. Prior to each iteration of the control algorithm, the system checks
the status of the sonar sensors. If the sonar detects that the MAV is too close to an
obstacle, the system automatically ignores inputs from the vision system and takes
immediate action to avoid the obstacle; this is a simple command to move the MAV in
the direction opposite of the obstacle.

4 Experiments

The detection performance of our perception subsystem was evaluated using a number
of corridor images under different lighting and viewing conditions. The perception and
control subsystems described above were implemented on an offboard laptop computer
and tested with a low-cost MAV quadrotor (AR.Drone2.0). We used the AR.Drone’s
existing front camera as our visual sensor and then added three sonar sensors for
obstacle avoidance. The perception software for vanishing point and door detection
was integrated with other capabilities that we have additionally developed for sensor
data capturing and transmission, basic flight commands (move forward/backward,

Fig. 4. Block diagram of our control strategy of indoor MAV flight.
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left/right, turn left/right, and others) and perception visualization, along with our
control algorithm to perform autonomous corridor flying tests (see Fig. 1).

A. Evaluation of Vanishing Point and Door Detection
We tested our VP detection on 2470 test images of 720 × 480 resolution captured in
different corridors using the AR.Drone camera (e.g., Figs. 5 and 6). A different set of
120 images was manually annotated with the VP to first train our MoG model. Our VP
detection algorithm achieved 97.1 % true positive detection rate (recall) with 3.0 %
false positive rate (alarms). In addition, we also implemented a baseline approach based
on a Hidden Markov Model (HMM) by following [12] to generate the probability of
VP detection through the standard Viterbi inference. This approach performed poorly
compared to our approach with 88.4 % true positive detection rate and 5.1 % false
positive rate. As described previously in Sect. 2, our computational complexity is lower
than this baseline approach (Table 1).

We additionally evaluated our door detection algorithm on multiple MAV flights in
a building corridor with multiple doors. The corridors have a total of 23 doors, about
evenly distributed on the left and right sides. The average flying speed of our MAV was
about 2 m/s. Table 2 summarizes the door detection performance of our algorithm with
10 runs of MAV flight in each direction for a total of 20 runs. We achieved 91.3 % true
positive detection rate, with false positive and false negative rates of 4.3 % and 4.4 %,
respectively. The main reasons for false positives were large windows, which look
similar to doors, and strong vertical shadows on the wall.

Fig. 5. (Left) An example of vanishing point and door detection during a MAV flight test in a
corridor. The cyan lines are the boundaries of one detected door. (Right) Another example of
vanishing point and door detection. The cyan (left) and purple (right) lines are the boundaries of
the detected doors. The sonar feedbacks (front, left, right) are visualized in the blue plots (Color
figure online).

Table 1. Performance evaluation of vanishing point detection

Training images Testing images True positive rate
(recall) %)

False positive
rate (%)

Use MoG 120 2470 97.1 3.0
Use HMM 120 2470 88.4 5.1
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It should also be mentioned that doors were usually hard to detect during fast flight,
such as instances where the speed exceeded 5 m/s. The motion blur in such cases
significantly reduced the contrast of door lines and made them harder to detect. In
addition, the rolling motion of the MAV invalidated the assumption that the door lines
were near-vertically oriented, causing increased missed detections and false alarms.

B. Indoor Flight Navigation
In our flight testing, the offboard laptop receives and processes video and sonar sensor
data from the MAV to determine whether it should shift/turn or fly forward to the
target/destination point (i.e., vanishing point, door location, or user-clicked location). If
the destination point is not in the central region of the image, the MAV must to turn/shift
to the left or right so that it is centered. If the destination point is not detected, the hovering
command is sent to the MAV. These perception and control processes run on a laptop
(with Intel® Core™ i7-2860QM CPU at 2.5 GHz running the Ubuntu Linux system).
Three USB-powered sonar sensors (LV-MaxSonar-EZ1) were installed on the drone hull
in the front and two sides as the proximity sensors. The transmission of sonar readings
from the drone to the laptop was done by a Zigbee (XBee DigiMesh 2.4) connection. We
developed custom software to interface to the AR.Drone SDK for control and camera data
capture. With all sub-systems integrated and running together, we could achieve about
15–20 frames per second of visual processing on the laptop without specific optimization
in a single-threaded implementation. The sonar-
based update rate was even higher (e.g., >30 fps).
Each time the perception module processes the
sensor data, the system sends the best control
command to the MAV (hover, turn left/right,
move left/right). We were able to conduct mul-
tiple test flights in corridors at speeds of
approximately 2 m/s speed without collision,
while detecting the vanishing point and doors
reliably.

Figure 5 shows two examples of our van-
ishing point and door detection results under
different lighting conditions during MAV flight.
The detected door lines are highlighted with
colored lines. The probability in the upper left
corner is the computed confidence of the
detected vanishing point. We observed that the
doors close to the camera were detected reli-
ably. As can be seen in these examples, the

Table 2. Performance evaluation of door detection algorithm in a corridor with 23 doors for 20
full runs of MAV flight.

Total # of doors (23 doors
over 20 flights)

True positive
rate (%)

False positive
rate (%)

False negative rate (missed
detections) (%)

460 91.3 4.3 4.4

Fig. 6. Sonar-based collision avoid-
ance. When the MAV is close to the
wall, the control strategy is to move it
away from the wall towards the corridor
center.
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illumination conditions, background, object scales and viewpoints are quite different,
and yet our perception algorithms perform accurately. This is due to the fact our
algorithms do not rely on any special assumptions about lightning conditions and
viewpoints.

The corridors in our test environment were typically 70 inches wide, while the
MAV hull is approximately 20 inches wide. This provides a 25-inch margin from each
sidewall when the drone is flying in the center of the corridor. As seen in Fig. 6, if any
of the side sonar distance measurements falls below a given threshold (e.g., 12 inches),
then our control algorithm commands the drone to move away from the wall. This
control process for moving away from the wall has a higher priority than moving
forward to the destination point.

5 Conclusion and Discussion

This work describes efficient visual perception algorithms to accurately detect van-
ishing point and doors in indoor environments. It also describes a control and planning
strategy for collision-free navigation. The key advantages of our approach are: (1) fast
and efficient perception algorithms that can run onboard in power-constrained appli-
cations and platforms, e.g. MAVs; (2) robust perception algorithms that perform
accurately in spite of challenging environmental conditions (e.g., changing illumina-
tion, viewpoints, appearance) due to the use of invariant geometric features; and (3) a
priority-based planner and control strategy that combines outputs from the multimodal
perception subsystem to navigate and avoid obstacles.

A next step for us is to port the perception-control coupled system to an onboard
processing kit and evaluate its onboard performance for MAV flight. The door
detection capability will also be used in a global exploration strategy to move through
open doors and progressively explore the environment. We will also investigate the use
of additional modalities such as 3D range sensor to improve door detection and detect
moving obstacles for reactive control.
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