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Abstract. In this paper, we propose an unsupervised video object
co-segmentation framework based on the primary object proposals to
extract the common foreground object(s) from a given video set. In
addition to the objectness attributes and motion coherence our frame-
work exploits the temporal consistency of the object-like regions between
adjacent frames to enrich the original set of object proposals. We call
the enriched proposal sets temporal proposal streams, as they are com-
posed of the most similar proposals from each frame augmented with
predicted proposals using temporally consistent superpixel information.
The temporal proposal streams represent all the possible region tubes
of the objects. Therefore, we formulate a graphical model to select a
proposal stream for each object in which the pairwise potentials consist
of the appearance dissimilarity between different streams in the same
video and also the similarity between the streams in different videos.
This model is suitable for single (multiple) foreground objects in two
(more) videos, which can be solved by any existing energy minimiza-
tion method. We evaluate our proposed framework by comparing it to
other video co-segmentation algorithms. Our method achieves improved
performance on state-of-the-art benchmark datasets.

1 Introduction

Video object segmentation aims to group the pixels over frames of a video into
spatial-temporal coherent regions, i.e., to find those pixels belonging to the same
foreground object(s) in each frame. Most of the algorithms for video object
segmentation focus on single object scenarios in one video sequence, e.g. [1–3].

However, in practical scenarios, the video contents are much more compli-
cated and diverse. For instance, most videos contain more than one object; some
foreground objects arise in indistinguishable motion or are surrounded by the
background which is similar in appearance to the objects. In such circumstances,
using the joint information from other videos containing the same objects, can
help us to discover the foreground objects much more precisely. This method is
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known as video co-segmentation, firstly introduced by Rubio et al. in [4], which
segments the common regions appearing over all the frames of two or more given
video sequences containing the same objects.

While the results look promising, the task to distinguish and extract the
foreground objects by using only the joint appearance among the videos still
remains unsolved. In this paper, we propose a general framework for video co-
segmentation based on the object proposals, which is a graphical model for single
or multiple foreground objects in two or more videos. Our algorithm differs
significantly from others mainly in two parts:

– we refine and expand the original set of object proposals from [5] by predicting
them onto adjacent frames using temporal coherence information to create
temporal proposal streams as well as

– formulate the selecting problem of the object proposal streams as a portable
conditional random field (CRF) model.

Our first contribution exploits that the appearance and shape of objects are
assumed to vary slowly over frames. We use the information of temporally con-
sistent superpixels to create temporal proposal streams which represent a tem-
porally consistent object-like region in the video. By the second contribution
multiple foreground objects can be dealt with more easily. Our model can be
solved by any existing energy minimization method. We validate our framework
using two public benchmark datasets, MOViCS [6] and ObMiC [7], and compare
our results with the state-of-the-art methods. An overview of our framework is
illustrated in Fig. 1.

Input Videos
CRF Model for Multi-objects 

Selection
Graph-based 
Refinement

Generation of Object Proposals

Object Proposal Expansion

Temporal Proposal Stream Generation

Fig. 1. The overview of our proposed framework. Firstly, given a video set, a group
of primary object proposals for each video frame is generated. Next, we expand the
original proposal set with the predicted ones based on temporal information from
adjacent frames, and then combine the similar proposals from each frame in a video as
the temporal proposal streams. Then the CRF model selects the best proposal stream
for each object in each video. Finally, the segments of each stream is refined by a
spatial-temporal graph model.

2 Related Work

Image Co-segmentation. The concept of co-segmentation was firstly applied to
image pairs by Rother et al. in [8]. They proposed a method to discover the
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common object by considering the joint information from a pair of images.
Vicente et al. [9] extended the method to image based object co-segmentation by
using the object proposal from [5] to segment similar objects from image pairs.
Moreover, the methods proposed by [10,11] dealt with multiple object classes
using discriminative clustering.

Video Object Segmentation. A lot of research has been done on video object
segmentation, i.e. to separate the objects from the background in videos. In con-
trast to the methods based on low-level features, several approaches adopted
the ‘objectness’ measure to seek for the object-like proposals for primary video
object segmentation in a single video [1,2,12]. In addition, Grundmann et al.
[13] clustered a video into spatio-temporal consistent supervoxels, and Jain and
Grauman [14] used the consistency of these supervoxels as a higher order poten-
tial for semi-supervised foreground segmentation.

Video Object Co-segmentation. Recently, an increasing number of methods focus
on video object co-segmentation. The method proposed in [4] grouped the pixels
into two levels: the higher level consists of space-time tubes, and the lower one is
composed of region segments within the frames. Based on initial foreground and
background estimation and dense feature extraction of the regions and tubes,
they constructed a probabilistic model of the foreground and background, and
iteratively refined the results and updated the model. The supervoxel based
method proposed in [15] employed dense optical flow to derive the intra-video
relative motion and Gaussian mixture models to characterize the common object
appearance. Both methods can only deal with the videos containing a single
common object. In [6], Chiu and Fritz proposed a multi-class video object co-
segmentation method using a non-parametric Bayesian model to learn a global
appearance model, which connected all the segments of the same object. How-
ever, it is based on low-level descriptors for grouping the foreground pixels into
classes. Fu et al. [7] built a standard multi-state selection graph model (MSG)
in view of the intra- and inter-video coherence. Guo et al. [16] also considered
the persistence of different parts of the foreground during the video and also
proposed automatic model selection while binding them together. In all of these
methods, [7] achieves the best segmentation results. However, the MSG certainly
assigns each node (frame) an optimal label (object proposal), which means they
can not find the objects when it does not appear in the first frames. Besides,
if the object is totally covered in some frames, there would be no selectable
proposal to represent the object, even so the MSG still chooses one for these
frames, which fulfils the lowest MRF energy. Although they used a graph-based
segmentation for refinement, it is still unrecoverable in case of the wrong propos-
als characterized by low-level features which are similar to the object of interest.
Furthermore, their graph model is constructed with fully-connected states of
each node between the multiple videos, which costs lots of time in comparison
between different states.

Our proposed method based on temporal proposal streams overcomes afore-
mentioned challenges. All the streams are generated by the detected similar
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proposals from each frame without the limitation of starting or ending point.
Similar streams are merged into a single stream via spectral clustering, even
if they are not completely consecutive. Moreover, our framework is more effi-
cient to obtain the final results, due to the fewer comparisons between the states
(temporal proposal streams).

3 Proposed Method

Given a set of N videos as {V 1, . . . , V N} we primarily achieve a group of object-
based proposals using [5] in each frame fn

t , n ∈ N , t ∈ Fn. These proposals pnt
are generated by performing graph cuts based on a seed region and a learned
affinity function. They are also scored from best to worst based on a ranking sys-
tem. These candidates are used as input of our proposed video co-segmentation
method.

3.1 Object Proposal Expansion

In order to find the object-like candidates among them, we define a score as
proposed by [1] based on appearance cues and salient motion patterns relative
to their surroundings:

A(pnti) = O(pnti) + M(pnti), (1)

where the score A(pnti) of ith proposal in frame fn
t is constituted by the static

intra-frame objectness score O(pnti) and the dynamic inter-frame motion score
M(pnti). The objectness score O(pnti) is the original score in the proposal-gener-
ating process from [5]. It reflects how likely the proposal pnti is a whole object.
The motion score M(pnti), as defined in (2), measures the confidence that the
proposal pnti corresponds to a coherently moving object in the video.

M(pnti) = 1 − exp(− 1
M̄

χ2
flow(pnti , p

n
ti)), (2)

where pnti denotes the pixels around the proposal pnti within a loosely fit bounding
box, and χ2

flow(pnti , p
n
ti) is the χ2-distance between L1-normalized optical flow

histograms with M̄ denoting the mean of the χ2-distance.
In [5] only the local information of each individual frame is considered,

thereby neglecting the temporal information. Taking this into consideration, we
adopt the idea of [17] to create temporally consistent superpixels (TCS) to map
all the proposals onto the adjacent frames. In consequence, the TCS labels of
each proposal may guide us to predict an additional successive proposal in these
frame.

As illustrated in Fig. 2, each proposal of frame fn
t is warped by selecting the

superpixels with the same TCS labels on frame fn
t+1. Therefore, the new pre-

dicted proposal contains the TCS labels from pnti . We refine it using graph-based
image segmentation [18]. With this predicted proposal, we seek for a proposal
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Fig. 2. Object proposal expansion procedure. For each object proposal in frame t,
we predict its temporally consistent one for frame t+1 based on the TCS labels and
overlap it with all the original existing proposals. If none of them has an overlap ratio
higher than the threshold, we add the predicted proposal as an additional one in the
proposal set of frame t+1.

in frame fn
t+1 which is similar to the newly predicted one. The intersection-over-

union overlap ratio is defined as the judgment criteria as follows:

o =
|Warpt→t+1(pnti) ∩ pnt+1j |
|Warpt→t+1(pnti) ∪ pnt+1j

| . (3)

If any proposal pnt+1j in frame fn
t+1 does not have an overlap ratio larger

than the threshold γ (which is set to 0.7 in this paper), we use the predicted
Warpt→t+1(pnti) as an additional proposal and add it to the proposal set of
frame fn

t+1. In practice, this procedure is carried out in a consecutive fashion in
both forward and backward direction. This ensures that any missing proposal is
properly propagated onto every frame.

3.2 Temporal Proposal Streams

Based on the expanded proposals, we discover the groups of temporal proposal
streams which may represent a consistent foreground object-like region in the
video.

Primarily, we start to generate the streams for video V n from its first
frame fn

1 . The x most highly ranked proposals in the first frame are assigned as
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Fig. 3. Object occlusion occurring in a video of ‘LionsAll’ video set in MOViCS
dataset [11]. We retain the proposal before the occlusion and use its appearance to
compare with the proposals when the lion shows up again.

the beginning of the x initial proposal streams. Then we seek a similar proposal
in the next frame for each of the stream with the overlap of the TCS labels, as
mentioned in Sect. 3.1. The one with the highest overlap ratio will be regarded
as a new member in the corresponding proposal stream. If a proper proposal
can not be found in this frame, this stream ends up here; otherwise, the process
moves on to next frame. Meanwhile, we also consider the x most highly ranked
proposals in the following frames fn

k . Some of them may be already connected
with the existing streams, and the rest are used to start new streams. So, in
practice, the set of the streams grows over frames. But with the limitation of x,
it will not grow too much, because most of the highly ranked proposals of each
frame should just continue the already started streams. On the other hand, this
growing process helps us to find new objects which maybe does not show up in
the first frame.

In some cases, the object is totally occluded in some frames and then shows
up again, as shown in Fig. 3. Our aforementioned method treats it as two dif-
ferent streams which are supposed to represent the same object. To solve this
problem, we need to bond some of the generated streams. Before the combina-
tion, the streams which span all the frames are retained unchanged, while the
ones containing only one frame are abandoned. For the rest of them, we adopt
the spectral clustering based on their colour appearance to group them in y
clusters.

3.3 CRF Model for Multi-object Selection

Since the graphical model provides a standard framework for capturing complex
dependencies among random variables, it helps us to select the most object-like
temporal proposal stream for each video as the segmented object. In this paper,
the problem is formulated as a graphical model in the form of a conditional
random field (CRF), as illustrated in Fig. 4.

Each node represents an object in a video and the possible states comprise the
corresponding temporal proposal streams. We seek a proper stream to represent
the object for each node. The energy function of the graphical model is defined
as:

E =

N∑

n=1

Cn∑

k=1

Eunary(s
n
k ) + α1 ·

N∑

n=1

Cn∑

k,h=1
k �=h

Eintra(s
n
k , snh) + α2 ·

N∑

n,m=1
n�=m

Cn∑

k=1

Cm∑

l=1

Einter(s
n
k , sml ),

(4)
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Fig. 4. Our multi-object selection graphical model for the ‘Dog and Deer’ video set
from ObMiC dataset [7], which contains two video sequences with two objects.

where α1 and α2 are weighting coefficients.
The unary energy uses the aforementioned score A(snk ) from Sect. 3.1 and the

saliency score S(snk ) of all the regions in each stream to represent its likelihood
belonging to the foreground:

Eunary(snk ) = −log[max(Ā(snk ), S(snk ))], (5)

where Ā(snk ) is the mean score of all the proposals in stream snk . Due to the
irregular movements of the foreground objects, we also consider their saliency as
a supplementing static cue. For the whole video, we compute the co-saliency map
based on all the frames using [19] and get the saliency score from the overlap
between the region and the corresponding map.

The pairwise term includes two parts, the intra- and the inter-video energies.
Eintra(snk , snh) is the intra-video energy between the streams snk and snh in video
V n, which represents the stream similarity penalty. Each object has its own
stream in a video, which means a stream should not be assigned to different
objects. Thus, the stream similarity penalty is described by the dissimilarity
between the streams:

Eintra(snk , snh) = −log(Df (snk , snh)), (6)

where Df is the low-level feature similarity between them, which is defined as:

Df (snk , snh) =
1

Mm
χ2
f (snk , snh). (7)

In practice, we compare all the regions of both streams and average the scores.
χ2
f (snk , snh) is the weighted combination of the χ2-distances between the normal-

ized colour histograms and the shape histograms of snk and snh. Mm denotes the
mean value of the χ2-distance. In our work, shape is represented by the HOG
descriptor [20] within a minimum bounding box enclosing the region.
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The other pairwise term Einter(snk , sml ) measures the object consistency
among different videos. In this graph, each stream from one video is connected
to those in the other videos. We define the inter-video energy as:

Einter(snk , sml ) = Df (snk , sml ), (8)

in which Df is the low-level feature similarity computed by (7).
For inference, we employ TRW-S [21] to find the approximated labelling

that minimizes the energy function. Since the original object proposals gener-
ated by [5] are only roughly segmented, we refine the final results as [1] with
a pixel-level spatio-temporal graph-based segmentation to achieve a better seg-
mentation.

4 Experiments

We implement our proposed method in MATLAB and compare it against
four state-of-the-art methods related to video co-segmentation: Multi-class
video co-segmentation (MVC) [6], Object-based multiple foreground video co-
segmentation (ObMiC) [7], Extracting primary objects by video co-segmentation
(EPOVC) [22] and the latest Consistent foreground co-segmentation (CFC) [16].
For the comparison we use two state-of-the-art datasets: Multi-Object Video Co-
segmentation (MOViCS) dataset [6] for single object video co-segmentation and
Object-based Multiple Foreground Video Co-segmentation (ObMiC) dataset [7]
for the multiple objects case. Same as in [6], the intersection-over-union metric
(IOU), defined as R∩GT

R∪GT , is used as evaluation metric in this paper.

Implementation Details. For both datasets, the number of TCS in each frame of
each video sequence is around 1500, which makes sure that each TCS represents
a region with a proper size containing consistent appearance. The threshold γ
in the propagation procedure of object proposals is defined as 0.7, which judges
whether a new additional proposal should be added to the proposal set of the
next frame. When we discover the temporal proposal streams for each video, we
use the x = 40 most highly ranked proposals in the first frame to initialize the
streams. In addition, the 10 most highly ranked proposals in the following frames
are considered as the candidates to start new streams. After generating the
streams, all the incomplete streams are grouped into 20 or 5 clusters, depending
on the amount of incomplete streams. All the low-level features leveraged in
the framework consist of colour information and shape information. The colour
feature is computed in CIELab colour space and RGB colour space with 117
bins and the shape information from HOG descriptor is presented in 81 bins. To
combine these two features, we set the weighting coefficient for the colour as 2
to increase the weight. As for the graphical model, the weighting coefficients α1

and α2 to balance the two pairwise potential terms is set empirically.
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Fig. 5. The IOU metric on MOViCS dataset [6] (Color figure online).
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Fig. 6. Single object co-segmentation results on MOViCS dataset. First row is the
sample frames of given videos; second row represents the ground truth; from the third
to fifth row are the segmentation results from MVC [6], ObMiC [7] and our framework,
respectively.

Evaluation on MOViCS Dataset. We test our framework on the MOViCS da-
taset [6], which includes four different video sets and 11 videos in total. Each
video set contains one or two objects, and for five frames of each video a ground
truth labelling is provided. All objects appear in the videos of this dataset in an
irregular way. Although some videos comprise more than one foreground object,
we only consider the object appearing in each video of the video set.

As shown in Fig. 5, our proposed framework outperforms the multi-class
video co-segmentation method of [6] significantly. Using the temporal coherence
between the adjacent frames improves the segmentation results. Comparing with
the ObMiC from [7], we have better results in one video set. The reason for the
difference in the other video sets is that they employed all object proposals in
each frame as candidates for their graphical model, which chooses the proper
proposal for each frame separately. This low-level method keeps more details
for each proposal, but loses some temporal relevance between the proposals.
Besides, the computational overhead for the fully connected graphical model is
much higher as more similarities have to be evaluated. In comparison to EPOVC
[22] which has a similar structure as ObMiC our method produces a higher
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Fig. 7. The IOU metric on ObMiC dataset [7] (Color figure online).
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Fig. 8. Multiple objects co-segmentation results on ObMiC dataset. First row is the
sample frames of given videos; second row represents the ground truth; from the third
to fifth row are the segmentation results from MVC [6], ObMiC [7] and our framework,
respectively.

average accuracy. They applied only the low-level feature of each proposal
to build the graphical model, which is restricted by its initial configuration.
Although the recently published CFC method of [16] automatically chooses a
suitable model for each video set and performs well on the ‘Tigers’ sequence we
achieve on par or better accuracy on the other three video sets. Figure 6 shows
some qualitative segmentation examples.

Evaluation on ObMiC Dataset. The ObMiC dataset [7] comprises four video
pairs, each containing two common foreground objects. The scenarios of these
video sets are completely different and a ground truth labelling is provided for
all frames.

In the first three video sets our accuracy is better than MVC but lower than
ObMiC as shown in Fig. 7. But in the last video set, our accuracy is superior
to theirs. The segmentation results of the DogDeer and Monster sequences
in the fist and second column of Fig. 8 show that ObMiC segments the object
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boundaries slightly better than our method. More complicated environments can
be seen in the reality scenes with human beings. In the third column, our seg-
mentation results of the Skating sequence are better than MVC and comparable
to ObMiC. MVC segments the bodies in many pieces and ObMiC can only find
partial region of the objects, in which the colour appearance is consistent. In the
last TBBT video set, our framework outperforms the two other methods in the
intersection-over-union metric. In contrast to the ObMiC method our resulting
segments comprise the clothes and the heads of the characters in this video set.
From this aspect, our results are better for the woman, but yet to be satisfied
for the man.

5 Conclusion

We propose a video co-segmentation framework to extract the common fore-
ground object(s) from given video sets. The procedure consists of two key steps:
based on the basic object proposals, we firstly use the temporal information
between the frames to combine the consistent proposals together as temporal
proposal streams; secondly, a stream for each object is selected in each video by
the CRF model depending on their appearance. Our framework is not restricted
in the number of objects or videos, and it outperforms most of the state-of-the-
art methods in terms of accuracy with a lower computational burden on both
state-of-the-art benchmark datasets for the video object co-segmentation task.
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