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Abstract. Crowd physical motion and behaviour detection during evacuation
from confined spaces using computer vision is the main focus of research in the
eVACUATE project. Its early foundations and development perspectives are
discussed in this paper. Specifically, the main target in our development is to
achieve good rates of correct detection and classification of crowd motion and
behaviour in confined spaces respectively. However, the performance of the
computer vision algorithms, which are put in place for the detection of crowd
motion and behaviour, greatly depends on the quality, including causality, of the
multi-modal observation data with ground truth. Furthermore, it is of paramount
importance to take into account contextual information about the confined spaces
concerned in order to confirm the type of detected behaviours. The pilot venues
for crowd evacuation experimentations include: (1) Athens International Airport,
Greece; (2) An underground train station in Bilbao, Spain; (3) A stadium in San
Sebastian, Spain; and (4) A large cruise ship in St. Nazaire, France.

1 Introduction

The eVACUATE project investigates on dense crowd behaviour detection in various
confined environments [1]. It is supported with the development of a number of specific
experimental scenarios with targeted crowd behaviour of interest. These experiments
are illustrated in Fig 1 below. They specifically concern a subway station, Football
stadium, Cruise liner, and an International Airport. In each of the cases the crowds are
dense and potentially very large. The camera angles in these environments are non-ideal
since they are challenged by lighting issues. Occlusion is severe within crowds and is
not uncommon, due to the camera placements, for significant portions of the crowd that
are occluded by one or more individuals.
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Fig. 1. eVACUATE scenario environments: (a) Subway station (b) Football stadium (c)
Cruise liner (d) International Airport

1.1 Meaning of “Crowd”

The design and subsequent validation of crowd motions and behaviour analyses require
deeper insights into the most important features of pedestrian (human) crowds who are
viewed as a living complex system. In general terms, a crowd can be considered to be
a collection of loosely coordinated individuals, who share a common and temporarily
bound interest. This could cover spectators and moving people.

(a) (b)

Fig. 2. Pedestrian crossing with dynamic motions of crowds (a) t = 0 s (b) t = 24 s

From a practical sense there are nuances in the simple definition presented above.
Figure 2 shows two images of a pedestrian crossing at two different times. Initially, there
are two distinct crowds each of which desire to cross to the other side of their original
positions. This is shown by the two large red ellipses under Fig. 2(a). After a length of
time, the situation of these crowds evolves interestingly. There are number of various
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possibilities of crowd groupings as shown in the red ellipses under Fig. 2(b). Figure 2a
and b show that the notion of crowd is a dynamic concept that may change in time
through the split and merger of groups of people. The overall intention of each individual
in the crowd when crossing the road may have not changed in the two images, but it
became much clearer though the course of time. Their distribution in space evolves
interestingly in time, and as a result, a multi-scale approach of crowd detection was
adopted in our investigation in order to advance our understanding of crowd descrip‐
tions, dynamic motions and behaviour using computer vision. The multi-scale approach
of crowd descriptions is listed below: (a) Micro-scale description: Pedestrians are iden‐
tified individually. The state of each of such individual is delivered by position and
velocity; (b) Meso-scale description: The micro-scale description of pedestrians is still
identified by position and velocity but it is represented statistically through a distribution
function. Such views of the crowd at meso-scale really focusses on the grouping of
individuals within the crowd; and (c) Macro-scale description: The crowd is considered
as a continuum body. Furthermore, it is described with average quantities (observables)
such as spatial density, momentum, kinetic energy and collectiveness. These quantities
are space and time dependent and conceptually local averages of the micro-scale prop‐
erties of the crowd. The crowd descriptions at multiple scales are important to put in
place in our investigation of crowd motions with multiple levels of spatial granularity
and deeper crowd motions detection using computer vision. This will be the best way
forward to understand crowd behaviour, when attempting to couple it with context
modelling, fusion and reasoning. [2].

2 Multi-modal Crowd Motion and Behaviour Detection

As we have previously stated, computer vision is used together with context modelling
and reasoning for achieving deep understanding of crowd motions and behaviour. The
purpose of this is to really advance the safety of existing methods concerning active
crowd evacuation routes from confined spaces in crisis situations. Crowd contextual
behavior distinguishes three main components (Fig. 3). They include: Behaviours;
Effects; and Features. These operate at the so-called micro-scale or macro-scale
domains [2].

Fig. 3. Crowd behavior model components.
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Features: These are a set of constraints over observable sensory properties in a scene
within a venue of interest and manifesting a particular effect. Sensory data are captured
from visible, thermal and hyper-spectral imaging devices. Optical Cameras are triggered
on visible spectra and thus they can be used to identify visually detectable objects
(humans) of interest. Thermal imaging allows efficient determination of people from the
background even under highly dynamic scenes, illumination, occlusions or content
alterations since it exploits humans’ temperature compared with the environment.
Finally, hyper-spectral imaging triggers different spectral bands with respect to the
material properties of an object, yielding an improvement of the detection accuracy.
Effects: are the tangible (or intangible) results of the act of performing some behavior.
In this model’s interpretation effects are the direct causes of assuming a given behavior
is performed by the agents monitored around the venue. Behaviors: are described as
templates of human interaction and are described in the model as system assumptions
to check against the available data. Each behavior causes a set of expected effects on
different part of a venue at different times.

Our early analysis faces two different scales: The micro and the macro-scale. Micro-
scale Behavior Recognition: The analysis consists of understanding individuals or group
interactions within the crowd; group formation, split or merger of individuals; and event
detection for groups. The usual approach to solving these processes consists of object-
detection, object-tracking, object-classification and behavior-recognition [3] mainly
detecting motion characteristics. That may represent the overall state of crowd behavior
in case of relatively less dense conditions [4–6]. Macro-scale Crowd Behavior Recog‐
nition: Crowds from a distance exhibit a variety of high level fluid flow motions, which
include both steady and turbulent flows. These flows are motions between large scale
groups acting together within a crowd [7] and are usually discriminated into two classes
[8]. The first class is to use techniques to isolate individuals, track them and estimate
the crowd density and typical motions, while the second class models the crowd motion
using fluid flow theory [9].

2.1 Information Fusion from Multi-sensors

In this paper, features are extracted by processing optical, thermal and hyper-spectral
imaging data. The visible sensory data are analyzed to extract the foreground from the
background and then to estimate crowd properties for each detected seed. These algo‐
rithms, however, cannot be directly applied in case of thermal imaging analysis since
thermal data present (a) low signal to noise ratio (noisy data) and (b) contain almost
continuous pixel values (objects’ temperature).

On the other hand, the recent advantages in sensory technology has emerged the
development of frame hyper-spectral sensors with the capability of acquiring hyper-
cubes at video rates. Hyper-spectral sensors offer enhanced discrimination capabilities
for the characterization of subtle spectral features and important object reflectance prop‐
erties. To this end, a generic framework is designed, developed and validated for multiple
object tracking in hyper-spectral video sequences. The background estimation is effi‐
ciently addressed through advanced scale-space filtering and dimensionality reduction.
The object recognition task exploits certain spectral and geometric features which were
associated with rule-based classification.
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All the information is fused together to increase the reliability of micro-scale analysis.
Then, unsupervised clustering is supported for organizing the low-level information at
higher scales of hierarchy, providing input paradigms for object behavior recognition.

2.2 Crowd Features Measurement

Spatial crowd density is among the parameters that can be used to measure and represent
crowd seeds. However, the question of “how to measure a crowd” can have many
different answers. It may depend on the type of information required and the level of
granularity which is of interest. As a result, the inner workings and state of a crowd of
humans has been investigated. A set of features are defined for the crowd. These are
purposely chosen with an aim to characterize the state and the type of crowds. Further,
the crowd is assumed homogeneous. In this, while the micro-scale motions within the
crowd are observed, the defined properties and features describe the crowd as a whole
(macro-scale).

Different physical analogies and modelling approaches have been used in crowd and
traffic modelling. A physical model imposes a hypothetical structure that is controlled
by a set of parameters. Thus, in order to fit each model, one sets out to find these param‐
eters. Some of the more popular modelling analogies in this domain include: cellular
automata [10, 11], social force model [12, 13] and fluid flow mechanics [14, 15].
However, the modelling analogies from statistical mechanics for gases thermodynamic
theories have been considered in this work.

Thermodynamics is concerned with heat and temperature and their relation to energy
and work. Furthermore, the thermodynamics which defines the macroscopic properties
of gases can be elegantly derived from statistical mechanics fundamental theories, which
postulate the gas molecular behavior.

It is this concept which directly links the mechanics of the constituents with the
overall macroscopic properties of the fluid which are of great interest in this work. In
this sense, statistical mechanics based theories that derive the macroscopic features are
adopted for measuring crowds, simply from their microscopic constituents. These are
represented by individual people within the crowd.

Holistic/macro features in a way that would enable the description and differentia‐
tions between different kinds of crowds are defined. These also shall differentiate
between different states of crowds.

As will be further discussed in this section, three parameters are defined. These are:
structure; energy; and translation. A three dimensional crowd space will map every
crowd to a point in the structure-energy-translation space. The aim is to achieve a good
separation between different types of crowd in this space.

In our model, a force which keeps the individual members of the crowd together is
assumed. The strength of connections between the members of the crowd will be referred
to as ‘structure’. Irrespective of the strength of connections, the crowd may be in an
excited state (high energy) or a calm state (low energy); this feature of the crowd will
be called ‘energy’. It is also possible to imagine that the whole crowd may travel in
space; this is referred to as ‘translation’. The notion of structure described here bears
notable similarities with the concept of entropy of different states of matter, while the
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energy resembles the internal energy described in statistical mechanics. In thermody‐
namics, entropy, , is a measure of disorder:

Where, for a classic system with a discrete set of microstates,  is the probability of
occurrence for microstate  and  is the Boltzmann constant. One hypothesize that a
pattern is formed in the crowd if each individual is bounded by the same pattern inde‐
pendently. Although the independence assumption may be too strong, one proposes that
when analyzing the crowd formation through a few correlated frames, the available
information is not sufficient to infer complex dynamics between the members of the
crowd. Thus a simpler model which can exhibit similar outcomes is more plausible.

Since the locations of individuals are independent of one another, the joint entropy
of the crowd,  simplifies to:

Where,  is the average population of the crowd in  frames. Let  be the number
of times that individual  has been observed in bin  in  frames. The probability of
selecting this bin, , by individual  is:

Given that the location of individuals is considered as independent, an estimate of
the probability of selecting bin , , can be given by:

, is the sum of all density counts at bin  in  frames. In order to calculate entropy,
the internal position of each pedestrian within the crowd  is required. If the crowd is
stationary, then the observed position, , is equal to the internal position (  if

). However, if the crowd is moving with a flow velocity , then the change in
internal position in a time step  can be calculated as:

Entropy is then normalized with respect to the crowd population and the extent of
the crowd spatial area. The Internal energy is computed as sum of the microscopic kinetic
energy of internal motion of the individuals in the crowd.
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3 The Multi-modal Crowd Motion Detection Algorithms

3.1 Visual Imaging Algorithms

A useful metric by which crowds can be analyzed is the spatial density. This can provide
regions where there are too many people (above some threshold) which may lead to the
compromise of their safety in case of an emergency and evacuation. Furthermore, it can
be used to inform safety studies of regions and lines, together with emerging trends at
various spatial scales in the crowd [16]. The approach outlined in this work first finds
an estimate of the numbers of people in the confined environment and then via projective
geometrical techniques, a measure of density is computed. The individual steps are
shown in Fig. 4 below. The individual steps will now be briefly elaborated.

Fig. 4. Flow of processing steps for density map generation.

The work described here is underpinned by the use of a calibrated camera. Calibra‐
tion is the process of estimating internal camera parameters and the cameras position in
the world. The internal parameters are computed via a process where a known metric
geometry (such as a chessboard) is moved within the cameras field of view and planar
homographies can be computed. This approach is generally attributed to Zhang [17]. If
it is not possible to use this approach (for example the footage is provided not captured),
then architectural features in the environment may be used in place of the chessboard.
In our case, features within the image such as banisters and flooring tiles which conform
to very specific sizes were used. Checking the calibration can be performed by back-
projection after the fact. The external parameters of the camera are computed by picking
an origin and computing the rotation and translation of the “Camera Centre”.

A “Person Detector” in crowds is a difficult problem to overcome, due to the signif‐
icant amount of occlusion bother between people and the environment. For this reason,
a typical person detector will not work. As a result, a custom head and shoulder detector
was purposely built in this study. We followed the approach of Dalal and Triggs [18]
and built a model based on Histogram of Gradients. In our case, images from synthetic
and real imagery were to achieve it. The use of synthetic imagery allows the generation
of a larger dataset than one would achieve in the field [19].

Once the heads are found, they are projected to a ground 2D plane via a previously
computed homography. This homography uses the calibrated camera to compute points
of a known height within the image. By computing 8 such points: 4 on the ground plane
and 4 at a known height, a homography can be processed. This is used to map points in
the image from a fixed height to the ground plane under the assumption that all people
are of similar heights. In reality, this assumption is fine as most people in a population
are normally distributed about a population mean. Furthermore any associated errors
can be removed further up the chain by subsequent processing.
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The final step in the process is to compute a density map based upon the projected
location for people in the ground plane. Specifically, kernel density estimation based
approach is employed in the computation. For every projected head, a Gaussian is
projected into the image which has a variance that is based on an estimate of the expected
individual personal space. In reality, this value is slightly greater than the average size
of a person and the person’s size with a small neighborhood can be employed in such
case. Because the density map is created in a coordinate space relative to the world origin
it is straightforward to further project over the image of interest. Figure 5 shows an
example of the processing chain in action on a synthetic sequence. Figure 5(a) shows
the original frame with crowd. Figure 5(b) shows the heads of the people labelled and
the associated density map.

Fig. 5. An example of the processing chain in action on a synthetic sequence. (a) Original data,
(b) head of people labelled and the respective associate map.

3.2 Thermal Imaging Algorithms

Thermal imagery presents some properties that are not present in RGB data. For instance,
thermal detection can be used for both day and night scenarios. Therefore, they are a prime
candidate for a persistent (24-7) video system for surveillance and monitoring and thus it
is a very important toolkit for an active evacuation routing. In thermal sensors, a person
has a different radiation compared to the background (higher or lower). Therefore, fore‐
ground extraction is more reliable in thermal imagery rather than in RGB cameras.

Micro-Scale Crowd Analysis: Foreground extraction is performed through back‐
ground modelling by taking into consideration the particular properties of the thermal
imagery. In particular, our method exploits a highly adjustable mixture model where the
structure and parameters can be directly estimated from the data distribution, allowing
dynamic model adaptation to uncontrolled and changing environments. A variational
inference framework is adopted as a learning paradigm for the model parameters. Varia‐
tional inference associates the functional structure of the model with real data distribu‐
tions as obtained from the infrared images. The performance of background modeling
for the thermal data of Athens airport is illustrated in Fig. 6. Adaptive algorithms can
be also incorporated similar to the work of [20].
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Crowd Measurements: In the framework of this paper, we use a dense optical flow
technique, namely Farneback’s algorithm. Farneback algorithm uses Polynomial
Expansion to approximate the neighbors of a pixel. The Expansion could be seen as a
quadratic equation with matrices and vectors as variable and coefficients. This dense
optical flow analysis produces a displacement field from two successive video frames.
Each displacement vector in the field is estimated by solving a minimization problem
subject to constraints derived from the polynomial expansion. The error during mini‐
mization is the weighted sum of differences in the pixel neighborhood between the
images. Image Pyramids is used to detect large displacements and Gaussian filter to
smooth out the neighboring displacements. Other measurements addressing 3D dimen‐
sion can be incorporated like the ones presented in [21].

Figure 7 visually presents the performance of Farneback’s method when applied on
thermal data captured from the Athens airport. The first column presents the original

Original Captured Images

Background Model

Foreground Extraction

Fig. 6. The performance of detecting individuals from thermal imagery using the adjustable
mixture modelling.

Original Captured Image 

Motion Flow 

Motion Direction 

Motion Magnitude 

Fig. 7. Performance of Farneback’s method.
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captured frames and motion flows which show the presence of dense optical flow in the
scene, this is the fusion of motion intensity and motion direction. The second column
presents the direction of motion, where different colors represent different directions,
and finally the last set of images represent the intensity of the motion. The blue color
corresponds to no motion, while the red color represents motion of high intensity.

4 Results and Discussions

The datasets used to evaluate the multi-modal crowd motion detection algorithms have
been obtained within the early research experimentations in eVACUATE [1]. These
concern the design of an active evaluation routing in the premises of Athens International
Airport. The experiment has been conducted at the satellite terminal of the airport at
which we have installed optical, thermal and hyper-spectral imaging sensors for
capturing different types of crowd evacuation activities. To map the detected objects
and their respective properties from camera view field onto 2D terminal plan, ortho-
photos of the area are exploited following geometric transformations. Figure 8 presents
the detected seeds (humans) as being seen by the thermal sensor using the methodology
of the algorithm described in Sect. 3.2. Figure 8 also shows the ortho-mapping of the
detected seeds onto the terminal plan. Velocities and directions of the crowd have also
been extracted through the Farneback’s method (see Sect. 3.2) and projected onto the
terminal map.

Fig. 8. Ortho-mapping of the detected individuals and their crowd properties from thermal
sensors onto Athens international airport terminal plan.

Figure 9(a) groups crowd properties to extract spatial effects, which is the pre-requi‐
site step towards crowd behavior recognition. We depict results at different number of
clusters to indicate the sensitivity of the algorithm as the number of clusters increases.
Figure 9(b) presents the clustering outcomes assuming spatial coherency among the
crowd properties clusters. In both cases, grouping is performed by applying the spectral
clustering algorithm.
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Fig. 9. Crowd properties grouping for spatial effects extraction

5 Future Development

In this early research work, the multi-scale conceptualization of crowds’ description in
confined spaces and the multi-modal computer vision algorithms for the detection of
their motions has been discussed. These constitute the foundations for the detection of
crowd physical motion and behavior at multiple scales. This will lead to further analyses
of crowd measurements, their further interpretations with reasoning in context of the
confined spaces in which crowds are evacuated. The contextual reasoning on crowd
behaviour is currently ongoing and will be finalized and validated across all pilots using
further experimentations in a subsequent paper.
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