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Abstract. In this note a generalization of Powers–Størmer inequality for oper-
ator monotone functions on [0,+∞) and for positive linear functional on gen-
eral C∗-algebras will be introduced and be shown that the generalized Powers–
Størmer inequality characterizes the tracial functionals on C∗-algebras and
the monotonicity for a given function.
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1. Introduction

Let n ∈ N and Mn be the algebra of n× n matrices. We call a function f matrix
convex of order n or n-convex in short whenever the inequality

f(λA+ (1 − λ)B) ≤ λf(A) + (1− λ)f(B), λ ∈ [0, 1]

holds for every pair of selfadjoint matrices A,B ∈ Mn such that all eigenvalues of
A and B are contained in an interval I (⊂ R). Matrix monotone functions on I
are similarly defined as the inequality

A ≤ B =⇒ f(A) ≤ f(B)

for an arbitrary selfadjoint matrices A,B ∈ Mn such that A ≤ B and all eigenval-
ues of A and B are contained in I.

We denote the spaces of operator monotone functions and of operator convex
functions by P∞(I) and K∞(I) respectively. The spaces for n-monotone functions
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and n-convex functions are written as Pn(I) and Kn(I). We have then

P1(I) ⊇ · · · ⊇ Pn−1(I) ⊇ Pn(I) ⊇ Pn+1(I) ⊇ · · · ⊇ P∞(I)

K1(I) ⊇ · · · ⊇ Kn−1(I) ⊇ Kn(I) ⊇ Kn+1(I) ⊇ · · · ⊇ K∞(I).

Here we meet the facts that ∩∞
n=1Pn(I) = P∞(I) and ∩∞

n=1Kn(I) = K∞(I).
We regard these two decreasing sequences as noncommutative counterpart of the
classical piling sequence {Cn(I), C∞(I),Anal(I)}, where the class Anal(I) denotes
the set of all analytic functions over I. We could understand that the class of
operator monotone functions P∞(I) corresponds to the class {C∞(I),Anal(I)} by
the famous characterization of those functions by Loewner as the restriction of
Pick functions.

In these circumstances, it will be well recognized that we should not stick our
discussions only to those classes P∞(I) and K∞(I), that is, the class of operator
monotone functions and that of operator convex functions. Those classes {Pn(I)}
and {Kn(I)} are not merely optional ones to P∞(I) and K∞(I). They should play
important roles in the aspect of noncommutative calculus as the ones {Cn(I)}
play in usual (commutative) calculus.

The first basic question is whether Pn+1(I) (resp. Kn+1(I)) is strictly con-
tained in Pn(I) (resp. Kn(I)) for every n. In [31] the gap for n = 2, that is,
P3([0,∞)) 
 P2([0,∞)), was pointed out. This gap problem for arbitrary n, how-
ever, has been solved only recently ([9], [25], [12]). (See Section 2.)

On the other hand, there are basic equivalent assertions known only at the
level of operator monotone functions and operator convex functions by [10], [11].
We shall discuss those (equivalent) assertions as the correlation problem between
two kinds of piling structures {Pn(I)} and {Kn(I)}, that is, we are planning at
first to discuss relations between those assertions at each level n.

In [26] (resp. [17]) we discussed about the following 3 assertions at each level
n among them in order to see clear insight of the aspect of the problems:

(i) f(0) ≤ 0 and f is n-convex (resp. n-concave) in [0, α),
(ii) For each matrix A with its spectrum in [0, α) and a contraction C in the

matrix algebra Mn,

f(C∗AC) ≤ C∗f(A)C,

(resp. f(C∗AC) ≤ C∗f(A)C)

(iii) The function f(t)
t (resp. t

f(t)) (= g(t)) is n-monotone in (0, α).

Then we showed that for each n the condition (ii) is equivalent to the condition
(iii) and the assertion that f is n-convex with f(0) ≤ 0 implies that g(t) is (n−1)-
monotone (resp. f is n-concave with f(0) ≥ 0 implies that g(t) is (n−1)-monotone).
(See Section 3.)

Powers–Størmer inequality (see, for example, [29, Lemma 2.4], [28, Theo-
rem 11.19]) asserts that for s ∈ [0, 1] the following inequality

2Tr(AsB1−s) ≥ Tr(A+B − |A−B|) (1.1)
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holds for any pair of positive matrices A,B. This is a key inequality to prove the
upper bound of Chernoff bound, in quantum hypothesis testing theory [1]. This
inequality was first proven in [1], using an integral representation of the function ts.
After that, N. Ozawa gave a much simpler proof for the same inequality, using fact
that for s ∈ [0, 1] function f(t) = ts (t ∈ [0,+∞)) is an operator monotone ([18,
Proposition 1.1]). Recently, Y. Ogata in [24] extended this inequality to standard
von Neumann algebras. The motivation for the present paper is to investigate
whether replacing the function f(t) = ts by another operator monotone function
(this class is intensively studied, see [9][25]) can yield a smaller upper bound for
Tr(A + B − |A − B|) than what is used in quantum hypothesis testing. Based
on N. Ozawa’s proof we formulate Powers–Størmer’s inequality for an arbitrary
operator monotone function on [0,+∞) in the context of general C∗-algebras. (See
Section 4.)

As applications, the generalized Powers–Størmer inequality characterizes the
trace property for a normal linear positive functional on a von Neumann algebras
and for a linear positive functional on a C∗-algebra. (See Section 5.) It also char-
acterizes the monotonicity of a given function in this inequality. (See Section 6.)

2. Preliminary

We shall sometimes use the standard regularization procedure, cf. for example
Donoghu [6, p11]. Let φ be a positive and even C∞-function defined on the real
axis, vanishing outside the closed interval [−1, 1] and normalized such that∫ 1

−1

φ(x) = 1.

For any locally integrable function f defined in an open interval (a, b) we form its
regularization

fε(t) =
1

ε

∫ b

a

φ(
t− s

ε
)f(s)ds, t ∈ R

for small ε > 0, and realize that it is infinitely many times differentiable. For
t ∈ (a+ ε, b− ε) we may also write

fε(t) =

∫ 1

−1

φ(s)f(t− εs)ds.

If f is continuous, then fε converges uniformly to f on any compact subinterval
of (a, b). If in addition f is n-convex (or n-monotone) in (a, b), then fε is n-convex
(or n-monotone) in the slightly smaller interval (a+ ε, b− ε). Since the pointwise
limit of a sequence of n-convex (or n-monotone) functions is again n-convex (or
n-monotone), we may therefore in many applications assume that an n-convex or
n-monotone function is sufficiently many times differentiable.
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For a sufficiently smooth function f(t) we denote its nth divided difference
for n-tuple of points {t1, t2, . . . , tn} defined as, when they are all different,

[t1, t2]f =
f(t1)− f(t2)

t1 − t2
, and inductively

[t1, t2, . . . , tn]f =
[t1, t2, . . . , tn−1]f − [t2, t3, . . . , tn]f

t1 − tn
.

And when some of them coincides such as t1 = t2 and so on, we put as

[t1, t1]f = f ′(t1) and inductively [t1, t1, . . . , t1]f =
f (n−1)(t1)

(n− 1)!
.

When there appears no confusion we often skip the referring function f . We
notice here the most important property of divided differences is that it is free
from permutations of {t1, t2, . . . , tn} in an open interval I.

Proposition 2.1.

(1) (Ia) Monotonicity (Loewner 1934 [21])

f ∈ Pn(I) ⇐⇒ ([ti, tj ]) ≥ 0 for any {t1, t2, . . . , tn}

(IIa) Convexity (Kraus 1936 [20])

f ∈ Kn(I) ⇐⇒ ([t1, ti, tj ]) ≥ 0 for any {t1, t2, . . . , tn},

where t1 can be replaced by any (fixed) tk.
(2) (Ib) Monotonicity (Loewner 1934 [21], Dobsch 1937 [5]-Donoghue 1974 [6])

For f ∈ C2n−1(I)

f ∈ Pn(I) ⇐⇒ Mn(f ; t) =

(
f (i+j−1)(t)

(i + j − 1)!

)
≥ 0 ∀t ∈ I.

(IIb) Convexity (Hansen–Tomiyama 2007 [12]) For f ∈ C2n(I)

f ∈ Kn(I) =⇒ Kn(f ; t) =

(
f (i+j)(t)

(i+ j)!

)
≥ 0 ∀t ∈ I.

In particular, for n = 2 the converse is also true.

We remind that to prove the implication Mn(f ; t) ≥ 0 ⇒ f ∈ Pn(I) in (Ib)
the local property for the monotonicity plays an essential role. Similarly to prove
the converse implication in the criterion of convexity in (IIb) in the above propo-
sition we need the local property conjecture for the convexity, that is, if f is n-
convex in the intervals (a, b) and (c, d) (a < c < b < d), then f is n-convex on (a, d).

Now we have only a partial sufficiency, that is, if Kn(f ; t0) is positive, then
there exists a neighborhood of t0 on which f is n-convex. (See [12, Theorem 1.2]
for example.)
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The method for the implication (IIb) ⇒ (IIa) under the assumption of the
local property theorem for the convexity may be familiar for some specialist.

Proposition 2.2. Let f ∈ C2n(I) such that Kn(f ; t) =
( f(i+j)(t)

(i+j)!

)
≥ 0 ∀t ∈ I.

Suppose that n-convexity has the local property. Then f ∈ Kn(I).

3. Double piling structure

As we have mentioned in the introduction, there are basic equivalent assertions
known for operator monotone functions and operator convex functions (cf. [10]).
Namely we have

Theorem A. For 0 < α ≤ ∞, the following assertions for a real-valued continuous
function f in [0, α) are equivalent:

(1) f is operator convex and f(0) ≤ 0.
(2) For an operator A with its spectrum in [0, α) and a contraction C,

f(C∗AC) ≤ C∗f(A)C.

(3) For two operators A,B with their spectra in [0, α) and two contractions C,D
such that C∗C +D∗D ≤ 1 we have the inequality

f(C∗AC +D∗BD) ≤ C∗f(A)C +D∗f(B)D.

(4) For an operator A with its spectrum in [0, α) and a projection P we have the
inequality,

f(PAP ) ≤ Pf(A)P

(5) The function g(t) = f(t)
t is operator monotone in the open interval (0, α).

In this section, we shall discuss mutual relationships of the above assertions
when we restrict the property of the function f at each fixed level n, that is, when
f and g are assumed to be only n-matrix convex and n- matrix monotone. We
regard the problem as the problem of double piling structure of those decreasing
sequences {Pn(I)} and {Kn(I)} down to P∞(I) and K∞(I) respectively. In this
sense, standard double piling structure known for these assertions before is the
following. We describe these implications using the following convention: if the fact
that the statement (A) holds for the matrix algebra Mm implies that statement
(B) holds for the matrix algebra Mn, then we write (A)m → (B)n.

Theorem A is proved in the following way.

(1)2n → (2)n → (5)n → (4)n, (2)2n → (3)n → (4)n, and (4)2n → (1)n.

Therefore, those assertions become equivalent when f is operator convex and g is
operator monotone by the piling structure.

Thus, the basic problem for double piling structure is to find the minimum
difference of degrees between those gaped assertions. Since, however, even single
piling problems are clarified only recently, as we have mentioned above, in spite of
a long history of monotone matrix functions and convex matrix functions, little is
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known for the double piling structure except the result by Mathias ([22]), which
asserts that a 2n-monotone function in the positive half-line [0,∞) becomes n-
concave.

Now in order to make our investigations more transparently we mainly con-
centrate our discussions to the relationships between (1), (2) and (5). In fact, we
need not say anything about (4) when n = 1, and for the reason choosing (2)
instead of (3) we just borrow the witty expression in [10], “correctness must bow
to applicability”. Before going into our discussions, we state each assertion in a
precise way but skipping the condition of the spectrum of a matrix A. Namely, in
the interval [0, α) we consider the following assertions.

(i) f(0) ≤ 0, and f is n-convex.
(ii) For each positive semidefinite element A with its spectrum in [0, α) and a

contraction C in Mn, we have

f(C∗AC) ≤ C∗f(A)C.

(iii) The function g(t) = f(t)
t is n-monotone in the interval (0, α).

We shall show then the equivalency of the assertions (ii) and (iii). Hence the
problem is reduced to the relationship between (i) and (iii) (or (ii)). Namely, we
have the following

Theorem 3.1 ([26]). Let n ∈ N.

1. The assertions (ii)n and (iii)n are equivalent,
2. The assertion (i)n implies the assertion (iii)n−1.

When f is a convex function, −f is a concave function. Hence we have the
following.

Theorem 3.2 ([17]). Let f : [0, α) → R (0 < α ≤ ∞) be a continuous function.
Consider the following three assertions:

(i) f(0) ≥ 0, and f is n-concave,
(ii) For each positive semidefinite element A with its spectrum in [0, α) and a

contraction C in Mn, we have

f(C∗AC) ≥ C∗f(A)C.

(iii) The function g(t) = t
f(t) is n-monotone in the interval (0, α).

Then we have for each n ∈ N

1. The assertions (ii)n and (iii)n are equivalent,
2. The assertion (i)n implies the assertion (iii)n−1.

4. Generalized Powers–Størmer inequality

One of the most basic tasks in quantum statistics is the discrimination of two
different quantum states. In the quantum hypothesis testing problem, one has to
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decide between two states of a system. The state ρ0 is the null hypothesis and ρ1
is alternative hypothesis.

The problem is to decide which hypothesis is true. The decision is performed
by a two-valued measurement {T, I − T }, where 0 ≤ T ≤ I is an observable. T
corresponds to the acceptance of ρ0 and I − T corresponds to the acceptance of
ρ1. T is called a test.

The total error Err(T ) of T is

Err(T ) =
1

2
Tr(ρ0(I − T )) +

1

2
Tr(ρ1T )

=
1

2
{1− Tr(T (ρ0 − ρ1))} .

Then asymptotic error exponent for ρ0 and ρ1 is

lim
n→∞

1

n
log Errn(T(n)),

where for all n ∈ N T(n) is a dn × dn quantum multiple test, and

Errn(T(n)) :=
1

2

{
1− Tr(T(n)(ρ

⊗n
0 − ρ⊗n

1 ))
}
.

If the limit limn→∞
1

n
log Errn(T(n)) exists, we refer to it as the asymptotic

error exponent.

The lower band and upper bounds for the asymptotic error exponent are
given by he following.

Theorem 4.1 ([1], [23]). Let {ρ0, ρ1} be hypothetic states on Cd, T(n) be quantum

multiple test, and Q(n) be a support projections on (ρ⊗n
0 − ρ⊗n

1 ). Then one has

(i) (M. Nussbaum and A. Szkola)

lim inf
n→∞

1

n
log Errn(T(n)) ≥ inf{logTr(ρ1−s

0 ρs1) | 0 ≤ s ≤ 1}.

(ii) ( K.M.R. Audenaert, et al.)

lim sup
n→∞

1

n
log Errn(Q(n)) ≤ inf{logTr(ρ1−s

0 ρs1) | 0 ≤ s ≤ 1}.

In the proof of the previous Theorem 4.1(ii) the following inequality played
a key role.

Theorem 4.2 ([1]). For any positive matrices A and B on Cd we have

1

2
(TrA+TrB − Tr |A−B|) ≤ Tr(A1−sBs) (s ∈ [0, 1]).

If we consider a function f(t) = t1−s and g(t) = ts =
t

f(t)
, then both

functions f and g are operator monotone. The inequality, then, can be reformed by

TrA+TrB − Tr |A−B| ≤ 2Tr(f(A)
1
2 g(B)f(A)

1
2 ).
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Theorem 4.3 ([16], [17]). Let f be a 2n-monotone function (or (n + 1)-concave
function) on [0,∞) such that f((0,∞)) ⊂ (0,∞). Then for any pair of positive
matrices A,B ∈ Mn(C)

Tr(A) + Tr(B) − Tr(|A−B|) ≤ 2Tr(f(A)
1
2 g(B)f(A)

1
2 ),

where g(t) = t
f(t) .

We give a sketch of the proof.

Let A,B be positive matrices and, let

A−B = (A−B)+ − (A−B)− = P −Q

and |A−B| = P +Q. We may, then, show that

Tr(A) − Tr(f(A)
1
2 g(B)f(A)

1
2 ) ≤ Tr(P )

holds as follows:

Tr(A)− Tr(f(A)
1
2 g(B)f(A)

1
2 )

= Tr(f(A)
1
2 g(A)f(A)

1
2 )− Tr(f(A)

1
2 g(B)f(A)

1
2 )

≤ Tr(f(A)
1
2 g(B + P )f(A)

1
2 )− Tr(f(A)

1
2 g(B)f(A)

1
2 )

≤ Tr(f(B + P )
1
2 (g(B + P )− g(B))f(B + P )

1
2 )

≤ Tr(f(B + P )
1
2 g(B + P )f(B + P )

1
2 )− Tr(f(B)

1
2 g(B)f(B)

1
2 )

= Tr(P ).

In particular we have

Corollary 4.4. Let f be an operator monotone function on [0,∞) such that
f((0,∞)) ⊂ (0,∞). Then for any pair of positive matrices A,B ∈ Mn(C)

Tr(A) + Tr(B) − Tr(|A−B|) ≤ 2Tr(f(A)
1
2 g(B)f(A)

1
2 ),

where g(t) = t
f(t) .

Since any C∗-algebra can be realized as a closed selfadjoint ∗-algebra of B(H)
for some Hilbert space H . We can generalize Corollary 4.4 in the framework of
C∗-algebras.

Theorem 4.5. Let τ be a tracial functional on a C∗-algebra A, f be a strictly posi-
tive, operator monotone function on [0,∞). Then for any pair of positive elements
A,B ∈ A

τ(A) + τ(B) − τ(|A−B|) ≤ 2τ(f(A)
1
2 g(B)f(A)

1
2 ), (4.1)

where g(t) = tf(t)−1.

Proof. Let π be the universal representation of A and τ̂ be a positive linear func-
tional on π(A) by τ̂(π(A)) = τ(A) for A ∈ A. Then τ̂ has the trace property. Since
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g is operator monotone on (0,∞) by [10, Corollary 6], through the same steps in
the proof of Theorem 4.3 we have that for any positive operators A and B in A

τ̂ (π(A)) + τ̂ (π(B)) − τ̂(π(|A −B|)) ≤ 2τ̂ (f(π(A))
1
2 g(π(B))f(π(A))

1
2 ),

that is,

τ(A) + τ(B) − τ(|A−B|) ≤ 2τ(f(A)
1
2 g(B)f(A)

1
2 ). �

5. Characterization of the trace property

In this section we shall show that the generalized Powers–Størmer inequality in
the previous section guarantees the trace property for a positive linear functional
on operator algebras.

Lemma 5.1 ([16]). Let ϕ be a positive linear functional on Mn and f be a continuous
function on [0,∞) such that f(0) = 0 and f((0,∞)) ⊂ (0,∞). If the following
inequality

ϕ(A +B)− ϕ(|A−B|) ≤ 2ϕ(f(A)
1
2 g(B)f(A)

1
2 ) (5.1)

holds true for all A,B ∈ M+
n , then ϕ should be a positive scalar multiple of the

canonical trace Tr on Mn, where

g(t) =

{ t
f(t) (t ∈ (0,∞))

0 (t = 0)
.

By analogy with a number of other similar cases (see [7] or [32]), the proof for
the trace property of a positive normal functional satisfying the inequality (5.1)
on a von Neumann algebra can be reduced to the case of the algebra M2 of all
matrices of order 2× 2.

Theorem 5.2 ([16]). Let ϕ be a positive normal linear functional on a von Neumann
algebra M and f be a continuous function on [0,∞) such that f(0) = 0 and
f((0,∞)) ⊂ (0,∞). If the following inequality

ϕ(A) + ϕ(B)− ϕ(|A−B|) ≤ 2ϕ(f(A)
1
2 g(B)f(A)

1
2 ) (5.2)

holds true for any pair A,B ∈ M+, then ϕ is a trace, where

g(t) =

{ t
f(t) (t ∈ (0,∞))

0 (t = 0)
.

Proof. By [19, Proposition 8.1.1] we have only to show that ϕ(P1) = ϕ(P2) for
any pair of nonzero equivalent projections P1 and P2. Moreover, we may assume
that P1 and P2 are mutually orthogonal. Indeed, considering mutually orthogonal
equivalent projections P ′

1 = P1 ∨P2 −P1 and P ′
2 = P1 −P1 ∧P2 we can show that

ϕ(P1) =
ϕ(P1 ∧ P2) + ϕ(P1 ∨ P2)

2
.

By symmetry we have ϕ(P1) = ϕ(P2).



358 H. Osaka

Hence we assume that P1 and P2 are nonzero mutually orthogonal equivalent
projections in M. Note that (P1 +P2)M(P1 +P2) is isomorphic to M2. Then the
inequality (5.2) still holds true for the operators in N and for the restriction of the
functional ϕ to N . According to Lemma 5.1, this restriction is a tracial functional
on N , and hence ϕ(P1) = ϕ(P2). �

Corollary 5.3. Let ϕ be a positive linear functional on a C∗-algebra A and f be a
continuous function on [0,∞) such that f(0) = 0 and f((0,∞)) ⊂ (0,∞). If the
following inequality

ϕ(A) + ϕ(B)− ϕ(|A−B|) ≤ 2ϕ(f(A)
1
2 g(B)f(A)

1
2 ) (5.3)

holds true for any pair A,B ∈ A+, then ϕ is a tracial functional, where

g(t) =

{ t
f(t) (t ∈ (0,∞))

0 (t = 0)
.

The following is inspired by [30, Theorem 2.2].

Proposition 5.4 ([17]). Let n ∈ N (n ≥ 2), and ϕ a positive linear functional on
Mn. Let f be a strictly positive, continuous function on (0,∞). Assume that the
function g on (0,∞) defined by g(t) = t

f(t) , is differentiable and strictly increasing

on (0,∞). Suppose that

ϕ(A) ≤ ϕ(f(A)
1
2 g(B)f(A)

1
2 ) (5.4)

for any positive invertible A,B ∈ Mn such that 0 < A ≤ B.
Then ϕ has the trace property if g satisfies the condition:

inf
λ>μ

√
g′(λ)g′(μ)
g(λ)−g(μ)

λ−μ

= 0. (5.5)

6. Characterization of operator monotonicity

In this section, following the idea from [4] we give a characterization of operator
monotonicity of matrix functions by the generalized Powers–Størmer type inequal-
ity. The following lemma is obvious.

Lemma 6.1. Let A = (aij), B = (bij) be positive invertible in Mn and S a non-
finite rank density operator on an infinite-dimensional, separable Hilbert space H.
Suppose that a11 > b11. Then there exist an orthogonal system {ξi}∞i=1 ⊂ H and
{λi}∞i=1 ⊂ [0, 1) such that

∑∞
i=1 λi = 1, Sξi = λiξi, and

∑n
i=1 aiiλi >

∑n
i=1 biiλi.

Theorem 6.2 ([17]). Let H be an infinite-dimensional, separable Hilbert space and
ϕ a normal state on B(H) such that its corresponding density operator Sϕ is not
finite rank. Let f be a strictly positive, continuous function on (0,∞), and g be a
function on (0,∞) defined by g(t) = t

f(t) . Suppose that

ϕ(A +B)− ϕ(|A−B|) ≤ 2ϕ(f(A)
1
2 g(B)f(A)

1
2 ) (6.1)
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for any positive invertible A,B ∈ B(H). Then both of functions f and g on (0,∞)
are operator monotone.

If f(t) = λt for some λ > 0, then g is constant on (0,∞). In this case, the
inequality (6.1) automatically holds. When the range of the density operator Sϕ,
however, is proper subspace in a Hilbert space H , the inequality (6.1) does not
hold for non-invertible positive operators.

Proposition 6.3 ([17]). Let H be a separable Hilbert space and ϕ be a normal state
on B(H). Let f be a strictly positive, continuous function on [0,∞) with f(0) = 0,
g a function on (0,∞) defined by g(t) = t

f(t) on (0,∞) and g(0) = 0. Suppose that

the range of the density operator Sϕ of ϕ is a proper subspace of H. Then there
exist positive non-invertible operators A and B which do not satisfy the inequality

ϕ(A+B)− ϕ(|A−B|) ≤ 2ϕ(f(A)
1
2 g(B)f(A)

1
2 ). (6.2)

Proof. We shall give a sketch of the proof.
Let {ξi}i∈N be an orthogonal system and {λi} ⊂ [0, 1) such that λ1 ≥ λ2 ≥

· · · ≥ 0, Sϕξi = λiξ and
∑∞

i=1 λi = 1.
Since Sϕ(H) 
 H , we take ξi0 such that Sϕ(ξi0 ) = 0. For δ, ε > 0 such that

δ > ε we set

A = ε|ξ1〉〈ξ1|+
√
ε(δ − ε)(|ξ1〉〈ξi0 |+ |ξi0〉〈ξ1|) + (δ − ε)|ξi0 〉〈ξi0 |

and

B = ε|ξ1〉〈ξ1| −
√
ε(δ − ε)(|ξ1〉〈ξi0 |+ |ξi0〉〈ξ1|) + (δ − ε)|ξi0 〉〈ξi0 |.

We have then

ϕ(A+B) = 2Tr(Sϕ(ε|ξ1〉〈ξ1|+ (δ − ε)|ξi0 〉〈ξi0 |))
= 2Tr(λ1ε|ξ1〉〈ξ1|) = 2λ1ε

ϕ(|A −B|) = 2Tr(Sϕ

√
ε(δ − ε)(|ξ1〉〈ξ1|+ |ξi0 〉〈ξi0 |))

= 2λ1

√
ε(δ − ε)

ϕ(f(A)1/2g(B)f(A)1/2) = ελ1
(δ − 2ε)2

δ2
.

Therefore, if positive operators A and B satisfy the inequality (6.2), we have

ε−
√
ε(δ − ε) ≤ ε

(δ − 2ε)2

δ2
.

But we have a contradiction if we take δ =
4ε

3
. �

The following problem is plausible.

Problem 6.4. Let f and g be the functions. Suppose that for any n and any positive
matrices A,B ∈ Mn

Tr(A+B)− Tr(|A−B|) ≤ 2Tr(f(A)
1
2 g(B)f(A)

1
2 ).

Is the function f operator monotone?
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