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Reproducing Kernels and Positivity of Vector Bundles
in Infinite Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

F. Ben Amor and K. Boulabiar
Algebraic Absolutely Invertible Elements in Archimedean
Riesz Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

E. Chil and M. Mokaddem
σ-Weak Orthomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

V.I. Chilin and I.G. Ganiev
Ergodic Theorems for L1-L∞ Contractions in Banach–Kantorovich
Lp-lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

N. Dăneţ
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Preface

The seventh Positivity conference was held from 22–26 July, 2013, at the Sci-
ence campus of Leiden University, the Netherlands, jointly organized by Leiden
University and Delft University of Technology. It was also the Zaanen Centennial
Conference, on the occasion of the 100th birth year of Adriaan Cornelis Zaanen.
The organising committee consisted of Marcel de Jeu (chair), Ben de Pagter, Miek
Messerschmidt, Jan Rozendaal, Onno van Gaans and Mark Veraar.

The sixteen invited speakers Francesco Altomare (Bari, Italy), Wolfgang
Arendt (Ulm, Germany), Karim Boulabiar (Tunis, Tunisia), Qingying Bu (Mis-
sissippi, USA), Guillermo Curbera (Sevilla, Spain), Julio Flores (Madrid, Spain),
Yehoram Gordon (Haifa, Israel), Rien Kaashoek (Amsterdam, the Netherlands),
Coenraad Labuschagne (Johannesburg, South Africa), Boris Mordukhovich (De-
troit, Michigan, USA), Ioannis Polyrakis (Athens, Greece), Abdelaziz Rhandi
(Salerno, Italy), Evgeny Semenov (Voronezh, Russia), Fedor Sukochev (Sydney,
Australia), Jun Tomiyama (Tokyo, Japan) and Jan van Neerven (Delft, the Nether-
lands) covered a broad spectrum of topics in plenary lectures, ranging from order-
theoretic approaches to stochastic processes via positive solutions of evolution
equations to ordered structures in the context of algebras of operators on Hilbert
spaces. This variety was also visible in the 122 contributed lectures in the various
thematic special sessions, covering the field Positivity in virtually all its aspects. At
the conference’s website http://websites.math.leidenuniv.nl/positivity2013/ many
of the PDF’s have been posted.

During the Zaanen celebration, several of Zaanen’s PhD students and his
oldest son highlighted his life and works.

With 162 participants from 32 countries and 6 continents, this issue of the
series of Positivity conferences was almost twice as large as its predecessor, il-
lustrating the growth and vitality of the field. We are pleased that Birkhäuser
has been found prepared to publish these proceedings, and we hope that this will
stimulate a further development.

Positivity VII was made possible by the Delft Institute of Applied Mathe-
matics, Foundation Compositio Mathematica, the Geometry and Quantum The-
ory research cluster (GQT), the Royal Netherlands Academy of Arts and Sciences
(KNAW), the Royal Mathematical Society (KWG), the Leiden University Fund
(LUF), the Mathematical Institute of Leiden University, the Nonlinear Dynamics
in Natural Systems research cluster (NDNS+) and the Netherlands Organisation
for Scientific Research (NWO). Their generous support is gratefully acknowledged.

Marcel de Jeu
Ben de Pagter
Onno van Gaans
Mark Veraar

http://websites.math.leidenuniv.nl/positivity2013/
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Adriaan Cornelis Zaanen

Koos Grobler, Rien Kaashoek, Anton Schep and Pieter Zaanen

Abstract. The Positivity VII conference in Leiden in July 2013 was the Zaanen
Centennial Conference, on the occasion of the 100th birth year of Adriaan
Cornelis Zaanen (1913–2003). Zaanen held the chair of analysis in Delft for five
years and subsequently the chair of mathematical analysis in Leiden for more
than twenty-five years, until his retirement in 1982. He played a prominent
role in ‘Positivity’ throughout that period.

During the conference, Koos Grobler, Rien Kaashoek and Anton Schep,
three of his former PhD students, shared their personal recollections of Zaa-
nen with the audience. Pieter Zaanen, his oldest son, told about their family
life. The written accounts of their speeches are included here, followed by a
chronological list of material on the life and works of Zaanen that has ap-
peared in print and on the internet over the years.

Mathematics Subject Classification (2010). 01A70.

Keywords. Adriaan Cornelis Zaanen.

1. Koos Grobler

“Adriaan C. Zaanen. Professor of Mathematics at the University of Leyden,
Netherlands”, it read on the title page of the book ‘Introduction to the theory
of integration’. This was my first encounter with his name as an honours student
doing a course in measure and integration theory. Being a first encounter with ‘ab-
stract mathematics’ the concise and exact style of the book was challenging and
I admired the author, who, in my esteem, must have been a great mathematician
to write a book like that. (Incidently this course was taught to me by a student
of Zaanen, Ben Strydom, who sadly passed away on 3 December 2012, one day
after his 80th birthday.) After completing my master’s studies, Ben advised me to
pursue my studies abroad and he recommended Zaanen. With some apprehension
I wrote him a letter and promptly (6 weeks later) received a letter from Zaanen
asking me to inform him in detail about my training: books studied with chapters
and paragraphs in detail. Again 6 weeks later I received the good news that he
would accept me as a student and he even suggested a topic.

I remember his letters: handwritten, extremely well-formulated and complete.
I still keep them for this was the way we communicated – if you were lucky you
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had an answer to a letter after 6 weeks. This left no room for sloppy formulations
or incompleteness!

I remember that Zaanen was not in Leiden when I arrived – he was with Wim
Luxemburg in Pasadena, most probably putting the finishing touches to ‘Riesz
spaces I’. Thus I worked for the first 9 months without meeting him. However,
I remember him as a man who invited a student to study with him at a time
when South Africans were not welcomed with open arms – especially not in the
Netherlands.

Then finally one day when I was in the Institute at the beginning of the new
semester, with an inquiry at the secretary, we met. I remember his first words:
“Welcome! We will get to know each other much better!” I remember his kindness
and friendly way, and the way he struck me as a modest, unpretentious man. He
invited me into his room and we started to work. We made appointments, I had to
show him what I did and we went through it thoroughly. I remember the precise
and complete way he demanded me to write mathematics. Nothing slipped by and
he demanded full proofs.

After completion of my thesis, I was invited by him for a visit at home for
dinner. There we (my wife and I) first met Ada. They immediately insisted to be
called on their first names – something rather difficult for me at first. Ada was
in many respects Aad’s complement. She was very practical and outspoken, while
Aad was, to say the least, not a very practical man and somewhat quiet. But in
their kindness and friendliness they were on par. I will never open a bottle of wine
without remembering the uncorking of the wine at this dinner: after fumbling with
the corkscrew in vain for a while, Ada took the bottle from him (or I should say
grabbed it from him) and uncorked it. According to her he was useless when it
came to everyday chores and wanted to know from my wife if that was also the
case with me. At this occasion our friendship started and we enjoyed many hours
with them, inter alia at their holiday home on the lake of Geneva. Although not
holding back her disgust at his impractical nature, one knew that she was in fact
extremely proud of him.

I remember Aad to be a man who visited South Africa at a time this was
frowned upon. As the official guest of the South African Mathematical Society he
toured the country in 1973, visiting all universities. Perhaps, in his wisdom, he
observed signs that the future of the country was not totally lost but that there
were many signs that change may come to that society. I remember Aad as a friend
who visited me on three occasions for longer periods. I also remember Aad as a
loyal friend who insisted that I be invited to symposiums organized in his honour,
even when it was official policy of Leiden University that its staff should have no
contact with South Africans.

Through Aad I also met Pay Huijsmans, Ton Schep and Ben de Pagter, all
of them people who enriched my life.

So this was the giant, the professor and the friend that Aad Zaanen was to
me. I have only fond memories of him and salute him as the man who influenced
my life profoundly.
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2. Rien Kaashoek

In my contribution to this memorial session I would like to remember Aad Zaanen
as my analysis professor and PhD supervisor at Leiden University.

My first year (1955–1956) as a student at Leiden University was a year with-
out mathematics professors. The geometry professor Haantjes was seriously ill and
passed away during the year, and the famous professor Kloosterman, chair of num-
ber theory and algebra, was on sabbatical leave. The analysis professor Droste had
retired earlier and his chair was still vacant, and so were a few other positions.
Zaanen, a former PhD student of Droste, was at that time professor at Delft. He
was appointed as Droste’s successor and came to Leiden in ’56, in my second year.

In that year I followed Zaanen’s one year analysis course, later known under
the name ‘Analysis B’. It was a great experience. The exposition was absolutely
clear and transparent, systematic from the beginning to the end, like the Euclidean
geometry I learned in my first year at high school, and no gaps in the proofs.
Moreover, notes were easy to make: Zaanen presented his course on the blackboard
from the beginning to the end, and not in telegram style. I admired Zaanen’s
course, and I got to know Zaanen as a great lecturer.

Later in my fourth year, when I was already Zaanen’s assistant, I met one
of his other attractive characteristics: generosity. One of my tasks was to present
for approval to Zaanen the problems for the written examination for ‘Analysis B’,
an examination that was feared by many students. Usually what I presented was
accepted, but sometimes his reaction was: you make the problem too difficult, be
more generous, and on the spot he would suggest a simpler version, which still
required the knowledge the students were expected to have.

After attending Zaanen’s functional analysis course I bought the 1956 edition
of his book ‘Linear analysis’. Zaanen had a broad view on functional analysis. The
title of the book does not tell you that but it is immediately clear from the subtitle:
‘Measure and integral, Banach and Hilbert space, linear integral equations’. Op-
erators on the mentioned spaces, selfadjoint and non-selfadjoint, and non-singular
linear integral equations are all covered by the book.

To understand the value of the book let me quote from the review Paul
Halmos wrote in 1954 for the Bulletin of the American Mathematical Society.
Halmos writes:

“This book goes a long way toward filling the gap caused by the fact
that Banach’s book has been out of date for several years. The writ-
ing is clear and well organized; the author is an excellent expositor. A
pleasing feature is the quality and quantity of examples. Not only is
there an adequate supply of exercises at the end of each chapter, but
throughout the book there are many detailed discussions of standard
and non-standard examples: sequence spaces, the Orlicz generalization
of Lp-spaces, sequential transformations, integral kernels, etc.”

The book is still of great value today, to a large extent because of these examples
and exercises.
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In 1961 I became Zaanen’s third PhD student. He left me a lot of freedom.
He gave me Tosio Kato’s 1958 paper ‘Perturbation theory for nullity, defect and
other quantities of linear operators’. Zaanen told me that he was going on sab-
batical to the California Institute of Technology to work with Wim Luxemburg,
and that he expected me to come up with a problem on his return. At that time
I did not realize that the topic Zaanen had introduced me to was what we nowa-
days call the theory of Fredholm operators, for bounded as well as for unbounded
operators. At that time a very modern topic with many ramifications to various
mathematical areas, old and new, including Wiener–Hopf integral equations and
singular integral equations, differential equations, evolution equations, equations
with delay, Toeplitz operators, spectral theory of Banach algebras, index theory
in geometry, etc., etc. I am very grateful to Zaanen for introducing me to this rich
subject, and that he put me on such an exciting track in operator theory. Did I
find a problem? Yes, I did, and it was accepted by Zaanen.

I mentioned the freedom Zaanen gave me. That changed when I started
presenting him drafts of theorems and sections of the thesis for discussion. He read
each part in great detail, made critical remarks, presented critical questions, offered
suggestions for better proofs, for references or for other directions. It was extremely
enriching. Zaanen also taught me what it means to write a good mathematical text.
Sometimes he would return to me a draft of a section completely rewritten in his
own handwriting.

Zaanen had several rules which I found very encouraging. One of them goes
as follows: If you don’t understand a paragraph in a paper, or an argument in
a proof, don’t blame it directly on yourself. It may very well be that the author
made a mistake or was not careful enough. Another rule concerned lecturing at
a conference: When you give a lecture for a math audience, of 30 minutes say,
don’t begin with your latest results, use the first 20 minutes for describing the
area and the problems, and then in the last 10 minutes you can tell about your
own achievements. Both rules I passed on to my own PhD students.

Zaanen had a great international standing. Being one of his students was a
real advantage. When Zaanen wrote a letter for you, success was almost guar-
anteed. He also introduced me to many outstanding mathematicians, including
Kato at Berkeley, Szökefalvi-Nagy in Szeged, Angus Taylor at UCLA, Smithies at
Cambridge, and Köthe in Frankfurt, to mention just a few.

At that time assistants and PhD students did not call their supervisors by
their first name. Immediately after my defense Zaanen told me that from now on
I had to call him Aad. It took me a while to get used to that.

On this occasion I also want to remember Aad Zaanen’s dear wife: Ada. She
was for us, young PhD students and assistants, an inspiring lady who knew the
world outside the university much better than we did. Ada’s passing away was a
great loss for Aad.

When Zaanen passed away in 2003 I informed my mathematical friends and
co-authors. Israel Gohberg immediately replied. He wrote me:
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“It is sad news. It is such a pity that good people are dying also. My
generation in functional analysis will remember professor Zaanen as a
teacher, pioneer and innovator. His books helped us to learn the subject
in times when the sources were very limited and the maps were not
drawn yet. For you professor Zaanen played a very important role in
the early stage of your career. Having him as an instructor you probably
studied in one of the best schools of functional analysis of that time. I
am sure that he will always have a place in your heart.”

The latter is certainly true.
Albrecht Pietsch wrote me:

“He was a really great mathematician who will stay alive through his
works.”

And so it is, as we are seeing at the present conference.

3. Anton Schep

3.1. Zaanen as teacher

I arrived as a student in the fall of 1969 at Leiden University, but it was not until the
fourth semester, the spring of 2001, that I took my first course of professor Zaanen.
The class was quite sizable and met in the Gorlaeus Laboratories, the exact same
location as where the Positivity VII conference dedicated to the Zaanen centennial

A.C. Zaanen

is now being held. The picture on the right is taken in
that building and judging from the text on the black-
board it could well have been the class I took from
him. At that time it was customary to address one’s
professor formally by ‘professor’, and it was not un-
til I had defended my dissertation in 1977 that this
changed. After that I was allowed to call him Aad,
but it took me a few years to get used to that. My
first course with Zaanen was ‘Analysis IV’, the first
theoretical course in analysis and the recommended
textbook was ‘Principles of mathematical analysis’ [7],
also known as ‘Baby Rudin’. There were no homework
assignments in the course and at the end we had to
take an oral exam. As there were a large number of
students in the class the oral examinations were given
by many people. My examiner wasn’t Zaanen, but Rob Tijdeman. In the following
years I took three more one year courses of Zaanen. The first one was a course in
measure and integration. He did not follow his own book [8] in the course, but fol-
lowed rather closely Bartle’s ‘The elements of integration’ [1]. He did supplement
the material of this book by a detailed treatment of Birkhoff’s L1 ergodic theo-
rem. Notably missing from the course was a treatment of absolutely continuous
functions and differentiation of monotone functions. The next course was a course
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in functional analysis. By now Zaanen was aware of me as a student and asked me
to write up notes for the course. If I did a good job at it, I would be exempt from
the oral exam at the end. This was an offer I could not turn down. If my memory
is correct it is during the second half of this course that Zaanen had to have a
kidney removed and C.B. (Pay) Huijsmans finished the lectures for him. The final
course I took from Zaanen was a course on integral equations. It included a de-
tailed introduction to Banach function spaces and a detailed treatment of integral
operators of finite double norm. I have still complete sets of notes of all three of
these courses, but have only partial notes of the first course. Looking back it is
quite remarkable that the notion of a Riesz space did not come up in any of these
courses. Just a few years before he had published ‘Riesz spaces I’ [5] with Wim
Luxemburg, but that did not yet trickle down in his lectures. I started learning
about Riesz spaces in the seminars with Pay Huijsmans. I still remember the thrill
of proving my first result, while bicycling to the Mathematical Institute. It solved
an open problem posed by Huijsmans during one of these seminars.

Looking back at my notes of the courses I took from Zaanen, one sees the
same attention to detail as in his books and papers. He never waives his hand in a
argument and his proofs are crystal clear. This characteristic he passed on to his
PhD students. I see the same style of lecturing by Luxemburg, Kaashoek, Grobler
and de Pagter. I try to emulate his style in the classes I teach.

3.2. Zaanen as PhD advisor

In the spring of 1974, near the completion of undergraduate degree, I applied for
and got one of three assistant positions. At that time I had not yet settled on
Zaanen as a PhD advisor, but after exploring the alternatives, I decided quickly
that my mathematical tastes aligned most with Zaanen’s area of research. Initially
I did not have a well-defined thesis topic. Zaanen had given me a set of notes on
the lattice of Riesz seminorms on a Riesz space and said to take a look whether I
could something more with it. After a month or two I returned these notes to him
as I did not see any interesting remaining open questions connected to them. At
that time he suggested that I take a look at his papers [3, 4] with Wim Luxemburg
about the modulus of a linear integral operator. In particular, he mentioned that
he did not know how to prove the ideal property for integral operators. In a few
months I had found a proof of this property and completed in that way the proof
that the kernel operators form a band. Zaanen was known for his attention to
detail and it is therefore somewhat remarkable that he overlooked a quite subtle
minor error I had in that proof. Fortunately when at some point I realized this, I
was able to fix it, but this is the only case I know that he overlooked an error in an
argument. As an advisor he left me rather free at that point, on how to continue
my dissertation. I became intrigued by an earlier result of Nakano [6], which I felt
to be relevant to the topic of my dissertation. Zaanen was always available for a
discussion and from time to time he would mention a paper he had noticed while
he had visited the library of the Royal Netherlands Academy of Arts and Sciences
(KNAW) in Amsterdam. It was in that way he mentioned one Friday in the late fall
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of 1975 that he had seen a paper by Buhvalov [2]. As it turned out Buhvalov and I
had independently of each other, by reading Nakano, arrived at the same criterion
for an operator to be representable as a kernel operator. I had just finished writing
my notes on this and was planning to give them to Zaanen the next week, which I
did. As Buhvalov announced his version in print before me, he had the priority of
the result. Zaanen nevertheless always stressed in his writings and presentations,
that I had independently obtained the same result. I was always very grateful for
his support in this matter, as it was naturally a disappointment to have somebody
beat you in getting such an important theorem. He insisted that I include this
material in my dissertation, even though I had in the meantime written another
paper on a different topic, which could have been included in my dissertation.
After handing in the draft of my dissertation, I was surprised to see how much he
had marked it up with corrections, when he returned it to me. Each page was filled
with corrections of my English or writing style! Zaanen clearly was instrumental
in obtaining a post-doctoral position for me at Caltech, after I finished my PhD
in 1977. We stayed in touch after that and every time I visited the Netherlands,
I would either see him in his office, or I would visit his house at the Nassaulaan
in Delft, where Ada would offer sometimes a sandwich for lunch and we would
discuss mathematics at the kitchen table.

References

[1] R.G. Bartle, The elements of integration, John Wiley & Sons, Inc., New York-London-
Sydney, 1966.

[2] A.V. Buhvalov,A criterion for integral representability of linear operators, Funkcional.
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4. Pieter Zaanen

First I would like to thank the organizers of this A.C. Zaanen Centennial Con-
ference for the opportunity to say a few words about our father. It is indeed 100
years ago that our father was born, on 14th June 1913. I also speak on behalf of
my three brothers, Herman, Gijs and Maarten.

We never saw our dad as famous when we were young. As children we just
knew he was a mathematics professor. We also noticed that he spent a lot of time
behind his desk, thinking and writing.

Our dad was raised in Rotterdam in a family with four sisters and his brother
Cees. He never told us much about his youth, but we know he loved his bicycling
trips to the Alblasserwaard, where he visited family in his teens.

His parents were ‘Rotterdam working class’ and there was certainly no aca-
demic history in the family. His teachers had to argue with his parents to let him
go to high school (HBS) after primary school. He finished high school with the sec-
ond best final exam of the Netherlands. The school principal convinced his parents
again that, with his intellectual capabilities, he should study at Leiden University.
He received a full government grant to pay for his mathematical study.

Our father was basically a serious person, dedicated to mathematics and
science. He lived with his parents in the Delfshaven area in Rotterdam during his
study years in Leiden. After his PhD in 1938 (promotor prof. Droste), he spent the
WW-II years in Rotterdam. The Germans never deported our father during the
war because he was a teacher at secondary school at the time, and the Germans
wanted the schools to continue. From letters, we understand he undertook some
adventurous trips, mainly to find food in the ‘Hunger Winter’ of 1944.

Amongst his hobbies were sailing (he had his own boat at the end of the 30s),
water polo and he took part in the ‘Vierdaagse’ in Nijmegen.

In 1940 he met our mother, Ada. She was a young, pretty and extrovert girl
of 18. He was 27. She was a pupil at the girls’ school where he taught. Ada was
the girl of his dreams. She was in many ways the opposite of our dad. Whilst our
father was introvert, our mother was very extrovert. She was a good socialiser
and made friends easily. Our parents married in 1943 and found a small room in
Leiden. It was the first time he left home. In March 1946, I was born.

Our dad was young (34) when he was asked to become professor at Bandung
Technical High School in Indonesia, the later Bandung Institute of Technology.
He travelled by boat to Indonesia on his own in 1947. Our mother gave birth to
Herman in March 1948 and she flew to Bandung soon afterwards with a two year
old and a six week old baby. This took three days. They led an expatriate life.
Parties, a clubhouse, swimming pool and a large house with live-in household help
were unheard luxury after the dark days of WW-II. They made many friends in
Indonesia. Our mother especially loved it and her appetite for travel and living
abroad was born.

In 1951, our father was appointed professor at Delft Technical High School,
the later Delft University of Technology. We moved into the new ‘professor lane’
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houses at the Nassaulaan in Delft. Our parents lived in that house until our mother
died in 1996. As children, we got to know many of our father’s colleagues and
students and their families. We used to call them uncle and aunt. Those friendships
last to this day. I should also mention that our younger brothers were born at the
end of the 50s in our Delft period: my brother Gijs in 1957 and Maarten in 1959.

In 1956 he was appointed to the chair in Leiden of his promotor prof. Droste.
He stayed there until he retired as Emeritus in 1982. He was very proud of that
position. He was 69 when he retired and he told me later “That was too late – I
should have retired earlier and enjoyed life when I was younger and healthier.”

Our father was a true academic, a real analytical man. He was often in deep
thought about complex abstracts concepts. Often he was absentminded. Even at
parties he could be very quiet, with his mind on his mathematics. His lack of
‘social networking’ during family get-togethers was often a point of discussion at
our home. I still recall the moments when he said: “I solved it” or “Wim is right.”
He would rush upstairs and start writing. A new, and as later transpired, unique
mathematical proof was produced.

Our father did not need much for himself; he appreciated human and es-
pecially intellectual friendships. He did not need much material luxury. He saw
intelligence and analytical skills as a gift that should be used for social benefit.
The fact that none of his children (and grandchildren) pursued an academic career
or worked in the public sector was somewhat disappointing to him.

As you may understand by now, the dominant force in the Zaanen household
was our mother. The roles in our family were pretty clear. Our dad spent his
time and effort in the academic world and our mother ran all family and financial
matters. She also made all travelling arrangements.

Our dad was always nervous before a trip. He could see all kinds of terrible
things happening. However, both of them loved to travel and it brought them to
Indonesia, St Andrews in Scotland, Oberwolfach in Germany, many times to the
USA – twice to work for a year with Wim Luxemburg at Caltech, in 1961 and
1969. My parents also went for longer periods to South Africa, Australia and even
China. As sons we have had a unique life. We travelled to many places, met many
colourful people. All four sons had a year in high school or junior high school in
South Pasadena.

I would like to finish with some anecdotes:

I still remember our first USA trip to Knoxville (Tennessee) in the summer of
1953. Again our mother travelled later with Herman and me. We had no car and
our parents had no driving licences at that time. These voyages were done with the
famous boats of the Holland America Line and by train. I still remember my first
large milkshake at the train station of Washington DC. A new world opened up
for us children: colourful cars, toy stores, denim jeans, refrigerators, hamburgers
and BBQs with roasted marshmallows.

When my parents bought their car in 1955 (a VW Beetle), my dad also got
his driving license. In the beginning he drove the car – but he was not a great
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driver. Traffic was mild in those days but in the first couple of months he managed
to have two minor accidents. His excuse was that mathematics had distracted him
from the traffic around him. Our mother thereafter banned him from driving which
he found quite OK. He loved taking the train – he found it relaxing to travel and
think of things other than the traffic around him.

In conversation, our dad was very direct, with an occasional touch of irony.

When Herman started studying in Delft, he was partying and succeeded in
passing only a single exam in his first year in Delft. Our dad then told him:
“Your study in Delft is going as I had expected.” This was the smartest thing he
could have done. Herman’s ego was dented so badly that he started to study very
seriously. When Herman later graduated, there was a little celebration dinner. Our
dad gave a speech and with a huge smile on his face stated: “I congratulate you
but they must have lowered the standards in Delft after I left.”

As children, we had a wonderful childhood and we are very grateful for all
the things our parents did for us. Our dad certainly had a special personality and
character. He gave us the encouragement and the means we needed in our youth
and also later in life. For that we are very thankful.
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Minimal Projections with Respect to
Numerical Radius
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Abstract. In this paper we survey some results on minimality of projections
with respect to numerical radius. We note that in the cases Lp, p = 1, 2,∞,
there is no difference between the minimality of projections measured either
with respect to operator norm or with respect to numerical radius. However,
we give an example of a projection from lp3 onto a two-dimensional subspace
which is minimal with respect to norm, but not with respect to numerical ra-
dius for p �= 1, 2,∞. Furthermore, utilizing a theorem of Rudin and motivated
by Fourier projections, we give a criterion for minimal projections, measured
in numerical radius. Additionally, some results concerning strong unicity of
minimal projections with respect to numerical radius are given.
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Keywords. Numerical radius, minimal projection, diagonal extremal pairs,
Fourier projection.

1. Introduction

A projection from a normed linear space X onto a subspace V is a bounded
linear operator P : X → V having the property that P|V = I. P is called a
minimal projection if ‖P‖ is the least possible. Finding a minimal projection of
the least norm has an obvious connection to approximation theory, since for any
P ∈ P(X,V ), the set of all projections from X onto V , and x ∈ X , from the
inequality:

‖x− Px‖ ≤ (‖Id− P‖) dist(x, V ) ≤ (1 + ‖P‖) dist(x, V ), (1)

one can deduce that Px is a good approximation to x if ‖P‖ is small. Furthermore,
any minimal projection P is an extension of IdV to the space X of the smallest
possible norm, which can be interpreted as a Hahn–Banach extension. In general, a
given subspace will not be the range of a projection of norm 1, and the projection
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of least norm is difficult to discover even if its existence is known a priori. For
example, the minimal projection of C[0, 1] onto the subspace Π3 of polynomials of
degree ≤ 3 is unknown. For an explicit determination of the projection of minimal
norm from the subspace C[−1, 1] onto Π2, see [8]. However, it is known that, see
[10], for a Banach space X and a subspace V ⊂ X , V = Z∗ for some Banach space
Z, if P(X,V ) �= ∅, then there exists a minimal projection P : X → V . A well-
known example of a minimal projection, [13], is Fourier projection Fm : C(2π)→
ΠM := span{1, sinx, cosx, . . . , sinmx, cosmx} defined as

Fm(f) =
m∑

k=0

αk cos kx+
m∑

k=0

βk sinkx (2)

where αk, βk are Fourier coefficients and C(2π) denotes 2π-periodic, real-valued
functions equipped with the sup norm. For uniqueness of minimality of Fourier
projection see [17]. Let X be a Banach space over R or C. We write BX(r) for a
closed ball with radius r > 0 and center at 0 (BX if r = 1) and SX for the unit
sphere of X . The dual space of X is denoted by X∗ and the Banach algebra of
all continuous linear operators going from X into a Banach space Y is denoted by
B(X,Y ) (B(X) if X = Y ).

The numerical range of a bounded linear operator T on X is a subset of a
scalar field, constructed in such a way that it is related to both algebraic and norm
structures of the operator. More precisely:

Definition 1.1. The numerical range T ∈ B(X) is defined by

W (T ) = {x∗(Tx) : x ∈ SX , x∗ ∈ SX∗ , x∗(x) = 1}. (3)

Notice that the condition x∗(x) = 1 gives us that x∗ is a norm attaining
functional.

The concept of a numerical range comes from Toeplitz’ original definition of
the field of values associated with a matrix, which is the image of the unit sphere
under the quadratic form induced by the matrix A:

F (A) = {x∗Ax : ‖x‖ = 1, x ∈ Cn}, (4)

where x∗ is the original conjugate transform and ‖x‖ is the usual Euclidean norm.
It is known that the classical numerical range of a matrix always contains the
spectrum, and as a result the study of numerical range can help understand prop-
erties that depend on the location of the eigenvalues such as the stability and
non-singularity of matrices. In case A is a normal matrix, then the numerical
range is the polygon in the complex plane whose vertices are eigenvalues of A. In
particular, if A is Hermitian, then the polygon reduces to the segment on the real
axis bounded by the smallest and largest eigenvalue, which perhaps explains the
name numerical range.

The numerical radius of T is given by

‖T ‖w = sup{|λ| : λ ∈ W (T )}. (5)
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Clearly ‖T ||w is a semi-norm on B(X) and ‖T ‖w ≤ ‖T || for all T ∈ B(X). For
example, if we consider T : Cn → Cn as a right shift operator

T (f1, f2, . . . , fn) = (0, f1, f2, . . . , fn−1)

then 〈Tf, f〉 = f1f2 + f2f3 + · · · fn−1fn and consequently to find ‖T ‖w we must

find sup{|f1||f2| + · · · + |fn−1||fn|} subject to the condition

n∑
i=1

|fi|2 = 1. The

solution [11] to this “Lagrange multiplier” problem is

‖T ‖w = cos

(
π

n+ 1

)
. (6)

The numerical index of X is then given by

n(X) = inf
{
‖T ‖w : T ∈ SB(X)

}
. (7)

Equivalently, the numerical index n(X) is the greatest constant k ≥ 0 such that
k‖T ‖ ≤ ‖T ‖w for every T ∈ B(X). Note also that 0 ≤ n(X) ≤ 1 and n(X) > 0 if
and only if ‖ · ‖w and ‖ · ‖ are equivalent norms. The concept of numerical index
was first introduced by Lumer [14] in 1968. Since then much attention has been
paid to the constant of equivalence between the numerical radius and the usual
norm of the Banach algebra of all bounded linear operators of a Banach space.
Two classical books devoted to these concepts are [7] and [6]. For more recent
results we refer the reader to [4], [15], [16] and [11].

In this paper, we study the minimality of projections with respect to numer-
ical radius. Since the operator norm of T is defined as ‖T ‖ = sup |〈Tx, y〉| with
(x, y) ∈ B(X) × B(X∗), while the numerical radius ‖T ‖w = sup |〈Tx, y〉| with
(x, y) ∈ B(X) × B(X∗) and 〈x, y〉 = 1, ‖T ‖ is bilinear and ‖T ‖w is quadratic
in nature. However, ‖T ‖w ≤ ‖T ‖ implies that there are more spaces for which
‖T ‖ ≥ 1 but ‖T ‖w = 1.

Furthermore, if T is a bounded linear operator on a Hilbert space H , then
the numerical radius takes the form

‖T ‖w = sup{|〈Tx, x〉| : ‖x‖ = 1}. (8)

This follows from the fact that for each linear functional x∗ there is a unique
x0 ∈ H such that x∗(x) = 〈x, x0〉 for all x ∈ H . Moreover, if T is self-adjoint or a
normal operator on a Hilbert space H , then

‖T ‖w = ‖T ‖. (9)

Also, if a non-zero T : H → H is self-adjoint and compact, then T has an eigenvalue
λ such that

‖T ‖w = ‖T ‖ = λ. (10)

These properties of numerical radius together with the desirable properties of
diagonal projections from Hilbert spaces onto closed subspaces provides motivation
to investigate minimal projections with respect to numerical radius.
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2. Characterization of minimal numerical radius projections

In [1], a characterization of minimal numerical radius extension of operators from
a Banach spaceX onto its finite-dimensional subspace V = [v1, v2, . . . , vn] is given.
To express this theorem, we first set up our notation.

Notation 2.1. Let T =

n∑
i=1

ui ⊗ vi : V → V where ui ∈ V ∗. Its extension to X is

denoted by T̃ : X → V and defined as

T̃ =

n∑
i=1

ũi ⊗ vi, (11)

where ũi ∈ X∗.

Definition 2.2. Let X be a Banach space. If x ∈ X and x∗ ∈ X∗ are such that

|〈x, x∗〉| = ‖x‖‖x∗‖ �= 0, (12)

then x∗ is called an extremal of x and written as x∗ = extx. Similarly, x is
an extremal of x∗. We call (ext y, y) ∈ SX∗∗ × SX∗ a diagonal extremal pair for

T̃ ∈ B(X,V ) if

〈T̃ ∗∗x, y〉 = ‖T̃‖w, (13)

where T̃ ∗∗ : X∗∗ → V is the second adjoint extension of T̃ are V = [v1, . . . , vn] ⊂

X . In other words, the map T̃ has the expression T̃ =

n∑
i=1

ũi ⊗ vi : X → V and

T̃ x =

n∑
n=1

〈x, ũi〉vi (14)

where ũi ∈ X∗, vi ∈ V and 〈x, ũi〉 denotes the functional ũi is acting on x and

T̃ ∗∗x =

n∑
i=1

〈ui, x〉vi, (15)

ui ∈ X∗∗∗, vi ∈ V , x ∈ X∗∗.

The set of all diagonal extremal pairs will be denoted by Ew(T̃ ) and defined as:

Ew(T̃ ) =
{
(ext y, y) ∈ SX∗∗ × SX∗ : ‖T̃‖w =

n∑
i=1

〈ext y, ui〉 · 〈vi, y〉
}
. (16)

Note that to each (x, y) ∈ X∗∗ ×X∗ we associate the rank-one operator y ⊗ x :
X → X∗∗ given by

(y ⊗ x)(z) = 〈z, y〉x for z ∈ X. (17)

Accordingly, to each (x, y) ∈ Ew(T̃ ) we can associate the rank-one operator y ⊗
ext y : X → X∗∗ given by

(y ⊗ ext y)(z) = 〈z, y〉 ext y. (18)
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By E(T̃ ) we denote the usual set of all extremal pairs for T̃ and

E(T̃ ) =
{
(x, y) ∈ SX∗∗ × SX∗ : ‖T̃‖ =

n∑
i=1

〈x, ui〉 · 〈vi, y〉
}
. (19)

In case of diagonal extremal pairs we require |〈ext y, y〉| = 1.

Definition 2.3. Let T =
∑n

i=1
ui ⊗ vi : V → V = [v1, v2, . . . , vn] ⊂ X , where

ui ∈ V ∗. Let T̃ :
∑n

i=1
ũi ⊗ vi : X → V be an extension of T to all of X . We say

T̃ is a minimal numerical extension of T if

‖T̃‖ = inf
{
‖S‖w : S : X → V ; S|V = T

}
. (20)

Clearly ‖T ‖w ≤ ‖T̃‖w.

Theorem 2.4 ([1]). T̃ is a minimal radius-extension of T if an only if the closed

convex hull of {y ⊗ x} where (x, y) ∈ Ew(T̃ ) contains an operator for which V is
an invariant subspace.

Theorem 2.5. P is a minimal projection from X onto V if and only if the closed
convex hull of {y ⊗ x}, where (x, y) ∈ Ew(P ) contains an operator for which V is
an invariant subspace.

Proof. By taking T = I and T̃ = P one can appropriately modify the proof given
in [1] without much difficulty. The problem is equivalent to the best approximation
in the numerical radius of a fixed operator from the space of operators

D = {Δ ∈ B : Δ = 0 on V } = sp{δ ⊗ v : δ ∈ V ⊥; v ∈ V }.
One of the main ingredients of the proof is Singer’s identification theorem ([20],
Theorem 1.1 (p. 18) and Theorem 1.3 (p. 29)) of finding the minimal operator as
the error of best approximation in C(K) for K compact. In the case of numer-
ical radius, one considers Kw = K ∩ Diag = {(x, y) ∈ B(X∗∗) × B(X∗) : x =
ext(y) or x = 0} and shows Kw is compact. Thus the set E(P ), being the set of
points where a continuous (bilinear) function achieves its maximum on a compact
set, is not empty. For further details see [1]. �

Theorem 2.6 (When minimal projections coincide). In case X = Lp for p =
1, 2,∞, the minimal numerical radius projections and the minimal operator norm
projections coincide with the same norms.

Proof. In case of L2, for any self-adjoint operator, we have

‖P‖ = ‖P‖w = |λ|, (21)

where λ is the maximum (in modulus) eigenvalue. In this case,

‖P‖ = ‖P‖w = |〈Px, x〉|, (22)

where x is a norm-1 “maximum” eigenvector.
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When p = 1,∞, it is well known that n(Lp) = 1 ([7], Section 9) thus

‖P‖ = ‖P‖w. �

Example 2.7. The projection P : lp3 → [v1, v2] = V where v1 = (1, 1, 1) and
v2 = (−1, 0, 1) is minimal with respect to the operator norm, but not minimal
with respect to numerical radius for 1 < p < ∞ and p �= 2. Let us denote by
Po, Pm projections minimal with respect to operator norm and numerical radius
respectively. In other words

‖Po‖ = inf {‖P‖ : P ∈ P(X,V )}
‖Pm‖w = inf {‖P‖w : P ∈ P(X,V )} .

Note that

Po(f) = u1(f)v1 + u2(f)v2 and Pm(f) = z1(f)v1 + z2(f)v2. (23)

Then it is easy to see that

u1 = z1 =

(
−1

2
, 0,

1

2

)
, u2 =

(
1− d

2
, d,

1− d

2

)
,

z2 =

(
1− g

2
, g,

1− g

2

)
,

and for p = 4/ 3 it is possible to determine g and d to conclude ‖Po‖ = 1.05251
while ‖Pm‖w = 1.02751, thus ‖Po‖ �= ‖Pm‖w.

V.P. Odinec in [19] (see also [18], [12]) proves that minimal projections of
norm greater than one from a three-dimensional real Banach space onto any of its
two-dimensional subspaces are unique. Thus in the above example, the projection
from lp3 onto a two-dimensional subspace not only proves the fact that ‖Po‖ �=
‖Pm‖w for p �= 1, 2,∞, here once again we have the uniqueness of the minimal
projections.

3. Rudin’s projection and numerical radius

One of the key theorems on minimal projections is due to W. Rudin ([21] and [22]).
The setting for his theorem is as follows. X is a Banach space and G is a compact
topological group. Defined on X is a set A of all bounded linear bijective operators
in a way thatA is algebraically isomorphic toG. The image of g ∈ G under this iso-
morphism will be denoted by Tg. We will assume that the map G×X → X defined
as (g, x) �→ Tgx is continuous. A subspace V of X is called G-invariant if Tg(V ) ⊂
V for all g ∈ G and a mapping S : X → X is said to commute with G if S ◦ Tg =
Tg◦S for all g ∈ G. In case ‖Tg‖ = 1 for all g ∈ G, we say g acts on G by isometries.

Theorem 3.1 ([22]). Let G be a compact topological group acting by isomorphism
on a Banach space X and let V be a complemented G-invariant subspace of X
(there exists a bound projection P of X onto V ). Then there exists a bounded
linear projection Q of X onto V which commutes with G.
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The idea behind the proof of the above theorem is to obtain Q by averaging
the operators Tg−1PTg with respect to Haar measure μ on G, i.e.,

Q(x) :=

∫
G

(
Tg−1PTg

)
(x) dμ(g). (24)

Now assume X has a norm which contains the maps A to be isometries and
that all of the hypotheses in Rudin’s theorem are satisfied, then one can claim the
following stronger version of Rudin’s theorem:

Corollary 3.2. If there is a unique projection Q : X → V which commutes with G,
then for any P ∈ P(X,V ), the projection

Q(x) =

∫
G

(
Tg−1PTg

)
(x) dμ(g), (25)

is a minimal projection of X onto V .

Theorem 3.3 ([3]). Let A be a set of all bounded linear bijective operators on X
such that A is algebraically isomorphic to G. Suppose that all of the hypotheses of
Rudin’s theorem above are satisfied and the maps in A are isometries. If P is any
projection in the numerical radius of X onto V , then the projection Q defined as

Q(x) =

∫
G

(
Tg−1PTg

)
(x) dμ(g) (26)

satisfies ‖Q‖w ≤ ‖P‖w.

Proof. Consider ‖Q‖w = sup{|x∗(Qx)| : x∗(Qx) ∈ W (Q)}, where W (Q) is the
numerical range of Q. Notice that

|x∗(Qx)| =
∣∣∣∣x∗
∫
G

(
Tg−1PTg

)
(x) dμ(g)

∣∣∣∣
≤
∫
G

∣∣(x∗ ◦ Tg−1

)
P (Tgx)

∣∣ dμ(g). (27)

But ‖x‖ = 1 and ‖x∗‖ = 1 which implies that ‖Tgx‖ = 1 and ‖x∗Tg−1‖ = 1,
moreover,

1 = x∗(x) = x∗Tg−1(Tgx) =⇒ |x∗(Qx)| ≤ ‖P‖w. (28)

Consequently, ‖Q‖w ≤ ‖P‖w which proves Q is a minimal projection in numerical
radius. �

Theorem 3.4 ([3]). Suppose all hypotheses of the above theorem are satisfied and
that there is exactly one projection Q which commutes with G. Then Q is a minimal
projection with respect to numerical radius.

Proof. Let P ∈ P(X,V ). By the properties of Haar measure, Qp given in the above
theorem commutes with G. Since there is exactly one projection which commutes
with G, Qp = Q and ‖Q‖w ≤ ‖P‖w as desired. �
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Remark 3.5. In [3] it is shown that if G is a compact topological group acting by
isometries on a Banach space X . If we let

ψ : B(X)→ [0,+∞], (29)

be a convex function which is lower semi-continuous in the strong operator topol-
ogy and if one further assumes that

ψ
(
g−1 ◦ P ◦ g

)
≤ ψ(P ), (30)

for some P ∈ B(X) and g ∈ G, then ψ(QP ) ≤ ψ(P ). This result leads to the
calculation of minimal projections not only with respect to numerical radius but
also with respect to p-summing, p-nuclear and p-integral norms. For details see [3].

4. An application

Let C(2π) denote the set of all continuous 2π-periodic functions and Πn be the
space of all trigonometric polynomials of order ≤ n (for n ≥ 1).

The Fourier projection Fn : C(2π)→ Πn is defined by

Fn(f) =

2n∑
k=0

(∫ 2π

0

f(t)gn(t)dt

)
gk, (31)

where (gk)
2n
k=0 is an orthonormal basis in Πn with respect to the scalar product

〈f, g〉 =
∫ 2π

0

f(t)g(t)dt. (32)

Lozinskii in [13] showed that Fn is a minimal projection in P(C(2π),Πn). His
proof is based on the equality which states that for any f ∈ C(2π), t ∈ [0, 2π] and
P ∈ P(C(2π),Πn), we have

Fnf(t) =
1

2π

∫ 2π

0

(
Tg−1PTgf

)
(t) dμ(g). (33)

Here μ is a Lebesgue measure and (Tgf)(t) = f(t+g) for any g ∈ R. This equality
is called Marcinkiewicz equality ([9] p. 233).

Notice that Fn is the only projection that commutes with G, where G =
[0, 2π] with addition mod 2π. In particular, Fn is a minimal projection with respect
to numerical radius.

We know the upper and lower bounds on the operator norm of Fn satisfy ([9]
p. 212):

(4/π2)ln(n) ≤ ‖Fn‖ ≤ ln(n) + 3. (34)

From the theorem (when minimal projections coincide) we know that in the cases
of Lp, p = 1,∞, the numerical radius projections and the operator norm projec-
tions are equal. Since C(2π) ⊂ L∞, we also have lower and upper bounds for the
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numerical radius of Fourier projections, i.e.,

(4/π2)ln(n) ≤ ‖Fn‖w ≤ ln(n) + 3. (35)

Remark 4.1. Lozinskii’s proof of the minimality of Fn is based on the Marcinkiewicz
equality. However, the Marcinkiewicz equality holds true if one replaces C(2π) by
Lp[0, 2π] for 1 ≤ p ≤ ∞ or Orlicz space Lφ[0, 2π] equipped with the Luxemburg
or Orlicz norm provided φ satisfies the suitable Δ2 condition. Hence, Theorem
3.3 can be applied equally well to numerical radius or norm in Banach operator
ideals of p-summing, p-integral,p-nuclear operators generated by Lp-norm or the
Luxemburg or Orlicz norm. For further examples see [3].

5. Strongly unique minimal extensions

In [19] (see also [18]) it is shown that a minimal projection of the operator norm
greater than one from a three-dimensional real Banach space onto any of its two-
dimensional subspace is the unique minimal projection with respect to the operator
norm. Later in [12] this result is generalized as follows:
Let X be a three-dimensional real Banach space and V a two-dimensional sub-
space. Suppose A ∈ B(V ) is a fixed operator. Set

PA(X,V ) = {P ∈ B(X,V ) : P |V = A }
and assume ‖ P0 ‖>‖ A ‖, if Po ∈ PA(X,V ) is an extension of minimal operator
norm. Then Po is a strongly unique minimal extension with respect to operator
norm.
In other words there exists r > 0 such that for all P ∈ PA(X,V ) one has

‖P‖ ≥ ‖Po‖+ r ‖P − Po‖.
Definition 5.1. We say an operator Ao ∈ PA(X,V ) is a strongly unique minimal
extension with respect to numerical radius if there exists r > 0 such that

‖B‖w ≥ ‖Ao‖w + r ‖B −Ao‖w
for any B ∈ PA(X,V ).

A natural extension of the above-mentioned results to the case of numerical
radius ‖ · ‖w was given in [2].

Theorem 5.2 ([2]). Assume that X is a three-dimensional real Banach space and
let V be its two-dimensional subspace. Fix A ∈ B(V ) with ‖A‖w > 0. Let

λA
w = λA

w(V,X) = inf{‖B‖w : B ∈ PA(X,V )} > ‖A‖,
where ‖A‖ denotes the operator norm. Then there exist exactly one Ao ∈ PA(X,V )
such that

λA
w = ‖Ao‖w.

Moreover, Ao is the strongly minimal extension with respect to numerical radius.

Notice that if we take A = idV then ‖A‖w = ‖A‖ = 1. In this case Theorem
(5.2) reduces to the following theorem:
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Theorem 5.3 ([2]). Assume that X is a three-dimensional real Banach space and
let V be its two-dimensional subspace. Assume that

λidV
w > 1.

Then there exist exactly one Po ∈ P(X,V ) of minimal numerical radius. Moreover,
Po is a strongly unique minimal projection with respect to numerical radius. In
particular Po is the only minimal projection with respect to the numerical radius.

Remark 5.4 ([2]). Notice that in Theorem 5.2 the assumption that ‖A‖ < λA
w is

essential. Indeed, let X = l
(3)
∞ , V = {x ∈ X : x1 + x2 = 0} and A = idV . Define

P1x = x− (x1 + x2)(1, 0, 0) and P2x = x− (x1 + x2)(0, 1, 0).

It is clear that

‖P1‖ = ‖P1‖w = ‖P2‖ = ‖P2‖w = 1

and P1 �= P2. Hence, there is no strongly unique minimal projection with respect
to numerical radius in this case.

Remark 5.5 ([2]). Theorem 5.3 cannot be generalized for real spaces X of dimen-

sion n ≥ 4. Indeed letX = l
(n)
∞ , and let V = ker(f), where f = (0, f2, . . . , fn) ∈ l

(n)
1

satisfies fi > 0 for i = 2, . . . , n,
∑n

i=2 fi = 1 and fi < 1/2 for i = 1, . . . , n. It is
known (see, e.g., [5], [18]) that in this case

λ(V,X) = 1+

(
n∑

i=2

fi/(1− 2fi)

)−1

> 1, where λ(V,X) = inf{‖P‖ : P ∈ (X,V )}.

By [1], λ(V,X) = λidV
w . Define for i = 1, . . . , n yi = (λ(V,X) − 1)(1 − 2fi). Let

y = (y1, . . . , yn) and z = (0, y2, . . . , yn). Consider mappings P1, P2 defined by

P1x = x− f(x)y and P2x = x− f(x)z

for x ∈ l
(n)
∞ . It is easy to see that Pi ∈ P(X,V ), for i = 1, 2, P1 �= P2. By ([18]

p. 104) ‖Pi‖ = ‖Pi‖w = λ(V,X) = λidV
w . for i = 1, 2.

Remark 5.6. Theorem 5.3 is not valid for complex three-dimensional spaces. For
details see [2].

For Kolmogorov type criteria concerning approximation with respect to nu-
merical radius, we refer the reader to [2].
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Abstract. An ordered Banach algebra A, which is also a C∗-algebra with
positive involution, is called an ordered C∗-algebra. Elementary properties
of such algebras are studied. In particular, the algebra L(H), where H is
an ordered Hilbert space with cone K satisfying K∗ = K, is considered. An
example is given of an ordered C∗-algebra A with an ideal I in A that contains
elements a, b ∈ A such that 0 ≤ a ≤ b ∈ I and an /∈ I for all n ∈ N. Finally,
ordered C∗-algebras with p-additive norms are studied.

Mathematics Subject Classification (2010). 46B40, 46L35.

Keywords. Ordered C∗-algebra, ordered Hilbert space.

1. Introduction

Let A be a (real or complex) Banach algebra with algebraic unit e and let A+

be a (closed, convex) cone in A. If e ∈ A+ and the relations a, b ∈ A+ imply
ab ∈ A+ then A is called an ordered Banach algebra. As usual, for elements a, b ∈ A,
the symbol a ≥ b (or b ≤ a) means a− b ∈ A+. Throughout we will tacitly assume
that A �= {0}. The study of ordered Banach algebras was initiated in [11, 10].
In these papers and in a number of subsequent ones the main emphasis was on
the study of spectral properties of positive elements.

However, in spite of the progress made in the development of the theory of
ordered Banach algebras, several important aspects of the general theory of Banach
algebras have received little or no attention. For example, up to now an important
part of Banach algebras, namely, C∗-algebras or, more generally, algebras with
an involution, has not been considered from the viewpoint of ordered Banach
algebras and, in general, of the theory of cones. The main purpose of this note is
to take a step in this direction.

The paper is organized as follows. In the second section examples are given
and some simple properties of ordered C∗-algebras are considered. The third sec-
tion is devoted to the domination problem. In the last section, a special class of
ordered C∗-algebras, namely, algebras with p-additive norm, is studied.
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For any unexplained terminology, notations, and elementary properties of
ordered Banach spaces, we refer the reader to [4]. For information on the theory
of normed Riesz spaces, we suggest [2, 3]. More detail on elementary properties of
Banach algebras can be found in [12]. From another viewpoint, some results below
were mentioned in [1].

2. Elementary properties of ordered C∗-algebras

An ordered Banach algebra A with a cone A+ is called an ordered C∗-algebra if it
is equipped with an involution a→ a∗ that maps A+ into itself and under which
A is a C∗-algebra (see [1]).

We recall that A is a C∗-algebra if ‖a∗a‖ = ‖a‖2 holds for all a ∈ A. If
the latter relation is only valid for a ∈ A+ then A is called an almost ordered
C∗-algebra.

The condition that a �→ a∗ maps A+ into itself, can also be expressed by
saying that the involution is positive.

Example 2.1. (a) Let H be a (real or complex) Hilbert space with a (closed)
cone K and let L(H) be the algebra of all (bounded, linear) operators on H . In
this case, to avoid ambiguity, T ∈ L(H) will be called positive if and only if it
maps K into itself, i.e., if and only if T is positive in the sense of the theory of
ordered linear spaces. In this case we write T ≥ 0.

A coneK is called self-adjoint wheneverK = K∗, whereK∗ is the dual wedge
of K. A Hilbert space H with a self -adjoint cone is called an ordered Hilbert space.

The next statement holds:

The algebra L(H) is an ordered C∗-algebra with cone

(L(H))+ = {T ∈ L(H) : T (K) ⊆ K}
if and only if K is a self-adjoint cone.

Indeed, to check the necessity, consider non-zero elements x ∈ K∗ and y ∈ K
and define an operator x ⊗ y on H via the formula (x ⊗ y)z = 〈z, x〉y for z ∈ H .
Evidently, x⊗y ≥ 0 and, hence, (x⊗y)∗ ≥ 0. Consequently, 0 ≤ (x⊗y)∗y = ‖y‖2x
and so x ∈ K. Next, for an arbitrary element z ∈ K, we have 0 ≤ (x ⊗ y)∗z =
〈z, y〉x. Thus, y ∈ K∗.

For the converse, let K = K∗. This means that the dual wedge K∗ is
a cone and, consequently, the linear space K − K is dense in H . Therefore,
the set (L(H))+ is a cone and L(H) with this cone is an ordered Banach al-
gebra. Let 0 ≤ T ∈ L(H) and x ∈ K. For an arbitrary element y ∈ K∗, we have
〈T ∗x, y〉 = 〈x, T y〉 ≥ 0 and, hence, T ∗ ≥ 0. Thus, the involution is positive, as
desired.

We will deduce some more properties of an ordered Hilbert space with a cone
K. First of all, we mention that 〈x, y〉 ∈ R for all x, y ∈ H as 〈x, y〉 ≥ 0 holds
for all x, y ∈ K. Therefore, H is a real Hilbert space. The norm on H is strictly
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monotone, i.e., the inequalities 0 ≤ x < y imply ‖x‖ < ‖y‖. In fact, we have the
relations ‖x‖2 = 〈x, x〉 ≤ 〈y, x〉 ≤ 〈y, y〉 = ‖y‖2. If ‖x‖ = ‖y‖ then 〈y − x, x〉 = 0
and 〈y − x, y〉 = 0 and, hence, y = x, as required. In particular, the cone K is
normal and so, according to the M.G. Krein theorem, (see [4, pp. 89, 90]), K
is a generating cone and, moreover, K has the strong Levi property. By Andô’s
theorem (see [4, p. 92]), the ordered Hilbert space H is a Riesz space under the
ordering induced by K if and only if K has the Riesz decomposition property; in
this case, the Riesz space H is Dedekind complete (see [4, p. 97, Exercise 12(a)]).

Thus, every ordered Hilbert space is real. Nevertheless, the following approach
to the complex case is possible. Let H be an arbitrary real Hilbert space with
a cone K, and let the Hilbert space HC be the complexification of H . The next
statement holds:

The algebra L(HC) is an ordered C∗-algebra with cone

{T ∈ L(HC) : T (H) ⊆ H and T (K) ⊆ K}

if and only if K is a self-adjoint cone in H.

In particular, the algebra Mn(R) (Mn(C)) of all n × n matrices with real
(complex) entries under the Euclidean norm and the natural ordering is an ordered
C∗-algebra with an involution defined by the (complex) conjugate.

(b) In this part we consider an important example of a self-adjoint cone K in
a Hilbert space H with dimH > 1. Let z ∈ H with ‖z‖ = 1 and let ε > 0. Then,
(see [4, § 2.6]), the ice cream cone is the cone

Kz,ε = {x ∈ H : 〈x, z〉 ≥ ε‖x‖}.

The next assertion holds:

In a real space H the ice cream cone Kz,ε is self-adjoint if and only if ε = 1√
2
.

We begin with the check of the sufficiency, i.e., of the validity of the identity
K∗

z, 1√
2

= Kz, 1√
2
. Let x ∈ K∗

z, 1√
2

with ‖x‖ = 1. We firstly prove the inclusion

x ∈ Kz, 1√
2
. SinceH is real, z is an interior point ofKz, 1√

2
and, hence, the inequality

〈z, x〉 > 0 is valid. If 〈z, x〉 = 1 then x ∈ Kz, 1√
2
. Consider the case in which

〈z, x〉 ∈ (0, 1). It is easy to see that for every scalar λ, satisfying λ2 ≤ 〈z,x〉2
1−〈z,x〉2 ,

the inclusion (1−λ)〈z, x〉z+λx ∈ Kz, 1√
2
holds. In particular, for λ0 = − 〈z,x〉√

1−〈z,x〉2
,

we get

0 ≤ 〈(1 − λ0)〈z, x〉z + λ0x, x〉

= 〈z, x〉2 + λ0(1− 〈z, x〉2) = 〈z, x〉2 − 〈z, x〉
√
1− 〈z, x〉2,

i.e.,

√
1− 〈z, x〉2 ≤ 〈z, x〉. Finally, 〈z, x〉2 ≥ 1

2 and so x ∈ Kz, 1√
2
. Let us verify

the inclusion Kz, 1√
2
⊆ K∗

z, 1√
2

. Consider two elements y1, y2 ∈ Kz, 1√
2
satisfying
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‖yi‖ = 1 and, hence,

〈yi, z〉 ≥
1√
2

(1)

for i = 1, 2. We must check the inequality 〈y1, y2〉 ≥ 0. To this end, we define
an orthogonal projection Pz on H via the formula Pzy = 〈y, z〉z. In view of (1),

〈Pzy1, Pzy2〉 ≥
1

2
. (2)

Obviously, we have ‖Pzyi‖ ≥ 1√
2
for i = 1, 2, whence

1 = ‖Pzyi‖2 + ‖yi − Pzyi‖2 ≥
1

2
+ ‖yi − Pzyi‖2,

i.e., ‖yi−Pzyi‖2 ≤ 1
2 . Taking into account the Cauchy–Schwarz inequality, we get

|〈y1 − Pzy1, y2 − Pzy2〉| ≤ 1
2 . Using the last inequality and (2), we infer that

〈y1, y2〉 = 〈y1 − Pzy1, y2 − Pzy2〉+ 〈Pzy1, Pzy2〉 ≥ −
1

2
+

1

2
= 0,

as required.
For the converse, let K∗

z,ε = Kz,ε. Clearly, ε ≤ 1. If ε = 1 then for every
x ∈ Kz,ε, we have ‖x‖ = 〈x, z〉 and, hence, x and z are linearly dependent, i.e.,
Kz,ε = {λz : λ ≥ 0}, a contradiction. Thus, ε ∈ (0, 1). Fix an arbitrary element
w with ‖w‖ = 1 which is orthogonal to z. It is easy to check that for the scalar

α0 =
√

1
ε2 − 1 the inclusions z±α0w ∈ Kz,ε are valid. Therefore, 0 ≤ 〈z+α0w, z−

α0w〉 = 2− 1
ε2 , i.e., ε

2 ≥ 1
2 . In particular,

Kz,ε ⊆ Kz, 1√
2
. (3)

Next, z + w ∈ Kz, 1√
2
and hence, as was shown above, z + w ∈ K∗

z, 1√
2

. In view

of (3), z+w ∈ K∗
z,ε = Kz,ε. Thus, 1 = 〈z+w, z〉 ≥ ε‖z+w‖ = ε

√
2 and so 1√

2
≥ ε.

We have therefore proved that ε = 1√
2
.

(c) Another important example of an ordered C∗-algebra is an algebra of all
bounded, continuous functions C(S) on some topological space S with an involu-

tion defined by the complex conjugate x∗(s) = x(s) with s ∈ S.

(d) Every ordered Banach algebra A such that ‖a2‖ = ‖a‖2 for all a ∈ A+

is an almost ordered C∗-algebra with the identity operator as the involution. In
particular, such algebras are �1(Z) and L1(R) ⊗ R, where �1(Z) and L1(R) are
considered with convolution as the product and L1(R) ⊗ R is the unitization of
L1(R). �

Let A be an ordered C∗-algebra. It is easy to see that the involution preserves
lattice operations; e.g., if for a, b ∈ A the least upper bound a ∨ b exists then
the element a∗∨ b∗ is well defined and (a∨ b)∗ = a∗∨ b∗. Thus, if an element a∨a∗
exists then it is hermitian. In particular, if for an element a ∈ A the modulus |a|
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exists then |a|∗ = |a∗|. Next, let us consider the order ideal Ae generated by e and
defined by

Ae = {a ∈ A : −λe ≤ a ≤ λe for some scalar λ ≥ 0}.
Clearly, Ae is a ∗-subalgebra. We note that if Ae is a (real) Riesz space under
the ordering induced by A then Ae is an f -algebra and so that, by the Amemiya–
Birkhoff–Pierce theorem (see [2, p. 117]), the algebra Ae is commutative.

The following result holds.

Theorem 2.2. Let A be an almost ordered C∗-algebra with unit e. Then every
element a ∈ Ae such that a ∧ a∗ exists, is hermitian.

Proof. As it is easy to see, we can assume 0 ≤ a ≤ e. Whence, 0 ≤ a∗ ≤ e. Clearly,

0 ≤ a− a ∧ a∗ ≤ e and 0 ≤ a∗ − a ∧ a∗ ≤ e.

Consequently,

0 ≤ (a− a ∧ a∗)(a∗ − a ∧ a∗) ≤ (a− a ∧ a∗) ∧ (a∗ − a ∧ a∗) = 0.

Thus, (a∗ − a ∧ a∗)∗(a∗ − a ∧ a∗) = 0. Since A is an almost ordered C∗-algebra,
we have a∗ = a ∧ a∗. It follows by symmetry that a is hermitian. �

Example 2.3. (a) First of all, we mention that it is not known if the preceding
theorem holds if the condition that a∧a∗ exists is omitted, even when A = L(H),
where H is an ordered Hilbert space with a cone K (see Example 2.1 (a)).

However:

If I is the identity operator, then each of the following conditions implies that
every operator T belonging to the order ideal (L(H))I is hermitian:

(i) K coincides with the closed convex hull of its extremal rays;
(ii) K has a closed, bounded base (e.g., K is an ice cream cone or H is finite

dimensional).

Indeed, we can suppose 0 ≤ T ≤ I. Let (i) hold and let x be an extremal
vector of K (see [4, p. 37]). Clearly, 0 ≤ Tx ≤ x, hence Tx = αx for some scalar
α ≥ 0; analogously, T ∗x = βx with β ≥ 0. On the other hand,

0 = 〈Tx, x〉 − 〈x, T ∗x〉 = (α− β)‖x‖2.
Therefore, α = β or Tx = T ∗x. Now, using our condition, we at once infer that
T = T ∗. Next, if K has a closed, bounded base B then (see [4, p. 41]) extreme
points of B are exactly extremal vectors of K. Since H is reflexive, the set B
is weakly compact and hence, by the Krein–Milman theorem (see [2, p. 137]), B
coincides with a closed convex hull of its extreme points. Thus, the cone K satisfies
the condition (i). It remains to observe that (see [4, pp. 100, 121]) every ice cream
cone and every cone in a finite-dimensional space has a bounded, closed base.

The cone of non-negative functions in the ordered Hilbert space L2(μ), with
μ a σ-finite measure on a σ-algebra, does not have extremal rays if (and only if)
the measure μ is diffuse (i.e., the σ-algebra does not contain any atoms). But, in
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this case Theorem 2.2 can be used. We mention another possible approach here.
If 0 ≤ T ≤ I with T ∈ L(L2(μ)) then T is an orthomorphism and so it can be
represented in the form Tx = ux for some measurable function u ∈ L∞(μ) (see [2,
p. 123]). The identity T = T ∗ is then obvious.

Next, as was noted before in Theorem 2.2, in some cases the order ideal Ae,
where A is an arbitrary ordered Banach algebra, is a commutative subalgebra of
A. However, in general it is not known if this assertion is valid even when A =
L(H). But, it is easy to see that the conditions (i) and (ii) above again guarantee
an affirmative answer, i.e., in these cases, if S, T ∈ (L(H))I then ST = TS.

(b) The purpose of this part is to make the results of the preceding part more
precise for the case of an ice cream cone. Namely, let H be a (real or complex)
Hilbert space with dimH �= 2, let z ∈ H with ‖z‖ = 1 and let ε ∈ (0, 1). Let
K = Kz,ε be the ice cream cone in H (see Example 2.1 (b)). Then the identity
(L(H))I = {λI : λ ∈ R} holds. Actually, we mention first that if for a non-zero
element x ∈ H the relation 〈x, z〉 = ε‖x‖ is valid then x is an extremal vector of
the cone K. In fact, the inequalities 0 ≤ y ≤ x imply

ε‖x− y‖ ≤ 〈x− y, z〉 = ε‖x‖ − 〈y, z〉,
whence

ε‖y‖ ≥ ε(‖x‖ − ‖x− y‖) ≥ 〈y, z〉 ≥ ε‖y‖
and so ‖x‖ = ‖x− y‖+ ‖y‖. Thus, x and y are linearly dependent. In particular, if

an element w is orthogonal to z and ‖w‖ = 1 then for λ =
√

1
ε2 − 1 the elements

z ± λw are extremal vectors of K. Consider an arbitrary orthonormal system
{wα}α∈J such that {z}∪{wα}α∈J is an orthonormal basis of H . Since for the case
dimH < 2 the assertion is trivial, we will assume cardJ ≥ 2. Let T ∈ (L(H))I and
0 ≤ T ≤ I. In view of the remarks above, there exist scalars γ±

β ∈ [0, 1] satisfying

T (z±λwβ) = γ±
β (z±λwβ) for all β ∈ J . For some scalars cαβ with α, β ∈ {0}∪J

the decompositions Tz = c00z +
∑
α∈J

cα0wα and Twβ = c0βz +
∑
α∈J

cαβwα hold,

whence

(c00 ± λc0β)z +
∑
α∈J

(cα0 ± λcαβ)wα = γ±
β (z ± λwβ).

Using the uniqueness of a series representation, we get, on the one hand, cα0 =
cαβ = 0 for all α ∈ J and α �= β (in particular, since β is arbitrary and cardJ ≥ 2,
we have cα0 = 0 for all α ∈ J). On the other hand,

γ±
β = c00 ± λc0β = ±cβ0 ± λcββ

λ
= cββ.

Thus, c0β = 0 and c00 = cββ for all β ∈ J . Therefore, we finally have Tz = cz and
Twβ = cwβ for β ∈ J with c = c00, i.e., T = cI.

Obviously, the proven assertion does not hold for the case of dimH = 2.
Moreover, it implies that under the conditions that H is real, dimH > 2, and
ε ∈ (0, 1), the ice cream cone Kz,ε does not have the Riesz decomposition property.
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(c) Theorem 2.2 does not hold for the case of an arbitrary ordered Banach
algebra with a positive involution. To see this, we consider the algebra A = C[0, 1]
under the natural norm, multiplication, and order. We define an involution via
the formula a∗(t) = a(1− t). Evidently, this involution is positive. Next, the func-
tion b(t) = t satisfies the inequalities 0 ≤ b ≤ e while b∗(t) = 1− t, i.e., b∗ �= b. We
also mention that A is a ∗-normed algebra, i.e., ‖a‖ = ‖a∗‖ for all a ∈ A. �

By the Gelfand–Naimark theorem (see [12, p. 244]), for an arbitrary complex
C∗-algebra A there exists an isometric ∗-isomorphism ϕ from A to a closed ∗-
subalgebra of L(H), where H is some Hilbert space. For an ordered C∗-algebra A
it is an open question whether there exists a Hilbert space H with a cone K such
that ϕ(A+) = ϕ(A) ∩ (L(H))+.

In conclusion of this section, the author should mention of the related concept
of a “commutatively ordered C∗-algebra”, which would be defined as a commu-
tatively ordered Banach algebra (see [8]) which is also a C∗-algebra with positive
involution.

3. The domination problem

In the theory of operators on a Banach lattice E the following domination problem
plays a significant role:

(HL) Let I be a closed (algebraical) ideal in the algebra L(E). Does there exist
a number n ∈ N (depending on I) such that the relations 0 ≤ S ≤ T ∈ I
imply Sn ∈ I?

Up to now the validity of this conjecture in its general form remains open. However,
for various different operator ideals the answer is affirmative (see [1], where this
problem is discussed in detail).

For the case of an ordered Banach algebra the hypothesis (HL) should be
formulated as follows:

(HA) Let I be a closed ideal in an ordered Banach algebra A. Does there exist
a number n ∈ N (depending on I) such that the relations 0 ≤ a ≤ b ∈ I imply
an ∈ I?
In its general form the hypothesis (HA) is not valid (see [1]). Nevertheless,

some versions of the domination problem have been studied in ordered Banach
algebras in [5, 7, 9]. On the other hand, now it is well known that many results
in the general theory of Banach algebras can be made more precise for the case of
C∗-algebras. However, in the case of an ordered C∗-algebra the hypothesis (HA)
also has a negative answer. The following example clarifies the situation.

Example 3.1. (a) Let us consider the space Rk with k ≥ 2 under addition and
multiplication defined coordinatewise, with the norm ‖x‖ = max

1≤i≤k
|xi|, where

x = (x1, . . . , xk), and with the identity operator as involution. Let b1, . . . , bk
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be a collection of linearly independent elements in Rk. We consider the cone

K =
{ k∑
i=1

λibi : λi ≥ 0
}
and will assume that

(i) bibj ∈ K for all i, j = 1, . . . , k and

(ii) e = (1, . . . , 1) ∈ K.

Then, under the ordering generated by the cone K, the space Rk is a real
ordered C∗-algebra which is even a Riesz space. Now we assume that the following
condition also holds:

(iii) there exist a regular element a and a singular one b satisfying the inequalities
0 ≤ a ≤ b.

Then an /∈ bRk for all n ∈ N and, hence, the hypothesis (HA) does not hold
for Rk. Thus we only need to see that a collection of elements b1, . . . , bk in Rk with
the properties (i)–(iii) exists. Indeed, depending on whether k is odd or is even,

we can take bi =
i∑

j=1

ej or bi =
i+1∑
j=1

ej if i is odd and bi = −ei+1 +
i∑

j=1

ej or bi =

−ei+
i−1∑
j=1

ej if i is even, respectively, and put a = bk−1+2bk and b = 2(bk−1+ bk).

(b) Let us show that for an ordered C∗-algebra of the form L(H), where H
is an ordered Hilbert space, the hypothesis (HA) also does not hold. We consider
the real Hilbert space �2 and the ice cream cone (see Example 2.1 (b) with z =
(1, 0, 0, . . .) and ε = 1√

2
)

K =

{
x = (x0, x1, . . .) ∈ �2 : x0 ≥ 0 and x2

0 ≥
∞∑
i=1

x2
i

}
.

Then the algebra A = L(�2) with the normal cone A+ = {T : T (K) ⊆ K} is
an ordered Banach algebra while there exists a rank-one operator T satisfying
the inequalities 0 ≤ I ≤ T (see [6]). It remains only to observe that (see Exam-
ple 2.1 (b)) A is an ordered C∗-algebra. �

4. C∗-algebras with p-additive norm

We recall that a norm on an ordered Banach space Z with a (not necessarily
closed) cone K is called p-additive for 1 ≤ p <∞, if ‖x+ y‖p = ‖x‖p + ‖y‖p holds
for every x, y ∈ Z with x ∧ y = 0.

Example 3.1′. In Example 3.1 (a) the norm is not p-additive if p > 1 (see Theo-
rem 4.1 (a) below). If, however, p = 1 then under the choice of elements b1, . . . , bk
given in Example 3.1 (a), we do obtain a p-additive norm on the space Rk with

the cone K. In fact, if x =
k∑

i=1

λibi and λi ≥ 0 then, it is easy to see, ‖x‖ =
k∑

i=1

λi

and, hence, the norm is p-additive and strictly monotone. However, if k > 2 then
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this norm is not a lattice norm (it is easy to see this immediately, but it is also
implied by Theorem 4.1 (b) below). If k = 2 then b1 = e and b2 = (1,−1) and
it is not difficult to show that we now have a lattice norm. Moreover, b22 = e. In
other words, in this case the algebra R2 is isomorphic to an algebra A0 which is
defined as the linear space R2 under the norm ‖x‖ = |x1|+ |x2|, the natural order,
the convolution as product, i.e., x ∗ y = (x1y1 + x2y2, x1y2 + x2y1), and the iden-
tity operator as the involution operator. It is easy to check that the algebra A0 is
an ordered C∗-algebra with unit e0 = (1, 0). �

Our next objective is to show that, in fact, the algebra A0 from the preceding
example is the only type of ordered C∗-algebras with p-additive norm. To do this,
we need to recall the following assertion: in a normed Riesz space E with a strictly
monotone norm the relation x ⊥ y holds for two elements x, y ≥ 0 if and only if
‖x− y‖ = ‖x+ y‖. To see this, it is sufficient to observe the validity of the identity
x + y = |x − y| + 2(x ∧ y). Next, for every normed Riesz space E whose norm is
p-additive there exists a norm-preserving Riesz isomorphism from E onto a Riesz
subspace of some Lp (see [3, p. 92]). In particular, in this case, we obtain the strictly
monotonicity of p-additive norm.

Theorem 4.1. Let A be an almost C∗-algebra such that under the ordering and
the norm induced by A, the space Ar = A+ −A+ is a Riesz space with p-additive
norm. The following statements hold:

(a) If p > 1 then dimAr = 1;
(b) If p = 1 and A is an ordered C∗-algebra with a lattice norm on Ar then

dimAr ≤ 2 and in the case that dimAr = 2, the space Ar is isomorphic to
the algebra A0 defined in Example 3.1′.

Proof. Let p ≥ 1. We shall show first that the unit e is an atom in Ar. Actually,
if a+ b ≤ e with a∧ b = 0 then, it is easy to see, ab = ba = 0 and a2 ⊥ b2. In view
of Theorem 2.2, the elements a and b are hermitian. Then

(‖a‖p + ‖b‖p)2 = ‖a+ b‖2p = ‖(a+ b)2‖p = ‖a2 + b2‖p = ‖a‖2p + ‖b‖2p.
Thus, a = 0 or b = 0. Finally, e is an atom and, in particular, the band Be = {λe :
λ ∈ R} generated by e is a projection band (see [3, p. 40]).

Next we show that if p > 1 then there exists no element a > 0 satisfying
a ⊥ e. The latter implies dimAr = 1 and the assertion (a) follows. Proceeding

by contradiction and, in the case of the necessity, considering the element a+a∗
‖a+a∗‖ ,

we can suppose a = a∗ and ‖a‖ = 1. There exist a scalar α0 ≥ 0 and an element
a0 ≥ 0 satisfying a2 = α0e+a0 and a0 ⊥ e. For arbitrary scalars α, β > 0, we have

(αp + βp)2 = ‖(αe+ βa)‖2p = ‖α2e+ 2αβa+ β2a2‖p

= (α2 + α0β
2)p + ‖2αβa+ β2a0‖p ≥ α2p + βp‖2αa+ βa0‖p,

whence 2αpβp + β2p ≥ βp‖2αa + βa0‖p or 2αp + βp ≥ ‖2αa + βa0‖p. Letting in
the last inequality β ↓ 0, we obtain 2αp ≥ 2pαp. Consequently, 2 ≥ 2p or 1 ≥ p,
a contradiction.
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(b) Again, we consider an arbitrary element a > 0 satisfying a ⊥ e and
‖a‖ = 1 and establish the equality

a∗a = e. (4)

To this end, let d ≥ 0 be an arbitrary element with the property d ⊥ e+a. We have

‖e+ a+ d‖2 = ‖e− a− d‖2 = ‖(e− a∗ − d∗)(e− a− d)‖ = ‖d1 − d2‖
with d1 = e + (a + d)∗(a + d) and d2 = a + d + a∗ + d∗. On the other hand, it
is easy to see that ‖d1 + d2‖ = ‖d1 − d2‖. In view of the remarks above, the last
identity implies d1 ⊥ d2 and, in particular, a∗a ⊥ a + d. Since the element d is
arbitrary, this yields the inclusion a∗a ∈ Be and (4) is proved.

Now let e, a, b ∈ A+ be three pairwise disjoint elements (if such a and b do
not exist then dimAr ≤ 2). We have the equality

a∗b = b∗a = 0. (5)

In order to see this, let d ≥ 0 be an arbitrary element with the property d ⊥ e+a+b.
Using the identities

‖e+ a+ b+ d‖2 = ‖e− a− b− d‖2

and

‖e+ a+ b+ d‖2 = ‖e+ a− b− d‖2

and arguing as above, we get from the first identity, the relation a∗b ⊥ a+b+d and
from the second one, the relation a∗b ⊥ e. Therefore, a∗b = 0 and, hence, b∗a = 0.

If dimAr > 2, then we can find two elements a, b > 0 satisfying a + b ⊥ e,
a ⊥ b, and ‖a‖ = ‖b‖ = 1. Using (4) and (5), we have

4 = ‖a+ b‖2 = ‖(a∗ + b∗)(a+ b)‖ = ‖2e‖ = 2,

which is impossible. It follows that dimAr ≤ 2.
If dimAr = 2, then every element b ∈ Ar can be represented in the form of

b = αe + βb0 with b0 ∈ A+, b0 ⊥ e, and ‖b0‖ = 1. Clearly, b∗0 = b0, whence, in
view of (4), b20 = e. Thus, Ar is algebraically isomorphic to the algebra A0 with
the preservation of the ordering and the norm. �

The statement (b) of the preceding theorem is not true for almost ordered
C∗-algebras and for ordered C∗-algebras not having a lattice norm (see Exam-
ple 2.1 (d) and Example 3.1′ above, respectively). Moreover, in the proof of The-
orem 4.1 the completeness of the norm and the closedness of the cone A+ in A
were not used.

Corollary 4.2. Let E �= {0} be a Riesz subspace of Lp with 1 ≤ p < ∞. Then

there exists an isometry ϕ from E onto a ∗-subalgebra Â of some C∗-algebra with

a unit e0 ∈ Â satisfying ϕ−1(ϕ(x)ϕ(y)) ≥ 0 and ϕ−1(ϕ(x)∗) ≥ 0 for x, y ≥ 0 and
ϕ−1(e0) ≥ 0 if and only if either dimE = 1 or dimE = 2 and p = 1.

The next result gives the conditions under which in an ordered C∗-algebra
the identity |a∗a| = |a∗||a| holds.
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Proposition 4.3. Let A be an ordered C∗-algebra with a strictly monotone norm
and suppose that, for b ∈ A, ‖b‖ = ‖ |b| ‖ whenever the modulus |b| exists. Then,
for an element a ∈ A such that the moduli |a| and |a∗a| (|aa∗|) exist, we have that
|a∗a| = |a∗||a| (|aa∗| = |a||a∗|).
Proof. Obviously, if |a∗a| exists then |a∗a| ≤ |a∗||a|. Assuming |a∗a| < |a∗||a|, we
have ‖a‖2 = ‖|a∗a|‖ < ‖|a∗||a|‖ ≤ ‖a‖2, a contradiction. �
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1. Introduction

In this note Banach lattices will be denoted by E,F and Banach spaces will be
denoted by X,Y . All spaces are assumed to be nontrivial. Lb(E,F ) will denote
order-bounded operators between E and F . A bounded linear operator between
X and Y will be called an operator. The closed unit ball of X will be denoted by
BX . Positive elements of E will be denoted by E+.

The difficulty of weak compactness in Banach lattices resulted in introduction
of related notions of L- and M-weakly compactness. A nonempty bounded subset
A of E is called L-weakly compact if for every disjoint sequence (xn) in the solid
hull of A, we have ‖xn‖ → 0. Every L-weakly compact subset of E is contained
in Ea, the largest order ideal in E on which the norm is order continuous. Every
relatively compact subset of Ea is L-weakly compact. Each L-weakly compact set
is relatively weakly compact and a bounded subset of an AL-space is L-weakly
compact if and only if it is relatively weakly compact[13, p. 212].

Definition 1.1. An operator T :E→X is called M-weakly compact if limn ‖Txn‖ =
0 for every norm bounded disjoint sequence (xn) in E. An operator T : X → E is
called L-weakly compact if T (BX) is an L-weakly compact subset of E.
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L- and M-weakly compact operators were introduced in [12] where it is also
shown that T : E → X is M-weakly compact if and only if T ′ :X ′→E′ is L-weakly
compact and T : X → E is L-weakly compact if and only if T ′ : E′ → X ′ is
M-weakly compact. L and M-weakly compact operators are weakly compact [13,
3.6.12]. If E is AL-space, then each operator T : X → E is weakly compact if and
only if L-weakly compact and if E is an AM-space, then each operator T : E → X
is weakly compact if and only if it is M-weakly compact [13, p. 214].

Example. l∞ is an AM-space as well as a Grothendieck space. It is well known
that each operator from a Grothendieck space into any separable Banach space is
weakly compact [13, 5.3.10]. Hence every operator from l∞ into c0 is weakly and
consequently, is M-weakly compact.

M- and L-weakly compact operators may be very large. If 1 ≤ q < p ≤ ∞,
then all regular operators from Lp into Lq are L- and M-weakly compact [13,
3.6.20]. On the other hand, they can also be very scarce. If E = l2[L1[0, 1]], then
for each Banach space X the only M-weakly compact operator T : E → X is the
zero operator [9]. L- and M-weakly compact operators were studied in [2, 6, 9, 10,
12] and [13].

We will also work with other operators which we recall now.

Definition 1.2. An operator T : X → Y is called a Dunford–Pettis operator if it
maps weakly convergent sequences onto norm convergent sequences. An operator
T : E → Y is called almost Dunford–Pettis if ‖Txn‖ → 0 for each weakly null
sequence (xn) of disjoint elements in E+. T : X → Y is called a weak Dunford–

Pettis operator whenever xn
w→0 inX and y′n

w→0 in Y ′, we have limn(Txn, y
′
n) = 0.

Almost and weak Dunford–Pettis operators were studied in [5, 7, 8, 14, 15,
16] and the references therein.

An operator T : X → E is called semicompact if for each ε > 0, there exists
some u ∈ E+ such that T (BX) ⊆ [−u, u] + εBE . An operator T : E → X is called
b-weakly compact if ‖T (xn)‖ → 0 for each disjoint sequence (xn) which is order
bounded in E′′ [3]. Each M-weakly compact operator is almost Dunford–Pettis
and each almost Dunford–Pettis operator is b-weakly compact. Let us note that
the identity of l2 is weakly compact and therefore b-weakly compact but not an
almost Dunford–Pettis operator. Let us note that there are almost Dunford–Pettis
operators that are not L- or M-weakly compact. The identity operator L1[0, 1]→
L1[0, 1] is almost Dunford–Pettis but is neither M-weakly nor L-weakly compact.

The main aim of this note is to study how the preceding spaces of operators
accomodate one another and the effect of this to the properties of spaces serving
as domain or range.

In all undefined terminology concerning Riesz spaces and Banach lattices, we
will adhere to [2] and [13].
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2. On L- and M-weakly compact operators

We can distinguish reflexive Banach lattices among spaces with order-continuous
norm using M-weakly compact operators.

Proposition 2.1.

(a) Let E be a Banach lattice with order-continuous norm. If each positive T :
E → c0 is M-weakly compact, then E is reflexive.

(b) Suppose each positive operator T : E → l∞ is M-weakly compact, then E is
finite dimensional.

Proof. (a) We first show E is a KB-space. If not, then E contains a copy of c0
[13, 2.4.12]. There is a positive projection P onto this copy of c0[13, 2.4.3]. By
assumption P is an M-weakly compact operator. If i is the canonical embedding
of c0 in E, then P ◦ i is M-weakly compact whose restriction to c0 is the identity
of c0. This is a contradiction. Now we show E′ is a KB-space. If it is not, then E
contains a copy of l1 and there exists a positive projection P : E → l1 [13, 2.3.11].
Let i : l1 → c0 be the canonical map of l1 into c0 and consider the operator i ◦ P
from E into c0. By the assumption it should be an M-weakly compact operator
which in turn would imply that i is M-weakly compact. This contradiction shows
E′ also has order-continuous norm and therefore, E is reflexive by Theorem 14.22
in [2].

(b) The proof follows from Theorem 2 in [10] where it is proved that if F
is Dedekind σ-complete, then each positive semicompact T : E → F is M-weakly
compact if and only if one of: E′ and F have order-continuous norms or E is finite
dimensional. �

Order-continuity of E is essential in (a). If E = l∞, F = c0, then each
operator T : l∞ → c0 is M-weakly compact but l∞ is not reflexive. Considering
the canonical embedding of l2 into c0, we see that the converse is not true.

If E′ has order-continuous norm, then each Dunford–Pettis operator is M-
weakly compact. The necessary conditions for the larger set of weak Dunford–
Pettis operators to be M-weakly compact are given as follows:

Corollary 2.2. Let F be σ-Dedekind complete. If each positive weak Dunford–Pettis
operator T : E → F is an M-weakly compact operator, then one of the following
holds:

(a) E is finite dimensional.
(b) F has order-continuous norm.

Proof. We show that if the norm of F is not order continuous, then E is finite
dimensional. If the norm of F is not order continuous, then F contains a copy of l∞.
Let i : l∞ → F be this embedding. Since l∞ has the Dunford–Pettis property, i is a
weak Dunford–Pettis operator. Let T : E → l∞ be an arbitrary positive operator,
then T = i ◦ T is a weak Dunford–Pettis operator. Thus, T is M-weakly compact
by the assumption. As T was arbitrary, the result follows from the proposition,
part (b). �
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The last corollary is similar to Theorem 2.3 in [14] where it is shown that if
each positive weak Dunford–Pettis operator T : E → F is almost Dunford–Pettis
then one of E has the Schur Property or F has order-continuous norm holds. Also
see Remarks 2.2 and 2.3 in [14]. Dedekind σ-completeness of F is essential above.
If E = l∞ and F = c, then each positive weak Dunford–Pettis operator T from
E into F is M-weakly compact but E is not finite dimensional and c does not
have order-continuous norm. The order-continuity of the norm of the range is not
sufficient as the identity of c0 is a weak Dunford–Pettis operator but not M-weakly
compact.

In general L, M-weakly compact and Dunford–Pettis operators are distinct
classes. The identity of l1 is Dunford–Pettis but not an L- or M-weakly compact.
On the other hand, the inclusion i : L2[0, 1] → L1[0, 1] is M-weakly compact
but not a Dunford–Pettis operator. We now give sufficient condition for L-weakly
compact operators to be Dunford–Pettis.

Proposition 2.3.

(a) Let 0 ≤ T : E → F be an L-weakly compact operator. If the lattice operations
are weakly sequentially continuous in E, then T is a Dunford–Pettis operator.

(b) Let T : E → F be L-weakly compact. If the lattice operations in E′ are weak*
sequentially continuous, then T ′ : F ′ → E′ is a Dunford–Pettis operator.

Proof. (a) Let (xn) be a weak null sequence in E. Since the lattice operations
are weakly sequentially continuous, |xn| → 0 for σ(E,E′). Choose K such that
‖xn‖ ≤ K for all n. The adjoint T ′ : F ′ → E′ is M-weakly compact. There exists
u ∈ E′

+ such that ‖T ′(|f | − u)+‖ ≤ ε
2K for each f ∈ BF ′ by Theorem 18.9 in [2].

There exists some N such that T ′u(|xn|) ≤ ε
2 for all n ≥ N . Therefore, we have

|f(Txn)| ≤ ‖T ′(|f | − u)+‖ · ‖xn‖+ T ′u(|xn|) ≤ ε

for all n ≥ N and f ∈ BF ′ . Thus, ‖Txn‖ → 0 and T is Dunford–Pettis.
(b) Let (gn) be a weak null sequence in E′. Since the lattice operations are

weak* sequentially continuous, |gn| → 0 in σ(E′, E). Let K be such that ‖gn‖ ≤ K
for all n. Since T is L-weakly compact, given ε > 0, there exists some u ∈ E+ with
‖(|T (x)| − u)+‖ ≤ ε

2K for all x ∈ BE by Theorem 18.9 in [2]. As |gn| → 0 for
the topology σ(E′, E), there exists some N such that |gn|(u) < ε/2 for all n ≥ N .
Thus, for n ≥ N and x ∈ BE , we have

|T ′(gn)(x)| ≤ |gn|(|T (x)| − u)+ + |gn|(|T (x)| ∧ u) ≤ |gn|(|T (x)| − u)+ + |gn|(u).
Hence,

|T ′(gn)(x)| ≤ ‖gn‖ · ‖(|Tx| − u)+‖+ |gn|(u) ≤ ε

Thus, ‖T ′gn‖ → 0 and T ′ is Dunford–Pettis. �
Dunford–Pettis operators are weakly Dunford–Pettis so if weak Dunford–

Dunford operators are M-weakly compact, then, Dunford–Pettis operators are also
weakly compact and E′ has order-continuous norm by Theorem 19.23 in [2]. The
next result shows M-weak compactness of almost Dunford–Pettis operators yields
a similar result to M-weak compactness of weak Dunford–Pettis operators.
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Proposition 2.4. The following are equivalent:

(a) E′ has order-continuous norm.
(b) Every Dunford–Pettis operator T : E → X is M-weakly compact.
(c) Each positive almost Dunford–Pettis operator T : E → X is M-weakly com-

pact.

Proof. The proof is the same as the proof of Theorem 3.7.10 in [13]. �

Sufficient conditions for a weak Dunford–Pettis operator to be an almost
Dunford–Pettis were given in Theorem 5.3 in [8]. This result together with pre-
ceding observations yield the following.

Corollary 2.5. Suppose E′ is a KB-space. Let T : E → F be a positive weak
Dunford–Pettis operator. Each of the following imply that T is M-weakly compact.

(a) F is a dual KB-space.
(b) F is a discrete KB-space.
(c) F ′′ has order-continuous norm.
(d) E has the positive Schur property.
(e) F has the positive Schur property.

In (a–c), the range has order-continuous norm. Hence, each regular weak
Dunford–Pettis operator is also L-weakly compact by 3.6.14 in [13].

None of the preceding conditions is sufficient. For example, take E = l∞ and
F = c0. Then, since E′ has order-continuous norm, each operator T : E → F is
Dunford-Pettis, and therefore, M-weakly compact but c0 is not a KB-space, l∞

does not have the Schur property, and (c0)
′′ = l∞ does not have order-continuous

norm.

Proposition 2.6. Suppose E has order-continuous norm. If each positive weak
Dunford–Pettis operator T : E → F is M-weakly compact, then one of E is a
KB-space or F is a KB-space holds.

Proof. Suppose E,F are not KB-spaces. Then, E contains a copy of c0 [13, 2.4.12]
and there exists a positive projection P : E → c0 [13, 2.4.3]. On the other hand,
there is a lattice homomorphism i, mapping c0 into F such that K‖(αn)‖∞ ≤
‖i(αn)‖ for all (αn) ∈ c0. Clearly, the embedding i is not M-weakly compact. As
the identity Ic0 of c0 is a weak Dunford–Pettis operator, i ◦ P = i ◦ Ic0 ◦ P is a
weak Dunford–Pettis operator but it is not M-weakly compact for otherwise Ic0
would be M-weakly compact. �

Observe that the assumption that E has order-continuous norm is essential as
each operator T : l∞ → c0 is M-weakly compact but l∞ and c0 are not KB-spaces.

Proposition 2.7. Let E′ be a KB-space and F be an AL-space. Let T : E → F be
a regular operator such that T [0, x] is |σ|(F, F ′)-totally bounded for each x ∈ E+.
Then, T is M-weakly compact.
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Proof. Let (en) be a norm bounded disjoint sequence in E. Then, (en) is a weak

null sequence in E [13, 2.4.14]. Then, |Ten| w→ 0 in F by Theorem 19.17 in [2]. Let

e′ be the order unit in F ′. Then, ‖Ten‖ = e′(|Ten|) w→ 0. Therefore, T is M-weakly
compact. �

An operator T : E → X is called AM-compact if T [0, x] is relatively compact
in X for each x ∈ E+.

Corollary 2.8. Let E,F be as above and T : E → F be a regular AM-compact
operator. Then, T is M-weakly compact.

Proposition 2.9. Let E be a Banach lattice with order-continuous norm. Suppose
each positive AM-compact operator T : E → F is M-weakly compact. Then, one
of E or F is a KB-space.

Proof. Suppose neither E nor F is a KB-space. Then, E contains c0 and there
exists a positive projection P : E → c0. On the other hand, there exists a lattice
homomorphism i mapping c0 into F such that L‖x‖ ≤ ‖i(x)‖ for each x ∈ c0.
Consider the operator i◦P : E → c0 → F . Since c0 has compact order intervals, it
is AM-compact. However, if (en) is the canonical basis of c0 then, ‖i◦P (en)‖ ≥ L,
and therefore, i ◦ P is not M-weakly compact and this is a contradiction. �

Proposition 2.10. Suppose F has order-continuous norm. If T : E → F is a
disjointness preserving operator satisfying |T (x)| ≤ S(|x|) for each x ∈ E, and
some positive compact operator S, then T is M-weakly compact.

Proof. Let (en) be a norm bounded disjoint sequence in E and (fn) be an arbitrary
subsequence of (en). By Lemma 10.64 in [1], there exists a subsequence (gn) of
(fn) such that T (gn) is order bounded and disjoint. Since F has order-continuous
norm, T (gn) is norm convergent to zero. Thus, every subsequence of T (en) has a
subsequence that is norm convergent to zero. This shows that T (en)→ 0. �

An M-weakly compact operator need not have modulus. Even if it does,
the modulus need not be M-weakly compact [9]. On the other hand, each order-
bounded disjointness preserving operator T has a modulus which is given by
|T |(|x|) = |T (|x|)| = |Tx| by Theorem 8.6 in [2].

Corollary 2.11. Let E,F and T, S be as above. Then, the modulus of the operator
T is M-weakly compact.

3. Rank-one operators may determine order

There are examples where rank-one operators solely determine the structure of
the underlying space. Here is an example. An operator T : X → X satisfies the
Daugavet property if ‖T + I‖ = 1+ ‖T ‖. If X satisfies the Daugavet property for
rank-one operators, then X contains l1 [1, 11.62].

A finite rank operator need not be an M- or L-weakly compact operator.
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Example. Consider the operator T : l1 → l∞, defined by T (αn) = (
∑

n αn)e for
each (αn) ∈ l1 where e is the constantly one sequence in l∞. The operator T is
rank-one but is neither L- nor M-weakly compact.

Recall that an operator T : X → Y is called an approximable operator if
there exists a sequence (Tn) of finite rank operators such that ‖T − Tn‖ → 0.

Proposition 3.1. The following are equivalent:

(a) Each positive rank-one T : X → F is L-weakly compact.
(b) Each positive semicompact T : X → F is L-weakly compact.
(c) Each positive compact T : X → F is L-weakly compact.
(d) Every approximable operator into F is L-weakly compact.
(e) F has order-continuous norm.

Proof. The equivalence of (b) and (e) is given in Theorem 3.1 [10]. The proof of
equivalence of (a) and (e) is identical with this. (b) implies (c) follows from the
semicompactness of positive compact operators. (c) implies L-weak compactness
of finite rank operators and (d) follows from norm closedness of L-weakly compact
operators. (d) implies (a) is clear. �

Using the fact that adjoint of a finite rank operator is of finite rank and the
duality of L- and M-weakly compact operators, we have:

Corollary 3.2. The dual E′ of E has order-continuous norm if and only if every
positive rank-one operator T : E → F is M-weakly compact.

Corollary 3.3. Each finite rank operator is L- and M-weakly compact if and only
if E′ and F have order-continuous norms.

Suppose F is Dedekind complete. T ∈ Lb(E,F ) has order-continuous norm
if for each sequence (Tn) of positive operators with |T | ≥ Tn ↓ 0 in Lb(E,F ), we
have ‖Tn‖ → 0. Positive operators that have order-continuous norms are precisely
the operators which are simultaneously L- and M-weakly compact operators [2,
18.17].

Corollary 3.4. Suppose E′ and F have order-continuous norms. Then, every pos-
itive finite rank operator has order-continuous norm.

The following was proved for positive semicompact operators in [6]. An in-
spection of the proof of Theorem 2.9 there yields the following.

Proposition 3.5. For a Banach lattice E, the following are equivalent:

(a) For finite rank T and S with 0 ≤ S ≤ T , S is M-weakly compact.
(b) Each positive finite rank operator T on E is M-weakly compact.
(c) For each positive finite rank T on E, T 2 is M-weakly compact.
(d) E′ has order-continuous norm.
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It is possible to obtain a similar result for L-weakly compact operators by
inspecting the proof of Theorem 2.8 in [6].

Theorem 4.1 in [9] shows that every regular M-weakly compact operator
between Banach lattices E,F is L-weakly compact if and only if one of: F has
order-continuous norm or (E′)a = 0 holds. The following, which is contained in
the proof of Theorem 4.1 in [9], shows that under the assumption that each M-
weakly compact, rank-one operator is L-weakly compact, Theorem 4.1 of [9] still
holds.

Proposition 3.6. The following are equivalent:

(a) At least one of, F has order-continuous norm or (E′)a = 0, holds.
(b) Every rank-one M-weakly compact T : E → F is L-weakly compact.

There is a dual version of this as well. The proof of Theorem 4.2 in [9] shows
that one of E′ has order-continuous norm or F a = 0 holds if and only if every
L-weakly compact, rank-one T : E → F is M-weakly compact.

An operator T : E → X is called strong type B if T ′′ maps the band generated
by E in E′′ into X . If E′ has the positive Schur property, then E′ has order-
continuous norm and operators of strong type B coincides with weakly compact
operators [4]. In this case not only every weakly compact operator is M-weakly
compact but the larger class of operators of strong type B, also are M-weakly
compact and Theorem 3.3 in [9] takes the following form:

Proposition 3.7. The following are equivalent for a Banach lattice E:

(a) E′ has the positive Schur property.
(b) Every operator of strong type B, T : E → X is M-weakly compact.
(c) Every positive weakly compact T : E → c0 is M-weakly compact.

We finish with a characterization of KB spaces in terms of weak Dunford–
Pettis operators. We need to know the relation between weak Dunford–Pettis and
b-weakly compact operators which was initiated in [7]. In general, they are distinct
classes. The identity of c0 is weak Dunford–Pettis but is not b-weakly compact.
On the other hand, the identity of l2 is weakly and therefore b-weakly compact
but is not a weak Dunford–Pettis operator.

l∞ is a Dedekind complete AM space with order unit and it has the b-
property as each subset A in l∞ which is order bounded in the bidual (l∞)′′ is
norm bounded there and therefore is order bounded in l∞. On the other hand
each operator T : E → l∞ is order bounded and therefore is regular. Thus, taking
F = l∞ in Corollary 2.6 in [7], we have the following.

Proposition 3.8. Each weak Dunford–Pettis operator T : E → l∞ is b-weakly
compact if and only if E is a KB-space.
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Characterization of Riesz Spaces with
Topologically Full Center

Şafak Alpay and Mehmet Orhon

Abstract. Let E be a Riesz space and let E∼ denote its order dual. The
orthomorphisms Orth(E) on E, and the ideal center Z(E) of E, are naturally
embedded in Orth(E∼) and Z(E∼) respectively. We construct two unital
algebra and order-continuous Riesz homomorphisms

γ : ((Orth(E))∼)∼n → Orth(E∼)

and
m : Z(E)′′ → Z(E∼)

that extend the above-mentioned natural inclusions respectively. Then, the
range of γ is an order ideal in Orth(E∼) if and only if m is surjective. Fur-
thermore, m is surjective if and only if E has a topologically full center. (That
is, the σ(E,E∼)-closure of Z(E)x contains the order ideal generated by x for
each x ∈ E+.) As a consequence, E has a topologically full center Z(E) if and
only if Z(E∼) = π · Z(E)′′ for some idempotent π ∈ Z(E)′′.

Mathematics Subject Classification (2010). Primary 47B38, 46B42; Secondary
47B60, 46H25.

Keywords. Riesz space, ideal center, orthomorphism, Arens extension.

1. Introduction

Let E be a Banach lattice and let Z(E) be its (ideal ) center. In general Z(E)
is a subalgebra and sublattice of Z(E′), the center of the Banach dual E′ of
E. It is possible to extend this embedding to a contractive algebra and lattice
homomorphism of Z(E)′′ into Z(E′). It is natural to ask when the homomorphism
would be onto Z(E′). It is clear that Z(E) has to be large, since Z(E′) is always
large. It turns out that the concept of largeness best suiting the center Z(E) in
this problem is that Z(E) should be topologically full in the sense of Wickstead
[17]. Namely, for each x ∈ E+, the closure of Z(E)x is the closed ideal generated
by x. Then it is shown that the homomorphism is onto Z(E′) if and only if Z(E)
is topologically full [11, Corollary 2].
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Our purpose in this paper is to consider the corresponding problem for a
Riesz space E with point separating order dual E∼. In the case of Riesz spaces
however, there are, in general, two different algebras that act on E which should
be considered. Namely, Orth(E), the algebra of the orthomorphisms on E, and
its subalgebra and (order) ideal Z(E), the center of E. In the case of Banach
lattices Orth(E) = Z(E), therefore this problem does not arise. Recall that an
orthomorphism on E is an order-bounded operator on E that preserves bands,
and Z(E) is the ideal generated by the identity operator on E in the Riesz space
Orth(E). In fact Orth(E) is an f -algebra. The ideal center Z(E), on the other
hand, is a normed AM -lattice where the identity operator is the order unit of the
AM -lattice. Similar to the Banach lattice case, Orth(E) is embedded in Orth(E∼)
as an f -subalgebra and sublattice. Also as before, Z(E) is embedded in Z(E∼) as
a subalgebra and sublattice. We construct two unital algebra and order-continuous
lattice homomorphisms

γ : (Orth(E)∼)∼n → Orth(E∼)

and

m : Z(E)′′ → Z(E∼)

that extend the two embeddings mentioned above respectively. Then the range of
γ is an order ideal in Orth(E∼) if and only if m is onto Z(E∼) (Corollary 3.5).
Also, m is onto Z(E∼) if and only if E has a topologically full center (Proposition
3.6). That is for each x ∈ E+, the σ(E,E∼)-closure of Z(E)x in E contains the
ideal generated by x. It follows that E has a topologically full center Z(E) if and
only if the ideal center of its order dual E∼ is given as Z(E∼) = π · Z(E)′′ for
some idempotent π ∈ Z(E)′′.

We point out that the proofs of the above-mentioned results differ from those
used in the Banach lattice case [11]. The method used in this paper owes a lot to
the work and results of Huijsmans and de Pagter [8] on the bidual of an f -algebra.

In the Banach lattice case it is shown that if Z(E) is topologically full then
it is maximal abelian [11, Corollary 3]. Wickstead [19] showed that the converse
is not true. He constructed an interesting AM -lattice with a center that is max-
imal abelian but is not topologically full. In the case of Riesz spaces, even when
Z(E) is topologically full, it need not be maximal abelian. In fact, when Z(E)
is topologically full, its commutant in the order-bounded operators is Orth(E)
(Corollary 3.13).

If E is a Riesz space, by E∼ we will denote the Riesz space of order-bounded
linear functionals on E. All Riesz spaces considered in this paper are assumed to
have separating order duals. E∼

n will denote the order-continuous linear functionals
in E∼. We let Lb(E,F ) denote the space of order-bounded linear operators from
the Riesz space E into the Riesz space F. When T : E → F is an order-bounded
operator between two Riesz spaces, the adjoint of T carries F∼ into E∼ and
we will denote it by T ′. The dual of a normed space will be denoted by E′. In all
terminology concerning Riesz spaces we will adhere to the definitions in [1] and [20].
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Let us recall that for any associative algebra A, a multiplication (called the
Arens multiplication) can be introduced in the second algebraic dual A∗∗ of A [2].
This is accomplished in three steps: given a, b ∈ A, f ∈ A∗ and F,G ∈ A∗∗, one
defines f · a ∈ A∗, F · f ∈ A∗, and F ·G ∈ A∗∗ by the equations

(f · a)(b) = f(ab)

(F · f)(a) = F (f · a)
(F ·G)(f) = F (G · f).

For any Archimedean f -algebra A, the space (A∼)∼n is an Archimedean f -algebra
with respect to the Arens multiplication [8].

We denote for any F ∈ (A∼)∼n the mapping f → F · f by νF . The map νF
is an orthomorphism on A∼ [8]. The mapping ν : (A∼)∼n → Orth(A∼), defined by
ν(F ) = νF is an algebra and Riesz homomorphism for any Archimedean f -algebra
A. Moreover ν is onto Orth(A∼) if and only if (A∼)∼n has a unit element. In that
case, υ is injective by Theorem 5.2 in [8]. The main purpose of this paper is to
extend the latter result to an arbitrary Riesz space.

2. The Arens homomorphism

Let E be a Riesz space and consider the bilinear map

Orth(E) × E → E (1)

defined by (π, x) → π(x) for each π ∈ Orth(E) and x ∈ E. Related to (1), we
define the following bilinear maps:

E × E∼ → (Orth(E))∼ :: (x, f)→ ψx,f : ψx,f(π) = f(πx) (2)

E∼ × (Orth(E))∼∼ → E∼ :: (f, F )→ F • f : F • f(x) = F (ψx,f ) (3)

where x ∈ E, f ∈ E∼, π ∈ Orth(E) and F ∈ Orth(E)∼∼. We call the map defined
in (3) the Arens extension of the map in (1).

For an Archimedean unital f -algebra A, we have A∼∼ = (A∼)∼n by Corol-
lary 3.4 in [8]. Since Orth(E) is a unital f -algebra with point separating order
dual, it is Archimedean. This enables us to use the identification (Orth(E))∼∼ =
((Orth(E))∼)∼n throughout this paper. It is straightforward to check that the Arens
product on the f -algebra ((Orth(E))∼)∼n is compatible with the Arens extension
defined in (3), that is, E∼ is a unital module over ((Orth(E))∼)∼n .

We use (3) to define a linear operator

γ : ((Orth(E))∼)∼n → Lb(E
∼) by γ(F )(f) = F • f

for each F ∈ ((Orth(E))∼)∼n and f ∈ E∼. We will call γ the Arens homomorphism
of the order bidual of Orth(E).

Proposition 2.1. γ is a unital algebra and order-continuous Riesz homomorphism
such that γ (((Orth(E))∼)∼n ) ⊂ Orth(E∼).
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Proof. It follows from the definition of γ that γ is a positive order-continuous
unital algebra homomorphism. Also it is easily checked that γ(π) = π′ for each
π ∈ Orth(E). Let F ∈ ((Orth(E))∼)∼n such that |F | ≤ π for some π ∈ Orth(E).
Then |γ(F )| ≤ γ(|F |) ≤ γ(π) = π′ by the positivity of γ. Since π′ ∈ Orth(E∼),
we see that γ(F ) ∈ Orth(E∼). Then, since γ is order continuous and the ideal
generated by Orth(E) is strongly order dense in ((Orth(E))∼)∼n , the range of γ
is contained in Orth(E∼). That γ is a Riesz homomorphism follows from the fact
that it is an algebra homomorphism by Corollary 5.5 in [9]. �

If A is an f -algebra then the range of the homomorphism ν : (A∼)∼n →
Orth(A∼) is contained in the range of the Arens homomorphism γ.

Proposition 2.2. Let A be an f -algebra with point separating order dual. The range
of the homomorphism ν : (A∼)∼n → Orth(A∼) is contained in the range of the
Arens homomorphism γ.

Proof. Let P : A → Orth(A) be the canonical embedding of A into Orth(A)
(i.e., P (a)(b) = ab for all a, b ∈ A). It is well known that P (A) is a sublattice
and an algebra ideal in Orth(A). For each μ ∈ (Orth(A))∼, define μ̂ ∈ A∗ by
μ̂(a) = μ(P (a)). Since positivity is preserved, it is clear that μ̂ ∈ A∼ for each
μ ∈ (Orth(A))∼. Given a ∈ A, f ∈ A∼, we have ψa,f ∈ (Orth(A))∼. Then

ψ̂a,f (b) = ψa,f (P (b)) = f(P (b)(a)) = f(ab) = (f · a)(b)

for each b ∈ A. That is ψ̂a,f = f · a for all a ∈ A, f ∈ A∼. Now let F ∈ (A∼)∼n .
Define F̂ ∈ ((Orth(A))∼)∗ by F̂ (μ) = F (μ̂) for each μ ∈ (Orth(A))∼. Since 0 ≤ μ

implies 0 ≤ μ̂, we have 0 ≤ F̂ whenever 0 ≤ F. That is F̂ ∈ ((Orth(A))∼)∼ =
((Orth(A))∼)∼n . For each F ∈ (A∼)∼n , f ∈ A∼ and a ∈ A, we have

νF (f)(a) = F · f(a) = F (f · a) = F (ψ̂a,f ) = F̂ (ψa,f )

= F̂ • f(a) = γ(F̂ )(f)(a).

Hence νF = γ(F̂ ). �

Let us check the behavior of γ in some specific examples.

Example 1. Let ω denote all sequences and let A = l1 the f -subalgebra of ω
consisting of absolutely summable sequences. Then A∼ = l∞ and Orth(A) =
Orth(A∼) = l∞. Since (A∼)∼n = l1, ν is the inclusion map l1 → l∞ so that ν is
one-to-one and not onto. On the other hand ((Orth(A))∼)∼n = (l∞)′′ and γ is the
band projection of (l∞)′′ onto l∞. Thus γ is onto and not one-to-one.

Example 2. Let A = c0 be the f -subalgebra of ω consisting of the sequences
convergent to zero. Then A∼ = l1 and Orth(A) = Orth(A∼) = l∞. Since (A∼)∼n =
l∞, ν is the identity map on l∞ so that ν is one-to-one and onto. On the other
hand ((Orth(A))∼)∼n = (l∞)′′ and γ is the band projection of (l∞)′′ onto l∞. Thus
γ is onto and not one-to-one.



Riesz Spaces with Topologically Full Center 39

Example 3. Consider C[0, 1] with the product ∗ defined by a∗b = iab with i(x) = x
for all x ∈ [0, 1]. Then A = (C[0, 1], ∗) is an Archimedean f -algebra. As shown in
[8], (A∼)∼n is not semi-prime. Therefore υ is not one-to-one and not onto [8]. On the
other hand Orth(A) = Z(C[0, 1]) = C[0, 1] and Orth(A∼) = Z(C[0, 1]′) = C[0, 1]′′.
Since (C[0, 1]∼)∼n = C[0, 1]′′, γ is the identity map on C[0, 1]′′. Therefore γ is one-
to-one and onto.

3. Riesz spaces with topologically full center

We start with the following definition that is due to Wickstead [17] in the case of
Banach lattices.

Definition 3.1. Suppose E is a Riesz space. Then E is said to have a topologically
full center if for each x ∈ E+ the σ(E,E∼)-closure of Z(E)x contains the ideal
generated by x.

Banach lattices with topologically full center were initiated in [17]. The class
of Riesz spaces and the class Banach lattices with topologically full center are
quite large. For example, in a σ-Dedekind complete Riesz space E each positive
element generates a projection band. Therefore for each x ∈ E+, Z(E)x is an ideal
and Z(E) is topologically full. Also Banach lattices with a quasi-interior point or
with a topological orthogonal system have topologically full center [19]. However
not all Riesz spaces have topologically full center.

Example 4 (Zaanen [20, p. 664]). Let E be the Riesz space of piecewise affine con-
tinuous functions on [0, 1]. Clearly the ideal generated by the constant 1 function
equals E. But, as shown by Zaanen, Z(E) is trivial, that is, it consists of the scalar
multiples of the identity. Therefore E does not have a topologically full center.

The first example of an AM-space that has trivial center was given in [5].
A thorough study of Banach lattices with trivial center was undertaken in [18].
We refer the reader to [18] for further examples of Banach lattices with trivial
center as well as a careful treatment of the following example of Goullet de Rugy
mentioned above.

Example 5 ([5]). Let K be a compact Hausdorff space with a point p ∈ K such
that {p} is not a Gδ-set in K (e.g., [12, Example 4, p. 170]). Let C0(K) denote the
elements of C(K) that vanish at p. Let H denote the positive unit ball of C0(K)′

with the relative σ(C0(K)′, C0(K))-topology. Let E = {f ∈ C(H) : f(rμ) = rf(μ)
for all r ∈ [0, 1] and for each μ ∈ H with ‖μ‖ = 1}. Then E is an AM-space
(without order unit). As a sublattice of l∞(H�{0}), one has Ed = {0}. Therefore
Z(E) is embedded in l∞(H�{0}) [15]. Then one may compute that Z(E) consists
of continuous bounded functions on H � {0} that are constant on the rays (i.e.,
g(rμ) = g(μ) for all r ∈ (0, 1], for each μ ∈ H with ‖μ‖ = 1). It follows by an
argument in [5, p. 371] that if there is a non-constant function in Z(E) then {0}
is a Gδ-set in H . That in turn implies that {p} would be a Gδ-set in K. Therefore
Z(E) is trivial and E does not have a topologically full center.



40 Ş. Alpay and M. Orhon

Z(E) is an Archimedean unital f -algebra with order unit. The order unit

norm induced on Z(E) is an algebra and lattice norm. Ẑ(E), the norm comple-
tion of Z(E), is an AM-space and a partially ordered Banach algebra where the
order unit and the algebra unit coincide. Therefore by the Stone algebra theorem

Ẑ(E) ∼= C(K) (isometric algebra and lattice homomorphism) for some compact
Hausdorff space K. (Here C(K) denotes the real-valued continuous functions on

K.) Then Z(E)′ = Ẑ(E)
′
= Ẑ(E)

∼
= Z(E)∼ and Z(E)∼∼ = Z(E)′′. Z(E)′′ is an

AM-space and with the Arens product, it is a partially ordered Banach algebra
(an Archimedean f -algebra with unit) where the order unit and the algebra unit
coincide. Therefore Z(E)′′ ∼= C(S) for some hyperstonian space S. That is the
Arens product on Z(E)′′ coincides with the pointwise product on C(S) [2].

Given the bilinear map

Z(E)× E → E (4)

defined by (T, x) → Tx for each T ∈ Z(E) and x ∈ E, we define the following
bilinear maps:

E × E∼ → Z(E)′ :: (x, f)→ μx.f = ψx,f |Z(E) (5)

E∼ × Z(E)′′ → E∼ :: (f, F )→ F ◦ f : F ◦ f(x) = F (μx,f ) (6)

where x ∈ E, f ∈ E∼ and F ∈ Z(E)′′. The Arens product on Z(E)′′ is compatible
with the bilinear map defined in (6). That is, E∼ is a unital module over Z(E)′′. (6)
allows us to define a linear operator m : Z(E)′′ → Lb(E

∼) where m(F )(f) = F ◦f
for all f ∈ E∼ and F ∈ Z(E)′′. It is easily checked that m(T ) = γ(T ) whenever
T ∈ Z(E).

We have the following analogue of Proposition 2.1 for the map m.

Proposition 3.2. m is a unital algebra and order-continuous lattice homomorphism
such that m (Z(E)′′) ⊂ Z(E∼).

Proof. That m is a positive order-continuous algebra homomorphism is immedi-
ate from the definition of m. That it is a lattice homomorphism follows as in
Proposition 2.1.

For each F ∈ Z(E)′′, there is a net {Tα} in Z(E) such that ‖ Tα ‖≤‖ F ‖
and Tα → F in σ(Z(E)′′, Z(E)′)-topology. Let f ∈ E∼

+ and x ∈ E+. Then

−||F ||f(x) ≤ F ◦ f(x) = lim
α
f(Tαx) ≤ ||F ||f(x).

So F ∈ Z(E∼). �

We will call the map m : Z(E)′′ → Z(E∼) the Arens homomorphism of the
bidual of Z(E) (into Z(E∼)).

Proposition 3.3. Let A be a unital f -algebra with point separating order dual. Then
the Arens homomorphism of the bidual of Z(A) is onto Z(A∼).
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Proof. Let F ∈ Z(A∼) with 0 ≤ F ≤ 1. Since A is unital, Theorem 5.2 in [8] implies
that the algebra and lattice homomorphism ν : (A∼)∼n → Orth(A∼) of [8] is one-
to-one and onto. Therefore with a slight abuse of notation we will identify (A∼)∼n
with Orth(A∼). In the duality 〈(A∼)∼n , A

∼〉, A is dense in (A∼)∼n with respect
to the weak topology. Since the locally solid convex topology |σ|((A∼)∼n , A

∼) is
compatible with the duality 〈(A∼)∼n , A

∼〉 [1, Theorem 11.13, p.170], there is a net
{aα} in A such that {aα} converges to F in the |σ|((A∼)∼n , A

∼)-topology. Lattice
operations are continuous in the locally solid convex |σ|((A∼)∼n , A∼)-topology and
A is a sublattice of (A∼)∼n with 1 ∈ A. Therefore we may suppose that 0 ≤ aα ≤ 1.
Hence, by the Alaoglu Theorem, there is T ∈ Z(A)′′ with 0 ≤ T ≤ 1 such that a
subnet {aβ} converges to T in the σ(Z(A)′′, Z(A)′)-topology. Then, when f ∈ A∼

and b ∈ A,

T ◦ f(b) = T (μb,f) = lim
β
μb,f (aβ) = lim

β
ψb,f (aβ) = lim

β
f(aβb).

On the other hand, since {aβ} converges to F in the |σ|((A∼)∼n , A∼)-topology
implies convergence also in the σ((A∼)∼n , A

∼)-topology, we have

F · f(b) = F (f · b) = lim
β
f · b(aβ) = lim

β
f(aβb).

Therefore m(T ) = F. �
Note that if E is a Riesz space and if we set A = Orth(E), then Z(A) =

Z(E). Also, since then A is a unital f -algebra with point separating order dual,
Proposition 3.3 will be true for A. In what follows we will use these facts repeatedly.

Corollary 3.4. Let E be a Riesz space. Let A = Orth(E) and mA denote the Arens
homomorphism of the bidual of Z(A) onto Z(A∼) (where Z(A) = Z(E)). Then

(1) the following diagram is commutative

Z(E)′′ m→ Z(E∼) i→ Orth(E∼)
� ↑ γ

Z(A)′′ mA→ Z(A∼) i→ (A∼)∼n
where i denotes the natural inclusion map;

(2) γ(Z((A∼)∼n )) = m(Z(E)′′).

Proof. (1) Suppose F ∈ Z(A)′′ with 0 ≤ F ≤ 1. Then, as in the proof of Proposi-
tion 3.3, let 0 ≤ aα ≤ 1 be a net in Z(A) ⊂ A such that {aα} converges to F in
the σ(Z(A)′′, Z(A)′)-topology and also to mA(F ) ∈ (A∼)∼n in the σ((A∼)∼n , A

∼)-
topology. Since (A∼)∼n = (Orth(E)∼)∼n , for each x ∈ E and f ∈ E∼, we have

γ(mA(F ))(f)(x) = mA(F ) • f(x) = mA(F )(ψx,f ) = lim
α
ψx,f (aα)

= lim
α
μx,f(aα) = F (μx,f) = m(F )(f)(x).

(2) As in the proof of Proposition 3.3, we may identify (A∼)∼n with Orth(A∼)
via the homomorphism ν. Then Z(A∼) = Z((A∼)∼n ). Since, by Proposition 3.3,
mA is onto Z(A∼), from part (1), we have γ(Z((A∼)∼n ) = m(Z(E)′′). �



42 Ş. Alpay and M. Orhon

Corollary 3.5. Let E be a Riesz space. Then γ((Orth(E)∼)∼n ) is an order ideal in
Orth(E∼) if and only if m(Z(E)′′) = Z(E∼).

Proof. Let A = Orth(E). Suppose γ((A∼)∼n ) is an order ideal in Orth(E∼). Since
γ is an order-continuous lattice homomorphism, the kernel Ker(γ) is a band in
(A∼)∼n . Let (1− e) be the band projection of (A∼)∼n onto Ker(γ). Then e · (A∼)∼n
is algebra and lattice isomorphic to the order ideal γ((A∼)∼n ) with γ(e) = 1. Let
T ∈ Z(E∼) with 0 ≤ T ≤ 1 = γ(e). So there is F ∈ (A∼)∼n such that γ(F ) = T.
Moreover, since γ is an algebra and lattice homomorphism, we may choose F so
that 0 ≤ F ≤ e ≤ 1. That is we may suppose that F ∈ Z((A∼)∼n ). Then Corollary
3.4 part (2) implies there is G ∈ Z(E)′′ such that m(G) = γ(F ) = T.

Conversely, suppose m(Z(E)′′) = Z(E∼). Suppose 0 ≤ T ≤ γ(F ) for some
0 ≤ F ∈ (A∼)∼n and for some T ∈ Orth(E∼). Since Orth(E∼) is Dedekind com-

plete, there is T̂ ∈ Z(Orth(E∼)) = Z(E∼) such that 0 ≤ T̂ ≤ 1 and T = T̂ γ(F ).

By Corollary 3.4 part (2), there is G ∈ Z((A∼)∼n ) such that γ(G) = T̂ . Then
T = γ(G)γ(F ) = γ(G · F ) where G · F ∈ (A∼)∼n . �

Corollary 3.5 gives the first part of the result stated in the abstract. We will
complete the result by showing that the only Riesz spaces that satisfy Corollary
3.5 are necessarily those with a topologically full center. For Banach lattices a
proof of this was given in [11]. Initially we will give the proof of the sufficiency.

Proposition 3.6. Let E be a Riesz space. Then E has a topologically full center
if and only if the Arens homomorphism m : Z(E)′′ → Z(E∼) is surjective. Then
there exits an idempotent π ∈ Z(E)′′ such that Z(E∼) = π ·Z(E)′′ and Ker(m) =
(1− π) · Z(E)′′.

Proof. (Sufficiency) Suppose m is surjective. To show that E has topologically
full center it is sufficient to show that each σ(E,E∼)-closed Z(E) submodule
of E is an ideal. This is equivalent to showing that each σ(E∼, E)-closed Z(E)
submodule of E∼ is an ideal. Let M be a σ(E∼, E)-closed Z(E) submodule of
E∼ and let T ∈ Z(E)′′. There is a net {Tα} in Z(E) that converges to T in the
σ(Z(E)′′, Z(E)′)-topology. For each x ∈ E and f ∈M we have

Tα ◦ f(x) = μx,f (Tα)→ T (μx,f) = T ◦ f(x).

Hence M is a Z(E)
′′
-submodule of E∼. Since Z(E∼) = m(Z(E)′′), M is a Z(E∼)-

submodule. E∼ is Dedekind complete. It is well known that a subspace of E∼ is
an ideal in E∼ if and only if it is a Z(E∼)-submodule of E∼ (e.g., [19]). Hence
M is an ideal in E∼. Since m is order continuous (Proposition 3.2), Ker(m) is
a band in Z(E)′′. Hence there exists a band projection π ∈ Z(E)′′ such that
Ker(m) = (1− π) · Z(E)′′ and Z(E∼) = π · Z(E)′′. �

The proof of the converse requires some preparatory results.
Given a Riesz space E, let A be a unital subalgebra of Z(E). Let A0 denote

the polar of A in Z(E)′ and let A00 denote the polar of A0 in Z(E)′′. By standard
duality theory, we have that A′ = Z(E)′/A0 and A′′ = A00 ⊂ Z(E)′′. Since A is a
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normed algebra, A′′ is a Banach algebra with the Arens product [2]. In fact A′′ is
a subalgebra of Z(E)′′ when Z(E)′′ has its Arens product.

Lemma 3.7. Let A be a unital subalgebra of Z(E). Then A00 is a subalgebra of
Z(E)′′ and the algebra product on A00 is identical with the Arens product on A′′

under the canonical isomorphism of A00 with A′′.

Proof. Let f ∈ A0 and a ∈ A. It is easily checked that f · a ∈ A0. Let F,G ∈ A00.
There is a net {aα} in A that converges to F in the σ(Z(E)′′, Z(E)′)-topology.
Let f ∈ A0. Then

F ·G(f) = F (G · f) = lim
α
G · f(aα) = lim

α
G(f · aα) = 0

and F ·G ∈ A00.
On the other hand, denote the isomorphism of A′′ onto A00 by F → F̂ .

Given f ∈ A′, let f̂ ∈ Z(E)′ denote any extension of f on Z(E). When F,G ∈ A′′,
let {aα} and {bβ} be nets in A that converge to F̂ and Ĝ respectively in the
σ(Z(E)′′, Z(E)′)-topology. Then, evidently, the respective nets also converge to F
and G respectively in the σ(A′′, A′)-topology. For any f ∈ A′, we have

F ·G(f) = lim
α
lim
β
f(aαbβ) = lim

α
lim
β
f̂(aαbβ) = F̂ · Ĝ(f̂). �

Lemma 3.8. Let I be a closed algebra ideal in Z(E) and consider A = Z(E)/I
with the quotient norm. Then A is a normed algebra and with the Arens product
A′′ may be identified with the subalgebra of Z(E)′′ given by

(I00)d = {F ∈ Z(E)′′ : |F | ∧ |G| = 0 for all G ∈ I00}.

Proof. Let Ẑ(E) = C(K ′) for some compact Hausdorff space K ′ and let I denote
the closure of I in C(K ′). There is a closed subset K of K ′ such that I = {a ∈
C(K ′) : a(K) = {0}} and C(K ′)/I = C(K). Furthermore A is a subalgebra of

C(K). In fact C(K) is the completion of A. Since I is an order ideal in Ẑ(E),
A′ ∼= I0 = (I)0 is a band in Z(E)′. Then A′′ ∼= Z(E)′′/I00 = (I00)d, since I00 is a
band in Z(E)′′. It remains to check that the Arens product of A′′ is identical with
the product on the subalgebra (I00)d. Let F,G ∈ Z(E)′′ and F̂ , Ĝ ∈ A′′ such that

F̂ = F |I0 , Ĝ = G|I0 . Let {aα} and {bβ} be nets in Z(E) that converge to F and G
respectively in the σ(Z(E)′′, Z(E)′))-topology. Let [a] = a+ I for each a ∈ Z(E).

Then, it follows that, {[aα]} and {[bβ]} converge to F̂ and Ĝ respectively in the
σ(A′′, A′)-topology. Then, for f ∈ I0, we have

F̂ · Ĝ(f) = lim
α
lim
β
f([aα][bβ]) = lim

α
lim
β
f(aαbβ) = F ·G(f). �

Let J be an ideal in E∼. For any F ∈ Z(E)′′, m(F )|J ∈ Z(J). Each operator
in Z(J) has a unique extension to an operator in the ideal center of the band
generated by J. Since bands in E∼ are projection bands, we have Z(J) = Z(E∼)|J .

Suppose J is an ideal in E∼ that separates the points of E. Let A be a unital
subalgebra of Z(E).
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Definition 3.9. E is called cyclic with respect to A for the dual pair 〈E, J〉 if there
is u ∈ E+ such that (Au)0 = {0} in J.

Lemma 3.10. Let E be a Riesz space and J be an ideal in E∼ that separates the
points of E. Suppose E is cyclic with respect to a unital f -subalgebra A of Z(E)
for the dual pair 〈E, J〉. Then m(A′′)|J = Z(J).

Proof. The norm completion Â of A is a unital closed subalgebra of Ẑ(E). There-

fore Â = C(K) for some compact Hausdorff space K. Furthermore A∼ = A′ =
C(K)′ and A′′ = C(K)′′ = C(S) for some hyperstonian space S. (We again men-
tion that the usual multiplication on C(S) is the Arens extension of the product
on C(K) as shown in [2]. Also the usual C(S) -module structure of C(K)′ via
its ideal center is the Arens homomorphism of the bidual of C(K) onto the ideal
center of C(K)′ (e.g., Proposition 3.3).) In the rest of the proof, by Lemma 3.7,
we consider A′′ as a subalgebra of Z(E)′′.

Let u ∈ E+ be a cyclic vector and f ∈ J+. Then μu,f ∈ Z(E)′+ and μu,f |A =
μ̂u,f ∈ C(K)′+. Let Pf be the band projection of C(K)′ onto the band B(μ̂u,f )
generated by μ̂u,f . By the Lebesgue Decomposition Theorem and the Radon–
Nikodym Theorem, we have

B(μ̂u,f ) = Pf · C(K)′ = L1(μ̂u,f ) = {μ ∈ C(K)′ : |μ| << μ̂u,f}.
The first equality above follows by Proposition 3.3.

Suppose e ◦ f = 0 for some idempotent e ∈ A′′ = C(S). Let {aα} be a net in
A that converges to e in the σ(A′′, A′)-topology. Then for each a ∈ A,

e · μ̂u,f (a) = e(μ̂u,f · a) = lim
α
μ̂u,f · a(aα) = lim

α
μ̂u,f (aaα) = lim

α
μu,f (aαa)

= lim
α
f(aαau) = lim

α
μau,f (aα) = e(μau,f ) = e ◦ f(au) = μ̂u,e◦f (a) = 0.

Hence 0 ≤ e ≤ 1 − Pf . Conversely, since u is a cyclic vector, μ̂u,(1−Pf )◦f =
(1−Pf ) · μ̂u,f = 0 implies that (1−Pf )◦f = 0. Therefore 1−Pf = sup{e ∈ C(S) :
e ◦ f = 0 and e = e2}. That is, a ◦ f = 0 for some a ∈ A′′ if and only if Pf · a = 0.

Let T ∈ Z(E∼) with 0 ≤ T ≤ 1. Let f ∈ J+. Then 0 ≤ μ̂u,Tf ≤ μ̂u,f in A′.
Therefore, by the Radon–Nikodym Theorem, there is af ∈ L∞(μ̂u,f ) ⊂ C(S) = A′′

such that μ̂u,Tf = af · μ̂u,f = μ̂u,af◦f . Since u is a cyclic vector it follows that
Tf = af ◦ f. Suppose g ∈ J such that 0 ≤ g ≤ f. E∼ is Dedekind complete, there
is G ∈ Z(E∼) with 0 ≤ G ≤ 1 such that g = Gf. Therefore

m(ag)(g) = Tg = T (Gf) = G(Tf) = Gm(af )(f) = m(af )(Gf) = m(af )(g).

That is (ag − af ) ◦ g = 0. Therefore (ag − af ) ·Pg = 0. Now suppose f, g ∈ J+ and
h = f ∨ g. Then (af − ah) · Pf = (ag − ah) · Pg = 0. Hence ag · Pf = af · Pg for
all f, g ∈ J+. Since S is Stonian and 0 ≤ af ≤ Pf ≤ 1 for all f ∈ J+, there is a
unique a ∈ A′′ such that Pf · a = af and (1− sup{Pf : f ∈ J+}) · a = 0. Then

Tf = af ◦ f = (a · Pf ) ◦ f = a ◦ (Pf ◦ f) = a ◦ f
for all f ∈ J+. �
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Now we are ready to complete the proof of Proposition 3.6.

Proof. (Necessity) Suppose x ∈ E+. Let I(x) denote the ideal generated by x in E
and let Ann(x) = {T ∈ Z(E) : Tx = 0}. Ann(x) is a closed order and algebra ideal
in Z(E). Consider the map from Z(E) into Z(I(x)) defined by T → T |I(x). Clearly
the map is a norm reducing positive algebra homomorphism. Since the kernel of
this map is equal to Ann(x), the map is also a lattice homomorphism. It induces a
norm reducing lattice and algebra homomorphism of Z(E)/Ann(x) into Z(I(x))
where T+Ann(x) = [T ]→ T |I(x). The induced map is an isometry. For example, if
T ∈ Z(E)+ with norm ||T |I(x)|| in Z(I(x)), then (T ∧ ||T |I(x)||1)|I(x) = T |I(x) and
||[T ]|| ≤ ||T |I(x)||. Hence let A = Z(E)|I(x) be the normed unital f -subalgebra
of Z(I(x)). Then since A ∼= Z(E)/Ann(x) (isometric, lattice and algebra ho-
momorphism), we may think of A′′ as a subalgebra of Z(E)′′ (cf., Lemma 3.8).
Equivalently, we may think of A′′ as a subalgebra of Z(I(x))′′ (cf., Lemma 3.7).

Let J = {f |I(x) : f ∈ E∼}. Clearly J is an ideal in I(x)∼ that separates the

points of I(x). Let Px ∈ Z(E∼) denote the band projection of E∼ onto (I(x)0)d.
The map f |I(x) → Px(f) is a lattice homomorphism of J onto the band (I(x)0)d.
Let mx be the Arens homomorphism of Z(I(x))′′ into Z(I(x)∼) and let m be the
same for Z(E)′′ into Z(E∼). We claim that on elements of A′′, mx restricted to J
agrees with m restricted to (I(x)0)d. Namely, let F ∈ A′′, f ∈ E∼ and y ∈ I(x).
Choose a net {aα} in A that converges to F in the σ(A′′, A′)-topology. Then

mx(F )(f |I(x))(y) = F ◦ f |I(x)(y) = F (μy,f |I(x)
) = F ([μy,f |I(x)

])

= lim
α
[μy,f |I(x)

](aα) = lim
α
μy,f |I(x)

(aα) = lim
α
f(aαy)

where [μy,f |I(x)
] = μy,f |I(x)

+A0 ∈ A′ = Z(I(x))′/A0. On the other hand

m(F )(Px(f))(y) = Px(m(F )(f))(y) = m(F )(f)(y) = F ◦ f(y)
= F (μy,f ) = lim

α
μy,f (aα) = lim

α
f(aαy).

In the last string of equalities, the first equality follows because Z(E∼) is commu-
tative. The second equality follows because the range of 1 − Px is I(x)0 in E∼.
Finally the fifth equality follows because μy,f ∈ Ann(x)0 = A′ in Z(E)′. Hence,
the claim is verified. In what follows we will keep the notation that we established
in this initial part of the proof.

Suppose that E has topologically full center. This means that I(x) is cyclic
with respect to the unital f -subalgebra A of Z(I(x)) for the duality 〈I(x), J〉.
Given T ∈ Z(E∼) with 0 ≤ T ≤ 1, let T̂ = T |(I(x)0)d ∈ Z(J) where T̂ (f |I(x))(y) =
T (Px(f))(y) for each f ∈ E∼ and y ∈ I(x). Then by Lemma 3.10 there is ax ∈ A′′

with 0 ≤ ax ≤ 1 such that mx(ax) = T̂ on J. Then we have that

m(ax)(Px(f))(y) = mx(ax)(f |I(x))(y) = T̂ (f |I(x))(y) = T (Px(f))(y)
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for all f ∈ E∼ and y ∈ I(x). Since the range of 1−Px is I(x)0 in E∼, we have that

m(ax)(f)(y) = T (f)(y)

for all f ∈ E∼ and y ∈ I(x).
Let 1 − ex = sup{e ∈ Z(E)′′ : e = e2, m(e)(f)(x) = 0 for all f ∈ E∼}.

Since m is order continuous, we have m(1 − ex)(f)(x) = 0 for all f ∈ E∼. Hence
F ◦f(x) = 0 for all f ∈ E∼ for some F ∈ Z(E)′′ if and only if ex ·F = 0. (Note that
{μx,f : f ∈ E∼} is an ideal in Z(E)′ and 1 − ex is the band projection of Z(E)′′

onto the band in Z(E)′′ that annihilates this ideal.) Now repeating the argument
in the proof of Lemma 3.10, we find a unique a ∈ Z(E)′′ such that 0 ≤ a ≤ 1, and
ex · a = ax for each x ∈ E+. Then, for each f ∈ E∼ and x ∈ E+, we have

T (f)(x) = m(ax)(f)(x) = m(a · ex)(f)(x) = m(ex)m(a)(f)(x) = m(a)(f)(x).

Therefore m(a) = T. �

We will conclude this paper by stating some immediate consequences of
Proposition 3.6.

Corollary 3.11. Let A be an f -algebra with point separating order dual such that
(A∼)∼n has a unit. Then A has topologically full center.

Proof. By Theorem 5.2 [8], the homomorphism υ of (A∼)∼n is onto Orth(A∼).
Then Proposition 2.2 implies that the Arens homomorphism γ : (Orth(A)∼)∼n →
Orth(A∼) is also onto. Hence, by Corollary 3.5, m is onto Z(A∼). Therefore, by
Proposition 3.6, A has topologically full center. �

Remark 3.12. Characterizations of f -algebras A such that (A∼)∼n has unit are
given in [8], [4], [10]. Related to Corollary 3.11, we mention that we do not know
any examples of semi-prime f -algebras that do not have topologically full center.

Corollary 3.13. Let E be a Riesz space with topologically full center. Suppose T is
an order-bounded operator on E. Then T commutes with Z(E) if and only if T is
in Orth(E).

Proof. T is order bounded implies T ′ : E∼ → E∼. If T commutes with Z(E),
then T ′ commutes with m(Z(E)′′). Since Z(E) is topologically full, m(Z(E)′′) =
Z(E∼). Therefore T ′ commutes with Z(E∼). That is, T ′ commutes with the band
projections on E∼. Since E∼ is Dedekind complete, each band in E∼ is a projection
band. So T ′ is band preserving and therefore T ′ ∈ Orth(E∼). By a result in [16,
Theorem 3.3], T ∈ Orth(E). �

In view of Examples 4 and 5, the corollary may fail if Z(E) is not topo-
logically full. On the other hand, the result may be true even when Z(E) is not
topologically full. The example constructed by Wickstead in [19] shows this. We
refer the reader to the introduction for more detailed information. Corollary 3.13
shows that OrthE) is maximal abelian when Z(E) is topologically full. On the
other hand, Wickstead’s example in [19] shows that the converse is not true.
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Corollary 3.14. Let E be a Riesz space with topologically full center. Then the
following are equivalent:

(1) E∼∼ = (E∼)∼n .
(2) m is continuous when its domain has the σ(Z(E)′′, Z(E)′)-topology and its

range has the σ(E∼, E∼∼)-operator topology.

We leave the straightforward proof of the corollary to the interested reader.
Before stating our final corollary, we want to discuss its content and fix some

notation. LetK be a hyperstonian space. That isK is a Stonian compact Hausdorff
space and C(K) is a dual Banach space. Let C(K)∗ denote the predual of C(K).
Recall that C(K)∗ = C(K)′n, the order-continuous linear functionals on C(K).
Hence C(K)∗ is a band in the Dedekind complete Banach lattice C(K)′. Since
Z(C(K)′) = C(K)′′, there is an idempotent p ∈ C(K)′′ such that p is the band
projection on C(K)′ with range C(K)∗. That is

p · C(K)′ = C(K)′n = C(K)∗.

Let E be a Riesz space. Its order dual E∼ is a Dedekind complete Riesz space.
Therefore E∼ has a topologically full center Z(E∼). Furthermore Z(E∼) is itself
Dedekind complete as a Banach lattice. In fact, it is familiar that Z(E∼) = C(K)
for some hyperstonian space K.(This will become clear in the proof of the corol-
lary.) Let m : Z(E∼)′′ → Z(E∼∼) be the Arens homomorphism of the bidual of
Z(E∼). Since Z(E∼) is topologically full, we have m(Z(E∼)′′) = Z(E∼∼) and
Ker(m) = (1− π) · Z(E∼)′′ for some idempotent π ∈ Z(E∼)′′ = C(K)′′ (Proposi-
tion 3.6). We will show that p ◦ E∼∼ = (E∼)∼n .

Corollary 3.15. Let E be a Riesz space with point separating order dual E∼. Let
m be the Arens homomorphism of the bidual of Z(E∼) in Z(E∼∼). Then
(1) Z(E∼) is topologically full and Z(E∼) = C(K) for some hyperstonian space

K.
(2) There is an idempotent π ∈ C(K)′′ such that

Z(E∼∼) = π · C(K)′′ and Ker(m) = (1 − π) · C(K)′′.

(3) There is an idempotent p ∈ C(K)′′ with p ≤ π such that

p · C(K)′ = C(K)∗ = C(K)′n and p ◦ E∼∼ = (E∼)∼n .

(4) E∼∼ = (E∼)∼n if and only if p = π.

Proof. (1) Since E∼ is Dedekind complete, Z(E∼) = C(K) is topologically full and
K is a Stonian compact Hausdorff space. (It is well known that K is hyperstonian.
We include a proof for the sake of completeness.) To show that K is hyperstonian,
it is sufficient to see that the order-continuous linear functionals on C(K) separate
the points of C(K) [12]. Consider E ⊂ (E∼)∼n ⊂ E∼∼. Take positive elements x ∈
E, f ∈ E∼ and aτ , a ∈ C(K) such that {aτ} is an increasing net with sup aτ = a
in C(K). Then, since E∼ is Dedekind complete, supaτf = af in E∼. Therefore
aτf(x) ↑ af(x), since x is an order-continuous linear functional on E∼. Consider
μf,x ∈ C(K)′ in the definition process ofm, we have μf,x(b) = x(bf) = bf(x) for all
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b ∈ C(K). Hence it follows that μf,x ∈ C(K)′n for all x ∈ E and f ∈ E∼. Also it is
clear that these linear functionals separate the points of the center Z(E∼) = C(K).
Therefore K is hyperstonian and C(K)∗ = C(K)′n is the predual of C(K).

(2) The existence of π is clear from Proposition 3.6. An equivalent means of
defining π ∈ C(K)′′ is by observing that π is the supremum of the band projections
on C(K)′ obtained by considering the bands generated by each linear functional
of the form μf,x′′ ∈ C(K)′ when f ∈ E∼ and x′′ ∈ E∼∼.

(3) Let p ∈ C(K)′′ = Z(C(K)′) be the band projection onto the band
C(K)′n = C(K)∗. An equivalent means of defining p would be to observe that
p is the supremum of the band projections on C(K)′ obtained by considering
the bands generated by each linear functional of the form μf,x ∈ C(K)′ when
f ∈ E∼ and x ∈ E ⊂ E∼∼. Hence we have p ≤ π. It remains to show that
p ◦ E∼∼ = (E∼)∼n . Note that for each f ∈ E∼ and each x′′ ∈ E∼∼, we have
μf,p◦x′′ = p · μf,x′′ . (Namely, let {aα} be a net in C(K) that converges to p in
σ(C(K)′′, C(K)′)-topology. Then

μf,p◦x′′(a) = p ◦ x′′(af) = p(μaf,x′′) = lim
α
μaf,x′′ (aα) = lim

α
x′′(aαaf)

and

p · μf,x′′(a) = p(μf,x′′ · a) = lim
α
μf,x′′ · a(aα) = lim

α
μf,x′′(aaα) = lim

α
x′′(aαaf)

for each a ∈ C(K). Here the second set of displayed equalities follows from the
definition of the Arens product on the bidual of C(K) when C(K) is considered as a
unital f -algebra [8].) But p·μf,x′′ ∈ C(K)∗ = C(K)′n for each f ∈ E∼. By reversing
the process we used in part (1), it follows that p ◦ x′′ ∈ (E∼)∼n . Conversely if
x′′ ∈ (E∼)∼n , the process we used in part (1) shows that μf,x′′ ∈ C(K)∗. Therefore

μf,x′′ = p · μf,x′′ = μf,p◦x′′

for each f ∈ E∼. That is, p ◦ x′′ = x′′ for all x′′ ∈ (E∼)∼n . So p ◦ E∼∼ = (E∼)∼n .
Now (4) is clear from parts (2) and (3). �

Remark 3.16. The article [8] has initiated considerable research on the Arens
product on the biduals of lattice ordered algebras, we include a partial list [3, 6,
7, 13, 14].
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Abstract. We investigate the interaction between the existence of reproducing
kernels on infinite-dimensional Hermitian vector bundles and the positivity
properties of the corresponding bundles. The positivity refers to the curvature
form of certain covariant derivatives associated to reproducing kernels on the
vector bundles under consideration. The values of the curvature form are
Hilbert space operators, and its positivity is thus understood in the usual
sense from operator theory.
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1. Introduction

The idea of positivity plays a central role in Hilbert space operator theory, see
for instance the whole panel of constructions of Gelfand–Naimark–Segal type, in
particular dilation theory of completely positive maps or the theory of reproducing
kernel Hilbert spaces.

On the other hand, ideas of positivity and order structures also hold a quite
important place in branches of mathematics which might seem to be remote from
operator theory, as it is the case with complex algebraic geometry; see for instance
the impressive two-volume treatise [Lz04], which was devoted to a thorough dis-
cussion of that topic. We will show in this paper that these ideas of positivity
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are actually rather close to each other, which sheds a fresh light on the relation-
ship between the aforementioned theories and raises several interesting problems
in both these research areas.

It is to be also mentioned at this point that the interaction between com-
plex geometry and operator theory has already surfaced in the literature – as for
instance in the famous theory of Cowen–Douglas operators ([CD78]), or in the
method introduced in [Od88], [Od92] to approach the study of physical systems –
without a particular emphasis on the concept of positivity. As regards the specific
topic of the present paper, we will discuss the relationship between the Griffiths
positivity of holomorphic vector bundles ([Gr69], [GH78]) and the reproducing ker-
nels on infinite-dimensional vector bundles that we have studied recently ([BG08],
[BG09], [BG11], [BG13]).

Reproducing kernels and covariant derivatives often occur simultaneously on
the vector bundles involved in various problems in areas such as geometric quan-
tization, geometric representation theory of Lie groups, theory of Cowen–Douglas
operators, etc. This simple remark additionally motivated the present note, as
we tried to provide an explanation for the aforementioned occurrence by using
the universality properties of the reproducing kernels established in our previous
paper [BG11]. A related issue is the infinite-dimensional extension of the Chern
correspondence between the connections and the (almost) complex structures on
the total space of a bundle, that we plan to consider in a forthcoming work; see
Problem 3.17 below for some more details and references.

The simplest setting that illustrates that idea is provided by the tautological
vector bundle ΠH corresponding to any complex Hilbert spaceH. Let Gr(H) be the
Grassmann manifold, whose points are the closed linear subspaces ofH, and define
T (H) = {(S, x) ∈ Gr(H) ×H | x ∈ S} and ΠH : T (H) → Gr(H), ΠH(S, x) = S.
Both Gr(H) and T (H) are complex Banach manifolds and the mapping ΠH is a
Hermitian holomorphic vector bundle. For the purposes of the present investigation
it is important to single out two additional structures on this bundle:

(1) Let p1, p2 : Gr(H) × Gr(H) → Gr(H) the natural Cartesian projections.
For any S ∈ Gr(H) let us also denote by pS the orthogonal projection of H onto S.
Then we can define

QH : Gr(H)×Gr(H)→ Hom(p∗2(ΠH), p∗1(ΠH)),

QH(S1,S2) = (pS1)|S2 : S2 → S1.
The mapping QH is the universal reproducing kernel associated with the Hilbert
space H (see [BG11] and Example 2.5 below).

(2) Just as in the finite-dimensional case, there exists a unique Chern con-
nection on ΠH, that is, a linear connection which is compatible in the usual sense
both with the holomorphic structure and with the Hermitian structure defined by
the inner product on every fiber S (see Theorem 3.15 below).

Our present paper belongs to a project devoted to understanding the relation-
ship between the above universal reproducing kernel and linear connections and
how their interaction propagates from the tautological bundle, to a fairly wide class
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of reproducing kernels on Hermitian vector bundles, in a sense that will be made
precise below. We already pointed out in [BG13] a certain functorial correspon-
dence between reproducing kernels and linear connections on infinite-dimensional
vector bundles, and in the present paper we take up the study of that circle of
ideas from the perspective of the complex algebraic geometry, which eventually
amounts to curvature positivity properties of the vector bundles involved in this
discussion.

We will briefly survey some facts from our earlier papers [BG08], [BG09],
[BG11], and [BG13], and will also raise some problems and announce a few partial
results with sketchy proofs. Full details of these proofs will be published elsewhere.

The paper is structured as follows. In Section 2 we provide some background
information on reproducing kernels on vector bundles along with some basic ex-
amples. Section 3 is devoted to a discussion of Chern covariant derivatives on
Hermitian holomorphic vector bundles, which are covariant derivatives that are
compatible both with the Hermitian and with the holomorphic structures of these
bundles. In Section 4 we introduce the Griffith positivity condition for bundle-
valued differential 2-forms in our setting of infinite-dimensional bundles. In Sec-
tion 5 we finally relate the reproducing kernels to the Griffith positivity property
of Hermitian vector bundles. The paper concludes by the Appendix which includes
some basic observations on vector-valued differential forms, which are needed in
the main body of our paper and were collected there for the reader’s convenience.

2. Reproducing kernels on Hermitian vector bundles

Definition 2.1. Let Z be a Banach manifold. A Hermitian structure on a smooth
Banach vector bundle Π: D → Z is a family {(· | ·)z}z∈Z with the following
properties:

(a) For every z ∈ Z, (· | ·)z : Dz ×Dz → C is a scalar product (C-linear in the
first variable) that turns the fiber Dz into a complex Hilbert space.

(b) If V is any open subset of Z, and ΨV : V × E → Π−1(V ) is a trivialization
(whose typical fiber is the complex Hilbert space E) of the vector bundle Π
over V , then the function

(z, x, y) �→ (ΨV (z, x) | ΨV (z, y))z, V × E × E → C

is smooth.

A Hermitian bundle is a bundle endowed with a Hermitian structure as above.

Definition 2.2. Let Π: D → Z be a Hermitian bundle, and p1, p2 : Z × Z → Z be
the Cartesian projections. A reproducing kernel on Π is a continuous section of
the bundle Hom(p∗2Π, p

∗
1Π) → Z × Z such that the mappings K(s, t) : Dt → Ds

(s, t ∈ Z) are bounded linear operators and such that K is positive definite in the



54 D. Beltiţă and J.E. Galé

following sense: For every n ≥ 1 and tj ∈ Z, ηj ∈ Dtj (j = 1, . . . , n),

n∑
j,l=1

(
K(tl, tj)ηj | ηl

)
tl
≥ 0. (2.1)

For every ξ ∈ D we set

Kξ := K(·,Π(ξ))ξ : Z → D

which is a section of the bundle Π. For ξ, η ∈ D, the prescriptions

(Kξ | Kη)HK := (K(Π(η),Π(ξ))ξ | η)Π(η), (2.2)

define an inner product (· | ·)HK on span{Kξ : ξ ∈ D} whose completion gives rise
to a Hilbert space denoted by HK , which consists of sections of the bundle Π. We
also define the mappings

K̂ : D → HK , K̂(ξ) = Kξ,

ζK : Z → Gr(HK), ζK(s) = K̂(Ds),

where Gr(HK) is the Grassmann manifold of all closed subspaces of HK and the

bar over K̂(Ds) indicates the topological closure. See [BG08] for details.

Example 2.3 (trivial bundles). Let Z be any Banach manifold (for instance any
open subset of some real Banach space) and E be any complex Hilbert space and
define the trivial bundle

Π: D = Z × E → Z, (z, x) �→ z.

For every z ∈ Z we have Dz = {z} × E and moreover there exists a one-to-one
correspondence σ �→ fσ sections σ of Π and E-valued functions Fσ on Z given by

(∀z ∈ Z) σ(z) = (z, Fσ(z)).

Denote by GL+(E) the set of positive invertible operators on E , which is an open
subset of the C∗-algebra B(E). Then there exists a one-to-one correspondence
between the Hermitian structures on Π and the smooth mappings h : Z → GL+(E)
given by

(∀z ∈ Z) (· | ·)z : Dz ×Dz → C, ((z, x1) | (z, x2))z := (h(z)x1 | x2)E .

Also, there exists a one-to-one correspondence between the reproducing kernels K
on Π and the B(E)-valued reproducing kernels κ on Z (see [Ne00]) by

(∀z1, z2 ∈ Z)(∀x ∈ E) K(z1, z2) : Dz2 → Dz1 , (z2, x) �→ (z1, κ(z1, z2)x).

Example 2.4 (homogeneous bundles). Let GA be a Banach–Lie group with a
Banach–Lie subgroup GB. Let ρA : GA → B(HA) and ρB : GB → B(HB) be uni-
formly continuous unitary representations with HB ⊆ HA, ρB(u) = ρA(u)|HB for
u ∈ GB and HA = spanρA(GA)HB.

Let us consider the homogeneous vector bundle

Πρ : GA ×GB HB → GA/GB
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induced by the representation ρB. Recall that GA×GBHB is the Cartesian product
GA ×HB modulo the equivalence relation defined by

(u, h) ∼ (u′, h′) ⇐⇒ (∃w ∈ GB) u′ = uw, h′ = ρ(w−1)h,

endowed with its canonical structure of a Banach manifold; see [KM97].

We provide Πρ with the Hermitian structure given by

([(u, f)], [(u, h)])s := (f | h)H, u ∈ GA, s := uGB, f, h ∈ HB .

Let P : HA → HB be the orthogonal projection.

We define the reproducing kernel Kρ on the homogeneous Hermitian vector
bundle Πρ : D = GA ×GB HB → GA/GB by

Kρ(uGB, vGB)[(v, f)] = [(u, P (ρA(u
−1)ρA(v)f))], (2.3)

for uGB, vGB ∈ D and f ∈ HB (see [BG08]).

There exists a unitary operator W : HKρ → HA, W (Kη) = πA(v)f if η =
[(v, f)] ∈ D; see the end of the proof of [BG08, Proposition 4.1].

Example 2.5 (tautological bundles). In Example 2.4 assume GA = U(HA) with
the tautological representation ρA, and

GB = {u ∈ U(HA) | u(HB) ⊆ HB} � U(HB)× U(H⊥
B).

Denote GrHB (HA) := {u(HB) | u ∈ U(HA)}, and

THB (HA) = {(u(HB), x) | u ∈ U(HA), x ∈ uHB} ⊆ GrHB (HA)×HA.

Then the pair of maps

GA ×GB HB → THB (HA), [(u, x)] �→ (u(HB), u(x)),

GA/GB → GrHB (HA), uGB �→ u(HB)

defines an isomorphism of the vector bundle Πρ : GA×GB HB → GA/GB onto the
tautological bundle ΠHA,HB : THB (HA)→ GrHB (HA), (S, x) �→ S. See [BG09] for
some more details.

Now let p1, p2 : GrHB (HA)×GrHB (HA)→ GrHB (HA) be the natural Carte-
sian projections.

For any S ∈ GrHB (HA) let us also denote by pS : HA → S the corresponding
orthogonal projection, whose adjoint operator is the inclusion map p∗S = ιS : S ↪→
HA. Then we can define

QHA,HB : GrHB (HA)×GrHB (HA)→ Hom(p∗2(ΠHA,HB ), p
∗
1(ΠHA,HB )),

QHA,HB (S1,S2) = pS1p
∗
S2

= (pS1)|S2 : S2 → S1.

The mapping QHA,HB is the universal reproducing kernel corresponding to the
Hilbert space HA and its closed subspace HB ; see [BG11]. Note that QHA,HB

actually depends on GrHB (HA) and not on HB.
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3. Covariant derivatives on Hermitian vector bundles

This section contains the main tools that allow us to describe positivity properties
of vector bundles. These tools are the covariant derivatives and their curvatures.
As we will see, in the case of holomorphic vector bundles, the existence of non-
trivial global holomorphic cross-sections entails a positive curvature property. The
conclusion of all that will be that a certain intrinsic positivity property is necessary
in order that a holomorphic vector bundle admits nontrivial reproducing kernels
that give rise to Hilbert spaces of holomorphic cross-sections.

Covariant derivative and curvature

Definition 3.1. We first define the covariant derivatives on trivial vector bundles.
So assume X is an open subset of any real Banach space X , and let V be another
real Banach space. A linear connection form on the trivial bundle X × V → X ,
(x, v) �→ x, is any 1-form A ∈ Ω1(X,B(V)). The value of A at any point x ∈ X is
denoted by Ax ∈ B(X ,B(V)) and we are going to use freely the natural topological
isomorphisms

B(X ,B(V)) � B(X ,V ;V) � B(X⊗̂V ,V)
where B(X ,V ;V) stands for the space of bounded bilinear maps from X ×V into V
and ⊗̂ denotes the projective tensor product of Banach spaces.

The covariant derivative corresponding to the above linear connection form
is the sequence of linear operators ∇ : Ωp(X,V) → Ωp+1(X,V) defined for p =
0, 1, 2, . . . by

∇σ = dσ +A ∧ σ

for every σ ∈ Ωp(X,V), where the wedge product

∧ : Ω1(X,B(V))× Ωp(X,V)→ Ωp+1(X,V)
is defined (Definition A.2) by using the natural bilinear map B(V)×V → V given
by the action of the operators in B(V) on V .

If Π: D → Z is any (locally trivial) vector bundle, then for every p =
0, 1, 2, . . . we define Hom(∧pτZ ,Π) as the vector bundle over Z whose fiber over
z ∈ Z is the space B(∧TzZ,Dz) of all bounded skew-symmetric p-linear maps
TzZ × · · · × TzZ → Dz (see the Appendix below). We denote by Ωp(Z,D) the
space of all locally defined smooth sections of Hom(∧pτZ ,Π).

A covariant derivative on the vector bundle Π is any sequence of operators
∇ : Ωp(Z,D)→ Ωp+1(Z,D) for p = 0, 1, 2, . . . which can be expressed in terms of
connection forms as above in any local trivialization of Π.

Remark 3.2. In Definition 3.1 we have

(∇σ)x(x1, . . . , xp+1) =(dxσ)(x1, . . . , xp+1)

+

p+1∑
j=1

Ax(xj)︸ ︷︷ ︸
∈B(V)

σx(x1, . . . , xj−1, xj+1, . . . , xp+1)︸ ︷︷ ︸
∈V
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for every σ ∈ Ωp(X,V), x ∈ X , and x1, . . . , xp+1 ∈ X . In particular, if p = 0, then
σ ∈ C∞(X,V) and the 1-form ∇σ ∈ Ω1(X,V) is given by

(∇σ)x(x1) = (dxσ)(x1) +Ax(x1)σx

for every x ∈ X and x1 ∈ X .

Definition 3.3. Assume the setting of Definition 3.1. The curvature form corre-
sponding to the linear connection form A ∈ Ω1(X,B(V)) is

Θ := dA+A ∧ A ∈ Ω2(X,B(V))
where the wedge product

∧ : Ω1(X,B(V))× Ω1(X,B(V))→ Ω2(X,B(V))
is defined (see Definition A.2) via the bilinear map B(V)×B(V)→ B(V) given by
product of operators in B(V).

If Π: D → Z is an arbitrary (locally trivial) vector bundle with covariant de-
rivative ∇ : Ωp(Z,D)→ Ωp+1(Z,D) defined for p = 0, 1, 2, . . . , then the curvature
forms defined as above in local trivializations can be glued together into a global
curvature form Θ ∈ Ω2(Z,End (Π)). The covariant derivative is said to be flat if
its curvature is Θ = 0.

Remark 3.4. In the notation of Definition 3.3, for every z ∈ Z we have the skew-
symmetric bilinear map Θz : TzZ × TzZ → B(Dz). Moreover, for every p ≥ 0 and
σ ∈ Ωp(Z,D) we have ∇(∇σ) = Θ ∧ σ. Hence the covariant derivative ∇ is flat if
and only if ∇2 = 0.

Covariant derivatives compatible with Hermitian structures

Definition 3.5. Let Π: D → Z be any Hermitian vector bundle. We say that a
covariant derivative∇ on Π is compatible with the Hermitian structure if it satisfies
the following condition: For any open set W ⊆ Z, if σ1, σ2 : W → D are smooth
cross-sections of the bundle Π, then

d(σ1 | σ2) = (∇σ1 | σ2) + (σ1 | ∇σ2) ∈ Ω1(W,C)

that is, we have (dz(σ1 | σ2))(x) = ((∇σ1)(x) | σ2(z))z + (σ1(z) | (∇σ2)(x))z for
all z ∈W and x ∈ TzZ. This condition has a local character, so it suffices to check
it in local trivializations of the bundle Π.

Remark 3.6. Assume that X is an open set in the real Banach space X and E is
any complex Hilbert space. A Hermitian structure on E is then the same thing as
a smooth mapping h : X → GL+(E). If we define the mapping

(· | ·)x : E × E → C, (v1 | v2)x = (h(x)v1 | v2)
for every x ∈ X , then we can note the following:

1. For every x ∈ X the mapping (· | ·)x is a scalar product compatible with the
topology of E since hx ∈ GL+(E).
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2. Since the Hermitian structure h is smooth, we can define a natural sesquilin-
ear map

h(·, ·) : C∞(X, E)× C∞(X, E)→ C∞(X,C)
such that (h(φ, ψ))x = (φx | ψx)x for all φ, ψ ∈ C∞(X, E) and x ∈ X .

3. We can also define a sesquilinear map denoted in the same way,

h(·, ·) : Ω1(X, E)× C∞(X, E)→ Ω1(X,C)

such that for all σ ∈ Ω1(X, E), ψ ∈ C∞(X, E), and x ∈ X we have

(h(σ, ψ))x = (σx(·) | ψx)x = (hxσx(·) | ψx) : X → C,

where we recall that σx ∈ B(X , E). Similarly, one defines a sesquilinear map

h(·, ·) : C∞(X, E)× Ω1(X, E)→ Ω1(X,C)

such that

(h(ψ, σ))x(v) = h(σ, ψ)x(y) = (σx(y) | ψx)x = (hxσx(y) | ψx)

= (ψx | hxσx(y))

for all σ ∈ Ω1(X, E), ψ ∈ C∞(X, E), y ∈ X , and x ∈ X .

The following result is suggested by the classical situation of finite-dimension-
al bundles; see for instance the computations prior to [We08, Ch. III, Prop. 1.11].

Proposition 3.7. In the setting of Remark 3.6, assume that a linear connection
form A ∈ Ω1(X,B(E)) is also given. Then the following assertions are equivalent:

1. We have
d(h(φ, ψ)) = h(∇φ, ψ) + h(φ,∇ψ)

for all φ, ψ ∈ C∞(X, E).
2. The equation

dxh = hxAx(·) +Ax(·)∗hx ∈ B(X ,B(E))
is satisfied for every x ∈ X.

Proof. Since the mapping B(E) × E × E → C, (T, v, w) �→ (Tv | w) is trilinear
and continuous, it follows by the product rule of differentiation (see for instance
[Nl69, Ch. 1, Th. 1]) that for all φ, ψ ∈ C∞(X, E) and x ∈ X we have the following
equalities in B(X ,C):

dx(h(φ, ψ)) = dx(hφ | ψ) = (dxh(·)φx | ψx) + (hxdxφ(·) | ψx) + (hxφx | dxψ(·)),
hence by using the fact that h∗

x = hx in B(E) we get

dx(h(φ, ψ)) = (dxh(·)φx | ψx) + (h(dφ, ψ))x + (h(φ, dψ))x.

Since ∇ = d+A, we get further

dx((h(φ, ψ))) − (h(∇φ, ψ))x − (h(φ,∇ψ))x
= (dxh(·)φx | ψx)− (h(A ∧ φ, ψ))x + (h(φ,A ∧ ψ))x

= (dxh(·)φx | ψx)− (hxAx(·)φx | ψx)− (hxφx | Ax(·)ψx)

= (dxh(·)φx − hxAx(·)φx −Ax(·)∗hxφx | ψx).
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With this equality at hand, it follows at once that the assertions in the statement
are equivalent to each other. �

Linear connections compatible with complex structures

Definition 3.8. Assume X is any open subset of some complex Banach space X
and E is another complex Banach space. Let A ∈ Ω1(X,B(E)) be any connection
form, hence A : TX = X × X → B(E) is smooth and R-linear in the second
variable. Since both X and E are complex vector spaces, we can use the direct sum
decomposition (A.3) to define the linear operators

∇′ : C∞(X, E)→ Ω(1,0)(X, E) and ∇′′ : C∞(X, E)→ Ω(0,1)(X, E)

such that

∇ = ∇′ +∇′′

where ∇ : C∞(X, E)→ Ω1(X, E) is the covariant derivative corresponding to A. So
for every σ ∈ C∞(X, E) and x ∈ X we have

(∇σ)(x) = (∇′σ)(x) + (∇′′σ)(x),

the unique decomposition for which the operator (∇′σ)(x) : X → B(E) is C-linear
while (∇′′σ)(x) : X → B(E) is conjugate linear.

The following result is suggested by the beginning remark in the proof of
[We08, Ch. III, Th. 2.1].

Proposition 3.9. In the setting of Definition 3.8, the following assertions are equiv-
alent:

1. For every σ ∈ O(X, E) we have ∇′′σ = 0.
2. We have A ∈ Ω(1,0)(X,B(E)).

Proof. First note that the 1-form A takes values in the complex vector space B(E),
hence we get a decomposition A = A(1,0) + A(0,1) (see the Appendix), and then
condition (2) is equivalent to A(0,1) = 0.

If σ ∈ O(X, E), then

∇σ = dσ +A ∧ σ = ∂σ + ∂̄σ +A ∧ σ = ∂σ +A ∧ σ

hence, by Remark A.3(1),

∇′σ = ∂σ +A(1,0) ∧ σ

and

∇′′σ = A(0,1) ∧ σ.

By considering constant E-valued functions onX , we see that E is generated by the
values of functions in O(X, E). Then the above equality implies that Assertion (1)
is equivalent to A(0,1) = 0, and this concludes the proof. �
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Definition 3.10. If the assertions in Proposition 3.9 are satisfied, then we say that
the linear connection corresponding to A is compatible with the complex structures
of X and E . More generally, a linear connection on a holomorphic Banach vector
bundle is compatible with the complex structure if its local connection form in
any local holomorphic trivialization is compatible (in the above sense) with the
complex structures of the base and the fiber. It is easily seen that this property
has a local character and does not depend on the choice of a local holomorphic
trivialization.

Chern covariant derivatives

Definition 3.11. A Hermitian holomorphic vector bundle is any holomorphic vector
bundle Π: D → Z with smoothly paracompact base, endowed with a Hermitian
structure. In this framework, a Chern covariant derivative on Π is any covariant
derivative which is compatible both with the complex structure and with the
Hermitian structure of the vector bundle Π.

We are now able to prove an infinite-dimensional version of [We08, Ch. III,
Th. 2.1] for trivial bundles.

Lemma 3.12. Let X be any open subset of some complex Banach space X , E be any
complex Hilbert space, and h : X → GL+(E) be any smooth mapping. Then there
exists a unique connection form A ∈ Ω1(X,B(E)) that is compatible both with the
Hermitian structure given by h and with the complex structures of X and E, and
it is given by

Ax = h−1
x (∂h)x (3.1)

for every x ∈ X.

Proof. We first prove the uniqueness assertion. If A is a connection form that
satisfies the compatibility conditions mentioned in the statement, then by Propo-
sition 3.7(2) we obtain

(∂h)x + (∂̄h)x = dxh = hxAx +A∗
xhx

for every x ∈ X . On the other hand A ∈ Ω(1,0)(X,B(E)) by Proposition 3.9(2),
hence the above equation is equivalent to

(∂h)x = hxAx and (∂̄h)x = A∗
xhx. (3.2)

The first of these equations is clearly equivalent to (3.1).
To prove the existence, just note that the connection form defined by (3.1) be-

longs to Ω(1,0)(X,B(E)), hence it is compatible with the complex structures by Pro-
position 3.9. On the other hand, if we define A by the formula in the statement and
we use the above formulas we see that Assertion (2) of Proposition 3.9 holds true,
and then by that proposition we see that the covariant derivative corresponding
to the connection form A is compatible with the Hermitian structure as well. �

Before we go further, let us establish the infinite-dimensional version of
[We08, Ch. III, Prop. 2.2].
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Proposition 3.13. Assume the setting of Lemma 3.12 and let Θ ∈ Ω2(X,B(E)) be
the curvature form corresponding to A. Then the following assertions hold:

1. We have A ∈ Ω(1,0)(X,B(E)) and ∂A = −A ∧ A.
2. We have Θ = ∂̄A ∈ Ω(1,1)(X,B(E)).

Proof. We have h · h−1 = 1, hence ∂h · h−1 + h∂(h−1) = 0. Therefore

∂(h−1) = −h−1 · ∂h · h−1

and now by (3.1) we get

∂A = ∂(h−1 · ∂h) = ∂(h−1) ∧ ∂h+ h−1 · ∂2h = −h−1 · ∂h · h−1 ∧ ∂h = −A ∧A

We have already seen in Proposition 3.9 that A ∈ Ω(1,0)(X,B(E)). Hence
Θ = dA+A ∧ A = ∂̄A+ ∂A+A ∧ A = ∂̄A ∈ Ω(1,1)(X,B(E))

and this concludes the proof. �
Remark 3.14. As above, let X be any open subset of the complex Banach space
X and E be any complex Hilbert space. In Proposition 3.13(2), recall that the
curvature property Θ ∈ Ω(1,1)(X,B(E)) means that for every x ∈ X the map
Θz : X ×X → B(E) is sesquilinear (more precisely, is C-linear in the first variable
and conjugate linear in the second).

Theorem 3.15. Every Hermitian holomorphic vector bundle has a unique Chern
covariant derivative.

Proof. The existence in the case of the trivial bundles, as well as the uniqueness
in the general case follow by Lemma 3.12, by using a family of local holomorphic
trivializations. See for instance [We08] or [De12] for the proof of the existence in
the classical situation of finite-dimensional vector bundles. The full details of the
proof in the general case will be included in a forthcoming paper. �
Example 3.16. In Example 2.5, the bundle ΠHA,HB : THB (HA)→ GrHB (HA) is a
Hermitian holomorphic vector bundle if dimHB < ∞, hence it carries a unique
Chern covariant derivative ∇HA,HB by Theorem 3.15. See for instance [We08,
Ch. III, Ex. 2.4] for more details on that covariant derivative in the case when
dimHA <∞.

Problem 3.17. It would be interesting to establish a version of the Koszul–Mal-
grange integrability theorem of [KM58] (see also [AHS78, Th. 5.1]) for Banach
vector bundles (with infinite-dimensional base). Some results in this direction were
recently obtained in [DP12] and [Ne13].

Some computations of Chern covariant derivatives. In the following proposition we
denote byS2(H1,H2) the complex Hilbert space consisting of the Hilbert–Schmidt
operators from any complex Hilbert space H1 into another complex Hilbert space
H2, with the usual scalar product on S2(H1,H2) defined in terms of the oper-
ator trace. If Πj : Dj → Z is any Hermitian vector bundle for j = 1, 2, then
S2(Π1,Π2) : D → Z denotes the Hermitian vector bundle whose fiber over any
z ∈ Z is the space of Hilbert–Schmidt operators S2(Π

−1
1 (z),Π−1

2 (z)). If Ej is



62 D. Beltiţă and J.E. Galé

the typical fiber of Πj for j = 1, 2 and Φj : V → U(Ej) gives a local change
of coordinates in Πj over some open set V ⊆ Z, then Φ: V → U(S2(E1, E2)),
Φ(z)T = Φ2(z)TΦ1(z)

−1 for z ∈ V and T ∈ S2(E1, E2) gives a local change of
coordinates in S2(Π1,Π2).

Proposition 3.18. Let Πj : Dj → Z be any Hermitian holomorphic vector bundle
with the Chern covariant derivative ∇j for j = 1, 2. Then S2(Π1,Π2) is a Her-
mitian holomorphic vector bundle with the Chern covariant derivative satisfying
∇Γ = ∇2Γ− Γ∇1 for every Γ ∈ Ω0(Z,S2(Π1,Π2)).

Proof. The conclusion has a local character hence we may assume for j = 1, 2 that
Πj : Z×Ej → Z is a trivial vector bundle, where Ej is some complex Hilbert space.

Let hj : Z → GL+(Ej) be the Hermitian structure of Πj . Then it is easily checked
that the Hermitian structure of the vector bundle

Π := S2(Π1,Π2) : Z ×S2(E1, E2)→ Z

is given by

H : Z → GL+(S2(E1, E2)), H(z)S = h2(z)Sh1(z)
−1

where S ∈ S2(E1, E2) and z ∈ Z.

It follows that

H ′(z)(·)S = h′
2(z)(·)Sh1(z)

−1 − h2(z)Sh1(z)
−1h′

1(z)(·)h1(z)
−1

∈ BR(TzZ,S2(E1, E2))

hence

H(z)−1H ′(z)S = h2(z)
−1h′

2(z)S − Sh1(z)
−1h′

1(z).

Therefore, if we denote by A, A1, and A2 the linear connection forms of ∇, ∇1,
and ∇2, respectively, then by using Lemma 3.12 we obtain

A(z)S = A2(z)S − SA1(z) ∈ B(TzZ,S2(E1, E2)) if S ∈ S2(E1, E2) and z ∈ Z.

Now the assertion follows easily since ∇ = d+A and ∇j = d+Aj for j = 1, 2. �

We now compute the Chern covariant derivatives of holomorphic subbundles
of Hermitian holomorphic vector bundles.

Proposition 3.19. Let Π: D → Z be any Hermitian holomorphic vector bundle
with a holomorphic vector subbundle Π1 : D1 → Z and its fiberwise orthogonal
complement Π2 : D2 → Z. For j = 1, 2 we regard Πj as a Hermitian holomorphic
bundle with respect to the Hermitian structure induced from Π. Denote by ∇, ∇1,
and ∇2 the Chern covariant derivatives of Π, Π1, and Π2, respectively. Also let
Θ, Θ1, and Θ2 be the corresponding curvatures. Then with respect to the fiberwise
orthogonal direct sum decomposition D = D1 ⊕D2 we have

∇ =

(
∇1 −β∗

β ∇2

)
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and

Θ =

(
Θ1 − β∗ ∧ β ∗

∗ Θ2 − β ∧ β∗

)
for some β ∈ Ω(1,0)(Z,Hom(D1, D2)) where β∗ ∈ Ω(0,1)(Z,Hom(D2, D1)) is its
pointwise adjoint 1-form.

Proof. With Proposition 3.18 at hand, one can use the method of proof of [De12,
Ch. V, Th. 14.3 and 14.5]; see also [GH78, Ch. 0, Sect. 5, pages 73 and 78]. �

4. Positivity and global sections of holomorphic vector bundles

For the sake of completeness, we include in this section a brief discussion on the
properties of Griffiths positivity of holomorphic vector bundles. We refer to [Gr69],
[GH78], [Lz04], and particularly to the elegant exposition in [De12] for further
details.

Quotient tautological bundles. We will give here some straightforward infinite-
dimensional versions of certain constructions from [De12, Ch. V, §16]. For any

Hilbert space H and any integer k ≥ 1 we denote by Gr(k)(H) the set of all
k-codimensional subspaces of H, which has the natural structure of a complex
U(H)-homogeneous Banach manifold. Recall that the tautological bundle over

Gr(k)(H) is

Π(k) : T (k)(H)→ Gr(k)(H), (S, v) �→ S,
where

T (k)(H) = {(S, v) ∈ Gr(k)(H)×H | v ∈ S} ⊆ Gr(k)(H)×H.

On the other hand, the quotient tautological bundle over Gr(k)(H) is

Q(k)(H)→ Gr(k)(H), (S, v + S) �→ S,

where

Q(k)(H) = {(S, v + S) ∈ Gr(k)(H)× (H/S) | v ∈ H}.
Note that there is the short exact sequence of holomorphic vector bundles over

Gr(k)(H)

0 �� T (k)(H) ��

����
���

���
���

Gr(k)(H)×H ��

��

Q(k)(H) ��

�����
���

���
��

0

Gr(k)(H)

where the vertical arrow in the middle is the projection of the trivial bundle with
the typical fiber H.
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Globally generated holomorphic vector bundles. Unless otherwise specified, we let
Π: D → Z be any holomorphic vector bundle whose fibers have finite dimension k
and whose base is a complex Banach manifold. Moreover, O(Z,D) stands for
the space of global holomorphic sections endowed with the topology of uniform
convergence on compact sets, and we define the evaluation maps

(∀z ∈ Z) evz : O(Z,D)→ Dz, evz(σ) = σ(z).

Definition 4.1. The bundle Π: D → Z is globally generated by the complex Hilbert
space H if we have a continuous inclusion map H ↪→ O(Z,D) and for which for
arbitrary z ∈ Z we have evz(H) = Dz.

Remark 4.2. It follows by [De12, Ch. VII, Prop. 11.2] that if Z is a finite-dimen-
sional manifold, then the above notion of globally generated holomorphic vector
bundle agrees with the one introduced in [De12, Ch. VII, Def. 11.1(a)].

Remark 4.3. If the bundle Π: D → Z is globally generated by the complex Hilbert
space H, then we define

(∀z ∈ Z) Nz := {(z, σ) ∈ Z ×H | σ(z) = 0}
= {z} ×Ker (evz |H)

⊆ Z ×H

and N :=
⋃
z∈Z

Nz.

Now assume the fibers of Π are finite dimensional. Then N is the total space
of a subbundle of the trivial Hermitian bundle Z ×H → Z. We have the fiberwise
exact sequence of Hermitian bundles

0→ N ↪→ Z ×H ev−→D → 0 (4.1)

and the commutative diagram

D

Π

��

ΨH �� Q(k)(H)

��
Z

ψH �� Gr(k)(H)

where for every z ∈ Z we have

(∀ξ ∈ Dz) ΨH(ξ) = {σ ∈ H | σ(z) = ξ} ∈ H/Ker (evz |H)

where we performed the identification

H/Ker (evz |H) � Dz, σ +Ker (evz |H) �→ evz(σ).



Reproducing Kernels and Positivity of Vector Bundles 65

Positivity curvature condition. In order to introduce the positivity curvature con-
dition on the covariant derivatives, we need the following remark, which is well
known at least in the case of the scalar-valued bilinear maps.

Remark 4.4. Let V be any complex Banach space and A be a complex associative
Banach ∗-algebra, and denote Asa := {a ∈ A | a∗ = a}. We define the following
spaces of bounded R-bilinear maps:

• the space Herm(V ,A) of all R-bilinear maps Ψ: V × V → A satisfying

(∀v1, v2 ∈ V) Ψ(v1, v2)
∗ = Ψ(v2, v1) = iΨ(v2, iv1)

• the space Symm(V ,A) of all R-bilinear maps ψ : V × V → A satisfying

(∀v1, v2 ∈ V) ψ(v1, v2) = ψ(v2, v1) = ψ(iv1, iv2)

• the space Skew(V ,A) of all R-bilinear maps ω : V × V → Asa satisfying

(∀v1, v2 ∈ V) ω(v1, v2) = −ω(v2, v1) = ω(iv1, iv2).

If Ψ ∈ Herm(V ,A), ψ ∈ Symm(V ,A), and ω ∈ Skew(V ,A), then any of these
three bilinear maps determines the other two maps in a unique manner such that
the equation

(∀v1, v2 ∈ V) Ψ(v1, v2) = ψ(v1, v2) + iω(v1, v2)

be satisfied, and canonical R-linear isomorphisms are thus defined between the
spaces Herm(V ,A), Symm(V ,A), and Skew(V ,A), respectively.

More precisely, the R-bilinear maps involved in the above equation are related
by the formulas

ω(v1, v2) = ψ(v1, iv2)

ψ(v1, v2) =
1

2
(Ψ(v1, v2) + Ψ(v2, v1))

ω(v1, v2) =
1

2i
(Ψ(v1, v2)−Ψ(v2, v1))

for all v1, v2 ∈ V .

We now introduce the notion of Griffiths positivity of bundle-valued differen-
tial 2-forms, which goes back to [Gr69]; see also [GH78], [Lz04], [De12]. In the case
of infinite-rank vector bundles, a version of this notion was also used in [Ber09].

Definition 4.5. Let Π: D → Z be any Hermitian holomorphic bundle. A bundle-
valued differential form ω ∈ Ω2(Z,End (Π)) is Griffiths nonnegative if for every
z ∈ Z the bounded R-bilinear map ωz : TzZ×TzZ → B(Dz) satisfies the conditions
ωz ∈ Skew(TzZ,B(Dz)) and Ψz(x, x) ≥ 0 in B(Dz) for all x ∈ TzZ, where Ψz ∈
Herm(TzZ,B(Dz)) is the sesquilinear map which canonically corresponds to ωz

via Remark 4.4. If moreover for every x ∈ TzZ \ {0} we have Ψz(x, x) �= 0, then
we say that ω is Griffiths positive.

In the case of the bundles with a finite-dimensional base, the following result
can be found in [GH78, Ch. 0, Sect. 5] or [De12, Ch. VII, Cor. 11.5].
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Theorem 4.6. Let Π: D → Z be any holomorphic vector bundle which is globally
generated by the complex Hilbert space H ↪→ O(Z,D) and has finite-dimensional
fibers. Then there exists a unique Hermitian structure on Π such that for every
z ∈ H the adjoint of the evaluation map evz : H → Dz is an isometry, and the
curvature of the corresponding Chern covariant derivative is Griffiths nonnegative.

Proof. One can use the method of proof from [GH78, Ch. 0, Sect. 5], by relying
on the above Proposition 3.18 and Remark 4.3. �

5. Reproducing kernels and Griffiths positivity

This section contains one of our main results, which is a necessary condition for ex-
istence of reproducing kernels on vector bundles (Theorem 5.4). It relies on Griffith
positivity properties of certain covariant derivatives associated with reproducing
kernels on Hermitian holomorphic bundles which satisfy a certain admissibility
condition. In order to introduce the latter notion, we need the following lemma.

Lemma 5.1. In the setting of Definition 2.2, consider the following assertions at
an arbitrary point s ∈ Z:

1. The operator K̂|Ds : Ds → HK is injective and has closed range.
2. The operator K(s, s) ∈ B(Ds) is invertible.
3. The operator K(s, s) ∈ B(Ds) is surjective.
4. The evaluation map evs : HK → Ds is surjective.

Then we have (1)⇐⇒ (2) ⇐⇒ (3) =⇒ (4), and all the above four assertions are
equivalent if moreover dimDs <∞.

Proof. The equivalence (1)⇐⇒ (2) was established in [BG13, Lemma 3.4]. More-
over we have (2) ⇐⇒ (3) since K(s, s) is always a bounded (nonnegative) self-
adjoint operator on the complex Hilbert space Ds, as a consequence of (2.1) in
Definition 2.2 for n = 1, hence Ker (K(s, s)) = (Im(K(s, s)))⊥.

Next, for every ξ ∈ Ds we have K̂(ξ) = Kξ = K(·, s)ξ hence

(evs ◦ K̂|Ds)(ξ) = K(s, s)ξ

and this shows that (3) =⇒ (4).
Now note that for all t ∈ Z, η ∈ Dt, and ξ ∈ Ds we have

((K̂|Ds)(ξ) | Kη)HK = (Kξ | Kη)HK = (K(t, s)ξ | η)Dt = (ξ | K(s, t)η)Ds

= (ξ | evs(Kη))Ds

hence the operators evs : HK → Ds and K̂|Ds : Ds → HK are adjoint to each

other. This implies Ker (K̂|Ds) = (Im evs)
⊥. Therefore, if (4) holds true, then

K̂|Ds : Ds → HK is injective, and if moreover dimDs < ∞, then the range of

K̂|Ds is in turn finite dimensional hence is a closed subspace of HK , and thus (1)
also holds true. This concludes the proof. �

The following is a special case of [BG13, Def. 3.5].
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Definition 5.2. Assume Π: D → Z is a Hermitian bundle whose fibers are finite
dimensional (for instance, Π is a line bundle). A reproducing kernel K on Π is
called admissible if it has the following properties:

(a) The kernel K is smooth as a section of the bundle Hom(p∗2Π, p
∗
1Π).

(b) For every s ∈ Z the operator K(s, s) ∈ B(Ds) is invertible.

Remark 5.3. In the setting of Definition 5.2, the admissible reproducing kernel K
has the additional property that the mapping ζK : Z → Gr(HK) is smooth. See
[BG13, Ex. 3.6] for details.

If Π: D → Z is any Hermitian holomorphic bundle with the space of holo-
morphic sections denoted by O(Z,D) and K is any reproducing kernel on Π, then
we say that K is holomorphic if for every ξ ∈ D we have Kξ ∈ O(Z,D).

Theorem 5.4. Let Π: D → Z be any Hermitian holomorphic vector bundle with
finite-dimensional fibers and with its Hermitian structure denoted by {(· | ·)z}z∈Z .
If K is a holomorphic admissible reproducing kernel on the vector bundle Π, then
{(K(z, z) · | ·)z}z∈Z is a new Hermitian structure on Π, for which the curvature
of its Chern covariant derivative is Griffiths positive.

Proof. Let HK be the reproducing kernel Hilbert space associated to K. By hy-
pothesis K is a holomorphic reproducing kernel on Π, hence we have a continuous
inclusion map HK ↪→ O(Z,D). Since K is admissible, Lemma 5.1 implies that the
evaluation map evs : HK → Ds is surjective for arbitrary s ∈ Z. Thus the bundle
Π is globally generated in the sense of Definition 4.1, and then the conclusion
follows by Theorem 4.6. �

Example 5.5. Consider the special case of Example 2.3 with E = C,

Z = D = {z ∈ C | |z| < 1}
and for every ν ≥ 1 define

K
(ν)
D

: D× D→ C, K
(ν)
D

(z1, z2) =
1

(1− z1z̄2)ν

which is the reproducing kernel of the Bergman space on the unit disc if ν > 1
and of the Hardy space if ν = 1; see also [BG13, subsect. 5.1, (b.1)].

The new Hermitian structure on the trivial bundle Π: D = Z × C → Z
(referred to in Theorem 5.4) is in this case given by

h(ν) : D→ GL+(E) � (0,∞), h(ν)(z) =
1

(1− |z|2)ν =
1

(1 − zz̄)ν
.

We have
1

h(ν)(z)
· ∂h(ν)(z) = (1 − zz̄)ν · νz̄

(1− zz̄)ν+1
=

νz̄

1− zz̄

hence by using Lemma 3.12 we obtain the following expression for the linear con-
nection form of the Chern covariant derivative corresponding to the Hermitian
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structure determined by h:

A(ν) : D→ B(C), A(ν)
z =

νz̄

1− zz̄
dz.

Since
∂

∂z̄

( z̄

1− zz̄

)
=

(1− zz̄)− z̄ · (−z)
(1− zz̄)2

=
1

(1− zz̄)2

it then follows by Proposition 3.13(2) that the curvature of the aforementioned
Chern covariant derivative is the 2-form

Θ(ν) : D→ BR(C ∧ C,C), Θ(ν)
z =

ν

(1 − |z|2)2 dz̄ ∧ dz

which clearly is Griffiths positive. It also follows by the above formula that the
curvature Θ(ν) depends linearly on ν, and for all ν ≥ 1 we have Θ(ν) = νΘ(1).

Example 5.6. Recall that if H is any complex Hilbert space, then the mapping
h �→ (· | h)H is an antilinear isometric isomorphism from H onto its topological
dual H∗. For this reason H∗ will be alternatively described as the complex Hilbert
space whose underlying structure of real Hilbert space is that of H, while the
complex structure is the opposite to the complex structure of H; that is, we may
assume H∗ = H as real vector spaces, with the complex scalar products related by
the equality (h1 | h2)H∗ = (h2 | h1)H for all h1, h2 ∈ H = H∗. So H and H∗ have
the same closed complex subspaces and the identity map is an antiholomorphic
diffeomorphism between their Grassmann manifolds Gr(H) and Gr(H∗).

With this convention, if Π: D → Z is a holomorphic Hermitian bundle and
D∗ :=

⊔
s∈Z

D∗
s =

⊔
s∈Z

Ds = D as real manifolds, then the dual bundle Π∗ : D∗ → Z

is again a holomorphic Hermitian bundle, whose complex structure is fiberwise
the opposite to the complex structure of D, while both mappings Π and Π∗ are
holomorphic (i.e., they are smooth and the differentials are C-linear) onto the same
complex manifold Z. In particular, if K is a reproducing kernel on Π, then it is
also a reproducing kernel on Π∗, to be denoted by K∗, and it follows by (2.2) that

the corresponding reproducing kernel Hilbert spaces are related by HK∗
= (HK)∗.

In addition, one can also check that K is admissible if and only if K∗ is. In
this case, if Θ ∈ Ω2(Z,Π) and Θ∗ ∈ Ω2(Z,Π∗) are the curvatures of the Chern
connections associated to K and K∗ as in Theorem 5.4, respectively, then by using
Proposition 3.13(2) along with equations (3.1)–(3.2) one can show that Θ∗ = −Θ.

By using a suitable method of localization of reproducing kernel Hilbert
spaces on vector bundles, one can obtain infinite-dimensional versions of the prop-

erties of Bergman kernels established in [MP97]. Put δK := (ζK ◦Π, K̂), where ζK
and K̂ are as in Definition 2.2.

Theorem 5.7. Let Π: D → Z be a holomorphic Hermitian bundle with finite-
dimensional fibers and K be a holomorphic admissible reproducing kernel on Π.
Then the following assertions hold:

1. The mapping K̂ : D∗ → (HK)∗ is holomorphic.
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2. The pair ΔK = (δK , ζK) is a holomorphic morphism of vector bundles from
Π∗ : D∗ → Z to Π(HK)∗ : T ((HK)∗)→ Gr((HK)∗).

Proof. By the note prior to the theorem, it suffices to prove the assertions under
the assumption that Π: D → Z is a trivial vector bundle, sayD = Z×V , where the
complex Hilbert space V is the typical fiber. Recall from [BG13, Lemma 3.3] that

K̂ : D → HK is smooth. On the other hand, since K is an admissible holomorphic
reproducing kernel, it is given by an operator-valued reproducing kernel κ : Z ×
Z → B(V) (see for instance [BG13, subsect. 5.1]) such that κ(·, t) ∈ O(Z,V) and
κ(t, t) ∈ B(V) is invertible for every t ∈ Z. Then for every η = (t, v) ∈ Z × V = D
we have

K̂(η) = (·, κ(·, t)v) ∈ O(Z,D)

which implies at once that the differential of K̂ : D∗ = Z × V∗ → (HK)∗ at

every point is C-linear, hence the mapping K̂ : D∗ → (HK)∗ is holomorphic. Since

κ(t, ·)∗ = κ(·, t) ∈ O(Z,V) and ζK(t) = K̂({t} × V), it also follows by the above

formula for K̂(η) that ζK : Z → Gr((HK)∗) is holomorphic, since it is smooth
by the assumption that K is admissible, and its tangent map at any point is
C-linear. �

In connection with Theorem 5.7, we note that a certain procedure to associate
linear connections ΦK to reproducing kernels K on infinite-dimensional vector
bundles Π was established in [BG13]. That method relies on canonical pullback
operations by starting from tautological bundles on Grassmann manifolds. Then
one can also prove that the linear connection ΦK∗ associated withK∗ is compatible
both with the complex structure of the dual bundle Π∗ : D∗ → Z and with the
Hermitian structure {(K∗(s, s)· | ·)∗s}s∈Z where (K∗(s, s)· | ·)∗s := (K(s, s)· | ·)s
for all s ∈ Z. That is, on dual vector bundles of vector bundles with reproducing
kernel (and finite-dimensional fibers), the covariant derivatives associated with
the linear connections defined in [BG13] are also examples of the Griffiths-positive
Chern derivatives of Theorem 5.4 above. As the details of these results are beyond
the scope of the present work, we defer them to a forthcoming paper.

Remark 5.8. It is well known that there also exist holomorphic vector bundles with
finite-dimensional fibers which do not admit any nontrivial global holomorphic
cross-section, so they do not carry any reproducing kernel satisfying the hypothesis
of Theorem 5.4. An example in this sense (with one-dimensional fibers) is provided
by the tautological vector bundle over the projective space, in the above notation

Π(n) : T (n)(Cn+1)→ Gr(n)(Cn+1)

see for instance [De12, Ch. V, Cor. 15.6], where this line bundle was denoted by
O(−1).

Remark 5.9. In connection with Theorem 5.4, we recall that there exist several
open problems on sufficient conditions for Griffiths’ positivity. There is for instance
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Griffiths’ problem ([Gr69]) which asks whether or not every ample holomorphic
vector bundle with compact base is Griffiths positive.

It is also unknown whether any holomorphic vector bundle is Griffiths positive
if there exists some integer k0 ≥ 1 such that the symmetric kth tensor powers of
that bundle are globally generated for all k ≥ k0. See however [De12, Ch. VII,
Cor. 11.6] for an affirmative answer to that problem in the case of the line bundles.
From the perspective of the above Theorem 5.4, the problem would be to construct
reproducing kernels on some Hermitian vector bundle by using some reproducing
kernels on symmetric tensor powers of that bundle.

Appendix: Complements on vector-valued differential forms

Definition A.1. Assume X is any open subset of some real Banach space X and
V is another real Banach space. The space of V-valued differential forms of degree
p ≥ 0 on X is defined by

Ωp(X,V) =
{
C∞(X,V) if p = 0

C∞(X,B(∧pX ,V)) if p ≥ 1,

where B(∧pX ,V) denotes the space of all bounded p-linear skew-symmetric maps
X × · · · × X → V . For every σ ∈ Ωp(X,V) and x ∈ X we denote σx := σ(x).

The exterior derivative d : Ωp(X,V)→ Ωp+1(X,V) is defined for σ∈Ωp(X,V)
as follows:

1. If p = 0, then for every x ∈ X we set (dσ)x = σ′
x ∈ B(X ,V).

2. If p ≥ 1, then for every x ∈ X we define (dσ)x = dxσ ∈ B(∧pX ,V) as a
bounded skew-symmetric (p + 1)-linear mapping X × · · · × X → V by the
formula

(dσ)x(x1, . . . , xp+1) =

p+1∑
j=1

(−1)j−1(σ′
x(xj))(x1, . . . , xj−1, xj+1, . . . , xp+1)

for every x1, . . . , xp+1 ∈ X . Note that σ : X → B(∧pX ,V) is a smooth map-
ping, hence σ′

x ∈ B(X ,B(∧pX ,V)).
We have d2 = 0 (see for instance [Lg01]) as an operator from Ωp(X,V) into
Ωp+2(X,V) for every p ≥ 0.

Definition A.2. Now assume the following setting:

• X is an open set in the real Banach space X ;
• V1, V2, and V are real Banach spaces endowed with a continuous bilinear
mapping V1 × V2 → V denoted simply by (v1, v2) �→ v1 · v2.

Then for p1, p2 ≥ 0 we define the exterior product (cf. [Ne06, Subsect. I.4])

∧ : Ωp1(X,V1)× Ωp2(X,V2)→ Ωp1+p2(X,V)
in the following way. Let σj ∈ Ωpj (X,Vj), j = 1, 2, and x ∈ X .
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1. If p1 = 0, then we set

(σ1 ∧ σ2)x(x1, . . . , xp2) = (σ1)x︸ ︷︷ ︸
∈V1

· (σ2)x(x1, . . . , xp2)︸ ︷︷ ︸
∈V2

∈ V

for x1, . . . , xp2 ∈ X . We proceed in a similar manner if p2 = 0.
2. If p1, p2 ≥ 1, then

(σ1 ∧ σ2)x(x1, . . . , xp1+p2) =
1

p1!p2!

∑
τ

ε(τ) (σ1)x(xτ(1), . . . , xτ(p1))︸ ︷︷ ︸
∈V1

· (σ2)x(xτ(p1+1), . . . , xτ(p1+p2))︸ ︷︷ ︸
∈V2

where the sum is taken for every permutation τ of the set {1, . . . , p1 + p2}
and ε(τ) ∈ {±1} denotes the signature of τ (compare [Lg01, Ch. V, §3]).

Just as in the scalar-valued case, one can check the formula

d(σ1 ∧ σ2) = dσ1 ∧ dσ2 + (−1)p1σ1 ∧ dσ2

for σj ∈ Ωpj (X,Vj) and j = 1, 2.

Remark A.3. Let Y and V be complex Banach spaces and denote by BR(Y,V) the
Banach space of bounded R-linear operators from Y into V . Also denote by

B(0,1)
R

(Y,V) = {T ∈ BR(Y,V) | (∀x ∈ Y) T (ix) = −iTx}

the space of bounded conjugate-linear operators from Y into V , and use for the

moment the notation B(1,0)
R

(Y,V) := B(Y,V) for the space of C-linear operators.

Then we note the following facts:

1. The mapping

B(1,0)
R

(Y,V)× B(0,1)
R

(Y,V)→ BR(Y,V), (R,S) �→ R+ S (A.1)

is a linear topological isomorphism. Indeed, it is clear that this mapping
is linear and continuous, hence it suffices to prove that it is bijective. In
fact it is easily checked that for every T ∈ BR(Y,V) there exist uniquely

determined operators T (1,0) ∈ B(1,0)
R

(Y,V) and T (0,1) ∈ B(0,1)
R

(Y,V) such

that T = T (1,0) + T (0,1), namely

T (1,0)x =
1

2
(Tx− iT (ix)) and T (0,1)x =

1

2
(Tx+ iT (ix))

for every x ∈ Y.
2. Each of the spaces B(1,0)

R
(Y,V) and B(0,1)

R
(Y,V) has a natural structure of

complex Banach space, defined by multiplying the values of any operator by
complex numbers (This is possible since V is a complex Banach space.)
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3. By using the above items (1) and (2), one can obtain direct sum decom-
positions similar to (A.1) for spaces of R-multilinear mappings in a higher
number of variables. For instance, for bilinear mappings we have

BR(Y⊗̂RY,V) � BR(Y,BR(Y,V))

� BR(Y,B(1,0)
R

(Y,V)� B(0,1)
R

(Y,V))

� BR(Y,B(1,0)
R

(Y,V))� B(Y,B(0,1)
R

(Y,V))

� B(1,0)
R

(Y,B(1,0)
R

(Y,V))� B(1,0)
R

(Y,B(0,1)
R

(Y,V))

� B(0,1)
R

(Y,B(1,0)
R

(Y,V))� B(0,1)
R

(Y,B(0,1)
R

(Y,V)).
4. We now use the above remarks to obtain a direct sum decomposition for the

space of skew-symmetric R-bilinear maps from Y ×Y into V . Let us consider
the bounded R-linear operator

A : Y⊗̂RY → Y⊗̂RY, A(y1 ⊗ y2) =
1

2
(y1 ⊗ y2 − y2 ⊗ y1).

Then we have A2 = A, and we define Y ∧ Y := RanA. We also define

A : BR(Y⊗̂RY,V)→ BR(Y⊗̂RY,V), A(Φ) := Φ ◦A
and then A2 = A and it is easily seen that

RanA = {Φ ∈ BR(Y⊗̂RY,V) | (∀y1, y2 ∈ Y) Φ(y1 ⊗ y2) = −Φ(y2 ⊗ y1)}.
In order to study the behavior of A with respect to the direct sum decompo-
sition established in (3) above, we introduce the operator

Q : BR(Y⊗̂RY,V)→ BR(Y⊗̂RY,V), (Q(Φ))(y1 ⊗ y2) = Φ((iy1)⊗ (iy2)).

Then it is easily seen that Q2 = id and QA = AQ, hence we have the direct
sum decomposition

BR(Y⊗̂RY,V) = Ker (Q− id)�Ker (Q+ id) (A.2)

and both subspaces involved in this decomposition are invariant under A. On
the other hand, it is easily seen that

B(1,0)
R

(Y,B(1,0)
R

(Y,V)) � B(0,1)
R

(Y,B(0,1)
R

(Y,V)) ⊆ Ker (Q+ id),

B(1,0)
R

(Y,B(0,1)
R

(Y,V)) � B(0,1)
R

(Y,B(1,0)
R

(Y,V)) ⊆ Ker (Q− id).

It then follows by (A.2) and the decomposition established above in (3) that
the above inclusions are actually equalities. In particular, the space

B(1,0)
R

(Y,B(0,1)
R

(Y,V))� B(0,1)
R

(Y,B(1,0)
R

(Y,V))

is invariant under A, and we denote by B(1,1)
R

(Y⊗̂Y,V) the image of the cor-
responding restriction of A. On the other hand, it is easily checked that each

of the spaces B(1,0)
R

(Y,B(1,0)
R

(Y,V)) and B(0,1)
R

(Y,B(0,1)
R

(Y,V)) is invariant

under A, and B(2,0)
R

(Y⊗̂Y,V) and B(0,2)
R

(Y⊗̂Y,V) will denote the images of
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the corresponding restrictions of A, respectively. We thus get a direct sum
decomposition

RanA = B(2,0)
R

(Y⊗̂Y,V)� B(1,1)
R

(Y⊗̂Y,V)� B(0,2)
R

(Y⊗̂Y,V).

Note the natural isomorphism RanA � BR(Y ∧Y,V), Φ �→ Φ|RanA, and thus
the above decomposition gives rise to a direct sum decomposition

BR(Y ∧ Y,V) = B(2,0)
R

(Y ∧ Y,V)� B(1,1)
R

(Y ∧ Y,V)� B(0,2)
R

(Y ∧ Y,V).

For every Φ ∈ BR(Y ∧Y,V) we denote by Φ = Φ(2,0)+Φ(1,1)+Φ(0,2) the cor-
responding decomposition. This is the bilinear version of the decomposition
established above in (1).

Definition A.4. Let X and V be complex Banach spaces. If p ∈ {1, 2}, then by
using Remark A.3 for the values of the differential forms in Ωp(X,V), we get the
direct sum decompositions

Ω1(X,V) = Ω(1,0)(X,V)� Ω(0,1)(X,V) (A.3)

and

Ω2(X,V) = Ω(2,0)(X,V)� Ω(1,1)(X,V)� Ω(0,2)(X,V).
By using these decompositions we can define the operators

∂̄ : C∞(X,V)→ Ω(0,1)(X,V) and ∂̄ : Ω(r,1−r)(X,V)→ Ω(r,2−r)(X,V)

for r ∈ {0, 1} as the corresponding projections of the exterior derivatives

d: C∞(X,V)→ Ω1(X,V) and d: Ω1(X,V)→ Ω2(X,V),

respectively. We also define ∂ := d − ∂̄ on any of the above spaces where ∂̄ is
defined.

Remark A.5. In the setting of Definition A.4, we have ∂̄2 = 0, ∂2 = 0, and

d: Ω(r,s)(X,V)→ Ω(r+1,s)(X,V)� Ω(r,s+1)(X,V),

hence ∂ : Ω(r,s)(X,V)→ Ω(r+1,s)(X,V) for r, s ∈ {0, 1} with r + s = 1.

Remark A.6. In Definition A.4, a function σ ∈ C∞(X,V) is holomorphic if and
only if its differential is C-linear at every point of X , which is equivalent to the
Cauchy–Riemann equation ∂̄σ = 0.

We refer to [Ll98, Sect. 2] for a definition of the Dolbeault operator ∂̄ in a
more general setting.
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Algebraic Absolutely Invertible Elements
in Archimedean Riesz Algebras

Fethi Ben Amor and Karim Boulabiar

Abstract. Let A be an Archimedean Riesz algebra with a positive unit element
e. An element f ∈ A is said to be algebraic if P (f) = 0 for some non-zero
polynomial P with real coefficients. Moreover, f is called an e-step function in
A if there exist pairwise disjoint components p1, . . . , pn of e and real numbers
α1, . . . , αn such that

e = p1 + · · ·+ pn and f = α1p1 + · · ·+ αnpn.

First, we shall prove that if A is an f -algebra, then f is algebraic if and only if f
is an e-step function. This leads to the main result of this paper, which asserts
that if f is an absolutely invertible element (i.e., |f | is invertible and its inverse

|f |−1 is positive) in an arbitrary Archimedean Riesz algebra with positive
identity, then f is algebraic if and only if f has an e-step function power in A.
As a consequence, we obtain all previous results by Boulabiar, Buskes, and
Sirotkin who investigated the special case of disjointness preserving operators
on Archimedean Riesz spaces.

Mathematics Subject Classification (2010). Primary 06F25; Secondary 47B25.

Keywords. Absolutely invertible, algebraic, disjointness preserving, lattice-
ordered algebra, order-bounded, step function.

1. Introduction

Let n be a positive integer and Mn (R) indicate the Archimedean Riesz algebra
of all n × n-matrices with entries in the field R of all real numbers. Choose an
invertible positive matrix M in Mn (R) and assume that its inverse is again pos-
itive. Hence, M defines a lattice isomorphism on the Riesz space Rn. Thus, the
replacement of each nonzero entry by 1 transforms M into a permutation matrix
(see [16]). It readily follows that M has a diagonal power. In what follows, the

This reaserch is supported by the LATAO-LR11ES12 grant of the Tunis El Manar University.
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extent to which such a result can be generalized to a wider class of Riesz alge-
bras is investigated. In the general setting of a Riesz algebra with a positive unit
element e, diagonals are naturally replaced by e-step functions. Moreover, when
leaving the realm of finite-dimensional spaces, some reasonable constraints have
to be imposed. In this respect, we have been largely motivated by the recent pa-
pers [5, 6] (see also [4]) which deal with operators under polynomial constraints,
viz., algebraic order-bounded operators on Riesz spaces (see [10]). A more detailed
overview seems to be in order.

Let A be an Archimedean Riesz algebra (i.e., an Archimedean lattice-ordered
algebra) with a positive unit element e. Our first result asserts that if f is an e-
step function in A (see [1] or [18] for the definition and elementary properties),
then f is an algebraic element in A. Then, we prove that the converse does not
hold, unless A is in addition a function algebra (briefly, f -algebra) in the sense of
Birkhoff and Pierce [7]. However, our main result is certainly the following. Let
f be an absolutely invertible element in A, that is to say, |f | is invertible and its

inverse |f |−1
is positive. Then, f is algebraic if and only if f has an e-step function

power. This result is based upon the fact that the principal band generated by e in
a uniformly complete Riesz algebra is a projection band. Using duality arguments,
we show that all results obtained in [5, 6] for disjointness preserving operators turn
out to be special cases of our study.

The paper is organized as follows. After this introductory section, we pro-
vide a complete description of algebraic elements in Archimedean f -algebra with
identity as step functions. The third section contains the main result of this pa-
per. Namely, if A is an Archimedean Riesz algebra with a positive identity e, then
an element f ∈ A is algebraic if and only if fp is an e-step function for some
nonzero natural number. In the last section, we prove that characterizations of
algebraic order-bounded disjointness preserving operators on Archimedean Riesz
spaces obtained in [5, 6] can be derived from our main result.

Finally, we point out that our references on Riesz spaces and disjointness pre-
serving (linear) operators are the great texts [1] by Aliprantis and Burkinshaw, and
[14] by Meyer-Nieberg. However, the standard monograph [19] by Zaanen seems to
be the most complete reference on Riesz algebras, f -algebras and orthomorphisms.

2. Step functions in Riesz algebras

As usual, the symbol R [X ] is used to indicate the principal ideal ring of all poly-
nomials with coefficients in R [13]. Let A be an arbitrary associative real algebra
A with a unit element e. An element f ∈ A is said to be algebraic if P (f) = 0
for some nonzero P ∈ R [X ]. In this case, the unique monic generator of the ring
ideal {P ∈ R [X ] : P (f) = 0} in R [X ] is denoted by πf and is called the minimal
polynomial of f . Let f be an algebraic element in A. It is not hard to see that
the set

R [f ] = {P (f) : P ∈ R [X ]}
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is a finite-dimensional commutative subalgebra of A. By the way, the dimension of
R [f ] equals the degree of the minimal polynomial of f . It follows that all powers
of f are again algebraic.

Beginning with this sentence, A stands for an Archimedean Riesz algebra
with a positive unit element e.

A subalgebra B of A is called a Riesz subalgebra of A if B is a Riesz subspace (i.e.,
a vector sublattice) of the underlying Riesz space of A. An element p ∈ A is called
an e-component in A if p∧ (e− p) = 0. The set of all e-components in A is denoted
by Ce (A). Clearly, 0 ≤ p ≤ e and e − p ∈ Ce (A) for all p ∈ Ce (A). Moreover,

pq = 0 for all p, q ∈ Ce (A) with p ∧ q = 0. (1)

Indeed,

0 ≤ pq = (pq) ∧ (pq) ≤ (pe) ∧ (eq) = p ∧ q = 0.

It follows in particular that

p2 = p for all p ∈ Ce (A) . (2)

By an e-step function in A we mean an element s ∈ A for which there exist pairwise
disjoint p1, . . . , pn ∈ Ce (A) and α1, . . . , αn ∈ R such that

e = p1 + · · ·+ pn and s = α1p1 + · · ·+ αnpn.

This last expression is referred to as an e-representation of s. It turns out that the
set of all e-step functions in A is a Riesz subspace of the underlying Riesz space
of A. (see [1] or [18]). Moreover, from (1) and (2) it follows quickly that the set of
all e-step functions in A is a Riesz subalgebra of A. The following simple lemma
will be useful for later purposes.

Lemma 1. Let A be an Archimedean Riesz algebra with a positive unit element e
and s be an e-step function in A with an e-representation

s = α1p1 + · · ·+ αnpn.

Then

P (s) = P (α1) p1 + · · ·+ P (αn) pn for all P ∈ R [X ] .

Proof. Since the equality e = p1 + · · ·+ pn holds, a simple induction via (1) and
(2) reveals that

sk = αk
1p1 + · · ·+ αk

npn for all k ∈ {0, 1, . . .} .

By linearity, we derive that

P (s) = P (α1) p1 + · · ·+ P (αn) pn for all P ∈ R [X ]

and we are done. �

Another lemma is needed to prove the main result of this section.
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Lemma 2. Let A be an Archimedean Riesz algebra with a positive unit element e
and u, v ∈ A+ for which there exist f ∈ A and α, β ∈ R such that α �= β and

|f − αe|u = |f − βe| v = 0.

Then u ∧ v = 0.

Proof. If such f and α, β exist then

0 ≤ |f (u ∧ v)− α (u ∧ v)|
≤ |f − αe| (u ∧ v) ≤ |f − αe|u = 0.

Whence,

f (u ∧ v) = α (u ∧ v) .

Analogously,

f (u ∧ v) = β (u ∧ v) .

Therefore,

α (u ∧ v) = β (u ∧ v) .

Since α �= β, we get u ∧ v = 0, as desired. �

The connection between algebraic elements and e-step functions in A is es-
tablished next.

Theorem 3. Let A be an Archimedean Riesz algebra with a positive unit element
e. Then, any e-step function in A is algebraic. The converse is true if A is in
addition an f -algebra.

Proof. Let s be an e-step function in A with e-representation

s = α1p1 + · · ·+ αnpn.

Define the nonzero polynomial

P (X) = (X − α1) · · · (X − αn) ∈ R [X ] .

By Lemma 1, we have

P (s) = P (α1) p1 + · · ·+ P (αn) pn = 0.

This means that s is algebraic.
Conversely, suppose that A is an f -algebra and let f be an algebraic element

in A. Assume that there exist a, b ∈ R and P ∈ R [X ] such that b2 − a < 0 and

πf (X) =
(
X2 + 2bX + a

)
P (X) .

Observe that

0 <
(
a− b2

)
e ≤

(
a− b2

)
e+ (f + be)

2
= f2 + 2bf + ae.

Hence,

0 ≤
(
a− b2

)
|P (f)| ≤

(
f2 + 2bf + ae

)
|P (f)|

=
∣∣(f2 + 2bf + ae

)
P (f)

∣∣ = |πf (f)| = 0.
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This yields that P (f) = 0, contradicting the minimality of πf . It follows that there
are no quadratic polynomials in the factorization of πf into irreductible elements
in R [X ]. Consequently, there exist k1, . . . , kn ∈ {1, 2, . . . } and pairwise different
α1, . . . , αn ∈ R such that

πf (X) = (X − α1)
k1 · · · (X − αn)

kn .

Therefore,

(f − α1e)
k1 · · · (f − αne)

kn = πf (f) = 0.

Hence,

[(f − α1e) · · · (f − αne)]
k1···kn = 0.

But then

(f − α1e) · · · (f − αne) = 0

because 0 is the only nilpotent element in an f -algebra with unit element (see
[19]). We derive that

πf (X) = (X − α1) · · · (X − αn) .

Define

Pk (X) =
πf (X)

X − αk
∈ R [X ] for all k ∈ {1, . . . , n} .

By the classical Bézout Theorem, there exist Q1, . . . , Qn ∈ R [X ] such that

1 = P1Q1 + · · ·+ PnQn.

This yields that

P1 (f)Q1 (f) + · · ·+ Pn (f)Qn (f) = e.

Put

uk = Pk (f)Qk (f) and pk = |uk| for all k ∈ {1, . . . , n} .
Hence,

u1 + · · ·+ un = e.

Moreover,

(f − αke)uk = πf (f)Qk (f) = 0 for all k ∈ {1, . . . , n} .
Hence,

|f − αke| pk = |f − αke| |uk| = |(f − αke)uk| = 0 for all k ∈ {1, . . . , n} .
By Lemma 2, we derive that p1, . . . , pn are pairwise disjoint and so are u1, . . . , un.
Then,

e = |e| = |u1 + · · ·+ un| = |u1|+ · · ·+ |un| = p1 + · · ·+ pn.

This yields quickly that p1, . . . , pn ∈ Ce (A). Furthermore,

|fpk − αkpk| = |f − αke| pk = 0 for all k ∈ {1, . . . , n} .
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So,

f = fe = f (p1 + · · ·+ pn)

= fp1 + · · ·+ fpn = α1p1 + · · ·+ αnpn.

This means that f is an e-step function in A and completes the proof. �

We notice finally that, without any extra condition on the Riesz algebra A,
an algebraic element in A need not be an e-step function in A. This can be seen
directly with the Riesz algebra of all 2× 2 matrices with entries in R.

3. Algebraic absolutely invertible elements

Again in this section, A is an Archimedean Riesz algebra with a positive unit
element e. The principal band generated by an element f in A is denoted by
B (f). Furthermore, a Riesz subalgebra of A which is an f -algebra is called an
f -subalgebra of A. For instance, it is shown in [11] that B (e) is an f -subalgebra
of A with e as a unit element. Moreover, if A in addition uniformly complete [14],
then B (e) is a projection band in A, that is, the direct sum

B (e)
d ⊕ B (e) = A

holds, where

B (e)d = {f ∈ A : |f | ∧ e = 0}
(this result is proved in [8]). The band projection on B (e) is denoted by Pe. In
particular, Pe is an element in the f -algebra Orth (A) of all orthomorphisms on
A, and the inequalities

0 ≤ Pe ≤ I,

hold, where I is the identity operator on A [1]. Another property of Pe is labeled
and proved next.

Lemma 4. Let A be a uniformly complete Riesz algebra with a positive unit element
e. Then,

Pe (f)Pe (g) ≤ Pe (fg) for all f, g ∈ A+.

In particular,

Pe (f)
k ≤ Pe

(
fk
)

for all f ∈ A+ and k ∈ {1, 2, . . .} .

Proof. Let f, g ∈ A+ and notice that 0 ≤ Pe (f) ≤ f and 0 ≤ Pe (g) ≤ g. It follows
that

0 ≤ Pe (f)Pe (g) ≤ fg.

Since Pe (f)Pe (g) ∈ B (e), we get

0 ≤ Pe (Pe (f)Pe (g)) = Pe (f)Pe (g) ≤ Pe (fg) ,

as desired. The second inequality follows from the first one via an obvious induction
process. �
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For every f ∈ A we define the multiplication operators Lf and Rf on A by

Lf (g) = fg and Rf (g) = gf for all g ∈ A.

Clearly, if f ∈ A then Lf and Rf are order bounded. Moreover, Lf and Rf are
positive whenever f is positive in A. The following lemmas play key roles in the
proof of the main result of this section.

Lemma 5. Let A be an Archimedean Riesz algebra with a positive unit element e.
If f ∈ B (e) and g ∈ A such that fng = 0 for some n ∈ {2, 3, . . . }, then fg = 0.

Proof. Since f ∈ B (e), Proposition 1 in [11] implies that Lf ∈ Orth (A). Then,

Lfn = (Lf)
n ∈ Orth (A) .

Moreover, since n ≥ 2, Theorem 2.52 in [1] and the equality fng = 0 imply that

Im (Lf ) " (Lf)
n−1 g ∈ ker (Lf) = [Im (Lf )]

d .

Therefore (Lf )
n−1

(g) = 0. Repeating this argument again n − 2 times we finally
find Lf (g) = 0 and the lemma follows. �

Lemma 6. Let A be a uniformly complete Riesz algebra with a positive unit element
e and f ∈ A such that L|f | is a lattice homomorphism on A. Then

|Pe (f)| |f − Pe (f)| = 0.

Proof. Put

u = Pe (f) ∈ B (e) and v = f − Pe (f) ∈ B (e)
d
.

Hence, f = u + v and |f | = |u| + |v|. Since L|f | is a lattice homomorphism and
e ∧ |v| = 0, we obtain

L|f | (e) ∧ L|f | (|v|) = |f | ∧ (|f | |v|) = 0.

These equalities together with the inequalities |v| ≤ |f | and |u| |v| ≤ |f | |v| yield
that |v| ∧ |u| |v| = 0. This means that

|u| |v| ∈ B (v)d . (3)

On the other hand, L|u| is an orthomorphism on A because u ∈ B (e) (where we
use Theorem 1 in [8] or Proposition 1 in [11]). But then

|u| |v| = L|u| (|v|) ∈ B (v) (4)

because orthomorphisms preserve bands. Combining (3) and (4) we obtain |u| |v| =
0 and the proof is complete. �

An element f in A is said to be absolutely invertible in A if |f | has positive
inverse |f |−1

in A. Next, we collect some facts on the multiplication operators on
A in connection with absolutely invertible elements in A.
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Lemma 7. Let f be an absolutely invertible element in an Archimedean Riesz al-
gebra A with a positive unit element. Then the following hold.

(i) L|f | and R|f | are lattice isomorphisms.
(ii) Lf and Rf are order-bounded disjointness preserving operators.

(iii) |f |k =
∣∣fk
∣∣ for all k ∈ {1, 2, . . .}.

Proof. (i) As previously observed, L|f | is a positive operator. Moreover, it is readily

checked that L|f | is bijective and that
(
L|f |
)−1

= L|f |−1 . It follows that
(
L|f |
)−1

is

again positive. By Theorem 2.15 in [1], we derive that L|f | is a lattice isomorphism
and so is R|f |.

(ii) We already observed that Lf is order bounded. Hence, choose g, h ∈ A
with |g| ∧ |h| = 0. Using (i), we can write

0 ≤ |Lf (g)| ∧ |Lf (h)| = |fg| ∧ |fh|
≤ (|f | |g|) ∧ (|f | |h|) = L|f | (|g|) ∧ L|f | (|h|)
= L|f | (|g| ∧ |h|) = 0.

It follows that Lf preserves disjointness. The same proof works for Rf .

(iii) We argue by induction. Let k ∈ {1, 2, . . .} and assume that |f |k =
∣∣fk
∣∣.

By (ii) and Theorem 3.1.4 in [14], we get∣∣fk+1
∣∣ = ∣∣ffk

∣∣ = ∣∣Lf

(
fk
)∣∣ = ∣∣∣Lf

(
|f |k
)∣∣∣ = ∣∣∣R|f |k (f)

∣∣∣ .
Now, observe that |f |k is again absolutely invertible in A. Applying (i) to |f |k, we
obtain ∣∣fk+1

∣∣ = ∣∣∣R|f |k (f)
∣∣∣ = R|f |k (|f |) = |f |

k+1 ,

completing the induction process. �

The order ideal in a Riesz space generated by f1, . . . , fn is denoted by I(f1,
. . . , fn). The following lemma is the last one we need before proving the central
theorem of this section.

Lemma 8. Let f be an absolutely invertible element in a uniformly complete Riesz
algebra A with a positive unit element e. If e ∈ I

(
f, f2, . . . , fn

)
for some n ∈

{1, 2, . . .}, then fn! ∈ B (e).

Proof. Lemma 7 (i) asserts that L|f | is a lattice isomorphism and so is
(
L|f |
)n!

.

Since
(
L|f |
)n!

= L|f |n! and
∣∣fn!
∣∣ = |f |n! (where we use Lemma 7 (iii)), we derive

that L|fn!| is again a lattice homomorphism. By Lemma 6, we get that∣∣Pe

(
fn!
)∣∣ ∣∣fn! − Pe

(
fn!
)∣∣ = 0.

Moreover, if k ∈ {1, . . . , n} then Lemma 4 and Lemma 7 (iii) yield that∣∣Pe

(
fn!
)∣∣ = Pe

(∣∣fn!
∣∣) = Pe

(
|f |n!

)
= Pe

((
|f |k
)n!/k)

≥ Pe

(
|f |k
)n!/k
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(the first equality comes from Theorem 2.40 in [1]). Hence,

0 ≤ Pe

(
|f |k
)n!/k ∣∣fn! − Pe

(
fn!
)∣∣ ≤ ∣∣Pe

(
fn!
)∣∣ ∣∣fn! − Pe

(
fn!
)∣∣ = 0

Therefore,

Pe

(
|f |k
)n!/k ∣∣fn! − Pe

(
fn!
)∣∣ = 0.

By Lemma 5, we obtain

Pe

(
|f |k
) ∣∣fn! − Pe

(
fn!
)∣∣ = 0 for all k ∈ {1, . . . , n} . (5)

Since e ∈ I
(
f, f2, . . . , fn

)
, there is a ∈ R for which

e ≤ a
(
|f |+

∣∣f2
∣∣+ · · ·+ |fn|

)
.

Therefore,

e = Pe (e) ≤ a
(
Pe (|f |) + Pe

(
|f |2
)
+ · · ·+ Pe (|f |n)

)
. (6)

Combining (5) and (6), we derive that∣∣fn! − Pe

(
fn!
)∣∣ = e

∣∣fn! − Pe

(
fn!
)∣∣ = Pe (e)

∣∣fn! − Pe

(
fn!
)∣∣

≤ a
(
Pe (|f |) + Pe

(
|f |2
)
+ · · ·+ Pe (|f |n)

) ∣∣fn! − Pe

(
fn!
)∣∣ = 0

Finally, fn! = Pe

(
fn!
)
∈ B (e). This completes the proof. �

An element f ∈ A is said to have an e-step function power in A if fn is an
e-step function in A for some n ∈ {2, 3, . . . }. We are in position now to prove the
main (and the last) result of this section.

Theorem 9. Let f be an absolutely invertible element in an Archimedean Riesz
algebra A with a positive unit element e. Then, f is algebraic if and only if f has
an e-step function power in A.

Proof. If fn is an e-step function in A for some n ∈ {2, 3, . . . }, then Theorem 3
implies that fn is algebraic and so is f .

Conversely, suppose that f is algebraic in A. We have to prove that f has an
e-step function power. We start with the case where A is uniformly complete. Put

πf (X) = a0 + a1X + · · ·+ anX
n

with an �= 0. Let m denote the multiplicity of 0 as a root of πf . Therefore,

am �= 0 and amfm + · · ·+ anf
n = 0.

Thus,

|f |m ≤
∣∣∣∣am+1

am

∣∣∣∣ |f |m+1
+ · · ·+

∣∣∣∣ anam
∣∣∣∣ |f |n .
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Observe that m < n. Otherwise, f is nilpotent and, by Lemma 7 (iii), so is |f |.
This contradicts the fact that f is absolutely invertible in A. Thus, we may write

e ≤
∣∣∣∣am+1

am

∣∣∣∣ |f |+ · · ·+ ∣∣∣∣ anam
∣∣∣∣ |f |n−m

.

Therefore, e ∈ I
(
f, f2, . . . , fn

)
and so fn! ∈ B (e) (where we use Lemma 8).

Furthermore, fn! is algebraic because f is algebraic. In summary, fn! is an algebraic
element of B (e), which is f -subalgebra of A. From Theorem 3 it follows that fn!

is an e-step function in A.
Now, we focus on the general case. It is well known that the multiplication in

A can be extended to its uniformly completion Aru so that Aru becomes a uniformly
complete Riesz algebra with the same unit element e (see [17]). It is obvious that
f is again algebraic in Aru. By the first case, there exists n ∈ {2, 3, } such that fn

is an e-step function in Aru with e-representation

fn = α1p1 + · · ·+ αsps.

Here, pk ∈ Ce (Aru) for all k ∈ {1, . . . , s}. We claim that fn is an e-step function in
A. To this end, it suffices to prove that pk ∈ A for all k ∈ {1, . . . , s}. First, observe
that if p, q are disjoint e-components then p+q is again an e-component. It follows
readily that we can assume without lose of generality that α1, . . . , αs are pairwise
different. Then, put

Q (X) = (X − α1) · · · (X − αs)

and

Qk (X) =
Q (X)

X − αk
for all k ∈ {1, . . . , n} .

Pick k ∈ {1, . . . , s} and observe that Qk (αk) �= 0 and Qk (αi) = 0 if i �= k. These
observations together with Lemma 1 yield that

Qk (f
n) = Qk (α1) p1 + · · ·+Qk (αs) ps = Qk (αk) pk,

so

pk =
1

Qk (αk)
Qk (f

n) ∈ A.

This completes the proof of the theorem. �

4. Algebraic disjointness preserving operators revisited

The main purpose of this section is to apply Theorem 9 to order-bounded disjoint-
ness preserving operators on an Archimedean Riesz space. Our approach relies
heavily on the notion of duality in Riesz spaces (see [1, 14]).

Throughout this last section, E stands for an Archimedean Riesz space.

If T is an order-bounded operator on E, then its adjoint T∼ is defined on the order
dual E∼ of E by

T∼ (ϕ) = ϕ ◦ T for all ϕ ∈ E∼.
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Moreover, recall that any order-bounded disjointness preserving operator (called
Lamperti operator by Arendt in [2]) T on E has an absolute value |T | in the
ordered real algebra Lb (E) of all order-bounded operators on E (see [14]). By the
way, the first result of this section concerns the adjoint (and its absolute value)
of a bijective order-bounded disjointness preserving operator on E. We omit the
proof because it is just a slight modification of Proposition 2.7 in [2] by Arendt,
who obtained the result for Banach lattices.

Proposition 10. Let E be an Archimedean Riesz space and T be a bijective order-
bounded disjointness preserving operator on E. Then T∼ is again an order-bounded
disjointness preserving operator and |T |∼ = |T∼|.

As usual, a subsetD of the Archimedean Riesz space is said to be T -invariant,
where T is an order-bounded operator on E, if T sends D to itself. Furthermore,
recall that Eru indicates the uniform completion of E (see [14]). The next lemma
is a crucial step in the proof of the central result of this section.

Lemma 11. Let E be an Archimedean Riesz space and T be an algebraic order-
bounded disjointness preserving operator on E. Then the following holds.

(i) T has a unique extension T ru to Eru such that T ru is an algebraic order-
bounded disjointness preserving operator on Eru and πT ru = πT .

(ii) Every f ∈ E is contained in a T -invariant principal order ideal of E.

Proof. (i) See Lemma 5.1 in [5].
(ii) This follows directly from Lemma 5.2 in [5]. �

To proceed our investigation, we have to give further notations and remarks.
First, Let I denote the identity operator on any given space. Furthermore, let
m,n ∈ {1, 2, . . .} and T be an order-bounded operator on E. The range of Tm on
E is denoted by Im (Tm). Next, we shall obtain as consequences of Theorem 9 the
main results of [5, 6]. To hit this objective, we need a result from [3], viz., if T is
an algebraic operator on an arbitrary vector space then T is injective if and only
if T is surjective.

Theorem 12. Let E be a Riesz space and T be an order-bounded disjointness pre-
serving operator on E. If T is injective or surjective, then T is algebraic if and
only if T has an I-step function power in Orth (E).

Proof. The ‘if’ part is obvious. The ‘only if’ part needs a detailed proof. Suppose
that T is algebraic and put n = deg (πT ). First, we claim that T n! ∈ Orth (E).
By Lemma 11 (i), we can assume without loss of generality that E is uniformly
complete. Choose f, g ∈ E such that |f | ∧ |g| = 0. Lemma 11 (ii) implies quickly
that there exists a T -invariant principal order-ideal I (h) of E such that f, g ∈
I (h). The restriction of T to I (h), denoted by R, can be seen as an order-bounded
disjointness preserving operator on I (h). Moreover, it is easily seen that R is
algebraic and bijective. By Proposition 10, we derive that R∼ is an order-bounded
disjointness preserving operator on I (h)∼. Besides, it is routine to show that R∼
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is algebraic and injective (so bijective). In particular, R∼ is an algebraic element in
the Riesz space Lb (I (h)∼) which is a Dedekind complete (and then Archimedean)
Riesz algebra with I as a positive unit element. Furthermore, Proposition 10 yields
that R∼ is an absolutely invertible element in Lb (I (h)∼). By Theorem 9, we get

(Rn)
∼
= (R∼)n ∈ Orth (I (h)∼) for some n ∈ {1, 2, . . . } .

On the other hand, since E is uniformly complete, I (h) is a Banach lattice and so
I (h)∼ separates the points of I (h) (see Proposition 1.2.13 in [14]). This implies,
via Theorem 2.60 in [1], that Rn ∈ Orth (I (h)). Consequently,

|T n (f)| ∧ |g| = |Rn (f)| ∧ |g| = 0.

Thus, T n ∈ Orth (E). As T is algebraic, so is T n. Hence, since Orth (E) is an
Archimedean f -algebra with I as a unit element (see Theorem 3.1.10 in [14]), from
Theorem 3 it follows that T n is an I-step function in Orth (E). This completes
the proof of the theorem. �

A disjointness preserving operator T on E is positive if and only if T is
a lattice homomorphism on E. In this situation, each power T k of T with k ∈
{1, 2, . . .} is again a lattice homomorphism and hence its range Im

(
T k
)
is a T -

invariant Riesz subspace of E. These observations lead to the last result of this
paper (see [5, 6]).

Corollary 13. Let E be an Archimedean Riesz space and T be a lattice homomor-
phism on E. Then T is algebraic if and only if there exist m ∈ {1, 2, . . .} such that
the restriction of T to Im (Tm) has an I-step function power in Orth (Im (Tm)).

Proof. Assume that there is m ∈ {1, 2, . . . } for which the restriction R of T to
Im (Tm) has an I-step function power in Orth (Im (Tm)). It follows from Theorem
3 that R is algebraic. Hence, if P ∈ R [X ] is a non zero polynomial such that
P (R) = 0, then P (T ) ◦ Tm = 0. This means that T is algebraic, as required.

Conversely, suppose that T is algebraic and put

πT (X) = Xn + an−1X
n−1 + · · ·+ amXm

with am �= 0 the minimal polynomial of T. Clearly, T induces a lattice homomor-
phism R on Im (Tm). Since T is algebraic, then R is algebraic as well. Moreover,
R is injective. Indeed, let g ∈ Im (Tm) with R (g) = 0 and pick f ∈ E such that
g = Tm (f). Thus

Tm+1 (f) = T (Tm (f)) = T (g) = R (g) = 0.

Since πT (T ) = 0 we get amTm (g) = 0. Hence, f = Tm (g) = 0 because am �= 0.
By Theorem 12, there is n ∈ {1, 2, . . . } for which Rn is an I-step function in
Orth (Im (Tm)) and the proof is complete. �

We end the paper with the following remark (see [6]). Let T be an order-
bounded disjointness preserving operator on the Archimedean Riesz space E. If T
is either injective, surjective, or positive, then T is algebraic if and only if T p is
an I-step function in Orth (E) for some nonzero positive integer p. It turns out
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that, without extra condition, this equivalence fails as illustrated by the following
simple example. Put E = R2 and define T ∈ Lb (E) by

T (α, β) = (α,−α) for all α, β ∈ R.

Obviously, T is not an I-step function in Orth (E). However, it is readily verified
that T is an order-bounded disjointness preserving operator on E. Also, one may
check easily that

T k = T for all k ∈ {1, 2, . . . } .
Therefore, T is algebraic and has no I-step function powers.
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(1956), 41–69.

[8] C.B. Huijsmans, Elements with unit spectrum in a Banach lattice algebra, Indag.
Math., 91 (1988), 43–51.

[9] C.B. Huijsmans and B. de Pagter, Invertible disjointness preserving operators, Proc.
Edinburgh Math. Soc., 37 (1994), 125–132.

[10] I. Kaplansky, Infinite Abelian Groups, University of Michigan Press, Ann Arbor,
1954.
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σ-Weak Orthomorphisms

Elmiloud Chil and Mohamed Mokaddem

Abstract. In this paper we introduce a new class of weak orthomorphisms, so-
called, σ-weak orthomorphisms. We prove that for a uniformly complete vector
lattice, σ-weak orthomorphisms and σ-extended orthomorphisms coincide. As
application we study some important structural properties of such operators.
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The study of orthomorphisms on an Archimedean vector lattice E, that is, of band
preserving order-bounded linear operator T : E → E, has been greatly developed
these last years. It is well known that the collection Orth(E) of all orthomorphisms
on E is an Archimedean Riesz space, and even an f -algebra, with the identity I on
E as algebra and weak order unit; the richness of this structure gives a particular
interest to Orth(E). But are there always enough non trivial orthomorphisms on
E? This problem was studied in [8], where it was shown that the answer may be
negative; in this case it is thus difficult to compare the properties of E with those
of Orth(E). To avoid this difficulty, it is useful to consider the space Orth∞(E)
(resp. Orthw(E)) of equivalence classes of extended orthomorphisms (resp. weak
orthomorphisms) on E.

Buskes and van Rooij in [2] called an order-bounded linear operator T : DT →
E, where DT is a vector sublattice of E, an orthomorphism if |x| ∧ |y| = 0 in DT

implies |Tx|∧ |y| = 0 in E. If in addition DT is order dense in E, we call the linear
operator T : DT → E a weak orthomorphism after Wickstead in [11]. A natural
equivalence relation can be introduced in the set of all weak orthomorphisms on E
as follows. Two weak orthomorphisms on E are equivalent whenever they agree on
an order-dense vector sublattice of E. Amongst those extensions of weak orthomor-
phisms on E, which are again weak orthomorphisms of E, there is one which has a
largest domain. The set of all weak orthomorphisms of E which have maximal do-
main is denoted by Orthw (E) (see [11] for more details). We denote by M(T ) the
largest domain of a weak orthomorphism extension of a weak orthomorphism T .

In [6], Luxemburg and Schep defined an extended orthomorphism to be a
weak orthomorphism T : DT → E such that DT is an order-dense ideal in E. For
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extended orthomorphisms equivalence reduces to equality on the intersection of
domains. The set of all equivalence classes of extended orthomorphisms of E is
denoted by Orth∞(E). Clearly, Orth∞(E) is the subset of Orthw (E) consisting of
those operators T for which M(T ) contains an order-dense ideal of E. Observing
that, for every band B in E, the band projection πB : B ⊕ Bd → E is a member
of Orth∞(E), we see there are always many extended so weak orthomorphisms
on E. For more details about extended and weak orthomorphisms we refer to
[4, 5, 6, 9, 11].

Since weak orthomorphisms seem to be well-behaved and they form a natural
generalization of extended orthomorphisms, why have they received no previous
attention? The reason is that they do not, in general, have an additive structure see
([11], example 4.4). It seems natural therefore to ask what is missing for a vector
lattice to obtain an addive structure in the set of all weak orthomorphisms. In [11],
Wickstead showed that this kind of behavior is avoided in a special case where
E is an Archimedean semiprime f -algebra. It turns out that pointwise operations
and ordering make Orthw(E) into an Archimedean f -algebra with unit element
(see [11, Theorem 4.8]). Moreover, if in addition E, is uniformly complete then
Orthw(E) = Orth∞(E) (see [11,Theorem 4.10]).

It will be noted that the proofs of the last results are heavily based on the
algebra structure of E and hence it can not be expected that it can be adapted
to the vector lattice case. Therefore, it seems to be an interesting question to
characterizes the vector lattice E such that Orthw(E) = Orth∞(E). In this di-
rection, recently the first author has shown in [3] that if the vector lattice E is
uniformly complete then Orthw(E) is a vector lattice since, in this case, we have
Orthw(E) = Orth∞(E). The question of course arises whether the converse is
true. However, as has been recently shown by the author in [3], this is not true
in general. In [3], the author asked if the result above can be generalized to a
larger class of vector lattice. Therefore, it seems natural to describe various con-
ditions under which Orthw(E) is a vector lattice. In [4] the first author proved
that the condition “the uniform completeness of E” can be weakened as follows: if
the Archimedean vector lattice E has a uniformly complete order-dense ideal then
Orthw(E) = Orth∞(E) and therefore Orthw(E) is a vector lattice.

Duhoux and Meyer in [5] defined a σ-extended orthomorphism to be an ex-
tended orthomorphism which can be defined on a super order-dense ideal in E (or,
equivalently, such that its maximal domain is super order dense). It is well known
that the collection Orthσ∞(E) of all σ-extended orthomorphism on E is an f -
subalgebra of Orth∞(E). It is obvious that Orth(E) ⊂ Orthσ∞(E) ⊂ Orth∞(E),
and it is shown in [5] that, in general, both inclusions may be proper. If B is a
band in E, then the band projection πB : B⊕Bd → E is a member of Orthσ∞(E)
if and only if B is an s-band, that is, B ⊕ Bd super order dense. That shows
that if Orthσ∞(E) = Orth∞(E) then every band in E must be an s-band. In
the other direction, if E is order separable, every order-dense ideal of E is super
order dense and so Orthσ∞(E) = Orth∞(E). For more details about σ-extended
orthomorphisms we refer to [5].
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In view of this context we define a σ-weak orthomorphism to be a weak
orthomorphism which can be defined on a super order-dense vector sublattice of
E. The set of all σ-weak orthomorphism of E which have maximal domain will be
denote by Orthσw (E). We always have

Orth(E) ⊂ Orthσ∞(E) ⊂ Orthσw (E) ⊂ Orthw(E)

and

Orth(E) ⊂ Orthσ∞(E) ⊂ Orth∞(E) ⊂ Orthw(E).

Note that all inclusions may be proper (see [5]). It follows easily from [3] that if
E is uniformly complete then

Orth(E) ⊂ Orthσ∞(E) ⊂ Orthσw (E) ⊂ Orthw(E) = Orth∞(E).

It is worth recording that by [4] we can do a little better. We have the previous
inclusions if E has a uniformly complete order-dense ideal. We next look at the
algebraic structure of Orthσw (E). Note that σ-weak orthomorphisms do not, in
general, have an additive structure as it is shown in the following example.

Example. Let C(X) be the vector lattice of continuous functions on a topological
space X and E be a vector subspace of C(X), then we shall say that a function on
X is locally in E if it is defined on a dense open subset of X and if it coincides, on
some neighborhood of each point of its domain, with some element of E. Moreover,
LE(X) denotes the vector lattice of equivalence classes of such functions, under
the relation of coinciding on a dense open subset of X and with vector and lattice
operations defined modulo dense open sets. A moment’s reflection shows that if X
has the Baire property then LE(X) will be Archimedean and will be an f -algebra
if E is an algebra. See [10] pages 90 and 91 for more details of this construction.
Now, let F be the vector space of all polynomials functions on [0, 1] which vanish
at 0, and G the space of the continuous piecewise linear functions vanishing at
1. Now, let E be the vector space of continuous functions on [0, 1] generated
by F and G. By a classical Weierstrass Theorem it is quite easy to show that
LF ([0, 1]) is a super order-dense vector sublattice of LE([0, 1]). Now, by using a
classical approximation Theorem, it is easy to check that LG([0, 1]) is a super
order-dense vector sublattice of LE([0, 1]). Now define T1 : LF ([0, 1])→ LE([0, 1])

by T1(f)(x) = f(x)
x and T2 : LG([0, 1]) → LE([0, 1]) by T2(f) = f(x)

x−1 . Clearly
T1 and T2 are σ-weak orthomorphisms and are defined on their largest possible
domain, yet LF ([0, 1]) ∩ LG([0, 1]) = {0}, so there is no hope of defining T1 + T2.

We will look at the following problem: what about weaker conditions on the
order structure of E to obtain an additive structure in Orthσw (E). The above
results tell us what is happening in some cases, but there are certainly gaps in the
general case. If we limit our attention to some of the classical vector lattices then
we would hope to establish more. Even here our knowledge remains incomplete.
The most notable gap in our knowledge is because the intersection of two super
order-dense vector sublattice may be equal to zero.
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It is our main purpose in this paper to describe a generalization of parts of
the theory of extended and weak orthomorphisms. This generalization is perhaps
not quite in final form yet, but it is already good enough to give new results which
seem deep for the orthomorphisms defined on a super order-dense vector sublattice.
We have not been able to characterize the vector lattice for which we obtain an
additive structure in Orthσw (E). Nonetheless, we have been able to show that if
we assume that the vector lattice E is uniformly complete then Orthσw (E) is a
vector lattice since, in this case, we have Orthσw (E)=Orthσ∞(E).

It is convenient to use the monograph [1] for basic information concerning
the general theory of vector lattices, f -algebras and orthomorphisms. Properties
and definitions of the uniform topology can be found in [7].

Theorem 1. Let E be a uniformly complete vector lattice. Then

Orthσw (E) = Orthσ∞(E).

Proof. We have already mentioned that every σ-extended orthomorphism is a
σ-weak orthomorphism so we have the inclusion Orthσ∞(E) ⊂ Orthσw(E). To
establish the converse inclusion we propose to show that every σ-weak orthomor-
phism can be extended to a σ-extended orthomorphism. To this end denote Eδ the
Dedekind completion of E and let π : D → E a σ-weak orthomorphism where D is
a super order-dense Riesz subspace of E, using the Veksler theorem ([1], Theorem
1.65) π can be extended to Eδ

D (the ideal generated by D in Eδ), we denote this
extension by:

πδ : Eδ
D → Eδ ∈ Orth∞(Eδ)

To end the proof is suffices to show that the restriction of πδ on ED (the ideal
generated by D in E) has its range in E. To see this denote πδ

n ∈ Orth(Eδ
D)

defined by:

πδ
n = πδ ∧ nI : Eδ

D → Eδ
D

and denote πn the restriction of πδ
n on D:

πn = πδ
n|D : D → ED

by ([2], Theorem 4.1 ) πn can be extended to an orthomorphism π∗
n : ED → ED.

Now since Orth∞(Eδ) is an f -algebra with multiplicative unit we have by
([1], Theorem 2.57) that

0 ≤ πδ − πδ
n ≤

1

n
(πδ)2.

So

0 ≤ πδ(x)− πδ
n(x) ≤

1

n
(πδ)2(x) ∀x ∈ E+

D

since π∗
n = πδ

n|ED
and E majorizes Eδ

D there is u ∈ E+ such that

0 ≤ πδ(x)− π∗
n(x) ≤

1

n
(πδ)2(x) ≤ 1

n
u ∀x ∈ E+

D
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Therefore the sequence (π∗
n(x)) ∈ E converges u-uniformly to πδ(x) for all x ∈ E+

D

then it follows from the uniform completeness of E that πδ(x) ∈ E for all x ∈ E+
D,

thus πδ(x) ∈ E for all x ∈ ED, so that

πδ
|ED

: ED → E ∈ Orthσ∞(E)

and the proof is finished. �

The next proposition and lemma are immediate from ([4], Proposition 1 and
Lemma 1).

Proposition 2. Let E be an Archimedean vector lattice and T : D → E be a σ-
weak orthomorphism on E. Then KerT = D ∩ T (D)d. In particular KerT is a
band in D.

Lemma 3. Under the same notation of the previous proposition, we have:

(i) Tx �= 0 for all 0 �= x ∈ D ∩ T (D).
(ii) Add ∩ T (D)dd = T (A)dd for all subset A of D.

At this level we have to recall the notions of s-band and c-band originally
introduced by M. Meyer and M. Duhoux in [5]: Given an Archimedean Riesz space
E, an ideal A of E is called an s-ideal if A⊕Ad is super order dense. More generally
A is called a c-ideal if for every x ∈ E+ there exist a sequence (xn) ∈ A+ such that

x = sup
{
xn + y ; n = 1, 2, . . . , and y ∈ Ad ∩ [0, x]

}
An s-band (resp. c-band) is an s-ideal (resp. c-ideal) which is also a band.

Lemma 4. Let E be an Archimedean Riesz space and let T ∈ Orthσw (E) then
T (D)dd is a c-Band.

Proof. According to ([5], Section 3) it suffices to show that for all x ∈ E+,
T (D)dd ∩ {x} is countably generated. So let x ∈ E+, since D is a super order-
dense Riesz subspace of E there exist a sequence (xn) in D+ such that xn ↑ x,

thus {xn, n ∈ N}dd = {x}dd and then T (D)dd∩{x}dd = T (D)dd∩{xn, n ∈ N}dd =

{T (xn), n ∈ N}dd. Now by (ii) of the above lemma the following equality holds

T (D)dd ∩ {xn, n ∈ N} = {T (xn), n ∈ N}dd so T (D)dd is a c-band and the proof is
finished. �

It is shown in ([4], Theorem 2 and Corollary 1) that when E is just an
Archimedean Riesz space then for every T ∈ Orthw(E) there exists 0 ≤ S ∈
Orthw(E) such that TST = T . Under an extra condition on E, namely the almost
σ-Dedekind completeness, the same result still true for Orthσw (E). Recall that a
Riesz space E is said to be almost σ-Dedekind completeness if it can be embedded
as a super order-dense Riesz subspace of a σ-Dedekind complete Riesz space. M.
Meyer and M. Dhoux give an interesting characterisation of such spaces as follows:
E is an almost σ-Dedekind complete Riesz if and only if every c-band is an s-band
([5], Theorem 3.3). Note that order-separable Riesz spaces are a particular almost-
σ-Dedekind complete Riesz spaces.
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Proposition 5. Let E be an almost σ-Dedekind complete Riesz space, then for every
T ∈ Orthσw (E) there exists S ∈ Orthσw (E) such that TST = T .

Proof. Let T : D → E ∈ Orthσw (E) whereD is a super order-dense Riesz subspace
of E. Denote S : T (D ∩ T (D)dd)⊕KerT → E the mapping defined as follows:{

ST (x) = x if x ∈ D ∩ T (D)dd

S(x) = 0 if x ∈ KerT.

S is well defined indeed, let x, y ∈ D ∩ T (D)dd such that Tx = Ty, then
x− y ∈ KerT = D ∩ T (D)d so x− y ∈ T (D)d, on the other hand x− y ∈ T (D)dd

hence x = y.
Now let us prove that (D ∩ T (D)dd)⊕KerT is super order-dense Riesz sub-

space of E. It is trivial that D ∩ T (D)dd and KerT = D ∩ T (D)d are respectively
super order dense in T (D)dd and T (D)d then it follows that (D∩T (D)dd)⊕KerT
is super order dense in T (D)dd ⊕ T (D)d. To show that (D ∩ T (D)dd) ⊕ KerT
is super order dense in E it remains to prove that T (D)dd is an s-band. By the
above lemma we have that T (D)dd is a c-band and since E is almost σ-Dedekind
complete it follows immediately that T (D)dd is an s-band. Clearly S is a σ-weak
orthomorphism and TST = T . �

At present, we are not able to say whether the almost σ-Dedekind complete-
ness condition is necessary or not. However a natural and interesting question can
be raised: Let E be an Archimedean Riesz space, is there equivalence between the
two following statements:

a) Every c-band in E is an s-band.
b) The c-band T (D)dd is an s-band for very T ∈ Orthσw(E).

If the question is negatively answered, the almost σ-Dedekind completeness con-
dition can be weakened.

Let E be a Riesz space and F a Riesz subspace of E, unlike weak orthomor-
phisms and extended orthomorphisms the inclusion Orthσw (F ) ⊂ Orthσw(E) does
not holds in general as shown by the following example.

Example. Let X be a non countable set, F (X) be the Riesz space of all real
functions on X . Define

E = {f ∈ F (X); {x ∈ X : f(x) �= a} is at most countable for some a ∈ R}
and

F = C0(X) (functions in E vanishing at infinity).

Then we have

Orthσw (F ) = Orthσ(F ) = F (X), but Orthσw (E) = E

But in the case where F is super order dense we have Orthσw (F ) ⊂ Orthσw(E)
and we have more when F is a super order-dense ideal in E as shown in the fol-
lowing proposition.
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Proposition 6. Let E be an Archimedean Riesz space, F be a super order-dense
ideal in E then Orthσw (F ) = Orthσw (E).

Proof. It is easy to verify that Orthσw(F ) ⊂ Orthσw (E). For the converse inclusion,
take T ∈ Orthσw(E) with domain D, it is easily seen that D ∩F is a super order-
dense Riesz subspace of F and then a super order-dense Riesz subspace of E.
Using almost the same techniques used in ([4], Theorem 1) we can prove that
F1 = {x ∈ D ∩ F, T (x) ∈ Ex} is super order dense Riesz subspace of F . Now
the restriction T|F1

can be considered as a σ-weak orthomorphism of F since
T (F1) ⊂ F , so Orthσw (E) ⊂ Orthσw(F ) and thus Orthσw (E) = Orthσw (F ). �

As an immediate application

Theorem 7. Let E be an Archimedean Riesz space having a uniformly complete
super order-dense ideal then

Orthσw (E) = Orthσ∞(E).

Proof. Let F be a uniformly complete super order-dense ideal of E. Then by
Theorem 2 we have Orthσw (F ) = Orthσ∞(F ). In other hand by Proposition 8
we have Orthσw (E) = Orthσw (F ). And by ([5], Theorem 3.15) it holds that
Orthσ∞(E) = Orthσ∞(F ). So we conclude that

Orthσw (E) = Orthσ∞(E). �

It follows from the above theorem that if E is an Archimedean Riesz space
having a uniformly complete super order-dense ideal (particularly when E is uni-
formly complete) then Orthσw(E) is a Riesz space, even more an f -algebra with
the identity on E as unit element.

We devote the remaining of this paper to the relation between Orth(E), Z(E)
and Orthσw(E). The following example shows that neither Orth(E) nor Z(E) are
ideals in Orthσw (E).

Example. Let E = C([0, 1]); it is clear that E is uniformly complete; by ([5],
Lemma 4.1) and the fact that E is order separable Orthσw (E) = Orth∞(E) =
C(D, [0, 1]) where D is the filter of all dense open subsets of [0, 1]. Since Orth(E) =
Z(E) = E = C([0, 1]) we see that neither Orth(E) nor Z(E) are ideals in
Orthσw (E).

Now if E is an order Cauchy complete Riesz space, then Orth(E) and Z(E)
are not only ideals in Orthσw (E) but even more, as shown in the following theorem.

Theorem 8. Let E be an order Cauchy complete Riesz space; then Orth(E) and
Z(E) are super order-dense ideals in Orthσw (E).

Proof. Given S : DS → E and T : DT → E in Orthσw (E) such that 0 ≤ S ≤ T ,
we can define S on DT . Indeed let (0 ≤ x ∈ DT ) and (xn) be any sequence in DS

such that 0 ≤ xn ↑ x. Note first of all that since T is a positive order-continuous
operator we have T (xn) ↑ T (x) and then from the inequality 0 ≤ S(xn+p − xn) ≤



98 E. Chil and M. Mokaddem

T (xn+p − xn) we deduce that (S(xn))n is an increasing order Cauchy sequence,
thus supS(xn) exists. So we can define S on DT by S(x) = supS(xn) for all
x ∈ D+

T . In particular Orth(E) and Z(E) are ideals in Orthσw (E). �
We end this paper by some open problems:

– What is the necessary and sufficient condition on E for which Orth(E) and
Z(E) are ideals in Orthσw (E)?

– Can Orthσw (E) have a structure of Riesz space even if it does not coincide
with Orthσ∞(E)?
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1. Introduction

Let (Ω,Σ, μ) be a measure space with σ-finite measure μ and let Lp(Ω,Σ, μ) be
the Banach space of all measurable functions f on (Ω,Σ, μ) such that

‖f‖p =

⎛⎝∫
Ω

|f |pdμ

⎞⎠1/p

<∞, (1 ≤ p <∞).

The well-known M.A. Akcoglu theorem [1] asserts that for any positive contraction
T in the space Lp(Ω,Σ, μ), 1 < p <∞, the averages

sn(T )(f) =
1

n

n−1∑
i=0

T i(f)

converge almost everywhere for every f ∈ Lp(Ω,Σ, μ), in addition

f∗ = sup
n≥1

sn(T )(|f |) ∈ Lp(Ω,Σ, μ) and ‖f∗‖p ≤
p

p− 1
‖f‖p.

The same ergodic theorem holds for non positive L1 − L∞ contraction T in
Lp(Ω,Σ, μ) [7, Ch. VIII, §6]. Further development extends this ergodic theorem to
the space of Banach-valued functions as follows (see, e.g., [12, Ch. 4, §4.2]): if T is
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an L1-L∞ contraction in the space Lp(Ω, X) of Bochner maps from (Ω,Σ, μ) into

a reflexive Banach space (X, ‖ · ‖X), 1 < p < ∞, then there exists f̃ ∈ Lp(Ω, X)

such that ‖sn(T )(f)(ω) − f̃(ω)‖X → 0 almost everywhere on (Ω,Σ, μ) for any
f ∈ Lp(Ω, X).

The following natural advance in extension of this area of applications of
ergodic theorems is a description of ergodic properties of L1-L∞ contractions in
Banach–KantorovichLp-lattices Lp(∇,m) associated with a vector-valued measure
m, defined on a complete Boolean algebra ∇.

In [2] the (o)-convergence of averages sn(T )(f) in the vector lattice Lp(∇,m)
has been established for positive contractions T : Lp(∇,m)→ Lp(∇,m), satisfying
the condition T1 ≤ 1, where 1 < p <∞. In [4] a similar ergodic theorem has been
extended for positive contractions of the Orlicz–Kantorovich lattices LM (∇,m) in
case when N -function M satisfies the condition

sup
s≥1
{ 1

M(s)

s∫
1

M(t−1s)dt} <∞.

In the present paper we establish ergodic theorems for L1-L∞ contractions
in Banach–Kantorovich lattices Lp(∇,m) and LM (∇,m). Moreover, we present
“vector” versions of weighted ergodic theorems obtained in [10]. In the proof of
these theorems we use a representation of a Banach–Kantorovich lattice as a space
of measurable sections of a measurable Banach bundle [8], [9]. This fact allows us
to obtain the required properties of the Banach–Kantorovich lattice by means of
the corresponding stalkwise verification of these properties. Using this approach,
a version of the dominated ergodic theorem was obtained for positive contractions
in the Lp(∇,m) [2]. This approach we use in the present article. Of a particular
assistance for us is the representation theorem of the Banach–Kantorovich lattice
Lp(∇,m) as a measurable bundle of classical Lp spaces associated with scalar
measures [8]. We apply this representation and the corresponding ergodic theorems
for L1-L∞ contractions in classical Lp-spaces in order to obtain versions of ergodic
theorems for L1-L∞ contractions in Banach–Kantorovich lattices Lp(∇,m) and
LM (∇,m).

We use the terminology and notation of the theory of Riesz spaces, vector in-
tegration, and lattice-normed spaces [14], as well as the terminology of measurable
bundles of Banach lattices [8], [9].

2. Preliminaries

Let (Ω,Σ, μ) be a measure space with the direct sum property [14, 1.1.8]. Denote by
L(Ω) (respectively, L∞(Ω) ) the set of all (respectively, essentially bounded) mea-
surable real functions defined a.e. on Ω. Denote by L0(Ω) the algebra of all classes
of functions from L(Ω) equal almost everywhere, and by B the complete Boolean
algebra of all idempotents from L0(Ω). The set L∞(Ω) of all bounded functions
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from L0(Ω) is a subalgebra in L0(Ω) with the unity 1(ω) = 1 a.e., in addition,
L∞(Ω) is a Banach algebra with respect to the norm ‖x‖∞ = sup{|x(ω)| : ω ∈ Ω}.

Let∇ be an arbitrary complete Boolean algebra and letm : ∇ → L0(Ω) be an
L0(Ω)-valued measure on ∇, i.e., (i). m(e) ≥ 0 for all e ∈ ∇ andm(e) = 0⇔ e = 0;
(ii). m(e ∨ g) = m(e) +m(g) if e ∧ g = 0, e, g ∈ ∇; (iii). m(eα) ↓ 0 for every net
eα ↓ 0.

We assume that the measure m is a disjunctive decomposable, i.e., for every
e ∈ ∇ and a decomposition m(e) = a1 + a2, a1 ∧ a2 = 0, ai ∈ L0(Ω) there
exists ei ∈ ∇ such that e = e1 ∨ e2 and m(ei) = ai, i = 1, 2. In this case, as it is
shown in [3], there exist a regular Boolean subalgebra∇0 in ∇ and an isomorphism
ϕ : B → ∇0 such that m(ϕ(q)e) = qm(e) for all q ∈ B, e ∈ ∇. Further we identify
the Boolean algebras ∇0 and B and assume that the measure m is a B-modular,
i.e., m(qe) = qm(e) for all q ∈ B = ∇0, e ∈ ∇. In this case, the algebra L0(Ω)
is a subalgebra of L0(∇) and the element m(1) is invertible in L0(Ω). It is clear
that m1(e) = m(e)m(1)−1 is an L0(Ω)-valued measure on ∇, for which we have
m1(1) = 1. As a result, in what follows we assume that m(1) = 1.

Denote by L0(∇) the universally complete vector lattice C∞(X(∇)), where
X(∇) is the Stone space of∇ [14, 1.4.2]. Let Lp(∇,m) be the Banach–Kantorovich
lattice of all elements x from L0(∇), for which there exists the L0(Ω)-valued norm

‖x‖p =
( ∫
|x|pdm

)1/p
, p ≥ 1 (see for example [14, 6.1]). We need the represen-

tation of Lp(∇,m) as a measurable bundle of classical Lp spaces associated with
scalar measures [8]. Let l : L∞(Ω) → L∞(Ω) be a lifting (since (Ω,Σ, μ) has a
direct sum property then lifting l there always exists [14, 1.4.8]).

For each ω ∈ Ω, e ∈ ∇ we set m0
ω(e) = l(m(e))(ω) and I0ω = {e ∈ ∇ :

m0
ω(e) = 0}. Denote by ∇ω the completion of the quotient Boolean algebra ∇/I0ω

by the metric ρω([e], [g]) = m0
ω(e$g), where [e] is the coset in ∇/I0ω of e ∈ ∇.

Let mω be a measure on the complete Boolean algebra ∇ω extending m0
ω and let

Lp(∇ω,mω) be the classical Lp-space associated with ∇ω and scalar measure mω.
Consider the homomorphism γω = iω ◦ πω : ∇ → ∇ω, where πω : ∇ → ∇0

ω is the
quotient homomorphism and iω : ∇0

ω → ∇ω is the natural embedding. Denote by
(Yp, E) the Banach bundle over Ω, where Yp(ω) = Lp(∇ω,mω) for each ω ∈ Ω and

E =

{ n∑
i=1

λiγω(ei) : λi ∈ R, ei ∈ ∇, i = 1, . . . , n, n ∈ N
}

is a measurable structure in Yp. LetM(Ω, Yp) be a set of all E-measurable sections
of bundle (Yp, E) and let L0(Ω, Yp) be the Banach–Kantorovich lattice, which is the
factorization ofM(Ω, Yp) by the equality almost everywhere. In [8] it is shown that
there exists an isometric isomorphism Φ from Lp(∇,m) onto L0(Ω, Yp) such that

Φ

(
n∑

i=1

λiei

)
=

n∑
i=1

λiγω(ei)

for all λi ∈ R, ei ∈ ∇, i = 1, . . . , n, n ∈ N. Thus, every element x ∈ Lp(∇,m) is
identified with the bundle Φ(x) ∈ L0(Ω, Yp), where Φ(x)(ω) ∈ Lp(∇ω,mω) a.e.
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Set

L∞(Ω, Yp) = {u ∈M(Ω, Yp) : ||u(ω)||p ∈ L∞(Ω)}
and

L∞(Ω, Yp) = {u∼ : u ∈ L∞(Ω, Yp)},
where u∼ is the coset of u in L0(Ω, Yp).

Denote by L∞(∇) the subalgebra in L0(∇) of all bounded elements, i.e., those
x ∈ L0(∇) such that |x| ≤ λ1 for some λ > 0. The algebra L∞(∇) is a Banach
algebra with respect to the norm ‖x‖∞ = inf{λ > 0 : |x| ≤ λ1}, in addition,
L∞(∇) ⊂ Lp(∇,m) and L∞(∇) is bo-dense in Lp(∇,m) for all p ≥ 1.

Let l : L∞(Ω) → L∞(Ω) be a lifting. In [8] it is proved that there exists a
linear mapping �∇ : L∞(∇) → L∞(Ω, Yp) such that for all x, y ∈ L∞(∇), h ∈
L∞(Ω) ⊂ L∞(∇) the following properties hold:

1) �∇(x) ∈ Φ(x) and dom(�∇(x)) = Ω, where dom(�∇(x)) is the domain of
�∇(x);

2) ‖�∇(x)(ω)‖Lp(∇ω ,mω) = l(‖x‖p)(ω) (we see that the equality m(1) = 1 implies
that ‖x‖p ∈ L∞(Ω) for all x ∈ L∞(∇));

3) �∇(x)(ω) ≥ 0 if x ≥ 0;
4) �∇(hx) = l(h)�∇(x);
5) {�∇(x)(ω) : x ∈ L∞(∇)} is dense in Lp(∇ω,mω), ω ∈ Ω;
6) �∇(x ∨ y) = �∇(x) ∨ �∇(y).

A mapping �∇ : L∞(∇)→ L∞(Ω, Yp) is called a vector-valued lifting associ-
ated with the lifting l : L∞(Ω)→ L∞(Ω).

Using a vector-valued lifting �∇, we can obtain a stalkwise representation of
the linear operator T : Lp(∇,m)→ Lp(∇,m), in case when T is L0(Ω)-bounded,
i.e., if there exists 0 ≤ c ∈ L0(Ω) such that ‖Tx‖p ≤ c‖x‖p for all x ∈ Lp(∇,m). For
a positive L0(Ω)-contraction T : Lp(∇,m) → Lp(∇,m), satisfying the condition
T (1) ≤ 1, this stalkwise representation of T is given in [8]. The following theorem
establishes similar result without the assumption of positivity of the operator T .

Theorem 2.1. Let T : L1(∇,m)→ L1(∇,m) be a linear operator such that

T (L∞(∇)) ⊂ L∞(∇) and ‖T (x)‖1 ≤ ‖x‖1
for all x ∈ L1(∇,m). Then for every ω ∈ Ω there exists a linear contraction
Tω : L1(∇ω,mω)→ L1(∇ω ,mω) such that Φ(Tx)(ω) = Tω(Φ(x)(ω)) a.e. for every
x ∈ L1(∇,m). In addition, if the operator T is positive, then the operator Tω is
also positive for all ω ∈ Ω.

Proof. We define a mapping ϕ(ω) from {�∇(x)(ω) : x ∈ L∞(∇,m)} into
L1(∇ω,mω) by the equality ϕ(ω)(�∇(x)(ω)) = �∇(Tx)(ω), ω ∈ Ω. By ‖Tx‖1 ≤
‖x‖1 we have that

‖�∇(Tx)(ω)‖L1(∇ω ,mω) = l(‖Tx‖1)(ω) ≤ l(‖x‖1)(ω) = ‖�∇(x)(ω)‖L1(∇ω ,mω),

and therefore the operator ϕ(ω) is well defined and bounded with respect to the
norm ‖·‖L1(∇ω ,mω). Since {�∇(x)(ω) : x ∈ L∞(∇,m)} is dense in L1(∇ω,mω), then
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the linear operator ϕ(ω) can be extended to the contraction Tω : L1(∇ω,mω) →
L1(∇ω,mω).

We shall show that Φ(Tx)(ω) = Tω(Φ(x)(ω)) for a.e. ω ∈ Ω, where x ∈
L1(∇,m). Choose {xn} ∈ L∞(∇,m) such that the sequence ‖xn − x‖1 (o)-
converges to zero. Then ‖Φ(xn)(ω)−Φ(x)(ω)‖L1(∇ω ,mω) → 0 for a.e. ω ∈ Ω. Since

‖Txn−Tx‖1
(o)→ 0, it follows that ‖�∇(Txn)(ω)−Φ(Tx)(ω)‖L1(∇ω ,mω) → 0 for a.e.

ω ∈ Ω. Moreover, the continuity of the operator Tω implies that ‖�∇(Txn)(ω) −
Tω(Φ(x))(ω)‖L1(∇ω ,mω) → 0 for a.e. ω ∈ Ω. Hence Φ(Tx)(ω) = Tω(Φ(x)(ω)) for
a.e. ω ∈ Ω. It is clear that for the positive operator T , by property 3) of the
vector-valued lifting �∇, the operator Tω is also positive. �

A linear operator T : L1(∇,m)→ L1(∇,m) is said to be regular if it can be
represented as a difference of two positive operators. The set of all regular operators
on L1(∇,m) is denoted by Hr(L1(∇,m)). It is known that Hr(L1(∇,m)) forms a
complete vector lattice, in addition for every T ∈ Hr(L1(∇,m)) the module |T | is
a positive linear operator and

|T |(x) = sup { |Ty| : y ∈ L1(∇,m), |y| ≤ x }
where 0 ≤ x ∈ L1(∇,m) [14, 3.1.2]. In addition

|Tx| ≤ |T ||x|
for all x ∈ L1(∇,m).

We denote the set of all L0(Ω)-bounded linear operators acting in the Banach–
Kantorovich lattice L1(∇,m) by B(L1(∇,m)). With respect to the L0(Ω)-valued
norm ‖T ‖ := ‖T ‖L1(∇,m)→L1(∇,m) = sup{‖Tx‖1 : ‖x‖1 ≤ 1} this space is a
Banach–Kantorovich space [14, 4.2.6]. We need the following property of regular-
ity for operators T ∈ B(L1(∇,m)).

Proposition 2.2. B(L1(∇,m)) ⊂ Hr(L1(∇,m)).

Proof. Let T ∈ B(L1(∇,m)), 0 ≤ x ∈ L1(∇,m). The set of all elements from
L1(∇,m) of the form y = |T (x1)| + · · · + |T (xn)| is denoted by E(x), where
x = x1 + · · ·+ xn, xi ≥ 0, i = 1, 2, . . . , n. It is clear that for y ∈ E(x) the following
inequalities hold

‖y‖1 ≤
n∑

i=1

‖Txi‖1 ≤ ‖T ‖
n∑

i=1

‖xi‖1 = ‖T ‖‖x‖1.

Repeating the proof of [15, Theorem VIII.7.2] we obtain that for any y1, y2, . . . , yk
from E(x) there exists y ∈ E(x) such that sup

1≤i≤k
yi ≤ y. Since ‖y‖1 ≤ ‖T ‖‖x‖1 we

have that ‖ sup
1≤i≤k

yi‖1 ≤ ‖T ‖‖x‖1.

We denote by A the direction of finite subsets of E(x), ordered by inclusion
and for every α ∈ A we set yα = sup{y : y ∈ α}. It is clear that {yα}α∈A is an
increasing net of positive elements from L1(∇,m), in addition ‖yα‖1 ≤ ‖T ‖‖x‖1 for
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all α ∈ A. By the theorem of monotone convergence [5] there exists z ∈ L1(∇,m)
such that yα ↑ z. Hence E(x) is an order-bounded set in L1(∇,m).

Repeating again the proof of [15, Theorem VIII.7.2] we have that T (F ) is an
order-bounded set in L1(∇,m) for any order-bounded set F ⊂ L1(∇,m). There-
fore, by [15, Theorem VIII 2.2], T ∈ Hr(L1(∇,m)). �

By Proposition 2.2 for every T ∈ B(L1(∇,m)) there exists its module |T | ∈
B(L1(∇,m)). Repeating the proof of [15, Theorem VIII.6.3] we have that ‖T ‖ =
‖ |T | ‖.

A linear operator T ∈ B(L1(∇,m)) is called an L1-L∞ contraction if

T (L∞(∇)) ⊂ L∞(∇)
and

‖T ‖L1(∇,m)→L1(∇,m) ≤ 1, ‖T ‖L∞(∇)→L∞(∇) ≤ 1.

We denote the set of all L1-L∞ contractions by C1,∞(∇,m).

Proposition 2.3. If T ∈ C1,∞(∇,m) then |T | ∈ C1,∞(∇,m).

Proof. It is sufficient to show that |T |(L∞(∇)) ⊂ L∞(∇) and that the inequality
‖ |T | ‖L∞(∇)→L∞(∇) ≤ 1 holds. If y ∈ L∞(∇) and |y| ≤ 1 then ‖y‖∞ ≤ 1 and

|Ty| ≤ ‖Ty‖∞1 ≤ ‖T ‖L∞(∇)→L∞(∇)‖y‖∞1 ≤ 1.

Consequently,

| |T |(y) | ≤ |T |(|y|) = sup{|Tz| : z ∈ L1(∇,m), |z| ≤ |y|} ≤ 1. �

Theorem 2.1 and Proposition 2.3 imply the following

Corollary 2.4. If T ∈ C1,∞(∇,m), p > 1, then T (Lp(∇,m)) ⊂ Lp(∇,m) and
‖T ‖Lp(∇,m)→Lp(∇,m) ≤ 1.

Proof. By Theorem 2.1 for every ω ∈ Ω there exists a positive linear contraction
Sω : L1(∇ω,mω) → L1(∇ω ,mω) such that Sω(Φ(x)(ω)) = Φ(|T |x)(ω) a.e. for
every x ∈ L1(∇,m). Since |T | ∈ C1,∞(∇,m) (see Proposition 2.3), it follows that
|T |(1) ≤ 1, and therefore

Sω1ω = Φ(|T |1)(ω) ≤ Φ(1)(ω) = 1ω

for every ω ∈ Ω, where 1ω is the unit element of the Boolean algebra ∇ω. Hence
Sω is a positive linear contraction in L∞(∇ω) for a.e. ω ∈ Ω.

Since Lp(∇ω,mω) is an interpolation space between L1(∇ω ,mω) and L∞(∇ω)
[13, Ch. II, §4], we have that

Sω(Lp(∇ω,mω)) ⊂ Lp(∇ω ,mω) and ‖Sω‖Lp(∇ω ,mω)→Lp(∇ω ,mω) ≤ 1.

Hence |T |(Lp(∇,m)) ⊂ Lp(∇,m). Using the equality Φ(|x|p)(ω) = (Φ(|x|)(ω))p
a.e., where x ∈ Lp(∇,m) [8], we obtain that

‖ |T |(|x|)‖pp(ω) = ‖Sω(Φ(|x|)(ω))‖pLp(∇ω ,mω) ≤ ‖Φ(|x|)(ω)‖
p
Lp(∇ω,mω) = ‖x‖

p
p(ω)
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for a.e. ω ∈ Ω. Hence ‖|T |‖Lp(∇,m)→Lp(∇,m) ≤ 1. The inequality |Tx| ≤ |T ||x|
implies that T (Lp(∇,m)) ⊂ Lp(∇,m), in addition

‖T ‖Lp(∇,m)→Lp(∇,m) ≤ ‖ |T | ‖Lp(∇,m)→Lp(∇,m) ≤ 1. �
The following theorem is a version of Theorem 2.1 for an operator T ∈

C1,∞(∇,m).

Theorem 2.5. If T ∈ C1,∞(∇,m), then for every ω ∈ Ω there exists

Tω ∈ C1,∞(∇ω ,mω) such that Tω(Φ(x)(ω)) = Φ(Tx)(ω)

a.e. for every x ∈ L1(∇,m).

Proof. Theorem 2.1 provides the existence of a linear operator Tω in L1(∇ω ,mω)
satisfying Tω(Φ(x)(ω)) = Φ(Tx)(ω), in addition Tω(�∇(x)(ω)) = �∇(Tx)(ω) for all
ω ∈ Ω, x ∈ L∞(∇). Let Sω be the positive linear contractions in L1(∇ω ,mω) as
in the proof of Corollary 2.4. Since |Tx| ≤ |T ||x| and Sω(�∇(x)(ω)) = �∇(|T |x)(ω)
for all ω ∈ Ω, x ∈ L∞(∇) we have that |Tω(�∇(x)(ω))| = |�∇(T (x))(ω)| ≤
�∇(|T ||x|)(ω) = Sω(�∇(|x|)(ω)) = Sω(|�∇(x)(ω)|). Using density of the linear space
{�∇(x)(ω) : x ∈ L∞(∇)} in L1(∇ω,mω) (see property 5) of �∇) we obtain that
|Tωg| ≤ Sω|g| for all g ∈ L1(∇ω,mω). Since every bounded linear operator in
L1(∇ω,mω) is regular, the module |Tω| is defined, which is a positive contraction
in L1(∇ω,mω), in addition

|Tω|h = sup{|Tωg| : g ∈ L1(∇ω ,mω), |g| ≤ h } ≤ Sωh

for all 0 ≤ h ∈ L1(∇ω ,mω). In particular |Tω|(1ω) ≤ Sω(1ω) ≤ 1ω, that im-
plies |Tω|(L∞(∇ω)) ⊂ L∞(∇ω) and ‖ |Tω| ‖L∞(∇ω)→L∞(∇ω) ≤ 1. Since |Tωg| ≤
|Tω||g| for all g ∈ L1(∇ω,mω), it follows that Tω(L∞(∇ω)) ⊂ L∞(∇ω) and
‖Tω‖L∞(∇ω)→L∞(∇ω) ≤ 1. �

3. Ergodic theorems for L1-L∞ contractions in Lp(∇,m)

Consider on the vector lattice L0(∇) the metric ρ(x, y) =
∫
|x−y|(1+|x−y|)−1dm

with values in L0(Ω). Let Z : ω → Z(ω) = (L0(∇ω), ρω) be a bundle over Ω of
metric spaces (L0(∇ω), ρω), where

ρω(u(ω), v(ω)) =

∫
|u(ω)− v(ω)|(1ω + |u(ω)− v(ω)|)−1dmω, ω ∈ Ω.

In [8] it is established that there exists an isometric isomorphism Ψ from (L0(∇), ρ)
onto the complete L0(Ω)-metrisable vector lattice L0(Ω, (Z, E)) such that

Ψ
(∑n

i=1
λiei

)
=
∑n

i=1
λiγω(ei) = Φ

(∑n

i=1
λiei

)
,

for all λi ∈ R, ei ∈ ∇, i = 1, . . . , n, n ∈ N, in addition, L0(Ω, (Y1, E)) can be
identified with a vector sublattice in L0(Ω, (Z, E)) and Ψ(x) = Φ(x) for all x ∈
L1(∇,m), where Y1(ω) = L1(∇ω ,mω), ω ∈ Ω.

In order to obtain various results of ergodic theorems related to L1-L∞ con-
tractions in Lp(∇,m), we need to employ the following connection between (o)-
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convergence of a sequence {xn} ⊂ L0(∇) and (o)-convergence of the sequences
{Ψ(xn)(ω)} ⊂ L0(∇ω), ω ∈ Ω.

Theorem 3.1. [2] If xn, x ∈ L0(∇) and xn
(o)→ x, then Ψ(xn)(ω)

(o)→ Ψ(x)(ω) in

L0(∇ω) for a.e. ω ∈ Ω. Conversely, if xn ∈ L0(∇) and Ψ(xn)(ω)
(o)→ v(ω) a.e. for

some v(ω) ∈ L0(∇ω), then there exists x ∈ L0(∇) such that Ψ(x)(ω) = v(ω) a.e.

and xn
(o)→ x in L0(∇).

The following theorem is a vector version of the well-known N. Danford
and J.T. Schward’s ergodic theorems for a L1-L∞ contraction in the Banach–
Kantorovich lattice Lp(∇,m) associated with an L0(Ω)-valued measure.

Theorem 3.2. If T ∈ C1,∞(∇,m), 1 < p < ∞, x ∈ Lp(∇,m) then the se-

quence sn(T )(x) =
1
n

n−1∑
i=0

T i(x) is order bounded in the Banach–Kantorovich lattice

Lp(∇,m) and

‖ sup
n≥1

|sn(T )(x)| ‖p ≤
(

p

p− 1

)
‖x‖p,

in addition, there exists x̃ ∈ Lp(∇,m) such that the sequence sn(T )(x) is (o)-
convergent to x̃ in Lp(∇,m).

Proof. From the proof of Corollary 2.4 it follows that |T | is a positive contraction
in Lp(∇,m) and |T |(1) ≤ 1. From [2] follows that the sequence sn(|T |)(|x|) is
order bounded in Lp(∇,m) and

‖ sup
n≥1

|sn(|T |)(|x|)| ‖p ≤
(

p

p− 1

)
‖x‖p.

Since |T ix| ≤ |T |i(|x|), i = 1, 2, . . . it follows that

|sn(T )(x)| ≤
1

n

n−1∑
i=0

|T i(x)| ≤ 1

n

n−1∑
i=0

|T |i||x| = sn(|T |)(|x|)

and

‖ sup
n≥1

|sn(T )(x)|‖p ≤ ‖ sup
n≥1

sn(|T |)(|x|)‖p ≤
(

p

p− 1

)
‖x‖p.

According to Theorem 2.5 and Corollary 2.4 we have that sn(Tω)(Φ(x)(ω)) =
Φ(sn(T )(x))(ω) a.e. Since Tω ∈ C1,∞(∇ω ,mω) (Theorem 2.5), Theorem 6 [7, Ch.
VIII, §6] implies that there exists v(ω) ∈ L0(∇ω) such that

sn(Tω)(Φ(x)(ω))
(o)→ v(ω)

in L0(∇ω,mω) for a.e. ω ∈ Ω. Since Φ(sn(T )) ∈ L0(Ω, Yp), it follows that v ∈
L0(Ω, Yp) and there exists x̃ ∈ L0(∇,m) such that Ψ(x̃) = v.

Theorem 3.1 implies that sn(T )(x)
(o)→ x̃ in L0(∇). Using this (o)-convergence

and order-boundedness in Lp(∇,m) of the sequence {sn(T )(x)} we have that x̃ ∈
Lp(∇,m) and sn(T )(x) is (o)-convergent to x̃ in Lp(∇,m). �
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Remark 3.3. Repeating the proof of Theorem 3.2 and using Corollaries 4 and 5
[7, Ch. VIII, §5] we get that for every T ∈ C1,∞(∇,m), x ∈ L1(∇,m) there exists
x̃ ∈ L1(∇,m) such that the sequence sn(T )(x) is (o)-convergent to x̃ in L0(∇) and
‖sn(T )(x)− x̃‖1

(o)→ 0.

Now, we shall present a version of Theorem 3.2 for Orlicz–Kantorovich lattices
LM (∇,m).

Let M : R → [0,∞) be an N -function and let M∗ be the complementary
N -function to M [11, Ch. I, §§1–2].

In the same way as in [4], we consider the following subsets in L1(∇,m):

L0
M (∇,m) = {x ∈ L0(∇) : M(x) ∈ L1(∇,m)},

LM (∇,m) = {x ∈ L0(∇) : xy ∈ L1(∇,m), ∀y ∈ L0
M∗(∇,m)}

for which the inclusions

L∞(∇) ⊂ L0
M (∇,m) ⊂ LM (∇,m) ⊂ L1(∇,m)

hold.
The set LM (∇,m) is a vector sublattice in L1(∇,m) and with respect to the

L0(Ω)-valued norm

‖x‖M := sup

{∣∣∣∣∫ xy dm

∣∣∣∣ : y ∈ L0
M∗(∇,m),

∫
M∗(y)dm ≤ 1

}
the pair (LM (∇,m), ‖ · ‖M ) is a Banach–Kantorovich lattice, which is called an
Orlicz–Kantorovich lattice [4].

Proposition 3.4. If T ∈ C1,∞(∇,m), then

T (LM (∇,m)) ⊂ LM (∇,m) and ‖T ‖LM(∇,m)→LM (∇,m) ≤ 1.

Proof. By [4, Proposition 2.3] we have that an element x ∈ L1(∇,m) belongs
to LM (∇,m) if and only if Φ(x)(ω) ∈ LM (∇ω,mω) a.e., moreover ‖x‖M (ω) =
‖Φ(x)(ω)‖LM (∇ω ,mω) a.e. Since LM (∇ω ,mω) is an interpolation space between
L1(∇ω,mω) and L∞(∇ω ,mω) [13, Ch. II, §4], repeating the proof of Corollary 2.4
we obtain that T (LM (∇,m)) ⊂ LM (∇,m) and ‖T ‖LM(∇,m)→LM (∇,m) ≤ 1. �

For establishing the statistic ergodic theorem for L1-L∞ contractions in
LM (∇,m) we need the next properties of the classical Orlicz spaces LM (∇ω ,mω)
which immediately follow from [6, Proposition 2.1].

Proposition 3.5. Let N -function M meets $2-condition and let K be a norm
bounded set in LM (∇ω,mω). Then K is relatively weak compact if and only if
for each f ∈ L∗

M (∇ω ,mω) = LM∗(∇ω ,mω) and a sequence qn ∈ ∇ω with qn ↓ 0
the convergence

sup

{∣∣∣∣∫ (qnfh)dmω

∣∣∣∣ : h ∈ K

}
→ 0

holds.
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Now let us give a version of the statistic ergodic theorem for L1-L∞ contrac-
tion in the Banach–Kantorovich lattice LM (∇,m).

Theorem 3.6. If T ∈ C1,∞(∇,m), x ∈ LM (∇,m) and the N -function M meets
the $2-condition, then there exists x̃ ∈ LM (∇,m) such that

‖sn(T )(x)− x̃‖M
(o)→ 0.

Proof. Since mω(1ω) = 1, Proposition 3.5 implies that ∇ω is relatively weak com-
pact in LM (∇ω,mω).

Let Tω be an L1-L∞ contraction in L1(∇ω ,mω) such that Tω(Φ(x)(ω)) =
Φ(Tx)(ω) a.e. for every x ∈ L1(∇,m) (see Theorem 2.5). It is clear that

‖(1/n)sn(Tω)(h)‖LM(∇ω ,mω) → 0 as n→∞

for all h ∈ LM (∇ω,mω).
Since the N -function M meets $2-condition, the linear subspace{∑n

i=1
λiei : λi ∈ R, ei ∈ ∇ω , i = 1, . . . , n, n ∈ N

}
is dense in LM (∇ω ,mω), in addition, ∇ω is a relatively weak compact set in
LM (∇ω ,mω) (see Proposition 3.5). Hence by Corollary 3 [7, Ch. VIII, §5] there
exists v(ω) ∈ LM (∇ω ,mω) such that ‖sn(Tω)(Φ(x)(ω)) − v(ω)‖LM(∇ω ,mω) → 0
as n → ∞ for a.e. ω ∈ Ω. Since Φ(sn(T )) ∈ L0(Ω, Y1), it follows that v ∈
L0(Ω, Y1). By [4, Proposition 2.3] we have that there exists x̃ ∈ LM (∇,m) such

that Φ(x̃)(ω) = v(ω) a.e., in addition, ‖sn(T )(x)− x̃‖M
(o)→ 0. �

Repeating the proof of Theorems 3.2, 3.6 and using [4, Theorem 3.3], we ob-
tain the following version of the individual ergodic theorem for L1-L∞ contraction
in the Orlicz–Kantorovich lattice LM (∇,m).

Theorem 3.7. If T ∈ C1,∞(∇,m), x ∈ LM (∇,m) and the N -function M has

the property sup
s≥1
{ 1
M(s)

s∫
1

M(t−1s)dt} < ∞, then the sequence sn(T )(x) is order

bounded in the Orlicz–Kantorovich lattice LM (∇,m) and sn(T )(x) is (o)-conver-
gent in LM (∇,m).

4. Weighted ergodic theorems in Banach–Kantorovich
lattice Lp(∇,m)

Let S be the unit circle in the field C of complex numbers and let Z be the ring of
integer numbers. A function Ps : Z→ C is called a trigonometric polynomial if

Ps(k) =
∑s

j=1
rjλ

k
j , k ∈ Z, for some {rj}sj=1 ⊂ C

and {λj}sj=1 ⊂ S. A sequence {α(k)} of complex numbers is called a bounded

Besicovich sequence (BB-sequence) if sup{|α(k)| : k ∈ Z} <∞ and for every ε > 0
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there exists a sequence of trigonometric polynomials Ps, such that

lim
n

sup
1

n

∑n−1

k=0
|α(k)− Ps(k)| < ε.

The following theorem is a vector version of the weighted ergodic theorem
for L1-L∞ contractions in the Banach–Kantorovich lattice Lp(∇,m).

Theorem 4.1. Let {α(k)} be a BB-sequence of real numbers and T ∈ C1,∞(∇,m),
x ∈ Lp(∇,m). If 1 < p < ∞ (p = 1) then there exists x̃ ∈ Lp(∇,m) such that

sn(α, T )(x) = 1
n

n−1∑
k=0

α(k)T k(x)
(o)→ x̃ in Lp(∇,m) (respectively, sn(α, T )(x)

(o)→ x̃

in L0(∇,m)).

Proof. Let Tω be an L1-L∞ contraction in L1(∇ω,mω) such that Tω(Φ(x)(ω)) =
Φ(Tx)(ω) a.e. (see Theorem 2.5). Since Tω ∈ C1,∞(∇ω ,mω), Theorem 1.4 [10]
implies that there exists v(ω) ∈ L1(∇ω ,mω) such that

sn(α, Tω)(Φ(x)(ω))
(o)→ v(ω) in L0(∇ω) for a.e. ω ∈ Ω.

By Theorem 3.1 there exists x̃ ∈ L1(∇,m) such that sn(α, T )(x)
(o)→ x̃ in L0(∇).

If 1 < p <∞, x ∈ Lp(∇,m), then using Theorem 3.2 and the inequality

|sn(α, T )(x)| ≤
1

n

∑n−1

k=0
|α(k)||T k(x)| ≤ sup

k
|α(k)|sn(|T |)(|x|),

we have that the sequence sn(α, T )(x) is order bounded in the Banach–Kantorovich

lattice Lp(∇,m). Consequently, x̃ ∈ Lp(∇,m) and the convergence sn(α, T )(x)
(o)→

x̃ in L0(∇) imply the (o)-convergence of the sequence sn(α, T )(x) to x̃ in Lp(∇,m).
�

Remark 4.2. Since the norm ‖ · ‖p is order continuous in Lp(∇,m) [5], Theorem
4.1 implies that under the conditions of Theorem 4.1 we have that the convergence

‖sn(α, T )(x)− x̃‖p
(o)→ 0 is provided by the condition 1 < p <∞, x ∈ Lp(∇,m), in

addition (see Theorem 3.2),

‖ sup
n≥1

|sn(α, T )(x)| ‖p ≤ sup
k
|α(k)|·‖ sup

n≥1
sn(|T |)(|x|)‖p ≤

(
p

p− 1

)
sup
k
|α(k)|·‖x‖p.
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The Dedekind Completion of C(X) with
Pointwise Discontinuous Functions

Nicolae Dăneţ

Abstract. In this paper we show that whenever X is a topological space,
which is completely regular and Baire, then the Dedekind completion of C(X),
the space of all real continuous functions on X, is the Dedekind complete
Riesz space of all pointwise discontinuous functions, where two functions that
coincides on a dense set are identified.
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1. Introduction

In the theory of linear operators between Riesz spaces almost all good results use
the fact that the range space is Dedekind complete. Two of the most important
spaces in functional analysis, C(X) and Cb(X), the spaces of all real continuous
functions or real bounded continuous functions on a topological space X , are not
Dedekind complete. The problem of construction of the Dedekind completion of
these spaces has been addressed by many authors in the last sixty five years,
but a universally accepted solution has not been found yet. In the last years,
after Rosinger and Anguelov showed that the solutions of some partial differential
equations can be assimilated with functions in the Dedekind completion of the
above two spaces [3, 4], the interest in this problem has become even more.

The terminology used in this paper for Riesz spaces is that of [20]. We recall
however the definition of the Dedekind completion of a Riesz space ([20], Defini-
tion 32.1).

Definition 1.1. The Dedekind complete Riesz space Lδ is called a Dedekind com-
pletion of the Riesz space L if the following conditions hold.

(i) There exists a Riesz subspace L̂ of Lδ such that L and L̂ are Riesz isomorphic.

(ii) f̂ =
∨
{ĝ : ĝ ∈ L̂, ĝ ≤ f̂} =

∧
{ĝ : ĝ ∈ L̂, ĝ ≥ f̂}, for all f̂ ∈ Lδ.
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Every Archimedean Riesz space L has a Dedekind completion Lδ ([20], The-
orem 32.5), which is unique up to a Riesz isomorphism. The Riesz space C(X) is
Archimedean, therefore its Dedekind completion C(X)δ exists.

The aim of this paper is to describe a construction of C(X)δ using functions
(more precisely, equivalent classes of functions) defined on the space X. We are
not interested in obtaining a Riesz isomorphism with another space C(Y ), with Y
a topological space different from X .

In 1937 MacNeille [21] proved his famous result about the order completion
by cuts of a partially ordered set. Let P be a nonempty partially ordered set
containing no smallest or largest element. If A and B are subsets of P we define
the subsets Au and Bl of P by putting Au = {p ∈ P : p ≥ a for all a ∈ A} and
Bl = {p ∈ P : p ≤ a for all a ∈ A}, respectively. (For the properties of the sets
Au and Bl see [20], pp. 187–188.) A subset A of P is called a cut if A = Aul.

Let P̃ be the set of all cuts of P. MacNeille showed that the set P̃ , partially

ordered by inclusion, is an order-complete lattice and the map φ : P −→ P̃ , given
by φ(x) = {x}ul, is a one-to-one map which preserves suprema and infima. In
addition, every cut A satisfies

A =
∨{

{x}ul : {x}ul ⊂ A
}
=
∧{

{x}ul : {x}ul ⊃ A
}

([20], Theorem 32.3). The order-complete lattice P̃ is called the completion by cuts
or the normal completion of the partially ordered set P.

In 1950 Dilworth used MacNeille’s result to construct the completion by cuts
of the lattice Cb(X). In his seminal paper [11] Dilworth introduced the notion
of normal upper semicontinuous functions, that is, the functions f that satisfy
the equality S(I(f)) = f (see (2.1) for the definitions of the operators I and S)
and proved that, if X is a completely regular space, the completion by cuts of
Cb(X) is isomorphic with the complete lattice NU b

sc(X) of all bounded normal
upper semicontinuous functions ([11], Theorem 4.1). The isomorphism is only for
the lattice structure and not for the vector structure. It is worth to note that the
sum and the pointwise infimum of two normal upper semicontinuous functions are
semicontinuous but not normal. The author showed in [10] how the set NU b

sc(X)
can be organized as a Riesz space.

In 1953 Horn [14] proved a similar result to that of Dilworth, but for un-
bounded continuous functions. First he developed a general theory for the com-
pletion by cuts of a partially ordered set C, which is a subset of a complete lattice
B. Applying this construction to the lattice C(X) Horn proved that, for X a com-

pletely regular space, the completion by cuts of C(X) is isomorphic withNLcb
sc (X),

the complete lattice of all normal lower semicontinuous functions (see Definition
2.2), which are C-bounded ([14], Theorem 11). (A function f : X −→ R is called
C-bounded if there exist g1, g2 ∈ C(X) such that g1 ≤ f ≤ g2.)

The results of Dilworth and Horn concern only the completion by cuts of the
lattices Cb(X) and C(X), respectively. In 1962 Kuzumi Nakano and Shimogaki [22]
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constructed the Dedekind completion of the Riesz space C(X), for X a compact
space, using quasicontinuous functions. They used the name of quasicontinuous
function for a real bounded function, which satisfies the equality IS(f) = ISI(f).
This definition was introduced by Hidegorô Nakano in his book “Measure The-
ory” published in 1948 in Japanese [23]. We will call this type of functions N-
quasicontinuous, that is, quasicontinuous in the sense of Nakano. Nowadays a real
function f on a topological space X is called quasicontinuous on X if for every
x ∈ X and for every ε > 0 and for every neighborhood U of x there exists a
nonempty open set G ⊂ U such that |f(y)− f(x)| < ε, for all y ∈ G. (Note that
it is not necessary that x ∈ G.) If f is quasicontinuous then IS(f) = I(f) and
SI(f) = S(f) ([7], Proposition 3.1) and, in consequence, IS(f) = ISI(f), that is,
f is N-quasicontinuous. Lemma 1 in [22] (with reference for proof to the inacces-
sible book [23]) asserts that a function f is N-quasicontinuous if and only if it is
pointwise discontinuous. (A function f : X −→ R is called pointwise discontinuous
on X if the set of points of continuity of f is dense in X.) We will give a proof of
this lemma in Proposition 4.6.

In a series of four papers [15, 16, 17, 18] published between 1957 and 1964,
and later in a book [19], Kaplan studied extensively C(X), its dual C(X)∗ and its
second dual C(X)∗∗. In this context he gave several descriptions for C(X)δ using
C(X)∗∗ [18, 19]. In these papers Kaplan developed the arithmetic of the operators �
and u (see definitions in (2.7) and (2.8)), which are the basic tools for the construc-
tion of C(X)δ. These operators can be also defined on every Dedekind complete
Riesz space and they have almost all the properties highlighted by Kaplan.

In 2004 Anguelov [1] constructed the completion by cuts of C(X) using
Hausdorff continuous interval-valued functions (in the sense of Sendov [24], H-

continuous functions for short), that is, the functions f : X −→ IR, which associate

to every point x ∈ X the real closed interval [f(x), f (x)] whose components (f, f)
form a regular pair (see Definition 5.6). Anguelov showed that the completion by
cuts of C(X) is isomorphic with Hcb(X), the complete lattice of all H-continuous
functions that are C-bounded on X ([1], Theorems 9 and 10). The algebraic struc-
ture of the set H (Ω) of all H-continuous functions defined on an open set Ω ⊂ Rn

was studied later in [2]. The interest in study of the space H (Ω) , and hence of
C(Ω)δ, comes from the fact that the solutions of some partial differential equations
can be assimilated with H-continuous functions [3, 4].

In 2010 Becker [6] gave a short description of how can be constructed the
Dedekind completion of the Riesz space Cb(X), when X is a Baire space, using
upper semicontinuous functions.

In 2010–2011 the author had the following contributions to this topic: (a)
every H-continuous function on a completely regular topological space X corre-
sponds uniquely to a Dedekind cut in C(X) [9]; (b) if X is a compact space or a
complete metric space, then the completion by cuts of C(X) is isomorphic with
Q(X,R), the complete lattice of all equivalence classes of quasicontinuous func-
tions, where f ∼ g if and only if f = g on the dense set of all common points of
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continuity of f and g [7]; (c) Anguelov’s construction can be deduced via an order
isomorphism from Horn’s construction [8].

The short list from above, certainly incomplete, shows that in all construc-
tions of the completion by cuts of C(X) or of the Dedekind completion C(X)δ the
authors have used functions with certain types of discontinuity. A careful analysis
shows that all these functions have in common one property: they are pointwise
discontinuous.

In this paper we show that the Dedekind completion of C(X), for X a com-
pletely regular Baire space, is the Dedekind complete Riesz space of all pointwise
discontinuous functions, where two functions that coincides on a dense set are iden-
tified. Our second goal is to give proofs based on Riesz space techniques, which
can be used to any Riesz space.

In Section 2 we establish the terminology and recall the definitions and the
basic properties of some nonlinear operators I and S, called Baire operators [5],
which are the principal tools in our proofs. Because the Dedekind completion is an
order process and not a topological one, we characterize all topological properties
of the functions with the aid of the Baire operators. In Section 3 we show that a
function is pointwise discontinuous on a Baire space if and only if I(S(f)−I(f)) =
0, and that the set of all pointwise discontinuous functions Cd(X) is a Riesz space.
In Section 4, following Kaplan [18], we call a function f rare if IS(|f |) = 0 and
show that f is rare if and only if f = 0 on a dense set in a Baire space X. Since
the set Ra(X) of all rare functions is an ideal in the Riesz space Bloc(X) of all
real locally bounded functions, we consider the quotient space Bloc(X)/Ra(X)
and study its properties in Section 5. The most important result in this section

is Theorem 5.7, which shows that in every equivalence class f̂ ∈ Cd(X)/Ra(X)

there exists a unique regular pair (f, f) such that f̂ = f̂ = f̂ . Finally, Section 6

contains the construction of C(X)δ.

2. Preliminaries and notation

2.1. Baire operators and their properties

Let X be a topological space. A function f : X −→ R is called locally bounded on
X if for every x ∈ X there exists a neighborhood V of x such that f is bounded on
V , that is, a ≤ f(y) ≤ b, for some real numbers a and b and all y ∈ V. We denote
by Bloc(X) the Dedekind complete Riesz space of all locally bounded functions on
X. To every function f ∈ Bloc(X) we associate two new functions, the lower limit
function and the upper limit function of f, I(f) and S(f), respectively, defined as
follows,

I(f)(x) = sup
V ∈Vx

inf
y∈V

f(y) and S(f)(x) = inf
V ∈Vx

sup
y∈V

f(y), (2.1)

where Vx denotes the set of all neighborhoods of the point x ∈ X. So we obtain
two nonlinear operators I, S : Bloc(X) −→ Bloc(X) called the lower Baire operator
and the upper Baire operator, respectively. The definitions of these operators are
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pointwise and use explicitly the topology of the space X by using the neighbor-
hoods of x, unlike the operators � and u (see (2.7) and (2.8)), which are defined
using the order relation between functions.

The Baire operators have the following properties:

(B1) I(f) ≤ f ≤ S(f), for all f ∈ Bloc(X).

(B2) I and S are monotone, that is, I(f) ≤ I(g) and S(f) ≤ S(g), whenever
f ≤ g.

(B3) I and S are idempotent, that is, I ◦ I = I and S ◦ S = S.
(B4) I ◦ S and S ◦ I are also monotone and idempotent.

(B5) If λ ≥ 0, then I(λf) = λI(f) and S(λf) = λS(f).
(B6) S(−f) = −I(f).
(B7) The operator I is supra-additive, the operator S is sub-additive and for

any f, g ∈ Bloc(X) we have ([12], p. 22)

I(f) + I(g) ≤ I(f + g) ≤ I(f) + S(g) ≤ S(f + g) ≤ S(f) + S(g).

(B8) In consequence,

I(f)− S(g) ≤ I(f − g) ≤ S(f)− S(g)
I(f)− I(g)

≤ S(f − g) ≤ S(f)− I(g).

(B9) I(f ∧ g) = I(f) ∧ I(g).

(B10) S(f ∨ g) = S(f) ∨ S(g).

(B11) f ∧ g = 0⇒ I(f) ∧ S(g) = 0.

(B12) S(f+) = S(f)+, I(f+) = I(f)+, S(f−) = I(f)−, I(f−) = S(f)−.

2.2. Baire operators and semicontinuous functions

A function f ∈ Bloc(X) is lower semicontinuous if and only if I(f) = f, and
upper semicontinuous if and only if S(f) = f. We denote by Lsc(X) the set
of all locally bounded lower semicontinuous functions, and by Usc(X) the set of
all locally bounded upper semicontinuous functions. The sets Lsc(X) and Usc(X)
are Dedekind complete lattices in which the supremum and the infimum of any
nonempty order-bounded subset {fγ}γ∈Γ are given by the formulae:∨

L
fγ =

∨
fγ ,

∧
L
fγ = I

(∧
fγ

)
, (2.2)

∨
U
fγ = S

(∨
fγ

)
,

∧
U
fγ =

∧
fγ . (2.3)

The linear subspace of Bloc(X) generated by lower or upper semicontinuous
functions will be denoted by S(X). Therefore a function f ∈ S(X) can have one
of the following descriptions: f = g − h, with g, h ∈ Lsc(X) or g, h ∈ Usc(X), or
f = g + h, with g ∈ Lsc(X) and h ∈ Usc(X).

Proposition 2.1. S(X) is a Riesz subspace of Bloc(X).
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Proof. Let f = g−h ∈ S(X), with g, h ∈ Lsc(X), and λ ∈ R. Then λf = λg−λh,
if λ ≥ 0, and λf = (−λ)h− (−λ) g, if λ < 0. Hence λf ∈ S(X).

If f1 = g1 − h1, f2 = g2 − h2 ∈ S(X), with g1, g2, h1, h2 ∈ Lsc(X), then

f1 + f2 = (g1 + g2)− (h1 + h2) ∈ S(X),

f1 ∨ f2 = (g1 − h1) ∨ (g2 − h2) = (g1 + h2) ∨ (g2 + h1)− (h1 + h2) ∈ S(X),

and a similar formula holds for f1 ∧ f2. Therefore S(X) is a Riesz subspace of
Bloc(X). �

The compositions I ◦ S and S ◦ I of Baire operators are also monotone and
idempotent. The functions that are fixed points for these operators were introduced
and studied by Dilworth [11] under the name of normal semicontinuous functions.
More precisely, we have the following definition.

Definition 2.2. A function f ∈ Lsc(X) is called normal lower semicontinuous if
I(S(f)) = f, and a function f ∈ Usc(X) is called normal upper semicontinuous if
S(I(f)) = f.

The set of all normal lower semicontinuous functions is denoted by NLsc(X)
and the set of all normal upper semicontinuous functions is denoted by NU sc(X).
These sets are Dedekind complete lattices in which the supremum and the infimum
of any nonempty order-bounded subset {fγ}γ∈Γ are given by the formulae ([11],
Theorem 4.2): ∨

NL fγ = IS
(∨

fγ

)
,

∧
NL fγ = I

(∧
fγ

)
, (2.4)∨

NU fγ = S
(∨

fγ

)
,

∧
NU fγ = SI

(∧
fγ

)
. (2.5)

2.3. Saltus operator and its properties

For f ∈ Bloc(X) we define the saltus of f by putting ω(f) = S(f) − I(f). The
saltus ω(f) has the following properties:

(S1) ω(f) is an upper semicontinuous function.
(S2) ω(f) ≥ 0 and ω(f) = 0⇔ f ∈ C(X). If we denote by Cf the set of points of

continuity of f , then we have

f ∈ C(X)⇔ Cf = X ⇔ ω(f) = 0. (2.6)

(S3) ω(λf) = |λ|ω(f), for all λ ∈ R. In particular, ω(−f) = ω(f).

(S4)
ω(f ∨ g)
ω(f ∧ g)

≤ ω(f) ∨ ω(g).

(S5) |ω(f)− ω(g)| ≤ ω(f + g)
ω(f − g)

≤ ω(f) + ω(g).

(S6) ω(f + g) ≤ ω(f ∨ g) + ω(f ∧ g) ≤ ω(f) + ω(g).

(S7) ω(f) = ω(f+) + ω(f−).
(S8) ω(|f |) ≤ ω(f) ≤ 2S(|f |).
For the proof of these properties see [19], pp. 256–260.
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2.4. Kaplan operators

We denote by Bc(X) the set of all real functions that are C-bounded on X. (We
recall that a function f : X −→ R is called C-bounded if there exist g1, g2 ∈ C(X)
such that g1 ≤ f ≤ g2.) Obviously, Bc(X) ⊂ Bloc(X), and since Bc(X) is the ideal
generated by C(X) in Bloc(X), Bc(X) is a Dedekind complete Riesz space. For
f ∈ Bc(X) the sets {g ∈ C(X) : g ≤ f} and {g ∈ C(X) : g ≥ f} are nonempty
and we can define two new functions by putting

�(f)(x) =
∨
{g(x) : g ∈ C(X), g ≤ f}, x ∈ X, (2.7)

u(f)(x) =
∧
{g(x) : g ∈ C(X), g ≥ f}, x ∈ X, (2.8)

where
∨

and
∧

denote the pointwise supremum and the pointwise infimum, re-
spectively. So we obtain two nonlinear operators �, u : Bc(X) −→ Bc(X), which
are monotone and idempotent. For every f ∈ Bc(X), we have �(f) ∈ Lsc(X),
u(f) ∈ Usc(X) and �(f) ≤ f ≤ u(f).

I called the operators � and u Kaplan operators because Samuel Kaplan
studied in details the properties of these operators in [18] and [19].

2.5. Relations between Baire and Kaplan operators and the characterization
of a completely regular space

For any f ∈ Bc(X) all Baire operators and Kaplan operators are well defined and
the following inequalities hold:

�(f) ≤ I(f) ≤ f ≤ S(f) ≤ u(f). (2.9)

The equalities between � and I or u and S characterize the completely regular
topological spaces.

Theorem 2.3. Let X be topological space. The following statements are equivalent:

(i) X is completely regular.

(ii) �(f) = I(f), for every f ∈ Bc(X).

(iii) u(f) = S(f), for every f ∈ Bc(X).

Proof. For (i) ⇒ (ii) and (i) ⇒ (iii) see Proposition 6 in [8].

(ii) ⇒ (i) Assume that �(f) = I(f), for every f ∈ Bc(X). Let x be any point
in X and let U be an open subset of X such that x ∈ U. Put f = χU . Since U is
open, f is lower semicontinuous and then we have f = I(f). Therefore f = �(f).
Since

1 = f(x) = �(f)(x) = sup{g(x) : g ∈ C(X), g ≤ f},
there exists a function g ∈ C(X), g ≤ f, such that g(x) > 0. We can assume that
g ≥ 0. (Otherwise, we can replace g with g+.) Then the inequalities 0 ≤ g ≤ f =
χU implies that g(y) = 0, for all y /∈ U. If we define h(z) = inf{g(z)/g(x), 1}, for
all z ∈ X, we have a continuous function on X with values in [0, 1], h(x) = 1 and
h(y) = 0, for all y /∈ U. Hence X is a completely regular topological space. �
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The implication (i)⇒ (iii) was proved by Dilworth ([11], Lemma 4.1) for real
bounded functions. The equivalence (i)⇔ (iii) was proved by Horn ([14], Theorem
8) for functions f : X −→ R. My proof of Theorem 2.3 is for real-valued functions
that are C-bounded.

For every f ∈ Bc(X) we have �(f) ≤ I(f) ≤ f (see (2.9)). These inequalities
become equalities in the following conditions: (a) I(f) = f ⇔ f is lower semicon-
tinuous; (b) �(f) = I(f) ⇔ X is completely regular; (c) �(f) = f ⇔ f is lower
semicontinuous and X is completely regular. Since we also have f ≤ S(f) ≤ u(f),
similar statements hold in this case.

3. Pointwise discontinuous functions

A function f : X −→ R is called pointwise discontinuous or densely continuous
on X if Cf , the set of points of continuity of f, is dense in X, or, equivalently,
every nonempty open subset of X contains a point of continuity of f. We de-
note by Cd(X) the set of all locally bounded functions on X that are pointwise
discontinuous.

The following theorem gives a characterization of a function f ∈ Cd(X). The
theorem shows that Cf = X if and only if I(ω(f)) = 0, that is, a topological prop-
erty of the function f can be characterized with the aid of the Baire operators. This
characterization appears in the thesis of Lester Ford in 1912 ([12], Theorem 16).

Theorem 3.1. Let X be a Baire space and f ∈ Bloc(X). The following assertions
are equivalent.

(i) f is pointwise discontinuous, that is, Cf = X.

(ii) I(ω(f)) = 0.

(iii) For every real number λ > 0 the sets Aλ(f) = {x ∈ X : ω(f)(x) ≥ λ} are
closed and nowhere dense.

(iv) The set of points of discontinuity of f is a set of the first category.

Proof. The implications (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) hold for any topological space
X. For (iv) ⇒ (i) we need X to be a Baire space.

(i) ⇒ (ii) If f is pointwise discontinuous, then, for every x ∈ X, every neigh-
borhood V of x contains a point y0 where f is continuous, that is, ω(f)(y0) = 0.
In consequence, I(ω(f))(x) = sup

V ∈Vx

inf
y∈V

ω(f)(y) = 0.

(ii)⇒ (iii) Since ω(f) is an upper semicontinuous function, all the sets Aλ(f)
are closed. We must show that intAλ(f) = ∅, for all λ > 0. By way of contradiction
let us assume that intAλ(f) �= ∅, for some λ. Let x be a point in intAλ(f). Then
we obtain the following contradiction

0 = I(ω(f))(x) = sup
V ∈Vx

inf
y∈V

ω(f)(y) ≥ inf
y∈intAλ(f)

ω(f)(y) ≥ λ > 0.
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(iii) ⇒ (iv) Since the set of points of continuity can be written in the form

Cf =
⋂∞

n=1
{x ∈ X : ω(f)(x) < 1/n},

the set of points of discontinuity is

X \ Cf =
⋃∞

n=1
A1/n(f),

where each A1/n(f) is nowhere dense. Hence X \ Cf is of the first category.
(iv) ⇒ (i) If we assume that (iv) holds, then

Cf =
⋂∞

n=1

(
A1/n(f)

)c
,

with
(
A1/n(f)

)c
= X \ A1/n(f) open and dense. Since X is a Baire space, Cf is

dense in X. �

The above theorem characterizes a function f ∈ Cd(X) just as (2.6) charac-
terizes a function f ∈ C(X). Analogously, we can write

f ∈ Cd(X)⇔ Cf = X ⇔ I(ω(f)) = 0. (3.1)

Theorem 3.2. If X is a Baire space, then the set Cd(X) is a Riesz subspace of the
Dedekind complete Riesz space Bloc(X).

Proof. Let f and g be two functions in Cd(X). Theorem 3.1 shows that I(ω(f)) = 0
and I(ω(g)) = 0. Using the property (S6) of the saltus operator and the properties
(B2), (B3) and (B7) of the Baire operator I, we have

0 ≤ I(ω(f + g)) ≤ II(ω(f ∨ g) + ω(f ∧ g)) ≤ I (I(ω(f) + ω(g)))

≤ I(I(ω(f))︸ ︷︷ ︸
=0

+ S(ω(g))︸ ︷︷ ︸
=ω(g)

) = I(ω(g)) = 0.

Hence I(ω(f + g)) = 0 and I(ω(f ∨ g) + ω(f ∧ g)) = 0. By Theorem 3.1 the
first equality shows that f + g ∈ Cd(X). Since I is supra-additive, 0 ≤ I(ω(f ∨
g)) + I(ω(f ∧ g)) ≤ I(ω(f ∨ g) + ω(f ∧ g)) = 0. Therefore, I(ω(f ∨ g)) = 0 and
I(ω(f ∧ g)) = 0, that is, f ∨ g, f ∧ g ∈ Cd(X).

For any real number λ we have I(ω(λf)) = I(|λ|ω(f)) = |λ| I(ω(f)) = 0.
Hence, λf ∈ Cd(X). �

4. The rare functions

A function f ∈ Bloc(X) will be called rare if IS (|f |) = 0 ([18, 19]). The set of all
rare functions f is denoted by Ra(X). This subset of Bloc(X) has a good structure
since it is an ideal.

Proposition 4.1. ([18], (3.2)) Ra(X) is an ideal of Bloc(X).

A useful characterization of a rare function is given in the following proposi-
tion.
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Proposition 4.2. For f ∈ Bloc(X) the following conditions are equivalent:

(i) f ∈ Ra(X).

(ii) f+, f− ∈ Ra(X).
(iii) IS (f) = 0 = SI (f) .
(iv) IS (f) ≤ 0 ≤ SI (f) .

The next proposition gives another characterization of a rare function, which
is the first step in obtaining a topological characterization. In particular, the propo-
sition shows that a rare function is pointwise discontinuous on a Baire space.

Proposition 4.3. f ∈ Ra(X) if and only if I (|f |) = 0 and I (ω(f)) = 0.

Proof. Let f be rare. Then we have 0 ≤ I (|f |) ≤ IS (|f |) = 0, and therefore
I (|f |) = 0. Moreover, since ω(f) ≤ 2S (|f |) (see (S8)), we also have 0 ≤ I (ω(f)) ≤
2IS (|f |) = 0, and so I (ω(f)) = 0.

Conversely, assume that I (|f |) = 0 and I (ω(f)) = 0. In order to prove
that f ∈ Ra(X), by Proposition 4.2 it is sufficient to show that f+, f− ∈ Ra(X).
Therefore we can prove the statement for f positive. If f ∈ Bloc(X)+ and I (f) = 0
and I (ω(f)) = 0, then IS(f) = I (S(f)− I(f)) = I (ω(f)) = 0, and so f ∈
Ra(X). �

Since ω(f) is upper semicontinuous and then S(ω(f)) = ω(f), the condition
I (ω(f)) = 0 means that ω(f) is rare. Proposition 4.3 shows that if f is rare, then
ω(f) is also rare. We denote by ω−1(Ra(X)) the set of all locally bounded functions
for which ω(f) ∈ Ra(X), that is, I (ω(f)) = 0. With this notation, by Proposition
4.3 we have Ra(X) ⊂ ω−1(Ra(X)). Theorem 3.1 shows that ω−1(Ra(X)) =
Cd(X), for X a Baire space. Then the following corollary holds.

Corollary 4.4. If X is a Baire space, then Ra(X) is an ideal in Cd(X).

In the next proposition we give a topological characterization of a rare func-
tion.

Proposition 4.5. Let X be a Baire space. A function f ∈ Bloc(X) is rare if and
only if f(x) = 0, for all x ∈ Cf , the dense Gδ set of points of continuity of f.

Proof. If f is rare, then I (|f |) = 0 and I (ω(f)) = 0 (Proposition 4.3). By Theorem
3.1, I (ω(f)) = 0 implies that f is pointwise discontinuous, that is, the set Cf of
points of continuity of f is a dense Gδ subset of X. At every point x ∈ Cf we have
|f | (x) = I (|f |) (x) = 0, since f is continuous at x. So f = 0 on Cf .

Conversely, if f(x) = 0, for all x ∈ Cf , where Cf is a dense Gδ subset of
X, then Cf is the set of points of continuity of f , and therefore f is pointwise
discontinuous. By Theorem 3.1 we have I (ω(f)) = 0. Moreover, since every open
set contains at least one point where f is equal to zero, we obtain I (|f |) (x) =
supV ∈Vx

inf
y∈V

|f | (y) = 0, for all x ∈ X. Thus, by Proposition 4.3, f is a rare

function. �
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Proposition 4.6. The following assertions are equivalent.

(i) f ∈ ω−1(Ra(X)), that is, I(ω(f)) = 0.
(ii) SI(f) ≥ IS(f).
(iii) IS(f) = ISI(f).
(iv) SI(f) = SIS(f).

Proof. (i) ⇒ (ii) results immediately by using property (B8).

0 = I (ω(f)) = I(S(f)− I(f)) ≥ IS(f)− SI(f).

(ii) ⇒ (iii) IS(f) = IIS(f) ≤ ISI(f) ≤ IS(f).
(iii) ⇒ (i) First we show that S(f)− SI(f) ∈ Ra(X). Indeed,

0 ≤ IS(S(f)− SI(f)) ≤ I(SS(f)− ISI(f)) ≤ IS(f)− IISI(f) = 0.

Then I (ω(f)) = I(S(f)− I(f)) ≤ S(f)− SI(f), from where we have

I (ω(f)) = ISIS (ω(f)) ≤ IS(S(f)− SI(f)) = 0.

The proof of the equivalence (iii) ⇔ (iv) uses the fact that IS and SI are
idempotent operators. �

If X is a Baire space, the equivalence (i) ⇔ (iii) in Proposition 4.6 shows
that a function is pointwise discontinuous if and only if it is N-quasicontinuous.
So we gave a proof for Lemma 1 in [22].

Proposition 4.7. The Riesz space S(X) has the properties:

(i) S(X) ⊂ ω−1(Ra(X)).
(ii) If X is a Baire space, then S(X) ⊂ Cd(X).

Proof. (i) If f ∈ Lsc(X), then f = I(f) and 0 ≤ I(ω(f)) = I(S(f) − f) ≤
SS(f)− S(f) = 0.

For f ∈ S(X) there exist g, h ∈ Lsc(X) such that f = g−h with ω(g), ω(h) ∈
Ra(X). Using the inequality (S5) we have ω(f) = ω(g − h) ≤ ω(g) + ω(h) ∈
Ra(X) and, since Ra(X) is an ideal, it results ω(f) ∈ Ra(X), that is, f ∈
ω−1(Ra(X)). �

5. The space Bloc(X)/Ra(X)

In the Dedekind complete Riesz space Bloc(X) we have the ideal Ra(X) of all rare
functions. The quotient space Bloc(X)/Ra(X) is a Riesz space and the quotient

mapping π : Bloc(X) −→ Bloc(X)/Ra(X), π(f) = f̂ , is a Riesz homomorphism
([20], Theorem 18.9).

The equivalence relation on Bloc(X) is

f ∼ g ⇔ f − g ∈ Ra(X)⇔ IS (|f − g|) = 0, (5.1)

and using Proposition 4.5 we can say that f ∼ g if and only if f = g on some
dense Gδ subset of X (the set of all common points of continuity of f and g).
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The order relation on Bloc(X)/Ra(X) is

f̂ ≤ ĝ ⇔ (f − g)+ ∈ Ra(X)⇔ IS(f − g) ≤ 0. (5.2)

For the first equivalence see [13], p. 14. The second equivalence results from the

equality 0 = IS((f − g)
+
) = (IS(f − g))

+
.

Proposition 5.1. Let f, g ∈ Bloc(X) such that f̂ ≤ ĝ. Then:

(i) f̂ ≤ ĝ ⇒ IS(f) ≤ S(g). The converse implication holds for g ∈ S(X).

(ii) f̂ ≤ ĝ ⇒ I(f) ≤ SI(g). The converse implication holds for f ∈ S(X).

Proof. (i) Let f̂ ≤ ĝ. Then IS(f − g) ≤ 0. Using (B8), we have

IS(f)− S(g) = IS(f)− SS(g) ≤ I(S(f)− S(g)) ≤ IS(f − g) ≤ 0.

Now assume that g ∈ S(X) and IS(f) ≤ S(g). Using (B8) we obtain

IS(f − g) ≤ I (S(f)− I(g)) ≤ IS(f)− II(g) ≤ S(g)− I(g) = ω(g),

from where it results IS(f − g) ≤ IS (ω(g)) . Since g ∈ S(X), then IS (ω(g)) = 0
(Proposition 4.7). Therefore the converse implication holds. �

Corollary 5.2. Let f, g ∈ Bloc(X). If f −g ∈ Ra, then IS(f) = IS(g) and SI(f) =
SI(g).

Proposition 5.3. The quotient mapping π : Bloc(X) −→ Bloc(X)/Ra(X) has the
following properties of order-continuity.

(i) If g =
∧

γ gγ , where {gγ}γ∈Γ is a subset of Usc(X) (hence g is also in Usc(X)),

then π(g) =
∧

γ π(gγ).

(ii) If g =
∨
γgγ, where {gγ}γ∈Γ is a subset of Lsc(X) (hence g is also in Lsc(X)),

then π(g) =
∨

γ π(gγ).

Proof. See [19], p. 384. �

The following proposition shows that, when X is a Baire space, every point-
wise continuous function on X is the sum of a semicontinuous function and a rare
function.

Proposition 5.4. Let X be a Baire space. The following conditions are equivalent:

(i) f ∈ Cd(X)

(ii) f = I(f) + r1
(iii) f = S(f) + r2
(iv) f = IS(f) + r3
(v) f = SI(f) + r4

where r1, r2, r3, r4 are some rare functions.
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Proof. If f ∈ Cd(X), ω(f) is in the Riesz ideal Ra(X) (Theorem 3.1). Then the
inequalities 0 ≤ S(f) − f ≤ ω(f) and 0 ≤ f − I(f) ≤ ω(f) show that S(f) − f
and f − I(f) are in Ra(X). Using that SI(f) ≥ IS(f) (Proposition 4.6) we have

−ω(f) = I(f)− S(f) ≤ f − SI(f) ≤ f − IS(f) ≤ S(f)− I(f) = ω(f),

from where it results |f − SI(f)| ≤ ω(f), and |f − IS(f)| ≤ ω(f). Hence f−SI(f)
and f − IS(f) are in Ra(X). So we just proved that (i) implies all the other
conditions.

(ii) ⇒ (i) If f = I(f) + r1, then ω(f) ≤ ω(I(f)) + ω(r1) = ω(r1), since ω is
null on semicontinuous functions (Proposition 4.7). Using the monotonicity of I
we obtain 0 ≤ I(ω(f)) ≤ I(ω(r1)) = 0. Hence f ∈ Cd(X).

Similar proofs can be given for the rest of the converse implications. �
Corollary 5.5. For X a Baire space the following subsets of Bloc(X)/Ra(X) coin-
cide:

π(Cd(X)), π(S(X)), π(Usc(X)), π(Lsc(X)), π(NU sc(X)), π(NLsc(X)).

Definition 5.6. A pair of functions (f, f) is called regular if f ∈ Lsc(X), f ∈ Usc(X),

f ≤ f, and

S(f) = f, I(f) = f.

If (f, f) is a regular pair, then the lower component f ∈ NLsc(X), the up-

per component f ∈ NU sc(X) and f − f ∈ Ra(X). A regular pair (f, f) defines

a H-continuous function f = [f, f ] and conversely ([1], Theorem 1). For the re-
lations between regular pairs, H-continuous functions and cuts in C(X) see [9],
Theorem 4.6.

Theorem 5.7. Let X be a Baire space. If f̂ ∈ Cd(X)/Ra(X), then:

(i) f̂ contains exactly one regular pair (f, f) and f̂ = f̂ = f̂ .

(ii) If g, h ∈ f̂ , g ∈ Lsc(X) and h ∈ Usc(X), then g ≤ f ≤ f ≤ h, that is, f is

the largest lower semicontinuous function in f̂ , and f is the smallest upper

semicontinuous function in f̂ .

Proof. (i) Let f̂ ∈ Cd(X)/Ra(X). Since f ∈ Cd(X), then IS(f) and SI(f) belong

to f̂ (Proposition 5.4), and IS(f) ≤ SI(f) (Proposition 4.6). Define

f = IS(f), f = SI(f). (5.3)

The pair (f, f) is regular because f ∈ Lsc(X), f ∈ Usc(X), and, by using
Proposition 4.6, we have

S(f) = SIS(f) = SI(f) = f, I(f) = ISI(f) = IS(f) = f

The regular pair defined by (5.3) is unique, because for every other function

g ∈ f̂ , by Corollary 5.2, we have IS(g) = IS(f) = f and SI(g) = SI(f) = f.

(ii) Let g ∈ f̂ be a lower semicontinuous function. Then g = I(g) ≤ IS(g) =

f. If h ∈ f̂ is upper semicontinuous, then h = S(h) ≥ SI(h) = f. �
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Proposition 5.8. The quotient mapping π : Bloc(X) −→ Bloc(X)/Ra(X) restricted
to the ordered set NLsc(X) is an order embedding, that is, f ≤ g ⇔ π(f) ≤ π(g),
for all f, g in NLsc(X). The assertion remains valid if we replace NLsc(X) by
NU sc(X).

Proof. Let f, g be in NLsc(X). We have to prove the implication π(f) ≤ π(g) ⇒
f ≤ g. By Proposition 5.1, if π(f) ≤ π(g), then IS(f) ≤ S(g), and so IS(f) ≤
IS(g). Since f, g ∈ NLsc(X), we obtain f ≤ g. �

6. Dedekind completion of C(X)

In this section we assume that X is a completely regular Baire space. The most
useful topological spaces in functional analysis are the compact spaces and the
complete metric spaces, which are completely regular Baire spaces. We denote by
Ccb

d (X) the Riesz space of all pointwise discontinuous functions on X that are
C-bounded.

Theorem 6.1. Let X be a completely regular Baire space. Then

C(X)δ = Ccb
d (X)/Ra(X),

that is, the Dedekind completion of C(X) is Ccb
d (X)/Ra(X).

Proof. We must show that the Riesz space C(X)δ satisfies the conditions of Defi-
nition 1.1:

(a) C(X)δ is a Dedekind complete Riesz space.
(b) π(C(X)) is a Riesz subspace of C(X)δ such that C(X) and π(C(X)) are

Riesz isomorphic.

(c) f̂ =
∨
{ĝ : ĝ ∈ π(C(X)), ĝ ≤ f̂} =

∧
{ĝ : ĝ ∈ π(C(X)), ĝ ≥ f̂}, for all

f̂ ∈ C(X)δ.

(a) Since Ccb
d (X) is a Riesz space (Theorem 3.2) and Ra(X) is an ideal in

Ccb
d (X) (Corollary 4.4), then C(X)δ = Ccb

d (X)/Ra(X) is a Riesz space ([20],
Theorem 18.9).

In order to prove that C(X)δ is Dedekind complete, let {f̂γ}γ∈Γ be a subset

of C(X)δ, which is bounded above by ĥ. By Theorem 5.7 we can assume that
fγ , h ∈ NLsc(X), and also that they are C-bounded. Therefore fγ = IS(fγ)

and h = IS(h). The inequality f̂γ ≤ ĥ implies fγ = IS(fγ) ≤ S(h), for all γ
(Proposition 5.1). In consequence, there exists

∨
fγ in Bloc(X) with

∨
fγ ≤ S(h),

from where we obtain IS(
∨
fγ) ≤ ISS(h) = h. Define f = IS (

∨
fγ) . It is worth

to note that f is the supremum of the set {fγ} in the latticeNLcb
sc (X) (see formulae

(2.4)). Since f ∈ NLsc(X), then f ∈ Cd(X) (Proposition 4.7), and it is easy to
see that f is C-bounded. Then f ≤ h and fγ = IS(fγ) ≤ IS (

∨
fγ) = f implies

that f̂ ≤ ĥ and f̂γ ≤ f̂ , for all γ ∈ Γ. This shows that
∨
f̂γ = f̂ .
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(b) We have the diagram C(X) ↪→ Ccb
d (X)

π−→ C(X)δ. The quotient map-
ping π is a Riesz isomorphism and π restricted to C(X) is a one-to-one mapping.
Indeed, if g1, g2 ∈ C(X) and π(g1) = π(g2), then g1 − g2 ∈ Ra(X). By Corollary
5.2 we have IS(g1) = IS(g2). Since g1, g2 ∈ C(X), we obtain g1 = g2.

(c) Let f̂ ∈ C(X)δ. By Theorem 5.7, f̂ = f̂ = f̂ , where (f, f) is a regular
pair, and it is easy to see that the two components are C-bounded. Since X is
completely regular, Theorem 2.3 gives the equalities I(f) = �(f), S(f) = u(f).

Using the properties of order-continuity of the quotient mapping (Proposition 5.3),
we have

f̂ = f̂ = π(f ) = π(I(f)) = π(�(f)) = π
(∨

{g : g ∈ C(X), g ≤ f}
)

=
∨
{π(g) : π(g) ∈ π (C(X)) , g ≤ f}.

Since π restricted to NU sc(X) is an order embedding (Proposition 5.8), g ≤ f if

and only if ĝ ≤ f̂ = f̂ . Therefore f̂ =
∨
{ĝ : ĝ ∈ π (C(X)) , ĝ ≤ f̂}.

A similar proof can be given for the second equality f̂ =
∧
{ĝ : ĝ ∈ π (C(X)) ,

ĝ ≥ f̂}. �
Corollary 5.5 shows that for the construction of C(X)δ we can use any type

of semicontinuous functions, because all those sets coincide.
The Riesz ideal of the rare functions Ra(X) coincides with the Riesz ideal N

in the paper of K. Nakano and Shimogaki (see Proposition 4.5). Our Theorem 6.1
coincides with Theorem 1 in [22] for X a compact space, but the proof is different.
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A Mazur–Orlicz Type Theorem in
Interval Analysis and Its Consequences

Rodica-Mihaela Dăneţ

Abstract. Classical extension theorems for linear functionals or, more gen-
erally, for linear operators in the setting of vector spaces are well known.
For example, the Hahn–Banach Theorem and the Mazur–Orlicz Theorem ex-
tend linear functionals (operators) dominated in a certain sense by sublinear
functionals (operators). It is also known that these theorems have many ap-
plications. To get more applications we intend to give some versions of these
theorems in interval analysis. In the literature of this field, intervals are viewed
as an extension of any value that they contain, motivated by the fact that in
many practical situations some values are known with interval uncertainty.
We will work with intervals in ordered vector spaces. It is known that the set
of all closed intervals in such spaces is not a vector space. Indeed, for example,
there is no additive inverse element for each closed interval. Therefore certain
difficulties arise in the proofs of the extension results.
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Keywords. Mazur–Orlicz Theorem, Hahn–Banach Theorem, interval analysis,
interval-spaces, interval-linear functionals, interval-sublinear functionals.

1. Introduction

According to R. Moore [26], who can be considered the father of modern interval
analysis, this branch of mathematics arose from the observation that if we compute
a number a and a rigorous bound b on the total error in a, as an approximation to
some unknown number x, such that |x− a| ≤ b, then no matter how we compute a
and b, we certainly know that x lies in the interval [a− b, a+ b]. This idea naturally
lead to investigation of computations with intervals.

An interval in the real line has a dual nature. Intervals are sets of real num-
bers, to which the usual operations on sets may be applied. Intervals can also be
interpreted as “numbers”, each represented by a pair of real numbers with suitable
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defined arithmetic operations – see the name of interval arithmetic given initial
to the interval analysis. As sets, intervals are used, for example, for computer al-
gorithms; see, for example, [5]. As numbers, intervals are used, to calculate upper
and lower endpoints for the range of a function; see [1, p. 422].

Defining addition of intervals as the usual Minkowski addition of sets

A+B = {a+ b | a ∈ A, b ∈ B},
we follow the logic of the principle of containing: the sum of two intervals certainly
contains the sums of all pairs of real numbers, one from each of two intervals. The
major obstacle in applications is the fact that for this addition, the additive inverse
(that is, the opposite) generally does not exist.

In [2], R. Anguelov considered that this “defect” of the addition of algebraic
structure of the space of intervals is “possibly one of the most important challenges
associated with the development of the theory” of this space. We meet this diffi-
culty, for example, when we try to extend classical results of functional analysis
in the interval analysis, more precisely, when we try to formulate in this analysis
extension results in the line of the Mazur–Orlicz and Hahn–Banach Theorems (as
they appear in [6]). In addition, if we want to extend a type of positive (linear) func-
tionals, we need to consider order relations in the interval-spaces. Consequently, a
question arises: “What is the best ordering?”

Many order relations were considered in the interval analysis, most of them
on IR, the space of all real closed intervals (see, for example, [8]). The fundamental
idea in defining such relations was that these orders would have to extend the order
of R, which, of course, is a total order. But the known order relations on IR are
partial orders. This is consistent with the fact that in some practical situations, we
are interested in quantities which are only partially ordered. An example is given
in [36].

Thus, in space-time geometry, we do not have the exact location of an event
in space-time; we usually only know the event x that can cause the given event
x (x ≤ x) and the event x̄ that can causally be affected by x (x ≤ x̄). In this
case, the only information that we have about the event x is that it belongs to
the interval [x, x̄] = {x | x ≤ x ≤ x̄}. This description looks similar to the interval
[a, ā] of real numbers but the important difference is that the causality relation in
space-time is only a partial order: there are two events x and y, for which x � y
and y � x. Such events are called incompatible and are sometimes denoted by
x ‖ y; see, for example [12], [24], [7], [35].

Moving from the space-time geometry in an economic framework, the order
relation introduced in the set of the preferences of agents is most often a partial
ordering (here, if [a] �= [b] are two goods, then [a] ≺ [b] means that [b] is strictly
preferred to [a]); see [10], [31], [33].

Depending on the problem to be solved, in the interval analysis are used
one or other of the order relations that can be entered – see, for example in the
context of the decision-making problems, the maximization (of interval profits) or
minimization (of interval costs).
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A chronological study for the order relations in interval analysis reveals that
at the beginning were considered transitive relations. The pioneer of this study
was R. Moore [25]. He introduced two transitive relations on the space IR of all
closed real intervals, later called the strong relation and the containment relation,
respectively:

1) [a] ≺ [b]⇔ ā ≤ b,
2) [a] ⊆ [b]⇔ b ≤ a ≤ ā ≤ b̄,

where [a] = [a, ā] and [b] =
[
b, b̄
]
are in IR.

Referring to “1)”, it should be noted that it seems to be a natural relation
in terms of time-reasoning. Indeed, “1)” is very convenient to describe a causal
relation. Thus if the two events [a] = [a, ā] and [b] =

[
b, b̄
]
are such that [a] ≺ [b],

then certainly [a] has happened before [b], possibly even that [a] causes [b]. Due to
the obvious property of relation “≺” to be transitive, it follows that [a] ≺ [b] ≺ [c]
means that we can deduce that [a] causes [c] if we know that [a] causes [b] and [b]
causes [c].

In this paper we will use the closed intervals in an arbitrary ordered vector
space E, to prove some extension theorems in the line of Mazur–Orlicz Theorem
and Hahn–Banach Theorem. As we will see, a function g : A −→ IE will appear
in the context of our first result (a Mazur–Orlicz type theorem). Here A is an
arbitrary nonempty set and IE is the (interval-) space of all closed intervals in E.
Note that such functions appear in the literature of the interval analysis. As an
example, we cite [32], a paper by W.T. Trotter; in this paper, an ordered vector
space (A,≤) is called an interval-function if there exists a function g assigning to
each element a ∈ A, a closed interval of a totally ordered set E. Usually E is the
real line R. The function g is called an interval representation of A. Note that the
endpoints of the intervals used in the above representation may be identical.

Also note that in this paper we will consider the space IE endowed with the
following ordering, known as the weak order :

[a] ≤ [b]⇔ a ≤ b and ā ≤ b̄, if [a] = [a, ā] and [b] =
[
b, b̄
]
.

This (partial) order was introduced and studied by S. Markov, in [13] and
[14]. According to [36], this order relation is a “very natural sense of an interval
order, for example, saying that one event extended in time can be prior to another
event if it is still underway when the subsequent event initiates”. We will use this
ordering in order to define positive interval-linear functionals and then to study
the extension problem for such functionals.

2. Interval-spaces

An interval-space will be associated to an arbitrary real ordered vector space.
Firstly, if E (= (E,≤)) is a real ordered vector space, and a, ā ∈ E are such

that a ≤ ā, we will denote by [a] = [a, ā] the order interval {x ∈ E | a ≤ x ≤ ā}. In
the literature, the interval [a, ā] is sometimes denoted by [aL, aR], or, in short, by ā.
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Of course, the notation [a] for an interval [a, ā] enable us to write formulas
and proofs in a closed form without using the endpoints of the interval.

If [a] = [a, ā] with a = ā denoted by a (hence [a] = [a, a]) we call this order
interval, a degenerate interval. We can identify the degenerate interval [a, a] = {a}
with the element a ∈ E. We will call an order interval [a, ā] with a < ā in E, a
nondegenerate interval.

We will also consider symmetric intervals in IE, denoted, for example, by
[−b, b], with b ≥ 0 in E and symmetric nondegenerate intervals [−b, b], with b > 0
in E.

The interval-set (in short, i-set) associated to the real ordered vector space
E, is the set IE = {[a] = [a, ā] | a, ā ∈ E}.

Definition 1. We say that an interval-set (i-set) IE is an interval-space (in short,
i-space) if it is endowed with the following operations, called the usual algebraic
operations :

1. the addition, defined by:

[a]⊕ [b] = {x+ y | x ∈ [a] , y} ∈ [b] , that is,

[a]⊕ [b] =
[
a+ b, ā+ b̄

]
if [a] = [a, ā] ∈ IE and [b] =

[
b, b̄
]
∈ IE;

2. the scalar multiplication with reals defined by:

α · [a] = {αx | x ∈ [a, ā]}, that is,

α · [a] =
{
[αa, αā] , if α ∈ R, α ≥ 0

[αā, αa] , if α ∈ R, α < 0
, where [a] = [a, ā] ∈ IE.

Sometimes we will denote α · [a] by α [a].

Endowed with this algebraic operations, IE is not a real vector space. More
precisely, (IE,⊕) is a commutative monoid with the neutral (or identity) element
0 (0 = [0, 0] , sometimes also denoted by [0]), but it is not a group, because a non-
degenerate interval has no inverse with respect to addition, that is, has no opposite.
Indeed, by way of contradiction, suppose that for the order interval [a] = [a, ā],
with a < ā in E, there exists an inverse [b] =

[
b, b̄
]
. Hence [a, ā]⊕

[
b, b̄
]
= 0, that

is, a + b = 0 and ā + b̄ = 0. Therefore, b = −a and b̄ = −ā. But b ≤ b̄ implies
that −a ≤ −ā or, equivalently ā ≤ a, which contradicts that a < ā. The scalar
multiplication in IE has the following properties :

(α+ β) [a] = α [a]⊕ β [a] , if [a] ∈ IE and α, β ∈ R,with αβ > 0, (1)

α (β [a]) = (αβ) [a] , if [a] ∈ IE and α, β ∈ R, (2)

1 · [a] = [a] for each [a] ∈ IE, (3)

α ([a]⊕ [b]) = α [a]⊕ α [b] , if [a] , [b] ∈ IE and α ∈ R. (4)

We can also consider the subtraction in IE:

[a]' [b] = [a]⊕ (− [b]), where − [b] means (−1) [b].
If [a] = [a, ā] and [b] =

[
b, b̄
]
, then [a]' [b] = [a, ā]'

[
b, b̄
]
=
[
a− b̄, ā− b

]
.
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In particular, if [a] = [a, ā] it follows that

[a]' [a] = [a− ā, ā− a] = [− (ā− a) , ā− a] .

Thus, if [a] is a nondegenerate interval (a < ā) then [a]' [a] �= 0, and again
we conclude that IE is not a real vector space.

Note that [a]' [a] is a symmetric interval. Let us denote such an interval by
[o]. Therefore it is justified to consider the set O of all symmetric intervals of IE,
hence O = {[−b, b] | b ≥ 0, b ∈ E}. Because [a] ' [a] ∈ O for each [a] ∈ IE, and
obviously, [a]' [a] = 0 ∈ O for a degenerate interval [a], we call the set O, the null
set of IE. In what follows we will denote by [o] ∈ IE, the generic element of O.

Remark 1. The null setO of the i-space IE is closed under the algebraic operations
on IE, that is, [a]⊕ [b] ∈ O and α [a] ∈ O for all [a] , [b] ∈ O and α ∈ R.

In the particular case E = R of reals, let us denote by 1 the symmetric
interval [−1, 1] from the null set O of IR. Then, every interval [o] = [−b, b] ∈ O
(b ≥ 0) can be written as b · 1. Let us call 1 ∈ IR the generator of O. With this
“generator” we can write the proof of Remark 1 (for E = R) without using the left
and right bounds of the intervals [a] and [b]. Indeed, for [a] = a · 1 and [b] = b · 1
in the null set O of IR (a ≥ 0, b ≥ 0) and α ∈ R, it follows that:

1. [a]⊕ [b] = (a+ b)1 ∈ O;

2. α [a] = α (a · 1) =
{
(αa) · 1, if α ≥ 0

(α (−a)) · 1, if α < 0
, that is, α [a] ∈ O, too.

To summarize this section, let us mention that the i-set IE endowed with
the usual algebraic operations is not a vector space, because:

a) (IE,⊕) is a commutative monoid with the neutral element 0 (= [0, 0]), but
it is not a group, since a nondegenerate interval has no inverse with respect
to the addition;

b) the axiom (α+ β) [a] = α [a]⊕ β [a] is certainly true only when α, β ∈ R are
such that αβ > 0 (see (1)).

Historical remarks. Firstly, we notice that, just like in [20, p. 2] or in [18, p. 272],
we will use the terms of “linear space” and “vector space” as synonyms. By looking
in the literature for earlier contributions, we find that the notion of interval-space
is a particular case of the notion of quasilinear space. There are two important
cases of so-called quasilinear spaces.

1. Quasilinear spaces in the sense of Aseev
In [4] (see also [34]), a quasilinear space is a set E together two algebraic operations
(an addition and a multiplication with real scalars) and a partial order on E
(reflexive, antisymmetric and transitive) such that:

A1) (E,+) is an abelian monoid (that is, “+” is associative, commutative
and has a neutral element);

A2) α · (β · x) = (αβ) · x;
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A3) α · (x+ y) = α · x+ α · y;
A4) 1 · x = x (unit element);
A5) 0 · x = 0 (neutral or identity element);
A6) (α+ β) · x ≤ α · x+ β · x (sub-distributivity);
A7) x ≤ y and z ≤ v imply x+ z ≤ y + v;
A8) x ≤ y implies α · x ≤ α · y (x, y, z, v ∈ E,α, β ∈ R) .

In a quasilinear space, the neutral element 0 is minimal, that is, x = 0 if x ≤ 0; see
[34, Lemma 2.1] and, in fact, [4]. An element x′ in a quasilinear space E is called
an opposite (an inverse) of an element x ∈ E if x+ x′ = 0. If an opposite element
exists, then it is unique. Suppose that any element x in the quasilinear space E
has an opposite element x′ ∈ E. Then the partial order in E is determined by
equality, the distributivity type conditions A3) and A6) hold and, consequently,
E is a linear space; see [34, Lemma 2.3] and, in fact, [4]. Hence, a linear space (a
vector space) is a quasilinear space with the partial ordering relation:

“x ≤ y if and only if x = y”.

Moreover, according to [4] (see also [34, Corollary 2.4]), in a linear space, equality
is the only way to define a partial ordering such that the conditions A1)–A8) hold.

Now it is easy to prove that an interval-space (i-space) IE is a quasilinear
space with the following order relation:

“[x] ≤ [y] if and only if [x] ⊆ [y]”

(see, for example, [34, pp. 2–3]).

2. Quasilinear spaces in the sense of Markov
A definition of the notion of quasilinear spaces of monoid structure, can be found
in [20]. To give this definition first we recall that a linear space (over R) is a set
E endowed with an addition and a multiplication with (real) scalars such that:

M1) (x+ y) + z = x+ (y + z), for all x, y, z,∈ E;
M2) ∃ 0 ∈ E with x+ 0 = x, for each x ∈ E;
M3) x+ y = y + x, for all x, y ∈ E;
M4) ∀ x ∈ E, ∃ − x ∈ E with x+ (−x) = 0;
M5) α · (β · x) = (αβ) · x, for all x ∈ E and α, β ∈ R;
M6) 1 · x = x, for all x ∈ E;
M7) α · (x+ y) = α · x+ α · y, for all x, y ∈ E and α ∈ R

(the so-called “first distribution law”);
M8) (α+ β) · x = α · x+ β · x, for all x ∈ E and α ∈ R

(the so-called second distributive law).

Obviously, the axioms M1)–M4) show that E is an abelian additive group. In [20],
Markov notes that a linear space can be defined also by relaxing the group axiom
M4), replacing it by the weaker cancelation law :

M4′) x+ z = y + z ⇒ x = y (for all x, y, z ∈ E).

Hence, the axioms M1)–M3), M4), M5)–M8) are equivalent with the axioms M1)–
M3), M4′), M5)–M8). Indeed, in [20] Markov noted that: “If in M8) we put α =
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1, β = −1 we obtain 0 = x+ (−1) · x, that is, the element (−1) · x is the opposite
to x, symbolically −x = (−1) · x. One can also observe that the condition for the
existence of a neutral element for addition is redundant, as such is the element
0 · x. Indeed, using M8) with α = 1, β = 0, we obtain

x+ 0 · x M6)
= 1 · x+ 0 · x M8)

= (1 + 0) · x = 1 · x M6)
= x,

implying 0 · x = 0.”. Also in [20] Markov defined the notion of quasilinear space
that is obtained by relaxing the so-called second distributive law axiom of the
linear space.

More precisely, a quasilinear space (of monoid structure) in the sense of
Markov, is a set E endowed with an addition and a multiplication with (real)
scalars such that the axioms M1)–M3), M4′), M5)–M7) and M8′) are satisfied,
where M8’) is the so-called quasidistributive law :

M8′) (α+ β) · x = α · x+ β · x, for all x ∈ E and α, β ∈ R with α · β ≥ 0.

Following the proofs (found in [20]) for M8) ⇒ M2) (that is, the existence of the
opposite element to x ∈ E), and M8) ⇒ M3) (that is, the existence of the neutral
element in E), we remark that now we have only M8′) ⇒ M2), that is, M8′)
does not imply the existence of the opposite element for each element x ∈ E. In
other words, the restriction αβ ≥ 0 in M8′) does not permit us to conclude that a
quasilinear space is an abelian group but, obviously, is an abelian (and cancelative)
monoid.

The notion of quasilinear space in the sense of Markov, more precisely the no-
tion of quasilinear system, appeared in [15], see also [17], [19], [18]. In [15], Markov
gave a brief history of the term of “quasilinear space”. Thus, this term was in-
troduced in [22] and [23]. In [15] and [16], S. Markov stated that the definition of
quasilinear spaces given in [23] does not require the cancelation law and is thus
more general. Markov considered (see [16, p. 134]) that the cancelative quasilin-
ear spaces are useful for the study of the algebraic properties of convex sets and
intervals. Such spaces have been considered in [27] under the name “R-semigroups
with cancelation law”.

Of course, a linear space is a special case of a quasilinear space in the sense
of Markov. Also an interval-space (i-space) IE is a quasilinear space in the sense
of Markov.

3. Interval-subspaces

The following definition is very natural.

Definition 2. Let IE be an interval-space. We say that a nonempty subset IS
of IE is an interval-subspace (in short, i-subspace) of IE, if it is closed under
the algebraic operations, that is, for any [a] , [b] ∈ IS and α ∈ R, it follows that
[a]⊕ [b] ∈ IS, and α [a] ∈ IS.
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Obviously 0 = (0, 0) ∈ IS (because for any [a] ∈ IS, taking α = 0, it follows
that 0 = 0 · [a] ∈ IS). In addition, the null set O of IE, is an interval-subspace of
IE (see Remark 1).

Moreover, for all [a] ∈ IS, [a]' [a] ∈ IS ∩ O, that is, IS ∩ O is a nonempty
set. So, using the null set O of IE, we can define the null part OIS of IS.

Remark 2. It follows that:

OIS = {[a]' [a] | [a] ∈ IS} . (5)

(To justify, we need to prove only the inclusion “⊆”. For this, assume that
[b] ∈ OIS . It follows that [b] ∈ IS and [b] = [−b, b]. Then we have: [b]'[b] = [−b, b]⊕
(− [−b, b]) = [−b, b]⊕ [−b, b] = 2 [−b, b] = 2 [b] ⇒ [b] = 1

2 ([b]' [b]) =
[
1
2 b
]
'
[
1
2 b
]

and
[
1
2b
]
∈ IS, because [b] ∈ IS and IS is an i-subspace of IE.)

Taking into account that O ⊂ IE, sometimes we will be interested in the
i-subspaces IS of IE for which the following condition is fulfilled:

O ⊆ IS (6)

We will call such an i-subspace, a standard i-subspace of IE.

Remark 3. Obviously, the condition (6) is equivalent to the following condition:

O = OIS (7)

To better understand the meaning of (6) and (7) we will analyze what hap-
pens when E = R, and hence IE = IR. In this case we can prove the following
result.

Proposition 1. Let IS be an i-subspace of IR, O the null part of IR and OIS =
O ∩ IS. Then, (i) ⇔ (ii) ⇔ (iii), (iv) ⇒ (i) and (iv) ⇒ (v), where:

(i) O ⊆ IS;
(ii) O = OIS ;
(iii) IS contains at least one nondegenerate order interval ;
(iv) IS ⊕ [o] = IS for all [o] ∈ O;
(v) IS ⊕ [u] = IS for all [u] ∈ IS.

(Note that, for example, IS ⊕ [o] is defined as the set {[a]⊕ [o] | [a] ∈ IS} .)
Proof. (i) ⇔ (ii) and (i) ⇒ (iii) are obvious.

(iii)⇒ (i). Let [a] ∈ IS be a nondegenerate order interval. (Hence, [a] = [a, ā]
with a < ā in E.) Then taking [o] = [a]' [a], it follows that [o] ∈ IS (because IS is
an i-subspace of IR). Put [o] = [−v, v] = v ·1 with v > 0, (recall that 1 = [−1, 1] ⊂
R). We have to prove that O ⊆ IS. But taking [u] = [−u, u] = u ·1 ∈ O, it follows
that u · 1 =u

v (v · 1) ∈ IS.
(iv) ⇒ (i) is immediate, because if [o] ∈ O, then taking 0 ∈ IS, it follows

that: [o] = 0+ [o] ∈ IS ⊕ [o]
(iv)
= IS.

To prove (iv) ⇒ (v), we observe that if we take [o] = [u]' [u] with [u] ∈ IS,
then it follows:

IS ⊕ [o] ⊆ IS ⊕ [u] ⊆ IS. (8)
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(The second inclusion in (8) is true since IS is an i-subspace of IR. The first
inclusion in (8): if [v] ∈ IS, then [v] ⊕ [o] = [v] ⊕ ([u]' [u]) = ([v]' [u]) ⊕ [u] ∈
IS ⊕ [u], because [v] and [u] ∈ IS, and IS is an i-subspace of IR.) From (iv), it
follows that IS ⊕ [o] = IS. But then, from (8), it follows that IS ⊕ [u] = IS, too.
So (iv) ⇒ (v) is true. �

It is known that if V is a real vector space and S ⊆ V is any vector subspace,
then for all u ∈ S,

S + u = S. (9)

The above Proposition 1 shows us that there is a big difference between the notion
of subspace of a vector space and the notion of i-subspace of the i-space IE, at
least for the case E = R. Indeed, the corresponding equality to (9) for the last
notion, that is,

IS ⊕ [u] = IS (10)

for all [u] ∈ IS (and more precisely the inclusion “⊇” in (10)) is not always valid.
Obviously, a necessary condition for (10) is that IS ⊕ [o] = IS for all [o] ∈ OIS ,
which is also a consequence of the statement (iv).

In [16, p. 134], S. Markov introduced the notion of a subspace of a quasilinear
space E, that a subset S ⊂ E endowed with the induced algebraic operations of
E, hence, (S,+) is a submonoid of (E,+). Obviously, an interval-subspace IS
(i-subspace) of an interval-space IE is a subspace of the quasilinear space IE.

4. Interval-linear functionals on an interval-subspace

Let IE be an i-space, IS an arbitrary i-subspace of IE, and f : IS → R a map.

Definition 3. We say that f is an interval-linear functional on IS (in short, i-linear
functional) if:

1. f ([a]⊕ [b]) = f ([a]) + f ([b]) for all [a] , [b] ∈ IS;

2. f (α [a]) = αf ([a]) for all [a] ∈ IS and α ∈ R.

Definition 4. The kernel of an i-linear functional f : IS → R is the set: ker f =
{[x] ∈ IS | f ([x]) = 0}.

It is known that, in the setting of vector spaces, the kernel of any linear
functional f is nonempty, because it certainly contains the null element 0 of the
domain of f .

The kernel of an i-linear functional f on an interval-subspace IS is nonempty,
too. Indeed, the null part OIS of IS is included in ker f and OIS is a nonempty
set. To prove that OIS ⊆ ker f , choose [o] ∈ OIS = O ∩ IS; it follows that,
there exists a ≥ 0 such that [o] = [−a, a], and therefore, (−1) [o] = [−a, a], that
is, [o] = (−1) [o]. But f is i-linear on IS, and thus f ([o]) = f ((−1) · [o]) =
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(−1)·f ([o]) = −f ([o]). Then, 2f ([o]) = 0 and hence f ([o]) = 0, that is, [o] ∈ ker f .
As a consequence of the inclusion

OIS ⊆ ker f (11)

the following observation is true.

Remark 4. For any i-linear functional f : IS → R, it follows that

f ([a]⊕ [o]) = f ([a]) (12)

for each [o] ∈ OIS . (Indeed, we have: f ([a]⊕ [o]) = f ([a]) + f ([o]) = f ([a]),
because f ([o]) = 0, according to (11).) In particular, if [u] ∈ ker f , then for all
[o] ∈ OIS , [u]⊕ [o] ∈ ker f .

5. Interval-sublinear functionals on an interval-subspace

A) What are they?
We recall that if V is a real vector space, and S ⊆ V is a vector subspace, a

real sublinear functional on S is a map p : S → R such that:

1. p (x+ y) ≤ p (x) + p (y) for all x, y ∈ S;
2. p (αx) = αp (x) for all x ∈ S and α > 0.

Now we will introduce an equivalent of this notion in the interval-spaces
setting.

Definition 5. A real-valued map p defined on an i-subspace IS of an i-space IE is
called an interval-sublinear functional (in short, i-sublinear functional) on IS, if:

1. p ([x]⊕ [y]) ≤ p ([x]) + p ([y]) for all [x] , [y] ∈ IS;
2. p (α [x]) = αp ([x]) for all [x] ∈ IS and α > 0;
3. p ([x]⊕ [o]) = p ([x]) for all [x] ∈ IS and [o] ∈ OIS .

Using the same terminology as in the theory of vector spaces we will say that
in the Definition 5,

“1.” means that p is interval-subadditive (in short, i-subadditive) on IS;
“2.” means that p is interval-positively homogeneous (in short, i-positively homo-

geneous) on IS.

We also mention that the hypothesis “3.” in Definition 5 is related to the
remark that any i-linear functional on IS (that obviously has to be i-sublinear on
IS) satisfies the equality f ([x]⊕ [o]) = f ([x]) for all [x] ∈ IS and [o] ∈ OIS .

B) Properties of interval-sublinear functionals.
Let IS be an i-subspace of the i-space IE, and p : IS → R an i-sublinear

functional. Then the list of properties of p may be completed with the following:

4. p ([o]) = 0 for all [o] ∈ OIS .

(Indeed, we have: 2p ([o])
2.
= p (2 [o]) = p ([o]⊕ [o])

3.
= p ([o]).)

5. p (0 · [u]) = 0 for all [u] ∈ IS.

(Recall that 0 = [0, 0] ∈ OIS . Then p (0 · [u]) = p (0)
4.
= 0.)
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6. If IS is a standard i-subspace of IE (and O is the null set of IE), then
p ([o]) = 0, for all [o] ∈ O. To prove this, apply “4.” and Remark 3.

C) Pointwise ordering on a set of i-sublinear functionals.
In what follows we will fix an i-sublinear functional p on an i-subspace IS

of the i-space IE (with E an arbitrary ordered vector space). We consider the
collection S (= Sp) of all i-sublinear functionals q on IS such that q ([v]) ≤ p ([v])
for all [v] ∈ IS. We remark that S is a nonempty set, because, obviously, p ∈ S.
Consider in S the pointwise ordering “≤”, that is, for q1, q2 ∈ S,

q1 ≤ q2 ⇔ q1 ([v]) ≤ q2 ([v]) for all [v] ∈ IS. (13)

Proposition 2. The set S is inductively ordered from below (that is, each totally
ordered subset of S has a lower bound).

Proof. Suppose that T = {qj}j∈J is a totally ordered subset of S and define q :

IS → R by

q ([v]) = inf
j∈J

qj ([v]) for all [v] ∈ IS.

1. Firstly, we remark that q is well defined. Indeed, by the way of contradic-
tion, suppose that there exists [u] ∈ IS such that q ([u]) = −∞. Then it follows
that

q ([u]⊕ [v]) = −∞ (14)

for all [v] ∈ IS. Indeed, let ε be any real number. Then, there exists jε ∈ J such
that

qjε ([u]) < ε. (15)

Since qjε is an i-subadditive functional, it follows that

q ([u]⊕ [v]) ≤ qjε ([u]⊕ [v])
(15)
< ε+ qjε ([v]) for all; [v] ∈ IS.

By choosing ε sufficiently small, it follows (14). But (14) implies that for
[o] = [u]' [u] ∈ OIS

q ([o]) = −∞. (16)

(Indeed, because for any [v] ∈ IS, IS also contains [v]' [u], and for all j ∈ J , qj
is an i-sublinear functional, it follows that

q ([v]) = inf
j∈J

qj ([v]) = inf
j∈J

qj ([v]⊕ [o])

= inf
j∈J

qj ([v]⊕ ([u]' [u]))

= inf
j∈J

qj ([u]⊕ ([v]' [u]))
(14)
= −∞.

Now put [o] instead of [v] and obtain (16).)
But (16) contradicts with q ([o]) = inf

j∈J
qj ([o]) = 0. (Here we used again that

for all j ∈ J , qj is an i-sublinear functional and apply property “4.” of such
functionals.) The above-mentioned contradiction shows us that q ([v]) > −∞ for
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all [v] ∈ IS, that is, q is well defined. Obviously, q will be a lower bound of T in
S, if q ∈ S.

2. Now we will prove that q ∈ S. Because q ([v]) is defined as an infimum of
qj ([v]) , j ∈ J and for all j ∈ J , qj ∈ S it follows that:

a) q ([v]) ≤ p ([v]) for all [v] ∈ IS;
b) q ([v]⊕ [o]) = q ([v]) for all [o] ∈ OIS ;
c) q is an i-positively homogeneous functional.

It remains to prove only that q is an i-subadditive functional, that is:

q ([v1]⊕ [v2]) ≤ q ([v1]) + q ([v2]) for all [v1] , [v2] ∈ IS.

But

q ([v1]⊕ [v2]) ≤ inf
j∈J

(qj ([v1]) + qj ([v2])) . (17)

Now we will prove that

inf
j∈J

(qj ([v1]) + qj ([v2])) ≤ q ([v1]) + q ([v2]) . (18)

We know that q (v1) > −∞ and q (v2) > −∞. Given any ε > 0, there exists
j1, j2 ∈ J such that inf

j∈J
qj ([v1]) + ε > qj1 ([v1]), and inf

j∈J
qj ([v2]) + ε > qj2 ([v2]).

Therefore, since T is a totally ordered subset of S, it follows that:
q ([v1]) + q ([v2]) + 2ε = inf

j∈J
qj ([v1]) + inf

j∈J
qj ([v2]) + 2ε > qj1 ([v1]) + qj2 ([v2])

≥
{
qj1 ([v1]) + qj1 ([v2]) , if qj1 ≤ qj2 in T
qj2 ([v1]) + qj2 ([v2]) , if qj2 ≤ qj1 in T

≥ inf
j∈J

(qj ([v1]) + qj ([v2])) .

Since ε > 0 is arbitrary, it follows that the inequality (18) is true. From (17) and
(18) it follows that q is an i-subadditive functional. Therefore, according to the
above-mentioned properties a), b), c) of q, we infer that q ∈ S. This shows us that
q is a lower bound of T = (qj)j∈J in S. �

6. Hahn–Banach existence type theorem for i-linear functionals
on interval-subspaces

It is well known that the following result is called the (classical) Hahn–Banach
existence theorem in the setting of vector spaces:

“If X is a real vector space and s : X → R is a sublinear functional, then
there exists a linear functional � : X → R such that � ≤ s (that is, � (x) ≤ s (x),
for all x ∈ X).”

We know that (see, for example, [30]) this theorem was proved in three ways, by:

1. Kelley–Namioka [9, 3.4, p. 21], using cones ;
2. Rudin [28, 3.2, pp. 56–57], using an extension by subspaces;
3. König [11] and Simons [29], using the pointwise order on sublinear functionals.
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The following result – see Theorem 3 – extends the classical Hahn–Banach
existence Theorem in interval analysis, for i-sublinear functionals on an i-subspace
IS of any i-space IE (E is an arbitrary ordered vector space). Our proof will be
in the line of “3.” ([11], [29]).

Theorem 3 (Hahn–Banach existence type theorem in the setting of interval-
spaces). Let IE be an arbitrary i-space and IS ⊆ IE an i-subspace. Let also
s : IS → R be an i-sublinear functional. Then there exists an i-linear functional
� : IS → R such that

� ([v]) ≤ s ([v]) (19)

for all [v] ∈ IS.

Proof. Denote by S the (nonempty) set of all i-sublinear functionals q : IS → R
such that q ≤ s. Using Proposition 2 it follows that S endowed with the pointwise
ordering is inductively ordered from below. Therefore, by Zorn’s lemma, there
exists at least one minimal element � ∈ S. We will prove that � is an i-linear
functional on IS. Firstly, we will prove that � = h, where h : IS → R is defined by

h ([v]) = inf
α>0

[u]∈IS

(� ([v]⊕ α [u])− α� ([u])) for all [v] ∈ IS.

Step 1. h is well defined, that is, h ([v]) > −∞ for all [v] ∈ IS. To prove this,
consider [o] = [v] ' [v] ∈ OIS , and let [u] ∈ IS and α > 0. Because � is an
i-sublinear functional on IS, it follows that for all [u] ∈ IS the following hold:

α� ([u]) = � (α [u]) = � (α [u]⊕ [o]) = � (α [u]⊕ ([v]' [v]))

= � (α [u]⊕ [v]⊕ (− [v])) ≤ � (α [u]⊕ [v]) + � (− [v]) .

Hence, −� (− [v]) ≤ � (α [u]⊕ [v]) − α� ([u]) for all α > 0 and [u] ∈ IS. By
taking the infimum, it follows: −� (− [v]) ≤ h ([v]) and then h ([v]) > −∞.

Step 2. h is an i-sublinear functional.

a) Firstly, we will prove that λh ([v]) = h (λ [v]) for all λ > 0 and [v] ∈ IS.
But:

λh ([v]) = λ inf
α>0

[u]∈IS

(� ([v]⊕ α [u])− α� ([u]))

λ>0
= inf

α>0
[u]∈IS

(� (λ [v]⊕ λα [u])− λα� ([u]))

= inf
μ>0

[u]∈IS

(� (λ [v]⊕ μ [u])− μ� ([u]))

= h (λ [v]) .

(We used that � is an i-sublinear functional and we have denoted λα by μ.)
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b) Now we will prove that h ([v]⊕ [o]) = h ([v]) for all [v] ∈ IS and [o] ∈ OIS .
Using the definition of h and that � is an i-sublinear functional, it follows:

h ([v]⊕ [o]) = inf
α>0

[u]∈IS

(� ([v]⊕ [o]⊕ α [u])− α� ([u]))

= inf
α>0

[u]∈IS

(� ([v]⊕ α [u])− α� ([u])) = h ([v]) .

As a consequence of “a)” and “b)”, h (0 · [v]) = 0, for all [v] ∈ IS. (Indeed, for all

[o] ∈ IS, it follows: 2h ([o])
a)
= h (2 [o]) = h ([o]⊕ [o])

b)
= h ([o]), hence h ([o]) = 0.

Taking [o] = 0 = [0, 0], it follows h (0) = 0, too.) Hence, h (λ [v]) = λh [v], for all
λ ≥ 0.

c) Finally we will prove that h is an i-subadditive functional. Let [v1] and
[v2] ∈ IS. Then, using that � is an i-subadditive functional, it follows:

h ([v1]⊕ [v2]) = inf
α>0

[u]∈IS

(� ([v1]⊕ [v2]⊕ α [u])− α� ([u]))

≤ � ([v1]⊕ [v2]⊕ (α1 + α2) [u])− (α1 + α2) � ([u]))

≤ (� ([v1]⊕ α1 [u])− α1� ([u])) + (� ([v2]⊕ α2 [u])− α2� ([u]))

where for a fixed α > 0, we took arbitrary α1 > 0, α2 > 0 such that α1 + α2 = α.
Taking the infimum and denoting

a1 (α1, [u1]) = � ([v1]⊕ α1 [u1])− α1� ([u1]) ∈ R and

a2 (α2, [u2]) = � ([v2]⊕ α2 [u2])− α2� ([u2]) ∈ R

it follows:

h ([v1]⊕ [v2]) ≤ inf
α1>0

[u1]∈IS

inf
α2>0

[u2]∈IS

(a1 (α1, [u1]) + a2 (α2, [u2]))

= inf
α1>0

[u1]∈IS

a1 (α1, [u1]) + inf
α2>0

[u2]∈IS

a2 (α2, [u2]) = h ([v1]) + h ([v2]) .

Hence:

h ([v1]⊕ [v2]) ≤ h ([v1]) + h ([v2]) for all [v1] , [v2] ∈ IS,

that is, h is an i-subadditive functional.

Step 3. We will prove that h ∈ S. Since � ∈ S is an i-sublinear functional, we have
for [v] ∈ IS : � ([v]⊕ α [u]) − α� ([u]) ≤ � ([v]) ≤ s ([v]) for all α > 0 and [u] ∈ IS.
Hence h ([v]) ≤ s ([v]) for all [v] ∈ IS, that is, h ∈ S. Moreover

h ≤ �. (20)

Step 4. Because h ∈ S and � is a minimal element in S, it follows that � ≤ h on
IS. Then, according to (20), it follows that h = � on IS.

Step 5. Now we will prove that, actually, � is even an i-additive functional. But �
is an i-subadditive functional, hence it remains to prove that � ([v1]) + � ([v2]) ≤
� ([v1]⊕ [v2]) for all [v1] , [v2] ∈ IS.
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But: � ([v1]) = h ([v1]) ≤ � ([v1]⊕ α [v2]) − α� ([v2]) for all α > 0. Taking
α = 1, it follows that � ([v1]) ≤ � ([v1]⊕ [v2])− � ([v2]). Therefore, � is an i-additive
functional.

Step 6. Now we can prove that � is an i-linear functional. (Obviously, because
� ∈ S, it follows that � ≤ s on IS.) But � has the following properties:

1. � is an i-additive functional on IS,

2. � is an i-sublinear functional and, consequently, � (0) = � (0 · [v]) = 0 and,
moreover � ([o]) = 0 for all [o] ∈ OIS , equality which can be similarly demon-
strated with the equality h (0) = 0 – see Step 2.

It remains only to prove that � (λ [v]) = λ� ([v]) for all [v] ∈ IS and λ < 0.
Put μ = −λ. Then μ > 0 and hence, μ� ([v]) = � (μ [v]). Therefore it follows:

−λ� ([v]) = � (−λ [v]) . (21)

Taking [o] = [v]' [v] ∈ OIS , and using the properties of �, it follows according to
Step 5: 0 = � ([o]) = � ([v]' [v]) = � ([v]⊕ (− [v])) = � ([v]) + � (− [v]).

Then � (− [v]) = −� ([v]) for all [v] ∈ IS. It follows that � (−λ [v]) = −� (λ [v])
and hence, according to (21), −λ� ([v]) = −� (λ [v]), that is, λ� ([v]) = � (λ [v]).
This completes the proof.

Hence, there exists an i-linear functional � : IS → R with � ≤ s on IS, that
is, � ([v]) ≤ s ([v]) for all v ∈ [IS]. �

If � ≤ s on IS as in the previous theorem we will say that � is dominated by
s on IS.

7. Mazur–Orlicz type theorem in the setting of interval-spaces

The following result is in the line of the classical Mazur–Orlicz Theorem (see [21]
and [6, Theorem 2.1]). Notice that we will denote by N∗ the set of all natural
numbers n, with n ≥ 1.

Theorem 4. Let IS be an i-subspace of the i-space IE and s : IS → R an i-sublinear
functional. Let also A be a nonempty arbitrary set and f : A → R, g : A → IS
two arbitrary maps. Then the following are equivalent:

(i) there exists an i-linear functional � : IS → R, such that

a) � ≤ s on IS;

b) f (a) ≤ � ([g (a)]) for each a ∈ A;

(ii) the inequality
n∑

j=1

λjf (aj) ≤ s

(
n
⊕
j=1

λj [g (aj)]

)
holds for all finite subsets

{a1, . . . , an} in A and λ1 ≥ 0, . . . , λn ≥ 0 in R.

Notice that we denoted [g (a)] and [g (aj)] instead of g (a) and g (aj), respec-
tively, only to remind that, actually, g (a) and g (aj) are order intervals from IS.
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Proof. (i)⇒ (ii). It is obvious. Indeed, because � is an i-linear functional and � ≤ s,
it follows:

n∑
j=1

λjf (aj) ≤
n∑

j=1

λj� ([g (aj)]) = �

(
n
⊕
j=1

λj [g (aj)]

)
≤ s

(
n
⊕
j=1

λj [g (aj)]

)
.

(ii) ⇒ (i). Firstly we will prove that (ii) ⇒ (i) a), by using the technique of
the auxiliary i-sublinear functional that is similar to the technique of the auxiliary
sublinear operator, used, for example, in [6].

For every [v] ∈ IS, define p ([v]) by the following infimum:

p ([v]) = inf
n∈N∗
λj≥0

aj∈A

j=1,n

⎛⎝s

(
[v]⊕

(
n
⊕
j=1

λj [g (aj)]

))
−

n∑
j=1

λjf (aj)

⎞⎠ . (22)

The functional p (that will be “the auxiliary i-sublinear functional”) has the
following properties:

1. p is well defined. Using (ii) and that s is an i-sublinear functional, it follows:

n∑
j=1

λjf (aj)
(ii)

≤ s

(
n
⊕
j=1

λj [g (aj)]

)
= s

(
n
⊕
j=1

λj [g (aj)]⊕ [o]

)

= s

(
n
⊕
j=1

λj [g (aj)]⊕ [v]' [v]

)
≤ s

(
[v]⊕

(
n
⊕
j=1

λj [g (aj)]

))
+ s (− [v]) .

Consequently it follows:

−s (− [v]) ≤ s

(
[v]⊕

(
n
⊕
j=1

λj [g (aj)]

))
−

n∑
j=1

λjf (aj) .

(In the above we have chosen [o] ∈ OIS given by [o] = [v]' [v].)

Then, the set considered in the right side of the equality (22) is lower bounded
in R, and therefore there exists its infimum.

2. p is an i-sublinear functional.

2. a) Firstly, p is an i-subadditive functional. Indeed,

p ([v1]⊕ [v2]) = inf
n∈N∗
λj≥0

aj∈A

j=1,n

⎛⎝s

(
[v1]⊕ [v2]⊕

(
n
⊕
j=1

λj [g (aj)]

))
−

n∑
j=1

λjf (aj)

⎞⎠
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hence

p ([v1]⊕ [v2]) ≤

⎛⎝s

(
[v1]⊕

(
n
⊕
j=1

μj [g (aj)]

))
−

n∑
j=1

μjf (aj)

⎞⎠
+

⎛⎝s

(
[v2]⊕

(
n
⊕
j=1

νj [g (aj)]

))
−

n∑
j=1

νjf (aj)

⎞⎠
(where for any j = 1, n we took μj ≥ 0, νj ≥ 0 such that λj = μj + νj and we used
that s is an i-sublinear functional). By taking the infimum in the right side of the
last inequality, it follows:

p ([v1]⊕ [v2]) ≤ p ([v1]) + p ([v2]) .

2. b) Now we will prove that p (α [v]) = αp [v] for all α > 0 and [v] ∈ IS.
Using that s is an i-sublinear functional, we have:

p (α [v]) = inf
n∈N∗
λj≥0

aj∈A

j=1,n

⎛⎝s

(
α [v]⊕

(
n
⊕
j=1

λj [g (aj)]

))
−

n∑
j=1

λjf (aj)

⎞⎠

= α inf
n∈N∗
λj≥0

aj∈A

j=1,n

⎛⎝s

(
[v]⊕

(
n
⊕
j=1

λj

α
[g (aj)]

))
−

n∑
j=1

λj

α
f (aj)

⎞⎠

= α inf
n∈N∗
μj≥0

aj∈A

j=1,n

⎛⎝s

(
[v]⊕

(
n
⊕
j=1

μj [g (aj)]

))
−

n∑
j=1

μjf (aj)

⎞⎠ = αp ([v]) .

(We denoted μj =
λj

aj
for all j = 1, n.)

2. c) It remains to prove that p ([v]⊕ [o]) = p ([v]) for all [v] ∈ IS and [o] ∈
OIS . But using again that s is an i-sublinear functional, it follows:

p ([v]⊕ [o]) = inf
n∈N∗
λj≥0

aj∈A

j=1,n

⎛⎝s

(
[v]⊕ [o]⊕

(
n
⊕
j=1

λj [g (aj)]

))
−

n∑
j=1

λjf (aj)

⎞⎠

= inf
n∈N∗
λj≥0

aj∈A

j=1,n

⎛⎝s

(
[v]⊕

(
n
⊕
j=1

λj [g (aj)]

))
−

n∑
j=1

λjf (aj)

⎞⎠ = p ([v]) .

Thus we have shown that p is an i-sublinear functional. Now we will use the
Hahn–Banach existence type theorem for i-linear functionals on interval subspaces
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(see Theorem 3 above). By using this theorem, it follows that there exists an i-
linear functional � : IS → R such that � ([v]) ≤ p ([v]) for all [v] ∈ IS. Using
the definition of p and taking λj = 0 for all j = 1, n (n ∈ N∗) it follows that
p ([v]) ≤ s ([v]) for all [v] ∈ IS, and then, � ≤ s on IS.

Now we will prove that (ii) ⇒ (i) b).

We have to prove that f (a) ≤ � ([g (a)]) for all a ∈ A. We will use the
inequality � ≤ p and the fact that � is an i-linear functional. Then, for all a ∈ A,
it follows:

−� ([g (a)]) = � (− [g (a)]) ≤ p (− [g (a)])

≤ s ([g (a)]⊕ (− [g (a)]))− f (a)

= s ([g (a)]' [g (a)])− f (a)

= s ([o]) − f (a) = −f (a)

hence

f (a) ≤ � ([g (a)]) for all a ∈ A �

Remark 5. Note that in the previous theorem, A is a nonempty arbitrary set and
thus we can include the case where A is a set of intervals. (Of course, in this case
we have to make a slight correction in this theorem. So, we will put [aj ] instead of
aj , and if more, A ⊆ IS and g is this inclusion, then [g (aj)] and f (aj) becomes
[aj ] and f ([aj ]), respectively.) Then the resulted Mazur–Orlicz type theorem can
be viewed as a generalization of the following Hahn–Banach type theorem.

Corollary 5 (Hahn–Banach extension type theorem in the setting of interval-
spaces). Let IE be an i-space and IS ⊆ IE an i-subspace. Let also s : IE → R be
an i-sublinear functional and t : IS → R an i-linear functional. Then the following
are equivalent:

(i) There exists an i-linear functional � : IE → R such that:

a) � ≤ s on IE, and

b) � = t on IS, that is, � is an i-linear extension of t;

(ii) t ≤ s on IS.

Proof. Take in the version of Theorem 4, mentioned in Remark 5, IE instead of
IS, IS instead of A, g the inclusion of IS in IE, and f = t. Then, the inequality

n∑
j=1

λjf ([aj ]) ≤ s

(
n
⊕
j=1

λj [g ([aj ])]

)
,

that is,
n∑

j=1

λjt ([aj ]) ≤ s

(
n
⊕
j=1

λj [aj ]

)
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becomes (using the i-linearity of t):

t

(
n
⊕
j=1

λj [aj]

)
≤ s

(
n
⊕
j=1

λj [aj ]

)
for all n ∈ N∗, λ1 ≥ 0, . . . , λn ≥ 0 and [a1] , . . . , [an] ∈ IS or, equivalently, t ([a]) ≤
s ([a]) for all [a] ∈ IS, that is, t ≤ s on IS. �

8. Extension results with convexity assumptions in the setting
of interval-spaces

In this section we will give some consequences of the Hahn–Banach existence The-
orem in the setting of interval-spaces. Using the ideas of S. Simons (see [30]), for-
mulated in the setting of vector spaces, we introduce certain convexity hypotheses.

Firstly, we consider an i-space IE, an i-sublinear functional s : IE → R, a
nonempty convex subset K of an arbitrary interval-space IF (with F an arbitrary
ordered vector space) and two arbitrary maps g : K → IE and f : K → R. (A
subset K ⊆ IF is called a convex subset if α [a]+(1− α) [b] ∈ K, for all [a] , [b] ∈ K
and α ∈ (0, 1).)

a) We say that g is s-convex, if

s ([x]⊕ [g (α[a]⊕ (1− α) [b])]) ≤ s ([x]⊕ α [g ([a])]⊕ (1− α) [g ([b])])

for all [x] ∈ IE, [a], [b] ∈ K and α ∈ (0, 1).

(Here we wrote, for example, [g (α[a]⊕ (1− α) [b])] instead of g (α[a]⊕ (1− α) [b])
only to remind that g (α[a]⊕ (1− α) [b]) is an ordered interval in E.)

Note that the previous inequality can also be written in a simpler form if we
introduce in IE the following order:

[u] ≤IE [v]⇔ s ([x]⊕ [u]) ≤ s ([x]⊕ [v])

for all [x] ∈ IE. Indeed, g is s-convex if and only if

[g (α[a]⊕ (1− α) [b])] ≤IE α [g ([a])]⊕ (1− α) [g ([b])] .

Any i-linear functional is clearly s-convex.

b) We say that f is an interval -convex functional (in short, an i-convex func-
tional) if f (α[a]⊕ (1− α) [b]) ≤ αf([a]) + (1 − α)f([b]), for all [a], [b] ∈ K and
α ∈ (0, 1). We also say that f is an interval-concave functional (in short, i-concave
functional), if −f is an i-convex functional.

Proposition 6 (in the line of [30, Lemma 1.4). ] Let IE be an i-space and s : IE →
R an i-sublinear functional. Let also K be a nonempty convex subset of an interval-
space, g : K → IE a s-convex map and f : K → R an arbitrary i-convex functional.
Suppose that the following infimum λ = inf

a∈K
(f ([a]) + s ([g ([a])])) exists in R. For

all [x] ∈ IE, define

t ([x]) = inf
[a]∈K
α>0

(s ([x]⊕ α [g ([a])]) + αf ([a])− αλ) . (23)
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Then:

1. t is well defined;

2. t is an i-sublinear functional;

3. t ([x]) ≤ s ([x]) for all [x] ∈ IE;

4. −t (− [g ([a])]) + f ([a]) ≥ λ for all [a] ∈ K.

(Recall that we denoted [g ([a])] instead of g ([a]), to remind that g ([a]) is an
order interval in E.)

Proof. 1. We will prove that t is well defined. Since s is an i-sublinear functional
it follows that

s (α [g ([a])]) = s (α [g ([a])]⊕ [o]) (24)

for all [a] ∈ K,α > 0 and [o] ∈ O. (Recall that O is the null set of IE.)

Take [o] = [x]' [x], where [x] ∈ IE is a fixed interval. According to (24) and
using the i-sublinearity of s, it follows:

s (α [g ([a])]) = s (α [g ([a])]⊕ ([x]' [x]))

= s (α [g ([a])]⊕ [x])⊕ (− [x])

≤ s (α [g ([a])]⊕ [x]) + s (− [x]) .

Then:

−s (− [x]) ≤ s ([x]⊕ α [g ([a])])− s (α [g ([a])]) . (25)

Because s is an i-positively homogeneous functional, α > 0 and λ ≤ f ([a]) +
s ([g ([a])]) for all [a] ∈ K, it follows that: αλ ≤ αf ([a]) + s (α [g ([a])]) and
hence −s (α [g ([a])]) ≤ αf ([a])−αλ. Therefore, from (25) we obtain: −s (− [x]) ≤
s ([x]⊕ α [g ([a])]) + αf ([a])− αλ for all [a] ∈ K and α > 0.

Hence, the set {s ([x]⊕ α [g ([a])]) + αf ([a])− αλ | [a] ∈ K,α > 0} is minor-
ized in R by −s (− [x]), and so, there exists its infimum, that is, t ([x]) is well
defined.

2. We will prove that t is an i-sublinear functional, that is,

2. a) t is i-subadditive on IE;

2. b) t is i-positively homogeneous on IE;

2. c) t ([x]⊕ [o]) = t ([x]) for all [x] ∈ IE and [o] ∈ O.
So: 2. a) Let us prove that t ([x1]⊕ [x2]) ≤ t ([x1])+ t ([x2]) for all [x1] , [x2] ∈

IE. We have:

t ([x1]⊕ [x2]) = inf
[a]∈k
α>0

(s ([x1]⊕ [x2]⊕ α [g ([a])]) + αf ([a])− αλ)

≤ s ([x1]⊕ [x2]⊕ α [g ([a])]) + αf ([a])− αλ

for all [a] ∈ K and α > 0. We take [a1], [a2] ∈ K and α1 > 0, α2 > 0 with α =
α1 + α2, and [a] = β1[a1]⊕ β2[a2] were β1 = α1

α , β2 = α2

α .
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It follows that β1 > 0, β2 > 0 and β1 + β2 = 1, hence [a] ∈ K (K being a
convex set). Because s is i-positively homogeneous, g is s-convex, f is i-convex and
s is i-subadditive, it follows that:

s ([x1]⊕ [x2]⊕ α [g ([a])]) + αf ([a])− αλ

= α

(
s

(
1

α
([x1]⊕ [x2])⊕ [g ([a])]

)
+ f ([a])

)
− αλ

≤ α

(
s

(
1

α
([x1]⊕ [x2])⊕ β1 [g ([a1])]⊕ β2 [g ([a2])]

)
+β1f ([a1]) + β2f ([a2])

)
− αλ

≤ αs

(
1

α
([x1]⊕ β1 [g ([a1])])

)
+ β1f ([a1])

+ αs

(
1

α
([x2]⊕ β2 [g ([a2])])

)
+ β2f ([a2])− (α1 + α2)λ

= (s ([x1]⊕ αβ1 [g ([a1])]) + αβ1f ([a1])− α1λ)

+ (s ([x2]⊕ αβ2 [g ([a2])]) + αβ2f ([a2])− α2λ) .

Hence we proved that:

s ([x1]⊕ [x2]⊕ α [g ([a])]) + αf ([a])− αλ

≤ (s ([x1]⊕ α1 [g ([a1])]) + α1f ([a1])− α1λ)

+ (s ([x2]⊕ α2 [g ([a2])]) + α2f ([a2])− α2λ) .

Taking the infimum over [a1], [a2] ∈ K and α1 > 0, α2 > 0 it follows that:

t ([x1]⊕ [x2]) ≤ t ([x1]) + t ([x2]) .

2. b) It is immediate that t is i-positively homogeneous , that is, t (λ [x]) =
λt ([x]) for all [x] ∈ IE and λ > 0 (because s is i-positively homogeneous).

2. c) Let us prove that t ([x]⊕ [o]) = t ([x]) for all [x] ∈ IE and [o] ∈ O. But

t ([x]⊕ [o]) = inf
[a]∈K
α>0

(s ([x]⊕ [o]⊕ α [g ([a])]) + αf ([a])− αλ)

= inf
[a]∈K
α>0

(s ([x]⊕ α [g ([a])]) + αf ([a])− αλ) = t ([x]) .

(We used that s is an i-sublinear functional.)

3. For all [x] ∈ IE, according to the properties of s it follows that

t ([x]) ≤ s ([x]) + α (s ([g ([a])]) + f ([a])− λ) .

Letting α→ 0 in R, it follows that t ([x]) ≤ s ([x]).
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4. Now we will prove that −t (− [g ([a])]) + f ([a]) ≥ λ for all [a] ∈ K. Recall
that

t ([x]) = inf
[a]∈K
α>0

(s ([x]⊕ α [g ([a])]) + αf ([a])− αλ) .

Taking [x] = − [g ([a])] and α = 1, it follows that

t (− [g ([a])]) ≤ s (− [g ([a])]⊕ [g ([a])]) + f ([a])− λ.

But s is an i-sublinear functional and then, s ([o]) = 0, for all [o] ∈ O (see property
“6.” of the i-sublinear functionals). So, it follows that

t (− [g ([a])]) ≤ f ([a])− λ⇒ −t (− [g ([a])]) + f ([a]) ≥ λ

for all [a] ∈ K. �

Remark 6. In the previous result, K is a (nonempty) convex subset of an interval-
space IF . Remark that the proof also works for K a convex subset of an arbitrary
vector space. Of course, in this case we will say that g : K → IE is s-convex
(s : IE → R being an i-sublinear functional) if:

s ([x]⊕ [g (αa+ (1− α) b)])

≤ s ([x]⊕ α [g (a)]⊕ (1− α) [g (b)])

for all [x] ∈ IE, a, b ∈ K and α ∈ (0, 1). Recall that f : K → R is convex, if for
all a, b ∈ K and α ∈ (0, 1) it follows that

f (αa+ (1− α) b) ≤ αf (a) + (1− α) f (b) .

Remark 7. Then Proposition 6 is valid with a slight modification: put a instead
of [a] and therefore λ = inf

a∈K
(f (a) + s ([g(a)])) and (23) becomes:

t ([x]) = inf
a∈K
α>0

(s ([x]⊕ α [g (a)]) + αf (a)− αλ) for all [x] ∈ IE.

Theorem 7 (in the line of [30, Theorem 1.5]). Let IE be an i-space and s : IE → R
an i-sublinear functional. Let also K be a nonempty convex subset of an i-space,
g : K → IE a s-convex map and f : K → R an i-convex functional. Then there
exists an i-linear functional � : IE → R such that:

a) � ≤ s on IE;

b) inf
[a]∈K

(f ([a]) + � ([g ([a])])) = inf
[a]∈K

(f ([a]) + s ([g ([a])])) . ((26))

(Note that we wrote [g ([a])] instead of g ([a]), to remind that g ([a]) is an order
interval.)

Proof. We will use the technique of the auxiliary i-sublinear functional. Denote
λ = inf

[a]∈K
(f ([a]) + s ([g ([a])])) ∈ R̄.

Case 1. λ = −∞.
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Step 1.Apply Theorem 3 (Hahn–Banach existence type theorem in the setting
of interval-spaces), for IS = IE. Then take any i-linear functional

� : IE → R such that � ≤ s on IE.

Step 2. For all [a] ∈ K it follows that

f ([a]) + � ([g ([a])]) ≤ f ([a]) + s ([g ([a])])

and hence,

inf
[a]∈K

(f ([a]) + � ([g ([a])])) ≤ λ = −∞,

that is, the equality (26) holds.

Case 2. λ ∈ R.
Step 1. Apply Theorem 3 for IS = IE and t instead of s, with t from

Proposition 6, that is,

t ([x]) = inf
[a]∈K
α>0

(s ([x]⊕ α [g ([a])]) + αf ([a])− αλ)

for all [x] ∈ IE (see (23)).
Then take any i-linear functional � on IE such that � ≤ t on IE. (There

exists at least one such � according to Theorem 3.) But t ≤ s on IE and therefore
� ≤ s on IE.

Step 2. Taking any [a] ∈ K, using the i-linearity of �, the inequality � ≤ t on
IE and “4.” from Proposition 6, it follows:

� ([g ([a])]) + f ([a]) = −� (− [g ([a])]) + f ([a]) ≥ −t (− [g ([a])]) + f ([a]) ≥ λ.

Taking the infimum over [a] ∈ K, we obtain:

inf
[a]∈K

(f ([a]) + � ([g ([a])])) ≥ λ.

The converse inequality is also true, since � ≤ s on IE, and hence:

inf
[a]∈K

(f ([a]) + � ([g ([a])])) ≤ inf
[a]∈K

(f ([a]) + s ([g ([a])])) = λ

for all [a] ∈ K. �

Remark 8. We can make the same observation as in the Remark 6 after Proposition
6, about the fact that Theorem 7 still working when K is an arbitrary convex
subset of a vector space, g is s-convex, f is a convex functional, and the interval
[a] is replaced by an element a ∈ K. More precisely, (26) becomes:

inf
a∈K

(f (a) + � ([g (a)])) = inf
a∈K

(f (a) + s ([g (a)])).

(Note again that we wrote [g (a)] instead of g (a) to recall that g (a) is an interval
in E.)

Remark 9. If in Theorem 7 we take K = IS (an i-subspace of IE), g the inclusion
of IS in IE and f : K → R the null function (that is, f ([a]) = 0, for all [a] ∈ IS),
then we obtain the following result.
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Corollary 8. Let IE be an arbitrary i-space, s : IE → R an i-sublinear functional,
K = IS ⊆ IE an i-subspace and g the inclusion of K in IE. Then there exists an
i-linear functional � : IE → R such that:

a) � ≤ s on IE;
b) inf

[a]∈K
� ([a]) = inf

[a]∈K
s ([a]) .

Proof. We will apply the previous Remark, mentioning that, obviously, f = 0 is
i-convex and the inclusion g is s-convex. Indeed, the inequality

s ([x]⊕ [g (α [a]⊕ (1− α) [b])]) ≤ s ([x]⊕ α [g ([a])]⊕ (1− α) [g ([b])])

is satisfied with equality for all [x] ∈ IE, [a] , [b] ∈ K and α ∈ (0, 1). �

9. Ordered interval-spaces. Monotone interval-sublinear
functionals. Positive interval-linear functionals

Let IE be an i-space (E an arbitrary ordered vector space), endowed with the
following order relation (the weak order):

[a] ≤ [b]⇔ a ≤ b and ā ≤ b̄, where [a] = [a, ā] and [b] =
[
b, b̄
]
.

It is immediate that this order is compatible with the algebraic structure on IE,
that is:

1. [a] ≤ [b] in IE ⇒ [a]⊕ [c] ≤ [b]⊕ [c], where [a] , [b] , [c] ∈ IE;
2. [a] ≤ [b] in IE and α > 0 in R⇒ α [a] ≤ α [b], where [a] , [b] ∈ IE.

We call IE endowed with this ordering, an ordered interval-space (in short,
ordered i-space). Let IS be an i-subspace of the ordered i-space IE.

An i-sublinear functional s : IS → R is called monotone if [a] ≤ [b] in IS
implies s ([a]) ≤ s ([b]) in R. Now let f : IS → R be an i-linear functional. It is
called positive if [a] ≥ 0 in IS implies f ([a]) ≥ 0 in R. (Recall that 0 = [0, 0] and
observe that [a] = [a, ā] ≥ 0 means that a ≥ 0.)

Proposition 9. Let s : IS → R be a monotone i-sublinear functional and � : IS → R
an i-linear functional such that � ≤ s on IS. Then � is positive.

Proof. It is known (see property “5.” of the i-sublinear functionals) that s (0) = 0.
Now let [x] ≥ 0 in IS. Using that � ≤ s, � is i-linear, and s is i-sublinear and
monotone, it follows:

−� ([x]) = � (− [x]) ≤ s (− [x]) ≤ s (0) = 0⇒ � ([x]) ≥ 0. �
In the following section, firstly the set K will be a nonempty convex subset (of

an arbitrary interval-space). We say that a map p : K → IS is an interval-convex
(in short, i-convex -) valued map if

[p (α[x] + (1− α) [y])] ≤ α [p ([x])]⊕ (1− α) [p ([y])]

for all [x], [y] ∈ K and α ∈ (0, 1). (Note that we denoted, for example, [p ([x])]
instead of p ([x]), only to remind that p ([x]) is an order interval.)
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10. Extension results in the setting of ordered interval-spaces.
Mazur–Orlicz type theorem with other convexity assumptions

The following theorem is in the line of [6, Theorem 2.4].

Theorem 10. Let IS be an i-subspace of an ordered i-space and s : IS → R
a monotone i-sublinear functional. Let also K be a nonempty convex set in an
arbitrary i-space, p : K → IS be an i-convex-valued map and q : K → R an
i-concave map. Then the following are equivalent:

(i) There exists a positive i-linear functional � : IS → R such that:

a) � ≤ s on IS, and

b) q ([a]) ≤ � ([p ([a])]) for all [a] ∈ K;

(ii) The following inequality holds: q ([a]) ≤ s ([p ([a])]) for all [a] ∈ K.

(We mention again that we wrote [p ([a])] instead of p ([a]) only to recall that p ([a])
is an order interval.)

Proof. This result is a consequence of our Mazur–Orlicz type theorem in the setting
of interval-spaces (see Theorem 4). For this is suffices to prove that “(ii)” from
Theorem 10 implies “(ii)” from Theorem 4, for A = K (actually, these conditions
are equivalent). Let {[a1], . . . , [an]} be a finite subset of K and λ1, . . . , λn ∈ R+

such that λ := λ1 + · · ·+ λn > 0. Denote μj =
λj

λ , j = 1, n. It follows that μj > 0

and
n∑

j=1

μj = 1. Because q is i-concave and p is i-convex-valued, it follows that

n∑
j=1

μjq ([aj ]) ≤ q

(
n
⊕
j=1

μj [aj ]

)
, and

[
p

(
n
⊕
j=1

μj [aj]

)]
≤

n
⊕
j=1

μj [p ([aj ])] .

Since λ > 0 and s is a monotone i-sublinear functional, it follows that:

n∑
j=1

λjq ([aj ]) = λ

n∑
j=1

μjq ([aj ]) ≤ λq

(
n
⊕
j=1

μj [aj ]

)
(ii)

≤ λs

([
p

(
n
⊕
j=1

μj [aj]

)])

≤ λs

(
n
⊕
j=1

μj [p ([aj ])]

)
= s

(
n
⊕
j=1

λj [p ([aj ])]

)
.

Apply now Theorem 4, for A = K. It follows that there exists an i-linear functional
� : IS → R, such that � ≤ s on IS, and q ([a]) ≤ � ([p ([a])]) for all [a] ∈ K. Using
Proposition 9, because � ≤ s and s is monotone, it follows that � is a positive
i-linear functional. �

Remark 10. As in Remark 5 after Theorem 4, note again that in the previous
result the hypothesis that the set K be any convex subset of an arbitrary i-space,
can be replaced by the hypothesis that the set K can be any convex set in an
arbitrary vector space.
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Therefore:

a) p : K → IS “i-convex-valued” means that:

[p (αa+ (1− α) b)] ≤ α [p (a)]⊕ (1− α) [p (b)]

for all a, b ∈ K and α ∈ (0, 1);
b) q : K → R “interval-concave” (in short,“i-concave”) will be replaced by

“concave” meaning that:

q (αa+ (1− α) b) ≥ αq (a) + (1− α) q (b)

for all a, b ∈ K and α ∈ (0, 1).

In this case, the proof of Theorem 10 can be slightly modified. So, its part
containing some inequalities, becomes for {a1, . . . , an} a finite subset in K and

λ1, . . . , λn ∈ R+ such that λ = λ1 + · · ·+λn > 0 and μj =
λj

λ , j = 1, n (μj > 0 for

all j = 1, n and
n∑

j=1

μj = 1):

n∑
j=1

μjq (aj) ≤ q

⎛⎝ n∑
j=1

μjaj

⎞⎠ , and

⎡⎣p
⎛⎝ n∑

j=1

μjaj

⎞⎠⎤⎦ ≤ n
⊕
j=1

μj [p (aj)] .

It follows that:

n∑
j=1

λjq (aj) = λ

n∑
j=1

μjq (aj) ≤ λq

⎛⎝ n∑
j=1

μjaj

⎞⎠
≤ λs

([
p

(
n
⊕
j=1

μjaj

)])
≤ s

(
n
⊕
j=1

λj [p (aj)]

)
.

(We used “(ii)” modified in the following manner: q (a) ≤ s ([p (a)]) for all a ∈ K.)

The following consequence of Theorem 10 is in the line of [6, Proposition 5.1].

Corollary 11 (Hahn–Banach extension type theorem for positive i-linear function-
als on ordered interval-spaces). Let IE be an i-space and IS ⊆ IE an i-subspace.
Let also s : IE → R be a monotone i-sublinear functional and f : IS → R a
positive i-linear functional. Then, the following are equivalent:

(i) There exists a positive i-linear functional � : IE → R such that � ≤ s on IE,
and � = f on IS;

(ii) f ([v]) ≤ s ([v]) for all [v] ∈ IS.

Proof. In Theorem 10, take K = IS, q = f and p the inclusion of IS in IE. Apply
also Proposition 9 to prove that � is positive. �

The following result is inspired by [6, Proposition 5.2]. (Note that the paper
[6] contains extension results for positive linear operators in the setting of ordered
vector spaces). The point is that in the following theorem, the hypothesis (used in
Corollary 11 above) that the i-sublinear functional s is monotone can be dropped
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if the condition f ([a]) ≤ s ([a]) for all [a] ∈ IS is replaced by f ([a]) ≤ s ([a]⊕ [u])
for all [a] ∈ IS and [u] ≥ 0 in IE.

Proposition 12. Let IE be an i-space and IS ⊆ IE an i-subspace. Let also s :
IE → R be an i-sublinear functional and f : IS → R a positive i-linear functional.
Then the following are equivalent:

(i) there exists � : IE → R a positive i-linear extension of f such that � ≤ s on
IE;

(ii) f ([a]) ≤ s ([a]⊕ [u]) for all [a] ∈ IS and 0 ≤ [u] ∈ IE;
(iii) f ([a]) ≤ s ([x]) for all [a] ∈ IS and [x] ∈ IE such that [a] ≤ [x].

Proof. (i) ⇒ (ii). If � is a positive i-linear extension of f such that � ≤ s on IE,
then for all [a] ∈ IS and [u] ∈ IE, [u] ≥ 0, it follows that

f ([a]) ≤ � ([a]) ≤ � ([a]⊕ [u]) .

(ii) ⇒ (i). We will use the technique of the auxiliary i-sublinear functional.
Define s1 : IE → R by the formula s1 ([y]) = inf

[x]∈IE
[x]≥0

s ([y]⊕ [x]) .

Then s1 has the following properties:

1. s1 is well defined. To prove this, fix [y] ∈ IE and take 0 ≤ [x] ∈ IE. From (ii),
since s is i-sublinear, it follows that 0 = f (0) ≤ s (0⊕ [x]), that is, 0 ≤ s ([x]).
Now, for all [x] ∈ IE, [x] ≥ 0, because s is an i-sublinear functional, we have
0 ≤ s ([x]) = s ([x]⊕ [o]) for all [o] ∈ O. Taking [o] = [y] ' [y], we obtain:
0 ≤ s ([x]⊕ [y]' [y]) ≤ s ([x]⊕ [y]) + s ([−y]). Hence, for all [x] ∈ IE[x] ≥ 0
we have: −s (− [y]) ≤ s ([y]⊕ [x]). Then there exists the infimum of the set
that defines s1 ([y]) for all [y] ∈ IE.

2. s1 is amonotone i-sublinear functional. Let us prove only that s1 ismonotone.
Let [y] , [x] ∈ IE and [x] ≥ 0. Then: [y] ≤ [y] ⊕ [x] and s1 ([y]⊕ [x]) =
inf

[z]∈IE
[z]≥0

s ([y]⊕ [x]⊕ [z]). Denoting [a] = [x]⊕ [z], it follows that [a] ≥ 0.

Therefore:

inf
[z]∈IE
[z]≥0

s ([y]⊕ [x]⊕ [z]) ≥ inf
[a]∈IE
[a]≥0

s ([y]⊕ [a]) = s1 ([y]) .

Hence s1 ([y]) ≤ s1 ([y]⊕ [x]).
3. f ([a]) ≤ s1 ([a]) for all [a] ∈ IS. Indeed, for all [u] ∈ IE, [u] ≥ 0, it follows

from (ii): f ([a]) ≤ s ([a]⊕ [u]) and hence

f ([a]) ≤ inf
[u]∈IE
[u]≥0

s ([a]⊕ [u]) = s1 ([a]).

4. s1 ([a]) ≤ s ([a]) for all [a] ∈ IE. Now using Corollary 11, it follows that there
exists an i-linear functional � : IE → R such that � = f on IS and � ≤ s1
and therefore � ≤ s on IE.

To end the proof, let us remark that (ii) ⇔ (iii) is obvious. �
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11. Some examples

Firstly, notice that an interesting example of an i-subspace IS of an i-space IE,
with E = R[0,1] can be found in [3]:

IS =

{
f =

[
f, f
]
∈ IE

∣∣∣∣ f is upper semi-continuous
f is lower semi-continuous

}
.

Thus, IS is the set of all “S-continuous functions”, an important class of functions
in interval analysis; see for instance [3] and the references cited there.

Next, we will give other examples of i-spaces, i-subspaces, i-linear functionals,
i-sublinear functionals. There are simple examples that we have constructed ad
hoc.

Example 1. We consider the vector space E = R2 endowed with the usual algebraic
operations and the usual ordering. Then E is an ordered vector space having the
positive cone:

E+ = {(x, y) | x ≥ 0, y ≥ 0} .
• We also consider the interval-space (i-space) IE:

IE =
{
[a] = [a, ā] | a, ā ∈ R2

}
,

the set of all “boxes” in plan. If a = (a1, a2) and ā = (ā1, ā2), then [a] = [a, ā]
is the following “box”:{

(x, y) ∈ R2 | a1 ≤ x ≤ ā1, a2 ≤ y ≤ ā2
}
= [a1, ā1]× [a2, ā2] .

• IE is endowed with the usual algebraic operations :
1. If [a] = [a, ā] = [(a1, a2) , (ā1, ā2)] ∈ IE and

[b] =
[
b, b̄
]
=
[
(b1, b2) ,

(
b̄1, b̄2

)]
∈ IE, then

[a]⊕ [b] =
[
a+ b, ā+ b̄

]
=
[
(a1 + b1, a2 + b2) ,

(
ā1 + b̄1, ā2 + b̄2

)]
.

2. If [a] is like in “1.” and α ∈ R, then

α [a] =

{[
α (a+ b) , α

(
ā+ b̄

)]
, if α ≥ 0[

α
(
ā+ b̄

)
, α (a+ b)

]
, if α < 0

.

• As an interval-subspace (i-subspace) of IE, we consider the set IS of all
quadratic boxes in R2. Hence, if [a] = [a, ā] = [(a1, a2) , (ā1, ā2)], then: IS =
{[a] ∈ IE | ā1 − a1 = ā2 − a2}.

• The null set of IE is the following set: O =
{
[o] = [−a, a] | a ∈ R2

+

}
, that is,

the set of all symmetric rectangular boxes in R2. Then, the null part OIS of
IS is the set of all symmetric quadratic boxes in R2.

• Now, we consider the following two real maps defined on IS:

� ([a]) = a1 + ā1 + a2 + ā2, and

p ([a]) = |a1 + ā1|+ |a2 + ā2|
where [a] = [(a1, a2) , (ā1, ā2)].
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It is easy to prove that:
1. � is an interval-linear (i-linear) functional on IS, that is,

a) � ([a]⊕ [b]) = � ([a]) + � ([b]), and

b) � (α [a]) = α� ([a]), for all [a] , [b] ∈ IS and α ∈ R;

2. p is an interval-sublinear (i-sublinear) functional on IS, that is,

a) p ([a]⊕ [b]) ≤ p ([a]) + p ([b]) ,

b) p (α [a]) = αp ([a]) for all [a] ∈ IS and α > 0, and

c) p ([a]⊕ [o]) = p ([a]), for all [a] ∈ IS and [o] ∈ OIS .

• Also it is immediate that � is dominated by p on IS, that is, � ([a]) ≤ p ([a])
for all [a] ∈ IS or, in short, � ≤ p. Indeed, for any [a] = [a, ā], with a =
(a1, a2) and ā = (ā1, ā2) in R2, we have: � ([a]) = a1 + a2 + ā1 + ā2 ≤
|a1 + a2 + ā1 + ā2| ≤ |a1 + ā1|+ |a2 + ā2| = p ([a]).

Example 2 (First example for the framework of our Mazur–Orlicz type theorem
in the setting of interval-spaces – see Theorem 4).

• Let E = R2 endowed with the usual algebraic and order structures . As an
i-subspace IS, consider even the i-space IE. Let also A be the following set:
A =

{
(x1, y1, x2, y2) ∈ R4 | x2 − x1 = y2 − y1

}
.

• We consider the following maps:
1. s : IS → R, s ([a]) = |a1 + ā1|+ |a2 + ā2|, where

[a] = [a, ā] = [(a1, a2) , (ā1, ā2)] ∈ IS;
2. g : A → IS, a �→ [g (a)], where a = (x1, y1, x2, y2) and [g (a)] =

[(x1, y1) , (x2, y2)];
3. f : A→ R, f (x1, y1, x2, y2) = x1 + y1 + x2 + y2.

Then, s is an i-sublinear functional on IS – see the previous example.

• The statement (ii) in our Mazur–Orlicz type theorem (see Theorem 4 above)
is satisfied, that is:

n∑
j=1

λjf (aj) ≤ s

(
n
⊕
j=1

λj [g (aj)]

)
for all n ∈ N∗, a1, . . . , an ∈ A, and λ1 ≥ 0, . . . , λn ≥ 0.

Indeed, we have for aj = (xj1 , yj1 , xj2 , yj2) ∈ A, j = 1, n:

n∑
j=1

λjf (aj) =

n∑
j=1

λj (xj1 + yj1 + xj2 + yj2) ≤
∣∣∣∣ n∑
j=1

λj (xj1 + yj1 + xj2 + yj2)

∣∣∣∣
≤
∣∣∣∣ n∑
j=1

λj (xj1 + xj2 )

∣∣∣∣+ ∣∣∣∣ n∑
j=1

λj (yj1 + yj2)

∣∣∣∣ = s

([ n∑
j=1

λj (xj1 , yj1) ,

n∑
j=1

λj (xj2 , yj2)

])

= s

(
n
⊕
j=1

λj [(xj1 , yj1) , (xj2 , yj2)]

)
= s

(
n
⊕
j=1

λj [g (aj)]

)
.
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Example 3 (Second example for the framework of our Mazur–Orlicz type theorem
in the setting of interval-spaces – see Theorem 4).

• Let E = R[0,1] be the space of all real-valued functions on [0, 1], endowed
with the pointwise algebraic and order structures. (Hence, f ≥ 0 in E if and
only if f (t) ≥ 0 for each t ∈ [0, 1]). IE = {[u, ū] | u ≤ ū in E} is the set of
all closed intervals in E.

• Define:

A = R[0,1]; g : A→ IE, g (u) = [0, |u|] ;
f : A→ R, f (u) = u (0) ; s : IE → R, s ([u, ū]) = |u (0) + ū (0)| .

Obviously, s is an i-sublinear functional on IE. Indeed, it is i-subadditive
and i-positively homogeneous and, in addition, if O is the null set of IE and
[−v, v] ∈ O, then

s ([u, ū]⊕ [o]) = s ([[u− v, ū+ v]]) = |u (0)− v (0) + ū (0) + v (0)|
= |u (0) + ū (0)| = s ([u, ū]) for al [u, ū] ∈ IE.

Now we remark that for each u ∈ A, f (u) ≤ s ([g (u)]) (since f(u) = u(0)
and s([g(u)]) = s([0, |u|]) = |u(0)|).

• The statement (ii) in our Mazur–Orlicz type theorem (see Theorem 4 above)
is satisfied, that is:

n∑
j=1

λjf (uj) ≤ s

(
n
⊕
j=1

λj (g [uj ])

)
for all n ∈ N∗, u1, . . . , un ∈ A and λ1 ≥ 0, . . . , λn ≥ 0.

Indeed:

n∑
j=1

λjf (aj) =

n∑
j=1

λjuj (0) ,

and

s

(
n
⊕
j=1

λj [g (uj)]

)
= s

(
n
⊕
j=1

λj [0, |uj|]
)

=
n∑

j=1

λj |uj (0) |.

Example 4 (for the framework of our Mazur–Orlicz type theorem in the setting
of interval-spaces – see Theorem 10).

• We consider E = R[0,1] and the convex set K = E.

• Define: s : IE → R by s ([u, ū]) = |u (0) + ū (0)|, p : K → IE by p (u) =
[0, |u|], and q : K → R by q (u) = − |u (0)|. It follows that:
1. s is an i-sublinear functional – see the previous example.
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2. the map p is i-convex-valued. Indeed, let u, v ∈ K and α ∈ (0, 1). Then

[p (αu+ (1− α) v)] = [0, |αu+ (1− α) v|]
and

α [p (u)]⊕ (1− α) [p (v)] = α [0, |u|]⊕ (1− α) [0, |v|]
= [0, α |u|+ (1− α) |v|] .

Now it is obvious that |αu+ (1− α) v| ≤ α |u|+ (1− α) |v| and hence

[p (αu + (1− α)v)] ≤ α [p (u)]⊕ (1− α) [p (u)] .

3. The map q is concave. Indeed, for u, v ∈ K and α ∈ (0, 1), it follows:

q (αu + (1− α) v) = − |αu (0) + (1− α) v (0)|
≥ −α |u (0)| − (1− α) |v (0)| = αq (u) + (1− α) q (v) .

• Statement (ii) in our Theorem 10, that is q (u) ≤ s ([p (u)]) is satisfied, for all
u ∈ K. Indeed, we have:

q (u) = − |u (0)| and s ([p (u)]) = s ([0, | u |]) = |u| (0) = |u (0)| .
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[34] Yilmaz, Y.; Çakan, S.; Aytekin, S.: Topological quasilinear spaces, Abstract and
Applied Analysis 2012, Article ID 951374, 10 pages (2012).

[35] Zapata, F.; Kreinovich, V.: Reconstructing an open order from its closure, with appli-
cations to space-time physics and to logic, Studia Logica 100 (1-2), 419–435 (2012).

[36] Zapata, F.; Kreinovich, V.; Joslyn, C.; Hogan, E.: Orders on intervals over partially
ordered sets. Extending Allen’s Algebra and Interval Graf Results, Soft Computing
17, 137–139 (2013).

Rodica-Mihaela Dăneţ
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Abstract. We consider linear narrow operators on lattice-normed spaces. We
prove that, under mild assumptions, every finite rank linear operator is strictly
narrow (before it was known that such operators are narrow). Then we show
that every dominated, order-continuous linear operator from a lattice-normed
space over atomless vector lattice to an atomic lattice-normed space is order
narrow.
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1. Introduction

Today the theory of narrow operators is a growing and active field of Functional
Analysis (see the recent monograph [18]). Plichko and Popov were the first [15] who
systematically studied this class of operators. Later many authors have studied
linear and nonlinear narrow operators in functional spaces and vector lattices
[3, 4, 12, 14, 17]. In the article [16] the second named author have considered a
general lattice-normed space approach to narrow operators. Recently it became
clear that a technique of vector measures is relevant to narrow operators [13]. The
aim of this article is to use this new technique for investigation of linear narrow
operators on lattice-normed spaces.

This work was completed with the support of the Russian Foundation for Basic Research, grant
number 14-01-91339.
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2. Preliminaries

The goal of this section is to introduce some basic definitions and facts. General
information on vector lattices, Banach spaces and lattice-normed spaces can be
found in the books [1, 2, 7, 11].

Consider a vector space V and a real archimedean vector lattice E. A map⎪⎪⎪ ·⎪⎪⎪ : V → E is a vector norm if it satisfies the following axioms:

1)
⎪⎪⎪v⎪⎪⎪≥ 0;

⎪⎪⎪v⎪⎪⎪= 0⇔ v = 0; (∀v ∈ V ).
2)
⎪⎪⎪v1 + v2

⎪⎪⎪≤⎪⎪⎪v1⎪⎪⎪+
⎪⎪⎪v2⎪⎪⎪; (v1, v2 ∈ V ).

3)
⎪⎪⎪λv⎪⎪⎪= |λ|⎪⎪⎪v⎪⎪⎪; (λ ∈ R, v ∈ V ).

A vector norm is called decomposable if

4) for all e1, e2 ∈ E+ and x ∈ V with
⎪⎪⎪x⎪⎪⎪= e1 + e2 there exist x1, x2 ∈ V such

that x = x1 + x2 and
⎪⎪⎪xk
⎪⎪⎪= ek, (k := 1, 2).

A triple (V,
⎪⎪⎪ ·⎪⎪⎪, E) (in brief (V,E), (V,

⎪⎪⎪ ·⎪⎪⎪) or V with default parameters
omitted) is a lattice-normed space if

⎪⎪⎪ ·⎪⎪⎪ is a E-valued vector norm in the vector
space V . If the norm

⎪⎪⎪ ·⎪⎪⎪ is decomposable then the space V itself is called decom-
posable. A subspace V0 of V is called a (bo)-ideal of V if for v ∈ V and u ∈ V0, from⎪⎪⎪v⎪⎪⎪≤⎪⎪⎪u⎪⎪⎪ it follows that v ∈ V0. We say that a net (vα)α∈Δ (bo)-converges to an
element v ∈ V and write v = bo-lim vα if there exists a decreasing net (eγ)γ∈Γ in
E+ such that infγ∈Γ(eγ) = 0 and for every γ ∈ Γ there is an index α(γ) ∈ Δ such
that

⎪⎪⎪⎪v − vα(γ)
⎪⎪⎪⎪≤ eγ for all α ≥ α(γ). A net (vα)α∈Δ is called (bo)-fundamental

if the net (vα − vβ)(α,β)∈Δ×Δ (bo)-converges to zero. A lattice-normed space is
called (bo)-complete if every (bo)-fundamental net (bo)-converges to an element
of this space. Every decomposable (bo)-complete lattice-normed space is called a
Banach–Kantorovich space (a BKS for short).

Let V be a lattice-normed space and y, x ∈ V . If
⎪⎪⎪x⎪⎪⎪∧⎪⎪⎪y⎪⎪⎪= 0 then we call

the elements x, y disjoint and write x⊥y. As in the case of a vector lattice, a set
of the form M⊥ = {v ∈ V : (∀u ∈ M)u⊥v}, with ∅ �= M ⊂ V , is called a band.
The equality x =

∐n
i=1 xi means that x =

∑n
i=1 xi and xi⊥xj if i �= j. An element

z ∈ V is called a component or a fragment of x ∈ V if z⊥(x− z). Two fragments
x1, x2 of x are called mutually complemented or MC, in short, if x = x1 + x2.
The notations z ) x means that z is a fragment of x. The set of all fragments of
the element v ∈ V is denoted by Fv. Following ([2], p. 111) an element e > 0 of
a vector lattice E is called an atom, whenever 0 ≤ f1 ≤ e, 0 ≤ f2 ≤ e and f1⊥f2
imply that either f1 = 0 or f2 = 0. A vector lattice E is atomless if there is no
atom e ∈ E.

Remark that vector lattices and normed spaces are simple examples of lattice
normed spaces. Indeed, if V = E then the modules of an element can be taken as
its lattice norm:

⎪⎪⎪v⎪⎪⎪ := |v| = v∨(−v); v ∈ E. Decomposability of this norm easily
follows from the Riesz Decomposition Property holding in every vector lattice. If
E = R then V is a normed space. A reader can find many nontrivial examples of
lattice-normed spaces in the book [7].
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Let E be a Banach lattice and let (V,E) be a lattice-normed space. Since⎪⎪⎪x⎪⎪⎪∈ E+ for every x ∈ V we can define a mixed norm in V by the formula

‖|x|‖ := ‖⎪⎪⎪x⎪⎪⎪‖ (∀x ∈ V ).

The normed space (V, ‖| · |‖) is called a space with a mixed norm. In view of the
inequality |⎪⎪⎪x⎪⎪⎪−⎪⎪⎪y⎪⎪⎪| ≤⎪⎪⎪x− y

⎪⎪⎪ and monotonicity of the norm in E, we have

‖⎪⎪⎪x⎪⎪⎪−⎪⎪⎪y⎪⎪⎪‖ ≤ ‖|x− y|‖ (∀x, y ∈ V ),

so a vector norm is a norm continuous operator from (V, ‖| · |‖) to E. A lattice-
normed space (V,E) is called a Banach space with a mixed norm if the normed
space (V, ‖| · |‖) is complete with respect to the norm convergence.

Consider lattice-normed spaces (V,E) and (W,F ), a linear operator T : V →
W and a positive operator S ∈ L+(E, F ). If the condition⎪⎪⎪Tv⎪⎪⎪≤ S

⎪⎪⎪v⎪⎪⎪; (∀ v ∈ V )

is satisfied then we say that S dominates or majorizes T or that S is dominant or
majorant for T . In this case T is called a dominated or majorizable operator. The
set of all dominants of the operator T is denoted by maj(T ). If there is the least
element in maj(T ) with respect to the order induced by L+(E,F ) then it is called
the least or the exact dominant of T and it is denoted by

⎪⎪⎪T⎪⎪⎪.
We follow [16] in the next definition.

Definition 2.1. Let (V,E) be an lattice-normed space over an atomless vector
lattice E and X a vector space. A linear operator T : V → X is called:

• strictly narrow if for every v ∈ V there exists a decomposition v = v1 * v2 of
v such that T (v1) = T (v2);

• narrow if X is a normed space, and for every v ∈ V and every ε > 0 there
exists a decomposition v = v1 * v2 of v such that ‖T (v1 − v2)‖ < ε;

• order-narrow if X is a Banach space with a mixed norm, and for every v ∈ V

there exists a net of decompositions v = v1α * v2α such that T (v1α − v2α)
(bo)−→ 0.

A linear operator T from a lattice-normed space V to a Banach space X is
called:

• order-to-norm σ-continuous if T sends (bo)-convergent sequences in V to
norm convergent sequences in X ;

• order-to-norm continuous provided T sends (bo)-convergent nets in V to norm
convergent nets in X .

Necessary information on Boolean algebras can be found, for instance, in [5],
[7], [11]. The most common example of a Boolean algebra is an algebraA of subsets
of a set Ω, that is, a subset of the set P(Ω) of all subsets of Ω, closed under the
union, intersection and complementation and containing ∅ and Ω. The Boolean
operations on A are A ∨ B = A ∪ B; A ∧ B = A ∩ B and ¬A = Ω \ A, and the
constants are 0 = ∅, 1 = Ω.

A map h : A → B between two Boolean algebras is called a Boolean homo-
morphism if the following conditions hold for all x, y ∈ A:
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1. h(0) = 0;
2. h(1) = 1;
3. h(x∨ y) = h(x)∨ h(y);
4. h(x∧ y) = h(x)∧ h(y);
5. h(¬x) = ¬h(x).

A bijective Boolean homomorphism which is called a Boolean isomorphism.
Two Boolean algebras A and B are called Boolean isomorphic if there is a Boolean
isomorphism h : A → B. The following remarkable result is known as the Stone
representation theorem.

Theorem 2.2 ([5, Theorem 7.11]). Every Boolean algebra is Boolean isomorphic to
an algebra of subsets of some set.

Every Boolean algebra A is a partially ordered set with respect to the partial
order “x ≤ y if and only if x ∧ y = x′′, with respect to which 0 is the least
element, 1 is the greatest element, x∧ y is the infimum and x∨ y the supremum
of the two-point set {x, y} in A. A Boolean algebra A is called Dedekind complete
(resp., σ-Dedekind complete) if so is A as a partially ordered set, that is, if every
(resp., countable) order-bounded nonempty subset ofA has the least upper and the
greatest lower bounds in A. Obviously, a Boolean algebra is σ-Dedekind complete
if and only if it is a σ-algebra. A Boolean algebra A can be viewed as an algebra
over field Z2 := {0,1} with respect of an algebraic operations:

x+ y := x$y, xy := x ∧ y (x, y ∈ A),

where x$y := (x ∧ y�) ∨ (x� ∧ y) is a symmetric difference of x and y.

There is a natural connection between Boolean algebras and lattice-normed
spaces. Let (V,E) be a lattice-normed space. Given L ⊂ E and M ⊂ V , we let by
definition h(L) = {v ∈ V :

⎪⎪⎪v⎪⎪⎪∈ L} and⎪⎪⎪M⎪⎪⎪= {⎪⎪⎪v⎪⎪⎪ : v ∈M}. It is clear that⎪⎪⎪⎪h(L)⎪⎪⎪⎪⊂ L
⋂⎪⎪⎪V⎪⎪⎪.

Proposition 2.3 ([7, Proposition 2.1.2]). Suppose that every band of vector lattice
E0 =

⎪⎪⎪V⎪⎪⎪⊥⊥ contains the norm of some nonzero element. Then the set of all
bands of the lattice-normed space V is a complete Boolean algebra and the map
L �→ h(L) is an isomorphism of the Boolean algebras of bands of E0 and V .

All lattice-normed spaces considered below are decomposable and satisfy
Proposition 2.3.

3. Vector measures on Boolean algebras

By a measure on a Boolean algebra A we mean a finitely additive function μ :
A → X of A to a vector space X , that is, a map satisfying

(∀x, y ∈ A)
((

x∧ y = 0
)
⇒
(
μ(x+ y) = μ(x) + μ(y)

))
.
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If, moreover, A is a Boolean σ-algebra and X is a topological vector space
then a σ-additive measure is a measure μ : A → X possessing the property that if
(xn)

∞
n=1 is a sequence in A with xn ↑ x ∈ A then lim

n→∞μ(xn) = μ(x).

3.1. Definitions and simple properties

We follow [13] in the definitions below.

Definition 3.1. Let A be a Boolean algebra and X a normed space. A measure
μ : A → X is called almost dividing if for every x ∈ A and every ε > 0 there is a
decomposition x = y * z with ‖μ(y)− μ(z)‖ < ε.

Definition 3.2. Let A be a Boolean algebra and V a lattice-normed space. A
measure μ : A → V is called order dividing if for every x ∈ A there is a net of

decompositions x = yα * zα with
(
μ(yα)− μ(zα)

) (bo)−→ 0.

Definition 3.3. Let A be a Boolean algebra and X a vector space. A measure
μ : A → X is called dividing if for every x ∈ A there is a decomposition x = y * z
with μ(y) = μ(z).

Definition 3.4. Let V be a lattice-normed space, X a vector space. To every linear
operator T : V → X we associate a family of measures (μT

v )v∈V as follows. Given
any v ∈ V , we define a measure μT

v : Fv → X on the Boolean algebra Fv of
fragments of v by setting μT

v u = T (u), μT
v is called the associated measure of T at v.

The next proposition directly follows from the definitions.

Proposition 3.5. Let (V,E) be a lattice-normed space, E be an atomless vector
lattice, X a vector space and T : V → X a linear operator. Then the following
assertions hold.

(1) T is strictly narrow if and only if for every v ∈ V the measure μT
v is dividing.

(2) Let X be a normed space. Then T is narrow if and only if for every v ∈ V
the measure μT

v is almost dividing.
(3) Let X be a lattice-normed space. Then T is order narrow if and only if for

every v ∈ V the measure μT
v is order dividing.

Obviously, a dividing measure is both almost dividing and order dividing, for
an appropriate range space. The following three propositions are close to proposi-
tions 10.7 and 10.9, and Example 10.8 from [18].

Proposition 3.6. Let A be a Boolean algebra and W a Banach space with a mixed
norm. Then every almost dividing measure μ : A →W is order dividing.

Proof. Let μ : A → W be an almost dividing measure and x ∈ A. Choose a
sequence of decompositions x = yn * zn with |‖μ(yn) − μ(zn)|‖ ≤ 2−n. Then for
un =

∑∞
k=n

⎪⎪⎪⎪μ(yn)− μ(zn)
⎪⎪⎪⎪ one has

⎪⎪⎪⎪μ(yn)− μ(zn)
⎪⎪⎪⎪≤ un ↓ 0. Hence,

(
μ(yn)−

μ(zn)
) (bo)−→ 0. �
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Proposition 3.7. Let Σ be the Boolean σ-algebra of Lebesgue measurable subsets
of [0, 1]. Then there exists an order-dividing measure μ : Σ → L∞ which is not
dividing.

Proof. Use Proposition 3.5 and [18, Example 10.8]. �
Proposition 3.8. Let A be a Boolean algebra and (W,F ) a Banach space with
a mixed norm, where F is an order-continuous Banach lattice. Then a measure
μ : A →W is order dividing if and only if it is almost dividing.

Proof. Let μ : A → W be order dividing. Given any x ∈ A, let x = yα * zα be

a net of decompositions with
(
μ(yα) − μ(zα)

) (bo)−→ 0. By the order-continuity of

F ,
∥∥⎪⎪⎪⎪μ(yα)− μ(zα)

⎪⎪⎪⎪∥∥ → 0, and hence, μ is almost dividing by arbitrariness of
x ∈ A. By Proposition 3.6, the proof is completed. �

A nonzero element u of a Boolean algebra A is called an atom if for every
x ∈ A the condition 0 < x ≤ u implies that x = u. Every dividing (of any type)
measure sends atoms to zero.

Proposition 3.9. Let A be a Boolean algebra and V a vector space (a normed space,
or a lattice-normed space) and μ : A → V a dividing (an almost dividing or an
order-dividing, respectively) measure. If a ∈ A is an atom then μ(a) = 0.

The proof is an easy exercise.

3.2. The range convexity of vector measures

We need the following remarkable result known as the Lyapunov1 convexity the-
orem.

Theorem 3.10 ([10, Theorem 2, p.9]). Let (Ω,Σ) be a measurable space, X a finite-
dimensional normed space and μ : Σ → X an atomless σ-additive measure. Then
the range μ(Σ) = {μ(A) : A ∈ Σ} of μ is a compact convex subset of X.

The following theorem was proven in [13], but for sake of completeness we
include the proof here.

Theorem 3.11. Let A be a Boolean σ-algebra and X a finite-dimensional vector
space. Then every atomless σ-additive measure μ : A → X is dividing.

For a Boolean σ-algebra A and x ∈ A \ {0} by Ax we denote the Boolean
σ-algebra {y ∈ A : y ≤ x} with the unit 1Ax = x and the operations induced by A.
Proof. Let μ : A → X be an atomless σ-additive measure and x ∈ A. If x = 0 then
there is nothing to prove. Let x �= 0. Then the restriction μx = μ|Ax : Ax → X is an
atomless σ-additive measure. By Theorem 2.2, Ax is Boolean isomorphic to some
measurable space (Ω,Σ) by means of some Boolean isomorphism J : Ax → Σ.
Since Ax is a Boolean σ-algebra, Σ is a σ-algebra. Then the map ν : Σ → X
given by ν(A) = μ

(
J−1(A)

)
for all A ∈ Σ, is an atomless σ-additive measure.

1= Lyapounoff, the old spelling
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By Theorem 3.10, the range ν(Σ) of ν is a convex subset of X . In particular,
since 0, ν

(
J(x)

)
∈ ν(Σ), we have that ν

(
J(x)

)
/2 ∈ ν(Σ). Let B ∈ Σ be such

that ν(B) = ν
(
J(x)

)
/2 = μ(x)/2. Then for y = J−1(B) one has that y ≤ x and

μ(y) = ν(B) = μ(x)/2. Thus, for z = x ∧ ¬y one has x = y * z and μ(z) =
μ(x)− μ(y) = μ(x)/2 = μ(y). �

3.3. Strict narrowness of order-continuous finite rank operators

The following theorem is the main result of this subsection. This assertion strength-
ens Theorem 4.12 from [16]. Using a method based on the Lyapunov theorem, we
prove the strict narrowness of an operator.

Theorem 3.12. Let (V,E) be a lattice-normed space, E an atomless vector lattice
with the principal projection property, X a finite-dimensional normed space (resp.,
a lattice-normed space). Then every σ-order-to-norm continuous (resp., σ-order-
continuous) linear operator T : V → X is strictly narrow.

To use the technique of dividing vector measures, we preliminarily need the
σ-additivity of a measure.

Lemma 3.13. Let (V,E) be a lattice-normed space, E an atomless vector lattice
with the principal projection property, X a normed space (resp., a lattice-normed
space), T : V → X an order-to-norm continuous (resp., an order-continuous)
linear operator. Then for every v ∈ V the associated measure μT

v is atomless and
σ-additive.

Proof of Lemma 3.13. Fix any v ∈ V . The σ-additivity of μT
v directly follows from

the order-continuity.We show that μT
v is atomless. Assume v0 ∈ Fv and μT

v (v0) �= 0,
that is, T (v0) �= 0. Set Z = {u ∈ Fx0 : T (u) = 0}. By the order-continuity and
Zorn’s lemma, Z has a maximal element z ∈ Z. Since T (z) = 0, one has that
T (v0 − z) = T (z) + T (v0 − z) = T (v0) �= 0. Since E is atomless, we split v0 − z =
w1 * w2 with w1, w2 ∈ Fv0 \ {0}. By maximality of z, T (w1) �= 0 and T (w2) �= 0.
Thus, v0 = (z + w1) * w2 is a decomposition with μT

v (z + w1) = μT
v (w2) �= 0 and

μT
e (w1) �= 0. �

Proof of Theorem 3.12. Let v ∈ V . By Lemma 3.13, the associated measure μT
v :

Fv → X is atomless and σ-additive. By Theorem 3.11, μT
v is dividing. So, we split

v = v1 * v2 with μT
v (v1) = μT

v (v2), that is, T (v1) = T (v2). �

4. Operators from arbitrary to atomic lattice-normed spaces are
order narrow

Definition 4.1. An element u of a lattice-normed space (V,E) is called an atom,
whenever 0 ≤⎪⎪⎪v1⎪⎪⎪≤⎪⎪⎪u⎪⎪⎪, 0 ≤⎪⎪⎪v2⎪⎪⎪≤⎪⎪⎪u⎪⎪⎪ and v1⊥v2 imply that either v1 = 0
or v2 = 0.

It is clear that u⊥v for every different atoms u, v ∈ V .
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Definition 4.2. A lattice-normed space V is said to be atomic if there is a collection
(ui)i∈I of atoms in V , called a generating collection of atoms, such that ui⊥uj for
i �= j and for every v ∈ V if

⎪⎪⎪v⎪⎪⎪∧⎪⎪⎪ui
⎪⎪⎪= 0 for each i ∈ I then v = 0.

It follows from the definition that the (bo)-ideal V0 generated by generating
collection of atoms coincides with V .

Example. Let X be a Banach space and consider the lattice-normed space (V,E),
where E = c0 or E = lp; 0 < p ≤ ∞ and

V = {(xn)
∞
n=1; xn ∈ X : (‖xn‖)∞n=1 ∈ E}.

Elements {(0, . . . , xi, . . . , 0, . . . ) : xi ∈ X ; i ∈ N} are atoms and the space V is an
atomic lattice-normed space.

Proposition 4.3. Let (V,E) be a lattice-normed space such that every band of the
vector lattice E contains the vector norm of some nonzero element. Then V is
atomic if and only if the vector lattice E is atomic.

Proof. Let V be atomic. We shall prove that E is atomic too. First we prove that
a norm of an arbitrary atom in V is also an atom on E. Assume that v ∈ V is
an atom, e =

⎪⎪⎪v⎪⎪⎪ ∈ E+ and there are elements f1, f2, such that 0 < f1 ≤ e,
0 < f2 ≤ e and f1⊥f2. Then the band F1 = {f1}⊥⊥ is disjoint to the band
F2 = {f2}⊥⊥ and by our assumption there exist two nonzero elements v1, v2 ∈ V ,
such that

⎪⎪⎪v1⎪⎪⎪∈ F1 and
⎪⎪⎪v2⎪⎪⎪∈ F2. Then we may write⎪⎪⎪vi⎪⎪⎪=
⎪⎪⎪vi⎪⎪⎪∧ fi + ei; ei ≥ 0; i ∈ {1, 2}.

By decomposability of the vector norm there exist w1, w2 ∈ V , so that 0 ≤⎪⎪⎪wi
⎪⎪⎪=⎪⎪⎪vi⎪⎪⎪∧ fi ≤ e =

⎪⎪⎪v⎪⎪⎪, i ∈ {1, 2} and w1⊥w2. But this is a contradiction and
therefore

⎪⎪⎪v⎪⎪⎪ is an atom in E. Let e ∈ E+ and e⊥⎪⎪⎪v⎪⎪⎪ for every atom v ∈ V .
Then there exists a nonzero element h ∈ V , such that

⎪⎪⎪h⎪⎪⎪∈ {e}⊥⊥. Hence e = 0
and E is an atomic vector lattice. The converse assertion is obvious. �

The following theorem is the second main result of the our paper.

Theorem 4.4. Let (V,E), (W,F ) be lattice-normed spaces, where W is atomic, E,F
are vector lattices with the principal projection property and E is atomless. Then
every dominated, order-continuous linear operator T : V →W is order narrow.

For the proof we need an auxiliary result that gives a representation of an
element of an atomic lattice-normed space via atoms. Let (W,F ) be an atomic
lattice-normed space with a generating collection of atoms (ui)i∈I and F be a
vector lattice with the principal projection property. Let Λ denote the directed set
of all finite subsets of I ordered by inclusion, that is, α ≤ β for α, β ∈ Λ if and
only if α ⊆ β. For every α ∈ Λ we set

Pα =
∑
i∈α

Pui , (4.1)

where Pui is the band projection of W onto the band generated by the element
ui. It is immediate that Pui is a band projection of F onto the band generated by
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the element
⎪⎪⎪ui
⎪⎪⎪ and Pα is the band projection of W onto the band generated by

{ui : i ∈ α}.
Proposition 4.5. Let (W,F ) be an atomic lattice-normed space, F be a vector lattice
with the principal projection property and (ui)i∈I ⊂ W be a generating collection
of atoms. If g ∈W then Puig = ai for every i ∈ I and some ai ∈ R.

Proof of Proposition 4.5. (1) Let g ∈ W . Then there exists a finite collection of

atoms u1, . . . , un, such that
⎪⎪⎪g⎪⎪⎪ ≤ n∑

i=1

λi
⎪⎪⎪ui
⎪⎪⎪, λi ∈ R+, i ∈ {1, . . . , n}. By de-

composability of the vector norm there exist g1, . . . , gn in W , such that

g =

n∑
i=1

gi;
⎪⎪⎪gi⎪⎪⎪≤ λi

⎪⎪⎪ui
⎪⎪⎪; i ∈ {1, . . . , n}.

Moreover gi = aiui for some ai ∈ R and every i ∈ {1, . . . , n},⎪⎪⎪gi⎪⎪⎪⊥⎪⎪⎪⎪gj⎪⎪⎪⎪,
j �= i. Therefore Puig = aiui. �
Proof of Theorem 4.4. Let T : V → W be a dominated operator. Fix any v ∈ V
and e =

⎪⎪⎪v⎪⎪⎪ ∈ E+. Since the set Fe of all fragments of e is order bounded in E,
its image

⎪⎪⎪T⎪⎪⎪(Fe) is order bounded in F , say,
⎪⎪⎪Tx⎪⎪⎪ ≤ ⎪⎪⎪T⎪⎪⎪⎪⎪⎪x⎪⎪⎪ ≤ f for some

f ∈ F+ and all x ) v. Let (ui)i∈I be a generating collection of atoms of W , Λ the
directed set of all finite subsets of I ordered by inclusion, and (Pα)α∈Λ the net
of band projections of F defined by (4.1). By Proposition 4.5, Pα is a finite rank
operator for every α ∈ Λ. Being a band projection, Pα is order continuous. Then
for each α ∈ Λ the composition operator Sα = Pα ◦ T is a finite rank dominated,
order-continuous operator which is strictly narrow by Theorem 3.12. So, for each
α ∈ Λ we choose a decomposition v = v′α * v′′α with Sα(v

′
α) = Sα(v

′′
α). Then⎪⎪⎪⎪T (v′α)− T (v′′α)

⎪⎪⎪⎪=
⎪⎪⎪⎪(I −Pα) ◦ T (v′α)− (I −Pα) ◦ T (v′′α)

⎪⎪⎪⎪
≤
⎪⎪⎪⎪(I −Pα) ◦ T (v′α)

⎪⎪⎪⎪+
⎪⎪⎪⎪(I −Pα) ◦ T (v′′α)

⎪⎪⎪⎪
≤ (I −Pα)

⎪⎪⎪⎪T (v′α)⎪⎪⎪⎪+ (I −Pα)
⎪⎪⎪⎪T (v′′α)⎪⎪⎪⎪

≤ 2 (I −Pα)(f)
(o)−→ 0. �
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sign-embeddings, Ukräın. Mat. Zh., 44, No 9 (1992), 1192–1200.

[7] A.G. Kusraev, Dominated Operators, Kluwer Acad. Publ., Dordrecht–Boston–
London, 2000.

[8] H.E. Lacey, The Isometrical Theory of Classical Banach Spaces, Springer-Verlag,
Berlin–Heidelberg–New York, 1974.

[9] J. Lindenstrauss, L. Tzafriri, Classical Banach spaces, Vol. 1, Sequence spaces,
Springer-Verlag, Berlin–Heidelberg–New York, 1977.

[10] J. Lindenstrauss, L. Tzafriri, Classical Banach spaces, Vol. 2, Function spaces,
Springer-Verlag, Berlin–Heidelberg–New York, 1979.

[11] W.A.J. Luxemburg, A.C. Zaanen, Riesz Spaces. Vol. 1, North-Holland Publ. Comp.,
Amsterdam–London, 1971.

[12] O.V. Maslyuchenko, V.V. Mykhaylyuk, M.M. Popov, A lattice approach to narrow
operators, Positivity 13 (2009), 459–495.

[13] V. Mykhaylyuk, M. Pliev, M. Popov, O. Sobchuk, Dividing measures and narrow
operators, Studia Math. 231 (2015), 97–116.

[14] V. Mykhaylyuk, M. Popov, B. Randrianantoanina, G. Schechtman, On narrow and
�2-strictly singular operators on Lp, Isr. J. Math. 203 (2014), 81–108.

[15] A.M. Plichko, M.M. Popov, Symmetric function spaces on atomless probability
spaces, Dissertationes Math. (Rozprawy Mat.) 306 (1990), pp. 1–85.

[16] M. Pliev, Narrow operators on lattice-normed spaces, Cent. Eur. J. Math. 9, No 6
(2011), pp. 1276–1287.

[17] M. Pliev, M. Popov, Narrow orthogonally additive operators, Positivity v. 18, 4,
(2014), 641–667.

[18] M. Popov, B. Randrianantoanina, Narrow Operators on Function Spaces and Vector
Lattices, De Gruyter Studies in Mathematics 45, De Gruyter, 2013.

Dina Dzadzaeva
Department of Mathematics and Informatics
North-Osetian State University
Vatutina str. 44
Vladikavkaz 362025, Russia

Marat Pliev
Southern Mathematical Institute

of the Russian Academy of Sciences
Markusa str. 22
Vladikavkaz 362027, Russia



Ordered Structures and Applications: Positivity VII

Trends in Mathematics, 171–178
c© 2016 Springer International Publishing

Quasi-compactness and Uniform Convergence
of Markov Operator Nets on KB-spaces
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Abstract. We investigate quasi-compactness of operator nets on KB-spaces
which is equivalent to uniform convergence. Moreover we study the uniform
ergodicity condition of a single operator or operator semigroups.
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1. Introduction

Kryloff and Bogoliouboff [16, 17] in 1937 introduced an important class of quasi-
compact operators for which the uniform mean ergodic theorem can be obtained.
This result was generalized by Yosida and Kakutani [29] showing that any quasi-
compact operator with bounded powers on a Banach space is uniformly ergodic.
Since this result, many contributions have been made in probability and ergodic
theory using the spectral properties of quasi-compact operators. Quasi-compact-
ness for strongly convergent semigroups and its relation to uniform ergodicity
and to the asymptotic behaviour of the solutions of abstract Cauchy problems is
studied in [25].

2. Terminology and notations

Let E be a Banach lattice. Then E+ := {x ∈ E : x ≥ 0} denotes the positive
cone of E. On L(E) there is a canonical order given by S ≤ T if Sx ≤ Tx for
all x ∈ E+. If 0 ≤ T , then T is called positive. The dual space E′ equipped
with the canonical order is again a Banach lattice. Instead of the operations sup
and inf on E we often write ∨ and ∧, respectively. For x ∈ E+ we denote by
[−x, x] := {y ∈ E : |y| ≤ x} the order interval generated by x. A linear subspace
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of E is an ideal if [− |x| , |x|] ⊆ I for all x ∈ I. An ideal I in E is called a band if for
every subset M ⊆ I such that supM exists in E one has supM ∈ I. An ideal I in
E is called a projection band if there is an ideal J in E such that E = I ⊕J is the
topological sum of I and J . In this case J is uniquely determined and I and J are
bands. The projection P from E onto I with kernel kerP = J is called the band
projection corresponding to I and satisfies 0 ≤ P ≤ IE . The norm on E is order
continuous if every order interval is weakly compact. A Banach lattice E is called
a KB-space whenever every increasing norm bounded sequence of E+ is norm
convergent. In particular, it follows that every KB-space has order-continuous
norm. Reflexive Banach lattices and AL-spaces are examples of KB-spaces. The
following theorem combines some of the properties (see [1, 24, 28]).

Theorem 2.1. For a Banach lattice E the following statements are equivalent:

• E is a KB-space
• E is a band of E′′

• E is weakly sequentially complete
• c0 is not embeddable in E.
• c0 is not lattice embeddable in E

The concept of a classical Markov operator was generalized to Banach lattices
in [15]. Both the properties of Markov operators on L1-spaces and the properties
of their adjoints motivated the following definition.

Definition 2.2. Let E be a Banach lattice. A positive linear contraction T : E → E
is called a Markov operator if there exists 0 < e′ ∈ E′

+ such that T ′e′ = e′.

It is well known that a positive linear operator T defined on a Banach lattice
E, is continuous. It is also well known that if the Banach lattice E has order-
continuous norm, then the positive operator T is moreover order continuous. Ac-
cording to the definition, we note that the Markov operators are again contained
in the class of all positive contractions and that the adjoint T ′ is also a positive
contraction. For more details, we refer to [15].

3. LR-nets

The class of nets considered in this paper was introduced by Lotz in [23] and then
generalized by Räbiger [26]. We use the slightly modified terminology following
the paper [8] and call them LR-nets.

Definition 3.1. A net Θ = (Tλ)λ∈Λ is called an LR-net if

LR1 Θ is uniformly bounded;
LR2 limλ→∞ ‖Tλ ◦ (Tμ − I)x‖ = 0 for every μ ∈ Λ and for every x ∈ X ;
LR3 limλ→∞ ‖(Tμ − I) ◦ Tλx‖ = 0 for every μ ∈ Λ and for every x ∈ X .

If the limit conditions hold in the uniform operator topology, then the oper-
ator net is called uniform LR-net, or ULR-net.
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Many examples of LR-nets appear in the investigation of operator semi-
groups. Thus every strongly convergent uniformly bounded Abelian operator semi-
group itself is an LR-net with respect to the natural partial order ≺ defined by
T ≺ S if there exists an R with S = R ◦ T . If a semigroup T ⊆ L(X) admits a
T -ergodic net Λ, then it is an LR-net. In particular, the Cesaro averages of a power
bounded operator form an LR-net and moreover encompasses Cesaro averages of
higher orders for both discrete and continuous semigroups. See [4, 7, 8, 10].

The convergence question is probably the most important one in applications
of the concept of an LR-net. The net Θ is strongly convergent if the norm-limit
‖·‖ − limλ→∞ Tλx exists for each x ∈ X . The following theorem states several
equivalent conditions to convergence. For the proof, see [8].

Theorem 3.2. Let Θ = (Tλ)λ∈Λ be a Lotz–Räbiger net in a Banach space X. The
following conditions are equivalent:

a) Θ converges strongly;
b) for every x ∈ X, the net (Tλx)λ∈Λ has a weak cluster point;

c) X = Fix(Θ)
⊕⋃

λ∈Λ(I − Tλ)X;
d) Fix(Θ) separates Fix(Θ∗) = {y ∈ X∗ : T ∗

λy = y for all λ ∈ Λ}.
If any of these conditions is satisfied, then the strong limit of (Tλ)λ is a projection
onto the fixed space of Θ, Fix(Θ) = {x ∈ X : Tλx = x, ∀λ ∈ Λ}.

4. Ergodicity of Markov LR-nets on KB-spaces

The concept of an attractor or constrictor was used by several mathematicians to
characterize the asymptotic behavior of operators. In this section we show that a
positive LR-net on KB-spaces is strongly convergent if an LR-net has an attractor
of the form W + ηBE where W is weakly compact. Moreover if the weakly com-
pact part of an attractor is an order interval, then a Markovian LR-net converges
strongly to a finite-rank projection, see [14].

If T is a Markov operator on L1-space then the Cesaro averages AT
n =

1
n

∑n−1
k=0 T

k are strongly convergent with dimFix(T ) <∞ whenever there exists a

function h ∈ L1
+ and a real 0 ≤ η < 1 such that limn→∞

∥∥∥(h− 1
n

∑n−1
k=0 T

kf)+

∥∥∥ ≤
η for every density f , see [13]. In [7] and [3] some generalizations of this results are
given. Firstly we prove the above result for positive operator nets. The principal
trick in the proof of the main results of [7] was using the additivity of the norm
on the positive part of the L1-space. Since this is no longer the case for a general
KB-space, we use different ideas in this part, inspired by [27].

Theorem 4.1. Let E be a KB-space with a quasi-interior point e and Θ = (Tλ)λ∈Λ

be a positive LR-net in E which has a cofinal subsequence, W be a weakly compact
subset of E, and η ∈ R, 0 ≤ η < 1 such that

lim
λ→∞

dist(Tλx,W + ηBE) = 0

for any x ∈ BE. Then Θ converges strongly.
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The theorem is also true if we replace a weakly compact subset W of E by
an order interval [−g, g] for any g ∈ E+ because in KB-spaces, every order interval
is weakly compact. In this case we moreover get that the dimension of the fixed
space is finite.

Theorem 4.2. Let E be a KB-space with a quasi-interior point e and Θ = (Tλ)λ∈Λ

be a Markov LR-net in E which has a cofinal subsequence. Then the following are
equivalent

(i) there exists a function g ∈ E+ and η ∈ R, 0 ≤ η < 1 such that

lim
λ→∞

dist(Tλx, [−g, g] + ηBE) = 0 ∀x ∈ BE

(ii) the net Θ is strongly convergent and dimFix(Θ) <∞.

For the proofs and details, we refer the reader to [14].

5. Quasi-compact Markov operator net on KB-spaces

The systematic study of a quasi-compact linear operator T on a Banach space was
initiated by Yoshida and Kakutani [29], in order to obtain some of the limit theo-
rems of Doeblin [6]. We recall that an operator T ∈ L(X) is called quasi-compact if
there exist a positive integer n and a compact operator K with ‖T n −K‖ < 1, see
[16, 17]. It is well known that an operator T is quasi-compact if and only if there ex-
ists a sequence (Kn)n∈N ⊆ L(X) of compact operators with limn→∞ ‖T n −Kn‖ =
0, see [18]. This motivates the following definition in [11].

Definition 5.1. An operator net (Tλ)λ∈Λ is called quasi-compact if for every λ ∈ Λ
there is a compact operator Kλ with limλ→∞ ‖Tλ −Kλ‖ = 0.

The quasi-compactness in the sense of Definition 5.1 is a property of an
operator net, not of operators belonging to this net. Nevertheless the following
theorem characterizes quasi-compactness of a ULR-net through quasi-compactness
of its operators.

Theorem 5.2 ([11], Thm. 7). Let Θ = (Tλ)λ be a ULR-net then the following
conditions are equivalent:

(i) Θ is quasi-compact;
(ii) there exists λ0 ∈ Λ such that Tλ are quasi-compact for all λ + λ0;
(iii) there exists λ0 ∈ Λ such that Tλ0 is quasi-compact;

(iv) there exists S ∈ co(sem(Θ)) such that S is quasi-compact, where co(sem(Θ))
is the closure in the operator norm of the convex hull co(sem(Θ)) of the
semigroup sem(Θ) ⊆ L(X) generated by {Tλ : λ ∈ Λ}.
Emel’yanov proved also the existence of the uniform limit in terms of quasi-

compactness. A strongly convergent ULR-net on a Banach space is quasi-compact
if and only if it converges uniformly to a finite-rank projection. It is worth adding
that ULR-net condition is essential, otherwise there exists a quasi-compact LR-
nets, they converge strongly but not uniformly, see [11].
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Our goal is to prove that for a Markov ULR-net on KB-space then the net is
quasi-compact if and only if it converges uniformly.

Theorem 5.3. Let Θ = (Tλ)λ∈Λ be a Markov ULR-net which has a cofinal subse-
quence on the KB-space E with a quasi-interior point e. Then Θ is quasi-compact
if and only if it converges uniformly to a finite-rank projection.

Proof. If Θ converges uniformly to a finite rank projection then it is automatically
quasi-compact by Definition 5.1.

Let Θ be a quasi-compact Markov ULR-net on a KB-space. By Theorem 5.2
for ε > 0 there exists λ0 ∈ Λ such that Tλ0 is quasi-compact and soKλ0(BE)+εBE

is an attractor of Θ with compact Kλ0(BE). Hence by Theorem 4.1 Θ converges
strongly, say to P . By the compactness of Kλ0 = K, we can take x1, . . . , xk ∈ BE

such that for every x ∈ BE , there exists xj with ‖Kx−Kxj‖ ≤ ε. Then the
interval [−

∑
Kxk,

∑
Kxk] + 2εBE is an attractor and Θ is a Markov ULR-net,

so it converges to a finite-rank projection by Theorem 4.2.
Emel’yanov proved that if Θ is a strongly convergent ULR-net satisfying

quasi-compactness then it converges uniformly in [11]. Hence the proof is com-
pleted. �

6. Quasi-compactness of single operator and operator semigroups

Yoshida and Kakutani proved firstly that if the contraction T is quasi-compact
then it is uniformly ergodic, i.e., the Cesaro averages AT

n converges uniformly, to
a finite-rank projection. Later Lin showed that quasi-compactness is both suffi-
cient and necessary for uniform ergodicity of positive operators on L1-spaces or
C(X), [21, 22]. An important tool for proving is the following. Let ‖T ‖ ≤ 1,

then 1
n

∑n−1
k=0 T

k converges uniformly if and only if I − T has a closed range. It
is the statement of uniform ergodic theorem and now we generalize it to Markov
operators on KB-spaces.

Theorem 6.1. Let T be a Markov operator on KB-space E. Then the following
conditions are equivalent.

(i) T is quasi-compact
(ii) T is uniformly ergodic to a finite-rank projection
(iii) (I − T )E is closed and Fix(T ) = {x : Tx = x} is finite dimensional.
(iv) (I − T ′)E′ is closed and Fix(T ′) is finite dimensional.

Proof. (i) ⇒ (ii) is due to Yosida and Kakutani [29].
(ii) ⇔ (iii) By the uniform ergodic theorem.

(iii) ⇒ (iv) By the uniform ergodic theorem 1
n

∑n−1
i=0 T i converges uniformly

to a projection P on Fix(T ). Therefore dimFix(T ′) = dimFix(T ) <∞. Moreover
1
n

∑n−1
i=0 T ′i converges to P ′ uniformly and so (I − T ′)E′ is closed.
(iv)⇒ (iii) By the uniform ergodic theorem 1

n

∑n−1
i=0 T ′i converges uniformly

and hence T is uniformly ergodic which implies (I − T )E is closed.
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(ii) ⇒ (i) Since T is Markov on KB-space, the Cesaro averages 1
n

∑n−1
i=0 T i is

an ULR-net. For the limit condition of Definition 3.1,

lim
n→∞

∥∥AT
n (A

T
m − I)

∥∥ = lim
n→∞

∥∥∥∥∥AT
n

(
1

m

m−1∑
k=0

T k − 1

m

m−1∑
k=0

Ik

)∥∥∥∥∥
= lim

n→∞
1

m

∥∥∥∥∥AT
n

m−1∑
k=0

(T k − Ik)

∥∥∥∥∥
≤ lim

n→∞
1

m

1

n
‖T n‖

∥∥Tm−1 + · · ·+ I
∥∥ .

Since T is Markov, so a positive contraction, limit is 0 and it satisfies the
ULR-net conditions. By Theorem 5.3, AT

n is quasi-compact. By Theorem 5.2, T is
quasi-compact. �

Remark that for the Cesaro averages of a single operator without loss of
generality we may assume that E has a quasi-interior point e, [3].

Uniform LR-net assumption is necessary because if we replace the condition
ULR-net by the condition LR-net, the implication (ii) ⇒ (i) is not true, for the
example refer to [11].

Quasi-compactness for strongly-continuous semigroups and its relation to uni-
form ergodicity is studied in [25]. Quasi-compactness means that T (t) approaches
the compact operators as t → ∞, to be precise, a strongly continuous semigroup
(T (t))t≥0 is quasi-compact if limt→∞ dist(T (t),K(E)) = 0 where K(E) stands for
the ideal of compact operators on E and

dist(T (t),K(E)) = inf
K∈K(E)

‖T (t)−K‖ .

Quasi-compactness can be characterized in different ways and in [25] the notion of
the essential growth bound of a semigroup (T (t))t≥0 is used. Lotz gave a criterion
for quasi-compactness of positive semigroups on C(X). It is based on a criterion
given by Doeblin for operators on spaces of bounded measurable functions. In [4]
quasi-compactness is investigated for ULR-nets in C(X).

Now, unfortunately, we could not consider the Yoshida ad Kakutani result
with Lin’s characterization for one-parameter semigroups on KB-spaces. The Ce-

saro averages of uniformly continuous one-parameter semigroup At =
1
t

∫ t

0 T (s)ds
form an ULR-net. Its uniform convergence to a finite-dimensional projection does
not imply quasi-compactness of (T (t))t≥0 in general even on L1-spaces. For an
concrete example, see [4].

We could only state the following theorem.

Theorem 6.2. Let (T (t))t≥0 be uniformly continuous (norm-continuous) one-para-
meter Markov semigroup on KB-spaces with T (0) = I satisfying T (t)/t → 0 in
norm. Then the Cesaro averages of (T (t))t≥0 form a quasi-compact ULR-net if
and only if it is uniformly ergodic onto the finite-dimensional fixed space
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Proof. Since (T (t))t≥0 is bounded and uniformly continuous semigroup satisfying
‖T (t)/t‖ → 0, the Cesaro averages of it is a ULR-net. By Theorems 5.3 and
Theorem 5.2, the result follows. �
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[18] Krengel U. Ergodic theorems. de Gruyter Studies in Mathematics; Vol. 6, pp.
viii+357, with a supplement by Antoine Brunel, Berlin: Walter de Gruyter & Co.,
(1985).

[19] Lasota A., Mackey M.C. Chaos, Fractals and Noise. Stochastics Aspect of Dynamics,
second edition, Appl. Math. Sci., Vol. 97, Springer-Verlag, New York, 1994, xiv +
472 pp.

[20] Lasota A., Socala J. Asmptotic properties of constrictive Markov operators. Bull.
Pol. Acad. Math. 1987; Vol. 35; pp. 71–76

[21] Lin M. Quasi-compactness and uniform ergodicity of positive operators. Israel J.
Math. 1978; Vol. 29; no. 2-3; pp. 309–311.

[22] Lin M. Quasi-compactness and uniform ergodicity of Markov operators. Ann. Inst.
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1. Introduction

This paper is a survey on the properties of the recently introduced class of dis-
jointly homogeneous Banach lattices, as well as the compactness properties of
the operators defined on these spaces. It collects information previously given in
([15, 16, 17, 21]) and some new facts.

Recall that a Banach lattice E is disjointly homogeneous if two arbitrary
sequences of normalized pairwise disjoint elements in E always have equivalent
subsequences. The motivation which gave rise to the definition of a disjointly
homogeneous space was to decide the compactness of the iterations of a given
operator which already enjoyed nice close-to-compactness properties. Thus the
first and third authors together with V.G. Troitsky considered this notion for the
first time in [15].

Later on E.M. Semenov and the authors ([16]) analyzed the general problem
of obtaining compactness of the iterations of a strictly singular operator on a
Banach lattice, extending the classical result by V.D. Milman ([35]) which states
that strictly singular operators in Lp(μ), 1 ≤ p ≤ ∞, have compact square. In
fact, one of the purposes of this survey is to offer compelling evidence that the
class of disjointly homogeneous Banach lattices constitutes a proper setting for
treating these questions. It is particularly evident in connection with the Kato
property, i.e., when the class of compact and strictly singular operators coincide
([21]). From the point of view of the structural properties of the class of disjointly
homogeneous Banach lattices, several aspects have been explored by V.G. Troitsky
and E. Spinu jointly with the authors in [17]; particularly two of these aspects
have been studied in detail, namely the problem of self-duality and the problem
of obtaining complemented copies of the span of disjoint sequences.

The paper is organized in two clearly differentiated parts. The first one in-
cludes sections one through five which focus on disjointly homogeneous Banach
lattices themselves. Definitions and examples are given, and structure properties
such as the self-duality of this class and the existence of complemented copies of
disjoint sequences are addressed. The second part, including the remaining sec-
tions, focuses on the operators defined on disjointly homogeneous Banach lattices
and the properties they have; particularly, attention is given to the compactness
properties of the iterations of endomorphisms as well as the relation between dis-
jointly homogeneous Banach lattices and the Kato property. The paper concludes
with a list of some open questions.

We follow the standard terminology concerning Banach spaces and Banach
lattices as in the monographs [2, 32, 33, 34]. In the sequel by an operator we
always mean a bounded linear operator. Given a sequence (xn) in a Banach space,
we write [xn] for the closed linear span of the sequence. Given basic sequences (xn),

(yn), and C > 0, the notation (xn)
C∼ (yn) means that for every scalars (an)

∞
n=1

C−1

∥∥∥∥ ∞∑
n=1

anyn

∥∥∥∥ ≤ ∥∥∥∥ ∞∑
n=1

anxn

∥∥∥∥ ≤ C

∥∥∥∥ ∞∑
n=1

anyn

∥∥∥∥.
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2. Disjointly homogeneous Banach lattices: definition and examples

The notion of disjointly homogeneous Banach lattices was first introduced in [15];
let us recall its definition.

Definition 2.1. A Banach lattice E is disjointly homogeneous (DH) if for every
pair (xn), (yn) of normalized disjoint sequences in E, there exist C > 0 and a

subsequence (nk) such that (xnk
)

C∼ (ynk
).

Our interest will focus on those Banach lattices for which there is 1 ≤ p ≤
∞ such that every normalized disjoint sequence (xn) has a subsequence (xnk

)
equivalent to the unit vector basis of �p (or c0 for p =∞), i.e.,

C−1

( ∞∑
k=1

|ak|p
)1/p

≤
∥∥∥∥ ∞∑
k=1

akxnk

∥∥∥∥ ≤ C

( ∞∑
k=1

|ak|p
)1/p

,

for some C > 0. These form an important class of DH spaces, which will be denoted
p-disjointly homogeneous, in short p-DH (resp.∞-disjointly homogeneous, in short
∞-DH). Clearly, Lp-spaces are p-DH.

Note that 1-DH Banach lattices have been considered previously under a
different approach. Recall that a Banach lattice E has the positive Schur property
if every weakly null sequence (xn) of positive vectors is norm convergent, see
[25, 42, 43, 44]. It follows from, e.g., [34, Corollary 2.3.5], that it suffices to verify
this condition for disjoint sequences. Using Rosenthal’s �1-theorem, it was proved
in [17] that a Banach lattice E is 1-DH if and only if E has the positive Schur
property.

Observe that, in the definition of a DH Banach lattice, it is important to allow
for the possibility of passing to subsequences in order to get the required equiva-
lence. Otherwise, the class reduces to the spaces Lp(μ) or c0(Γ) ([17, Proposition
2.2]).

Thus Lp(μ)-spaces exhibit a particularly strong version of this definition. But
these are not the only examples. For instance, in the context of function spaces,
Lorentz spaces Λ(W, q) and Lp,q on [0, 1] are q-DH.

Recall that given 1 ≤ q < ∞ and W a positive, non-increasing function

in [0, 1], such that limt→0 W (t) = ∞, W (1) > 0 and
∫ 1

0 W (t)dt = 1, the Lorentz
function space Λ(W, q)[0, 1] is the space of all measurable functions f on [0, 1] such
that

‖f‖ =
(∫ 1

0

f∗(t)qW (t)dt

)1/q

<∞,

where f∗ denotes the decreasing rearrangement of the function f (cf. [33, Chapter
2]). Let us also recall that for 1 < p < ∞ and 1 ≤ q ≤ ∞, the Lorentz space
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Lp,q[0, 1] is the space of all measurable functions f in [0, 1] such that

‖f‖p,q =

⎧⎪⎨⎪⎩
(∫∞

0 (t1/pf∗(t))q dt
t

)1/q

<∞ for 1 ≤ q <∞,

sup
t>0

t1/pf∗(t) <∞, if q =∞.

The following (see [7], [14, Proposition 5.1] ) shows that these belong to the
class of DH spaces.

Proposition 2.2. Let 1 ≤ q < ∞. Let (fn)n be a disjoint normalized sequence in
Λ(W, q)[0, 1] (resp. Lp,q[0, 1]). For each ε > 0, there exists a subsequence (fnk

)
which is (1 + ε)-equivalent to the unit vector basis of �q, whose span is a comple-
mented subspace of Λ(W, q)[0, 1] (resp. Lp,q[0, 1]).

For the maximal Lorentz spaces Lp,∞[0, 1], 1 < p < ∞, the situation is
different. Indeed, the space Lp,∞[0, 1] satisfies that every disjoint sequence in its
order-continuous part (Lp,∞(0, 1))0 (the closed linear span of the characteristic
functions in Lp,∞[0, 1]) has a subsequence equivalent to the unit vector basis of
c0 (see [37]). But there exists a disjoint normalized sequence (fn) in Lp,∞[0, 1]
equivalent to the unit basis of �p (which generates a complemented subspace) (see
[16]). Therefore, Lp,∞[0, 1] is not DH.

In the class of Orlicz spaces we have further examples of DH spaces. Recall
that given an Orlicz function ϕ : R+ → R+, the Orlicz function space Lϕ(Ω,Σ, μ)

is the space of all Σ-measurable functions f on Ω such that
∫
Ω ϕ
(

|f |
r

)
dμ <∞ for

some r > 0. This is a Banach lattice endowed with the Luxemburg norm

‖f‖Lϕ = inf

{
r > 0 :

∫
Ω

ϕ
( |f |

r

)
dμ ≤ 1

}
.

A characterization of DH Orlicz spaces, over finite [16] and infinite [17] mea-
sure spaces, is known. In order to state this, let us first recall the definition of
certain subsets of the space of continuous functions C[0, 1] associated to the Orlicz
function ϕ (see [31]):

E∞
ϕ,s =

{
ϕ(r·)
ϕ(r)

: r ≥ s

}
, E∞

ϕ =
⋂
s>1

E∞
ϕ,s , and C∞

ϕ = conv(E∞
ϕ ).

Similarly, let

Eϕ(0,∞) =

{
F ∈ C[0, 1] : F (·) = ϕ(s·)

ϕ(s)
, for some s ∈ (0,∞)

}
,

and Cϕ(0,∞) = convEϕ(0,∞), in the space C[0, 1].

As usual, for a subset A ⊂ C[0, 1] and a function h, we will write A ∼= {h}
whenever every function in A is equivalent to the function h at 0.
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Theorem 2.3.

(i) A separable Orlicz space Lϕ[0, 1] is DH if and only if E∞
ϕ
∼= {tp} (for some

1 ≤ p <∞).

(ii) A separable Orlicz space Lϕ(0,∞) is DH if and only if Cϕ(0,∞) ∼= {tp} (for
some 1 ≤ p <∞).

Moreover, in each case the space is p-DH for the corresponding p.

The proof of the finite measure case is based on techniques from [31]. For
instance, if ϕ(x) = xplog(1 + x), for 1 ≤ p <∞, then Lϕ[0, 1] is p-DH.

For the infinite measure case, among other things, the proof makes use of
[36, Theorem 1.1], which asserts that if an Orlicz function F is equivalent to a
function in Cϕ(0,∞) then Lϕ(0,∞) contains a lattice copy of the Orlicz sequence
space �F and, conversely, every normalized disjoint sequence in Lϕ(0,∞) contains
a subsequence equivalent to the unit vector basis of �F for some F ∈ Cϕ(0,∞).

In the discrete setting, the class of DH Banach lattices is considerable smaller.
Clearly, it contains the spaces c0 and lp, 1 ≤ p ≤ ∞; by contrast, Orlicz and
Lorentz sequence spaces other than �p cannot be DH. This follows from the well-
known fact that these are stable spaces ([29]). Indeed, if one starts with a given
pairwise disjoint sequence (xn) in an Orlicz or Lorentz sequence space E, then the
stability implies that there is some block sequence (wn) of (xn) equivalent to the
unit vector basis of some �p for 1 ≤ p < ∞. If E is assumed to be DH, then for
some subsequence (nk), (xnk

) and (wnk
) are equivalent to the unit vector basis of

�p. But the unit basis in E is symmetric; thus, it must be equivalent to the unit
vector basis of �p.

Tsirelson space also falls within the category of DH Banach lattices, as shown
in [15]. As a consequence, we deduce that DH Banach lattices need not be p-DH
for any 1 ≤ p ≤ ∞. Some modifications of Tsirelson space (cf. [9]) are easily seen
to be also DH.

Observe that in the definition of a DH Banach lattice it is enough to consider
only positive disjoint normalized (or even semi-normalized) sequences. A formally
weaker version of DH has been considered also in [17]: namely, a Banach lattice is
quasi-DH if any two sequences of disjoint elements (xn) and (yn) have equivalent
subsequences. This means that (xnk

) ∼ (ymk
) for some, non necessarily equal,

subsequences (nk) and (mk). The following result follows from a standard applica-
tion, based on [39], of the infinite Ramsey theorem, and solves a natural question
posed in [17].

Proposition 2.4. A Banach lattice is DH if and only if it is quasi-DH.

Proof. We prove that a quasi-DH Banach lattice X is DH. Let (xn) be a disjoint
sequence in X . For an infinite set A, by P∞(A) we denote the family of infinite
subsets of A. We claim that P∞(N) contains some set M = {mk : k ∈ N} with
m1 < m2 < · · · such that for every infinite subset P = {pj : j ∈ N} ⊂ M, the
equivalence (xp2j ) ∼ (xp2j+1 ) holds.
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Indeed, let

S =
{
{mk : k ∈ N} ∈ P∞(N) : ∀k, mk < mk+1, and (xm2k

) ∼ (xm2k+1
)
}
.

It is easy to check that S is a Borel subset of P∞(N). By the Galvin–Prikry
Theorem (cf. [11]), there is M ∈ P∞(N) such that either P∞(M) ⊂ S or P∞(M)∩
S = ∅. Now, suppose that P∞(M) ∩ S = ∅. Since X is quasi-DH the disjoint
sequences (xm2k

) and (xm2k+1
) have equivalent subsequences, that is (jk), (lk)

such that

(xm2jk
) ∼ (xm2lk+1

).

Passing to further subsequences we have that either 2j1 < 2l1+1 < 2j2 < 2l2+1 <
· · · or 2l1 + 1 < 2j1 < 2l2 + 1 < 2j2 < · · · . In both cases we have that

I = {m2j1 ,m2l1+1,m2j2 ,m2l2+1, . . .} ∈ P∞(M) ∩ S.
This contradiction implies that P∞(M) ⊂ S, and the claim follows.

To finish the proof, let (xn) and (yn) be two sequences of normalized disjoint
elements in X . By the claim, we can assume, passing to some subsequence, that
both (xn) and (yn) run on M and also that (xm2k

) ∼ (xm2k+1
) for every (mk)

with m1 < m2 < · · · Since X is quasi-DH, there exist (nk) and (pk) such that
(xnk

) ∼ (ypk
). Passing to a further subsequence, we can assume that n1 < p1 <

n2 < p2 < · · · or p1 < n1 < p2 < n2 < · · · By the properties of the sequence
(xn)n∈M, it follows that

(ypk
) ∼ (xnk

) ∼ (xpk
). �

3. Duality for disjointly homogeneous Banach lattices

It is natural to inquire about the stability by duality of the class of DH Banach
lattices. Note that by Proposition 2.2, for 1 < p <∞, the Lorentz space Lp,1[0, 1]
is 1-DH. However, as mentioned above, its dual Lp′,∞[0, 1] is not DH (here 1

p+
1
p′ =

1). Thus, in the non-reflexive case, the class of DH Banach lattices is not stable
under duality.

By contrast, in the reflexive case, all the examples of DH Banach lattices
mentioned above have DH duals. This is obviously true for Lp(μ) spaces with
1 < p <∞ as well as for Lorentz spaces since Proposition 2.2 can also be applied
to their duals. In addition, as shown in Theorem 2.3, an Orlicz space Lϕ[0, 1] is DH
if and only if every function in the set E∞

ϕ is equivalent to the function tp for some
fixed 1 ≤ p <∞. Note however that if ϕ′ denotes the conjugate Orlicz function of
ϕ, then every function in E∞

ϕ′ is easily seen to be equivalent to the function tp
′
,

which again is tantamount to the space Lϕ[0, 1]
∗ = Lϕ′ [0, 1] being DH.

Therefore, based on these examples, one might reasonably conjecture that
among reflexive spaces being DH is indeed a self dual property. As it will be
shown this turns out to be false. Still it holds true under additional assumptions
which are of interest. The rest of the section is devoted to clarifying this.
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A natural approach to proving a positive result of stability by duality should
look more or less like this: start with two arbitrarily chosen disjoint normalized
sequences (xn) and (yn) in a reflexive Banach lattice E whose dual E∗ is DH. We
would like to prove that, up to passing to some subsequence, (xn) and (yn) are
equivalent. Certainly, two disjoint normalized sequences (x∗

n) and (y∗n) in E∗ can be
found in E∗ such that x∗

n(xm) = y∗n(ym) = δnm for each n,m ∈ N. Since E∗ is DH,
after passing to subsequences we may assume that (x∗

n) and (y∗n) are equivalent
in E∗. On the other hand, for each m, we can consider x∗

m as a functional on [xn]
(formally speaking, we are taking the restriction of x∗

m to [xn]); moreover, since E
is reflexive, (x∗

m) is a basis of [xn]
∗. Then for any coefficients α1, . . . , αm we have∥∥∥∥ m∑

i=1

αixi

∥∥∥∥ = sup

{∣∣∣∣〈 m∑
i=1

αixi,
m∑
i=1

βix
∗
i

〉∣∣∣∣ : ∥∥∥∥ m∑
i=1

βix
∗
i

∥∥∥∥
[xn]∗

≤ 1

}

= sup

{∣∣∣∣ m∑
i=1

αiβi

∣∣∣∣ : ∥∥∥∥ m∑
i=1

βix
∗
i

∥∥∥∥
[xn]∗

≤ 1

}
.

In general, clearly
∥∥∑m

i=1 βix
∗
i

∥∥
[xn]∗

≤
∥∥∑m

i=1 βix
∗
i

∥∥
E∗ . However, if we could some-

how control the converse estimate, we could continue, using the equivalence of (x∗
n)

and (y∗n) in E∗ as follows∥∥∥∥ m∑
i=1

αixi

∥∥∥∥ ∼ sup

{∣∣∣∣ m∑
i=1

αiβi

∣∣∣∣ : ∥∥∥∥ m∑
i=1

βix
∗
i

∥∥∥∥
E∗
≤ 1

}

∼ sup

{∣∣∣∣ m∑
i=1

αiβi

∣∣∣∣ : ∥∥∥∥ m∑
i=1

βiy
∗
i

∥∥∥∥
E∗
≤ 1

}
∼
∥∥∥∥ m∑
i=1

αiyi

∥∥∥∥,
which would imply that (xn) and (yn) are equivalent. In particular, such an argu-
ment would work if we could find a bounded operator S : [xn]

∗ → E∗ such that
Sx∗

m = x∗
m for each m and a similar operator for (yn). The previous discourse is

collected in the following

Definition 3.1. A Banach lattice E has the P property if for every disjoint positive
normalized sequence (fn) ⊂ E there exists an operator T : E → [fn], such that
some subsequence (T ∗f∗

nk
) is equivalent to a seminormalized disjoint sequence in

E∗ (here (f∗
n) denote the corresponding biorthogonal functionals in [fn]

∗).

Given a disjoint sequence (fn) as in the above definition, we can consider
Px =

∑∞
k=1 f

∗
nk
(x)fnk

, the canonical projection from [fn] onto [fnk
] (which has

‖P‖ = 1 because (fn) is 1-unconditional). If E has the P property, then we can
now view

PTx =

∞∑
k=1

f∗
nk
(Tx)fnk

=

∞∑
k=1

(
T ∗f∗

nk

)
(x)fnk

as a bounded operator on E.
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The P property can be characterized as follows ([17, Proposition 3.3]):

Proposition 3.2. Let E be a reflexive Banach lattice. The following are equivalent:

(i) For every disjoint positive normalized sequence (fn) ⊂ E there exists a posi-
tive operator T : E → [fn], with lim infn dist

(
fn, T (BE)

)
< 1.

(ii) For every disjoint positive normalized sequence (fn) ⊂ E there exists a posi-
tive operator T : E → [fn], such that ‖T ∗f∗

n‖� 0.
(iii) E has the P property.

Notice that Banach lattices in which every disjoint positive sequence has a
subsequence whose span is complemented by a positive projection satisfy the P
property. Examples of these include Lp spaces, Lorentz function spaces Λ(W, p),
Tsirelson’s space, etc.

As intended, the assumption of theP property yields a partial positive answer
to the problem of stability by duality of DH Banach lattices.

Theorem 3.3. Let E be a reflexive Banach lattice with the P property. If E∗ is
DH, then E is DH. Moreover, in the particular case when E∗ is p-DH, for some
1 < p <∞, then E is q-DH with 1

p + 1
q = 1.

This fact, which was given in [17], can be used in particular to show that
if a reflexive Banach lattice E is p-DH and satisfies a lower p-estimate, for some
1 < p <∞, then E∗ is q-DH (with 1

p + 1
q = 1).

We focus now our attention on some examples of DH Banach lattices with
non-DH duals. The existence of these examples shows that the P property cannot
be removed from Theorem 3.3.

Theorem 3.4. Let 1 < p <∞ and ϕ an Orlicz function such that ϕ(t) � tp on [0, 1]
and ϕ(t) � tp log(1 + t) on [1,∞). Then the Orlicz space Lϕ(0,∞) is a reflexive
p-DH Banach lattice whose dual is not DH.

The proof of the fact that Lϕ(0,∞)∗ is not DH is based on a representation of
functions in the set Cϕ(0,∞) given in [36, p. 242] and Theorem 2.3. In particular,
one can see that this dual Orlicz space contains sublattices isomorphic to the
Orlicz sequence space �ψα , for ψα(t) = tq|log t|α, where 1

p + 1
q = 1 and every

α ∈ (0,min{1, q − 1}).
This example can be used to construct another one within the category of

atomic reflexive p-DH Banach lattices, more precisely, a weighted Orlicz sequence
space.

Recall that given a sequence of positive numbers w = (wn) and an Orlicz
function ϕ, the weighted Orlicz sequence space �ϕ(w) is the space of all sequences

(xn) such that
∑∞

n=1 ϕ(
|xn|
s )wn <∞ for some s > 0, endowed with the Luxemburg

norm. Notice that the unit vectors form an unconditional basis of �ϕ(w) when ϕ
satisfies the Δ2-condition.

Theorem 3.5. Let w = (wn) be a sequence of positive numbers such that there is a
subsequence (wnk

) with wnk
→ 0 and

∑∞
k=1 wnk

= ∞. If ϕ is an Orlicz function
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as in the previous theorem then the weighted Orlicz sequence space �ϕ(w) is p-DH
but its dual is not DH.

The proof is based on the space constructed in Theorem 3.4 together with
an identification theorem for weighted Orlicz sequence spaces [18] and a universal
property of these spaces given in to [12].

It should be noted that this kind of examples cannot be adapted to Orlicz
spaces over a probability space (see Theorem 2.3 and the comments at the begin-
ning of this section). But more generally, one might wonder whether a reflexive
p-DH rearrangement invariant function space ([33, Chapter 2]) on the interval [0, 1]
whose dual is not DH may exist.

4. Complemented disjoint sequences

It was mentioned earlier that Banach lattices in which every positive disjoint se-
quence has some subsequence whose span is complemented by a positive projection
necessarily satisfy the P property. We take now a closer look at this situation. We
will say that a sequence (xn) is said to be complemented in E if there is a projection
P on E with RangeP = [xn].

Notice that given a positive projection P onto the span of a disjoint sequence
(xn) ⊂ E, if (x∗

n) denote the biorthogonal functionals, then the sequence (P ∗x∗
n)

need not be disjoint in E∗:

Example. Take E = R3 and let

x1 =
[
1
0
0

]
, x2 =

[
0
1
0

]
, and P =

[
1 0 1
0 1 1
0 0 0

]
.

Note that Pe1 = x1, Pe2 = x2, and Pe3 = x1 + x2. It follows from (P ∗x∗
n)i =

〈P ∗x∗
n, ei〉 = 〈x∗

n, P ei〉 that

P ∗x∗
1 =

[
1
0
1

]
and P ∗x∗

2 =
[
0
1
1

]
,

so that P ∗x∗
1 and P ∗x∗

2 are not disjoint.

Interestingly enough, the following result proved in [17] shows that if a disjoint
positive sequence spans a complemented subspace, then a positive projection whose
adjoint sends the biorthogonal functionals to a disjoint sequence can be found.

Proposition 4.1. Let E be a reflexive Banach lattice, (fn) a positive disjoint se-
quence, and R ∈ L(E) a projection onto [fn]. Then there exists a positive dis-
joint sequence (g∗n) in E∗ with 〈g∗n, fm〉 = δn,m such that the operator Px =∑∞

n=1 g
∗
n(x)fn defines a positive projection onto [fn] with ‖P‖ ≤ ‖R‖.

This fact gains relevance in connection with the following problem: Does
every reflexive Banach lattice contain a complemented positive disjoint sequence?

We don’t know the answer to this question. However, the following result,
which is derived from Proposition 4.1, provides a useful reformulation.
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Corollary 4.2. Given a positive disjoint sequence (en) in a reflexive Banach lattice
E, the following are equivalent:

(i) The subspace [en] is complemented in E.
(ii) There exists a disjoint positive sequence (e∗n) in E∗ with 〈e∗n, em〉 = δmn such

that
∑∞

n=1 e
∗
n(x)en converges for each x ∈ E.

Note that if
∑∞

n=1 e
∗
n(x)en converges for every x ∈ E, then the map P : x �→∑∞

n=1 e
∗
n(x)en defines a positive projection from E onto [en]. In particular, the

above result yields that a reflexive Banach lattice E contains a complemented
positive disjoint sequence if and only if E∗ does.

The question about the existence of complemented disjoint sequences has a
positive answer for most examples of Banach lattices considered in the literature.
For instance, if a Banach lattice is atomic (or has an infinite atomic part), that
means that E has an unconditional basis inducing the order, and trivially this
provides a positive disjoint complemented sequence.

On the other hand, it is well known that in a non-atomic order-continuous Ba-
nach lattice E, every unconditional basic sequence (un) spanning a complemented
subspace is equivalent to a disjoint sequence (fn) spanning also a complemented
subspace provided that [un] is lattice anti-Euclidean (that is, [un] does not contain
uniformly complemented lattice copies of �n2 for every n, see [8, Theorem 3.4]).

Another family of spaces which always contain complemented disjoint se-
quences is that of rearrangement invariant spaces. Using the averaging projection,
every sequence of normalized characteristic functions over a family of disjoint sets
is complemented in any r.i. space (cf. [33, Theorem 2.a.4]).

For DH Banach lattices, the existence of complemented disjoint sequences
turns out to be equivalent to the P property studied above. This was proved in
[17, Theorem 4.4]:

Theorem 4.3. Let E be a DH Banach lattice. E has the P property if and only if
E contains a complemented positive disjoint sequence.

In fact, in most instances of DH Banach lattices such as Lp spaces, Lorentz
spaces and some Orlicz spaces, every disjoint sequence has a complemented sub-
sequence. This motivates the following.

Definition 4.4. A Banach lattice E is called disjointly complemented (DC) if every
disjoint sequence (xn) has a subsequence whose span is complemented in E.

The study of the relation between DC and DH Banach lattices appears now
natural. More specifically, we are interested in deciding whether DH Banach lat-
tices must be DC.

Let us consider first the non-reflexive case. Recall that if E is non-reflexive,
then E either contains a lattice copy of c0 or of �1 (cf. [34, Theorem 2.4.15]).
Therefore, if E is DH and non-reflexive, it follows that it is either 1-DH or∞-DH.

From Sobczyk’s Theorem ([1, Theorem 2.5.9]), it easily follows that if E is
a separable Banach lattice which is ∞-DH then it is DC. For the 1-DH case, we
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will use the following fact ([34, Lemma 2.3.11]): If a positive disjoint sequence
in a Banach lattice is equivalent to the unit vector basis of �1 then its closed
span is complemented. It follows that if E is 1-DH, then every positive disjoint
sequence has a complemented subsequence. Splitting a sequence into its positive
and negative parts it can be seen that 1-DH Banach lattices are in fact DC.

Hence, if E is a separable non-reflexive Banach lattice which is DH, then E
is DC. Clearly, the separability of E is essential here: �∞ is non-reflexive and DH,
however it is not DC. In fact, every normalized disjoint sequence is equivalent to
the unit vector basis of c0 and by Phillips–Sobczyk’s theorem (cf. [1, Theorem
2.5.5], [32, Theorem 2.a.7]), the space �∞ does not contain any complemented
subspace isomorphic to c0.

Let us consider now the case of reflexive Banach lattices. Does DH imply DC
in this context? Recall that in Theorem 3.3 it was proved that a reflexive Banach
lattice E with the P property is DH provided so is E∗. The following theorem
gives a partial answer to this question. It summarizes the work done in [17].

Theorem 4.5. Let E be a reflexive Banach lattice which contains a complemented
positive disjoint sequence. If E is DH, then the following are equivalent:

(a) E∗ is DH,
(b) E∗ has the P property,
(c) E∗ is DC.

Furthermore, if E and E∗ are DH, then E is DC.

Using ideas from [10] it can also be shown that if E is p-DH and p-convex
Banach lattice for some 1 ≤ p <∞, then E is DC.

5. Uniformly DH Banach lattices

Until now no attention has been given to the equivalence constants involved in the
definition of a DH Banach lattice. The purpose of this section is to illustrate the
role played by these.

In general an �p-sum of p-DH spaces need not be DH. Indeed, given n ∈ N,
let Xn denote the completion of the space of all eventually zero sequences c00 with
respect to the norm∥∥(ak)∥∥Xn

= sup

{ n∑
i=1

|aki |+
(∑

i>n

|aki |p
)1/p

: k1 < k2 < · · · < ki < · · ·
}
.

It is easy to see that ‖·‖Xn is equivalent to the �p norm. In fact, we have∥∥(ak)∥∥�p ≤ ∥∥(ak)∥∥Xn
≤ (n

1
q + 1)

∥∥(ak)∥∥�p .
In [17, Example 6.4] it was proved that the space

(⊕∞
n=1 Xn

)
�p

endowed

with the �p-sum of the corresponding norms ‖ · ‖Xn is not DH.
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Note that in the above example, the equivalence constant of disjoint sequences
in different Xn-summands grows without bound. After this example it seems only
natural to introduce the following:

Definition 5.1. A Banach lattice E is uniformly disjointly homogeneous if there is
a constant C > 0 such that every two disjoint normalized sequences (xn) and (yn)

in E, have subsequences such that (xnk
)

C∼ (ynk
).

Clearly every uniformly DH Banach lattice E is DH. The converse is never-
theless not true. In fact, stemming from deep results of W.B. Johnson and E. Odell
in [23], and H. Knaust and E. Odell in [27] the following result is given in [17].

Theorem 5.2. For every 1 < p <∞, there exists a super-reflexive atomic Banach
lattice Ep which is p-DH but not uniformly DH.

As a by-product, another example of a reflexive DH Banach lattice whose
dual is not DH is obtained.

In Theorem 3.5 we have constructed examples of reflexive atomic Banach
lattices (with the order induced by a 1-unconditional basis), which are DH, but
whose dual spaces are not. The case of atomic Banach lattices with the order
induced by a subsymmetric basis deserves some attention. Recall that a basis
(xn) is called subsymmetric if it is unconditional and every subsequence (xni) is
equivalent to (xn) (cf. [32, Chapter 3]).

Also, recall that a normalized basis (en) in a Banach space X is said to be a
Rosenthal basis if every normalized block-sequence of (en) contains a subsequence
equivalent to (en). It is an open question whether such a basis is necessarily equiv-
alent to the unit basis of �p or c0, see [13] for further details and partial results in
this direction. In particular, it was observed in [13, p. 397] that a Rosenthal basis
(xn), always satisfies that every subsequence (xni) is equivalent to (xn).

Proposition 5.3. Let E be a reflexive atomic Banach lattice with the order induced
by a subsymmetric basis (en). Then E is DH if and only if (en) is a Rosenthal
basis.

Let X be a Banach space with a Rosenthal basis (en). It was proved in [13,
Theorem 1, Proposition 7] that (en) is equivalent to the unit basis of �p or c0 if (en)
is “uniformly” Rosenthal or if E∗ also has a Rosenthal basis. In view of Proposi-
tion 5.3, we can now restate these statements in terms of disjoint homogeneity as
follows.

Proposition 5.4. Let E be a reflexive atomic Banach lattice with the order induced
by a subsymmetric normalized basis (en). Then (en) is equivalent to the unit basis
of �p for some 1 < p <∞ if any of the following conditions is satisfied:

(i) E is uniformly DH, or
(ii) E and E∗ are both DH.

In particular, if (en) is symmetric, then Proposition 5.4 also follows from [32,
Theorem 3.a.10] due to Z. Altshuler. Indeed, if E is DH and (vn) is a sequence
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generated by one vector (which is automatically symmetric), then (vn) and (en)
have equivalent subsequences, hence are themselves equivalent. Now apply the
same argument to (e∗n) in E∗.

We do not know whether every atomic reflexive Banach lattice with the order
induced by a subsymmetric basis which is DH must be isomorphic to �p for some
1 < p < ∞. In this direction, if we consider the symmetric version of Tsirelson
space (see [9, Chapter X, B]), which does not contain �p subspaces, then it is not
hard to see that this space fails being DH. However, let us suppose that E is a
reflexive Banach lattice with the P property containing a disjoint subsymmetric
sequence, if E∗ is DH , then E must be p-DH for some 1 < p < ∞ (see [17,
Corollary 6.10]).

6. Compact powers of strictly singular operators

The purpose of this section is to show how DH Banach lattices can be applied
to the theory of strictly singular operators. In particular, we are interested in the
extension of a result by V. Milman [35], which asserts that every strictly singular
endomorphism on Lp has compact square. This kind of results have also been
studied in [3] in the context of Banach spaces.

Recall that an operator between Banach spaces is strictly singular if it is
not invertible on any infinite-dimensional subspace. This is an important class
of operators which was first introduced in connection with the perturbation of
Fredholm operators [26], and has later proved relevant in the modern theory of
Banach spaces (see [4]).

Given a Banach space X , we will denote by K(X) (respectively S(X)) the
space of all compact (resp. strictly singular) endomorphisms on X .

A close notion to strict singularity was introduced in the setting of Banach
lattices ([20]): given a Banach lattice E and a Banach space X , an operator T :
E → X is disjointly strictly singular (DSS) if for any sequence of pairwise disjoint
elements (xn) in E, the restriction of T to the span [xn] is not invertible. Recall also
that an operator T : E → X is AM-compact whenever T ([−x, x]) is a relatively
compact set in X for every x ∈ E+ (recall that the order interval [−x, x] is the set
{y ∈ E : |y| ≤ x}).

In [15] several results about compactness of operators belonging to the singu-
lar classes given above were proved in the context of regular operators. Recall that
an operator between Banach lattices is positive when it maps positive elements to
positive elements, and a regular operator is a difference of two positive ones.

Theorem 6.1. Suppose that E is a DH Banach lattice with order-continuous norm
and a weak unit. Suppose that S and T are two regular operators on E such that
S is disjointly strictly singular and T is AM-compact.

(i) If E∗ is order continuous then ST is compact.
(ii) If E∗ is not order continuous then TS is compact.

In particular, if R is disjointly strictly singular and regular, then STR is compact.
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Observe that Theorem 6.1 remains valid in the case that S is not regular.
Also, it remains valid if, instead of being disjointly strictly singular, S is only
assumed to be weakly compact. In particular, the above result yields that if E is
DH and T : E → E is regular, disjointly strictly singular, and AM-compact, then
T 2 is compact.

A Banach lattice E has finite cotype (or equivalently finite concavity) if and
only if E does not contain copies of �n∞ uniformly (cf. [33]). Moreover, every Banach
lattice E with finite concavity satisfies the subsequence splitting property ([41]).
This means that every bounded sequence (xn) in E has a subsequence that can
be written as xnk

= gk + hk, with |gk| ∧ |hk| = 0, the sequence (gk) being equi-
integrable and (hk) disjoint. Recall that a bounded sequence (gn) in a Banach
lattice of measurable functions over a measure space (Ω,Σ, μ) is equi-integrable if
supn ‖gnχA‖ → 0 as μ(A)→ 0. Note that every Banach lattice with finite cotype
is order continuous.

Theorem 6.2. Let E be a DH Banach lattice with the subsequence splitting property,
such that E∗ is order continuous. If T : E → E is a regular operator which is
disjointly strictly singular and AM-compact, then T is compact.

In [16] several results in similar spirit were given without the restriction
of regularity. An important technique that was exploited in these arguments is
the well-known Kadec–Pelczyński’s dichotomy (see [14], [33]): given a normalized
sequence (xn) in an order-continuous Banach lattice E

(i) either (‖xn‖L1) is bounded away from zero,
(ii) or there exist a subsequence (xnk

) and a disjoint sequence (zk) in E such
that ‖zk − xnk

‖ −→ 0 as k →∞.

An operator T : E → X is called M-weakly compact if it maps disjoint se-
quences in BE to sequences converging to zero. Notice that an operator is compact
if and only if it is AM-compact and M-weakly compact ([34, Proposition 3.7.4]).
There is a notion dual to M-weak compactness, namely, an operator T : X → E
is L-weakly compact if every disjoint sequence in the solid hull of T (BX) tends to
zero in norm. The following fact was given in [40] for endomorphism on Lp spaces.

Proposition 6.3. Let E be a reflexive DH Banach lattice and T : E → E be a
positive operator. The following are equivalent:

(i) T is disjointly strictly singular.

(ii) T is M-weakly compact.

(iii) T is L-weakly compact.

Proof. An M-weakly compact operator is clearly disjointly strictly singular. For
the converse implication, suppose that T is not M-weakly compact. Thus, there is
a disjoint normalized sequence (xn) in E such that ‖Txn‖E ≥ α > 0.

Observe that (|xn|) is also a disjoint normalized sequence, and since E is
reflexive it must be weakly null. Hence, so is (T |xn|), and since T is positive it
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follows that ‖T |xn|‖L1 → 0. Note that

‖T |xn|‖E ≥ ‖Txn‖E ≥ α > 0,

so by Kadec–Pelczyński’s dichotomy, (T |xn|) has a subsequence equivalent to a
disjoint sequence in E. Since E is DH, (|xn|) and (T |xn|) have an equivalent sub-
sequence and T is not DSS. This proves the equivalence of the first two statements.
The equivalence with the third one follows from [34, Theorem 3.6.17]. �

Recall that an operator between Banach spaces T : X → Y is Dunford–Pettis
if it maps weakly null sequences to sequences converging to zero. The following
result from [16] can be seen as an extension of the classical result stating that
weakly compact operators on L1 are Dunford–Pettis.

Theorem 6.4. Let E be a 1-DH Banach lattice with finite cotype. Every operator
T ∈ S(E) is Dunford–Pettis.

Using that the composition of a weakly compact with a Dunford–Pettis op-
erator is a compact operator, it follows that every strictly singular operator on a
1-DH Banach lattice with finite cotype has compact square.

Before we present the extension of Milman’s result ([35]) on compactness of
the square of strictly singular endomorphisms on Lp spaces we need the following.

Definition 6.5. A Banach lattice E has property (C) if it is order continuous,
and there exist q < ∞ and a probability space (Ω,Σ, μ) such that the inclusions
Lq(μ) ↪→ E ↪→ L1(μ) hold.

Note that condition (C) is a very mild assumption. Indeed, every Banach
lattice with a weak order unit (for instance separable) and finite cotype satisfies
property (C) (see [22, p. 14]). Moreover, every order-continuous rearrangement
invariant function space on [0, 1] with upper Boyd index qX <∞ also has property
(C) (though it may have trivial cotype, [33, Proposition 2.b.3]). Recall that for an
r.i. function space X the Boyd indices are given by

pX = lim
s→∞

log s

log ‖Ds‖
qX = lim

s→0+

log s

log ‖Ds‖
,

where Ds : X → X is the dilation operator given by (Dsf)(t) = f(t/s) for
t ≤ min(1, s) and zero otherwise (see [33, Section 2.b]).

In [16], the following was proved.

Proposition 6.6. Let E be a DH Banach lattice with property (C). If T ∈ S(E)
then T 2 is AM-compact.

This is a first step in the proof of the next theorem also from [16].

Theorem 6.7. Let E be a DH Banach lattice with finite cotype and an unconditional
basis. Every operator T ∈ S(E) satisfies that the square T 2 is compact.
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The existence of an unconditional basis is a technical condition in the previous
proof and indeed not a restriction for many spaces. We conjecture that the result
is still true without it. In fact, there are some situations in which there is no need
to impose it:

Theorem 6.8. If E is a p-DH Banach lattice (2 ≤ p ≤ ∞) with property (C), then
every operator T ∈ S(E) has compact square.

A classical result of J. Calkin [6] states that the only non-trivial closed ideal
of operators in Hilbert space is the ideal of compact operators. In particular, as
pointed out by T. Kato [26], on Hilbert spaces the ideals of strictly singular and
compact operators coincide. In fact, this is a particular case of a more general
result involving 2-DH Banach lattices ([16, Theorem 2.12]):

Theorem 6.9. If E is a 2-DH Banach lattice with property (C), then S(E) = K(E).

To finish this section, the case of atomic Banach lattices deserves its proper
space. Note that in the atomic case the class of DH Banach lattices E with a
basis of disjoint vectors is a rather small class, since “most” basic sequences in E
are equivalent to disjoint sequences. As mentioned earlier the examples include �p
spaces and c0, and also Tsirelson spaces and their generalizations (cf. [9]), as well
as �p-sums of finite-dimensional Banach lattices �p(Xn). Also mentioned earlier
was that Lorentz and Orlicz sequence spaces (distinct from spaces �p) are not
disjointly homogeneous.

In the atomic setting, Theorem 6.7 is improved, similarly to the case of �p
spaces where strictly singular and compact endomorphisms coincide (cf. [32, p.
76]). This is shown in the following result ([16]):

Theorem 6.10. Let E be an atomic Banach lattice with a basis. If E is DH then
every operator T ∈ S(E) is compact.

7. Applications to operators on rearrangement invariant spaces

In the class of rearrangement invariant spaces it happens that the behaviour of
powers of endomorphisms determines the behaviour of the composition of (differ-
ent) operators. This is the content of the next result (see [16] for details).

Proposition 7.1. Given a rearrangement invariant space E on [0, 1] and n ∈ N the
following statements are equivalent:

(i) If an operator T ∈ S(E), then the power T n is compact.
(ii) If T1, . . . , Tn belong to S(E), then the composition Tn · · ·T1 is compact.

As a consequence of Theorems 6.4, 6.7 and 6.9 we get the following:

Proposition 7.2. Given 1 < p < ∞ and 1 ≤ q < ∞, every operator T ∈
S(Λ(W, q)[0, 1]) or T ∈ S(Lp,q[0, 1]) has a compact square. Moreover, if q = 2
then T is already compact, while if q = 1, then T is Dunford–Pettis.
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By contrast, if q �= 2, then strictly singular non-compact operators on Lp,q

can be found. Take for instance a complemented subspace isomorphic to �q and the
span of the Rademacher functions which is isomorphic to �2. Denote P1 : Lp,q → �q
and P2 : Lp,q → �2 the corresponding projections, is,t : �s → �t the canonical
inclusion, and Q : �q ↪→ Lp,q and R : �2 ↪→ Lp,q the corresponding embeddings.
When q < 2 consider T = Riq,2P1 ∈ S(Lp,q)\K(Lp,q), and when q > 2 take
S = Qi2,qP2 ∈ S(Lp,q)\K(Lp,q).

The behavior of the maximal Lorentz spaces Lp,∞ is quite different. In fact,
there exists an operator T ∈ S(Lp,∞), for p �= 2, whose cube T 3 is not compact.
The proof is based on a particular way of embedding �p as a complemented sub-
space into Lp,∞ (notice that for p < 2 even Lp can be embedded as a complemented
subspace of Lp,∞, see [24]), and the fact that �p,∞ embeds as a complemented sub-
lattice into Lp,∞ [30]. See [16, Proposition 3.3] for details.

Similarly strictly singular operators on L2,∞ with non-compact squares can
be defined. However, we do not know whether there might exist some n ∈ N
such that T n is compact whenever T ∈ S(Lp,∞), or even whether every operator
T ∈ S(Lp,∞) is power-compact.

Observe also that if L0
p,∞ denotes the order-continuous part of Lp,∞, then

every strictly singular operator on L0
p,∞ has compact square. This follows from

Theorem 6.8, since L0
p,∞ is ∞-DH and his upper Boyd index equals p. A similar

statement also holds for order-continuous Marcinkiewicz spaces M(ϕ) with finite
upper Boyd index (since they are also ∞-DH Banach lattices, cf. [38]).

Note however that these results do not hold for Lorentz spaces Lp,q(0,∞)
(for p �= q) as they contain complemented lattice copies of the non-DH spaces �p,q.

In the case of Orlicz spaces over a probability measure space Lϕ is DH if
and only if E∞

ϕ
∼= {tp} (Theorem 2.3). This condition implies the equality of the

indices s(Lϕ) = σ(Lϕ) = p, or equivalently the equality of the associated Boyd
indices pLϕ and qLϕ as it follows from the identities s(Lϕ) = pLϕ and σ(Lϕ) = qLϕ

(cf. [33, p. 139]). Thus, from Theorems 6.4 and 6.7 the following result is obtained.

Proposition 7.3. Let ϕ be an Orlicz function such that E∞
ϕ
∼= {tp}, for some 1 ≤

p <∞. If an operator T ∈ S(Lϕ[0, 1]) then the square T 2 is compact. Furthermore
for p = 2, the operator T is already compact, while for p = 1, T is Dunford–Pettis.

Many Orlicz functions satisfy the condition E∞
ϕ
∼= {tp}, for example the class

of all Orlicz functions of regular variation, i.e.,

lim
t→∞

tϕ′(t)
ϕ(t)

= p.

In general, we cannot weaken this condition on E∞
ϕ , as there exist Orlicz spaces

Lϕ with indices s(Lϕ) = σ(Lϕ) = p, and an operator T ∈ S(Lϕ) whose square T
2

is not compact (while for p = 2, we have a strictly singular non-compact operator,
see [16, Proposition 4.3]).

Clearly these Orlicz spaces are not disjointly homogeneous (this follows from
Theorem 6.7). More generally, every minimal Orlicz function space Lϕ (different
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from Lp) is not disjointly homogeneous. Indeed, recall that in general for each
ψ ∈ C∞

ϕ there exists a sequence of normalized disjoint functions in Lϕ equivalent to
the symmetric canonical basis of �ψ ([31, Proposition 4]). Now, since ϕ is minimal,
we have, by [19, Proposition 1], that E∞

ϕ,1 = E∞
ϕ = Eϕ = Eϕ,1 and the set

E∞
ϕ,1 contains uncountably many mutually non-equivalent Orlicz functions (see

the proof of [32, Theorem 4.b.9]). Hence, using the symmetry, we deduce that in
Lϕ there are uncountable many sequences of normalized disjoint functions with
no equivalent subsequence.

Notice also that in the class of Orlicz spaces Lϕ with different indices (s(Lϕ) �=
σ(Lϕ)) there are no DH spaces. This follows from the fact that for each p ∈
[s(Lϕ), σ(Lϕ)] we have tp ∈ C∞

ϕ and there exist sequences of normalized disjoint
functions in Lϕ that are equivalent to the canonical basis of �p ([31, Proposition 4]).

New examples of DH r.i. spaces in connection with interpolation theory can
be found also in the recent paper [5].

8. The Kato property in rearrangement invariant spaces

As mentioned above the ideals of strictly singular and compact operators coincide
on Hilbert spaces as well as on 2-DH function spaces (under some mild assump-
tions).

In this section we consider the natural converse question: Assume that E
is an r.i. function space such that every strictly singular operator T ∈ L(E) is
compact. Must E be 2-DH?

This question has been addressed in [21]. First, let us introduce the following

Definition 8.1. A Banach space X has the Kato property whenever S(X) = K(X).

Examples of function spaces with the Kato property clearly include Hilbert
spaces, Lorentz spaces of the form Lp,2[0, 1] and Λ(W, 2)[0, 1] as well as certain
Orlicz spaces Lϕ[0, 1] like ϕ(t) = t2 logα(1+t) for arbitrary α. The Kato property
is also enjoyed by the sequence spaces �p (1 ≤ p < ∞), c0, Tsirelson space (and
some of its modifications) and also some not so classical spaces such as the space
XAH (constructed in [4] as a solution to the scalar-plus-compact problem). Notice
that the Kato property is an isomorphic property. Moreover, we have the following:

Proposition 8.2. Let X be a Banach space with the Kato property. Suppose that
for some subspace Y ⊂ X, there is Z ⊂ X such that Y � X/Z, then Y also has
the Kato property. In particular, every complemented subspace of a space with the
Kato property also has the Kato property.

A weaker version of the 2-DH property is the following:

Definition 8.3. An r.i. space on [0, 1] is restricted 2-DH if for every sequence of
disjoint sets (An)

∞
n=1 in [0, 1] there is a subsequence such that ( 1

‖χAnk
‖χAnk

)∞k=1 is

equivalent to the unit vector basis of �2.
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Proposition 8.4. Let E be an r.i. space on [0, 1]. The space E is restricted 2-DH
if and only if every subsequence of disjoint elements of the normalized Haar basis
in E has a further subsequence equivalent to the unit vector basis of �2.

This implies the following: If E is an r.i. space on [0, 1] which is isomorphic
to a 2-DH r.i. space F , then E is restricted 2-DH. Indeed, this follows from [22,
Theorem 6.1], since either E = F up to equivalence of norms, or E = L2[0, 1], or
the Haar basis in E is equivalent to a sequence of disjoint elements in F and, in
this case, the result is a consequence of Proposition 8.4.

As mentioned in Section 3, the 2-DH property is not stable in general by
duality. However, restricted 2-DH r.i. spaces on [0, 1] are stable under duality. We
do not know if in general an r.i. space E on [0, 1] which is restricted 2-DH, must
be 2-DH. In the class of Orlicz spaces Lϕ[0, 1] this is the case:

Proposition 8.5. For an Orlicz space Lϕ[0, 1], the following are equivalent:

(i) Lϕ[0, 1] is 2-DH.
(ii) Lϕ[0, 1] is restricted 2-DH.
(iii) Every function in E∞

ϕ is equivalent to the function t2 at 0.

For non-reflexive r.i. spaces we can use Lozanovski’s theorem and the factor-
ization through �1 and c0 to obtain the following:

Proposition 8.6. If E is a non-reflexive r.i. space on [0, 1], then E fails to have
the Kato property.

In the class of Lorentz function spaces we have that Lp,q[0, 1] and Λ(W, p)[0, 1]
have the Kato property if and only if they are 2-DH.

On the other hand, for Orlicz spaces the study of the Kato property is more
involved. Clearly every 2-DH Orlicz space on [0, 1] has the Kato property. Re-
markably if Lϕ[0, 1] is a reflexive 2-convex (or 2-concave) Orlicz space with the
Kato property then it is 2-DH. The proof uses the fact that the associated Orlicz
sequence space �ψ is 2-convex (or 2-concave), so that the inclusion �2 ↪→ �ψ (or
�ψ ↪→ �2) is strictly singular. Finally, by composing with canonic projections we
get a non-compact strictly singular operator on Lϕ[0, 1].

The condition (iii) in Proposition 8.5 which characterizes 2-DH Orlicz spaces
can be rewritten as the formula

sup
0<t<∞

lim sup
u→∞

ϕ(tu)

t2ϕ(u)
<∞.

Strengthening slightly this condition we get further necessary conditions for the
Kato property in Orlicz spaces.

Theorem 8.7. Let Lϕ[0, 1] be a reflexive Orlicz space. If

lim
t→0

lim
u→∞

ϕ(tu)

t2ϕ(u)
∈ {0,∞},

then Lϕ[0, 1] fails to have the Kato property.
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The proof relies on factorization results. Thus, in the case that ϕ satisfies

lim
t→0

lim
u→∞

ϕ(tu)

t2ϕ(u)
=∞,

it can be shown, using N. Kalton’s characterization for strictly singular inclusions
between Orlicz sequence spaces (cf. [32]), that there exist a sequence of disjoint
measurable sets (Ak) in [0, 1], and an Orlicz function ψ such that the sequence
(χAk

/‖χAk
‖) is equivalent to the unit vector basis of the sequence space �ψ; in

addition, the inclusion �ψ ⊂ �2 holds and it is strictly singular.

We do not know whether every Orlicz space Lϕ[0, 1] with the Kato property
must be 2-DH. Notice that for infinite measures the answer is negative as shown
with the following:

Example. Consider

ϕ(t) =

{ 1
log 2 t

2 t ∈ [0, 1],

t2

log (1+t) t ∈ [1,∞).

Then the reflexive space Lϕ(0,∞) has the Kato property but is not 2-DH.

Indeed, note that Lϕ(0,∞) is isomorphic to Lϕ[0, 1] ([22]). But Lϕ[0, 1] is
2-DH and thus it has the Kato property. On the other hand, it can be shown that
the function t2 log(| log t|) belongs to the set Cϕ(0,∞). Hence, using Theorem
2.3 we conclude that the space Lϕ(0,∞) is not 2-DH.

9. Some open questions

In this final section we collect several questions that arose along the preceding
sections.

Question 1. Does every reflexive Banach lattice contain a disjoint sequence whose
span is complemented?

Question 2. Is every separable DH Banach lattice DC?

Question 3. Is there a reflexive p-DH r.i. space on [0, 1] whose dual is not DH?

Question 4. Is every DH atomic Banach lattice with a symmetric basis isomorphic
to lp, (1 ≤ p <∞) or c0?

Question 5. If X is an r.i. space on [0, 1] with the Kato property, must X be 2-DH?
In particular, is every Orlicz space Lϕ[0, 1] with the Kato property necessarily
2-DH?
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[20] F.L. Hernández and B. Rodŕıguez-Salinas, On lp complemented copies in Orlicz
spaces II. Israel J. Math. 68, (1989) 27–55.



200 J. Flores, F.L. Hernández and P. Tradacete

[21] F.L. Hernández, E.M. Semenov, and P. Tradacete, Rearrangement invariant spaces
with Kato property. Special Issue dedicated to L. Drewnowski. Funct. Approx. Com-
ment. Math. 50 (2014), no. 2, 215–232.

[22] W.B. Johnson, B. Maurey, G. Schechtman, and L. Tzafriri, Symmetric structures in
Banach spaces. Mem. Amer. Math. Soc. 217, (1979).

[23] W.B. Johnson and E. Odell, Subspaces of Lp which embed into �p. Compositio Math.
28 (1974), 37–49.

[24] N.J. Kalton, Banach spaces embedding into L0. Israel J. Math. 52 (1985), 305–319.
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28933 Móstoles, Madrid, Spain
e-mail: julio.flores@urjc.es

Francisco L. Hernández
Departamento de Análisis Matemático
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1. Introduction

Applications of various good rotundity properties in various branches of math-
ematics, among others in Approximation Theory, Fixed Point Theory, Ergodic
Theory, Control Theory, Probability Theory, Theory of Vector Analytic Functions
and Theory of Generalized Inverses are well known. It is also known that mono-
tonicity properties of Banach lattices X are restrictions of respective rotundity
properties of X to the set of couples of comparable elements from the positive
cone X+ of X (see [41]). In consequence, if we restrict ourselves to Banach spaces
being Banach lattices, then in many cases, good rotundity properties can be re-
placed successfully by respective monotonicity properties.
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Uniform monotonicity was introduced and studied by Birkhoff in [7]. Since
that time monotonicity properties and their applications to dominated best ap-
proximation, Fixed Point Theory, Ergodic Theory and complex rotundities were
extensively investigated by many mathematicians.

The paper is organized as follows. First, in Section 2, the most important
monotonicity properties of Banach lattices are defined and some theorems on the
characterization of these properties in Banach lattices as well as in Köthe spaces are
presented. Moreover, this section contains criteria for various monotonicity proper-
ties in particular classes of Köthe spaces as well as information about monotonicity
properties of various particular classes of ordered function spaces are given.

In Section 3 some general results concerning the formulas for the modulus
of monotonicity and for the characteristic of monotonicity in Banach lattices are
presented. It is noted that the results of this section are strongly related to the
Fixed Point Theory.

Section 4 contains results about relationships between some monotonicity
and rotundity properties, as well as duality relationships between monotonicity
properties and respective order smoothness properties and between the modulus
of monotonicity of a Banach lattice X and the modulus of order smoothness of its
dual X∗. Some applications of these results to special optimization problems are
presented.

In the next section some interesting and natural relations between monotonic-
ity properties of a real Köthe space E and complex rotundities of its complexifica-
tion Ec are presented. These relations show the possibility of new applications of
monotonicity properties because complex rotundity properties have some natural
and important applications to the theory of vector-valued analytic functions.

Section 6 contains various results on applications of the monotonicity proper-
ties to the dominated and the modified dominated best approximation problems.
In the last section some applications of the monotonicity properties to Ergodic
Theory are presented.

2. Monotonicity properties in some Banach lattices, basic
definitions and properties

First we will recall definitions of the most important monotonicity properties. Let
X = (X,≤, ‖·‖) be a Banach lattice with a partial order ≤ (see [7, 65, 77]). By X+,
B(X) and S(X) we denote the positive cone, the unit ball and the unit sphere of
X , respectively. Let us also denote S+(X) = S(X)∩X+ and B+(X) = B(X)∩X+.

A Banach lattice X is said to be strictly monotone (STM for short) if x, y ∈
X+, y ≤ x and y �= x imply that ‖y‖ < ‖x‖.

As usual, X is said to be lower (upper) locally uniformly monotone (LLUM
or ULUM for short), whenever for any x ∈ S+(X) and ε ∈ (0, 1) (resp. ε > 0)
there is δ = δ(x, ε) ∈ (0, 1) (resp. δ = δ(x, ε) > 0) such that the conditions
y ∈ X , 0 ≤ y ≤ x (resp. y ≥ 0) and ‖y‖ ≥ ε imply that ‖x − y‖ ≤ 1 − δ (resp.
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‖x+ y‖ ≥ 1+ δ). In [42], an example of the lattice which is lower locally uniformly
monotone, but not upper locally uniformly monotone was presented. However, it
is still unknown if the first among the mentioned properties is weaker than the
second one in general.

Finally, we say that X is uniformly monotone (UM for short) if for any
ε ∈ (0, 1) there is δ(ε) ∈ (0, 1) such that ‖x− y‖ ≤ 1 − δ(ε) whenever x, y ∈ X+,
y ≤ x, ‖x‖ = 1 and ‖y‖ ≥ ε. Recall that Birkhoff [7] defined a Banach lattice X to
be uniformly monotone if for any ε > 0 there is η(ε) > 0 such that ‖x+y‖ ≥ 1+η(ε)
whenever x, y ∈ X+, ‖x‖ = 1 and ‖y‖ ≥ ε. Kurc [61, Proposition 1.1] showed that
the above two definitions are equivalent.

It is useful to formulate the monotonicity properties in terms of sequences.
Namely, the lower (upper) local uniform monotonicity of a Banach lattice X is
equivalent to requiring that for every x ∈ X+ and any sequence (xn)

∞
n=1 in X

such that 0 ≤ xn ≤ x (resp. x ≤ xn) it is the case that ‖xn − x‖ → 0 as n → ∞,
whenever ‖xn‖ → ‖x‖ as n → ∞. Likewise, a Banach lattice X is uniformly
monotone if and only if for any two sequences (xn)

∞
n=1 and (yn)

∞
n=1 in X+ such

that yn ≤ xn for any n ∈ N, there holds ‖xn − yn‖ → 0 as n → ∞, whenever
limn→∞(‖xn‖ − ‖yn‖) = 0.

As we will indicate below, monotonicity properties of Banach lattices X are
restrictions of respective rotundity properties of X to the set of the couples of
comparable elements from the positive cone X+. Recall, that a Banach space
(X, ‖·‖) is called rotund if for every x, y ∈ S(X) with x �= y, we have ‖(x+y)/2‖ <
1. X is said to be locally uniformly rotund if for any x ∈ B(X) and any ε > 0 there
is δ(x, ε) > 0 such that for any y ∈ B(X) the inequality ‖x− y‖ ≥ ε implies that
‖(x+ y)/2‖ ≤ 1− δ(x, ε). We say that X is uniformly rotund if for any ε > 0 there
is δX(ε) > 0 such that if x, y ∈ B(X) and ‖x−y‖ ≥ ε, then ‖(x+y)/2‖ ≤ 1−δX(ε).
We have the following.

Theorem 2.1 ([41, Theorem 1]). Given a Banach lattice X the following hold true:

(i) If X+ is rotund1, then X is strictly monotone.
(ii) If X+ is locally uniformly rotund, then X is upper and lower locally uniformly

monotone.
(iii) If X+ is uniformly rotund, then X is uniformly monotone.
(iv) In the set of the couples of comparable elements in the positive cone X+ the

converse of each of the above statements is also true.

Let us note that statements (i) and (iii) follow also from the results of W.
Kurc [61] presented at the beginning of Section 4.

1We say that a positive cone X+ of a Banach lattice X is rotund if for every x, y ∈ S+(X)
with x �= y, we have ‖(x + y)/2‖ < 1. Analogously, we can define local uniform rotundity and
uniform rotundity of X+. It is well known that a Köthe space is rotund (locally uniformly rotund)

[uniformly rotund] if and only if X+ possesses the same property (see respectively [41, Theorems
2 and 3]) and [50, Lemma 1]).
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A triple (T,Σ, μ) stands for a positive, nonatomic, complete and σ-finite
measure space and L0 = L0(T,Σ, μ) denotes the space of all (equivalence classes
of) Σ-measurable functions x from T to R. For any x, y ∈ L0 we write y ≤ x if
and only if y(t) ≤ x(t) for μ-a.e. t ∈ T .

We will use also the counting measure space (N, 2N,m) and the space l0 of all
real sequences. Obviously, for any x, y ∈ l0 we have x ≤ y if and only if y(n) ≤ x(n)
for any n ∈ N.

By E = (E,≤, ‖ · ‖E) we denote a Köthe space over a nonatomic, σ-finite
measure space (T,Σ, μ) or over the counting measure space (N, 2N,m), that is, E is
a Banach subspace of L0 or l0, respectively, which satisfies the following conditions
(see [51] and [65]):

(i) if x ∈ E, y ∈ L0 and |y(t)| ≤ |x(t)| for μ-a.e. t ∈ T or y ∈ l0 and
|y(n)| ≤ |x(n)| for any n ∈ N, respectively, then y ∈ E and ‖y‖E ≤ ‖x‖E ,

(ii) there exists a function x in E that is positive on the whole T or N,
respectively.

In the case of Köthe spaces one can give equivalent and simpler definitions
of strict and uniform monotonicities. Namely, we have

Theorem 2.2 ([41, Theorem 8]). For any Köthe space E the following conditions
are equivalent:

(i) E is strictly monotone.
(ii) For any x ∈ E\{0} and A ∈ Σ such that ‖xχA‖E > 0,

we have ‖x− xχA‖E < ‖x‖E.
(iii) For every x, y ∈ E\{0} with μ({suppx ∩ supp y}) = 0,

we have ‖x+ y‖E > max(‖x‖E , ‖y‖E).

Theorem 2.3 ([41, Theorem 6]). Let E be a Köthe space. Then the following con-
ditions are equivalent:

(i) E is uniformly monotone.
(ii) For any ε ∈ (0, 1), there is σ(ε) ∈ (0, 1) such that for any x ∈ S+(E) and for

any A ∈ Σ, the inequality ‖xχA‖E ≥ ε implies ‖x− xχA‖E ≤ 1− σ(ε).
(iii) For all ε > 0, there is τ(ε) > 0 such that x, y ∈ E+, ‖x‖E = 1, ‖y‖E ≥ ε and

μ({suppx ∩ supp y}) = 0, imply that ‖x+ y‖E ≥ 1 + τ(ε).

It is known that lower locally uniformly monotone Köthe spaces are order
continuous (see [23, Proposition 2.1]). Recall, that a Köthe space E is called order-
continuous if for any element x ∈ E and any sequence (xn) in E+ with 0 ≤ xn ≤ |x|
for all n ∈ N and xn → 0 μ-a.e. or coordinatewise, there holds ‖xn‖E → 0. Up to
now it is not known if upper local uniform monotonicity of a Köthe space implies
its order-continuity. However, we can characterize lower and upper local uniform
monotonicity in terms of other properties.

For this purpose we define the Kadec–Klee type properties. Namely, we say
that a Köthe function space E (E is a Köthe space over a nonatomic, σ-finite
measure space (T,Σ, μ)) has the Kadec–Klee property with respect to the (local)
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convergence in measure, if for any x ∈ E and any sequence (xn) in E such that
‖xn‖E → ‖x‖E and xn → x (locally) in measure, we get ‖xn − x‖E → 0. Let
us recall that local convergence in measure of (xn) to x means that xnχA →
xχA in measure for any A ∈ Σ with μ(A) < ∞. Of course in the sequence case
global convergence in measure coincides with the uniform convergence and local
convergence in measure coincides with the pointwise convergence.

In the sequence case, we get the following

Theorem 2.4. Let E be a Köthe sequence space, that is, a Köthe space over the
counting measure space (N, 2N,m). Then:

(i) [33, Theorem 2.7] E is lower locally uniformly monotone if and only if E is
strictly monotone and order continuous.

(ii) [27, Theorem 4.1] If E is strictly monotone and has the coordinatewise Kadec–
Klee property, then E is upper locally uniformly monotone.

As we will see below in the function case analogous results were obtained only
for symmetric spaces. Let L0 = L0([0, γ),Σ,mL) be the space of all (equivalence
classes of) Lebesgue measurable real-valued functions defined on the interval [0, γ),
where 0 < γ ≤ ∞. Given any x ∈ L0 we define its distribution function μx :
[0,+∞)→ [0, γ] by

μx(λ) = mL({t ∈ [0, γ) : |x(t)| > λ})

(see [5], [59] and [65]) and the non-increasing rearrangement x∗ : [0, γ) → [0,∞]
of x as

x∗(t) = inf{λ ≥ 0 : μx(λ) ≤ t}
(with the convention that inf ∅ = ∞). We say that two functions x, y ∈ L0 are
equi-measurable if μx(λ) = μy(λ) for all λ ≥ 0. Then we obviously have x∗ = y∗.

Recall that a Köthe function space E over the Lebesgue measure space
([0, γ),Σ,mL) is called a symmetric space if E is rearrangement invariant which
means that if x ∈ E, y ∈ L0 and x∗ = y∗, then y ∈ E and ‖x‖E = ‖y‖E (see [15]).
For basic properties of symmetric spaces we refer to [5], [59] and [65].

Theorem 2.5. The following statements are true:

(i) [33, Theorem 2.6] Suppose that E is a symmetric space over the Lebesgue mea-
sure space ([0, γ),Σ,mL). Then E is lower locally uniformly monotone if and
only if E is strictly monotone and order continuous (equivalently separable).

(ii) [15, Theorem 3.2] Let E be an order-continuous (equivalently separable) sym-
metric space over the Lebesgue measure space ([0, γ),Σ,mL). Then the fol-
lowing statements are equivalent:
(a) E is upper locally uniformly monotone.
(b) E is strictly monotone and has the Kadec–Klee property with respect to

the convergence in measure.
If we assume additionally that γ =∞, then both above conditions are equiv-
alent to



208 P. Foralewski, H. Hudzik, W. Kowalewski and M. Wisla

(c) E has the Kadec–Klee property with respect to the local convergence in
measure.

Now we will present criteria for monotonicity properties of Calderón–Loza-
novskĭı spaces in general and Orlicz and Orlicz–Lorentz spaces in particular.

In the remainder of the paper, ϕ denotes an Orlicz function (see [12, 68, 70]),
that is, ϕ : [−∞,∞]→ [0,∞] (our definition is extended from R to [−∞,+∞] by
putting ϕ(−∞) = ϕ(∞) = ∞) and ϕ is convex, even, vanishing and continuous
at zero, left continuous on (0,∞) and not identically equal to zero on (−∞,∞).
Denoting

aϕ = sup{u ≥ 0 : ϕ(u) = 0},
bϕ = sup{u ≥ 0 : ϕ(u) <∞},

we get that the left continuity of ϕ on (0,∞) is equivalent to the fact that
limu→(bϕ)− ϕ(u) = ϕ(bϕ).

Recall that an Orlicz function ϕ satisfies condition Δ2 for all u ∈ R (ϕ ∈
Δ2(R) for short) if there exists a constant K > 0 such that the inequality

ϕ(2u) ≤ Kϕ(u) (2.1)

holds for every u ∈ R (then we have aϕ = 0 and bϕ = ∞). In the same way the
conditions denoted by ϕ ∈ Δ2(∞) and ϕ ∈ Δ2(0) are obtained by requiring the
existence of the constant u0 > 0 such that ϕ(u0) <∞ (respectively ϕ(u0) > 0) and
such that the inequality (2.1) holds for all u ≥ u0 (respectively for all u ∈ [0, u0]).
In the first case we have bϕ =∞ and in the second one aϕ = 0.

For a Köthe space E and an Orlicz function ϕ we say that ϕ satisfies condition
ΔE

2 (ϕ ∈ ΔE
2 for short) if:

1) ϕ ∈ Δ2(0) whenever E ↪→ L∞,
2) ϕ ∈ Δ2(∞) whenever L∞ ↪→ E,
3) ϕ ∈ Δ2(R) whenever neither L∞ ↪→ E nor E ↪→ L∞,

where the symbol E ↪→ F stands for the continuous embedding of E into F (see
[10] and [40]).

Given any Orlicz function ϕ, we define on L0 or l0 a convex modular � (see
[70]) by

�(x) =

{
‖ϕ ◦ x‖E if ϕ ◦ x ∈ E,
∞ otherwise,

where (ϕ◦x)(t) = ϕ(x(t)) for t ∈ T or (ϕ◦x)(n) = ϕ(x(n)) for n ∈ N, respectively,
and the Calderón–Lozanovskĭı space

Eϕ = {x : ϕ ◦ λx ∈ E for some λ > 0}
(see [10], [40] and [68]) which becomes a normed space under the Luxemburg norm

‖x‖ϕ = inf{λ > 0 : �(x/λ) ≤ 1}.
Considering the space Eϕ we shall assume that E has the Fatou property, that
is, for any x ∈ L0 or x ∈ l0 and (xn)

∞
n=1 in E+ such that xn ↗ x μ-a.e. or
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coordinatewise and supn ‖xn‖E < ∞, we have x ∈ E and ‖x‖E = limn ‖xn‖E
(see [51] and [65]). We also assume that there exists a function x in Ea that is
positive on the whole T or N, respectively, where Ea denotes the subspace of all
order-continuous elements in E.

Now we will present criteria for monotonicity properties of Calderón–Loza-
novskĭı spaces.

Theorem 2.6. Let E be a Köthe function spaces, that is, a Köthe space over a
nonatomic, σ-finite measure space (T,Σ, μ). Then the following statements are
true:

(i) The space Eϕ is strictly monotone if and only if E is strictly monotone,
ϕ ∈ ΔE

2 and ϕ vanishes only at zero.
(ii) The space Eϕ is lower locally uniformly monotone if and only if E is lower

locally uniformly monotone, ϕ ∈ ΔE
2 and ϕ vanishes only at zero.

(iii) If the space Eϕ is order continuous, then Eϕ is upper locally uniformly mono-
tone if and only if E is upper locally uniformly monotone, ϕ ∈ ΔE

2 and ϕ
vanishes only at zero.

(iv) The space Eϕ is uniformly monotone if and only if E is uniformly monotone,
ϕ ∈ ΔE

2 and ϕ vanishes only at zero.

First we note that by the assumptions that E has the Fatou property and
suppEa = T , we have E �⊂ L∞ and, in consequence, the condition ϕ ∈ ΔE

2

implies bϕ = ∞. Therefore, the statement (i) follows from [10, Theorem 1] and
[40, Theorems 1 and 2]. In turn, the statements (ii) and (iii) have been shown in
[33, Proposition 2.4(i) and Proposition 2.5(i), respectively]. Finally, the statement
(iv) follows from [10, Theorem 2], [40, Theorems 1 and 2] and [41, Theorem 7].

In the case when E is a Köthe sequence space, that is, a Köthe space over
the counting measure space (N, 2N,m), we can get analogous theorem assuming
additionally that ϕ(bϕ) infn∈N ‖en‖E ≥ 1, where en for n ∈ N are the basic unit
vectors.

It is well known that if E = L1, then Eϕ = (L1)ϕ = Lϕ, where Lϕ is the
Orlicz function space equipped with the Luxemburg norm. Since L1 is uniformly
monotone, by Theorem 2.6, we get

Corollary 2.7. If μ(T ) =∞, then the Orlicz function space Lϕ is strictly monotone,
equivalently uniformly monotone, if and only if ϕ ∈ Δ2(R). Similarly, if μ(T ) <
∞, then the Orlicz function space Lϕ is strictly monotone, equivalently uniformly
monotone, if and only if ϕ ∈ Δ2(∞) and ϕ vanishes only at 0.

Moreover, if E = l1, then Eϕ = (l1)ϕ = lϕ is the Orlicz sequence space
equipped with the Luxemburg norm. In this case we have

Corollary 2.8. The Orlicz sequence space lϕ is strictly monotone, equivalently uni-
formly monotone, if and only if ϕ ∈ Δ2(0) and ϕ(bϕ) ≥ 1.
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If E is a Lorentz function space Λ1,ω, then Eϕ is the corresponding Orlicz–
Lorentz function space Λϕ,ω (see [48, 49, 50]). Recall, that the Lorentz spaces Λ1,ω

are defined by

Λ1,ω =

{
x ∈ L0([0, γ),Σ,mL) : ‖x‖Λ1,ω :=

∫ γ

0

x∗(t)ω(t)dt <∞
}
,

where ω denotes a nonnegative, non-increasing and locally integrable function on
[0, γ) (not identically 0), called a weight function. We say that a weight function

ω is regular if there exists η > 0 such that
∫ 2t

0 ω(t)dt ≥ (1 + η)
∫ t

0 ω(t)dt for any

t ∈ [0, γ/2). Note that if the weight function ω is regular, then
∫∞
0 ω(t)dt =∞ in

the case when γ =∞ and ω(t) > 0 for some t > γ/2 when γ <∞.
It is well known that in the classes of Lorentz spaces and Orlicz–Lorentz

spaces strict monotonicity and uniform monotonicity are not equivalent (see [33,
Example 4.3]). More precisely, we have the following

Theorem 2.9 ([33, Proposition 4.1]). The following conditions are equivalent:

(i)
∫ γ

0 ω(t)dt =∞ if γ =∞ and ω is positive on [0, γ) when γ <∞.
(ii) The Lorentz space Λ1,ω is strictly monotone.
(iii) The Lorentz space Λ1,ω is lower locally uniformly monotone.
(iv) The Lorentz space Λ1,ω is upper locally uniformly monotone.

and

Theorem 2.10 ([39, Theorem 1]). The Lorentz space Λ1,ω is uniformly monotone
if and only if the weight function ω is regular and ω is positive on [0, γ) if γ <∞.

In consequence, we get

Corollary 2.11 ([33, Corollary 4.4]). The following conditions are equivalent:

(i) ϕ ∈ Δ2(R) and
∫ γ

0
ω(t)dt =∞ if γ =∞ and ϕ ∈ Δ2(∞), ϕ vanishes only at

0 and ω is positive on [0, γ) when γ <∞.
(ii) The Orlicz–Lorentz space Λϕ,ω is strictly monotone.
(iii) The Orlicz–Lorentz space Λϕ,ω is lower locally uniformly monotone.
(iv) The Orlicz–Lorentz space Λϕ,ω is upper locally uniformly monotone.

and

Corollary 2.12 ([40, Theorem 10]). If γ =∞, then the Orlicz–Lorentz space Λϕ,ω is
uniformly monotone if and only if ϕ ∈ Δ2(R) and the weight function ω is regular.
Similarly, if γ <∞, then the Orlicz–Lorentz space Λϕ,ω is uniformly monotone if
and only if ϕ ∈ Δ2(∞), ϕ vanishes only at 0, the weight function ω is regular and
ω is positive on [0, γ).

In the case when E = λ1,ω (the Lorentz sequence space), we get similar
results, assuming additionally that ϕ(bϕ)ω(1) ≥ 1, where ω = (ω(n))∞n=1 is the
weight sequence (see [33, Proposition 4.2 and Corollary 4.5] and [9, Lemma 1]).

Finally, it is worth noticing that criteria for monotonicity properties were also
given in other Banach lattices, among others in Musielak–Orlicz spaces [60, 61, 62,
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42, 20] (a short survey of the results about monotonicity properties in Musielak–
Orlicz spaces and of their subspaces of order-continuous elements was given in [36,
pp. 31–34]), generalized Calderón–Lozanovskĭı spaces Eϕ (where the function ϕ is
a Musielak–Orlicz function) [24, 28], Calderón–Lozanovskĭı construction ρ(X,Y )
[53], Lorentz spaces Γp,ω [17], generalized Orlicz–Lorentz spaces [32, 25, 26, 27],
Cesàro–Orlicz spaces [19], Banach spaces defined via sublinear operators [47] and
Orlicz–Sobolev spaces [14].

Moreover, some other monotonicity properties were also defined, among oth-
ers the properties CWLLUM, H+STM, DUM and IUM which are important in
the problems of the dominated and the modified dominated best approximation
(see Section 6 where these notions will be defined and applied). Moreover, Kolwicz
and Pluciennik [54] introduced a monotonicity property of normed lattices called
uniform monotonicity in every order interval and they discovered that this prop-
erty is useful in order to give a criterion for uniform rotundity in every direction
of Calderón–Lozanovskĭı spaces.

In the theory of Banach lattices the local monotonicity structure was also
considered. Points of lower and upper strict monotonicity as well as points of
lower and upper local uniform monotonicity were investigated.

A point x ∈ S+(X) is said to be a point of lower strict monotonicity if for
any y ∈ X+, y ≤ x, y �= x implies ‖y‖ < ‖x‖. A point x ∈ S+(X) is said to
be a point of upper strict monotonicity if ‖x + y‖ > 1 for any y ∈ X+ \ {0}.
In general, points of lower strict monotonicity differ from points of upper strict
monotonicity. However, the fact that all points of S+(X) are points of lower strict
monotonicity is equivalent to the fact that all points of S+(X) are points of upper
strict monotonicity and both these facts are equivalent to strict monotonicity ofX .

A point x ∈ S+(X) is said to be a point of lower local uniform monotonicity
if for any ε ∈ (0, 1) there exists δ(x, ε) ∈ (0, 1) such that ‖x − y‖ ≤ 1 − δ(x, ε)
whenever y ∈ X+, y ≤ x and ‖y‖ ≥ ε. A point x ∈ S+(X) is said to be a point
of upper local uniform monotonicity if for any ε > 0 there is η(x, ε) > 0 such that
‖x+ y‖ ≥ 1 + η(x, ε) whenever y ∈ X+ and ‖y‖ ≥ ε.

Monotonicity points defined as above were investigated in the papers [43, 44,
45, 21, 55, 56, 18].

3. Moduli and characteristics of monotonicity

In this section we will present the results concerning moduli and characteristics
of monotonicity in Banach lattices. The problem of calculating the characteristic
of monotonicity of a Banach lattice seems to be of great interest because of the
result by Betiuk-Pilarska and Prus [6] stating that if a Banach lattice X has this
characteristic strictly smaller than 1 and X is weakly orthogonal, then X has the
weak normal structure, whence, consequently,X has the weak fixed point property
(for the definition of these properties we refer to [52]). Therefore, it was quite
natural that several papers were devoted to the problem of calculating the exact
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value or getting good estimates of the characteristic of monotonicity in various
particular classes of Banach lattices.

For a given Banach lattice X , the function δm,X : [0, 1]→ [0, 1] defined by

δm,X(ε) = inf{1− ‖x− y‖ : 0 ≤ y ≤ x, ‖x‖ = 1, ‖y‖ ≥ ε} (3.1)

is said to be the lower modulus of monotonicity of X . It is easy to show that (see
[37])

δm,X(ε) = inf{1− ‖x− y‖ : 0 ≤ y ≤ x, ‖x‖ = 1, ‖y‖ = ε}
= 1− sup{‖x− y‖ : 0 ≤ y ≤ x, ‖x‖ = 1, ‖y‖ = ε}.
= 1− sup{‖x− y‖ : 0 ≤ y ≤ x, ‖x‖ = 1, ‖y‖ ≥ ε}

(3.2)

By definition, the lower modulus of monotonicity δm,X is a non-decreasing func-
tion. Moreover, the function δm,X is convex on the interval [0, 1] (see [63]), so
δm,X is continuous on the interval [0, 1). It is also clear that δm,X(ε) ≤ ε for any
ε ∈ [0, 1]. Obviously, X is uniformly monotone if and only if δm,X(ε) > 0 for every
ε ∈ (0, 1]. It is easy to see that a Banach lattice X is strictly monotone if and only
if δm,X(1) = 1.

The number ε0,m(X) ∈ [0, 1] defined by

ε0,m(X) = sup{ε ∈ [0, 1] : δm,X(ε) = 0} = inf{ε ∈ (0, 1] : δm,X(ε) > 0}
(where inf ∅ := 1) is said to be the characteristic of monotonicity of a Banach
lattice X . Obviously, a Banach lattice X is uniformly monotone if and only if
ε0,m(X) = 0.

We can also define another characteristic of monotonicity of a Banach lattice
X , namely

ε̃0,m(X) = sup{ε ≥ 0: ηm,X(ε) = 0} = inf{ε > 0: ηm,X(ε) > 0},
where ηm,X is the upper modulus of monotonicity defined, for all ε ≥ 0, by the
formula

ηm,X(ε) = inf{‖x+ y‖ − 1: x, y ∈ X+, ‖x‖ = 1, ‖y‖ ≥ ε}
= inf{‖x+ y‖ − 1: x, y ∈ X+, ‖x‖ = 1, ‖y‖ = ε}

(see [61] and [64]). It is clear by the norm triangle inequality that ηm,X(ε) ≤ ε
for all ε ≥ 0. Obviously, a Banach lattice X is uniformly monotone if and only if
ηm,X(ε) > 0 for all ε > 0 or, equivalently, if and only if ε̃0,m(X) = 0.

Let us also recall some relationships between two moduli of monotonicity
δm,X and ηm,X as well as relationships between the characteristics of monotonicity
ε0,m(X) and ε̃0,m(X). For arbitrary ε ∈ (0, 1) the following inequalities hold true
(see [61]):

δm,X(ε/(1 + ε))

1− δm,X(ε/(1 + ε))
≤ ηm,X(ε) ≤ δm,X(ε)

1− δm,X(ε)
. (3.3)

Note that inequalities (3.3) are equivalent to the following ones

ηm,X(ε)

1 + ηm,X(ε)
≤ δm,X(ε) ≤ ηm,X(ε/(1− ε))

1 + ηm,X(ε/(1− ε))
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for any ε ∈ (0, 1). As a consequence, we get

ε0,m(X) ≤ ε̃0,m(X) ≤ min{1, 2ε0,m(X)}.
Indeed, in [37], Theorem 1, it has been shown that ε0,m(X) ≤ ε̃0,m(X) ≤ 2ε0,m(X).
Simultaneously, since ‖x + y‖ ≥ max(‖x‖, ‖y‖) for any couple x, y ≥ 0, by the
triangle inequality, we have ηm,X(ε) > 0 for all ε > 1, whence we get ε̃0,m(X) ≤ 1.

Moreover, for any Banach lattice X , the following formulas are true (see [37,
Theorem 5] and [29, Proposition 2.10], respectively)

ε0,m(X) = sup{lim sup
n→∞

‖xn − yn‖ : 0 ≤ yn ≤ xn and ‖xn‖ = 1

for any n ∈ N and ‖yn‖ → 1},
ε̃0,m(X) = sup{lim sup

n→∞
‖yn − xn‖ : 0 ≤ xn ≤ yn and ‖xn‖ = 1

for any n ∈ N and ‖yn‖ → 1}.

Now we will present a few results, that are very useful while calculating the
characteristic of monotonicity of particular Banach lattices. We start with the
following theorem.

Theorem 3.1 ([29, Theorem 2.1]). For any Banach lattice X the following equality
holds true

ε0,m(X) = 1− δm,X(1−), (3.4)

where δm,X(1−) = limε→1− δm,X(ε). Moreover,

δm,X(1− δm,X(ε)) = 1− ε

for arbitrary ε ∈ (ε0,m(X), 1] if ε0,m(X) < 1 as well as also in the case when
ε = ε0,m(X) = 1.

Note that in equality (3.4), the value δm,X(1−) cannot be replaced by
δm,X(1). Namely, in [29, Examples 2.3 and 2.4], examples of Banach lattices X
with δm,X(ε) = 0 for any ε ∈ [0, 1) and δm,X(1) = 1 were presented. Obviously, it is
natural to ask if there exists a Banach lattice, for which 0 < δm,X(1−) < δm,X(1).
By equations (3.2) and (3.4) we get immediately that for an arbitrary Banach
lattice X the following formulas hold:

ε0,m(X) = lim
ε→1−

(sup {‖x− y‖ : 0 ≤ y ≤ x, ‖x‖ = 1, ‖y‖ ≥ ε})

= lim
ε→1−

(sup {‖x− y‖ : 0 ≤ y ≤ x, ‖x‖ = 1, ‖y‖ = ε}) .

In [29] another modulus of monotonicity and characteristic of monotonicity
for Köthe spaces were introduced and it was proved that the characteristic of mono-
tonicity corresponding to this new modulus coincide with the usual characteristic
of monotonicity (see [29, Theorem 3.9] and [31, Theorem 2.3]). It is obvious from
this result that, by using the new formula of the characteristic of monotonicity of
Köthe spaces, it should be easier to calculate this coefficient in particular classes
of Köthe spaces, e.g., in the case of Orlicz sequence spaces and Orlicz–Lorentz
function spaces. In [29] and [31] just this new formula for the characteristic of
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monotonicity was applied successfully to find formulas for the characteristic of
monotonicity of Orlicz spaces and Orlicz–Lorentz spaces.

Let us present now these new definitions of a modulus of monotonicity and
the new formula for the characteristics of monotonicity in Köthe space. For any

Köthe space E we define the modulus δ̂m,E : [0, 1]→ [0, 1] by the formula

δ̂m,E(ε) = inf {1− ‖x− xχA‖E : x ≥ 0, ‖x‖E = 1, A ∈ Σ, ‖xχA‖E ≥ ε} .

Obviously, the modulus δ̂m,E is a non-decreasing function with respect to ε ∈ [0, 1]

and δm,X(ε) ≤ δ̂m,E(ε) ≤ ε for any ε ∈ [0, 1]. Similarly as for the modulus δm,X

in [37], it is also possible to prove that

δ̂m,E(ε) = inf{1− ‖x− xχA‖E : x ≥ 0, ‖x‖E = 1, A ∈ Σ, ‖xχA‖E = ε}
= 1− sup{‖x− xχA‖E : x ≥ 0, ‖x‖E = 1, A ∈ Σ, ‖xχA‖E = ε}.
= 1− sup{‖x− xχA‖E : x ≥ 0, ‖x‖E = 1, A ∈ Σ, ‖xχA‖E ≥ ε}

The characteristic of monotonicity ε̂0,m(E) corresponding to the modulus δ̂m,E is
defined by

ε̂0,m(E) = sup
{
ε ∈ [0, 1] : δ̂m,E(ε) = 0

}
= inf

{
ε ∈ (0, 1] : δ̂m,E(ε) > 0

}
,

(where inf ∅ := 1). By [29, Proposition 2.6], for arbitrary Köthe space E the
following formula holds true

ε̂0,m(E) = sup{lim sup
n→∞

‖xn − xnχAn‖E : xn ∈ S+(E) and An ∈ Σ

for any n ∈ N and ‖xnχAn‖E → 1}.
Moreover, by Theorem 2.8 in [29], for any Köthe space E we have the equality
ε0,m(E) = ε̂0,m(E), whence we get

ε0,m(E) = lim
ε→1−

sup {‖x− xχA‖E : x ∈ S+(E), A ∈ Σ, ‖xχA‖E ≥ ε}

= lim
ε→1−

sup {‖x− xχA‖E : x ∈ S+(E), A ∈ Σ, ‖xχA‖E = ε} .

(see Corollary 2.9 in [29]). Since ε0,m(E) = ε̂0,m(E), we have δm,X(ε) = δ̂m,E(ε) =

0 for any ε ∈ [0, ε0,m(E)) and limε→1− δm,X(ε) = limε→1− δ̂m,E(ε). In [29, Ex-

ample 2.3] it has been shown that δm,X(ε) = δ̂m,E(ε) for any ε ∈ [0, 1] and
E = Lp([0, 1],Σ,m), where 1 ≤ p < ∞. So, it is natural to ask if these two
moduli are equal in arbitrary Köthe spaces.

Now we will mention some results concerning the estimates and the calcula-
tions of the moduli and characteristics of monotonicity for particular Köthe spaces.
First, the characteristic ε̃0,m(Lϕ) was calculated in [67], where Lϕ denotes an Or-
licz function space (over a nonatomic finite measure space) equipped with the
Luxemburg norm as well as the Orlicz norm. In that paper the authors assumed
for simplicity that the generating Orlicz function is an N-function. Next, in [37],
lower and upper estimates of the lower modulus of monotonicity of Orlicz spaces
equipped with the Luxemburg norm were given in terms of the Simonenko and
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Lindberg indices. In turn, in [38] some estimates of the characteristics of mono-
tonicity for Köthe–Bochner function spaces were presented. In [29, 31] the char-
acteristics of monotonicity of Orlicz spaces and Orlicz–Lorentz spaces equipped
with the Luxemburg norm were calculated. Finally, in [30] some estimates of the
characteristics of monotonicity of Orlicz spaces equipped with the Orlicz norm
were obtained.

4. Dual properties

In this section we will discuss relationships between some monotonicity and rotun-
dity properties, as well as duality relationships between monotonicity properties
and respective order smoothness properties and between the modulus of mono-
tonicity of a Banach lattice X and the modulus of order smoothness of its dual
X∗ (see [61, 63]). Moreover, some applications of these results to particular opti-
mization problems are presented.

It is easy to observe that a Banach space X is rotund if and only if, for every
x ∈ X ,

max± ‖x± y‖ > ‖x‖ for all y ∈ X \ {0} (4.1)

(see [61]). Indeed, if X is rotund and x, y ∈ X with y �= 0, then we have

‖x‖ = max± ‖x± y‖
∥∥∥∥ x+ y

2max± ‖x± y‖ +
x− y

2max± ‖x± y‖

∥∥∥∥
< max± ‖x± y‖ ,

so the condition (4.1) holds true.
On the other hand, if X is not rotund, then we can find x, y ∈ X with x �= y

and
∥∥ 1
2

(
x+ y)

∥∥ = ‖x‖ = ‖y‖ > 0. Then x−y
2 �= 0 and

max±

∥∥∥∥x+ y

2
± x− y

2

∥∥∥∥ = max {‖x‖ , ‖y‖} = ‖x‖ =
∥∥∥∥x+ y

2

∥∥∥∥ ,
whence condition (4.1) is not satisfied. Thus, for any Banach lattice X , rotundity
implies strict monotonicity.

Let us recall that a Banach space (X, ‖·‖) is called uniformly rotund if for
each ε ∈ (0, 2] there exists δX(ε) ∈ (0, 1) such that

∥∥x+y
2

∥∥ ≤ 1 − δX(ε) whenever
‖x‖ , ‖y‖ ≤ 1 and ‖x− y‖ ≥ ε. This condition can be expressed equivalently in the
following way (see [61]): for every ε > 0 we can find ηX(ε) ∈ (0, 1) such that

inf

{
max± ‖x± y‖ : ‖x‖ = 1, ‖y‖ ≥ ε

}
≥ 1 + ηX(ε). (4.2)

Indeed, let X be uniformly rotund, ‖x‖ = 1 and ‖y‖ ≥ ε, where ε ∈ (0, 1]. We
have ∥∥∥∥ x+ y

max± ‖x± y‖ −
x− y

max± ‖x± y‖

∥∥∥∥ = 2 ‖y‖
max± ‖x± y‖ ≥

2 ‖y‖
1 + ‖y‖ ≥ ε
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(the last inequality follows from the facts that function f(a) = 2a
1+a is increasing

for a ≥ 0 and f(ε) ≥ ε for ε ∈ (0, 1]). Therefore, putting ηX(ε) = δX(ε), we obtain
ηX(ε) > 0 and

1 + ηX(ε) ≤ ‖x‖+max± ‖x± y‖ · δX(ε)

= max± ‖x± y‖
(∥∥∥∥12

(
x+ y

max± ‖x± y‖ +
x− y

max± ‖x± y‖

)∥∥∥∥+ δX(ε)

)
≤ max± ‖x± y‖ (1− δX(ε) + δX(ε)) = max± ‖x± y‖ .

Thus condition (4.2) holds true for ε ∈ (0, 1]; for ε > 1 we can assume ηX(ε) =
ηX(1).

Conversely, if X is not uniformly rotund, then we can find ε ∈ (0, 2] and
sequences (xn) and (yn) from B(X) with ‖xn − yn‖ ≥ ε for any n ∈ N such that∥∥xn+yn

2

∥∥→ 1. Hence
∥∥∥ xn−yn

‖xn+yn‖
∥∥∥ ≥ ε

2 > 0 for any n ∈ N and

lim sup
n→∞

max±

∥∥∥∥ xn + yn
‖xn + yn‖

± xn − yn
‖xn + yn‖

∥∥∥∥ = lim sup
n→∞

2max {‖xn‖ , ‖yn‖}
‖xn + yn‖

≤ 1,

so condition (4.2) is not satisfied.
Therefore, for any Banach latticeX , uniform rotundity implies uniformmono-

tonicity. Moreover, it is easy to show that for any Banach lattice X we have

0 ≤ δX(ε) ≤ δm,X(ε) ≤ ε,

for any ε ∈ (0, 1] (see [63]), where δm,X(·) denotes the modulus of monotonicity of
the Banach lattice X that is considered in section 3 (see formula (3.1)). Note that
for the real Lebesgue space X = L1(μ) we have δL1(μ)(ε) = 0 for any ε ∈ (0, 2],

so L1(μ) is not even rotund but, on the other hand, it is uniformly monotone and
δm,L1(μ)(ε) = ε for every ε ∈ (0.1], whence the Lebesgue space L1(μ) is the most
uniformly monotone Banach lattice among all Banach lattices.

A Banach lattice X is called order smooth, if for every x ∈ S+(X) and
every order interval [u∗, v∗] ⊂ Grad(x) there holds u∗ = v∗, where Grad(x) =
{x∗ ∈ S+(X

∗) :< x, x∗ >= ‖x‖}. Analogously, a Banach lattice X is called order
uniformly smooth, if ρX(τ)/τ → 0, whenever τ ↘ 0, where the modulus of smooth-
ness ρX(τ), τ ∈ (0, 1), is defined as follows:

ρX(τ) = sup {‖x ∨ τy‖ − 1 : x, y ≥ 0, ‖x‖ = ‖y‖ = 1} .

Theorem 4.1 ([63, Theorem 1]). Let X be a Banach lattice with the dual X∗. Then
(a) if X∗ is strictly monotone, then X is order smooth,
(b) if X∗ is order smooth, then X is strictly monotone.

If X is reflexive then the converse implications hold true as well.

In order to give necessary and sufficient conditions for X∗ to be UM the fol-
lowing relationships between modulus of monotonicity and modulus of smoothness
are crucial.
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Theorem 4.2 ([63, Theorem 3]). For any Banach lattice X the following duality
formulas hold true:

(a) ρX(τ) = ρX∗∗(τ),
(b) δm,X(ε) = δm,X∗∗(ε),
(c) ρX∗(τ) = sup0≤ε≤1

(
ετ − δm,X(ε)

)
,

(d) δm,X(ε) = sup0≤τ≤1

(
ετ − ρX∗(τ)

)
,

where ε, τ ∈ (0, 1).

Using the above theorem, we can conclude that the order-uniform smoothness
of a Banach lattice X is equivalent to the uniform monotonicity of X∗.

Theorem 4.3 ([63, Theorem 5]). Let X be a Banach lattice. Then:

(a) X is uniformly monotone if and only if X∗∗ is uniformly monotone,
(b) X is order uniformly smooth if and only if X∗∗ is order uniformly smooth,
(c) X is uniformly monotone if and only if X∗ is order uniformly smooth,
(d) X∗ is uniformly monotone if and only if X is order uniformly smooth.

Now we will present an application of the strict monotonicity property to
some optimization problems. We will fix any x ∈ X+ with ‖x‖ = 1 and consider
the (convex) optimization problem{

‖x ∨ y‖ → min,
y ≥ 0,

(4.3)

i.e., we will look for a y ∈ X+ such that ‖x ∨ y‖ = miny∈X+ ‖x ∨ y‖. Since X is
a Banach lattice, miny∈X+ ‖x ∨ y‖ = ‖x‖, so the optimization problem reduces to
describing the set Px ⊂ X+ of nonnegative solutions of the equation ‖x ∨ y‖ = ‖x‖.
Evidently, the set Px is nonempty because [0, x] ⊂ Px, where [0, x] denotes the
order interval with the endpoints 0 and x. Define

γ(t) =
‖x ∨ ty‖ − ‖x‖

t
,

where x, y ≥ 0, t > 0. The function t → γ(t) is convex, nonnegative and nonde-
creasing for t > 0. Moreover,

inf
t>0

γ(t) = sup
x∗,y∗∈Grad(x),0≤y∗≤x∗

(〈y, x∗ − y∗〉)

and the supremum on the right-hand side is attained at some x∗, y∗ ∈ Grad(x).
Therefore, we get the necessary condition for z to be a solution of the optimization
problem (4.3).

Theorem 4.4 ([63, Theorem 7]). A necessary condition for z to be a solution of
the optimization problem (4.3) is

max
x∗,y∗∈Grad(x),0≤y∗≤x∗

(〈z, x∗ − y∗〉) = 0.

The above condition is trivially satisfied if x is an order-smooth point, i.e.,
Grad(x) ∩X∗

+ contains no proper order interval.
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The next theorem gives the full characterizations of the solutions of the op-
timization problem (4.3).

Theorem 4.5 ([63, Theorem 8]). Let X be a Banach lattice and let x ∈ S+(X).
The element y ≥ 0 is a solution of the optimization problem (4.3) if and only if
there exists x∗ ∈ S+(X

∗) such that

(a) x∗ attains its norm at x, i.e., 〈x, x∗〉 = 1,
(b) x∗ attains the value ‖x ∨ y‖ at x ∨ y, i.e., 〈x ∨ y, x∗〉 = ‖x ∨ y‖,
(c) < y − x, y∗ >≤ 0 for every y∗ ∈ B+(X

∗) with 0 ≤ y∗ ≤ x∗.

Finally, it is worth noticing that in [76] the lattice structure of the gradient
Grad(x) of x ∈ X+ \ {0} was studied. The sets Grad(x) and Grad(|x|) were
compared up to isometry. It was proved that if the dual X∗ is strictly monotone,
then Grad(|x|) consists of positive elements only.

5. Relationships to complex rotundities

In this section we will give some results about relationships between monotonicity
properties of real Banach lattices and complex rotundity properties of their com-
plexifications. By the complexification of a real Köthe space (E, ‖·‖E) we mean
the space

EC = {z : T → C : z = x+ iy, x, y ∈ E}
endowed with the norm

‖z‖ =
∥∥∥√x2 + y2

∥∥∥
E
= ‖ |z| ‖E .

Conversely, if (F, ‖·‖) is the complexification of a real Köthe space E, then the
space

Fr = {z ∈ F : im(z) = 0}
under the norm induced from F is a real Köthe space and it equals E. Therefore,
E = (EC)r and F = (Fr)

C .
Let Z be a complex Banach space and S(Z) be the unit sphere of Z. A

point z0 ∈ S(Z) is called a complex extreme point (or C-extreme point) if for any
z ∈ Z \ {0} we have sup|λ|≤1 ‖z0 + λz‖Z > 1. A complex Banach space Z is said

to be complex rotund (C-rotund) if every z ∈ S(Z) is a C-extreme point. We say
that a complex Banach space Z is complex uniformly rotund (C-uniformly rotund)
if for every ε ∈ (0, 1) there exists δ(ε) ∈ (0, 1) such that

‖z‖Z = 1 and ‖z̃‖ ≥ ε =⇒ sup
|λ|≤1

‖z + λz̃‖Z ≥ 1 + δ(ε) (5.1)

for every z, z̃ ∈ Z or (see [22]) equivalently,

HZ
∞(ε) = inf

{
sup
{∥∥z + eiθ z̃

∥∥ : 0 ≤ θ ≤ 2π
}
− 1 : ‖z‖ = 1, ‖z̃‖ = ε

}
> 0.

A point z ∈ S(Z) is called a point of complex local uniform rotundity (C-LUR
point) if for every ε ∈ (0, 1) there exists δ(z, ε) ∈ (0, 1) such that the implication
(5.1) holds true for δ(ε) = δ(z, ε) and every z̃ ∈ Z. If every point of the unit
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sphere S(Z) is a C-locally uniformly rotund point, then Z is called complex locally
uniformly rotund (C-LUR).

The notion of complex rotundity was introduced by Thorp and Whitley in
[73], where they showed that the complex Lebesgue space L1(Σ, μ) is C-rotund
(while the real Lebesgue space is not rotund). Globevnik [35] introduced the notion
of uniform C-rotundity and showed that the complex Lebesgue space L1(Σ, μ) is
C-uniformly rotund. Next Wang and Teng [75] introduced the notion of local C-
uniform rotundity and investigated this property in Musielak–Orlicz spaces.

It turns out that there is a close relationship between monotonicity properties
of a real Köthe space E and C-rotundity properties of the complexification EC of
the space E (see [46]). The investigations of the relationships were continued in
[64]. We start with the following theorem.

Theorem 5.1 ([46, Theorem 1]). For any real Köthe space E, a point z ∈ S(EC) is
a C-extreme point of B(EC) if and only if |z| is a point of upper strict monotonicity
of E, i.e., ‖ |z| ‖ < ‖ |z|+ y‖ for every y ∈ E+ \ {0}.

Applying the above result we get the following theorem on C-rotundity of the
complexification of real Köthe spaces.

Theorem 5.2 ([46, Corollary 1]). Let E be a real Köthe function space. Then the
space EC is C-rotund if and only if E is strictly monotone.

The next theorem gives criteria for C-uniform rotundity of the complexifica-
tion EC of E.

Theorem 5.3 ([46, Theorem 2]). Let E be a real Köthe function space. The space
EC is C-uniformly rotund if and only if E is uniformly monotone.

However, for the C-local uniform rotundity the equivalent monotonicity prop-
erty is not known. But we do have the following:

Theorem 5.4 ([46, Lemma 1 and Corollary 2]). For any real Köthe space E, if
z ∈ S(EC) is a C-locally uniformly rotund point then |x| is a point of upper local
uniform monotonicity in E. Thus, if EC is a C-locally uniformly rotund, then E
is upper locally uniformly monotone.

The above results have been applied to get criteria for complex rotundity
properties of generalized Calderón–Lozanovskĭı spaces over atomless and counting
measure spaces. We state here the theorem for the atomless case only.

Theorem 5.5 ([46, Theorems 3 and 5]). Let (T,Σ, μ) be a nonatomic σ-finite and
complete measure space, E be an order-continuous real Köthe space with the Fatou
property and ϕ be an Orlicz function. The complexification EC

ϕ of the Calderón–
Lozanovskĭı space Eϕ is C-rotund (respectively, C-uniformly rotund) if and only if
ϕ > 0, ϕ ∈ ΔE

2 and E is a strictly monotone (respectively, uniformly monotone)
space.
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In consequence, the following criteria for C-rotundity and C-uniform rotun-
dity of Orlicz–Lorentz spaces have been obtained (see [46, Theorems 7 and 9] and
also [16]).

Theorem 5.6. Let (T,Σ, μ) be a nonatomic σ-finite and complete measure space and
ϕ be an Orlicz function. The complexification ΛC

ϕ,ω of the Orlicz–Lorentz function
space Λϕ,ω is C-rotund (respectively, C-uniformly rotund) if and only if

(i) ϕ > 0 and ϕ ∈ Δ2(∞) if μ(T ) <∞ and ϕ ∈ Δ2(R) when μ(T ) =∞,

(ii) ω > 0 (respectively, and ω is regular) if μ(T ) < ∞ and
∫ μ(T )

0
ω(t)dt = ∞

(respectively, ω is regular) when μ(T ) =∞.

It is worth noticing that results from Theorems 5.2 and 5.3 were generalized
to any Banach lattices in [64, Theorems 3.4 and 3.5]. Moreover, the following was
also shown:

Theorem 5.7 ([64, Theorems 5.1 and 5.2]). Let E be a real Köthe function space
over a complete measure space (T,Σ, μ) and X be a non-trivial complex Ba-
nach space. The Köthe–Bochner space E(X) is C-rotund (respectively, C-uniformly
rotund) if and only if E is strictly monotone (resp., uniformly monotone) and X
is C-rotund (respectively, C-uniformly rotund).

6. Dominated best approximation in Banach lattices

Let us start with the definition of the best approximation problems in Banach
spaces in order to see better the difference between the best approximation prob-
lems in Banach spaces and the dominated best approximation problems in Banach
lattices.

Let X = (X, ‖ · ‖) be a Banach space and A be its nonempty subset. Then
for any x ∈ X the number

d(x,A) = inf{‖x− y‖ : y ∈ A}
is called the distance of x from A. It is obvious that for any nonempty set A in
X and any x ∈ X the distance d(x,A) is finite as well as that d(x,A) = 0 for any
x ∈ A.

Given any A ⊂ X , A �= ∅, the function PA(x) = X → 2X defined by

PA(x) = {z ∈ A : d(x,A) = ‖x− z‖}
is called the projection from X onto A, and for any x ∈ X the set PA(x) is called
the projection of x onto A.

It is important to know the following facts:

a) Under which additional assumptions about a fixed set A in X we know that
PA(x) �= ∅ for any x ∈ X?

b) Under which assumptions on X , we know that PA(x) �= ∅, for any x ∈ X and
any nonempty, closed and convex subset A of X?
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c) Under which assumptions about X we know that for any nonempty, closed
and convex set A in X we have that Card(PA(x)) ≤ 1 for any x ∈ X?

d) Under which assumptions on X we know that Card(PA(x)) = 1 for any
x ∈ X and any nonempty, closed and convex subset A of X?

It is known that the sufficient conditions for a) is that A is nonempty, convex
and the intersections of A with all closed balls B(0, r), r > 0 are weakly compact
sets. Necessary and sufficient conditions for b), c) and d) are, respectively, that X
is reflexive, X is rotund and X is rotund and reflexive.

It was natural to modify the above best approximation problems to the dom-
inated best approximation problems when X = (X,≤, ‖ · ‖) is a Banach lattice.
Recall following [61] that a subset A of X is called a sublattice of X if for every
x, y ∈ A, x∨y ∈ A and x∧y ∈ A, and that for z ∈ X , we write A ≤ z (respectively
z ≤ A) if x ≤ z (respectively z ≤ x) for all x ∈ A. The dominated best approx-
imation problems are then obtained by requiring that the set A is a sublattice
of X such that z ≥ A or z ≤ A for some z ∈ X (see [61], [62], [42], [13] and
[14]). In this more specific situation it was natural to expect that the conditions
corresponding to the questions a), b), c), d) presented above would be weaker
than for the general best approximation problems in Banach spaces without order
structure. The results that were obtained later confirmed this prediction. Namely,
when the class of the sets A in the dominated versions of the above questions b),
c) and d) is restricted to closed sublattices of X , then the necessary and sufficient
conditions for positive answers are, respectively, that X is order continuous, X is
strictly monotone and X is strictly monotone and order continuous.

In [61] another two monotonicity properties denoted by CWLLUM and
H+STM, which play a crucial role in characterizations of the dominated best
approximation problems, were defined. Property H+STM can be viewed as a lat-
tice version of the Kadec–Klee property together with rotundity, denoted in the
literature as (HR). Namely, we say that X has the H+ property if ‖xn − x‖ → 0
whenever 0 ≤ xn ≤ x and xn → x weakly. A Banach lattice X is said to have
property H+STM if it has both properties H+ and STM. We say that a Banach
lattice X has CWLLUM property if for any nonnegative x∗ ∈ X∗ (the dual space
of X) with ‖x∗‖ = 1, any x ∈ S+(X) and any sequence (xn)

∞
n=1 in X satisfying

0 ≤ xn ≤ x for all n ∈ N, the condition x∗(xn− x)→ ‖x‖ implies ‖xn‖ → 0. Both
properties CWLLUM and H+STM are weaker than lower local uniform mono-
tonicity. In [42, Theorem 4.1] it has been proved that both properties H+STM
and CWLLLUM are equivalent to the combination of strict monotonicity and
order-continuity and, in consequence, both properties H+STM and CWLLLUM
are equivalent to lower local uniform monotonicity in Köthe sequence spaces (see
Theorem 2.4) and symmetric spaces (see Theorem 2.5).

We will present some of the results mentioned above together with their
proofs. For Musielak–Orlicz spaces the proofs were given by W. Kurc (see [61])
and we adopt the proofs to general Banach lattices.
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Theorem 6.1. Let X be a Banach lattice. Then the following are equivalent:

(a) X is strictly monotone.
(b) For all z ∈ X and any order interval [x, y] ⊂ X satisfying z ≥ [x, y] or

z ≤ [x, y], there holds Card(P[x,y](z)) ≤ 1.
(c) For all z ∈ X and any sublattice A ⊂ X such that z ≥ A or z ≤ A there

holds Card(PA(z)) ≤ 1, that is, the dominated best approximation problem
with respect to A is unique whenever it is solvable.

Proof. (a) ⇒ (c) Let us assume that (a) is satisfied but (c) not, which means
that, if PA(z) �= ∅, then there exist u,w ∈ A, u �= w, such that ‖z − u‖ =
‖z − w‖ = infv∈A ‖z − v‖. Since A is a sublattice, we have u ∨ w ∈ A. Assume
without loss of generality that z ≥ A (the proof in the case A ≤ z is similar).
Then, 0 ≤ z − (u ∨ w) ≤ z − u, so u ∨ w ∈ PA(z). Since u �= w, we have that
either u < u ∨ w or w < u ∨ w (for example u < u ∨ w means that u ≤ u ∨ w
and u �= u ∨ w). In the first case we have the equalities ‖z − u‖ = ‖z − u ∨ w‖ =
‖z − u − ((u ∨ w) − u)‖, a contradiction with strict monotonicity of X , because
(u ∨ w)− u ≥ 0 and (u ∨w) − u �= 0. In the second case the proof is similar.

The implication (c) ⇒ (b) is obvious because order intervals are sublattices.
(b) ⇒ (a) Let us assume that (b) is satisfied but (a) not, which means that

there exists z, w ∈ X such that z ≥ w ≥ 0, w �= 0 and ‖z−w‖ = ‖z‖. Let us define
A = [0, w]. Then the previous equality means that 0, w ∈ PA(z), which means that
(b) does not hold, a contradiction. �

Theorem 6.2. Assume that X is a σ-complete Banach lattice with an order-contin-
uous norm, A is a closed sublattice of X, z ∈ X and z ≥ A or z ≤ A. Then
PA(z) �= ∅.

Proof. Let us consider first the case z ≥ A and let (wn)
∞
n=1 be a minimizing

sequence in A with respect to z, that is, d(z, A) := infw∈A ‖z−w‖ = limn→∞ ‖z−
wn‖. Since A is a sublattice of X , there exist un =

∨n
k=1 wk ∈ A for any n ∈ N.

Moreover 0 ≤ z− un ≤ z−wn for any n ∈ N, which implies that (un)
∞
n=1 is also a

minimizing sequence in A for z. Since un ≤ z for any n ∈ N and X is σ-complete,
there exists u =

∨∞
n=1 un ∈ X and 0 ≤ u − un ↓ 0. By order-continuity of X , we

conclude that ‖u − un‖ → 0 as n → ∞. Since A is closed, u ∈ A. We also have
d(z, A) ≤ ‖z − u‖ ≤ ‖z − un‖ + ‖un − u‖ → d(z, A), whence ‖z − u‖ = d(z, A),
which means that u ∈ PA(z).

Consider now the case z ≤ A. Let us define B = 2z−A. Taking any x ∈ B, one
can find u ∈ A such that x = 2z−u. Since z ≤ u, we have x = 2z−u ≤ 2z−z = z,
which means that B ≤ z. By the first case, which has been just proved here, there
exists u ∈ B such that d(z,B) = ‖z − u‖. Let v ∈ A be such that u = 2z − v.
Then, we have ‖z − u‖ = ‖z − (2z − v)‖ = ‖v − z‖ = ‖z − v‖. Let us note that

d(z, A) = inf
u∈A

‖z − (2z − u)‖ = inf
u∈A

‖ − z + u‖ = inf
u∈A

‖z − u‖ = d(z, A).

Therefore, the equality that has been proved already means that d(z, A) = ‖z−v‖.
Since v ∈ A, the proof of the second case is finished. �
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The role of the upper and lower local uniform monotonicity in the dominated
best approximation problems is illustrated by the next two theorems.

Let us recall (see [61]) that the dominated best approximation problem is
called uniquely solvable if Card(PA(z)) = 1, whenever z ∈ X and A ⊂ X , where
X is a Banach lattice.

Theorem 6.3. Let X be a σ-complete Banach lattice. Then the lower local uniform
monotonicity of X implies that both (lower and upper) dominated best approxima-
tion problems A ≤ z and A ≥ z are uniquely solvable.

Proof. It is obvious that lower local uniform monotonicity of X implies its strict
monotonicity. Moreover, local lower uniform monotonicity of X implies its order-
continuity (see [23]). Therefore, the result follows by Theorems 6.1 and 6.2. �

In the next theorem we will use the notion of stability of the dominated
best approximation problem. A dominated best approximation problem (x ≤ A
or x ≥ A) is said to be strongly solvable (see [42]) if it is uniquely solvable and
stable. Stability of such problem means that for any minimizing sequence (xn)

∞
n=1

in A (that is a sequence such that ‖x − xn‖ → d(x,A) as n → ∞) we have that
d(xn, PA(x))→ 0 as n→∞.

Theorem 6.4. Let X be a σ-complete Banach lattice and A be a closed sublattice of
X. Then in both cases A ≤ z and z ≤ A the upper local uniform monotonicity and
order-continuity of X yields that the lower and upper best dominated approximation
problems are strongly solvable.

Proof. Let the assumptions about X be satisfied and A be a closed sublattice
of X . Let us take any z ∈ X such that A ≤ z. By the order-continuity of X
and Theorem 6.2, the dominated best approximation problem is solvable. Since
upper local uniform monotonicity of X implies its strict monotonicity, the problem
is uniquely solvable, that is, there is a unique u0 ∈ A such that ‖z − u0‖ =
infu∈A ‖z − u‖, which means that PA(z) = {u0}.

Let (un)
∞
n=1 be a minimizing sequence in A for z. Since A is a sublattice,

vn :=
∨n

k=1 uk ∈ A exists for any n ∈ N. Moreover, since X is a σ-complete
Banach lattice, we have that vn ≤ v :=

∨∞
n=1 vn ≤ z. Hence 0 ≤ v − vn ↓ 0 and

since X is order continuous, we get ‖v − vn‖ → 0 as n→∞, so that v ∈ A, since
A is norm closed in X . Note that

d(z, A) = inf
u∈A

‖z − u‖ ← ‖z − un‖ ≥ ‖z − vn‖ ≥ ‖z − v‖ ≥ ‖z − u0‖ = d(z, A),

whence v ∈ PA(z). Now, the unique solvability of the best dominated problem
implies that v = u0. Since 0 ≤ z − u0 ≤ z − un for any n ∈ N and ‖z − un‖ →
‖z− u0‖, by the upper local uniform monotonicity of X , we get ‖u0− un‖ → 0 as
n → ∞, which means that the dominated best approximation problem is stable.
By the uniqueness of its solvability it is strongly solvable.

Let us consider now the case z ≤ A. Since upper local uniform monotonicity
implies strict monotonicity, so by order-continuity of X and by Theorems 6.1 and
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6.2, our dominated best approximation problem is uniquely solvable, that is, there
exists a unique u0 ∈ A such that PA(z) = {u0}. Let (wn)

∞
n=1 be a minimizing

sequence in A with respect to z, that is, d(x,A) = limn→∞ ‖z − wn‖. Since A
is a sublattice of X , there exist un =

∧n
k=1 wk ∈ A for any n ∈ N, whence

0 ≤ un − z ≤ wn − z for any n ∈ N and, in consequence, (un)
∞
n=1 is also a

minimizing sequence for z. Since z ≤ un for any n ∈ N and X is σ-complete, there
exists u =

∧∞
n=1 un ∈ X . Since un+1 ≤ un for any n ∈ N, we have u ≤ un for any

n ∈ N and 0 ≤ un − u ↓ 0.
Now, by the order-continuity of X , we get limn→∞ ‖un − u‖ = 0. Since A is

closed in X , we get u ∈ A. We also have

d(z, A) ≤ ‖z − u‖ ≤ ‖z − un‖+ ‖un − u‖ → d(z, A),

whence ‖z−u‖ = d(z, A), and so u ∈ PA(z). Since our dominated best approxima-
tion problem is uniquely solvable, we get u = u0. The conditions 0 ≤ u0−z ≤ un−z
and ‖z − un‖ → ‖z − u0‖ and upper local uniform monotonicity of X imply that
‖un − u0‖ → 0 as n → ∞, which means that our dominated best approximation
problem is strongly solvable. �

It is worth noticing that for Musielak–Orlicz function spaces Lϕ(μ) and their
subspaces Eϕ(μ), equipped with the Luxemburg norm, the sets PA(f) were deter-
mined in terms of the subdifferential of the generating Musielak–Orlicz function
(see [61] for atomless measure case). In sequence spaces the same was done in [62].

Two other monotonicity properties of Banach lattices, called decreasing (resp.
increasing) uniform monotonicity, denoted by DUM (resp. IUM), were defined
in [13] in connection with the modified dominated best approximation problems
which were considered in that paper. Namely, a Banach lattice X is said to be
decreasing (resp. increasing) uniformly monotone if for any sequences (xn)

∞
n=1 and

(yn)
∞
n=1 in X+ with yn ≥ xn ↓ (resp. xn ≥ yn ↑) and limn→∞ ‖xn‖ = limn→∞ ‖yn‖

there holds ‖yn − xn‖ → 0. Obviously

UM ⇒ IUM ⇒ LLUM
⇓ ⇓

DUM ⇒ ULUM ⇒ STM.

Moreover, by Theorem 1.2 from [13] and Proposition 2.1 from [23], we know
that in Köthe spaces the properties IUM and LLUM coincide. It has been proved
in [13] that a Banach lattice X is DUM (resp. IUM) if and only if X is order
continuous and ULUM (resp. LLUM). Properties DUM and IUM were applied in
[13] to the modified best approximation problems defined below. Let us note that
in such problems, in comparison with the usual dominated best approximation
problems that were considered in [61, 62] and [42], in place of f ≥ A or f ≤ A,
where A is sublattice of X , the authors used the conditions f ≥ A or f ≤ A, where
A is any nonempty convex subset of X and f ∈ D(A), where

D(A) = {z ∈ X : A− z is an absolutely directed set}.
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A subset B of X is said to be absolutely directed if for any x, y ∈ B there
exists z ∈ B such that |z| ≤ |x| ∧ |y|.

Now we will present seven theorems and a corollary concerning the modified
dominated best approximation problems.

Theorem 6.5 ([13, Theorem 2.1]). Let X be a Banach lattice. Then the following
statements are equivalent:

(1) X is strictly monotone.
(2) Card(PA(z)) ≤ 1 for any nonempty convex subset A of X and any z ∈ D(A).
(3) Card(PA(z)) ≤ 1 for any nonempty convex and closed subset A of X and any

z ∈ D(A).

Remark 6.6 ([13, Remark 2.1]). If PA(z) = {x} and z ∈ D(A), then for any y ∈ A,
there exists w ∈ A such that |w−z| ≤ |x−z|∧ |y−z|, which yield that w ∈ PA(z).
Since PA(z) = {x}, we have w = x. Therefore |w− z| ≤ |y − z| for all y ∈ A. This
means that |w − z| is the order infimum of |A− z|.

Let X be a Banach lattice and let us define for any x ∈ X ,

x⊥ = {z ∈ X : |z| ∧ |x| = 0}.
Theorem 6.7 ([13, Theorem 2.2]). Let X be an order-continuous Banach lattice
and let for any x ∈ X, x⊥ be the complemented sublattice of X defined as above. If
X is LLUM (i.e., X is IUM according to the results mentioned before formulating
Theorem 6.5), then:

(1) For all nonempty convex subsets A of X and all z ∈ D(A), the set A− z has
a minimizing Cauchy sequence,

(2) For all nonempty convex and closed subsets A of X and all z ∈ D(A),
Card(PA(z)) = 1.

Theorem 6.8 ([13, Theorem 2.3]). Assume that X is a uniformly monotone Banach
lattice. Then for any nonempty convex and closed subset A of X and any z ∈ D(A),
Card(PA(z)) = 1.

Theorem 6.9 ([13, Theorem 3.1]). Let X be a uniformly monotone Banach lattice
and A be a nonempty convex and closed subset of X, zn ∈ D(A) and PA(zn)) =
{xn} for any n ∈ N. Then ‖zn − z0‖ → 0 as n → ∞ implies that ‖xn − x0‖ → 0
as n→∞, i.e., the best approximation operator PA is continuous.

Theorem 6.10 ([13, Theorem 3.2]). Let X be a Banach lattice. The following state-
ments are equivalent:

(1) X is upper locally uniformly monotone.
(2) For any nonempty convex subset A of X and any z ∈ D(A), there holds

‖xn − x0‖ → 0 as n→∞, where (xn)
∞
n=1 is a minimizing sequence of A− z

and x0 + z ∈ PA(z).

Theorem 6.11 ([13, Theorem 3.3]). Let X be a uniformly monotone Banach lattice
and A be a nonempty convex and absolutely directed subset of X, that is, 0 ∈ D(A).
Then any minimizing sequence of A is a Cauchy sequence.
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Theorem 6.12 ([13, Theorem 3.4]). Let X be a Banach lattice. If for any nonempty
convex and absolutely directed subset A of X all minimizing sequences of A are
Cauchy sequences, then X is decreasing uniformly monotone, that is, order con-
tinuous and upper locally uniformly monotone.

Corollary 6.13 ([13, Corollary 3.1]). LetX be a uniformly monotone Banach lattice
and A be a nonempty convex and closed subset of X and z ∈ D(A). Then:

(1) Card(PA(z)) = 1,
(2) For any minimizing sequence (xn)

∞
n=1 of A− z and x0 + z ∈ PA(z), we have

‖xn − x0‖ → 0 as n→∞,
(3) The best approximation operator PA : D(A)→ A is continuous.

In [14] criteria for strict monotonicity, lower and upper local uniform mono-
tonicity and uniform monotonicity of Orlicz–Sobolev spaces Wm,ϕ equipped with
the Luxemburg norm were given. Note that the Orlicz–Sobolev spaces Wm,ϕ were
endowed in [14] with the following natural semi-order: for any x and y from Wm,ϕ

we define that y ≤ x if and only if for any |α| ≤ m we have Dαy ≤ Dαx in Lϕ,
where |α| denotes degree of the derivative Dα, that is, |α| = α1 + · · · + αn for
α = (α1, . . . , αn) with non-negative integers αi, L

ϕ is an Orlicz function space and
the derivatives Dαx are understood in the distributional sense. Next some results
on the modified dominated best approximation problems in the spaces Wm,A were
presented. As an application, an interesting example about the approximation of
a function x ∈Wm,ϕ by polynomials of degree ≤ m were given.

Let us also note that in [18] some applications of the points of lower and
upper monotonicity to the local dominated best approximation problems in Banach
lattices were presented.

7. Some application to Ergodic Theory

Assume that X and Y are Banach lattices. An element u ∈ X+ is said to be a
weak unit if for any f ∈ X+ the condition |f | ∧ |u| = 0 implies that f = 0.

Let (xn) be a sequence in X+. An element φ ∈ X+ is called a (weak) truncated
limit of (xn) (we denote such φ by (W )TLxn), if for the weak unit u in X and
every k ∈ N, the sequence (xn ∧ ku) (weakly) converges to φk as n → ∞ and
φk ↑ φ as k → ∞. Let us recall that a linear operator T from X into Y is called
positive (T ≥ 0 for short) if TX+ ⊂ X+, and T is called a contraction if ‖T ‖ ≤ 1.

A sequence (xn) is called TL null if TL |xn| = 0. If X is the Lebesgue space
L1 over a measure space, then, as it has been shown in [2], TL null sequences
are exactly the sequences of functions that converge to zero in measure on sets of
finite measure.

Denote by An the Cesàro averages of the succsessive powers of an operator
T , i.e.,

An =
T + T 2 + · · ·+ T n

n
.



Monotonicity Properties of Banach Spaces and Their Applications 227

Such operators have their origins in statistical mechanics and probability theory
(see [1]). Questions about limits of the Cesàro averages are strongly related to
the ergodic mean theorems. In general, we say that T is mean ergodic on X
if for any x ∈ X , Anx converges strongly in X . In [3] Akcoglu and Sucheston
studied the limiting behavior of these Cesáro averages in the case when T is a
positive contraction. They were motivated by a few facts. Namely, if X = L1

over a probability measure space, then for x ∈ L1 Anx, does not converge in L1

or almost everywhere (see [11]), but converges in probability [58]. Moreover, a
sequence (xn) converges in probability to φ in L1 if and only if TLxn = φ. In
[3] the authors have proved two ergodic theorems for TL convergence in Banach
lattices and in order to do so they introduced two monotonicity conditions for X .
For a Banach lattice X we define the following two conditions:

(C1) For x, y ∈ X+, y �= 0, we have ‖x+ y‖ > ‖x‖ (strict monotonicity of X).
(C) For every α > 0 and x′ ∈ X+ there exists β = β(x′, α) such that ‖x+ y‖ ≥

‖y‖+ β whenever x, y ∈ X+, x ≤ x′, ‖x‖ ≥ α, ‖y‖ ≤ 1.

The condition (C) is stronger than the condition (C1) and, in fact, it is a kind of
uniform version of the condition (C1) (see [4]). Both ergodic theorems proved in
[3] use also two other assumptions concerning X , that are denoted for short by
(A) and (B), respectively. The first one means that X has a weak unit, and the
second one means that every norm-bounded increasing sequence in X converges in
norm. Condition (B) is equivalent to the assumption that X is weakly sequentially
complete or that X contains no isomorphic copy of c0. Moreover, condition (B)
implies that X is order-continuous.

Theorem 7.1. Let a Banach lattice X satisfy conditions (A), (B) and (C1) and let
‖T ‖ ≤ 1, φ ∈ X+, Tφ = φ, and x ∈ X+. Then An x ∧ φ converges strongly.

Theorem 7.2. Assume that a Banach lattice X satisfies conditions (A), (B) and
(C) and let x ∈ X+. Then the strong truncated limit TLAnx = φ exists and
Tφ = φ.

Subadditive ergodic theory in general function spaces was considered by
Ghoussoub in [34]. A sequence (sn) in X is said to be T -subadditive (resp. T -
superadditive) if sn+k ≤ sn + T n(sk) (resp. sn+k ≥ sn + T n(sk)) for all integers
n, k. A sequence (sn) is said to be T -additive if it is both superadditive and sub-
additive, i.e., sn+k = sn+T n(sk) for all integers n, k. Moreover, (sn) is T -additive
if and only if sn =

∑n
i=0 T

i(si) for each n ∈ N.

Theorem 7.3 ([34, Corollary II.2]). Assume that T is a mean ergodic positive con-
traction on a Banach lattice X with order-continuous and strictly monotone norm.
Then, for every positive T -subadditive process (sn) in X, we have the strong con-
vergence of the sequence

(
1
nsn
)
.

We say that a sequence (sn) is of bounded T -variation if

sup
m

1

m

∥∥∥∥ m∑
i=1

(si − Tsi−1)

∥∥∥∥ <∞.
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With this definition Ghossoub [34] obtained another theorem that links mono-
tonicity of the norm and the ergodic theory.

Let us recall some definitions. A band in a vector lattice E is an ideal J with
the property that if A ⊆ J and x is the supremum of A in E then x ∈ J . A band
B in E is a projection band if E = B ⊕Bd, where Bd is the disjoint complement
of B in E. In this case if x ∈ B and y ∈ Bd then x + y ≥ 0 if and only if x ≥ 0
and y ≥ 0. The map that takes x+ y to y in this case is the band projection onto
B denoted by Q.

Suppose now E is a Banach lattice which is the range of a band projection Q
in a Banach lattice G. We say that E is an Lp-ideal in G for some p (1 ≤ p <∞) if
‖Qx‖p+‖(I−Q)x‖p ≤ ‖x‖p for each x ∈ G. Typical examples of spaces which are
Lp-ideals in their second duals are ([34]) reflexive Banach lattices (Q=Identity)
and p-concave Banach lattices with p-concavity constant equal to one.

Theorem 7.4 ([34, Corollary II.4]). Assume that T is a mean ergodic positive con-
traction on a Banach lattice X with strictly monotone norm such that X is an
L1-ideal in its second dual. Then, for every positive T -subadditive process (sn) of
bounded T -variation, we have the strong convergence of the sequence

(
1
nsn
)
.
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[9] J. Cerdà, H. Hudzik, A. Kamińska and M. Masty�lo, Geometric properties of symmet-
ric spaces with applications to Orlicz–Lorentz spaces, Positivity 2(4) (1998), 311–337.

[10] J. Cerda, H. Hudzik and M. Masty�lo, On the geometry of some Calderón–Lozanovskĭı
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1. Introduction

We recall the following well-known definition (see, e.g., [10, Ch. IV, Sec. 5, p. 230]).

Definition 1.1. A bounded linear operator T on a Banach space X is called semi-
Fredholm if TX is closed in X and either nul(T ) = dimker(T ) < ∞ or def(T ) =
dim(X/TX) <∞. The operator T is called Fredholm if nul(T ) + def(T ) <∞.

In correspondence with Definition 1.1 the semi-Fredholm and Fredholm spec-
tra of a bounded linear operator T are defined as follows. (σ(T ) as usual means
the spectrum of a bounded linear operator T on a Banach space X .)

Definition 1.2. Let T be a bounded linear operator on a Banach space X . The
semi-Fredholm spectrum of T is

σsf (T ) = {λ ∈ σ(T ) : the operator λI − T is not semi-Fredholm}.
The Fredholm spectrum of T is

σf (T ) = {λ ∈ σ(T ) : the operator λI − T is not Fredholm}.

It is well known (see [5]) that the Fredholm spectrum of a bounded linear
operator T coincides with its spectrum in the Calkin algebra.
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There are many different definitions of essential spectrum of a linear operator
on a Banach space of which Fredholm and semi-Fredholm spectra are but two
(though important) examples. We will follow the book [8] where five of them are
discussed in details.

Definition 1.3 (See [8, Section I.4, p. 40]). Let T be a bounded linear operator on
a Banach space X . We define the essential spectra of T as the following subsets of
σ(T ).

• σ1(T ) = σ(T ) \ {ζ ∈ C : the operator ζI − T is semi-Fredholm }.
• σ2(T ) = σ(T ) \ {ζ ∈ C : the operator ζI − T is semi-Fredholm and nul(ζI −
T ) <∞}.

• σ3(T ) = σ(T ) \ {ζ ∈ C : the operator ζI − T is Fredholm }.
• σ4(T ) = σ(T )\{ζ ∈ C : the operator ζI−T is Fredholm and ind(ζI−T ) = 0}.
• σ5(T ) = σ(T )\{ζ ∈ C : there is a component C of the set C\σ1(T ) such that
ζ ∈ C and the intersection of C with the resolvent set of T is not empty }.

It is well known (see, e.g., [8] or [10]) that the sets σi(T ), i ∈ [1, . . . , 5] are
nonempty closed subsets of σ(T ) and that σi(T ) ⊆ σj(T ), 1 ≤ i < j ≤ 5, where all
the inclusions can be proper. Nevertheless all the spectral radii ri(T ), i = 1, . . . , 5
are equal to the same number (see [8, Theorem I.4.10]) which is called the essential
spectral radius of T . It is also known (see [8]) that the spectra σi(T ), i = 1, . . . , 4
are invariant under compact perturbations, but σ5(T ) in general is not.

The contents of the paper are as follows.

In Section 2 we describe the semi-Fredholm and Fredholm spectra of weighted
composition operators

Tf = w(f ◦ ϕ), f ∈ C(K), (1)

where C(K) is the space of all complex-valued continuous functions on a Hausdorff
compact space K, w ∈ C(K), and ϕ is a homeomorphism of K onto itself.

In Section 3 we, based on the results of Section 2, describe the spectra
σi(T ), i = 1, . . . , 5, where T is an operator of form (1).

In Section 4 we consider operators of the form T = wU : X → X where X is
an arbitrary Banach lattice, w is a central operator on X , U is a d-isomorphism
of X , and σ(U) is a subset of the unit circle. We show that the study of essential
spectra of such an operator can be reduced to the study of essential spectra of an
appropriate operator of form (1) on C(K), where K is the Stonean compact of the
Dedekind completion of X .

In Section 5 we touch upon a much more difficult problem of describing
essential spectra of weighted compositions induced by non-invertible maps and in
a special case when ϕ is an open surjection on a compact K provide a criterion
for def(λI − wTϕ) = 0.

Finally, in the small appendix we provide some clarifications about the state-
ment and the proof of Theorem 22 from [13] which is extensively used in the
current paper.
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2. When is the operator λI − T semi-Fredholm?

We start with recalling some results from [12].
Let T be as in (1). In [12, Theorem 3.29 and Theorem 3.31] we described

two special cases when λ ∈ σ(T ) and either def(λI − T ) = 0 or def(λI − T ′) = 0
where T ′ is the Banach conjugate of T . Because these results are crucial for our
description of σsf (T ) we will reproduce them here, but first we need to recall a
few notations from [12].

Let X be a Banach space and S be a bounded linear operator on X . We
denote the spectrum of S by σ(S) and consider the partition of σ(S) into two
subsets.

σap(S) = {λ ∈ σ(S) : ∃xn ∈ X, ‖xn‖ = 1, Sxn − λxn →
n→∞ 0},

σr(S) = σ(S) \ σap(S).

Let ϕ be a homeomorphism of a compact Hausdorff space K onto itself. Then
ϕ(0) will mean the identical map of K onto itself, ϕ(m) = ϕ ◦ ϕ(m−1),m ∈ N, and
ϕ(−m) = (ϕ(m))−1,m ∈ N.

Let m ∈ N. We will denote by Πm the subset of K that consists of all
ϕ-periodic points of period less or equal to m.

Let U be a closed subset of K such that ϕ(U) = U . We will denote by TU

the operator induced by (1) on the space C(U).

Theorem 2.1 ([12, Theorem 3.29]). Let ϕ be a homeomorphism of the compact space
K onto itself, w ∈ C(K), and (Tf)(k) = w(k)f(ϕ(k)), f ∈ C(K), k ∈ K. Assume
that the set of all ϕ-periodic points is of the first category in K. Let λ ∈ σ(T ).
Consider the following statements.

(R) The operator λI − T has a right inverse, or equivalently (λI − T )C(K) =
C(K), or equivalently λ ∈ σr(T

′).
(L) The operator λI − T has a left inverse, or equivalently ‖(λI − T )f‖ ≥

C‖f‖, f ∈ C(K), C > 0, or equivalently λ ∈ σr(T ).
(A) K = E ∪Q ∪ F where the sets E,Q, and F are pairwise disjoint, the sets E

and F are closed, ϕ(E) = E and ϕ(F ) = F , σ(TE) ⊂ {ξ ∈ C : |ξ| < |λ|},
and σ(TF ) ⊂ {ξ ∈ C : |ξ| > |λ|}.

(B) ∀k∈Q
∞⋂

n=0
cl{ϕm(k) :m≥n}⊆F and ∀k∈Q

∞⋂
n=0

cl{ϕ−m(k) :m≥n}⊆E.

(C) ∀k∈Q
∞⋂

n=0
cl{ϕm(k) :m≥n}⊆E and ∀k∈Q

∞⋂
n=0

cl{ϕ−m(k) :m≥n}⊆F.

Then the following equivalencies hold

(1) R⇔ A ∧B.
(2) L⇔ A ∧ C.

Theorem 2.2 ([12, Theorem 3.31]). Let ϕ be a homeomorphism of the compact
space K onto itself, M ∈ C(K), and (Tf)(k) = M(k)f(ϕ(k), f ∈ C(K), k ∈ K.
Let λ ∈ σ(T ). The following conditions are equivalent.
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(1) λ ∈ σr(T
′) (respectively, λ ∈ σr(T )).

(2) There are m ∈ N and an open subset P of K such that P ⊂ Πm, ϕ(P ) =
P , λ �∈ σ(TclP ), and K can be partitioned as K = E ∪ Q ∪ F ∪ P where
the sets E,F , and Q satisfy conditions A and B (respectively A and C) of
Theorem 2.1.

For any m ∈ N let us define wm ∈ C(K) as

wm = w(w ◦ ϕ) · · · (w ◦ ϕ(m−1)).

We will need also the following lemma that follows from [12, Lemma 3.6 and
Theorem 3.12.]

Lemma 2.3. Let T be an operator of the form (1) on C(K) and let λ ∈ σap(T )\{0}.
Then there is a point k ∈ K such that for every n ∈ N

|wn(k)| ≥ |λ|n. 2(a)

and
|wn(ϕ

(−n)(k))| ≤ |λ|n. 2(b)

Moreover, either

(I) k is not a ϕ-periodic point,

or at least one of the following conditions is satisfied.

(II) k is a ϕ-periodic point and for any n ∈ N and any open neighborhood V of
k there is a point v ∈ V such that either v is not ϕ-periodic or its period is
greater than n.

(III) k is a ϕ-periodic point of (the smallest) period p and wp(k) = λp.

Now we can start working on a complete description of Fredholm and semi-
Fredholm spectra of operators of the form (1).

Lemma 2.4. Let T be an operator of the form (1). Assume that λ ∈ σap(T ) \ {0},
that the operator λI − T is semi-Fredholm, and that nul(λI − T ) <∞. Let k ∈ K
be a point from the statement of Lemma 2.3.

Then k is an isolated point of K.

Proof. Let us first assume that k satisfies condition (III) of Lemma 2.3. If k is not
an isolated point in K then we can find a sequence of points kn ∈ K with the
properties.

• If m �= n then ϕ(i)(km) �= ϕ(j)(kn), 0 ≤ i, j ≤ p− 1.
• w(ϕ(i)(kn)) →

n→∞w(ϕ(i)(k)), i = 0, 1, . . . , p− 1.

Let un be the characteristic function of the singleton set {kn}. Then un

can be considered as an element of the second dual C′′(K) of norm one. Let

vn =
n−1∑
i=0

λ−i(T ′′)iun. Then it is immediate to see that ‖vn‖ ≥ ‖un‖ = 1 and

that T ′′vn−λvn →
n→∞ 0. Moreover, vn are pairwise disjoint elements of the Banach

lattice C′′(K) and therefore the sequence vn cannot contain a norm convergent
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subsequence. Therefore (see, e.g., [8, Corollary I.4.7, page 43]) the operator λI−T ′′

cannot be semi-Fredholm and have a finite-dimensional null space. But then [8,
Theorem I.3.7] the same is true for the operator λI − T and we come to a contra-
diction.

Next let us look at the case when k satisfies condition (II) of Lemma 2.3.
In this case it is not difficult to see that we can find points kn ∈ K and positive
integers m(n) with the properties

(a) m(n) →
n→∞∞.

(b) For every n ∈ N all the points ϕ(i)(kn), |i| ≤ m(n) + 1, are distinct.
(c) The sets En = {ϕ(i)(kn) : |i| ≤ m(n) + 1}, n ∈ N are pairwise disjoint.
(d) For any n ∈ N the following inequalities hold

|wi(kn)| ≥
1

2
|λ|i, i = 1, 2, . . . ,m(n) + 1

and

|wi(ϕ
(−i)(kn))| ≤ 2|λ|i, i = 1, 2, . . . ,m(n) + 1

Let un be the characteristic function of the set {ϕ(m(n)(kn)} and let

vn =

2m(n)+1∑
j=0

(
1− 1√

m(n)

)|j−m(n)|
λ
j
(T ′′)jun.

Then simple estimates similar to the ones in [12] or [13] show that

‖T ′′vn − λvn‖ = o(‖vn‖), n→∞.

Now we come to a contradiction exactly like on the previous step of the proof.
Finally let us look at the case when the point k is not ϕ-periodic. First let us

notice that k �∈ cl{ϕ(i)(k), i ∈ N}. Indeed, if k were a limit point of the sequence
ϕ(i)(k), k ∈ N then taking into consideration that all the points of this sequence are
distinct we can easily produce points kn from this sequence and positive integers
m(n) with properties (a)–(d) above, and come to a contradiction. Similarly we
can prove that k �∈ cl{ϕ(−i)(k), i ∈ N}}. Thus k is an isolated point in the closure
of its ϕ-trajectory. But we assumed that k is not isolated in K and then again
simple topological reasons show that we can construct sequences kn ∈ K and
m(n) ∈ N with properties (a)–(d). The resulting contradiction ends the proof of
the lemma. �

Corollary 2.5. Let T be an operator of form (1) on C(K) and let λ ∈ C \ {0} be
such that the operator λI−T is semi-Fredholm and nul(λI −T ) <∞. Then either

nul(λI − T ) = 0,

or there is a finite set {k1, . . . , km} of points isolated in K such that if F =
K \ {ϕ(n)(ki), n ∈ Z, i = 1, . . . ,m} then the operator λI −TF is semi-Fredholm on
C(F ) and

nul(λI − TF ) = 0.
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Lemma 2.6. Let T be an operator on C(K) of form (1), λ ∈ C \ {0}, λI − T be
semi-Fredholm, nul(λI − T ) <∞, and let k be an isolated not ϕ-periodic point of
K satisfying inequalities 2(a) and 2(b) from the statement of Lemma 2.3. Let

R =

∞⋂
i=1

{ϕ(n)(k), n ≥ i} and L =

∞⋂
i=1

{ϕ(−n)(k), n ≥ i}.

Then

σ(TR) ⊂ {ξ ∈ C : |ξ| > |λ|} 3(a)

and

σ(TL) ⊂ {ξ ∈ C : |ξ| < |λ|}. 3(b)

Proof. First notice that λ �∈ σap(TR). Indeed, otherwise there would be a point r ∈
R satisfying the inequalities 2(a) and 2(b). Because r is not an isolated point in K
we come to a contradiction with Lemma 2.4. Therefore there are two possibilities:
either λ ∈ σr(TR) or λ �∈ σ(TR). Let us assume first that λ ∈ σr(TR). Then
we can apply Theorem 2.2 to the operator TR. Notice that if P is the subset of
R from the statement of Theorem 2.2 the we have λΓ ∩ σ(TclP ) = ∅. Indeed,
otherwise there would be a ϕ-periodic point s ∈ clP such that |wp−1(s)| = |λ|p
where p is the period of s. But because in K the point s is a limit point of the
sequence ϕ(n)(k), n ∈ N we come to a contradiction with Lemma 2.4. Applying
Theorem 3.10 from [12] we see that the set R can be partitioned as R = E ∪Q∪F
where all the sets E,Q, F are nonempty and have the properties (A) and (C)
from the statement of Theorem 2.1. To bring our assumption that λ ∈ σr(TR) to a

contradiction let m ∈ N and Rm =
∞⋂
i=1

{ϕ(nm)(k), n ≥ i}. Obviously Rm is a closed

subset of R and ϕ(m)(Rm) = Rm. Notice that the set Rm∩Q is nonempty. Indeed,
otherwise we would have Rm ⊂ E∪F and because ϕ(E∪F ) = E∪F it would follow
that R = E ∪ F in contradiction with our assumption that Q �= ∅. It follows from
property (C) in the statement of Theorem 2.1 that the sets Rm ∩ E and Rm ∩ F
are nonempty as well. If m is large enough then in some open neighbourhood of E
in K we have the inequality |wm| ≤ |λ|m and therefore there is a p ∈ N such that
|wm(ϕ(pm)(k)) ≤ |λ|m and |wm(ϕ((p+1)m)(k)) ≥ |λ|m. Let um be the characteristic
function of the singleton {ϕ((p+2)m)(k)} and

vm =

2m∑
j=0

(
1− 1√

m

)|j−m|
λ−j(T ′′)jum.

Next notice that we can find the sequences m(i), p(i), i ∈ N such that

lim
i→∞

m(i) =∞, |wm(i)(ϕ
(pm(i)))(k)) ≤ |λ|m(i), |wm(i)(ϕ

((p+1)m(i)))(k)) ≥ |λ|m(i),

and the elements vm(i) are pairwise disjoint in C′′(K). Finally notice that as in [12]
and [13] we can show that ‖T ′′vm(i)−λvm(i)‖ = o(‖vm(i)‖), i→∞. in contradiction
with our assumption that λI − T is semi-Fredholm and nul(λI − T ) <∞.
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Thus now we have to consider the case when λ �∈ σ(TR). In this case, by
Theorem 3.10 from [12] we have R = E∪F where E and F are disjoint ϕ-invariant
closed subsets of R, σ(TE) ⊂ {ξ ∈ C : |ξ| < |λ|} and σ(TF ) ⊂ {ξ ∈ C : |ξ| > |λ|}.
The definition of R and elementary topological reasoning show that one of the
sets E or F must be empty. If we assume that F is empty we immediately come
to a contradiction with the inequality 2(a) whence R = F and 3(a) is proved.
Statement 3(b) can be proved in a similar way. �

Now we can state the first of our main results; before stating it let us notice
that the case when the operator λI −T is semi-Fredholm and nul(λI −T ) = 0 (in
other words when λ ∈ σr(T )) is completely described by Theorems 2.1 and 2.2.
We can therefore concentrate on the case when nul(λI − T ) > 0.

Theorem 2.7. Let T be an operator of form (1) on C(K) and let λ ∈ σ(T ) \ {0}.
The following conditions are equivalent.

(I) The operator λI − T is semi-Fredholm and 0 < nul(λI − T ) <∞.

(II) There is a finite subset S = {k1, . . . , km, s1, . . . , sl} of K with the properties

1. Every point of S is an isolated point in K.

2. The points ki, i = 1, . . .m, are not ϕ-periodic and if the sets Ri and Li

are defined as in the statement of Lemma 2.6 then for each i ∈ [1 : m]
the conditions 3(a) and 3(b) are satisfied.

3. The points s1, . . . , sl are ϕ-periodic and λp(i) = wp(i)(si) where p(i) is
the period of the point si.

4. nul(λI − T ) = m+ l.

5. Let U =
∞⋃

j=−∞
ϕ(j)(S) and V = K \ U . Then either λ �∈ σ(TV ) or

λ ∈ σr(TV ).

Proof. The implication (I) ⇒ (II) follows from Lemma 2.4, Corollary 2.5, and
Lemma 2.6. To prove the implication (II) ⇒ (I) notice that by [8, Corollary I.4.7,
p. 43] it is enough to prove that every sequence un, n ∈ N, un ∈ C(K) such
that ‖un‖ = 1 and ‖Tun − λun‖ →

n→∞ 0 contains a norm convergent subsequence.

Condition (5) guarantees that ‖un‖C(V ) →
n→∞ 0. Therefore we can and will assume

that un ≡ 0 on V , n ∈ N. Next, because the set S2 = {s1, . . . , sl} is a finite
and clopen subset of K there is a subsequence of the sequence un that converges
uniformly on S2 and we can assume without loss of generality that un converges
uniformly on S2. Thus it remains to prove that if k ∈ S is not ϕ-periodic then we
can find a subsequence of un that converges uniformly on the set A = cl{ϕ(i)(k), i ∈
Z}. If ‖un‖C(A) →

n→∞ 0 then it is nothing to prove. Therefore we can assume without

loss of generality that ‖un‖C(A) = 1. Let an be such a point in A that |un(an)| = 1
and let a be a limit point of the set {an}. The point a cannot belong to the set V .
Indeed at that point we have inequalities 2(a) and 2(b). On the other hand if a ∈ V
then a ∈ A \ IntA in contradiction with condition (2). Thus a ∈ {ϕ(i)(k), i ∈ Z}
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and we can assume without loss of generality that a = k and that the sequence
un(a) converges to 1. We define the function u on K in the following way

u(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if x = k,

λi/wi(k), if x = ϕ(i)(k), i ∈ N,

wi(ϕ
(−i)(k)/λi, if x = ϕ(−i)(k), i ∈ N,

0, otherwise.

Condition (2) guarantees that u ∈ C(K). Clearly the sequence un converges to
u pointwise on K and we will prove now that some subsequence of it converges
to u uniformly. Indeed, otherwise we can find a positive constant c and a strictly
increasing sequence of positive integers i(n) such that either |un(ϕ

(i(n)))(k)| ≥ c
or |un(ϕ

(−i(n)))(k)| ≥ c. We will assume the first case because the second one can
be considered absolutely similarly. Keeping in mind that un ≡ 0 on V and that
un converge to u pointwise on K we can find another strictly increasing sequence
of integers j(n) such that i(n)− j(n) →

n→∞∞ and |un(ϕ
(i(n)±j(n)))| ≤ c/n. Let vn

be the restriction of un on the set {ϕ(d)(k), d ∈ [i(n)− j(n) : i(n) + j(n)]}. Then
‖vn‖ ≥ c and ‖Tvn − λvn‖ →

n→∞ 0. Let rn be a point in K where |vn| takes its

maximum value and r be a limit point of the sequence rn. Then r ∈ clA \ A and
at point r we have inequalities 2(a) and 2(b) in contradiction with condition (2)
of the current theorem. �

Our next goal is to describe when the operator λI − T , λ ∈ C \ {0}, is
semi-Fredholm and def(λI − T ) <∞. We start with the following remark.

Remark 2.8. The case when def(λI − T ) = 0 was discussed in Theorems 2.1
and 2.2, and therefore we will assume that 0 < def(λI − T ) <∞. In this case the
operator λI − T ′ is semi-Fredholm and nul(λI − T ′) = def(λI − T ). (See, e.g., [8,
Theorem I.3.7, p. 29].) Consider now an auxiliary operator

(T̃ f)(x) = w(x)f(ϕ(−1)(x)), f ∈ C(K), x ∈ K. (�)

Then (see [12] and [13]) σ(T̃ ) = σ(T ) whence λ ∈ σ(T̃ ). Assume that λ ∈ σap(T̃ ).
Then (see [13]) there is a point k ∈ K such that for every n ∈ N

|wn(k)| ≤ |λ|n. 4(a)

and

|wn(ϕ
(−n)(k))| ≥ |λ|n. 4(b)

Notice now that k must be an isolated point in K. Indeed, otherwise similar to the
proof of Lemma 2.3 we can construct a sequence of Borel regular measures μn on
K (actually every μn is a finite linear combination of Dirac measures) such that the
measures μn are pairwise disjoint in C(K)′ and ‖T ′μn − λμn‖ = o(‖μn‖), n→∞
in contradiction with our assumption that λI −T ′ is semi-Fredholm and nul(λI −
T ′) <∞.
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Corollary 2.9. Let T be an operator of form (1) on C(K) and let λ ∈ C \ {0}
be such that the operator λI − T is semi-Fredholm and 0 < def(λI − T ) < ∞.
Then there is a finite set S = {k1, . . . , km, s1, . . . , sl} of points isolated in K such
that the points ki, i = 1, . . . ,m are not ϕ-periodic and satisfy conditions 4(a) and
4(b). Points s1, . . . , sl are ϕ-periodic and λp(i) = wi(si), i = 1, . . . , s, where p(i) is

the period of the point si. Moreover, if F = K \
∞⋃

i=−∞
ϕ(i)(S), then the operator

λI − TF is semi-Fredholm on C(F ) and def(λI − TF ) = 0.

Proof. The proof follows immediately from Remark 2.8 and Theorems 2.1 and 2.2.
�

Lemma 2.10. Assume conditions of Corollary 2.9 and let S be the set from the
statement of that corollary. Assume also that k ∈ S is not ϕ-periodic. Like in
Lemma 2.6 let

R =
⋂∞

i=1
{ϕ(n)(k), n ≥ i} and L =

⋂∞
i=1
{ϕ(−n)(k), n ≥ i}.

Then

σ(TR) ⊂ {ξ ∈ C : |ξ| < |λ|} 5(a)

and

σ(TL) ⊂ {ξ ∈ C : |ξ| > |λ|}. 5(b)

Proof. It follows from Remark 2.8 that λ �∈ σap(T̃R∪L) where T̃ is defined by the
equation (�). The rest of the proof goes very similar to the proof of Lemma 2.6
and can be omitted. �

Theorem 2.11. Let T be an operator of form (1) on C(K) and let λ ∈ σ(T ) \ {0}.
The following conditions are equivalent.

(I) The operator λI − T is semi-Fredholm and 0 < def(λI − T ) <∞.
(II) There is a finite subset S = {k1, . . . , km, s1, . . . , sl} of K with the properties

1. Every point of S is an isolated point in K.
2. The points ki, i = 1, . . . ,m, are not ϕ-periodic and if the sets Ri and Li

are defined as in the statement of Lemma 2.6 then for each i ∈ [1 : m]
the conditions 5(a) and 5(b) are satisfied.

3. The points s1, . . . , sl are ϕ-periodic and λp(i) = wp(i)(si) where p(i) is
the period of the point si.

4. def(λI − T ) = m+ l.

5. Let U =
∞⋃

j=−∞
ϕ(j)(S) and V = K \ U . Then either λ �∈ σ(TV ) or

λ ∈ σr(T
′
V ).

Proof. The implication (I) ⇒ (II) follows from Remark 2.8, Corollary 2.9, and
Lemma 2.10.

To prove the implication (II) ⇒ (I) we have to prove that if (II) is satisfied
and μn is a sequence of regular Borel measures on K such that ‖μn‖ = 1 and
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T ′μn−λμn →
n→∞ 0 then the sequence μn contains a norm convergent subsequence.

It follows from II(5) that without loss of generality we can assume that there is
k ∈ [k1, . . . , km] such that supp μn ⊂ {ϕi(k) : i ∈ Z}, n ∈ N. By the well-known
criterion of compactness in l1 (see, e.g., [7]) it is enough to prove that for any
positive ε there is an m = m(ε) ∈ N such that |μn|({ϕ(i)(k), |i| > m}) < ε, n ∈ N.
Assume to the contrary that there is a positive ε and a subsequence νs = μns of the
sequence μn such that for any l ∈ N we have |νs|({ϕ(i)(k) : |i| > l}) ≥ ε, s ∈ N. The
operator T is the product of a central operator and a d-isomorphism and therefore
the conjugate operator T ′ preserves disjointness. Thus |T ′||νs| − |λ||νs| →

s→∞ 0. Let

τ be a limit point of the sequence |νs| in the weak-� topology on C(K)′. Then
τ is a probability measure on K and |T ′|τ = |λ|τ . Let Tr(k) = {ϕ(i)(k), i ∈ Z}.
Then clearly τ(clT r(k) \ Tr(k)) ≥ ε. Therefore |λ| ∈ σap(T

′, C(clT r(k) \ Tr(k)).
It follows from Theorems 2.1 and 2.2 that there is a point l ∈ clT r(k)\Tr(k) such
that at point l we have the inequalities 5(a) and 5(b). Because l is a limit point of
the set Tr(k) we easily conclude that λ ∈ σap(T

′), a contradiction. �

Now we can answer the question when operator λI − T (λ �= 0) is Fredholm.
The next theorem follows directly from Theorems 2.7 and 2.11.

Theorem 2.12. Let T be an operator of form (1) on C(K) and λ ∈ σ(T )\{0}. The
following conditions are equivalent.

(I) The operator λI − T is Fredholm.
(II) There is a finite subset S = {k1, . . . , km, l1, . . . , ln, s1, . . . , sq} of K such that

(a) Every point ki, i ∈ [1, . . . ,m] is not ϕ-periodic and satisfies conditions
2(a), 2(b), 3(a), and 3(b).

(b) Every point li, i ∈ [1, . . . , n] is not ϕ-periodic and satisfies conditions
4(a), 4(b), 5(a), and 5(b).

(c) Every point si, i ∈ [1, . . . , q] is ϕ-periodic and λp(i) = wp(i) where p(i)
is the period of the point si.

(d) Let V =
∞⋃

i=−∞
ϕ(i)(S). Then λ �∈ σ(TK\V ).

Moreover, if condition (II) is satisfied then ind(λI − T ) = n−m.

Remark 2.13. It follows from Theorems 3.10 and 3.12 in [12] that condition II(d)
in the statement of Theorem 2.12 is equivalent to the following. The set K \ V is
the union of three disjoint subsets (of which two might be empty) E, F , and P
with the properties.

• The set E is closed in K, ϕ(E) = E, and if E �= ∅ then σ(TE) ⊂ {ζ ∈ C :
|ζ| > |λ|}.

• The set F is closed in K, ϕ(F ) = F , and if F �= ∅ then σ(TF ) ⊂ {ζ ∈ C :
|ζ| < |λ|}.

• The set P is open in K, ϕ(P ) = P , and if P �= ∅ then P consists of ϕ-periodic
points with periods bounded by some N ∈ N and λ �∈ σ(TclP ).
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To complete our description of Fredholm and semi-Fredholm operators of
the form λI − T it remains to consider the case when λ = 0. Of course the only
interesting case is 0 ∈ σ(T ) and therefore we assume that the set Z = {k ∈ K :
w(k) = 0} is not empty. It follows immediately from Corollary I.4.7 in [8] that if T
is semi-Fredholm then Z must be a clopen subset of K. Moreover, clearly Z must
be a finite subset of K. Thus we obtain the following simple proposition which is
most probably known.

Proposition 2.14. Let T be an operator of form (1) on C(K). The following con-
ditions are equivalent.

1. T is semi-Fredholm.
2. T is Fredholm.
3. T is Fredholm and indT = 0.
4. The set Z = {k ∈ K : w(k) = 0} is finite and consists of points isolated in K.

3. Essential spectra of operators of form (1)

We are going now to describe the sets σi(T ), i = 1, . . . , 5 for operators of form (1).
To avoid unnecessary complicated and cumbersome statements we will start with
the following remark.

Remark 3.1.

(1) In view of Proposition 2.14 it is enough to describe the sets σi(T ) \ {0}.
(2) For any p ∈ N let Πp be the set of all non-isolated ϕ-periodic points of period

p. Then it follows from the results of the previous section that

cl{λ ∈ C : ∃p ∈ N, ∃k ∈ Int(Πp) λp = wp(k)} ⊆ σ1(T ).

Therefore in our next theorem we will assume that Int(Πp) = ∅, p ∈ N.

From the results in the previous section we obtain the following theorem.

Theorem 3.2. Let T be an operator of form (1) on C(K). Assume that Int(Πp) =
∅, p ∈ N where Πp are the sets introduced in Remark 3.1. Then the sets σi(T ), i =
1, . . . , 5 are rotation invariant. Moreover, if λ ∈ C \ 0 then

1. The following conditions are equivalent.
(IA) λ ∈ σ1(T ).
(IB) There are two (not necessarily distinct) points k1, k2 ∈ K such that none

of them is an isolated point in K, at k1 we have inequalities 2(a) and
2(b), and at k2 – inequalities 4(a) and 4(b).

2. The following conditions are equivalent.
(IIA) λ ∈ σ2(T ).
(IIB) There is a non-isolated point k ∈ K satisfying inequalities 2(a) and

2(b).

3. The following conditions are equivalent.
(IIIA) λ ∈ σ3(T ).
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(IIIB) There is a non-isolated point k ∈ K such that at this point either in-
equalities 2(a) and 2(b) or inequalities 4(a) and 4(b) are satisfied.

4. The following conditions are equivalent.
(IVA) λ ∈ σ4(T ).
(IVB) Let K1 (respectively K2) be the set of all points in K that are not isolated

ϕ-periodic points and satisfy 2(a) and 2(b) (respectively 4(a) and 4(b)).
Then either at least one of these sets is infinite or they have distinct
cardinalities.

5. The following conditions are equivalent.
(VA) λ ∈ σ5(T )
(VB) There is a k ∈ K such that k is not an isolated ϕ-periodic point and

such that at this point either inequalities 2(a) and 2(b) or inequalities
4(a) and 4(b) are satisfied.

The results of the previous section together with Theorems 2.1 and 2.2 pro-
vide the following corollary.

Corollary 3.3. Let T be an operator of form (1) on C(K). Then

(1) If T is band irreducible then σ1(T ) = σ(T ).
(2) If K has no ϕ-periodic isolated points then σ5(T ) \ {0} = σ(T ) \ {0}.
(3) If K has no isolated points then σ3(T ) = σ(T ).
(4) Let O be the set of all isolated ϕ-periodic points in K. Then the essential

spectral radius ρe(T ) of T can be computed in the following way (see, e.g., [12,
Theorem 3.23])

ρe(T ) = ρ(TK\O) = max
μ∈Mϕ

exp

∫
ln |w|dμ,

where Mϕ is the set of all ϕ-invariant regular Borel probability measures on
K \O. In particular, if O = ∅ then ρe(T ) = ρ(T ).

The diagrams on the next page illustrate our results from Theorem 3.2

Our next Theorem (that also follows from the results in [12] and in the
previous section) provides an alternative description of the sets σ1(T ), σ2(T ),
σ3(T ), and σ5(T ) that complements the one in Theorem 3.2. To state it let us
introduce or recall the following notations.

• Γ is the unit circle. Γ = {ζ ∈ C : |ζ| = 1}.
• O1 is the set of all isolated ϕ-periodic points in K.
• K1 = K \O1.
• Πp, p ∈ N is the set of all ϕ-periodic points of period p in K1.
• Σ = cl{λ ∈ C : ∃p ∈ N, ∃k ∈ Int(Πp) λp = wp(k)}.
• O2 =

∞⋃
p=1

Int(Πp).

• K2 = K1 \O2.
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Diagram I: λ /∈ σ(T )

Diagram II: λ /∈ σ5(T )

Diagram III: λ /∈ σ4(T )

Diagram V: λ /∈ σ2(T )

Diagram IV: λ /∈ σ3(T )

Diagram VI: λ /∈ σ2(T
′)



246 A.K. Kitover

• O3 is the set of all isolated points in K satisfying either conditions 3(a) and
3(b) or 5(a) and 5(b).

• K3 = K2 \O3.
• O4 is the set of all points in K with the following property. If k ∈ O4 then
there is an open neighborhood V of k such that the sets cl ϕ(i)(V ), i ∈ Z, are
pairwise disjoint and ρ(TR) < 1/ρ(T−1

L ) where

L =

∞⋂
n=1

cl

∞⋃
i=n

ϕ(−i)(V ) and R =

∞⋂
n=1

cl

∞⋃
i=n

ϕ(i)(V ).

• K4 = K3 \O4.
• O5 is defined similarly to O4 but we require the inequality ρ(TL) < 1/ρ(T−1

R ).
• K5 = K3 \O5.

Let us also agree that if σ is a subset of C then σΓ = {λγ : λ ∈ σ, γ ∈ Γ}.

Theorem 3.4. Let T be an operator on C(K) of form (1). Then

• σ5(T ) = σ(TK2)Γ ∪ Σ.

• σ3(T ) = σ(TK3)Γ ∪ Σ.

• σ2(T ) = σ(TK4)Γ ∪ Σ.

• σ1(T ) = (σ(TK4)Γ ∩ σ(TK5)Γ) ∪ Σ.

4. Essential spectra of weighted d-isomorphisms of Banach lattices

In this section we will consider the essential spectra of an operator T on a Banach
lattice X that allows the following representation.

T = wU, w ∈ Z(X), σ(U) ⊂ Γ, (6)

where U is a d-isomorphism of X .
The question when an invertible disjointness preserving operator on a Ba-

nach lattice can be represented in form (6) might be of independent interest. In
particular, we can single out the class of Banach lattices on which every invertible
disjointness preserving operator is of form (6). At the present no general criteria
addressing either of the above questions are known (at least to the author) but
below we will discuss some examples.

Example 4.1. Let K be a compact Hausdorff space and T be an invertible dis-
jointness preserving operator on C(K). It follows from Theorem 3.2.10 in [14] (see
also Theorem 3.1 in [12]) that

(Tf)(k) = w(k)f(ϕ(k), k ∈ K, f ∈ C(K),

where w is an invertible function in C(K) and ϕ is a homeomorphism of K onto
itself. Therefore T is of form (6) and moreover U = Tϕ is an invertible isometry.
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Example 4.2. Let (E,Σ, μ) be a measure space, 1 ≤ p < ∞, and T an in-
vertible disjointness preserving operator on Lp(E,Σ, μ). Then T = wU where
w ∈ L∞(E,Σ, μ) and U is an invertible isometry of Lp(E,Σ, μ).

Proof. We can assume without loss of generality (see, e.g., [11, p. 286]) that μ
is a measure on the hyperstonian compact Q of the algebra L∞(E,Σ, μ) such
that μ(F ) = 0 for any subset F of the first category in Q, μ(G) > 0 for any
G open in Q, and for any μ-measurable subset G of Q such that μ(G) = ∞
there is an H ⊂ G such that 0 < μ(H) < ∞. The map f → TfT−1 defines an
isomorphism of L∞(E,Σ, μ) ≈ C(Q) (see [4, Chapter 8] for more details). Let ϕ
be the corresponding homeomorphism of Q onto itself. Notice that a subset F of Q
is μ-measurable if and only if ϕ(F ) is μ-measurable and μ(F ) = 0⇔ μ(ϕ(F )) = 0.

Assume for a moment that μ is a sigma-finite measure and define a new
measure ν as ν(E) = μ(ϕ−1(E). Let h be the Radon–Nikodym derivative dν

dμ .

Then h can be identified with an invertible element of C(Q) and the operator U ,
Ug = (h)1/p(g ◦ϕ), is an invertible isometry of Lp, where 1 ≤ p <∞ (see, e.g., [9,
Theorem 3.2.5]). It remains to notice that the operator TU−1 is a band preserving
operator on Lp and therefore an operator of multiplication by a function from L∞.

To reduce the general case to the one already considered notice that we can
find a family of pairwise disjoint clopen subsets Qα of Q with the properties

• ϕ(Qα) = Qα,
• μ|Qα is a sigma-finite measure,
•
⋃
Qα is dense in Q. �

Example 4.3. Let 1 < p < ∞ and let X be a rearrangement invariant Banach
function space on (0, 1) or (0,∞) such that the upper and lower Boyd indices
(see [6]) of X are equal to p. Then it can be proved using Boyd’s interpolation
theorem (see, e.g., [6, Theorem 5.16, p. 153]) that every invertible disjointness
preserving operator on X can be presented in form (6), but in general we cannot
claim that U is an isometry of X .

On the other hand we have the following “negative” example.

Example 4.4. Let 1 < p < q <∞ and X be Lp(0,∞)∩Lq(0,∞) with the standard
norm ‖x‖ = ‖x‖p + ‖x‖q. Let a > 0 and a �= 1. The operator T defined as
(Tf)(t) = f(at), f ∈ X, t ∈ (0,∞) is a bounded invertible disjointness preserving
operator on X but it cannot be presented in form (6).

We return now to the study of essential spectra.
We will assume first that X is a Dedekind complete Banach lattice. Let K be the
Stonean compact space of X ; then the center Z(X) can be identified with C(K).
The map f → UfU−1, f ∈ C(K) defines an isomorphism of the algebra C(K).
Let ϕ be the corresponding homeomorphism of K onto itself. We consider the
weighted composition operator S on C(K) defined as

(Sf)(k) = w(k)f(ϕ(k)), f ∈ C(K), k ∈ K. (7)

Our nearest goal is to prove the following result.
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Theorem 4.5. Let X be a Dedekind complete Banach lattice and Z(X) ∼ C(K)
be the center of X. Let T be an operator on X defined by formula (6) and S be
the corresponding operator on C(K) defined by (7). Then the essential spectra of
operators T and S coincide.

σi(T ) = σi(S), i = 1, . . . , 5.

Proof. (1) In this part we will prove that 0 ∈ σi(T ) ⇔ 0 ∈ σi(S), i = 1, . . . , 5.
Assume that 0 ∈ σ(T ) then obviously 0 ∈ σ(S). Assume that 0 �∈ σ1(S), then by
Proposition 2.14 the set Z(w) of zeros of w is finite and consists of points isolated
in K. Let χ be the characteristic function of the set Z(w), then the operator χU
is finite dimensional while the operator T + χU is invertible on X . Therefore T
is a Fredholm operator. Notice that dimker(S) = dimker(T ) = card(Z(w)). The
operator w′ is a central operator on the Banach dual X ′ of X and because the op-
erator T ′ + U ′χ′ is invertible on X ′ we see that dimker(T ′) = card(Z(w′)) ≤
card(Z(w)) = dimker(T ). On the other hand a similar reasoning shows that
dimker(T ) = dim ker(T ′′) ≤ dim ker(T ′) whence ind(T ) = 0.

Now assume that 0 ∈ σ1(S). By Proposition 2.14 the set Z(w) contains a
point that is not isolated in K. Then we can construct a sequence of pairwise
disjoint elements xn ∈ X such that ‖xn‖ = 1 and χnxn = xn where χn is the
characteristic function of the set {k ∈ K : |w(k)| ≤ 1/n}. Then it is immediate
to see that Txn →

n→∞ 0 whence 0 ∈ σ2(T ). But the set Z(w′) must also contain

a point that is not isolated in K ′ where K ′ is the Gelfand compact of the ideal
center of X ′. Indeed, otherwise the sum of T ′ and a finite-dimensional operator
would be invertible and T (together with T ′) would be Fredholm in contradiction
with our assumption. Thus 0 ∈ σ2(T

′) whence 0 ∈ σ1(T ).
It follows from the two previous paragraphs that

0 ∈ σi(T )⇔ 0 ∈ σi(S), i = 1, 2, 3, 4. (8)

The equivalence 0 ∈ σ5(T )⇔ 0 ∈ σ5(S) follows from Definition 1.3, from (8), and
from the equality σ(T ) = σ(S) proved in [13, Theorem 22]

(2) Here we will prove that σ1(S) ⊆ σ1(T ). Let λ ∈ σ1(S) \ {0}. Without
loss of generality we can assume that λ = 1. Then it follows from Theorems 3.2
and 3.4 as well as from Frolik’s theorem [16, Theorem 6.25, p. 150]1 that we have
to consider two possibilities.

(2a) There are a point k ∈ K and p ∈ N such that k ∈ Int(Πp) and wp(k) = 1.
We can find clopen nonempty subsets En, n ∈ N of Int(Πp) such that

• ϕ(i)(En) ∩ En = ∅, n ∈ N, 1 ≤ i ≤ p− 1.
• ϕ(p)(En) = En, n ∈ N.
• If m �= n then ϕ(i)(Em) ∩ ϕ(j)(En) = ∅, 0 ≤ i, j ≤ p− 1.
• max

k∈
p−1⋃
i=0

ϕ(i)(En)

|wp(k)− 1| < 1/n, n ∈ N.

1Frolik’s theorem states that if K is an extremely disconnected compact space and ϕ is a home-
omorphism of K into itself then the set of all fixed points of ϕ is clopen in K.



Spectrum of Weighted Composition Operators III 249

Let Pn be the band projection on X corresponding to the set En and xn ∈ X be

such that ‖xn‖ = 1 and Pnxn = xn. Let yn =
p−1∑
i=0

T ixn, n ∈ N. Then obviously

the elements yn are pairwise disjoint in X , whence ‖yn‖ ≥ ‖xn‖ = 1, and a simple
estimate (see also [13]) shows that Tyn − yn →

n→∞ 0. Thus 1 ∈ σ2(T ).

Next, consider the band Cn inX corresponding to the clopen set
p−1⋃
i=0

ϕ(i)(En).

The band Cn as well as its complementary band are T -invariant whence the band
C′

n (the Banach dual of Cn) in X ′ is T ′-invariant. The restriction of the operator
T p on Cn is a central operator on Cn whence (T ′)p is central on C′

n. Moreover,
‖Q′

n((T
′)p − I)‖ = ‖Qn(T

p − I)‖ < 1/n, n ∈ N, where Qn is the band projection
on the band Cn. Like in the previous paragraph we can construct a sequence fn of
pairwise disjoint elements of X ′ such that ‖fn‖ = 1 and T ′fn− fn → 0. Therefore
1 ∈ σ2(T ) ∩ σ2(T

′) = σ1(T ).

(2b). There are two non ϕ-periodic and non-isolated points k1, k2 ∈ K (it
can happen that k1 = k2) such that at k1 we have inequalities 2(a) and 2(b) and
at k2 – inequalities 4(a) and 4(b) with λ = 1. Because k1 is a non-isolated and non
ϕ-periodic point we can find clopen subsets Fn of K such that

• ϕ(i)(Fn) ∩ ϕ(j)(Fn) = ∅,−(n+ 1) ≤ i < j ≤ n+ 1.

• If n �= m then
( m+1⋃
i=−m−1

ϕ(i)(Em)
)
∩
( n+1⋃
i=−n−1

ϕ(i)(En)
)
= ∅.

• for any k ∈ Fn we have |wi(k)| ≥ 1/2, 0 ≤ i ≤ n + 1 and |wi(ϕ
(−i)(k)| ≤

2, 1 ≤ i ≤ n+ 1.

Let xn be an element of the band corresponding to the set ϕ(n)(Fn) such that
‖xn‖ = 1 and let

yn =

2n∑
i=0

(
1− 1√

n

)|n−i|
T ixn.

Then the estimates very similar to the ones employed in [13] show that ‖Tyn −
yn‖ = o(‖yn‖), n→∞ whence 1 ∈ σ2(T ).

Let us prove now that 1 ∈ σ2(T
′). The map h → h′, h ∈ Z(X) defines an

isometric isomorphism of Z(X) (which we identify with C(K)) onto a subalgebra of
Z(X ′) (which we identify with C(K ′)). To this isometric embedding corresponds
a continuous surjection τ : K ′ → K, and it is not difficult to see that if h ∈
C(K), u, v ∈ K ′, and τ(u) = τ(v) then h′(u) = h′(v). The map g → (U−1)′gU ′

defines an isomorphism of C(K ′). Let ϕ′ be the homeomorphism of K ′ onto itself
corresponding to this isomorphism. Then it is immediate to see that

τ(ϕ′(u)) = ϕ(−1)(τ(u)). (9)

Let s ∈ τ−1(k2). Let w′
n(u) = w′(u)w′(ϕ′(u)) · · ·w′((ϕ′)(n)(u), n ∈ N. It follows

from the fact that at k2 we have inequalities (4a) and (4b) and from (9) that

|w′
n(s)| ≥ 1, and |w′

n((ϕ
′)(−n)(s))| ≤ 1, n ∈ N.
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It is obvious that s cannot be a ϕ′-periodic point in K ′. Moreover, it is not dif-
ficult to see that because k2 is not an isolated point in K the set τ−1(k2) must
contain points that are not isolated in K ′. Thus, by what we have already proved
1 ∈ σ2(w

′U ′). It remains to notice that (T )′ = U ′w′ = U ′(w′U ′)(U ′)−1 whence
1 ∈ σ2(T

′).
(3) In this part we prove that σ1(T ) ⊆ σ1(S). Let 1 �∈ σ1(S). Because by

Theorem 22 from [13] σ(T ) = σ(S) we can assume without loss of generality that
1 ∈ σ(S). We have to consider several possibilities.

(3a) The operator I − S is semi-Fredholm and dimker(I − T ) = 0. In
other words we assume that 1 ∈ σr(S). But by Theorems 20 and 22 from [13]
σr(T ) = σr(S) whence 1 �∈ σ1(T ).

(3b) The operator I−S is semi-Fredholm and 0 < dimker(I−T ) <∞. Then
conditions II(1)–II(5) of Theorem 2.7 are satisfied. We will keep the notations from
the statement of Theorem 2.7. Then clU is a clopen ϕ-invariant subset of K. Let
X1 and X2 be the bands in X corresponding to the clopen sets clU and K \clU , re-
spectively. Clearly TXi ⊆ Xi, i = 1, 2. Conditions II(1)–II(3) of Theorem 2.7 com-
bined with Theorems 20 and 21 from [13] guarantee that the operator (I−T )|X1 is
Fredholm while condition II(5) together with the same theorems implies that 1 ∈
σr(T |X2). Thus the operator (I−T ) is semi-Fredholm and ind(I−T ) = ind(I−S).

(3c) The operator I − S is semi-Fredholm and def(I − S) = 0. It follows
from Theorem 2.2 and from Frolik’s theorem that K can be partitioned as K =
E ∪Q∪F ∪P where P is a clopen ϕ-invariant subset of K and there is an m ∈ N

such that P =
m⋃
i=1

Πp, while the sets E, F , and Q satisfy conditions A and B of

Theorem 2.1. Let K ′, τ , and ϕ′ be as in part (2b) of the proof. Let P ′, E′, F ′, and
Q′ be the τ -preimages in K ′ of the corresponding sets in K. Then it is easy to see
that P ′ is a clopen ϕ′-invariant subset of K ′ and the sets E′, F ′, and Q′ satisfy
conditions A and C of Theorem 2.1 (Of course, we have to substitute K by K ′, w
by w′, and ϕ by ϕ′, respectively.) Let S̃ be the operator on C(K ′) defined as

(S̃)f(s) = w′(s)f(ϕ′(s)), f ∈ C(K ′), s ∈ K ′.

By Theorem 2.2 1 ∈ σr(S̃), and then by part (3a) of the proof we have 1 ∈ σr(T
′)

whence (I − T )X = X .

(3d) The remaining case when I−S is semi-Fredholm and 0 < def(I−T ) <∞
can be considered similarly to part (3b) of the proof by using part (3c) and The-
orem 2.11.

Thus we have proved that σ1(T ) = σ1(S).

(4) The arguments applied in parts (2) and (3) of the proof show immediately
that σi(T ) = σi(S), i = 2, 3, 4. Finally, the equality σ5(T ) = σ5(S) follows from
σ4(T ) = σ4(S) and from σ(T ) = σ(S) ([13, Theorem 22]). �

Corollary 4.6. Let T be an operator of form (6) on a Dedekind complete Banach
lattice X. Then
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(1) If the operator T is band irreducible then σ1(T ) = σ(T ).
(2) If the Banach lattice X has no atoms then σ3(T ) = σ(T ).

As a special but important case of Corollary 4.6 we obtain

Corollary 4.7. Let (E,Σ, μ) be a measure space and T be an invertible disjointness
preserving operator on Lp(E,Σ, μ), 1 ≤ p ≤ ∞. Assume that for any F ∈ Σ such
that χFTχF = TχF (where χF is the operator of multiplication by the character-
istic function of F ) either μ(F ) = 0 or μ(E \ F ) = 0. Then σ1(T ) = σ(T ).

Our next goal is to extend the result of Theorem 4.5 on arbitrary Banach
lattices.

Let X be a Banach lattice, w ∈ Z(X), and U be a d-isomorphism on X
such that σ(U) ⊆ Γ. Because the operators w and U are order continuous, by
Veksler’s theorem [15] (see also [3, Theorem 1.65, p. 55], or [17, Lemma 140.1,

p. 651] ) they have unique order-continuous extensions ŵ and Û to the Dedekind

completion X̂ of X . It is easy to see that ŵ ∈ Z(X̂), that Û is a d-isomorphism

of X̂, and that σ(Û) ⊆ Γ. Let T̂ = ŵÛ . Like in Theorem 4.5 we can consider

operator S associated with T̂ and defined by (7) where the compact space K̂ is

the Gelfand compact of Z(X̂) and ϕ̂ is the homeomorphism of K̂ induced by the

map f → Ûf(Û)−1, f ∈ C(K̂). We will prove below in Theorem 4.11 that

σi(T ) = σi(T̂ ), i = 1, . . . , 5. (10)

We start with the following special case of (10).

Proposition 4.8. Let K be a compact Hausdorff space and K̂ be the absolute (or
Stonean compact) of K. Let ϕ be a homeomorphism of K onto itself, w ∈ C(K),

and (Tf)(k) = w(k)f(ϕ(k)), k ∈ K, f ∈ C(K). Let T̂ be the unique order-

continuous extension of T onto Ĉ(K) = C(K̂). Then σi(T ) = σi(T̂ ), i = 1, . . . , 5.

Proof. C(K) is isometrically and algebraically embedded into C(K̂). Let τ be the

surjection of K̂ onto K induced by this embedding. The operator T̂ is of the form
(T̂ f)(k) = ŵ(k)f(ϕ̂(k)), k ∈ K̂, f ∈ C(K̂) and we have that

ϕ(τ(k)) = τ(ϕ̂(k)), k ∈ K̂. (11)

The equalities σi(T ) = σi(T̂ ), i = 1, . . . , 5 follow easily from (11), Theorem 3.2,
and Proposition 2.14. �

Our next step is to prove that (10) holds in the case of Banach lattices with
a quasi-interior point.

Let us recall that a point u in a Banach lattice X is called quasi-interior if
the principal ideal Xu is dense in X .

Lemma 4.9. Let X be a Banach lattice with a quasi-interior point u. Let Z(X) =

C(K) and Z(X̂) = C(K1) be the ideal centers of X and its Dedekind completion X̂,

respectively. Then C(K1) is isometrically and lattice isomorphic to Ĉ(K) = C(K̂)

where K̂ is the absolute of K.
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Proof. The proof below was communicated to the author by A.W. Wickstead.
First observe that for a Dedekind complete Riesz space with weak order unit

u the center is isomorphic to the ideal generated by u. If u is a quasi-interior point

for a Banach lattice X then it is a weak order unit for the Dedekind completion X̂ .
Observe that the Dedekind completion of the principal ideal Xu may be identified
with X̂u. Then we can identify as follows:

Ẑ(X) ≡ X̂u ≡ X̂u ≡ Z(X̂). �

Theorem 4.10. Let X be a Banach lattice with a quasi-interior point. Let w ∈
Z(X), U be a d-isomorphism of X such that σ(U) ⊆ Γ, and T = wU . Let T̂ =

ŵÛ be the unique order-continuous extension of T onto X̂. Then σi(T ) = σi(T̂ ),
i = 1, . . . , 5.

Proof. (1) 0 ∈ σi(T )⇔ 0 ∈ σi(T̂ ), i = 1, . . . , 5.

If 0 ∈ σ(T̂ )\σ1(T̂ ) then there are n ∈ N and pairwise disjoint atoms u1, . . . , un

in X̂ such that ker T̂ = B where B is the band in X̂ generated by u1, . . . , un. But
clearly B ⊆ X and B is a projection band in X . Moreover, the operator T + PB ,
where PB is the band projection on B is invertible in X whence T is Fredholm
and null(T ) = null(T̂ ). Then we can prove that ind(T ) = 0 similar to part (1) of

the proof of Theorem 4.5. Assume now that 0 ∈ σ1(T̂ ) = σ1(S). Recall that for

any nonzero x̂ ∈ X̂ there is a nonzero x ∈ X such that |x| ≤ |x̂|. Then we can
see that 0 ∈ σ1(T ) in the same way as in the proof of Theorem 4.5. Moreover, the

same reasoning as in the proof of Theorem 4.5 shows that 0 ∈ σi(T )⇔ 0 ∈ σi(T̂ ),
i = 1, . . . , 5.

(2) The inclusion σ2(T ) ⊆ σ2(T̂ ) is trivial.

(3) σ2(T̂ ) ⊆ σ2(T ). Let λ ∈ σ2(T̂ ). By step (1) we can assume without loss

of generality that λ = 1. By Theorem 3.2 there is a non isolated point k̂,∈ K̂
such that at this point we have inequalities (2a) and (2b). It remains to repeat the
reasoning from parts (2a) and (2b) of the proof of Theorem 4.5 keeping in mind
that the elements we denoted there by xn can be chosen from X .

(4) σ2(T
′) ⊆ σ2(T̂

′). This inclusion follows from Theorem 4.5, Theorem 3.2,
the fact that there is one-to-one correspondence between bands (in particular,

between atoms) in X and in X̂, and finally from Theorem 22 in [13]. Notice

also that it follows from Theorems 4.5 and 3.2 that if def(I − T̂ ) < ∞ then

def(I − T ) = def(I − T̂ ).

(5) σ2(T̂
′) ⊆ σ2(T

′). Assume that 1 ∈ σ2(T̂
′). Then by Theorems 4.5 and 3.2

there is a point k̂ ∈ K̂ such that k̂ is not an isolated point and at this point we have
inequalities (4a) and (4b) (relatively to ϕ̂ and ŵ). It follows from Lemma 4.9 that
there is a point k ∈ K such that it is not isolated in K and at this point we have
inequalities (4a) and (4b). Next notice that C(K) = Z(X) can be isometrically
embedded into Z(X ′) and we can repeat the reasoning from step (2b) of the proof
of Theorem 4.5.
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(6) The equalities σi(T ) = σi(T̂ ), i = 1, 3, 4 follow immediately from what

we have already proved. Finally, the equality σ5(T ) = σ5(T̂ ) follows from σ1(T ) =

σ1(T̂ ), σ(T ) = σ(T̂ ) (Theorem 22 in [13]), and from the definition of the set σ5. �

Now we are ready to prove (10) in full generality.

Theorem 4.11. Let X be a Banach lattice. Let w ∈ Z(X), U be a d-isomorphism of

X such that σ(U) ⊆ Γ, and T = wU . Let T̂ = ŵÛ be the unique order-continuous

extension of T onto X̂. Then σi(T ) = σi(T̂ ), i = 1, . . . , 5.

Proof. A look at the proof of Theorem 4.10 shows that we used the condition

that X has a quasi interior point only at one place. 1 ∈ σ2((T̂ )
′) ⇒ 1 ∈ σ2(T

′).
To prove this implication in general case notice first that if 1 ∈ σ2((T̂ )

′) then by

Theorems 3.2 and 4.5 there is a non isolated point u in the Gelfand compact (K̂)′

of Z((X̂)′) such that at this point we have inequalities (2a) and (2b) for (ŵ)′ and
the homeomorphism ψ′ corresponding to (Û)′. For any x ∈ X let J(x) be a closed

Û and(Û)−1-invariant ideal in X̂ such that x̂ ∈ J(x). Recall that the conjugate

J(x)′ is a band in (X̂)′ which we will denote as Bx. There are two possibilities.

(a) There is an x ∈ X such that 1 ∈ σ2((T̂ )
′|Bx). Then we proceed as in the

proof of Theorem 4.10.

(b) If we cannot find an x as in (a) then notice that the set
⋃

x∈X

supp(Bx) is

dense in (K̂)′. Therefore we can find elements xn ∈ X and points un ∈ supp(Bxn)
such that the bands Bxn are pairwise disjoint

|((ŵm))′(un)| ≥ 1− 1/n, m = 1, . . . , n

|(ŵm)′((ψ′)(−m)(un))| ≤ 1 + 1/n, m = 1, . . . , n.

Applying Lemma 4.9 we can find points vn ∈ K ′ such that

|((wm)′(un)| ≥ 1− 1/n, m = 1, . . . , n

and

|((wm)′((ϕ′)(−m)(un))| ≤ 1 + 1/n, m = 1, . . . , n.

Let v be any accumulation point of the set {vn}. Then at v we have inequalities
(2a) and (2b) whence 1 ∈ σ2(T

′). �

Corollary 4.12. The statement of Corollary 4.6 remains true without the assump-
tion that X is a Dedekind complete Banach lattice.

In connection with Theorem 4.11 the following question might be of interest.

Problem 4.13. Let X be a Banach lattice and T be an order-continuous linear
bounded operator on X . Let X̂ be the Dedekind completion of X and T̂ be the
unique order-continuous extension of T on X̂ .

Is it true that σi(T ) = σi(T̂ ), i = 0, 1, . . . , 5, where σ0(T ) = σ(T ).



254 A.K. Kitover

5. C(K) revisited.
The case (λI − T )C(K) = C(K) for weighted compositions
generated by non-invertible open surjections

The spectrum of arbitrary disjointness preserving operators onC(K) was described
in [12]. The problem of describing essential spectra of such operators in the case
when the map ϕ : K → K is not invertible becomes considerably more complicated
and its complete solution remains unknown to the author. In this section we will
provide necessary and sufficient conditions for the equality (λI − wTϕ)C(K) =
C(K) in the case when |w| > 0 on C(K), the map ϕ : K → K is open, and
ϕ(K) = K (see Theorem 5.14 below).

Definition 5.1. Let K be a compact Hausdorff space and ϕ be a continuous map
of K onto itself.

(1) We call a subset S of K a ϕ-string if S = {si : i ∈ Z} and ϕ(si) = si+1, i ∈ Z

(2) Let S be a ϕ-string. We define the set
−→
S as

−→
S =

∞⋂
i=1

cl{sk : k ≥ i} and the set
←−
S as

←−
S =

∞⋂
i=1

cl{sk : k ≤ −i}.

Lemma 5.2. Let T = wTϕ be a weighted composition operator on C(K) and
ϕ(K) = K. Let λ ∈ σr(T

�), i.e., λ ∈ σ(T ) and (λI − T )C(K) = C(K). Then
λ �= 0.

Proof. If TC(K) = C(K) then clearly |w| > 0 on K, whence the operator of
multiplication by w is invertible in C(K) and therefore TϕC(K) = C(K). It follows
immediately that ϕ is injective and therefore a homeomorphism of K onto itself,
whence T is invertible on C(K). �

Lemma 5.3. Let T = wTϕ be a weighted composition operator on C(K). Let
ϕ(K) = K and |w| > 0 on K. Let λ ∈ σr(T

�). Then there is an open subset
U of K such that

(i) ϕ(U) = ϕ−1(U) = U

and for any ϕ-string S = {si, i ∈ Z} such that S ⊂ U we have

(ii) lim inf
n→∞ |wn(s0)|1/n > |λ| and lim sup

n→∞
|wn(s−n)|1/n < |λ|. (12)

Proof. Because λ ∈ σr(T
�) there is f ∈ C(K) such that f �= 0 and Tf = λf .

Let U1 = {k ∈ K : f(k) �= 0}. It follows easily from |w| > 0 on K that ϕ(U1) =
ϕ−1(U1) = U1. Let K1 = cl(U1) then ϕ(K1) = K1 and the formula T = wTϕ shows
that T induces a weighted composition operator T1 = w1Tϕ1 on C(K1) where w1

and ϕ1 are restrictions of w and ϕ, respectively, onK1. Clearly f1 = f |K1 ∈ C(K1)
and T1f1 = λf1. It follows from the fact that (λI − T )C(K) = C(K) and from
the Tietze extension theorem that (λI − T1)C(K1) = C(K1) whence λ ∈ σr(T

�
1 ).

The set σr(T
�
1 ) is open in C and therefore there is γ ∈ σr(T

�
1 ) such that |γ| > |λ|.

Let g be a nonzero function in C(K1) such that T1g = γg and let V = {k ∈
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K1 : g(k) �= 0}. Then V is an open subset of K1 and ϕ−1
1 (V ) = ϕ1(V ) = V . We

cannot claim that either V is open in K or that ϕ−1(V ) = V but it is true that
V ⊂ ϕ−1(V ). Consider U2 = U1 ∩ V ; then it is immediate that U2 is an open
nonempty subset of K and recalling that ϕ−1(U1) = U1 and ϕ−1

1 (V ) = V we see
that ϕ−1(U2) = ϕ(U2) = U2. Let K2 = clU2 and let T2 be the operator on C(K2)
defined similarly to the definition of T1 above. Then λ ∈ σr(T

�
2 ) and we can find

δ ∈ σr(T
�
2 ) such that |δ| < |λ|. Let h ∈ C(K2) be such that h �= 0 and T2h = δh.

Let W = {k ∈ K2 : h(k) �= 0} and let U = W ∩ U2. As above we can show that
U is an open subset of K and

ϕ−1(U) = ϕ(U) = U. (13)

Now let S ⊂ U be a ϕ-string. For any n ∈ N we have wn(s0)g(ϕ
n(s0)) =

γng(s0) whence

|wn(s0) ≥ |g(s0)||γ|n/‖g‖C(K1). (14)

On the other hand for every n ∈ N we have wn(s−n)h(s0) = δnh(s−n) whence

|wn(s−n ≤ |δ|n‖h‖C(K2)/h(s0). (15)

The statement of the lemma follows from (13)–(15). �

Definition 5.4. Assume conditions of Lemma 5.3. We will denote by O(λ) the
union of all open subsets of K with properties (i) and (ii) from the statement of
Lemma 5.3. Clearly O(λ) is the largest (by inclusion) open subset of K with these
properties.

Lemma 5.5. Assume conditions of Lemma 5.3. Let O(λ) be from Definition 5.4.
Then the set Kλ = K \O(λ) is not empty.

Proof. If Kλ = ∅ then O(λ) = K is a compact Hausdorff space. We can assume
without loss of generality that |λ| = 1. It follows from the definition of O(λ) that
for every k ∈ K there are an open neighborhood V (k) of k and m(k) ∈ N such that
|wm(k)(t)| > 2, t ∈ V (k). Let {V (k1), . . . , V (ks)} be a finite subcover of the cover
{V (k) : k ∈ K} and let mi = m(ki), i = 1, . . . , s. Next let us fix k0 ∈ K. Then
for any n ∈ N we can find p ∈ N such that 0 ≤ n − p ≤ max {m1, . . . ,ms} and
|wp(ϕ

−n(k0)| > 2 in obvious contradiction with the second inequality in (12). �

Lemma 5.6. Assume conditions of Lemma 5.3. Let O(λ) be from Definition 5.4.
Let Tλ be the weighted composition operator induced by T on C(Kλ) where Kλ =
K \O(λ).

Then λ �∈ σ(Tλ).

Proof. First of all notice that because ϕ−1(O(λ)) = O(λ) we have ϕ(Kλ) = Kλ

and the operator Tλ is correctly defined. Moreover, (λI − Tλ)C(Kλ) = C(Kλ).
Assume contrary to the statement of the lemma that λ ∈ σ(Tλ). Then λ ∈ σr(T

�
λ)

and by Lemma 5.3 there is an open subset V ofKλ with properties (i) and (ii) from
the statement of that lemma. The set O(λ) ∪ V is open in K and has properties
(i) and (ii) in contradiction with maximality of O(λ). �
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Lemma 5.7. Assume conditions of Lemma 5.3. Let Fλ = clO(λ) \O(λ). Let T λ be
the operator induced by T on C(Fλ).

Then σ(T λ, C(Fλ)) ∩ λΓ = ∅.
Proof. We will prove first that λ �∈ σ(T λ). Indeed, because ϕ(Fλ) = Fλ we have
(λI − T λ)C(Fλ) = C(Fλ) and therefore, if λ ∈ σ(T λ), then there is a nonzero
g ∈ C(Fλ) such that T λg = λg. But Fλ is a closed subset of Kλ and therefore
g can be identified with an element g�� in C(Kλ)

�� such that T ��
λ g�� = λg�� in

contradiction with Lemma 5.6.
Next assume that there is γ ∈ σ(Fλ) such that |γ| = |λ|. Then by Theorem

3.12 in [12] there is a ϕ-periodic point t ∈ Fλ such that γp = wp(t) where p is the
smallest positive period of t. It follows from (1) and from ϕ(O(λ)) = O(λ) that
the set O(λ) cannot contain eventually 2 ϕ-periodic points. Then it follows from
the proof of Lemma 3.5 in [12] that λΓ ⊂ σap(T

�), a contradiction. �
Lemma 5.8. There is a closed subset Gλ of Fλ with the following properties.

1. ϕ(Gλ) = Gλ.
2. The restriction of ϕ on Gλ is a homeomorphism of Gλ onto itself.
3. The operator TGλ

defined on C(Gλ) by the formula T (f |Gλ) = (Tf)|Gλ is
invertible and ρ(T−1

Gλ
) < 1/|λ|.

4. ∃m ∈ N such that Gλ ⊂ IntFλ
ϕ−m(Gλ).

5. Let Hλ = Fλ \
∞⋃
n=1

ϕ−n(Gλ). Then Hλ is a closed subset of Fλ, ϕ(Hλ) = Hλ,

and ρ(THλ
) < |λ|.

Proof. The proof follows immediately from Lemma 5.7 and Theorem 3.10 in [12].
�

Lemma 5.9. Let the map ϕ be open and let Gλ be the set from the statement of
Lemma 5.7. Then there is an open neighborhood V of Gλ in K such that the map
ϕ : V → K is one-to-one.

Proof. We can assume without loss of generality that λ = 1. For any n ∈ N let
Qn = {k ∈ K : |wn+1(k)| > 2}. It follows from the inequality ρ(T−1

Gλ
) < 1

that for any large enough n ∈ N the set Qn is an open neighborhood of Gλ. Let
Rn = ϕn(Qn), then Rn is an open neighborhood of Gλ because ϕ is open. We
claim that for any large enough n ∈ N the map ϕ : Rn → K is one-to-one. Assume
to the contrary that for any N ∈ N there are an n > N and p, q ∈ Rn such that
p �= q but ϕ(p) = ϕ(q). Let s, t ∈ Qn be such that ϕn(s) = p and ϕn(t) = q.
Let μ1 = 1

wn+1(s)
δs and μ2 = 1

wn+1(t)
δt. Notice that ‖μi‖ ≤ 1/2, i = 1, 2, because

s, t ∈ Qn. Consider the discrete measure μ on K defined as

μ =

n∑
i=0

(
1− 1√

n

)n−i

(T �)iμ1 −
n∑

i=0

(
1− 1√

n

)n−i

(T �)iμ2.

2A point k ∈ K is called eventually ϕ-periodic if there is an n ∈ N such that the point ϕ(n)(k)
is ϕ-periodic.
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Notice that (T �)nμ1 = 1
w(p)δp and (T �)nμ2 = 1

w(q)δq whence ‖μ‖ ≥ 2‖1/w‖∞.

Next notice that (T �)n+1μ1 = (T �)n+1μ2 = δϕ(p) whence

T �μ− μ =

(
1− 1√

n

)n

(μ1 − μ2)−
1√
n

n∑
i=1

(
1− 1√

n

)n−i

(T �)iμ1

+
1√
n

n∑
i=1

(
1− 1√

n

)n−i

(T �)iμ2.

Therefore ‖T �μ − μ‖ ≤
(
1 − 1√

n

)n
+ 1√

n
‖μ‖. Because n can be chosen arbitrary

large we see that 1 ∈ σa.p.(T
�), a contradiction. �

Lemma 5.10. Assume conditions of Lemma 5.8. For any n ∈ N let Qn be the set
defined in the proof of Lemma 5.9. Then there is N ∈ N such that if n ≥ N then
ϕn(Qn) ∩O(λ) ⊂ Qn ∩O(λ).

Proof. Assume contrary to our statement that for any N ∈ N there are n > N
and k ∈ O(λ) such that

|wn(k)| > 2 and |wn(ϕ
n(k))| ≤ 2. (16)

Let ν = 1
wn(k)

δk and

μ =
2n−1∑
i=0

(
1− 1√

n

)|n−i|
(T �)iν.

Notice that because k is not a ϕ-periodic or eventually ϕ-periodic point all the
terms in the sum above represent pairwise disjoint point measures on K. Therefore
‖μ‖ ≥ ‖(T �)nν‖ = ‖δϕn(k)‖ = 1. On the other hand

T �μ− μ =

(
1− 1√

n

)n

ν −
n∑

i=1

1√
n

(
1− 1√

n

)n−i

(T �)iν

+

2n−1∑
i=n+1

1√
n

(
1− 1√

n

)i−n

(T �)iν +

(
1− 1√

n

)n−1

(T �)2nν

and in virtue of (16) ‖T �μ−μ‖ ≤
(
1− 1√

n

)n
+2
(
1− 1√

n

)n−1
+ 1√

n
‖μ‖. Because n

is arbitrary large we have 1 ∈ σap(T
�) in contradiction with our assumption. �

Corollary 5.11. There are an open nonempty neighborhood V of Gλ in cl(Oλ) and
n ∈ N such that

• ϕ(V ) ⊂ V .
• The map ϕ : V → ϕ(V ) is a homeomorphism.
• clV ∩Hλ = ∅.
• |wn| > 1 on clV .
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Proof. Fix a large enough n ∈ N and consider the set Rn introduced in the proof

of Lemma 5.9. The set V =
n−1⋂
k=0

ϕk(Rn ∩O(λ)) has the required properties. �

Lemma 5.12. Assume conditions of Lemma 5.8. Let V be an open neighborhood
in K of the set Gλ such that ϕ(V ) ⊂ V and V ∩ Hλ = ∅. Then H = clOλ \∞⋃
k=1

ϕ−k(V ) = Hλ.

Proof. Clearly ϕ(H) ⊆ H and Hλ ⊆ H . Assume that H \ Hλ �= ∅. It follows
from (5) in the statement of Lemma 5.8 that H \ Hλ ⊂ O(λ). Let TH be the
weighted composition operator wTϕ considered on C(H). We have to consider
three possibilities.

(a) ρ(TH) < |λ|. That contradicts the first inequality in (1) in the statement
of Lemma 5.3.

(b) ρ(TH) > |λ| and λ �∈ σ(TH). In this case it follows from [12] that there is
a closed subset L of H such that ϕ(L) = L, the operator TL = wTϕ is invertible

on C(L), and ρ(T−1
L < 1/|λ|. Clearly L ∪Hλ = ∅ whence L ⊂ O(λ). But then we

come to a contradiction with the second inequality in (1).

(c) λ ∈ σr(T
�
H). We bring this case to a contradiction similar to (b) by using

statements (1)–(3) of Lemma 5.8. �

The previous statements provide necessary conditions for λ ∈ σr(T
�). As

Theorem 5.14 below shows the combination of these conditions is also sufficient.
Before we state and prove this theorem we need one simple result which is most
probably known.

Lemma 5.13. Let K be a compact Hausdorff space, ϕ be a map of K into itself, and
Tϕ be the corresponding composition operator on C(K). The following statements
are equivalent

1. The Banach dual operator T �
ϕ preserves disjointness.

2. The map ϕ is one-to-one.

Proof. The implication (1) ⇒ (2) is trivial. Assume that ϕ is a homeomorphism
of K onto ϕ(K). The operator Tϕ induces a positive isometry of C(ϕ(K)) onto
C(K). Therefore the dual operator T �

ϕ can be considered as a positive isometry of
C(K)� onto C(ϕ(K))�. To finish the proof we can use a theorem of Abramovich [1]
that states that a positive surjective isometry between normed lattices preserves
disjointness. Alternatively we can notice that C(K)� and C(ϕ(K))� are L1-spaces
and we can apply the theorem of Lamperti (see, e.g., [9, Chapter 3]) to see that T �

ϕ

preserves disjointness (because in the statement of Lamperti theorem the measure
is assumed to be sigma-finite some simple additional reasoning is needed). �

Theorem 5.14. Let K be a compact Hausdorff space and ϕ be an open continuous
map of K onto itself. Let w be an invertible element of C(K). Let T be the weighted
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composition operator

(Tf)(k) = w(k)f(ϕ(k), f ∈ C(K), k ∈ K.

Let λ ∈ σ(T ). The following conditions are equivalent. (I) λ ∈ σr(T
�) (i.e., λ ∈

σ(T ) and (λI − T )C(K) = C(K)). (II)

1. λ �= 0.
2. There is a nonempty open subset O of K such that ϕ(O) = O = ϕ−1(O),

for every point k ∈ O conditions (1) are satisfied, F = clO \ O �= ∅, and
λ �∈ σ(T,C(K \O).

3. λΓ ∩ σ(T,C(F )) = ∅.
4. There are subsets G and H of F with properties (1)–(5) from the statement

of Lemma 5.8.
5. There are an open neighborhood V of G in clO and m ∈ N such that V ∩

H = ∅, ϕ(V ) ⊂ V , clO \
∞⋃
n=1

ϕ−n(V ) = H, the map ϕ : V → ϕ(V ) is a

homeomorphism, and |wm| > 1 on clV .

Proof. The implication (I) ⇒ (II) has been already proved.
Assume (II). It follows from II(1) and Theorem 3.10 in [12] that λ ∈ σ(T ).

Assume contrary to our statement that λ ∈ σap(T
�). We can assume without loss

of generality that λ = 1. Then there is a sequence μn ∈ C(K)�, n ∈ N such that
‖μn‖ = 1 and T �μn − μn →

n→∞ 0.

It follows from II(2) that |μn|(K \ O) →
n→∞ 0 and therefore we can assume

that |μn|(K \O) = 0, n ∈ N.
Consider the set V and the integer m from II(5). The ideal J of all functions

from C(K) that are equal 0 on V is T -invariant and it is easy to see from II(5) and
the fact that ρ(T,C(H)) < 1 that ρ(T |J) < 1. Therefore |μn|(clO \ V ) →

n→∞ 0 and

we can assume that |μn|(V ) = 1, n ∈ N. Let TV be the operator wTϕ considered
on C(clV ). Then T �

V μn − μn →
n→∞ 0. By Lemma 5.13 the operator T �

V preserves

disjointness and therefore |TV |�|μn| − |μn| →
n→∞ 0. Let μ be a probability measure

on V which is an accumulation point of the sequence |μn|, n ∈ N in the weak-�
topology. Then |T �

V |μ = μ. Let S = suppμ. Then ϕ(S) = S and the operator TS

induced by T on C(S) is invertible. We have (Tm
ϕ )�(|wm|)�μ = μ. But (Tm

ϕ )� is
an isometry on C(S)� and ‖(|wm|)�μ‖ > ‖μ‖, a contradiction. �

6. Appendix

The purpose of this appendix is to clarify some details about the statement and
the proof of Theorem 22 in [13] which was extensively used in the current paper.

(1) The aforementioned theorem states that if T is an operator on a Banach
lattice X of the form (6) then

σ(T,X) = σ(T̂ , X̂) = σ(S,C(K)) = σ(Ŝ, C(K̂)).
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While the equalities

σ(T,X) = σ(T̂ , X̂) = σ(Ŝ, C(K̂))

and their proof in [13] are correct, the statement that any of these sets is equal to
σ(S,C(K)) is in general false, as in particular follows from Example 32 in [13].

Fortunately, we did not use this equality in full generality, and in the case
when X is a Banach lattice with a quasi-interior point it is true, as follows from
Proposition 4.8 and Lemma 4.9.

(2) In the proofs of Theorems 22 and 15 in [13] the following fact was used.
Let X be a Banach lattice and B be a band in X , then

X̂/B = X̂/B̂.

It was (and still is) my assumption that this fact must be known, but I was not
able to find it in the literature. Therefore a short proof is provided below.

Proof. Consider the canonical map T : X → X/B; Tx = [x]. Then [2, Problem
9.3.2, p. 29] the map T is order continuous. Therefore by Veksler’s theorem [15]

the operator T has the unique order-continuous extension T̂ : X̂ → X̂/B. Notice

that because T̂ is order continuous and T (X) = X/B we have T̂ (X̂) = X̂/B. On

the other hand ker T̂ = B̂. Indeed, obviously B ⊂ ker T̂ and because T̂ is order
continuous we have B̂ ⊂ ker T̂ . On the other hand if x̂ ∈ X̂ \ B̂ then there is

x ∈ Bd such that x �= 0 and |x| ≤ |x̂|. The operators T and (therefore) T̂ preserve

disjointness whence |T̂ x̂| = T̂ |x̂| ≥ T |x| = |Tx| �= 0 and x̂ �∈ ker T̂ .

Thus we see that X̂/B is isometrically and lattice isomorphic to B̂d = X̂/B̂.
�
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Bernoulli Processes in Riesz Spaces

Wen-Chi Kuo, Jessica J. Vardy and Bruce A. Watson

Abstract. The action and averaging properties of conditional expectation op-
erators are studied in the, measure-free, Riesz space, setting of Kuo, Labus-
chagne and Watson [Conditional expectations on Riesz spaces. J. Math. Anal.
Appl., 303 (2005), 509–521.] but on the abstract L2 space, L2(T ) intro-
duced by Labuschagne and Watson [Discrete Stochastic Integration in Riesz
Spaces. Positivity, 14, (2010), 859–575.]. In this setting the Bienaymé inequal-
ity is proved and from this foundation Bernoulli processes are considered.
Bernoulli’s strong law of large numbers and Poisson’s theorem are given.

Mathematics Subject Classification (2010). Primary 60G20; Secondary 47B60.

Keywords. Riesz spaces, conditional expectation operators, f -algebra, averag-
ing operators, Bernoulli processes, conditional independence, strong laws of
large numbers.

1. Introduction

Various authors have considered generalizations of stochastic processes to vector
lattices/Riesz spaces, with a variety of assumptions being made on the processes
being considered. Most of this work has focused on martingale theory, see, for
example, [4], [8], [11], [12], [18] and [19]. The abstract properties of conditional
expectation operators have also been explored in various settings, see [5], [13], [16]
and [17] and [21]. However, the more elementary processes such as Markov pro-
cesses, see [20], Bernoulli processes and Poisson processes, which rely only on the
concepts of a conditional expectation operator and independence, have received
little attention. As these processes have less accessible structure, their study relies
more heavily on properties of the underlying Riesz space, the representation of the
conditional expectation operators and multiplication operations in Riesz spaces. If
a Riesz space has a weak order unit, then the order ideal generated by a weak order
unit is order dense in the space. However the order ideal generated by the weak
order unit is an f -algebra, see [2], [3] and [22], giving a multiplicative structure on
a dense subspace. Much of the work in this paper relies on a Riesz space vector
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analogue of L2 and the action of conditional expectations in this space, see Theo-
rem 3.2, and their averaging property, see Lemma 3.1. In particular the Bienaymé
equality, Theorem 4.2, will be posed in this setting. The Bienaymé equality enables
us to give a Riesz space analogue of Bernoulli’s law of large numbers, Theorem
5.2. One important property of the ideal generated by the weak order unit is that
it possesses a functional calculus which enables one to lift continuous real-valued
functions on [0, 1] to the Riesz space, see [6] and [22]. This is critical for Poisson’s
theorem, Theorem 5.6. We refer the reader to [15] for the classical version of the
Bienaymé equality, the Bernoulli law of large numbers and Poisson’s theorem.

2. Riesz space preliminaries

We refer the reader to [1] and [22] for general Riesz space theory. The definitions
and preliminaries presented here are specific to Riesz spaces with a weak order
unit and a conditional expectation operator.

The notion of a conditional expectation operator in a Dedekind complete
Riesz space, E, with weak order unit was introduced in [12] as a positive order-
continuous projection T : E → E, with range R(T ) a Dedekind complete Riesz
subspace of E, and having Te a weak order unit of E for each weak order unit e of
E. Instead of requiring Te to be a weak order unit of E for each weak order unit
e of E one can equivalently impose that there is a weak order unit in E which is
invariant under T . Averaging properties of conditional expectation operators and
various other structural aspects were considered in [13]. In particular if B is the
band in E generated by 0 ≤ g ∈ R(T ) and P is the band projection onto B, it
was shown that Tf ∈ B, for each f ∈ B, Pf, (I −P )f ∈ R(T ) for each f ∈ R(T ),
where I denotes the identity map, and Tf ∈ Bd, for each f ∈ Bd. A consequence
of these relations and Freudenthal’s theorem, [22], is that if B is the band in E
generated by 0 ≤ g ∈ R(T ), with associated band projection P , then TP = PT ,
see [13] for details.

To access the averaging properties of conditional expectation operators a
multiplicative structure is needed. In the Riesz space setting the most natural
multiplicative structure is that of an f -algebra. This gives a multiplicative struc-
ture that is compatible with the order and additive structures on the space. The
ideal, Ee, of E generated by e, where e is a weak order unit of E and E is
Dedekind complete, has a natural f -algebra structure. This is constructed by set-
ting (Pe) ·(Qe) = PQe = (Qe) ·(Pe) for band projections P and Q, and extending
to Ee by use of Freudenthal’s Theorem. In fact this process extends the mul-
tiplicative structure to the universal completion, Eu, of E. This multiplication
is associative, distributive and is positive in the sense that if x, y ∈ E+ then
xy ≥ 0. Here e is the multiplicative unit. For more information about f -algebras
see [2, 3, 5, 7, 13, 22]. If T is a conditional expectation operator on the Dedekind
complete Riesz space E with weak order unit e = Te, then restricting our atten-
tion to the f -algebra Ee, T is an averaging operator on Ee if T (fg) = fTg for
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f, g ∈ Ee and f ∈ R(T ), see [5, 7, 13]. More will said about averaging operators
in Section 3.

In a Dedekind complete Riesz space, E, with weak order unit and T a strictly
positive conditional expectation on E. We say that the space is T -universally
complete if for each increasing net (fα) in E+ with (Tfα) order-bounded in the
universal completion Eu, we have that (fα) is order convergent. If this is not the
case, then both the space and conditional expectation operator can be extended
so that the extended space is T -universally complete with respect to the extended
T , see [13]. The extended space is also know as the natural domain of T , denoted
dom(T ) of L1(T ), see [5, 7].

Let E be a Dedekind complete Riesz space with conditional expectation T
and weak order unit e = Te. If P and Q are band projections on E, we say that
P and Q are T -conditionally independent if

TPTQe = TPQe = TQTPe. (2.1)

We say that two Riesz subspaces E1 and E2 of E are T -conditionally independent
with respect to T if all band projections Pi, i = 1, 2, in E with Pie ∈ Ei, i = 1, 2, are
T -conditionally independent with respect to T . Equivalently (2.1) can be replaced
with

TPTQw = TPQw = TQTPw for all w ∈ R(T ). (2.2)

It should be noted that T -conditional independence of the band projections P
and Q is equivalent to T -conditional independence of the closed Riesz subspaces
〈Pe,R(T )〉 and 〈Qe,R(T )〉 generated by Pe andR(T ) and byQe andR(T ) respec-
tively. From the Radon–Nikodým–Douglas–Andô type theorem was established in
[21], if E is a T -universally complete, a subset F of E is a closed Riesz subspace
of E with R(T ) ⊂ F if and only if there is a unique conditional expectation TF on
E with R(TF ) = F and TTF = T = TFT . In this case TF f for f ∈ E+ is uniquely
determined by the property that

TPf = TPTFf (2.3)

for all band projections on E with Pe ∈ F . As a consequence of this, two closed
Riesz subspaces E1 and E2 with R(T ) ⊂ E1∩E2 are T -conditionally independent,
if and only if

T1T2 = T = T2T1, (2.4)

where Ti is the conditional expectation commuting with T and having rangeEi, i =
1, 2. Here (2.4) can be equivalently replaced by

Tif = Tf, for all f ∈ E3−i, i = 1, 2, (2.5)

see [20]. The concept of T -conditional independence can be extended to a family,
say (Eλ)λ∈Λ, of closed Dedekind complete Riesz subspaces of E with R(T ) ⊂
Eλ for all λ ∈ Λ. We say that the family is T -conditionally independent if,
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for each pair of disjoint sets Λ1,Λ2 ⊂ Λ, we have that EΛ1 and EΛ2 are T -

conditionally independent. Here EΛj :=
〈⋃

λ∈Λj
Eλ

〉
. Finally, we say that a se-

quence (fn) in E is T -conditionally independent if the family of closed Riesz sub-
spaces 〈{fn} ∪ R(T )〉 , n ∈ N, is T -conditionally independent.

3. Conditional expectation operators in L2(T )

In this work we assume that E is T -universally complete and in this case we
have L1(T ) = E, see [11]. As Eu, the universal completion of E, is an f -algebra,
multiplication of elements of E is defined but does not necessarily result in an
element of E. This leads us, as in [11], to define

L2(T ) :=
{
x ∈ L1(T )|x2 ∈ L1(T )

}
.

If f, g ∈ L2(T ) then in the f -algebra Eu, 0 ≤ (f ± g)2 = f2 ± 2fg + g2. Thus
±2fg ≤ f2 + g2 and 2|fg| ≤ f2 + g2 ∈ L1(T ) = E. Hence fg ∈ L1(T ) = E. As
noted in [11], a consequence of this is that L2(T ) is a vector space.

The averaging property of conditional expectation operators only makes sense
if it can be ensured that the all products involved remain in the space. Theorem
4.3 of [13] states that if E is a Dedekind complete Riesz space with weak order
unit, T is a conditional expectation operator on E and E is also an f -algebra,
then T is an averaging operator, i.e., T (fg) = gTf for all f ∈ E, g ∈ R(T ). The
averaging property is revisited in [11, Theorem 2.1] without proof. The variant
of [11, Theorem 2.1] drops the assumption that E is an f -algebra, but imposes
the additional conditions that fg ∈ E and that E is T -universally complete. A
strengthened version of this is proved in Lemma 3.1. This however does not address
whether Sf ∈ L2(T ) for f ∈ L2(T ) and S a conditional expectation operator on E
with TS = T = ST . For this see Theorem 3.2 below. As a consequence of Lemma
3.1 and Theorem 3.2, we are able to conclude, see Theorem 3.3 below, that for
such a conditional expectation operator, S, S(fTg) = Tg ·Sf for all f, g ∈ L2(T ).

Lemma 3.1. Let E be a Dedekind complete Riesz space with weak order unit, e,
and T is a conditional expectation operator on E with Te = e. If f, g, fg ∈ E with
g ∈ R(T ) then g · Tf ∈ E and T (fg) = g · Tf.
Proof. Case I: f, g, fg ∈ E+ with g ∈ R(T ). Let fn = f ∧ ne and gn = g ∧ ne.

Then fn ↑ f and gn ↑ g. Here fn, gn ∈ Ee
+ with gn ∈ R(T ), so [13, Theorem 4.3]

can be applied to give T (fngm) = gmT (fn),m, n ∈ N. Thus

gmT (fn) = T (fngm) ≤ T (fg), m, n ∈ N. (3.1)

Here fngm ↑ fg in E, so from the order-continuity of T , T (fngm) ↑ T (fg) in E.
In the universal completion, Eu, of E, we have gmT (fn) ↑ gT (f), however, from
(3.1), gmT (fn) is bounded above by T (fg) ∈ E, so gmT (fn) ↑ gT (f) in E, giving
T (fg) = gT (f).

Case II: f, g, fg ∈ E with g ∈ R(T ). From Case I, T (f±g∓) = g∓T (f±) and
T (f±g±) = g±T (f±), from which the result follows. �
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The invariance of L2(T ) with respect to a conditional expectations S where
TS = S = ST is a consequence of Jensen’s inequality, see [10, Theorem 4.4]
for a general form of Jensen’s inequality in Riesz spaces proved using functional
calculus. However, for the special case of L2(T ) an elementary proof is available.

Theorem 3.2. Let E be a T -universally complete Riesz space with weak order unit,
e, where T is a strictly positive conditional expectation operator with Te = e and
let S be a conditional expectation operator on E with TS = T = ST . If f ∈ L2(T )
then Sf ∈ L2(T ).

Proof. Let f ∈ L2(T ) and define fn = (ne ∧ |f |) ∈ Ee
+, n ∈ N. Working in the

f -algebra Ee we have

0 ≤ S(fn − Sfn)
2 = Sf2

n − 2S(fn·Sfn) + S(Sfn)
2. (3.2)

The averaging and projection properties of S applied in (3.2) give

Sf2 ≥ Sf2
n ≥ (Sfn)

2. (3.3)

Taking the order limit as n→∞ completes the proof. �
Corollary 3.3. Let E be a T -universally complete Riesz space with weak order unit,
e, where T is a strictly positive conditional expectation operator with Te = e. Let
S, J be conditional expectation operators on E with TS = T = ST , TJ = T = JT
and JS = J = SJ . If f, g ∈ L2(T ) then S(f · Jg) = Jg · S(f).
Proof. As f, g ∈ L2(T ) from Theorem 3.2 Jg ∈ L2(T ). Now f, Jg ∈ L2(T ) so
f, Jg, f · Jg ∈ E so Lemma 3.1 gives Jg · Sf ∈ E and S(f · Jg) = Jg · Sf . �

For the readers convenience we state Čebyčev’s inequality in L2(T ), see [9,
Lemma 3.1] with α = 2.

Theorem 3.4 (Čebyčev’s Inequality). Let E be a Dedekind complete Riesz space
with conditional expectation T and weak order unit e = Te. Let f ∈ L2(T ), f ≥ 0,
and ε ∈ R, ε > 0, then

TP(f−εe)+e ≤
1

ε2
T (f2).

4. Bienaymé equality

The Bienaymé equality of classical statistics gives that the variance of a finite sum
of independent random variables coincides with sum of their variances. In this
section we give a measure free conditional version of this result in L2(T ). Before we
can proceed with this we require a result on T -conditionally independent random
variables in L2(T ).

Lemma 4.1. Let E be a T -universally complete Riesz space with weak order unit,
e = Te, where T is a strictly positive conditional expectation operator on E. Let
f, g ∈ L2(T ). If f and g are T -conditionally independent then

Tfg = Tf ·Tg = Tg·Tf.
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Proof. Let Tf and Tg denote the conditional expectations with ranges 〈R(T ), f〉 =
Ef and 〈R(T ), g〉 = Eg respectively. Here 〈R(T ), g〉 denotes the order-closed Riesz
subspace of E generated by R(T ) and g, and similarly for 〈R(T ), f〉. The exis-
tence and uniqueness of Tf and Tg are given by the Radon–Nikodým Theorem,
see [21]. Here Eg and Ef are T -conditionally independent as the T -conditional
independence of f and g is defined in terms of the independence of Ef and Eg,
see Section 2. For each h ∈ E, Tfh ∈ Ef and Tgh ∈ Eg. Now, as Ef and Eg are
T -conditionally independent, from (2.5) with E1 = Ef and E2 = Eg, we have

Tf (Tgh) = Th = Tg(Tfh). (4.1)

Applying (4.1) with h = fg gives

T (fg) = TfTg(fg)

As Tf and Tg are averaging operators in L2(T ), by Corollary 3.3, Tg(fg) = gTgf .
Thus

T (fg) = TfTg(fg) = Tf(gTgf), (4.2)

however taking (4.1) with h = f yields Tgf = Tf , which along with (4.2) gives

T (fg) = Tf (gTf). (4.3)

In (4.3), Tf ∈ R(T ) ⊂ Ef , so by Corollary 3.3, Tf(gTf) = Tf · Tfg. Finally
considering (4.1) with h = g gives Tfg = Tg. Thus

T (fg) = Tf(gTf) = Tf · Tfg = Tf · Tg. �

From Theorem 3.2, if f ∈ L2(T ) then Tf ∈ L2(T ) which gives (f − Tf) ∈
L2(T ). Hence, (f − Tf)2 ∈ L1(T ) and so T (f − Tf)2 exists for all f ∈ L2(T ). We
now define the variance of f by

var(f) = T (f − Tf)2 = Tf2 − (Tf)2. (4.4)

Theorem 4.2 (Bienaymé Equality). Let E be a T -universally complete Riesz space
with weak order unit, e = Te, where T is a strictly positive conditional expectation
operator on E. If (fk)k∈N, is a T -conditionally independent sequence in L2(T ),
then

var

(
n∑

k=1

fk

)
=

n∑
k=1

var(fk),

for each n ∈ N.

Proof. As 〈
fi1 , . . . , fij ,R(T )

〉
=
〈
fi1 − Tfi1 , . . . , fij − Tfij ,R(T )

〉
,

for each subset {i1, . . . , ij} of {1, . . . , n}, it follows that fk − Tfk, k = 1, 2, . . . , n
are T -conditionally independent. From Theorem 3.2, as fi ∈ L2(T ) it follows that
Tfi ∈ L2(T ) and consequently from Lemma 4.1 that

T [(fi − Tfi)(fj − Tfj)] = [T (fi − Tfi)]· [T (fj − Tfj)],
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for i �= j. However, as T is a projection, see Section 2,

T (fk − Tfk) = 0, for each k ∈ N,

giving

T [(fi − Tfi)(fj − Tfj)] = 0, (4.5)

for i �= j. From the definition of variance

var

(
n∑

k=1

fk

)
= T

(
n∑

k=1

fk − T

n∑
k=1

fk

)2

= T

(
n∑

k=1

(fk − Tfk)

)2

,

which can be expanded to give

var

(
n∑

k=1

fk

)
= T

n∑
k=1

(fk − Tfk)
2 + T

∑
j �=k

(fj − Tfj)(fk − Tfk) (4.6)

Now applying (4.5) to (4.6) gives

var

(
n∑

k=1

fk

)
=

n∑
k=1

T (fk − Tfk)
2 =

n∑
k=1

var(fk). �

5. Bernoulli and Poisson processes

In classical probability, a Bernoulli process is one in which the events at any
given time are independent of the events at all other times. The payoff of an event
occurring is 1 unit and 0 units for it not occurring. Thus in the Riesz space setting,
the process can be described by the sequence of independent band projections Pk

where k indexes time and the payoff at time k is Pke. The probability of an event
at time k occurring must be independent of k, in the measure theoretic terms, this
can be expressed as the expectation of each event is independent of time. This can
be generalized to the conditional expectation of the events being time invariant,
which lead to the Riesz space setting requirement that TPke = f , for all k ∈ N.
Here T is some fixed conditional expectation operator. Thus we are led to the
following formal definition of a Bernoulli process in Riesz spaces.

Definition 5.1. Let E be a Dedekind complete Riesz space with weak order unit, e,
and conditional expectation operator T with Te = e. Let (Pk)k∈N be a sequence of
T -conditionally independent band projections. We say that (Pk)k∈N is a Bernoulli
process if

TPke = f for all k ∈ N,

for some fixed f ∈ E.
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The payoff at time n is thus

Sn =

n∑
j=1

Pje.

We denote by PSn=je the band projection on the band where Sn = je, in the
notation used earlier PSn=je = (I − P(Sn−je)+)(I − P(Sn−je)− ).

Theorem 5.2. Let E be a T -universally complete Riesz space with weak order unit,
e = Te, where T is a strictly positive conditional expectation operator on E. Let
(Pj)j∈N be T -conditionally independent band projections with TPje = f for all

j ∈ N and Sn =
∑n

j=1
Pje. Then

TSn = nf, (5.1)

TPSn=jee =
n!

j!(n− j)!
f j(e− f)n−j , (5.2)

var(Sn) = nf(e− f). (5.3)

Proof. As TPie = f , (5.1) follows directly from applying T to Sn.

Fix n ∈ N and let

Qj =
1

j!(n− j)!

∑
σ∈Λ

Pkσ(1)
· · ·Pkσ(j)

(I − Pkσ(j+1)
) · · · (I − Pkσ(n)

). j = 0, . . . , n.

Here Λ denotes the set of all permutations of {1, . . . , n} and the division by
j!(n− j)! is as there are j!(n− j)! permutations which yield the same band projec-
tion Pkσ(1)

· · ·Pkσ(j)
(I − Pkσ(j+1)

) · · · (I − Pkσ(n)
). Other permutations yield band

projections disjoint from the above one. Thus Qj is a band projection, Q0, . . . , Qn

partition the identity, I, in the sense that QiQj = 0 for all i �= j, and
∑n

i=0 Qi = I.
Moreover, from the definition of Qj , it follows that QjSn = jQje, j = 0, . . . , n.
Thus

Sn =
n∑

j=0

QjSn =
n∑

j=0

jQje.

The T -conditional independence of P1, . . . , Pn and Lemma 4.1 applied iteratively
give that

TPkσ(1)
· · ·Pkσ(j)

(I − Pkσ(j+1)
) · · · (I − Pkσ(n)

)e

= T ((Pkσ(1)
· · ·Pkσ(j)

e) · ((I − Pkσ(j+1)
) · · · (I − Pkσ(n)

)e))

= (T (Pkσ(1)
· · ·Pkσ(j)

e) · (T (I − Pkσ(j+1)
) · · · (I − Pkσ(n)

)e))

=

j∏
i=1

TPkσ(i)e ·
n∏

i=j+1

T (I − Pkσ(i)
)e

= f j(e− f)n−j .
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Hence

TPSn=jee = TQje =
1

j!(n− j)!

∑
σ∈Λ

f j(e− f)n−j ,

from which (5.2) follows as the cardinality of Λ is n!.
As P1e, . . . , Pne are T -conditionally independent and are in L2(T ), Bien-

aymé’s equality applied to Sn gives

var(Sn) =

n∑
k=1

var(Pke). (5.4)

From (4.4) applied to Pke we have

var(Pke) = TPke− (TPke)
2 = f − f2. (5.5)

As e is the multiplicative unit, combining (5.4) and (5.5) yields (5.3). �

Theorem 5.3 (Bernoulli Law of Large Numbers). Let E be a T -universally complete
Riesz space with weak order unit, e = Te, where T is a strictly positive conditional
expectation operator on E. Let (Pk)k∈N be a Bernoulli process with partial sums
Sn and TPke = f, k ∈ N. For each ε > 0,

TP(|Sn
n −f |−εe)+e→ 0,

relatively uniformly as n→∞.

Proof. By the Čebyčev inequality,

TP(|S−nf |−nεe)+e ≤
1

n2ε2
T |Sn − nf |2. (5.6)

However, from (4.4) and (5.1),

T |Sn − nf |2 = var(Sn). (5.7)

Combining (5.6) with (5.7) and using (5.3) to simplify the result, gives

TP(|S−nf |−nεe)+e ≤
f(e− f)

nε2
, (5.8)

from which the result follows upon observing that P(|Sn
n −f |−εe)+ = P(|S−nf |−nεe)+ .

�

One of the interesting features of Bernoulli’s law of large numbers is that it
gives not just the convergence of TP(|Sn

n −f |−εe)+e to zero. It also gives some indi-

cation of the size of the band on which |Sn

n − f | > εe by bounding the conditional

expectation of the band projection applied to e by f(e−f)
nε2 , hereby indicating an

upper bound for the rate of convergence ‘in probability’.
Using the results on martingale difference sequences developed for the study

of mixingale in [14, Lemma 4.1] we obtain a weak law of large numbers for Bernoulli
processes.
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Theorem 5.4 (Weak law of large numbers). Let E be a T -universally complete
Riesz space with weak order unit, e = Te, where T is a strictly positive conditional
expectation operator on E. Let (Pj)j=1,...,n be T -conditionally independent band

projections with TPje = f for all j = 1, . . . , n and Sn =
∑n

j=1
Pje, then, in

order,

lim
n→∞T

∣∣∣∣f − Sn

n

∣∣∣∣ = 0.

Proof. Setting fi = Pie and Ti to be the conditional expectation with range
〈R(T ), P1e, . . . , Pie〉, it follows that (gi, Ti), where gi := fi − Ti−1fi, is a mar-
tingale difference sequence. Here |fi| ≤ e. Thus from [14, Lemma 4.1],

lim
n→∞T

∣∣∣∣ 1n
n∑

i=1

gi

∣∣∣∣ = 0. (5.9)

The independence of the band projections Pi, i ∈ N, gives that Ti−1fi = Tfi = f .
Hence (5.9) can be written as

lim
n→∞ T

∣∣∣∣f − 1

n

n∑
i=1

Pie

∣∣∣∣ = 0,

from which the theorem follows. �

Before progressing further we need to define an exponential map on Riesz
spaces.

Remark 5.5. Let C([−1, 1]) denote the Riesz space of continuous real functions on

[−1, 1]. Set fn(t) :=

(
1− t

n

)n

, then fn ∈ C([−1, 1]) and fn(t) → e−t = f(t) in

order and the supremum norm on C([−1, 1]). Thus, by [6, Theorem 3.1], for each
g ∈ Ee, fn(g)→ f(g) e-uniformly (and, thus, in order) as n→∞. In addition, by
the functional calculus, f(g) defines an element of Ee which we will denote by e−g.

We now consider the sequences of Bernoulli processes known as Poisson se-
quences. Here the partial sums of each Bernoulli process form a Bernoulli process.

Theorem 5.6 (Poisson). Let E be a T -universally complete Riesz space with weak
order unit, e = Te, where T is a strictly positive conditional expectation operator
on E. Let Pn,k, k = 1, . . . , n, n ∈ N, be T -conditionally independent band pro-

jections with TPn,ke = gn for all k = 1, . . . , n, n ∈ N. If Sn =
∑n

k=1
Pn,ke are

T -conditionally independent with TSn = g, n ∈ N, then for each j = 0, 1, . . . ,

TPSn=jee→
gj

j!
e−g,

e-uniformly as n→∞.
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Proof. From (5.2),

TPSn=jee =
n!

j!(n− j)!
gjn(e − gn)

n−j ,

but (5.1) gives g = TSn = ngn. Hence

TPSn=jee =
n!

j!(n− j)!

( g
n

)j (
e− g

n

)n−j

,

which can be expanded to give(
e− g

n

)j
TPSn=jee =

gj

j!

(
1− 1

n

)(
1− 2

n

)
· · ·
(
1− j − 1

n

)(
e− g

n

)n
. (5.10)

Taking the limit as n→∞ in (5.10) gives

TPSn=jee =
gj

j!
lim
n→∞

(
e − g

n

)n
,

which together with Remark 5.5 concludes the proof. �
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Involutions and Complex Structures
on Real Vector Lattices

Zalina Kusraeva

Abstract. The purpose of this note is to show the existence of a band pre-
serving complex structure and nontrivial band preserving involution in a uni-
versally complete vector lattice without locally one-dimensional bands.

Mathematics Subject Classification (2010). Primary 47B60; Secondary 47A99,
46A40.

Keywords. Involution, complex structure, universally complete vector lattice,
d-basis, band projection, locally one-dimensional vector lattice.

A linear operator T on a vector lattice E is called involutory or an involution
if T ◦ T = IE (or, equivalently, T−1 = T ) and is called a complex structure if
T ◦ T = −IE (or, equivalently, T−1 = −T ). The operator P − P⊥, where P is
a projection operator on E and P⊥ = IE − P , is an involution. The involution
P − P⊥, where P is a band projection is referred to as trivial . The main result
of this note tells us that in a real universally complete vector lattice without
locally one-dimensional bands there are band preserving complex structures and
nontrivial band preserving involutions.

Theorem 1. Let E be a universally complete real vector lattice without locally
one-dimensional bands (see Def. 2). Then the following assertions hold:

(1) For every finite collection {x1, . . . , xn} ⊂ E there exists a nontrivial band
preserving involution T on E such that T (xi) = xi for all i = 1, . . . , n.

(2) There exists a band preserving complex structure on E.

Recall that a linear operator on E is said to be band preserving if it leaves
every band invariant. If E is a vector lattice with a projection property, then
a linear operator in E is band preserving if and only if it commutes with all
band-projections. A universally complete vector lattice is a vector lattice, which is
Dedekind complete and laterally complete. For the theory of vector lattices and
positive operators we refer to the book [4].

Supported by a grant from Russian Foundation for Basic Research, project No. 09-01-00442.
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Definition 2. Let E be a universally complete vector lattice. A subset E ⊂ E is
called d-independent, if for each band projection ρ on E the set {ρe : ρe �= 0, e ∈ E}
is linearly independent, that is, the collection of all non-zero members of the set ρE
is linearly independent. Any maximal (by inclusion) set of d-independent vectors
is called a d-basis. A universally complete vector lattice E is called locally one-
dimensional if {1} is a d-basis in E.

Using the Hamel basis, it can be proved that there exists an additive invo-
lution on R, see Kuczma [6]. For the proof of Theorem 1 we carry out similar
constructions making use of d-basis instead of the Hamel basis. Before launch-
ing into details we state some needed properties of d-bases from Abramovich and
Kitover [1].

Lemma 3. Let E be a fixed d-basis in a universally complete vector lattice E. Then
for each x ∈ E there exists a full collection (ρξ)ξ∈Ξ of pairwise disjoint band
projections (depending on x) the following representation holds:

x =
∑
ξ∈Ξ

∑
e∈E

αξ,eρξe, (1)

where αξ,e are some scalars (depending on x), such that for each ξ only a finite
number of coefficients αξ,e may be nonzero.

Proof. See [1, p. 33] and [7, Proposition 5.1.1.(3)]. �
The expression (1) is called a d-expansion of x with respect to d-basis E . A

d-expansion is not unique, as we always can subdivide any projection band Ei into
the direct sum of two complementary projection bands.

Theorem 4. If E is a universally complete vector lattice, then for each non-zero
band B in E there is a non-zero band B0 ⊆ B such that there exists a d-basis in
B0 consisting of weak units in B0.

Proof. See [1, Theorem 6.4]. �
Theorem 5. Let E be a d-basis in a universally complete vector lattice consisting
of weak units. Then either E is a singleton, or E is of infinite cardinality.

Proof. See [1, Theorem 6.8]. �
Lemma 6. Let E be a universally complete vector lattice with a full collection
of pairwise disjoint bands (Eξ)ξ∈Ξ. If Tξ : Eξ → Eξ is a band preserving linear
operator for all ξ ∈ Ξ, then there exists a unique band preserving linear operator
T : E → E such that T |Eξ

= Tξ.

Proof. Define the operator T on E as

Tx :=
∑
ξ

Tξxξ (x ∈ E),

where xξ ∈ Eξ, πξx = πξxξ (ξ ∈ Ξ), and π is a band projection corresponding to
Eξ. Obviously, T is a sought operator. �
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The following result was obtained by Abramovich and Kitover in [1, Theorem
14.9] and by McPolin and Wickstead in [8, Theorem 3.2].

Theorem 7. A universally complete vector lattice is locally one-dimensional if and
only if every band preserving liner operator in it is order bounded.

Lemma 8. Let E be Dedekind complete vector lattice. Then there is no order-
bounded band preserving complex structure in E and there is no nontrivial order-
bounded band preserving involution in E.

Proof. An order-bounded band preserving operator T on a universally complete
vector lattice E with weak unit 1 is a multiplication operator: Tx = ax (x ∈ E) for
some a ∈ E. It follows that T is an involution if and only if a2 = 1 and hence there
is a band projection P on E with a = P1−P⊥1 or T = P −P⊥. If T is a complex
structure on E then the corresponding equation a2 = −1 has no solution. �

Now we are ready to give the proof of Theorem 1.

Proof. Step 1. According to Theorem 4 there exists a full family of pairwise disjoint
non-zero band (Bξ) in E each of which has a d-basis consisting of weak units. In
view of Lemma 6 there is no loss of generality in assuming that there exists a
d-basis in E, consisting of weak units.

Step 2. Consider a finite set {x1, . . . , xn} ∈ E. According to Lemma 3 each of
xi ∈ E has its own partition of unity that guarantee the d-expansion (1) for xi

(i = 1, . . . , n). Refining these partitions of unity we can choose a common partition
of unity (ρξ) guaranteeing d-expansion for every x1, . . . , xn:

xi =
∑
e∈E

α
(i)
ξ,eρξe, (2)

where Ei := {e ∈ E : α
(i)
ξ,e �= 0} is finite set. Put E0 =

⋃n
i=1 Ei. Since Ei is finite, so

is also E0. Hence E \ E0 is infinite. There exists a decomposition:

E \ E0 = E1 ∪ E2,
with E1 ∩ E2 = ∅ and cardE1 = cardE2. So we have E = E0 ∪ E1 ∪ E2. Hence there
exists a one-to-one mapping g from E1 onto E2. Thus the function g−1 is defined
on E2 and maps E2 onto E1.
Step 3. Now we define an operator T : E → E as follows:

T (e) =

⎧⎪⎨⎪⎩
g(e), for e ∈ E1,

g−1(e), for e ∈ E2,
e, for e ∈ E0.

Next, we define T (πe) = πTe for all π ∈ P(E) and e ∈ E . In particular, g(πe) =
πg(e) (e ∈ E1) and g−1(πe) = πg−1(e) (e ∈ E2) by definition. Finally, if x ∈ E has
two distinct d-expansions (1), we put

Tx =
∑
ξ∈Ξ

(∑
e∈E0

αξ,eρξe+
∑
e∈E1

αξ,eρξg(e) +
∑
e∈E2

αξ,eρξg
−1(e)

)
. (3)
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The definition of T is found. Indeed, if x has two distinct d-expansions of the
form (1) with two different partitions of unity (πη) and (ρξ), the two values of Tx
defined by (3) using these partitions of unity, coincide with the value of Tx defined
by (3) using the common refinement (πηρξ) of given partitions of unity.

To ensure that so-constructed operator T is band preserving we have to show
that T commutes with every band projection:

πTx =
∑
ξ∈Ξ

(∑
e∈E0

αξ,eρξπe+
∑
e∈E1

αξ,eρξg(πe) +
∑
e∈E2

αξ,eρξg
−1(πe)

)
= T (πx).

In a view of (2) xi =
∑

e∈E0
α
(i)
ξ,eρξe and therefore Txi =

∑
e∈E α

(i)
ξ,eρξTe = xi,

since Te = e for e ∈ E0. Check that T is involutory. Taking into account that
Tg(e) = e if e ∈ E1 and Tg−1(e) = e if e ∈ E2, we deduce:

ρξT
2x = T

(∑
e∈E0

αξ,eρξe+
∑
e∈E1

αξ,eρξg(e) +
∑
e∈E2

αξ,eρξg
−1(e)

)
=
∑
e∈E0

αξ,eρξTe+
∑
e∈E1

αξ,eρξTg(e) +
∑
e∈E2

αξ,eρξTg
−1(e) = ρξx.

By Lemma 6 we have T 2x = x for all x ∈ X .

Step 4. The proof of the second part is similar. One have to repeat Step 1 and
Step 3. The only difference is that E0 = ∅ and the operator T is defined by

T (e) =

{
−g(e), for e ∈ E1,
g−1(e), for e ∈ E2.

Next, we put T (πe) = πTe for all π ∈ P(E) and e ∈ E . Given a d-expansion (1)
of x ∈ E we define Tx by (3) without the first sum in parentheses. By the same
reasons T is a band preserving operator. Finally, T 2 = −IE , since

ρξT
2x = T

(
−
∑
e∈E1

αξ,eρξg(e) +
∑
e∈E2

αξ,eρξg
−1(e)

)
= −

∑
e∈E1

αξ,eρξTg(e) +
∑
e∈E2

αξ,eρξTg
−1(e) = −ρξx

holds for all ξ. The proof is complete. �

Now we will state two immediate corollaries from Theorem 1. The first one is
related to theWickstead problem raised in [10]: Is any band preserving linear opera-
tor in a vector lattice automatically order bounded? An overview of the main ideas
and results on the Wickstead problem and its variations, focusing primarily on the
case of band preserving operators in a universally complete vector lattice see in [5].

Corollary 9. Let E be a universally complete vector lattice. Then the following are
equivalent:

(1) E contains a locally one-dimensional band.
(2) There is no nontrivial band preserving involution on E.
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(3) There is no band preserving complex structure on E.

Proof. The sufficiency of (1) is immediate from Theorem 1, while the necessity
follows from Theorem 7 and Lemma 8. �
Corollary 10. Let E be a universally complete real vector lattice without one-
dimensional bands. Then E admits a structure of complex vector space with a
band preserving complex multiplication.

Proof. A complex structure T on E allows to define on E a structure of vector
space over the field of complex numbers C, by setting (α + iβ)x = αx + βT (x)
for all z = α + iβ ∈ C and x ∈ E. If T is band preserving then the map x �→ zx
(x ∈ E) is evidently band preserving for all z ∈ C. �
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Banach Space-valued Extensions
of Linear Operators on L∞

Nick Lindemulder

Abstract. Let E and G be two Banach function spaces, let T ∈ L(E, Y ),
and let 〈X,Y 〉 be a Banach dual pair. In this paper we give conditions
for which there exists a (necessarily unique) bounded linear operator TY ∈
L(E(Y ), G(Y )) with the property that

〈x, TY e〉 = T 〈x, e〉, e ∈ E(Y ), x ∈ X.

The first main result states that, in case 〈X,Y 〉 = 〈Y ∗, Y 〉 with Y a
reflexive Banach space, for the existence of TY it sufficient that T is dominated
by a positive operator. We furthermore show that for Y within a wide class of
Banach spaces (including the Banach lattices) the validity of this extension
result for E = �∞ and G = K even characterizes the reflexivity of Y .

The second main result concerns the case that T is an adjoint opera-
tor on L∞(A): we assume that E = L∞(A) for a semi-finite measure space
(A,A , μ), that 〈F,G〉 is a Köthe dual pair, and that T is σ(L∞(A), L1(A))-
to-σ(G,F ) continuous. In this situation we show that TY also exists provided
that T is dominated by a positive operator. As an application of this result
we consider conditional expectation on Banach space-valued L∞-spaces.

Mathematics Subject Classification (2010). Primary 46E40; Secondary 46E30,
46B10.

Keywords. Adjoint operator, Banach function space, Banach limit, conditional
expectation, domination, dual pair, L∞, positive operator, vector-valued ex-
tension, reflexivity, Schauder basis.

1. Introduction

Given two measure spaces (A,A , μ) and (B,B, ν), p, q ∈ [1,∞], a bounded lin-
ear operator T ∈ L(Lp(A), Lq(B)), and a Banach space Y , one can ask the
question whether T has a Y -valued extension TY ∈ L(Lp(A;Y ), Lq(B;Y )) in
the sense that there exists a (necessarily unique) bounded linear operator TY ∈
L(Lp(A;Y ), Lq(B;Y )) satisfying

〈TY f, y
∗〉 = T 〈f, y∗〉, f ∈ Lp(A;Y ), y∗ ∈ Y ∗. (1.1)
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Note that TY (if it exists) extends the tensor extension T ⊗ IY of T , which is
the linear operator from the algebraic tensor product Lp(A) ⊗ Y to the algebraic
tensor product Lq(B) ⊗ Y determined by the formula

(T ⊗ IY )(f ⊗ y) = Tf ⊗ y, f ∈ Lp(A), y ∈ Y.

For p ∈ [1,∞[ it holds that Lp(A) ⊗ Y is dense in Lp(A;Y ), so that TY is
just the unique extension of T ⊗ IY to a bounded linear operator from Lp(A;Y )
to Lq(B;Y ). It is well known that, in this case, the extension TY exists if T
is dominated by a positive operator (i.e., there exists a positive operator S ∈
L(Lp(A), Lq(B)) such that |Tf | ≤ S|f | for all f ∈ Lp(A)) or Y is (isomorphic
to) a Hilbert space; this can, for instance, be found in [16, Subsection 4.5.c] (also
see [15]). Another extension result says that, if p = q ∈ [1,∞[, A = B, and Y is
isomorphic to a closed linear subspace of a quotient of a space Lp(C), then the
extension TY exists for every T ∈ L(Lp(A)); see [19]. There also exist examples
in which TY does not exist. In fact, for some operators T the existence of the
Y -valued extension TY characterizes Y as being isomorphic to a Hilbert space or
characterizes different geometric properties of the Banach space Y ; for example, the
fact that the Fourier–Plancherel transform F on L2(Rd) has a Y -valued extension
FY on L2(Rd;Y ) if and only if Y is isomorphic to a Hilbert space is due to Kwapién
[23], and the characterization of the UMD Banach spaces as those Banach spaces
for which the Hilbert transform (on Lp(Rd)) has an extension to a bounded linear
operator on Lp(Rd;Y ) for some/all p ∈]1,∞[ is due to Burkholder [8] (sufficiency
of UMD) and Bourgain [5] (necessity of UMD) (see also the survey paper [9]). For
Banach space-valued extension results for singular integral operators (in the UMD
setting) we refer to [20] (and the references therein).

It seems that the extension problem (1.1) has not been considered in the
literature for p =∞. In this paper we will obtain analogues for p =∞ of the just
mentioned results for p < ∞ about Banach space-valued extensions of operators
dominated by a positive operator and Hilbert space-valued extensions of arbitrary
bounded linear operators; we will in fact consider the extension problem in more
general settings then discussed in this introduction. In the Banach space setting
we will mainly consider the extension problem in two directions.

The first direction is concerned with Y -valued extensions T for Y a reflexive
Banach space, with as main result in this direction (Theorem 3.6) the existence
of TY plus a norm estimate in case that T is dominated by a positive operator.
Via a result of Zippin [32], which says that every separable reflexive Banach space
embeds into a reflexive Banach space with a Schauder basis, we can reduce the
situation to the case that Y is a reflexive Banach space with a Schauder basis. This
basis can then be used to define TY . We show that for the special case A = N,
B = {0}, so that L∞(A) = �∞ and Lq(B) = K (the scalar field), and Y ∈ {c0, �1},
the extension TY fails to exist when T ∈ L(�∞,K) = (�∞)∗ is a Banach limit (so in
particular T ≥ 0). As a consequence of a generalization of a classical result due to
Lozanovski on the reflexivity on Banach lattices we find that, given a Banach limit
T ∈ L(�∞,K), for Y within a large class of Banach spaces (including the Banach



Banach Space-valued Extensions of Linear Operators on L∞ 283

lattices), Y is reflexive if and only if the Y -valued extension TY ∈ L(�∞(Y ), Y ) of
T exists (Corollary 3.12).

In the second direction we consider arbitrary Y under the additional assump-
tion that T is an adjoint operator. To be more precise, suppose that (A,A , μ) and
(B,B, ν) are both σ-finite and that q ∈]1,∞], so that we have canonical isometric

isomorphisms L∞(A) ∼= (L1(A))∗ and Lq(B) ∼= (Lq′(B))∗ (with 1
q + 1

q′ = 1). Let

T = S∗ ∈ L(Lp(A), Lq(B)) be the adjoint of S ∈ L(Lq′(B), L1(A)) and let Y be
an arbitrary Banach space. As the main result (Theorem 3.13) in this direction
we will show, in case that T is dominated by a positive operator, the existence of
both TY and SY ∗ together with norm estimates plus the adjoint relation∫

B

〈TY f, g〉 dν =

∫
A

〈f, SY ∗g〉 dμ, f ∈ L∞(A;Y ), g ∈ Lq′(B;Y ∗).

The idea is to first obtain SY ∗ by bounded extension of S ⊗ IY ∗ and then show
that the Banach space adjoint (SY ∗)∗ of this extension restricts to an operator

L∞(A;Y ) ⊂ (L1(A;Y ∗))∗ −→ Lq(B;Y ) ⊂ (Lq′(B;Y ∗)), which is the desired
extension TY . An example and motivation for this extension problem is the con-
ditional expectation operator on Banach space-valued L∞-spaces.

The paper is organized as follows. In Section 2 we will first treat some neces-
sary preliminaries. In Section 3 we present the results of this paper, with a formu-
lation of the general extension problem and some basics, in the second subsection
the extension problem for reflexive Y , in the third subsection the extension prob-
lem of adjoint operators on L∞ for general Banach dual pairs, and in the fourth
(and last) subsection the extension problems in the Hilbert space setting. Next,
the proof of Theorem 3.13 is given in Section 4. Finally, as an application and
motivation, we consider the conditional expectation operator on Banach-valued
L∞-spaces in Section 5.

Conventions and notations. Throughout this paper we fix a field K ∈ {R,C} and
assume that all spaces are over this field K. For a normed space X we denote by
BX its closed unit ball. We furthermore write �p = �p(N), 1 ≤ p ≤ ∞. For two
Banach lattices E and F we denote by M(E,F ) the set of all linear operators
from E to F which are dominated by a positive operator.

2. Preliminaries

2.1. Banach dual pairs

For the general theory of dual systems we refer to [27].

A Banach duality (pairing) between two Banach spacesX and Y is a bounded
bilinear form 〈 · , · 〉 : X × Y −→ K for which the induced linear maps x �→
〈x, · 〉, X −→ Y ∗ and y �→ 〈 · , y〉, Y −→ X∗ are injections. A Banach dual pair
is a triple (X,Y, 〈 · , · 〉) consisting of two Banach spaces X and Y together with
Banach duality 〈 · , · 〉 between them. We write 〈X,Y 〉 = (X,Y, 〈 · , · 〉). We call a
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Banach dual pair 〈X,Y 〉 norming if

‖x‖ = supy∈BY
〈x, y〉 and ‖y‖ = supx∈BX

〈x, y〉.
Note that in this case X can be viewed as a closed subspace of Y ∗ and Y can be
viewed as a closed subspace of X∗.

Let 〈X,Y 〉 be a Banach dual pair. Then the locally convex Hausdorff topology
on X generated by the family of seminorms { |〈 · , y〉| }y∈Y is called the weak topol-
ogy on X generated by the pairing 〈X,Y 〉 and is denoted by σ(X,Y ). The weak
topology on Y generated by 〈X,Y 〉 is defined similarly and is denoted by σ(Y,X).
The topological dual of (X, σ(X,Y )) and (Y, σ(Y,X)) are Y and X , respectively;
that is, (X, σ(X,Y ))′ = {〈 · , y〉 | y ∈ Y } and (Y, σ(Y,X))′ = {〈x, · 〉 | x ∈ X}. We
shall always make the identifications (X, σ(X,Y ))′ = Y and (Y, σ(Y,X))′ = X .

A linear subspace Z of Y is σ(Y,X) dense in Y if and only if Z separates the
points of X , i.e., for every nonzero x ∈ X there exists a z ∈ Z with 〈x, z〉 �= 0.

Recall that σ(X,X∗) is called the weak topology on X and that σ(X∗, X) is
called the weak∗ topology on X∗.

Suppose that we are given two Banach dual pairs 〈X1, Y1〉 and 〈X2, Y2〉 and
a linear operator S from X1 to X2. Viewing Yi as vector subspace of the algebraic

dual X#
i of Xi (i = 1, 2), S is continuous as an operator S : (X1, σ(X1, Y1)) −→

(X2, σ(X2, Y2)) if and only if its algebraic adjoint S# maps Y2 into Y1; we say
that S is σ(X1, Y1)-to-σ(X2, Y2) continuous. In this situation, the restriction S′ :
Y2 −→ Y1 of S# is called the adjoint of S with respect to the dualities 〈X1, Y1〉
and 〈X2, Y2〉, and it is a σ(Y2, X2)-to-σ(Y1, X1) continuous linear operator whose
adjoint is S′′ = (S′)′ = S. The operators S and S′ are automatically bounded
operators as a consequence of the closed graph theorem. Finally, note that if we
a priori know S to be bounded and view Yi as vector subspace of the norm dual
X∗

i of Xi (i = 1, 2), then S is σ(X1, Y1)-to-σ(X2, Y2) continuous if and only if its
Banach space adjoint S∗ maps Y2 into Y1.

2.2. Duality and Schauder bases for Banach spaces

In Subsection 3.1 we will use Schauder bases in order to define Banach space-
valued extensions of linear operators; for the basis of the theory of Schauder bases
we refer to [2]. The following well-known facts will be important for us in this
direction.

Fact 2.1.
(I) Let X be a Banach space. If X has Schauder basis {bn}n∈N, then X is reflexive

if and only if {bn}n∈N is both boundedly complete and shrinking.
(II) Every separable reflexive Banach space is isomorphic to a closed linear sub-

space of a reflexive Banach space with a Schauder basis.
(III) Let X be a closed linear subspace of a Banach lattice E. If X is complemented

in E or E has an order-continuous norm, then the following statements are
equivalent:
(a) X is reflexive.
(b) X does not have linear subspaces isomorphic to c0 or �1.
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A reference for (I) is [2, Theorem 3.2.13]. (II) is due to Zippin [32]. (III)
is a generalization due to Tzafriri and Meyer-Nieberg of a result of Lozanovski
about the reflexivity of Banach lattices; see [30] (and the references therein). For
a version of this reflexivity result for finitely generated Banach C(K)-modules we
refer to [21].

2.3. Riesz spaces and Banach lattices

For to the theory of Riesz spaces and Banach lattices we refer to the books [3],
[26]. Let us recall the following notation, definitions and facts.

Given a measure space (A,A , μ), we denote by L0(A) = L0(A,A , μ;K) the
K-Riesz space of all μ-a.e. equivalence classes of K-valued A -measurable functions
on A with its natural lattice operations.

We say that a linear operator T : E −→ F between two Banach lattices is
dominated by a positive operator S ∈ L(E,F ) if it holds that |Te| ≤ S|e| for all
e ∈ E; we also say that S is a dominant for T and we write T � S. We denote by
maj(T ) the set of all dominants of T ; then maj(T ) ⊂ Lb(E,F )+. If there is a least
element in maj(T ) with respect to the ordering of Lb(E,F ) then it is called the
least dominant of T and is denoted by |T |. We denote by M(E,F ) the space of
all linear operators T : E −→ F for which maj(T ) �= ∅. Then M(E,F ) ⊂ L(E,F ).
For T ∈M(E,F ) we define

‖T ‖M(E,F ) := inf{ ‖S‖ : S ∈ maj(T )}.

Then ‖T ‖ ≤ ‖T ‖M(E,F ) for all T ∈ M(X,Y ) and ‖T ‖M(E,F ) = ‖ |T | ‖ whenever

|T | exists; in particular ‖T ‖ = ‖T ‖M(E,F ) when T ≥ 0.

A linear operator T : E −→ F between two Banach lattices is called regular
if it is a linear combination of positive operators. We denote by Lr(E,F ) the space
of all such operators. Then we have Lr(E,F ) ⊂M(E,F ) ⊂ L(E,F ) and we write
‖T ‖r := ‖T ‖M(E,F ) for T ∈ Lr(E,F ). If F is Dedekind complete, then we have

Lr(E,F ) = M(E,F ).

A Banach lattice E is called a KB-space (Kantorovich–Banach space) if every
increasing norm bounded sequence of E+ is norm convergent. It is not difficult to
see that a Banach lattice E is a KB-space if and only if every increasing norm
bounded net of E+ is norm convergent. Every reflexive Banach lattice is an exam-
ple of a KB-space. Another example is the Lebesgue space L1(A).

A Banach lattice E is said to have a Levi norm if every increasing norm
bounded net of E+ has a supremum in E. When this property only holds for
sequences, then we say that E has a sequentially Levi norm. KB-spaces are ex-
amples of Banach lattices having a Levi norm. An other example is L∞(A) on
a Maharam measure space (A,A , μ); see the next subsection for the notion of
Maharam measure space. Note that a Banach lattice with a Levi norm must be
Dedekind complete.

A Banach lattice E is said to have a Fatou norm if supα ‖xα‖ = ‖x‖ whenever
{xα}α ⊂ E is an increasing net with supremum x.
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2.4. Measure theory

General measure theory. For the content of this paragraph we refer to [13].
A measure space (A,A , μ) is called

• semi-finite if for every B ∈ A with μ(B) > 0 there exists a C ⊂ B,C ∈ A
with 0 < μ(C) <∞;

• decomposable (or strictly localizable)1 if there exists a family {Ai}i∈I of pair-
wise disjoint sets in A such that μ(Ai) ∈]0,∞[ for all i ∈ I, and for each
B ∈ A of finite measure there exists countable subset I0 ⊂ I of indices and
a μ-null set N ∈ A such that A =

⋃
i∈I0

(B ∩ Ai) ∪N ;

• Maharam (or localizable) if it is semi-finite and if for every E ⊂ A there is a
H ∈ A such that (i) E \H is negligible for every E ∈ E and (ii) if G ∈ A
and E \G is negligible for every E ∈ E , then H \G is negligible.

Regarding the relation between the different types of measure spaces, the following
chain of implications holds true [13, Theorem 211L]:

σ-finite =⇒ decomposable =⇒ Maharam =⇒ semi-finite. (2.1)

A more elegant equivalent definition of Maharam measure space is via the measure
algebra of (A,A , μ), which is obtained from A by identifying sets which are μ-a.e.
equal: a measure space is Maharam if and only if its measure algebra is Maharam,
i.e., is a semi-finite measure algebra which is Dedekind complete as a Boolean
algebra (see [12] and [14]).

The canonical linear map g �→ Λg, L
∞(A) −→ (L1(A))∗ is an injection if and

only if (A,A , μ) is semi-finite, in which case it is an isometry, and this map is a
bijection if and only if (A,A , μ) is Maharam, in which case it is an isometric iso-
morphism; see [13, Theorem 243G]. The sufficiency of Maharamness in the latter
statement is in fact a special case of Fact 2.2. Another important characterization
of the Maharam measure spaces among the semi-finite measure spaces is [13, The-
orem 241.G.(b)]: a semi-finite measure space (A,A , μ) is Maharam if and only if
L0(A) is Dedekind complete.
Banach space-valued measurability. Let (A,A , μ) be a measure space and let X
be a Banach space.

We denote by

St(A;X) :=

{ n∑
j=1

1Aj ⊗ xj : Aj ∈ A disjoint , xj ∈ X

}
the vector space of X-valued step functions; here we use the usual notational
convention to view, given a function f : A −→ K, f ⊗ x as the function a �→
f(a)x, A −→ X . A function f : A −→ X is called strongly measurable if it is
the pointwise limit of a sequence (fk)k∈N ⊂ St(A;X); it can be shown that the
sequence (fk)k can be chosen such that ‖fk‖X ≤ ‖f‖X . The well-known Pettis
measurability theorem says that a function f : A −→ X is strongly measurable

1Such measure spaces are also said to satisfy the direct sum property.
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if and only if f is separably valued and 〈f, x∗〉 is measurable for all x∗ in some
weak∗ dense subspace Z of X∗; consequently, if f : A −→ X is strongly measurable
and takes its values in a closed linear subspace Y of X , then f is also strongly
measurable as a function A −→ Y . We denote by L0(A;X) the vector space of all μ-
a.e. equivalence classes of strongly measurable functions f : A −→ X . We also view
L0(A;X) as the vector space of all μ-a.e. equivalence classes of functions g : A −→
X which are μ-a.e. equivalent to a strongly measurable function on f : A −→ X .

2.5. Banach function spaces

For the theory of Banach function spaces we refer to [31], [26] (σ-finite measure
spaces) and [12], [14] (general measure spaces and, in particular, Maharammeasure
spaces).

A Banach function space on (A,A , μ) is an ideal E of L0(A) which is
equipped with a Banach lattice norm. Note that each Banach function space is
σ-Dedekind complete, being an ideal in the σ-Dedekind complete L0(A). Examples
of Banach function spaces are the Lp-spaces (p ∈ [1,∞]), Orlicz spaces, Lorentz
spaces, and Marcienkiewicz spaces.

A Köthe dual pair (of Banach function spaces) on (A,A , μ) is a Banach dual
pair 〈E,F 〉 consisting of two Banach functions spaces E and F on (A,A , μ) with
E · F ⊂ L1(A) for which the pairing 〈 · , · 〉 is given by

〈e, f〉 =
∫
A

fg dμ, e ∈ E, f ∈ F.

Observe that the induced linear maps e �→ 〈e, · 〉, E −→ F ∗ and f �→ 〈 · , f〉, F −→
E∗ are lattice isomorphisms onto their images. Examples of Köthe dual pairs are
〈L1(A), L∞(A)〉 for (A,A , μ) semi-finite or 〈Lp(A), Lp′

(A)〉 for p, p′ ∈]1,∞[, 1
p +

1
p′ = 1; these two examples are even norming.

The Köthe dual of a Banach function space E on (A,A , μ) is the ideal E×

of L0(A) defined by

E× := {f ∈ L0(A) : fe ∈ L1(A) ∀e ∈ E},
and is equipped with the seminorm

‖f‖E× := sup

{ ∣∣∣∣∫
A

fe dμ

∣∣∣∣ : e ∈ E, ‖e‖ ≤ 1

}
.

Suppose that (A,A , μ) is Maharam. Then every Banach function space E on
(A,A , μ) is Dedekind complete, being an ideal in the Dedekind complete L0(A),
and has a well-defined support or carrier supp(E) in A, which is the smallest set
supp(E) (with respect to μ-a.e. inclusion) such that every e ∈ E vanishes μ-a.e.
on A\ supp(E). It holds that supp(E) = A if and only if E is order dense in L0(A)
if and only if for every B ∈ A there exists a C ∈ A such that C ⊂ A, μ(C) > 0,
and 1C ∈ E. In situation we have the following important duality result:

Fact 2.2. Suppose that E is a Banach function space on the Maharam measure
space (A,A , μ) having full carrier (i.e., supp(E) = A). Then E× is a Banach
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function space on (A,A , μ) with supp(E×) = A and 〈E,E×〉 is a Köthe dual
pair on (A,A , μ) for which the image of f �→ 〈 · , f〉, E× −→ E∗ is the band of
order-continuous functionals in E∗. In particular, f �→ 〈 · , f〉, E× −→ E∗ is an
isometric lattice isomorphism if and only if E has an order-continuous norm.

Note that E = L∞(A) does in general not have an order-continuous norm,
in which case the norm dual (L∞(A))∗ has functionals which are not order con-
tinuous, or equivalently, functionals which do not belong to the Köthe dual
(L∞(A))× = L1(A). In the special case of the counting measure space (A,A , μ) =
(N,P(N),#), so that E = �∞, examples of linear functionals belonging to (�∞)∗\�1
are the so-called Banach limits, whose existence can be established using Hahn–
Banach (see [10, Section III.7]).

Definition 2.3. A bounded linear functional Λ ∈ (�∞)∗ is called a Banach limit if
it has the following properties:

(a) If {xn}n∈N ∈ �∞ is a convergent sequence with limit x (as n → ∞), then
Λ({xn}n∈N) = x.

(b) Λ is positive.
(c) Λ({xn}n∈N) = Λ({xn+1}n∈N) for all {xn}n∈N ∈ �∞.

We will use Banach limits as a counterexample to the extension problem in
Subsection 3.2; see Example 3.10.

2.6. Köthe–Bochner spaces

Given a Banach function space E on a measure space (A,A , μ), we define the
vector space

E(X) := {f ∈ L0(A;X) : ‖f‖X ∈ E}.
Endowed with the norm ‖f‖ := ‖‖f‖X‖E , E(X) becomes a Banach space which

is called the Köthe–Bochner space associated with E and X . We denote by E⊗̃X
the closure of E ⊗ X in E(X); recall that we use the usual convention to view
e ⊗ x as the function a �→ e(a)x. We have E(X) = E⊗̃X provided that E has an
order-continuous norm; in fact, it is not difficult to show that the linear subspace

StE(A;X) :=

⎧⎨⎩
n∑

j=1

1Aj ⊗ xj : Aj ∈ A disjoint , 1Aj ∈ E, xj ∈ X

⎫⎬⎭
= St(A;X) ∩ E(X)

of step functions which are in E(X) is already dense in E(X) provided that E
has an order-continuous norm (see [18]). We would like to mention that there are
several cross-norms on E⊗X which coincide with the restricted norm coming from
E(X) (see [18] and the references therein).

Observe that for E = Lp(A) (p ∈ [1,∞]) we get the usual Lebesgue–Bochner
space E(X) = Lp(A;X).
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If 〈X,Y 〉 is a Banach dual pair and 〈E,F 〉 a Köthe dual pair on (A,A , μ),
then 〈E(X), F (Y )〉, 〈E⊗̃X,F (Y )〉, 〈E(X), F ⊗̃Y 〉 and 〈E⊗̃X,F ⊗̃Y 〉 are Banach
dual pairs under the pairing

〈e, f〉 = 〈e, f〉〈E(X),F (X)〉 :=
∫
A

〈e(a), f(a)〉〈X,Y 〉 dμ(a);

in fact E⊗X and F ⊗Y are already separating for F (Y ) and E(X), respectively.
Suppose that 〈X,Y 〉 is norming. If 〈E,F 〉 = 〈L1(A), L∞(A)〉 with (A,A , μ)

semi-finite or 〈E,F 〉 = 〈Lp(A), Lp′
(A)〉 with 1 < p, p′ < ∞, 1

p + 1
p′ = 1, then the

Banach dual pair 〈E(X), F (Y )〉 is norming; note that for the latter it suffices to
consider the σ-finite case. In the case of a semi-finite measure space (A,A , μ) it
can in fact be shown (with a slight modification of the proof of [6, Theorem 1.1])
that, if 〈E,F 〉 is a norming Köthe dual pair on A, then the dual pair 〈F (X), E(Y )〉
is norming as well.

2.7. Banach space-valued extensions of linear operators
between Banach function spaces

Given two Banach function spaces E and G, a bounded linear operator S from
E to G and a Banach space X , we can define the tensor extension S ⊗ IX from
E ⊗X to G⊗X as the linear operator determined by the formula

(S ⊗ IX)(f ⊗ x) := Sf ⊗ x, f ∈ E, x ∈ X.

It is a natural question whether S⊗ IX extends to a bounded linear operator from
E⊗̃X to G⊗̃X ; recall that F ⊗̃X denotes the closure of F ⊗X in F (X) when F
is a Banach function space. If S � R for a positive operator R ∈ L(E,G) (R ≥ 0
dominates S), then it can be shown that

‖(S ⊗ IX)e‖X ≤ R ‖e‖X (2.2)

for all f ∈ E ⊗X (cf. Lemma 2.3 of [17]), from which it is immediate that:

Fact 2.4. Let S be a bounded linear operator between two Banach function spaces
E and G and let X be a Banach space. If S ∈M(E,G) (i.e., S is dominated by a
positive operator), then S⊗IX has a unique extension to a bounded linear operator
SX from E⊗̃X to G⊗̃X of norm ‖SX‖ ≤ ‖S‖M(E,G).

Note that if E has an order-continuous norm, so that E⊗̃X = E(X) (i.e.,
E⊗X is dense in E(X)), then the fact says that, for every S ∈M(E,G), the tensor
extension S ⊗ IX extends to a bounded linear operator SX ∈ L(E(X), G(X)), or
equivalently, there exists a (necessarily unique) bounded linear operator SX ∈
L(E(X), G(X)) with the property that

〈SXe, x∗〉 = S〈e, x〉, e ∈ E(X), x∗ ∈ X∗.

The aim of this paper is to obtain analogues of this extension result (in the latter
formulation) for E not (necessarily) having an order-continuous norm, with as
main interest E = L∞(A). Our two main results in this direction are Theorem 3.6
and Theorem 3.13.
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In case G has a Levi norm (so that G must be Dedekind complete and thus
M(E,G) = Lr(E,G)) the converse of the above fact holds as well and is an easy
consequence of the fact taken from [7] that, in this case, S is regular if and only if
there exists a constant C ≥ 0 such that, for all e1, . . . , eN ∈ E,∥∥∥∥∥

N∑
n=1

|Sen|
∥∥∥∥∥
G

≤ C

∥∥∥∥∥
N∑

n=1

|en|
∥∥∥∥∥
E

.

Fact 2.5. Let S be a bounded linear operator between two Banach function spaces F
and G of which G has a Levi norm. Then the following assertions are equivalent.

(a) S is regular;
(b) S ⊗ I�1 has an extension to (a necessarily unique) bounded linear operator

S�1 ∈ L(E⊗̃�1, G⊗̃�1);
(c) S ⊗ IX has an extension to (a necessarily unique) bounded linear operator

SX ∈ L(E⊗̃X,G⊗̃X) for every Banach space X.
In this situation we have ‖SX‖ ≤ ‖S‖r ≤ ‖S�1‖.
In case that X = H is a Hilbert space, E = Lp1(A) and G = Lp2(B) with

1 ≤ p1, p2 < ∞, we do not need to impose any restrictions on the operator S
for S ⊗ IH to have a bounded extension. This result was proved in the 1930’s by
Marcinkiewicz and Zygmund using Gaussian techniques [25]: in fact, there exists

a constant 0 < K ≤ max{ ‖γ‖p1‖γ‖p2
, 1}, where γ denotes a standard Gaussian random

variable, such that, for all operators S ∈ L(Lp1(A), Lp2(B)), S⊗IH has a bounded
extension SH ∈ L(Lp1(A;H), Lp2(B;H)) of norm ‖SH‖ ≤ K ‖S‖ for any Hilbert
space H , or equivalently, we have the following square function estimate∥∥∥∥∥∥

(
n∑

k=1

|Sen|2
)1/2

∥∥∥∥∥∥
Lp2(B)

≤ K ‖S‖

∥∥∥∥∥∥
(

n∑
k=1

|en|2
)1/2

∥∥∥∥∥∥
Lp1(A)

,

valid for all e1, . . . , en ∈ Lp1(A) (see also [15]). Using the Grothendieck inequality,
Krivine [22] showed that this inequality is in fact valid for general Banach lattices
with as best possible constant K (working for all pairs of Banach lattices) the
Grothendieck constant KG (also see [24, p. 82]). As a consequence:

Fact 2.6. Let S be a bounded linear operator between two Banach function spaces
E and G and let H be a Hilbert space. Then S ⊗ IH has a bounded extension
SH ∈ L(E⊗̃H,G⊗̃H) of norm ‖SH‖ ≤ KG ‖S‖.

Again note (as after Fact 2.4) that if E has an order-continuous norm, then
the result says that there exists a (necessarily unique) bounded linear operator
SH ∈ L(E(H), G(H)) with the property that

(SHe |h)H = S (e |h)H , e ∈ E(X), h ∈ H.

We will extend this result to general E not having an order-continuous norm under
a mild assumption on G (Proposition 3.19); moreover, we will show that if S is an
adjoint operator, then so is SH (Corollary 3.20).
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2.8. When are all bounded linear operators regular?

Regarding Banach space-valued extensions of operators between Banach function
spaces, in view of Fact 2.4 (and Fact 2.5) it is interesting to know between which
Banach function spaces every bounded linear operator is automatically regular.
For the following Banach lattice theoretic result in this direction we refer to [1]
and [29].

Fact 2.7. Let E and F be two Banach lattices. In each of the following cases we
have that every bounded linear operator from E to F is regular:

(i) F is Dedekind complete and has a strong order unit.
(ii) E is lattice isomorphic to an AL-space and F has a Levi norm.
(iii) E is lattice isomorphic to an atomic AL-space.
(iv) E is atomic with order-continuous norm and F is an AM-space.

Moreover, in case (i) and (ii), if F has a Fatou norm, then we have ‖T ‖ =
‖T ‖reg for all T ∈ L(E,F ).

Note that for example every bounded linear operator T : Lp(A) −→ L∞(B),
p ∈ [1,∞[ andB Maharam, is regular by (i) and that every bounded linear operator
T : L1(A) −→ Lq(B), q ∈ [1,∞[, is regular by (ii), and thus have Y -valued
extensions TY of norm ‖TY ‖ ≤ ‖T ‖ for every Banach space Y (by Fact 2.4).

3. Results

3.1. The extension problem

Let E and G be two Banach function spaces and let T ∈ L(E,G). Given a Banach
dual pair 〈X,Y 〉, we are interested in the question whether there exists a (nec-
essarily unique) bounded linear operator TY ∈ L(E(Y ), G(Y )) with the property
that

〈x, TY e〉 = T 〈x, e〉, e ∈ E(Y ), x ∈ X. (3.1)

We call the operator TY the Y -valued extension of T with respect to the pairing
〈X,Y 〉.

In case E has an order-continuous norm, so that E ⊗ Y is dense in E(Y )
(i.e., E⊗̃Y = E(Y )), TY is just the unique extension of T ⊗ IY to a bounded
linear operator TY ∈ L(E(Y ), G(Y )). So, in this situation, we have existence
of TY provided that T is dominated by a positive operator (Fact 2.4) or Y is a
Hilbert space (Fact 2.6). In this paper we will consider the extension problem (3.1)
for E not (necessarily) having an order-continuous norm, with as main interest
E = L∞(A), and obtain analogues of the two just mentioned extension results;
see Theorem 3.6 and Theorem 3.13 for extensions of operators dominated by a
positive operator and Proposition 3.19 and Corollary 3.20 for Hilbert space-valued
extensions.

Remark 3.1. Note that if TY is a mapping E(Y ) −→ G(Y ) satisfying (3.1), then TY

is automatically a linear operator which is bounded by the closed graph theorem.
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Moreover, if T ∈M(E,G) and 〈X,Y 〉 is norming, then we have the norm estimate
‖TY ‖ ≤ ‖T ‖M(E,G).

Proof of the norm estimate. Let e ∈ E(Y ) be given. Pick a positive operator R ∈
L(E,G) dominating T . Since 〈X,Y 〉 is norming, we can pointwise estimate

‖TY e‖Y = sup
x∈BX

|〈x, TY e〉|
(3.1)
= sup

x∈BX

|T 〈x, e〉| ≤ sup
x∈BX

R|〈x, e〉| ≤ R ‖e‖Y ,

and thus ‖TY e‖G(Y ) ≤ ‖R‖ ‖e‖E(Y ). Therefore, ‖TY ‖ ≤ ‖T ‖M(E,G). �

The following simple lemma gives, in two situations, a suggestion how to
obtain the Y -valued extension of T :

Lemma 3.2. Let E and G be two Banach function spaces, T ∈ L(E,G), and 〈X,Y 〉
a Banach dual pair. Assume that T has a Y -valued extension TY with respect to
〈X,Y 〉.
(i) If Y has a Schauder basis {bn}n∈N with biorthogonal functionals {b∗n}n∈N ⊂

X, then we must have

TY e =

∞∑
n=0

T 〈b∗n, e〉 ⊗ bn (3.2)

pointwise in Y for every e ∈ E(Y ).
(ii) Suppose that 〈D,E〉 and 〈F,G〉 are Köthe dual pairs and that T is σ(E,D)-

to-σ(G,F ) continuous with adjoint S ∈ L(F,D). If S⊗IX has an extension to
a bounded linear operator SX ∈ L(F ⊗̃X,D⊗̃X), then TY is σ(E(Y ), D⊗̃X)-
to-σ(G(Y ), F ⊗̃X) continuous with adjoint SX .

Proof. (i) is immediate from the definition of Schauder basis and (3.1). For (ii),
let e ∈ E(Y ). For f ∈ F and x ∈ X we compute

〈TY e, f ⊗ x〉〈G(Y ),F ⊗̃X〉 = 〈〈TY e, x〉〈Y,X〉, f〉〈G,F 〉
(3.1)
= 〈T 〈e, x〉〈Y,X〉, f〉〈G,F 〉

= 〈〈e, x〉〈Y,X〉, Sf〉〈E,D〉 = 〈e, Sf ⊗ x〉〈E(Y ),D⊗̃X〉,

so that, by linearity,

〈TY e, φ〉〈G(Y ),F ⊗̃X〉 = 〈e, (S ⊗ IX)φ〉〈E(Y ),D⊗̃X〉 = 〈e, SXφ〉〈E(Y ),D⊗̃X〉

for all φ ∈ F ⊗X . By continuity and density this identity extends to all φ ∈ F ⊗̃X ,
proving the desired result. �

In the setting of (i) in this lemma, if the basis {bn}n∈N is boundedly complete
and if X is the closed linear span of {b∗n}n∈N in X∗, then we can use formula (3.2)
to define TY :

Lemma 3.3. Let E and G be two Banach function spaces and let T ∈ L(E,G).
Suppose that Y is a Banach space having a boundedly-complete Schauder ba-
sis {bn}n∈N with biorthogonal functionals {b∗n}n∈N. Define X as the closed lin-
ear span of {b∗n}n∈N in Y ∗. If T ∈ M(E,G), then it has a Y -valued extension
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TY ∈ L(E(Y ), G(Y )) with respect to 〈X,Y 〉 (in the sense of (3.1)) of norm
‖TY ‖ ≤ ‖T ‖M(E,G).

Proof. Let R ∈ L(E,G) be a positive operator dominating T . For all e ∈ E(Y ) we
can estimate∥∥∥∥∥

N∑
n=0

T 〈b∗n, e〉 ⊗ bn

∥∥∥∥∥
Y

=

∥∥∥∥∥(T ⊗ IY )

(
N∑

n=0

〈b∗n, e〉 ⊗ bn

)∥∥∥∥∥
Y

(2.2)

≤ R

∥∥∥∥∥
N∑

n=0

〈b∗n, e〉 ⊗ bn

∥∥∥∥∥
Y

≤ KR ‖e‖Y ,

where K is the basis constant of {bn}n∈N.
Since the basis {bn}n∈N is boundedly complete, we can define TY e ∈ L0(A;Y )

as the pointwise limit limN→∞
∑N

n=0 T 〈b∗n, e〉⊗bn in Y to obtain an element TY e ∈
G(Y ) satisfying ‖TY e‖Y ≤ KR ‖e‖Y ∈ G. It then clearly holds that 〈b∗n, TY e〉 =
T 〈b∗n, e〉 for all e ∈ E(Y ) and n ∈ N, from which it follows that, in fact,

〈x, TY e〉 = T 〈x, e〉, e ∈ E(Y ), x ∈ X.

Remark 3.1 now completes the proof. �
In the situation of the above lemma, the canonical map j : Y −→ X∗ given

by j(y)(x) = 〈y, x〉, for all y ∈ Y and x ∈ X , is an isomorphism, which is isometric
in case {bn}n∈N is monotone; see [2, Theorem 3.2.10]. In particular, (possibly) up
to an equivalence of norms, the above lemma is concerned with a special case of the
situation 〈X,Y 〉 = 〈X,X∗〉. Regarding general Y -valued extensions with respect
to 〈X,Y 〉 = 〈X,X∗〉, let us remark the following:

Remark 3.4. Let E and G be two Banach function spaces and let T ∈ L(E,G). Let
X be a Banach space and put Y := X∗. In this situation we would like to simply
define the Y -valued extension TY of T with respect to 〈X,Y 〉 by (3.1). However,
{〈x, T e〉 : x ∈ X} ⊂ G is just a family of equivalence classes of measurable
functions and it is not clear how to obtain an element TY e ∈ G(Y, σ(Y,X)). In
case G is a Banach function space over (B,B, ν) = (B,P(B),#) this problem
does not occur. Moreover, if B is countable or Y is separable, then we obtain an
element TY e ∈ G(Y ).

In view of Lemma 3.2.(ii) it is natural to consider the extension problem in
the following lemma.

Lemma 3.5. Let 〈D,E〉 and 〈F,G〉 be two Köthe dual pairs and let T ∈ L(E,G)
be a σ(E,D)-to-σ(G,F ) continuous linear operator with adjoint S ∈ L(F,D). For
any dual pair of Banach spaces 〈X,Y 〉, the following are equivalent:

(a) T ⊗ IY extends to a (necessarily unique) σ(E(Y ), D⊗̃X)-to-σ(G(Y ), F ⊗̃X)
continuous linear operator TY ∈ L(E(Y ), G(Y )).

(b) S ⊗ IX extends to a (necessarily unique) σ(F ⊗̃X,G(Y ))-to-σ(D⊗̃X,E(Y ))
continuous linear operator SX ∈ L(F ⊗̃X,D⊗̃X).

In this situation, SX and TY are adjoints of each other and TY is the Y -valued
extension of T with respect to 〈X,Y 〉 (in the sense of (3.1)).
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Proof. Note that the uniqueness in (a) and (b) follows from the σ(E(Y ), D⊗̃X)-
density of E ⊗ Y in E(Y ) and the σ(F ⊗̃X,G(Y ))-density of F ⊗X in F ⊗̃X . The
adjoint part in the last statement is contained in the proof of the implications
“(a)⇒(b)” and “(b)⇒(a)”. That TY then is the Y -valued extension of T with
respect to 〈X,Y 〉 can be seen as follows: Given e ∈ E(Y ) and x ∈ X , we have

〈f, 〈x, TY e〉〈X,Y 〉〉〈F,G〉 = 〈f ⊗ x, TY e〉〈F ⊗̃X,G(Y )〉 = 〈Sf ⊗ x, e〉〈D⊗̃X,E(Y )〉
= 〈Sf, 〈x, e〉〈X,Y 〉〉〈D,E〉 = 〈f, S〈x, e〉〈X,Y 〉〉〈F,G〉

for every f ∈ F . As F is separating for G, this shows 〈x, TY e〉 = T 〈x, e〉.
“(a) ⇒ (b)”: Let SX := (TY )

′ ∈ L(F ⊗̃X,D⊗̃X) be the adjoint of TY . A
computation similar to the above one yields that 〈SXf, e〉〈D⊗̃X,E(Y )〉 = 〈(S ⊗
IX)f, e〉〈D⊗̃X,E(Y )〉 for all f ∈ F ⊗X and e ∈ E ⊗ Y while E ⊗ Y separates the

points of D⊗̃X , whence SXf = (S ⊗ IX)f for all f ∈ F ⊗X . This gives (b).
“(b) ⇒ (a)”: Completely analogous to the implication “(a) ⇒ (b)”. �
In the next two subsections we will use Lemma 3.3 and Lemma 3.5 to obtain

our two main extension results, Theorem 3.6 and Theorem 3.13.

3.2. Extensions with respect to 〈X,Y 〉 = 〈Y ∗, Y 〉 with Y reflexive

Theorem 3.6. Let E and G be two Banach function spaces and let T ∈ M(E,G).
If Y is a reflexive Banach space, then the Y -valued extension TY ∈ L(E(Y ), G(Y ))
of T with respect to 〈Y ∗, Y 〉 (in the sense of (3.1)) exists and is of norm ‖TY ‖ ≤
‖T ‖M(E,G).

As an immediate consequence of this theorem and Fact 2.7 we have:

Corollary 3.7. Let E and G be two Banach function spaces such that one of the
following four conditions is satisfied:

(i) G has a strong order unit;
(ii) E is lattice isomorphic to an AL-space and G has a Levi norm;
(iii) E is lattice isomorphic to an atomic AL-space;
(iv) E is atomic with order-continuous norm and G is an AM-space.

Then, for every T ∈ L(E,G) and every reflexive Banach space Y , the Y -valued
extension TY ∈ L(E(Y ), G(Y )) of T with respect to 〈Y ∗, Y 〉 exists. Moreover,
in case of (i) and (ii), if G has a Fatou norm, then we have the norm estimate
‖TY ‖ ≤ ‖T ‖.

In combination with Fact 2.1.(II), the next lemma allows us to reduce the
proof of the theorem to the case that Y is a reflexive Banach space with a Schauder
basis.

Lemma 3.8. Let E and G be two Banach function spaces, T ∈ L(E,G), and Y a
Banach space.

(i) If T has a U -valued extension TU with respect to 〈U∗, U〉 for every separable
closed linear subspace U of Y , then T also has a Y -valued extension TY with
respect to 〈Y ∗, Y 〉.
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(ii) If Y is a closed linear subspace of a Banach space Z for which T has a
Z-valued extension TZ with respect to 〈Z∗, Z〉, then T also has Y -valued
extension TY with respect to 〈Y ∗, Y 〉.

Proof. (i) This follows easily from the fact that every f ∈ E(Y ) may be viewed as
an element of E(U) ⊂ E(Y ) for some separable closed linear subspace U of Y in
combination with Remark 3.1.

(ii) Viewing E(Y ) as closed linear subspace of E(Z), TZ restricts to an opera-
tor on E(Y ) as consequence of the fact that Y = ⊥(Y ⊥). From Hahn–Banach it fol-
lows that TY := TZ

∣∣
E(Y )

is a Y -valued extension of T with respect to 〈Y ∗, Y 〉. �

We are now ready to give a clean proof of the theorem.

Proof of Theorem 3.6. First, in view of (i) of the above lemma and the fact that
a closed linear subspace of a reflexive Banach space is a reflexive Banach space on
its own right, it suffices to consider the case that Y is a separable reflexive Banach
space. Next, in view of (ii) of the above lemma and Fact 2.1.(II), it is in turn enough
to treat the case that Y is a reflexive Banach space having a Schauder basis. By
Fact 2.1.(I), this basis is both boundedly complete and shrinking. The existence of
TY now follows from an application of Lemma 3.3; for the norm estimate we refer
to Remark 3.1. �

Remark 3.9. The use of Fact 2.1.(II) in the above proof can be avoided in the
special case that G is a Banach function space over (B,B, ν) = (B,P(B),#); see
Remark 3.4.

In the next example we show that for the non-reflexive Banach spaces Y = c0
and Y = �1 the statement of Theorem 3.6 does not hold. Note that in both cases
Y has a Schauder basis (the standard basis), with in case Y = c0 a basis which
is shrinking but not boundedly complete and in case Y = �1 a basis which is
boundedly complete but not shrinking; also see Fact 2.1.(I).

Example 3.10. Let E = �∞ and G = K. Take T ∈ L(�∞,K) = (�∞)∗ to be a
Banach limit (see Definition 2.3). Then T is a positive operator, but for Y ∈ {c0, �1}
the Y -valued extension TY ∈ L(�∞(Y ), Y ) of T with respect to 〈Y ∗, Y 〉 does not
exist.

Proof. Let us first treat the case Y = c0. To the contrary we assume that Tc0 does
exist. By Lemma 3.2.(i) (equation (3.2)) we must then have

(Tfk)k∈N = Tc0f ∈ c0

for all f = (fk)k∈N ∈ �∞(c0); here fk is the kth coordinate in c0 of f (with respect
to the standard basis). But for

f = (fk)k∈N ∈ �∞(c0) given by fk := 1{k,k+1,...}

we have (Tfk)k∈N = 1 /∈ c0, a contradiction.
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Next we treat the case Y = �1. We again assume to the contrary that T�1

does exist. By Lemma 3.2.(i) (equation (3.2)) we must then have

(Tfk)k∈N = T�1f ∈ �1

for all f = (fk)k∈N ∈ �∞(�1); here fk is the kth coordinate in �1 of f (with respect
to the standard basis). But for

f = (fk)k∈N ∈ �∞(�1) given by fk := 1{k}

and 1 ∈ �∞ = (�1)∗ this yields

0 =
∞∑
k=0

0 =
∞∑
k=0

Tfk = 〈1, T�1f〉 = T 〈1, f〉 = T1 = 1,

a contradiction. �
Remark 3.11. In [4] it is shown that Banach spaces 1-complemented in their bidual
admit vector-valued Banach limits, whereas c0 does not. Since a Y -valued extension
with respect to a norming dual pair 〈X,Y 〉 of a Banach limit is a vector-valued
Banach limit on Y , the latter also gives an explanation for the failure of the
extension for Y = c0 in the above example. The case Y = �1 in this example
shows that a vector-valued Banach limit on �1 cannot be obtained as an �1-valued
extension with respect to 〈�∞, �1〉 of a Banach limit; note, however, that �1-valued
extensions with respect to 〈c0, �1〉 of Banach limits exist by Lemma 3.3 (also see
Remark 3.4). Finally, observe that, by Theorem 3.6, every reflexive Banach space
Y admits vector-valued Banach limits which are Y -valued extensions with respect
to 〈Y ∗, Y 〉 of Banach limits.

Combining this example with Fact 2.1.(III), Lemma 3.8.(ii), and Theorem
3.6, we see that, for Y in a wide class of Banach spaces (including the Banach
lattices), Theorem 3.6 even characterizes the reflexivity of Y :

Corollary 3.12. Let Y be a closed linear subspace of a Banach lattice E such that:
Y is complemented in E or E has an order-continuous norm. Given a Banach
limit T ∈ L(�∞,K) = (�∞)∗, the following statements are equivalent.

(a) Y is reflexive;
(b) T has a Y -valued extension TY ∈ L(�∞(Y ), Y ) with respect to 〈Y ∗, Y 〉;
(c) Y does not have linear subspaces isomorphic to c0 or �1.

3.3. Extensions of adjoint operators on L∞ with respect to arbitrary
Banach dual pairs 〈X,Y 〉

Theorem 3.13. Let (A,A , μ) be a semi-finite measure space, let 〈F,G〉 be a Köthe
dual pair of Banach function spaces over a measure space (B,B, ν), and let T ∈
L(L∞(A), G) be a σ(L∞(A), L1(A))-to-σ(G,F ) continuous linear operator, say
with adjoint S ∈ L(F,L1(A)). If T ∈ M(L∞(A), G), then we have, for any dual
pair of Banach spaces 〈X,Y 〉, that T ⊗ IY has a unique extension to a σ(L∞(A;
Y ), L1(A;X))-to-σ(G(Y ), F ⊗̃X) continuous linear operator TY ∈ L(L∞(A;Y ),
G(Y )). In this situation, TY is the Y -valued extensions of T with respect to 〈X,Y 〉
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and the adjoint SX ∈ L(F ⊗̃X,L1(A;X)) of TY is the unique bounded extension
of S ⊗ IX . Moreover, S ∈ M(F,L1(A)) = Lr(F,L

1(A)) and these extensions are
of norm ‖SX‖ ≤ ‖S‖r and ‖TY ‖ ≤ ‖T ‖M(L∞(A),G).

We will give the proof of this theorem in the next section. In Section 5 we
will use this theorem to obtain the conditional expectation operator on Banach
space-valued L∞-spaces.

Remark 3.14. Note that for T⊗IY to have an extension to a σ(L∞(A;Y ),L1(A;X))-
to-σ(G(Y ), F ⊗̃X) continuous linear operator TY ∈ L(L∞(A;Y ), G(Y )) it is nec-
essary that S is regular. Indeed, from Lemma 3.5 it then follows that S ⊗ IX
extends to a bounded operator SX ∈ L(F ⊗̃X,L1(A;X)) for any Banach space X
(just take 〈X,Y 〉 = 〈X,X∗〉 as dual pair of Banach spaces), which by Fact 2.5 just
means that S is regular.

We will in fact start the proof of this theorem by showing that S is regular,
then extend S ⊗ IX to a bounded linear operator SX ∈ L(F ⊗̃X,L1(A;X)) and
obtain TY by restriction of the Banach space adjoint

(SX)∗ ∈ L((L1(A;X))∗, (F ⊗̃X)∗).

Next, we consider situations in which the extension of T ⊗ IX in Theorem
3.13 is for free. The idea is to impose conditions on 〈F,G〉 which guarantee that T
is automatically regular, either via T being a bounded linear operator from L∞(A)
to G or via S and the following little lemma:

Lemma 3.15. In addition to the assumptions of Theorem 3.13, suppose that the
image of i : g �→ 〈 · , g〉, G −→ F ∗ is a band in F ∗. Then T is regular provided that
S is regular.

Proof. First note that i(G) is a projection band in the Dedekind complete F ∗.
Let P be the associated band projection. Since i is a lattice isomorphism onto its
image, this projection P induces a positive linear map π : F ∗ −→ G such that
π ◦ i = IG. Now note that π ◦ S∗ : (L1(A))∗ −→ G extends T and is regular if S
is so. �

Note that G must be Dedekind complete, being lattice isomorphic to a band
in the Dedekind complete F ∗.

Examples of Köthe dual pairs satisfying the hypotheses of this lemma are
〈F,G〉 = 〈Lp(B), Lq(B)〉 with 1 < p, q < ∞, 1

p + 1
q = 1 on an arbitrary measure

space (B,B, ν) or 〈F,G〉 = 〈F, F×〉 with F a Banach function space on a Maharam
measure space (B,B, ν) having full carrier (see Fact 2.2).

Corollary 3.16. Let (A,A , μ) be a semi-finite measure space, let 〈F,G〉 be a Köthe
dual pair of Banach function spaces over a measure space (B,B, ν), and let T :
L∞(A) −→ G be a σ(L∞(A), L1(A))-to-σ(G,F ) continuous linear operator. In
each of the following cases T is automatically regular:
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(i) G is Dedekind complete and has a strong order unit.

(ii) The image of g �→ 〈 · , g〉, G −→ F ∗ is a band in F ∗ and F is lattice isomorphic
to an AL-space.

As a consequence, in each of these cases we have that, for any dual pair of Banach
spaces 〈X,Y 〉, T ⊗ IY has a unique extension to a σ(L∞(A;Y ), L1(A;X))-to-
σ(G(Y ), F ⊗̃X) continuous linear operator TY ∈ L(L∞(A;Y ), G(Y )), which is the
Y -valued extension of T with respect to 〈X,Y 〉. In this situation, denoting by
S ∈ L(F,L1(A)) the adjoint of T with respect to the dualities 〈L1(A), L∞(A)〉
and 〈F,G〉 and by SX ∈ L(F ⊗̃X,L1(A;X)) the adjoint of TX with respect to the
dualities 〈L1(A)(X), L∞(A;Y )〉 and 〈F ⊗̃X,G(Y )〉, S ∈ Lr(F,L

1(A)), and SX is
the unique bounded extension of S ⊗ IX . Moreover, these extensions are of norm
‖SX‖ ≤ ‖S‖r and ‖TY ‖ ≤ ‖T ‖M(L∞(A),G).

Proof. Case (i) is an immediate consequence of Fact 2.7, whereas case (ii) follows
from a combination Fact 2.7 and the above lemma. �

Examples of Köthe dual pairs 〈F,G〉 satisfying the hypothesis of this result
are 〈F,G〉 = 〈L1(B), L∞(B)〉 on a Maharam measure space (B,B, ν) and 〈F,G〉 =
〈Lp(B), Lp′

(B)〉, p, p ∈ [1,∞], 1
p + 1

p′ , on a finite measure space (B,B, ν).

Finally, we give two situations (involving some extra assumptions on 〈G,F 〉)
in which T being regular is not only a sufficient condition but a necessary condition
as well. The idea is to impose conditions on 〈G,F 〉 which allow us to obtain that
T is regular, either via an application of Fact 2.5 to T or via an application of this
theorem to S in combination with Lemma 3.15.

Proposition 3.17. Suppose, in addition to the assumptions of Theorem 3.13, that
either

(i) G has a Levi norm, or

(ii) the image of g �→ 〈 · , g〉, G −→ F ∗ is a band in F ∗.

Then T must be regular if, for some dual pair of Banach spaces 〈X,Y 〉 with
Y = �1 in case (i) and X = �1 in case (ii), T ⊗ IY has an extension to a
σ(L∞(A;Y ), L1(A;X))-to-σ(G(Y ), F ⊗̃X) continuous linear operator

TY ∈ L(L∞(A;Y ), G(Y )).

Proof. Let us first consider case (i). Note that it, in particular, T⊗I�1 has a unique
extension to a bounded linear operator from L∞(A)⊗̃�1 to G⊗̃�1. Fact 2.5 now
yields that T is regular.

Next we consider case (ii). In view Lemma 3.15 it suffices to prove that S is
regular. By Fact 2.5 and the fact that L1(A) has a Levi norm, for this it is in turn
enough to show that S ⊗ I�1 has an extension to a bounded linear operator S�1 ∈
L(F ⊗̃�1, L1(A; �1)). But, by Lemma 3.5, the adjoint of the σ(L∞(A;Y ), L1(A; �1))-
to-σ(G(Y ), F ⊗̃�1) continuous linear operator TY ∈ L(L∞(A;Y ), G(Y )) is an ex-
tension of S ⊗ I�1 . �
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Corollary 3.18. Suppose, in addition to the assumptions of Theorem 3.13, that the
image of g �→ 〈 · , g〉, G −→ F ∗ is a band in F ∗. Then the following assertions are
equivalent.

(a) T is regular.
(b) S is regular.
(c) T ⊗ I�∞ has an extension to a bounded linear operator from L∞(A)⊗̃�∞ to

G⊗̃�∞.
(d) S⊗I�1 has an extension to a bounded linear operator from F ⊗̃�1 to L1(S; �1).
(e) For any dual pair of Banach spaces 〈X,Y 〉, T ⊗ IY has an extension to

an operator TY ∈ L(L∞(A;Y ), G(Y )) which is σ(L∞(A;Y ), L1(A;X))-to-
σ(G(Y ), F ⊗̃X) continuous.

(f) For any dual pair of Banach spaces 〈X,Y 〉, S ⊗ IX has an extension to an
operator SX ∈ L(F ⊗̃X,L1(A;X)) which is σ(F ⊗̃X,F×(Y ))-to-σ(L1(A;X),
L∞(A;Y )) continuous.

In this situation, for which to occur it suffices that G has a strong order unit, SX

and TY are adjoints of each other with respect to the dualities 〈F ⊗̃X,G(Y )〉 and
〈L1(A;X), L∞(A;Y )〉. Moreover, these extensions are of norm ‖SX‖ ≤ ‖S‖r and
‖TY ‖ ≤ ‖T ‖r.

Proof. Note that G must be Dedekind complete, being lattice isomorphic to a
band in the Dedekind complete F ∗.

“(a) ⇒ (c)”: See Fact 2.4.
“(c) ⇒ (d)”: Viewing L1(A; �1) as a closed linear subspace of (L∞⊗̃�∞)∗ via

the isometric embedding

i : L1(A; �1) −→ (L∞(A)⊗̃�∞)∗, h �→ 〈h, · 〉〈L1(A;�1),L∞(A;�∞)〉
∣∣
L∞(A)⊗̃�∞ ,

it is enough that S⊗ I�1 has an extension to a bounded linear operator from F ⊗̃�1
to (L∞⊗̃�∞)∗. For this let

j : F ⊗̃�1 −→ (G⊗̃�∞)∗, f �→ 〈f, · 〉〈F (�1),G(�∞)〉
∣∣
G⊗̃�∞

be the natural continuous inclusion and let U ∈ L((G⊗̃�∞)∗, (L∞(A)⊗̃�∞)∗) be
the Banach spaced adjoint of the bounded extension of T ⊗ I�∞ . Now observe that
U ◦ j extends S ⊗ I�1 .

“(d) ⇒ (b)”: This follows from Fact 2.5 and the fact that L1(A) has a Levi
norm.

“(b) ⇒ (a)”: This is precisely Lemma 3.15.
“(a) ⇔ (e)”: Combine Theorem 3.13 with the above proposition.
“(e) ⇔ (f)”: See Lemma 3.5.
The final assertion follows from Theorem 3.13 and Corollary 3.16. �

3.4. Extensions with respect to 〈X,Y 〉 = 〈H∗,H〉 for a Hilbert space H

Similar to Fact 2.6, for the existence of the extension in Theorem 3.6 we do not
need to impose any conditions on T under the extra assumption that G has a
sequentially Levi norm.
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Proposition 3.19. Let E and G be two Banach function spaces, T ∈ L(E,G), and
H a Hilbert space. Suppose that G has a sequentially Levi norm. Then T has a
H-valued extension TH ∈ L(E(H), G(H)) with respect to 〈H∗, H〉 (in the sense of
(3.1)) which is of norm ‖TY ‖ ≤ KG ‖T ‖, where KG is the Grothendieck constant.

Proof. We may without loss of generality assume that H is separable, see Lemma
3.8.(i). Now choose an orthonormal basis {hn}n∈N of H . Given an e ∈ E(H),
it suffices to show that

∑
n∈N

T 〈hn, e〉 ⊗ hn converges pointwise a.e. in H to an
element of norm ≤ KG ‖T ‖ ‖e‖E(H). But this follows from the hypothesis that G

has a sequentially Levi norm in combination with the estimate∥∥∥∥∥∥
(

N∑
n=0

|T 〈hn, e〉|2
)1/2

∥∥∥∥∥∥
G

≤ KG ‖T ‖

∥∥∥∥∥∥
(

N∑
n=0

|〈hn, e〉|2
)1/2

∥∥∥∥∥∥
E

≤ KG ‖T ‖ ‖e‖E(H) ;

here we use the Grothendieck inequality for Banach lattices (see [24, p. 82]). �
As an immediate consequence of this proposition, Fact 2.6, and Lemma

3.2.(ii), we have something similar for Theorem 3.13:

Corollary 3.20. Let 〈D,E〉 and 〈F,G〉 be two Köthe dual pairs, let T ∈ L(E,G)
be a σ(E,D)-to-σ(G,F ) continuous linear operator with adjoint S ∈ L(F,L1(A)),
and let H be a Hilbert space. Then it holds that T ⊗ IH has a unique exten-
sion to a σ(E(H), D⊗̃H∗)-to-σ(G(H), F ⊗̃H∗) continuous linear operator TH ∈
L(E(Y ), G(H)). In this situation, TH is the H-valued extensions of T with respect
to 〈H∗, H〉 and the adjoint SH ∈ L(F ⊗̃H∗, F ⊗̃H∗) of TH is the unique bounded
extension of S ⊗ IH∗ . Moreover, these extensions are of norm ‖SH∗‖ ≤ KG ‖S‖
and ‖TH‖ ≤ KG ‖T ‖.

4. Proof of Theorem 3.13

Let the notations and assumptions be as in Theorem 3.13. For the proof of this
theorem we need three lemmas. Before we can state the first lemma, we have to
define the notion of countable step function: a function f : A −→ Y is called
a countable step function if it is measurable and only assumes countably many
values. Note that such a function is strongly measurable and can (in fact) be
written as the pointwise limit f =

∑∞
k=0 1Ak

yk with (Ak)k∈N a mutually disjoint
sequence in A and (yn)n∈N a sequence in Y .

Lemma 4.1. The subspace of countable step functions lying in L∞(A;Y ) is dense
in L∞(A;Y ).

Proof. See the proof of Proposition 1.9 in [28]. �
Lemma 4.2. Let 〈D,E〉 be a Köthe dual pair of Banach function spaces on a
measure space (C,S , ρ), suppose that (ek)k∈N ⊂ E is such that

∑∞
k=0 |ek| is in E,

and let (yk)k∈N be a bounded sequence in Y . Then
∑∞

k=0 ek(c)yk converges in Y for
a.a. c ∈ C and the resulting function e : C → Y , defined by e(c) :=

∑∞
k=0 ek(c)yk,
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belongs to E(Y ) and is of norm ‖e‖ ≤ ‖(yk)‖∞ ‖
∑∞

k=0 |ek|‖. Moreover, we have
e =

∑∞
k=0 ek ⊗ yk with convergence in the σ(E(Y ), D(X))-topology.

Proof. Observing that, for a.a. c ∈ C,
∞∑
k=0

‖ek(c)yk‖ ≤ ‖(yk)‖∞
∞∑
k=0

|ek(c)|,

we find that, for a.a. c ∈ C, e(c) =
∑∞

k=0 ek(c)yk converges in Y and ‖e(c)‖ ≤
‖(yk)‖∞

∑∞
k=0 |ek(c)|. Therefore, e ∈ E(Y ) with ‖e‖ ≤ ‖(yk)‖∞ ‖

∑∞
k=0 |ek|‖.

To prove the final assertion, fix an d ∈ D(X).
The sequence(

c �→
〈
d(c),

∞∑
k=N+1

ek(c)yk

〉)
N∈N

⊂ L1(C)

converges a.e. to 0 as N →∞ and is dominated by a scalar multiple of

‖d‖X

∥∥∥∥∥
∞∑
k=0

|ek|
∥∥∥∥∥ ‖(yk)‖∞ ∈ L1(C),

so that 〈
d, e−

N∑
k=0

ek ⊗ yk

〉
=

∫
C

〈
d(c),

∞∑
k=N+1

ek(c)yk

〉
dρ(c)

N→∞−→ 0. �

Lemma 4.3. Viewing L1(A) as closed Riesz subspace of (L∞(A))∗, L1(A) is a band
in (L∞(A))∗.

Proof. Recalling that 〈L1(A), L∞(A)〉 is a norming Köthe dual pair, we may view
L1(A) and L∞(A) as closed Riesz subspaces of (L∞(A))∗ and (L1(A))∗, respec-
tively. Accordingly, let J : (L∞(A))∗ �−→ (L1(A))∗∗/(L∞(A))⊥ be the canonical
isometric lattice isomorphism and let π : (L1(A))∗∗ −→ (L1(A))∗∗/(L∞(A))⊥ be
the natural map.

To see that L1(A) is an ideal in (L∞(A))∗, let Λ ∈ (L∞(A))∗ and f ∈ L1(A)
be such that 0 ≤ Λ ≤ f in (L∞(A))∗. Then f viewed as a functional on (L1(A))∗

is positive and its restriction to L∞(A) dominates the positive Λ ∈ (L∞(A))∗.
Hence, Λ has an extension to a functional Λ̃ on (L1(A))∗ satisfying 0 ≤ Λ̃ ≤ f in
(L1(A))∗∗. Since L1(A), having an order-continuous norm, is an ideal in (L1(A))∗∗,
it follows that Λ̃ ∈ L1(A). Therefore, Λ = J−1(π(Λ̃)) ∈ J−1(π(L1(A))) = L1(A).

It remains to be shown that the ideal L1(A) in (L∞(A))∗ is also order closed in
(L∞(A))∗. To this end, let {fα}α ⊂ L1(A) be such that 0 ≤ fα ↗ Λ ∈ (L∞(A))∗.
Then we in particular have that {fα} is an increasing positive norm bounded net
in L1(A). From the fact that L1(A) has a Levi norm it now follows that fα ↗ f
for some f ∈ L1(A). But then we must have Λ = f ∈ L1(A), as desired. �

We are now ready to prove Theorem 3.13
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Proof of Theorem 3.13. We only need to establish existence of TY and the norm
estimates.

First observe that S is regular. Indeed, letting j : F ↪→ G∗ be the natural
inclusion and letting π : (L∞(A))∗ −→ L1(A) be the map induced by Lemma
4.3, we have that S = π ◦ T ∗ ◦ j : F −→ L1(A). Therefore, S ∈ M(F,L1(A)) =
Lr(F,L

1(A)) as π ≥ 0, T ∗ ∈M(G∗, (L∞(A))∗), and j ≥ 0.
By Fact 2.4, as S ∈ L(F,L1(A)) is regular, S⊗ IX has an extension to an op-

erator SX ∈ L(F ⊗̃X,L1(A;X)) of norm ‖S‖X ≤ ‖S‖reg. Letting i : L∞(Y ;X) ↪→
L1(A;X))∗ and j : G(Y ) ↪→ (F ⊗̃X)∗ be the natural continuous inclusions, we
claim that (i) (SX)∗ ◦ i extends j ◦ (T ⊗ IY ) and (ii) (SX)∗ maps i(L∞(Y ;X)) into
j(G(Y )) and (iii) j−1 ◦ (SX)∗ ◦ i ∈ L(L∞(A;Y ), G(Y )) of norm ≤ ‖T ‖M(L∞(A),G).

Then (ii) tells us that SX has an adjoint (SX)
′
w.r.t. the dualities 〈F ⊗̃X,G(Y )〉

and 〈L1(A;X), L∞(A;Y )〉, which by (i) extends T ⊗ IY . The norm inequality
‖TY ‖ ≤ ‖T ‖M(L∞(A),G) then follows from (iii).

For (i), let h ∈ L∞(A) ⊗ Y be arbitrary. Then an elementary computation
shows that 〈(T ⊗ IY )h, f〉 = 〈h, SXf〉 for all f in the dense subspace F ⊗ X of
F ⊗̃X , which by continuity extends to all f ∈ F (X). This gives (i).

For (ii) and (iii) we denote by V the linear space consisting of all countable
step functions in L∞(A;Y ) equipped with the restricted norm of L∞(A;Y ). Let
R ∈ L(L∞(A), G) be a positive operator dominating T and fix an arbitrary h ∈ V ,
say h =

∑∞
k=0 1Ak

yk with (Ak)k∈N a mutually disjoint sequence in A and (yk)k∈N

a bounded sequence in Y . Then note that, by Lemma 4.2, h =
∑∞

k=0 1Ak
⊗yk with

convergence in the σ(L∞(A;Y ), L1(A;X))-topology. From the weak∗ continuity of
(SX)∗ as a Banach space adjoint operator and (i) it follows that

(SX)∗i(h) =
∞∑
k=0

(SX)∗i(1Ak
⊗ yk)

(i)
=

∞∑
k=0

j(T 1Ak
⊗ yk) (4.1)

with convergence in the weak∗-topology.
For the sequence (T 1Ak

)k∈N ⊂ G,
∑∞

k=0 |T 1Ak
| ∈ G follows from the ideal

property of G and the estimate

∞∑
k=0

|T 1Ak
| ≤

∞∑
k=0

R1Ak
= lim

K→∞

K∑
k=0

R1Ak
= lim

K→∞
R

(
K∑

k=0

1Ak

)
≤ R1 ∈ G.

Via Lemma 4.2 we obtain convergence of the series
∑∞

k=0 T 1Ak
⊗ yk in G(Y )

w.r.t. the σ(G(Y ), F ⊗̃X)-topology together with a norm estimate of the resulting
element of G(Y ): ∥∥∥∥∥

∞∑
k=0

T 1Ak
⊗ yk

∥∥∥∥∥ ≤ ‖R1‖ ‖(yk)‖∞ ≤ ‖R‖ ‖h‖ .

In combination with (4.1) this gives (SX)∗i(h) ∈ j(G(Y )) and
∥∥j−1((SX)∗ih)

∥∥ ≤
‖R‖ ‖h‖. As h and R were arbitrary, this shows that (SX)∗◦imaps V intoG(Y ) and
that j−1◦((SX)∗◦i

∣∣
V
) ∈ L(V,G(Y )) is of norm ≤ ‖T ‖M(L∞(A),G). V being a dense
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subspace of L∞(A;Y ) (see Lemma 4.1), j−1◦((SX)∗◦i
∣∣
V
) has a unique extension to

a bounded linear operator Q from L∞(A;Y ) to G(Y ) of norm ≤ ‖T ‖M(L∞(A),G).

The observation that j ◦ Q and (SX)∗ ◦ i coincide on the dense subspace V of
L∞(A;Y ) and consequently that j ◦Q = (SX)∗ ◦ i now yields (ii) and (iii). �

5. An application: Conditional expectation
on Banach space-valued L∞-spaces

Let (A,A , μ) be a measure space, F ⊂ A a sub-σ-algebra, and X a Banach
space. The conditional expectation operator on L1(A;X) with respect to F is
the operator E1

F ,X ∈ L(L1(A)) which assigns to an f ∈ L1(A;X) the unique

E1
F ,Xf ∈ L1(A,F ;X) satisfying∫

F

f dμ =

∫
F

E1
F ,Xf dμ, F ∈ F ; (5.1)

here we write L1(A,F ;X) for the closed linear subspace of L1(A;X) consisting of
all equivalence classes which have a strongly F -measurable representative. This
operator is a contractive projection with range L1(A,F ;X) and it can be obtained
via bounded tensor extension of the conditional expectation operator E1

F on L1(A),
which is a positive operator. We refer to [17], where also pointwise convexity
(Jensen-type) inequalities are proved for X-valued extensions of positive operators.

Now suppose that (A,A , μ) is semi-finite and that the restricted measure
space (A,F , μ|F ) is Maharam; it can in fact be shown that (A,A , μ) is automati-
cally semi-finite when (A,F , μ|F ) is Maharam. Given a Banach space Y , we would
like to define the conditional expectation operator on L∞(A;Y ) with respect to
F as the operator E∞

F ,Y ∈ L(L∞(A;Y )) which assigns to an f ∈ L∞(A;Y ) the

unique E∞
F ,Y f ∈ L∞(A,F ;Y ) satisfying∫

F

f dμ =

∫
F

E∞
F ,Y f dμ, F ∈ F (μ); (5.2)

here F (μ) = {F ∈ F : μ(F ) < ∞}. In scalar case Y = K we can define E∞
F =

E∞
F ,K by restriction to L∞(A) of the Banach space adjoint (E1

F )∗ ∈ L((L1(A))∗):

Lemma 5.1. The conditional expectation operator E1
F on L1(A) is a σ(L1(A),

L∞(A))-to-σ(L1(A), L∞(A)) continuous linear operator whose adjoint is a posi-
tive contractive projection on L∞(A) with range L∞(A,F ) satisfying the above
definition of conditional expectation operator on L∞(A).

Proof. Recall that E1
G is a positive contractive projection on L1(A) with range

L1(A,G ); so L1(A) = L1(A,G )⊕U where U := (1−E1
G )L

1(A). Since L∞(A,G ) =
(L1(A,G ))∗ (as (A,G , μ|G ) is Maharam), it follows that (E1

G )∗ is a positive con-
tractive projection on (L1(A))∗ = L∞(A,G ) ⊕ U∗ with range L∞(A,G ). Identi-
fying L∞(A) with a closed subspace of (L1(A))∗ ((A,A , μ) is semi-finite), (E1

G )
∗

restricts to a contractive projection on L∞(A) with range L∞(A,G ). �
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We can now obtain E∞,Y
G from E∞

F via an application of Theorem 3.13:

Proposition 5.2. Suppose that (A,A , μ) is semi-finite and that the restricted mea-
sure space (A,F , μ|F ) is Maharam. For every Banach space Y we have existence
of the conditional expectation operator E∞

F ,Y on L∞(A;Y ) (see (5.2)). E∞
F ,Y is a

contractive projection on L∞(A;Y ) with range L∞(A,F ;Y ). Moreover, if 〈X,Y 〉
is a Banach dual pair, then we have∫

〈f,E∞
F ,Y g〉 dμ =

∫
〈E1

F ,Xf, g〉 dμ, f ∈ L1(A;X), g ∈ L∞(A;Y ).

Proof. Since there always exists a Banach space X for which there is Banach dual
pairing 〈X,Y 〉 (just take X = Y ∗), we may prove the first and second assertion
at the same time. Applying Theorem 3.13 to S = E1

F ∈ L(L1(A)) and T = E∞
F ∈

L(L∞(A)), we get contractions SX ∈ L(L1(A;X)) and TY ∈ L(L∞(A;Y )) with
respect to the duality 〈L1(A;X), L∞(A;Y )〉 such that SX is the unique bounded
extension of S ⊗ IX and

〈x, TY f〉 = T 〈x, f〉, x ∈ X, f ∈ L∞(A;Y ).

Recalling that E1
F ,X =SX , it is not difficult to see that we can take E∞

F ,Y :=TY . �

For a different and more direct way to define the conditional expectation
operator on Banach-valued L∞-spaces we refer to [11] (also see the references
therein).

Acknowledgment

The author would like to thank Mark Veraar for making him aware of Fact 2.1.(II).

References

[1] Y.A. Abramovich and C.D. Aliprantis. Positive operators. In Handbook of the geom-
etry of Banach spaces, Vol. I, pp. 85–122. North-Holland, Amsterdam, 2001.

[2] F. Albiac and N.J. Kalton. Topics in Banach space theory, volume 233 of Graduate
Texts in Mathematics. Springer, New York, 2006.

[3] C.D. Aliprantis and O. Burkinshaw. Positive operators. Springer, Dordrecht, 2006.
Reprint of the 1985 original.

[4] R. Armario, F.J. Garsiya-Pacheko, and F.J. Peres-Fernandes. On vector-valued ba-
nach limits. Functional Analysis and Its Applications, 47(4):315–318, 2013.

[5] J. Bourgain. Vector-valued singular integrals and the H1-BMO duality. In Proba-
bility theory and harmonic analysis (Cleveland, Ohio, 1983), volume 98 of Monogr.
Textbooks Pure Appl. Math., pp. 1–19. Dekker, New York, 1986.

[6] A.V. Buhvalov. The analytic representation of operators with an abstract norm. Izv.
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Abstract. The paper provides a survey of results concerning topological in-
variants of the spaces in a Lorentz–Orlich–Marcinkiewicz triple such that
their fundamental functions can be expressed explicitly one through another.
In particular, the paper contains an interpretation of topological invariants
through the distribution properties of a “base” sequence of natural numbers
– the same for every space in the triple.
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Introduction

Topological invariants of a Banach Function Space (BFS) are by definition the
properties of such a space conserved by its linear isomorphisms; thus they are the
properties not of a specific norm on that space but the properties of the whole
class of equivalent norms on it.

Our approach to invariants is based on considering them as properties of
modulars. A modular is a class of “norming” functions that induce equivalent
norms on the spaces indicated in the title of the paper. It is well known, [1], that
among the triples of Orlicz, Lorentz, and Marcinkiewicz spaces on [0,∞) there are
such ones that the fundamental function of any of them defines the other two as
sets (notice that in such a case the above-mentioned fundamental function defines
the norm on the corresponding space equivalent to the original one). We call the
spaces in such a triple related. Topological invariants of each of the related spaces
are in a natural one to one correspondence but their interpretations might be quite
different. Consider for example the well-known topological invariant of (always non
separable) Marcinkiewicz space – the boundedness of the Hardy operator. For the
related Orlicz space it corresponds to the property of being separable.

The goal of this paper is to present a survey of the author’s work on topolog-
ical invariants of related spaces and some algebraic structures of these invariants
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defined by the binary operation of superposition of norming functions. Some results
were presented on 7th POSITIVITY Conference, Leiden, July, 2013, [30].

Definition ([23]).

1. A norming function is a real valued continuous function on [0,∞) such that
f(0) = 0, f is positive and strictly increasing on (0,∞), and lim

t→∞ f(t) = ∞.

The set of all norming functions will be denoted by F .
2. We say that two functions f1, f2 ∈ F are

m∼equivalent and write f1
m∼ f2 if

for some constant ν, ν ≥ 1, and for all t ∈ [0,∞) we have

ν−1 · f2(ν · t) ≤ f1(t) ≤ ν · f2(ν−1 · t), (
m∼).

If the above inequalities are satisfied only in a neighborhood of 0 or infinity

then we will speak about
m∼ equivalence in the corresponding neighborhood.

3. The class f of all functions from F , that are m∼equivalent to some f ∈ F , we
will call a

m∼modular ; The set of all
m∼modulars will be denoted by F (F0, F∞,

respectively).

4. An
m∼invariant is by definition such a property of a norming function that

holds for all the functions from its
m∼modular.

Because in every of the related spaces the compression/dilation operator σs,
s ≥ 0

σsx(t) := x(t · ν), t ∈ [0,∞),

is bounded, [1], the statements expressing topologically invariant properties of
these spaces cannot depend on compressions/dilations of norming functions along
the t-axis. In other words topologically invariant properties of a space must be
formulated in terms of the modular of its norming function.

The properties of F modulars (respectively, of F0 or F∞ modulars) can be
characterized by the limit behaviour of the corresponding norming functions at 0
and ∞ (only at 0, or only at ∞, respectively) under the action of operator σs. If
the norming function is symmetric (see Definition 1.2) then it is enough to consider
its limit behaviour at 0 (or at ∞ if it is more convenient). Thus instead of a space
of functions on [0,∞) we can consider a pair of spaces on [0, 1] such that each of
them is generated by its norming function restricted on [0, 1] (or, respectively, on
[1,∞)) and symmetrically extended on the whole interval [0,∞). These techniques
(described in details in the main body of the paper) will allow us to restrict our
considerations to the case of spaces on [0, 1].

It is worth noticing that properties of a single norming function correspond
to the properties of the unit sphere of the space this function defines, i.e., such
a property defines a geometric invariant, while a property of the modular of this
function is a topological invariant. On the other hand if a geometric invariant P is
fixed we can define the corresponding topological invariant P as follows.

F ∈ 〈P〉 ⇐⇒ ∃f ∈ F , f ∈ 〈P 〉.
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Thus arises a problem of finding an analytic expression for a topological invariant
corresponding to the given geometric one.

Let us briefly discuss the
m∼invariants considered in the current paper.

A. In Section 1 we introduce modulars of Marcinkiewicz spaces (M -modulars) and
Orlicz spaces (N -modulars) (see [20] and [23]). We introduce so-called involutions
that establish one to one correspondences between the sets of all M -modulars and
all N -modulars. These involutions provide one to one correspondences between
topological invariants of Marcinkiewicz and Orlicz spaces. For example the prop-
erty of regularity of anM -modular is equivalent to the Hardy–Littlewood property,
[7], of the corresponding Marcinkiewicz spaces. This property is in correspondence
with the Δ2 -condition, [4], for an N -modular, i.e., the condition of separability of
the related Orlicz spaces.

B. The notion of regularly varying function with parameter α (0 ≤ α ≤ 1)
came from Mathematical Physics, [5] and represents a geometric invariant. The
usefulness of this notion for consideration of so-called symmetric functionals on
Marcinkiewicz spaces becomes clear from the results in [8]–[10]. The problem
of finding an analytic expression for the corresponding topological invariant was
solved in [11], [16], and [17] for α = 0 and α = 1. For 0 < α < 1 this problem was
solved in [18].

In this connection we want to notice that the
m∼invariant of regular varying

is stronger that the
m∼invariant of regularity.

C. The property of submultiplicativity ofM -modulars is stronger than the property
of regular varying, [22], but for so-called quickly varying at 0 M -modulars (i.e.,
for α = 1) these properties are equivalent. An important consequence is that if a
Marcinkiewicz space has a nontrivial band of symmetric functionals then its norm
is submultiplicative.

Another consequence is that if a Marcinkiewicz space equals as a set to the
related Orlicz space then its modular is quickly varying at 0, [12]–[14].

It is also worth noticing that an M -modular is submultiplicative if and only
if the corresponding N -modular satisfies the well-known Δ′-condition, [4].

D. One of the below-considered invariants is connected with the problem of p-
convexity, [2]. Let ψ be a defined on [0, 1] concave symmetric norming function,
and δψ be its upper index of compression/dilation, [3]. It is known, [15], that for
1 < p �= 1/δψ the Marcinkiewicz space Mψ([0, 1]) is p-convex (and therefore the
Lorentz space Λψ∗([0, 1]) is q-concave, where 1/p+1/q = 1) if and only if p < 1/δψ.
The last statement is equivalent to the following one: if a concave ψ is given and

1 < p �= 1/δψ then the power ψp m∼ is equivalent to a concave function if and only
if p < 1/δψ.

Then the following problem arises: find a characterization of the
m∼invariant

defined by the property that raising a concave ψ to the limit power 1/δψ also

provides a function
m∼equivalent to a concave one (below we call such a ψ and its
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M -modular a pseudopower). It was proved in [27] that if a symmetric function ψ is
a pseudopower then the corresponding to ψ supremal and upper-limit functions of

compression/dilation are
m∼equivalent. From this fact we obtain a criterion for any

function on [0,∞), that is
m∼equivalent to a concave function, to be pseudopower.

Thus we obtain that a pseudopower function is submultiplicative at 0 and
therefore regularly varying at 0 (the inverse in general is false).

Because every norming functions maps [0,∞) onto itself the composition of
two norming functions also is a norming function. Considering composition as

a semigroup operation we can correctly define the semigroup of
m∼modulars of

norming functions, [29]. The sets of
m∼modular corresponding to some

m∼invariants
can be considered as algebraic substructures of the above-defined semigroup. These
substructures were studied in [20], [21], and [29].

In the papers [19], [21]–[24], and [26]–[29] the
m∼isomorphisms of any M -

modular are interpreted with the help of the limit behavior of some corresponding
to it sequence of natural numbers (more precisely the equivalency class of such a
sequence). The essence of such an approach consists in conversion to the logarith-
mic scale followed by discretization of values of norming functions; it allows for
simultaneous interpretation of N and M -modulars through so-called a-modulars.
To achieve it we introduce the notion of natural base. Such a base simultaneously
describes both types of a-modulars. We would like to emphasize that such an in-
terpretation is stable under the action of involutions connecting related N and M
modulars. By using these techniques we can provide a simple description of the

action at 0 of the operator of compression/dilation on
m∼modulars.

The described above techniques can be applied to interpret any (in particular,
discussed in this paper) topological invariants of related triples (Lorentz, Orlicz,
and Marcinkiewicz spaces).

1. M -functions and M -modulars. Related triples/paires.
Symmetric functions and modulars

Definition 1.1.

1. Let ψ be a continuous, strictly concave norming function on [0,∞) such that
(a) ψ(1) = 1.

(b) ψ is not
m∼ equivalent to the function e, e(t) ≡ t on (0,∞).

(c) There is a norming function on [0,∞), ψ� (called dual to ψ), satisfying
conditions (a) and (b) such that

ψ�(t)
m∼ t

ψ(t)
, t > 0.

Then we will denote the
m∼modular of ψ by Ψ and call ψ a Marcinkiewicz func-

tion (briefly M -function), respectively, dual Marcinkiewicz modular (or M -mod-
ular) Ψ∗.
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If two functions belong to the same M -modular we call them equiconcave
functions.

2. Similarly, a continuous strictly convex norming function φ on [0,∞) which

is not
m∼equivalent to e(t) is called an Orlicz function or N -function. The

function complementary to φ (see [4]) is denoted φ�. The
m∼modular of an

N -function φ is called Orlicz modular or N -modular and denoted by Φ. The
elements of an N -modular are called equiconvex functions.

It is clear from the definition of
m∼equivalence that all the information about

m∼invariants can be expressed in terms of limit/supremal values of compression/
dilation operators on equiconcave or equiconvex functions, e.g., upper and lower
indices of compression/dilation (see below).

As we have already mentioned the set of all spaces of Lorentz, Marcinkiewicz,
and Orlicz can be partitioned into related triples (Λϕ, Mψ, L∗φ), such that the

norming (i.e., fundamental) functions of these spaces are transformed into each
other by natural involutions and thus induce involutions on their modulars. More
precisely, we speak about involutions of duality I1 : I1(ψ) := ψ∗, complementarity
I2 : I2(φ) := φ∗, inverse I3 : I3(φ) := φ−1, and inversion I4 : I4ξ(0) := 0,
I4ξ(t) := t · ξ(1t ), 0 < t <∞.

The fundamental functions of the Lorentz space Λϕ and the dual to it Marcin-

kiewicz space Mψ are mutually dual: ϕ = ψ∗, and therefore their
m∼invariants

can be expressed in a simple “mutually dual” form. The correspondence between
m∼invariants of Marcinkiewicz and Orlicz spaces is a bit more complicated.

For any N -function φ we have the following two equivalencies ofM -functions:

I3I2φ
m∼ I1I3φ; I4I3I2φ

m∼ I4I1I3φ. For modulars these equivalencies can be ex-
pressed as two involution formulas

1) I3I2Φ = I1I3Φ,

2) I4I3I2Φ = I4I1I3Φ.

The involution identities provide a reason to call theM -modular Φ� " φ� :=
I4I1I3φ and the N -modular Φ a related pair of modulars. Every M -modular Ψ is
related to the N -modular Ψ� " ψ� := (I3)

−1I1I4ψ, where the M -function ψ
is in Ψ. The pairs of functions (φ�, φ), (ψ, ψ�), as well as the pairs of modulars

(Φ�,Φ) and (Ψ,Ψ�) are called mutually related.
m∼invariants of the modulars that

are mutually related are also called mutually related and can be easily expressed
one through the other. By adding to a related pair the Lorentz space dual to the
corresponding Marcinkiewicz space we can speak about a related triple of spaces
or, respectively, of topological invariants.

The following remark will play an important role in the sequel:
m∼invariants

of the Marcinkiewicz space Mξ[0,∞) can be identified with pairs of
m∼invariants of

the Marcinkiewicz space Mξ(0, 1). This can be done in the following way.
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On the sets of M - and N -functions we define the involution of symmetry I5:
I5ξ(t) := 1

ξ( 1
t )
, t ∈ (0,∞). This involution induces the corresponding involution

on the sets of equiconcave (respectively, equiconvex) functions.

Definition 1.2. A function ξ and its modular Ξ " ξ are called symmetric if the

following
m∼ equivalence holds

ξ(t)
m∼ I5ξ(t), t ∈ [0,∞).

It is immediate that the Marcinkiewicz space Mξ[0,∞) generated by an
equiconcave symmetric function ξ can be identified with the Marcinkiewicz space
Mξ(0, 1).

For an equiconcave function ξ on [0,∞) we define its symmetric extensions
from [0, 1] onto (0,∞) and from [1,∞) onto (0,∞), respectively, as{

ξ0(t) = ξ(t), if t ∈ [0, 1], ξ0(t) = I5ξ(t), if t ∈ [1,∞);

ξ∞(t) = I5ξ(t), if t ∈ (0, 1], ξ∞(t) = ξ(t), if t ∈ [1,∞).

Both ξ0 and ξ∞ are symmetric and equiconcave. They are called left and, re-
spectively, right symmetric brackets for ξ. Thus we have a natural correspondence
between the Mazrcinkiewicz space Mξ(0,∞) and the pair of Marcinkiewicz spaces
Mξ0(0, 1) and Mξ∞(0, 1), generated by the left and right symmetric bracket of ξ,
respectively.

Similarly we define symmetric equiconvex functions and construct symmetric
brackets for any equiconvex function.

It follows from the considered above equivalencies that to any
m∼invariant

of a Marcinkiewicz space M(0,∞) corresponds a pair of
m∼invariants of the space

M(0, 1), and vice versa. For a symmetric M -modular the
m∼invariants in this pair

are identical. Because related modulars are symmetric or nonsymmetric at the
same time the involution formulas establish a one-to-one correspondence between
m∼invariants of related spaces of Lorentz, Λ(φ
)∗(0, 1), Marcinkiewicz, Mφ
(0, 1),
and Orlicz, Lφ(0, 1).

Definition 1.3. For a norming function ξ on [0,∞) we define three types of supre-
mal compression/dilation functions depending on parameter s ≥ 0, two types
of upperlimit functions, and the lower (γ) and the upper (δ) indices of dila-
tion/compression:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sξ(s) := sup
t∈[0,∞)

σsξ(t)
ξ(t) , γξ := lim

s→0

log2 Sψ(s)
log2 s ; δξ := lim

s→∞
log2 Sξ(s)

log2 s ;

S0
ξ(s) := sup

t∈[0,1],s·t∈[0,1]

σsξ(t)
ξ(t) , γ0

ξ := lim
s→0

log2 S0
ξ(s)

log2 s ; δ0ξ := lim
s→∞

log2 S0
ξ(s)

log2 s ;

S∞
ξ (s) := sup

t≥1, s·t≥1

σsξ(t)
ξ(t) ξ(t), γ∞

ξ := lim
s→0

log2 S∞
ξ (s)

log2 s ; δ∞ξ := lim
s→∞

log2 S
∞
ξ (s)

log2 s
;

L0
ξ(s) := lim sup

t→0

σsξ(t)
ξ(t) ; L∞

ξ (s) := lim sup
t→∞

σsξ(t)
ξ(t) .



Topological Invariants of Lorentz–Orlicz–Marcinkiewicz Spaces 313

For a symmetric equiconcave function ϕ we have the following
m∼equivalenvies

Sϕ(s)
m∼ S0

ϕ(s)
m∼ S∞

ϕ (s), L0
ϕ(s)

m∼ L∞
ϕ (s), s ≥ 0,

as well as equalities γϕ = γi
ϕ, δϕ = δiϕ, i = 0,∞.

2. Examples of topological invariants of Marcinkiewicz
and Orlicz spaces

Definition 2.1.

1. Recall that an N -function φ and its N -modular Φ satisfy the Δ2 condition,

[4], if φ is
m∼equivalent at infinity to the function σ2φ.

2. An M -modular Ψ is called HLPM -modular (respectively, HLPΛ-modular),
[7], if the Marcinkiewicz space MΨ[0,∞) (respectively, the Lorentz space
ΛΨ∗ [0,∞)) has the Hardy–Littlewood property, i.e., for any norming function

ξ ∈ Ψ (respectively, ξ ∈ Ψ∗) the function ξ(t)
t belongs to the corresponding

space. It is well known, [1], that for a symmetric M -function ψ its modular
Ψ is a HLPM -modular (respectively, HLPΛ-modular) if and only if when
γψ > 0 (respectively, δψ < 1).

Theorem 2.1. A symmetric M -modular Ψ is a HLPM -modular if and only if the
related N -modular Ψ� satisfies the Δ2-condition.

Thus the separability of the Orlicz space L∗Φ(0, 1) is equivalent to the ful-
filment of the Hardy–Littlewood property in the related Marcinkiewicz space
MΦ
(0, 1).

Definition 2.2. A norming function F is called submultiplicative (respectively, su-
permultiplicative) on some subset Q of [0,∞), [1], if there is a constant c > 0 such
that

F (s · t) ≤ c · F (s) · F (t) (respectively, F (s · t) ≥ c · F (s) · F (t)), s, t ∈ Q.

For equiconcave functions we have the following theorem.

Theorem 2.2.

1.
m∼invariant of submultiplicativity is stronger then HLPM

m∼invariant.
2. An equiconcave function ψ is submultiplicative on [0,∞) if and only if

ψ(s)
m∼ Sψ(s).

3 A symmetric equiconcave function ϕ is submultiplicative on [0, 1] if and only
if in some neighborhood of 0

ϕ(s)
m∼ S0

ϕ(s).

4. A M -modular Ψ is submultiplicative if and only if the related N -modular Ψ�

is submultiplicative as well.

Thus the fulfilment of
m∼invariant of submultiplicativity in MΨ(0, 1) is equivalent

to the fulfilment of Δ′-condition in the Orlicz space L∗Ψ�(0, 1), [4].
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Definition 2.3. If a norming function on [0,∞) is simultaneously submultipicative
and supermultiplicative we call it and its modular equimultiplicative.

Theorem 2.3 ([28]).

1. An equiconcave function ψ is equimultiplicative if and only there are constants

0 < α, β < 1 such that ψ(t)
m∼ tα at 0, and ψ(t)

m∼ tβ at∞.

2. For a symmetric equimultiplicative function we have α = β.

3. Similar statements take place for equiconvex equimultiplicative functions with
α, β > 1.

Definition 2.4. A norming function F is called a regular variation function with
parameter α, 0 < α <∞, (shortly RVα-function) at 0, respectively, at ∞, if

lim
t→0

σsF (t)

F (t)
= sα, respectively, lim

t→∞
σsF (t)

F (t)
= sα.

In the case when we consider only one of singular points 0 (respectively, ∞)
we apply the notation F ∈ RV 0

α (respectively, F ∈ RV ∞
α ).

For an equiconcave function always α ∈ (0, 1), while for an equiconvex one
α > 1.

Equiconcave RV 0
1 as well as equiconvex RV∞

∞ -functions are called rapidly
growing, while equiconcave RV 0

0 and equiconvex RV∞
1 -functions are called slowly

growing, [5].

Let us emphasize that for an M -function ψ the RV -property is a property
of the unit sphere of the Marcinkiewicz space Mψ(0,∞). This property in general
is not preserved for an equivalent norm. The topological invariant of Mψ(0,∞)
corresponding to the RVα-property was first obtained for rapidly and slowly grow-
ing equiconcave functions, [11], [16], [17], and then generalized for an arbitrary
α ∈ [0, 1] in [18].

For equiconcave functions on [0,∞) we will denote the RV
m∼invariants by

mRV 0
α and mRV∞

α , respectively. It is known, [8]–[10], that for α = 0 and α = 1

the corresponding RV
m∼invariants can provide criterions of existence or not exis-

tence of some types of singular functionals (so-called symmetric functionals) on
corresponding Marcinkiewicz spaces.

Theorem 2.4.

1. (a) If for an equiconcave function ψ we have at 0

lim sup
t→0

σsψ(t)

ψ(t)

m∼ sα

then there is an M -function ϕ
m∼ ψ such that ϕ ∈ RV 0

α .
(b) If for an equiconcave function ψ we have at ∞

lim sup
t→∞

σsψ(t)

ψ(t)

m∼ sα

then there is an M -function ϕ
m∼ ψ such that ϕ ∈ RV ∞

α .
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2. If Ψ is a symmetric and submultiplicative on [0, 1] M -modular then there is
an α such that Ψ ∈ mRV 0

α .
3. If an M -modular Ψ ∈ mRV 0

1 then Ψ is submultiplicative on [0, 1].
4. If α > 1 the involution formulas allow us to make similar conclusions for

m∼invariants induced by RV ∞
α .

Now we will consider the topological invariant of a related triple of Lorentz–
Orlicz–Marcinkiewicz spaces connected with the topic of p-convexity of Banach
spaces of measurable functions, [2]. Let ψ be a symmetric equiconcave function
and δψ be its upper index. It is known that for 1 < p �= 1

δψ
the Marcinkiewicz space

Mψ([0, 1]) is p-convex (or equivalently the Lorentz space Λψ∗([0, 1]) is q-concave,
where 1/p+ 1/q = 1) if and only if p < 1

δψ
, [15]. The last statement is equivalent

to the following one. For an equiconcave function ψ on [0,∞) and for 1 < p �= 1
δψ

the power ψp is equiconcave if and only if p < 1
δψ

.

Definition 2.5. An equiconcave function ψ (as well as its modular Ψ) is called a

pseudopower if the power ψ
1

δψ is an equiconcave function.

By Theorem 2.3 an equimultiplicative function cannot be a pseudopower.
We denote the union of disjoint classes of equimultiplicative and pseudopower
m∼modulars by (pPow).

As an example of a pseudopower function on [0,∞) we can consider an

equiconcave function (ϕ0)
1
2 where ϕ0(0) = 0, ϕ0(t) = −t · log2 t

2 , 0 < t ≤ 1,

and ϕ0(t) = 1
ϕ0( 1

t )
, t > 1.

On the other hand the following equiconcave function (ϕ∞)
1
2 is not a pseu-

dopower, where ϕ∞(t) := t · log2 2t, 1 ≤ t <∞, and ϕ∞(t) = 1
ϕ∞( 1

t )
, t ∈ (0, 1].

Theorem 2.5 ([26]).

1. Let ϕ be an equiconcave function and ϕ0, ϕ1 be its left and right brackets,
respectively. Each of the following conditions guarantees that ϕ is a pseu-
dopower.

(a) ϕ0 is a pseudopower and δϕ0 > δϕ1 .
(b) ϕ0 and ϕ1 are both pseudopowers and δϕ0 = δϕ1 .

2. Conversely, if ϕ is a pseudopower then its bracket that has the larger upper
index is also a pseudopower. If the upper indices of the brackets are equal
then both brackets are pseudopowers.

Theorem 2.6 ([27]).

1. Let ψ be an equiconcave function with the symmetric M -modular Ψ. The
following conditions are equivalent (see Definition 1.3).

(a) Ψ ∈ (pPow).

(b) S∞
ψ (s)

m∼ L∞
ψ (s).

2. If Ψ is a symmetric pseudopower modular then Ψ is submultiplicative at 0.
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Definition 2.6. We say that the Marcinkiewicz space Mψ(0, 1) has the property

P∗ if the non-increasing function ψ(t)
t belongs to L1(0, 1).

It is immediate that
m∼invariant P∗ is weaker than (HLP)M -invariant. It is

well known, [3], that for an M -function ψ the following is true.

Theorem 2.7. The following inclusions are equivalent

Mψ(0, 1) ∈ P∗ and
dψ(t)

dt
∈ L log+ L(0, 1).

It is known, [12]–[14], that the Orlicz space Lφ(0, 1) and the Marcinkiewicz
space Mψ(0, 1) can under some conditions be equal as sets. The next theorem
provides a criterion for it.

Theorem 2.8. The following conditions are equivalent.

1. Lφ(0, 1) = Mψ(0, 1), as sets.

2. (a) φ(t)
m∼ I5I3I4ψ, and

(b) ψ ∈ (HLP)M , and

(c) ∃ ε > 0 :
∑

n≥1 2
n · ψ−1

∗
(
ε · ψ∗(2−n)

)
<∞.

3. The semigroup of M -modulars

In this section we consider the set of all M -modulars on [0, 1] which as was noticed
before can be identified with the set of all symmetricM -modulars. To extend these
considerations to the set of all M -modulars we can use the symmetric brackets of
an arbitrary M -modular.

On the set M of all M -modulars on [0, 1] we define the binary operation of
composition as follows.

Definition 3.1. Ψ1 ◦Ψ2 is the modular of the composition of M -functions

ψ1 ◦ ψ2(t) := ψ1

(
ψ2(t)

)
, t ∈ [0, 1],

where ψi ∈ Ψi, i = 1, 2.

Theorem 3.1.

1. Composition of M -modular is well defined.
2. The upper index of the composition of two equiconcave on [0, 1] functions is

less or equal to the product of upper indices of the factors; moreover, if the
factors are either (pPow) or mRV 0-functions, we have the equality.

3. The set M endowed with the operation ◦ is a non-abelian semigroup.

Definition 3.2. Let V be a subset of the semigroup (M, ◦). We will call V :
1. subsemigroup, if v1, v2 ∈ V ⇒ v1 ◦ v2 ∈ V ;
2. closed subsemigroup, if v1, v2 ∈ V ⇔ v1 ◦ v2 ∈ V ;
3. right closed subsemigroup, if v1, v2 ∈ V ⇒ v1 ◦ v2 ∈ V ⇒ v2 ∈ V ;
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4. two-sided ideal, if [v1 ∈ V or/and v2 ∈ V ]⇒ v1 ◦ v2 ∈ V ;
5. closed ideal, if V is an ideal and v1 ◦ v2 ∈ V ⇔ [v1 ∈ V or/and v2 ∈ V ];
6. strongly closed ideal, if V is an ideal and v1 ◦ v2 ∈ V ⇔ [v1 ∈ V , v2 ∈ V ].

The M -modulars satisfying some
m∼invariant P constitute a subset in M

which we will denoteMP . Depending on P this subset can have different semigroup
properties.

Theorem 3.2 ([29]). Let V be a closed subsemigroup. Then its complement Vc :=
M \ V is a closed ideal.

Vice versa, the complement of a closed ideal is a closed subsemigroup.

The next theorem, [20], [29], characterizes the algebraic properties of the set

MP where P is one of the
m∼invariants considered in Section 2.

Theorem 3.3.

1. If P is (HLP)M or mRV 0
1 then MP is a closed ideal.

2. If P = (HLP)Λ then MP is an ideal.
3. If P = mRV 0

0 then MP is a closed ideal.

4. If P is the
m∼invariant of sub or supermultiplicativity then MP is a subsemi-

group.

5. If P is the
m∼invariant of equimultiplicativity then MP is a subsemigroup iso-

morphic to the commutative group of M -modulars generated by power func-
tions.

6. If P =
⋃

0<ω<1 mRV 0
ω then MP is a subsemigroup. Moreover, (ψ ∈ mRV 0

α ,

ϕ ∈ mRV 0
β , 0 < α, β < 1)⇒ ψ ◦ ϕ ∈ RV 0

α·β .
7. If P = (pPow) then MP is a right closed subsemigroup.

4. Interpretation of
m∼invariants via natural bases

We introduce the basic notions of the language of natural bases with the help of
simple remarks and lemmas. Some of the statements are clarified by providing
their proofs.

4.1. Natural bases

Definition 4.1.

1. P(N) denotes the set of all subsets of the set of natural numbers N. A set
K ∈ P(N) is called biinfinite if it as well as its complement, N\K, are infinite
subsets of N.

2. A strictly increasing sequence of natural numbers b = {bk}1≤k<∞ := (bk) is
called a (natural) base if b0 = 0 and {bk}1≤k<∞ is a biinfinite subset of N.
The symbol B denotes the set of all bases. Let b = (bk) be a base. The subset
N \ {bk}k≥1 := {b∗i}i≥1 of N ordered as a strictly increasing sequence and
complemented by b�0 = 0 is called the base dual to the base b and is denoted
as b∗, b∗ = (b∗i).
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3. Let b1 and b2 be two bases. We write b1 ≺ b2 if b1 ⊆ b2 and the set b2 ∩b1∗
is a base.

4. If a base b is given we can define the following two maps of N into itself.

The quantitative sequence

qb = (qb(n)), qb(n) := (bn − bn−1) > 0, n ∈ N, (4.1)

and the place-sequence

pb = (pb(n)), pb(n) :=
n−1∑
i=0

χb(i), n ∈ N, (4.2)

where χb denotes the characteristic function of the set b ⊂ N ∪ {0}.
It is immediate that

pb(1) = 1, pb(n) ≤ pb(n+ 1) ≤ pb(n) + 1, n ≥ 1; lim
n→∞ pb(n) =∞. (4.3)

Remark 4.1. It is immediate that every positive sequence {q = q(n)} of naturals
as well as every sequence {p = p(n)} satisfying (4.3) are quantitative sequence
and place-sequence, respectively, for an appropriate base b. Thus the correspon-
dences between bases, their quantitative sequences, and their place-sequences are
bijections.

Definition 4.2. The superposition of two bases b1 ◦b2 is the base that corresponds
in the unique way (Remark 4.1) to the place-sequence

(pb1 ◦ pb2)(j) := pb1(pb2(j)), j ≥ 1. (4.4)

(It is immediate that the right part of (4.4) is indeed a place-sequence, and there-
fore the superposition b := b1 ◦ b2. is well defined.)

Lemma 4.2. Let p1 and p2 be arbitrary place-sequences and b1 and b2 be the
corresponding bases. Then for the superposition b = b1 ◦b2 of these bases we have

χb(k) = χb2(k) · χb1(p2(k)), k ≥ 1. (4.5)

Conversely, if (4.5) holds for the superposition b of the bases b1 and b2 then

pb = pb1 ◦ pb2 .

Corollary 4.3. Let b1 = (mk), b2 = (nk) be two arbitrary bases. Then for their
superposition b = b1 ◦ b2 the following statements are true:

• (p1 ◦ p2) = {p(n)} where p(n) ≤ min[p1(n), p2(n)], n ≥ 1;
• b = {nmk

}k≥1;
• b ≺ b2.

Theorem 4.4. Let p and p2 = {p2(n)} be two place-sequences defining the bases
b = (bn) and b2, respectively. Then the following statements are equivalent.

• b ≺ b2;
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• The equation

p = x ◦ p2

is solvable and its unique solution is the place-sequence p1 corresponding to
the base

b1 := (p2(bn)).

Definition 4.3.

1. Let q(1) = {q(1)n }n≥1 and q(2) = {q(2)n }n≥1 be two sequences of real numbers.

We will call these sequences
a∼equivalent and write q(1)

a∼ q(2) if there is a
natural d such that

n∑
i=1

q
(1)
i ≤

n+d∑
i=1

q
(2)
i ≤

n+2d∑
i=1

q
(1)
i , n ≥ 1.

2. We will call two bases b(1) = (b
(1)
k ) and b(2) = (b

(2)
k )

a∼equivalent and write

b1 a∼ b2 if there is a natural d such that

b
(1)
k ≤ b

(2)
k+d ≤ b

(1)
k+2d, k ≥ 1.

The set of all bases that are
a∼equivalent to the base b is called the

a∼modular

of the base b and denoted by b. Finally, the set of all
a∼modular is denoted

by B.

3. Two place-sequences p1 = {p1(n)}n≥1 and p2 = {p2(n)}n≥1 are called
a∼equi-

valent (p1
a∼ p2) if there is a natural d such that

p1(n) ≤ p2(n) + d ≤ p1(n) + 2d, n ≥ 1.

Let b be a base. We will denote by {qb∗} and {pb∗} the qualitative and
place-sequence corresponding to the dual base b∗. It is immediate that pb∗(n) =
n− pb(n) + 1, n ≥ 1. Equally immediate is the statement of the following lemma.

Lemma 4.5. Let b(1) and b(2) be two arbitrary bases. The following statements are
equivalent:

b(1) a∼ b(2), (4.6.1)

b
(1)
∗

a∼ b
(2)
∗ , (4.6.2)

qb(1)
a∼ qb(2) , (4.6.3)

q
b

(1)
∗

a∼ q
b

(2)
∗
, (4.6.4)

pb(1)
a∼ pb(2) , (4.6.5)

p
b

(1)
∗

a∼ p
b

(2)
∗
. (4.6.6)
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Definition 4.4.

1. The map ω : B→ P(N) is called a∼invariant if on
a∼equivalent bases ω takes

a∼equivalent values.
2. Let b = (bk) be a base. We will consider the corresponding supremal sequence

Sb(m) := sup
0≤n<∞

n+m∑
j=n+1

χb(j), m ≥ 0

and the upperlimit sequence

Lb(m) := lim sup
n→∞

n+m∑
j=n+1

χb(j), m ≥ 0.

It is easy to see that Lb(m) ≤ Sb(m) ≤ m, m ≥ 1.

Remark 4.6. It is immediate that for {Sb(m)} are satisfied all of the relations
(4.3) and for {Lb(m)} – the first two of those relations.

By Remark 4.1 if we know the sequence {Sb(m)} then the base bSb
is uniquely

defined.
By Lemma 4.5 the map b→ bSb

is
a∼invariant.

Finally, if the monotonic sequence {Lb(m)} is unbounded then its values

uniquely define the base bLb
and the map b→ bLb

is
a∼invariant.

Theorem 4.7. The upperlimit sequence Lb(m) is bounded by m if and only if there

is a natural base b̃
a∼ b such that

lim
n→∞qb̃(n) =∞. (4.7)

Definition 4.5. Let b = {bk} be a base. We define the lower, γb, and the upper,
δb, indices of this base in the following way⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

γb := lim
m→∞ inf

0≤n<∞

n+m∑
j=n+1

χb(j)

m
;

δb := lim
m→∞ sup

0≤n<∞

n+m∑
j=n+1

χb(j)

m
.

It is immediate that these indices exist, that they coincide for two
a∼equivalent

bases, and that

0 ≤ γb ≤ δb ≤ 1; δb = 1− γb∗ ; γb = 1− δb∗ .

Definition 4.6.

1. Let b = {bk}k≥0 be a base. The n-shift of this base is by definition the base

b[n] = (b
[n]
k ), where b

[n]
0 := 0; b

[n]
k := bk+n, k ≥ 1. Notice that

a∼invariant
properties of

a∼modular are exactly the properties invariant under shifts.
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2. A base b = (bk) is called uniform if it is
a∼equivalent to its 1-shift. Clearly

two
a∼equivalent bases are simultaneously uniform or not.

Lemma 4.8. A base b = (bn) is uniform if and only if

sup
n>0

[bn − bn−1] <∞. (4.8)

Definition 4.7. Let R be a natural number, R > 1. A sequence of natural numbers
such that all its terms are equal either to 1 or to R is called R-reduced.

Lemma 4.9. Let b be a uniform base. Then there are a natural number R and a

base b̃ such that b̃
a∼ b and the quantitative sequence qb̃ is R-reduced.

Let us fix a base b and let pb be the corresponding place-sequence.

Definition 4.8. 1. A base b = (bk) is called subadditive, respectively, superadditive
if there is a natural d such that for all natural m and n we have the following
inequalities:

bn+m−d ≤ bn + bm, n+m > d,

respectively,

bn+m+d ≥ bn + bm, n+m > d. (4.9)

2. We call the place sequence pb subadditive, respectively, superadditive if
there is a natural d such that for all natural m and n we have the following
inequalities.

pb(n+m) ≥ pb(n) + pb(m)− d,

respectively,

pb(n+m) ≤ pb(n) + pb(m) + d. (4.10)

Because p
(m)
b ↑m↑∞ ∞ the conditions of super and subadditivity can be expressed

in the following way. There is a natural d such that⎧⎪⎨⎪⎩
pb(n+m) ≥ pb(n− d) + pb(m− d), n,m ≥ d;

respectively,

pb(n+m) ≤ pb(n+ d) + pb(m+ d), n,m ≥ 1.

(4.11)

Remark 4.10.

1. A base b is superadditive (respectively, subadditive) if and only if its place-
sequence is subadditive (respectively, superadditive).

2. Every subadditive base is uniform.

Lemma 4.11. If b = (bn) is a subadditive base then

β := inf
n≥1

bn
n

= lim
n→∞

bn
n
.
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Proof. We have 1 ≤ β ≤ ∞ and without loss of generality we can assume that
β <∞. Let us fix an arbitrary small ε > 0 and chose a natural nε such that

bnε/nε < β + ε. (4.12)

Let m be a natural number such that m > nε + d. we can chose a natural k = km
such that

(km + 1) · nε ≤ m− d ≤ (km + 2) · nε. (4.13)

Because m− d = km · nε +m− d− km · nε in virtue of subadditivity we have

β ≤ bm−d

m− d
≤ bkm·nε

m− d
+

bm−km·nε−d

m− d
≤ · · · (∗)

Because
km · nε = nε + · · ·+ nε︸ ︷︷ ︸

km

we can apply subadditivity, (4.12), (4.13), as well as the monotonicity of the base
(that implies that bm−km·nε ≤ b2nε+d) to extend the inequalities (∗) and to obtain

· · · ≤ km · nε · (β + ε)

(km + 1) · nε
+

bm−km·nε

m− d
≤ β + ε

1 + 1
km

+
2nε + d

m− d
. (4.14)

By taking the limit in (4.14) when m→∞ we obtain the statement of the lemma.
�

Theorem 4.12. Let b = (bn) β be a subadditive base and β = limn→∞ bn
n . Then

for the repeated limit is true

lim
n→∞ lim

m→∞
bn+m − bn

m
= β. (4.15)

Proof. By changing the notations of variables we can rewrite (4.9) as

bn+m ≤ bn + bm−d, where m > d, n ≥ 1. (4.16)

Let us fix ε > 0. By the previous lemma and by (4.16) for any n and for m, such

that m > d and bm−d

m = bm−d

m−d ·
m−d
m ≤ β + ε, we have

bn+m − bn
m

≤ bm−d

m
≤ β + ε.

On the other hand for large n, such that n′ ≥ n and | bn′
n′ −β| < ε, and for arbitrary

natural m we have bn+m

n+m > β − ε. Therefore for such n and arbitrary m we have

bn+m − bn
m

=
bn+m

n+m
(1 +

n

m
)− bn

n

n

m

> (β − ε)(1 +
n

m
)− (β + ε)

n

m
> β − (1 + 2

n

m
)ε,

whence | bn+m−bn
m − β| ≤ (1 + 2 n

m )ε. Because for the repeated limit is true

lim
n→∞ lim

m→∞
n

m
= 0

and ε is arbitrary small we obtain (4.15). �
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Definition 4.9. A base b = (bn) is called condensifying if there is a natural d such
that for any natural m and n there is a natural n′, n′ = n′(m) > n, such that

n+m∑
i=n+1

χb ≤
n′+m+d∑
i=n′+1

χb.

4.2. Bases and equiconcave/equiconvex functions

The constructions considered in the current subsection are contained in [19] and
[24], see also [6].

Definition 4.10. Let b0 = {n0
k}k=0,1,... and b∞ = {n∞

k }k=0,1,... be two arbitrary
natural bases. Let us fix a nonnegative integer j. Then we can find two numbers
k0(j) and k∞(j), such that

n0
k0(j)

≤ j < n0
k0(j)

+ 1, n∞
k∞(j) ≤ j < n∞

k∞(j) + 1.

We will now construct two binary-measurable functions: ϕ0 on [0, 1) and ϕ∞ on
[1,∞). By binary-measurable we mean that the function ϕ0 is measurable rel-
atively to the partition of [0, 1] by the points 2−ν and ϕ∞ is measurable rel-
atively to the partition of [1,∞) by the points 2ν where ν = 0, 1, 2, . . . . For

2−j ≤ t < 2−j+1, j ≥ 1, we define ϕ0(t) as ϕ0(t) = 2−n0
k0(j) . On the other

hand, for 2j ≤ t < 2j+1, j ≥ 0, we define ϕ∞(t) as ϕ∞(t) = 2n
∞
k∞(j) .

Next, let ϕ(t) = ϕ0(t) if t ∈ [0, 1) and ϕ(t) = ϕ∞(t) if t ∈ [1,∞). It is easy
to see that the function ϕ defined in such a way on [0,∞) is equiconcave. We
call it the function generated by the pair of natural bases (b0,b∞). Moreover, b0

(respectively, b∞) is called the left (respectively, the right) base for ϕ.

We will now show that the converse is true as well: an arbitrary M -function
ψ (and therefore an arbitrary equiconcave function) can be generated uniquely

(up to
m∼equivalency) by a pair of natural bases via the construction described in

Definition 4.10.

Definition 4.11. Let ψ be an M -function defined on [0,∞). For any natural n let
D−

n be the diadic half-segment [2−n, 2−n+1), while D+
n be the diadic half-segment

[2n, 2n+1). The points ψ(2j), where j is an arbitrary integer, will be called ψ-
points. Let us introduce two functions p0

ψ and p∞
ψ by corresponding each ψ-point

with the number of the diadic segment that contains it.

p0
ψ(j) = [− log2 ψ(2

−j)], p∞
ψ (j) = [log2 ψ(2

j)], j ≥ 0, (4.17)

where [r] means the integer part of a real number r. It is easy to see that for an
M -function ψ both functions p0

ψ : N �→ N and p∞
ψ : N �→ N are surjective maps

and each of them satisfies relations (4.3). Thus these functions are place-sequences
defining uniquely the bases b0

ψ , b
∞
ψ , respectively. This bases, as can be readily

seen, correspond to the left and the right base, respectively, of some equiconcave

function that is
m∼equivalent to ψ. The quantitative sequences of these bases we

denote by q0
ψ(n) q

∞
ψ (n), respectively.
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Remark 4.13. It is obvious that the corresponding bases of two M -functions are

pairwise
a∼equivalent if and only if the functions themselves are

m∼equivalent.
Therefore we can define the left and the right base of an equiconcave function

uniquely up to
a∼equivalency as the corresponding base of an arbitraryM -function

from its M -modular. In other words there is a bijective correspondence between
m∼modulars of equiconcave functions and pairs of

a∼modulars of bases. This corre-
spondence can be expressed in the following way.

bϕb

a∼ bϕbϕ

a∼ b,

where by b we understand a pair of bases. Clearly this correspondence conserves

duality in the classes of
m∼modulars and pairs of

a∼modulars.

Lemma 4.14. An equiconcave function ψ is symmetric if and only if its left and

right bases are
a∼equivalent:

b∞
ψ

a∼ b0
ψ.

Remark 4.15. It follows from (4.6) that for a symmetric M -function ψ we have

γψ = γb0
ψ
= γb∞

ψ
, δψ = δb0

ψ
= δb∞

ψ
. (4.18)

Let φ be an N -function. We introduce the following notation

bϕn := [log2 ϕ(2
n)], n ≥ 0.

Then 0 = bϕ0 < bϕ1 < · · · , and it follows from the convexity of φ that the strictly
increasing sequence {bϕn}n>0 is a biinfinte subset in N.

Definition 4.12. The subset b∞
φ := {bϕn}n>0 is called the right base of the N -

function φ as well as of its modular Φ " φ.
The left base of an N -function φ and its modular Φ is defined as the right

base of the N -function I5φ.

Remark 4.16. For an arbitrary N -modular Φ, Φ " φ, its right base b∞
φ is

a∼equi-
valent to the left base b0

φ
 of the related M -modular. Thus mutually related M

and N -functions (modulars) have
a∼equivalent bases.

4.3. Tables

Definition 4.13.

1. Let b = (bn) be a natural base. The following table of natural numbers (with
infinite number of both rows and columns) is called the lower table or table
of base compression of base b.

Tb(n,m) :=

bn+m∑
i=bn+1

χb(i), n,m ≥ 0.

2. The upper table, or table of base dilation of the base b is the table

Tb(n,m) := bn+m − bn, n,m ≥ 0.

Notice that the lower table characterizes the distribution of the base as a subset
of the naturals, while the upper one – the distribution of the dual base.
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In what follows we will restrict our considerations to the case of one base
b = (bn) corresponding to a symmetric equiconcave function, in other words when
M -functions are defined on [0, 1]. Regarding the general case of an equiconcave
function ψ on [0,∞) notice that it can be reduced to the consideration of the pair
of bases corresponding to the left and right symmetric brackets of ψ.

In terms of limit and extremal relations for the upper (as well as for the
lower) table of the base of a equicincave function ψ (or an equiconvex function φ)

we can interpret all the
m∼invariants of the triple of related spaces Λψ∗ , Mψ, L∗φ,

where ψ = φ�. As examples we will consider
m∼invariants of M -modulars on [0, 1]

considered in Section 2.

Theorem 4.17. The
m∼invariants of M -modulars allow the following interpretation

via the tables.

I. 1. lim sup
n≥0

Tbψ(n, 1) <∞⇔ γbψ
> 0⇔ ψ� ∈ (Δ2).

2. lim sup
n≥0

Tbψ∗ (n, 1) <∞⇔ δbψ
< 1.

II. Submultiplicativity ψ : sup
m,n≥1

(
Tbψ(0,m)− Tbψ(n,m)

)
<∞.

Supermultiplicativity ψ : supm,n≥1

(
Tbψ(n,m)− Tbψ(0,m)

)
<∞.

III. Equimultiplicativity ψ ⇔ sup
n; k, m

|Tbψ(k,m) − Tbψ(n,m)| < ∞ ⇔ ψ(t)
m∼

tγbψ .

IV. Repeated limit lim
n→∞ lim

m→∞
m

Tbψ(n,m)
= α⇔ ψ ∈ RV 0

α , α ∈ [0, 1].

V. ψ ∈ Ψ ∈ (pPow)⇔ sup
n≥0

Tbψ∗ (n,m)
a∼ lim sup

n→∞
Tbψ∗ (n,m).

For a symmetric M -modular Ψ a criterion for Ψ ∈ pPow can be formulated
directly in terms of bases bψ, ψ ∈ Ψ:

Ψ ∈ (pPow)⇔ the base bψ is condensifying.

VI. Mψ(0, 1) ∈ P∗ ⇔
∑

n≥1 T
bψ(n, 1) · 2−n <∞.

VII. Mψ(0, 1) = L∗φ(0, 1)⇔ bψ∗
a∼ bφ−1 ∃ϕ m∼ ψ :

∑∞
n=0 2

−Tbϕ∗ (n,1)

<∞.

Thus for the segment [0, 1] and every of the spaces from the related triple
(Lorentz, Marcinkiewicz, Orlicz) all the information about their topological in-
variants is contained in limit and extremal values of the variable representing the
distribution of some sequence of natural numbers – the common base of these
spaces (and the dual base).

For the triple of such spaces on [0,∞) the information is contained in the
corresponding distributions of both the right and the left bases. The converse is
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also true: by choosing an increasing biinfinite sequence of natural numbers we can
define any of those three related spaces on [0, 1] (and thus the other two as well).
Moreover, by changing the distribution of the defining sequence in N we can obtain
arbitrary related topological invariants of the constructed spaces.

Similarly, by choosing two such sequences we can construct related triples of

spaces on [0,∞) such that one of these spaces has the given
m∼invariant and two

others can be reconstructed from the first one.

References

[1] Krein S.G., Petunin Y.I., Semenov E.M. Interpolation of Linear Operators. Transla-
tions of Mathematical Monographs, vol. 54, American Mathematical Sociaty, Prov-
idence. R.I., 1982.

[2] Lindenstrauss J., Tzafriri L. Classical Banach Spaces II, Springer, Berlin, 1979.

[3] Bennett C., Sharpley R. Interpolation of Operators, Academic Press, Pure and ap-
plied mathematics, v. 129, New York – London, 1988.
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Abstract. Let x and y be elements of an ordered Banach algebra (OBA) such
that 0 ≤ x ≤ y. In this paper we will discuss results that give conditions under
which the spectral radius of x is a pole of the resolvent of x, given that the
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1. Introduction

If x and y are elements of an ordered Banach algebra (OBA) such that 0 ≤ x ≤ y,
the general problem of finding conditions under which certain properties of y will
be inherited by x has been studied by various authors (cf. [1], [2], [3], [5], [6], [7],
[8], [9]). This problem is referred to in the literature as the domination problem.
For positive operators on a Banach lattice, the domination problem is classical.
It has been extensively studied and various authors have made contributions (see
[10] for a survey of some of the results).

In the context of the domination problem, a question that naturally arises is
the following: if x and y are elements of an OBA such that 0 ≤ x ≤ y and if the
spectral radius of y is a pole of the resolvent of y, when do we get the spectral
radius of x to be a pole of the resolvent of x? In this paper we will provide results
that answer this question. These results will then be applied to establish some
spectral and asymptotic properties of dominated elements in OBAs, which are
complementary to the results in [6] and [8].

Throughout A will be a complex Banach algebra with unit 1. The spec-
trum and spectral radius of an element x in A will be denoted by σ(x) and
r(x) respectively. A point α ∈ σ(x) is called an eigenvalue of x if there exists
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a 0 �= u ∈ A such that xu = αu or ux = αu. Then u is said to be an eigenvector
corresponding to α. The set of all isolated points of σ(x) is denoted by iso σ(x). If
α ∈ iso σ(x), the spectral projection corresponding to x and α will be denoted by
p(x, α). A point α ∈ iso σ(x) is said to be a pole of order k of the resolvent function
λ �→ R(λ, x) = (λ − x)−1, λ ∈ C \ σ(x) if k is the smallest positive integer such
that (α − x)kp(x, α) = 0. An element x in A is said to be ergodic if the sequence

of sums
∑n−1

k=0

xk

n
converges.

All ideals considered will be two-sided. A point α ∈ iso σ(x) is said to be a
Riesz point of σ(x) relative to an ideal F if the corresponding spectral projection
p(x, α) belongs to F . An ideal I in A is called inessential if the spectrum of every
element in I is either finite or a sequence converging to zero. Let F be a closed
ideal of A. An element x in A is said to be Riesz relative to F if σ(x + F ) in the
quotient algebra A/F consists of zero.

We will denote by L(X) the algebra of all bounded linear operators on a
Banach space X and by K(X) the ideal of compact operators on X . Let E be a
Banach lattice. A linear operator T : E → E is regular if it can be written as a
linear combination over C of positive operators. The space Lr(E) of all regular
operators on E is a linear subspace of L(E). When Lr(E) is equipped with the
norm

||T ||r = inf{||S|| : S ∈ L(E), |Tx| ≤ S|x| for all x ∈ E},
it becomes a Banach algebra which contains the unit of L(E) (see [9] and the refer-
ences given there). We will denote by Kr(E) the closure in Lr(E) of the ideal of fi-
nite rank operators on E. It is well known that this is a closed inessential ideal of A.

This paper consists of five sections. Section 2 recalls the definition and prop-
erties of an ordered Banach algebra (OBA). In Section 3 we consider the problem
of determining when the spectral radius of a dominated element in an OBA is a
pole of the resolvent of the element, given that the spectral radius of the domi-
nating element is a pole of the resolvent of this element. The main result here is
Theorem 3.3, which shows that the conditions that are required come naturally
with the OBA structure.

In Section 4, the results of Section 3 will be applied to establish properties
of ergodic elements in OBAs, which are are complementary to ([6], Theorems 5.1,
5.2 and 5.5). Finally, in Section 5, we apply the results of Section 3 in relation to
eigenvalues and eigenvectors to obtain results complementary to ([8], Theorems
4.3 and 4.4).

2. Ordered Banach algebras

In ([9], Section 3) an algebra cone C of a Banach algebra A was defined and it was
shown that C induces an ordering on A which is compatible with the algebraic
structure of A. Such a Banach algebra is called an ordered Banach algebra (OBA).
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We now recall those definitions and the additional properties that algebra cones
may have.

A nonempty subset C of a Banach algebra A is called a cone if C satisfies
the following:

(i) C + C ⊆ C,
(ii) λC ⊆ C for all scalars λ ≥ 0.

If C also satisfies the property C ∩−C = {0}, then it is called a proper cone.
We say that C is closed if it a closed (in the topological sense) subset of A.

Every cone C in a Banach algebra A induces an ordering ≤ defined by x ≤ y
if and only if y − x ∈ C, for x, y ∈ A. This ordering is reflexive and transitive. In
addition, C is proper if and only if the ordering is antisymmetric. In view of the
fact that C induces an ordering on A, we find that C = {x ∈ A : x ≥ 0}. Therefore
the elements of C are called positive.

A cone C in a Banach algebra A is called an algebra cone if it satisfies the
following:

(i) C.C ⊆ C,
(ii) 1 ∈ C, where 1 is the unit of A.

A Banach algebra ordered by an algebra cone is called an ordered Banach
algebra (OBA). We will denote by (A,C) a Banach algebraA ordered by an algebra
cone C.

Let (A,C) be an OBA. If there exists a real number α > 0 such that ||x|| ≤
α||y|| whenever 0 ≤ x ≤ y w.r.t. C, then we say that C is a normal algebra cone
of A. It is easy to show that every normal algebra cone is proper.

Let (A,C) be an OBA. If 0 ≤ x ≤ y w.r.t. C implies that r(x) ≤ r(y), then
we say that the spectral radius in (A,C) is monotone. It is well known that if C
is normal, then the spectral radius in (A,C) is monotone (see [9], Theorem 4.1).

If (A,C) is an OBA, F a closed ideal in A and π : A → A/F the canonical
homomorphism, then (A/F, πC) is an OBA. Normality of the algebra cone πC in
A/F is defined in the usual way. We will say that the spectral radius is monotone
in (A/F, πC) if 0 ≤ x ≤ y w.r.t. C implies that r(x + F,A/F ) ≤ r(y + F,A/F ).

We now give some examples of ordered Banach algebras.

Example ([4, Example 3.5]). Let A = Mn(C) be the Banach algebra of n × n
complex matrices. Let C be the subset of A consisting of matrices with only non-
negative entries and C′ the subset of A consisting of diagonal matrices with only
non-negative entries. Then C and C′ are closed, normal algebra cones of A, and
so (A,C), (A,C′) are OBAs.

Example ([4, Example 3.8]). Let A = �∞ and C = {(c1, c2, . . . ) ∈ A : ci ≥ 0 for
all i ∈ N}. Then C is a closed, normal algebra cone of A. Therefore (A,C) is an
OBA.

Example ([3, Example 3.3]). Let A be a commutative C∗-algebra, C = {x ∈ A :
x = x∗ and σ(x) ⊆ [0,∞)} and F a closed ideal of A. Then C is a closed, normal
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algebra cone of A and πC is a normal algebra cone of A/F . Therefore (A,C) and
(A/F, πC) are OBAs.

Example ([4, Example 3.4]). Let E be a complex Banach lattice and let C = {x ∈
E : x = |x|}. If K = {T ∈ L(E) : TC ⊆ C}, then K is a closed, normal algebra
cone of L(E). Therefore (L(E),K) is an OBA.

Example ([3, Example 3.2]). Let E be a Dedekind complete Banach lattice, C =
{x ∈ E : x ≥ 0} and K = {T ∈ L(E) : TC ⊆ C}. Then (Lr(E),K) is an OBA
with a closed, normal algebra cone and (Lr(E)/Kr(E), πK) is an OBA such that
the spectral radius in (Lr(E)/Kr(E), πK) is monotone.

3. Poles of the resolvent

This section considers the primary question under consideration: if x and y are
elements of an OBA such that 0 ≤ x ≤ y and r(y) is a pole of the resolvent of y,
when is r(x) a pole of the resolvent of x? The main result is Theorem 3.3.

We begin with the following proposition, which is related to the problem at
hand. It tells us how to conclude that a pole of the resolvent of an element in a
Banach algebra is a simple pole.

Proposition 3.1. Let A be a Banach algebra, x ∈ A and suppose that λ0 is a pole
of the resolvent of x. If (λn) is a sequence in C such that λn → λ0 as n→∞ and
lim
n→∞ ||(λn − λ0)R(λn, x)|| exists, then λ0 is a simple pole of the resolvent of x.

Proof. Suppose that λ0 is a pole of order k of the resolvent of x, with k > 1. Then
for n ∈ N, the resolvent of x has a Laurent series expansion

R(λn, x) =
x−k

(λn − λ0)k
+

x−k+1

(λn − λ0)k−1
+ · · ·+ x−1

λn − λ0
+ x0 + x1(λn − λ0) + · · · ,

on a deleted neighbourhood of λ0, and x−k �= 0. Multiplying both sides of the
expansion by (λn − λ0)

k and then taking limits, it follows from continuity of the

norm that lim
n→∞ ||(λn − λ0)

kR(λn, x)|| = ||x−k||. Thus lim
n→∞ ||(λn − λ0)

kR(λn, x)||
exists and equals ||x−k||. From the hypothesis, it follows that

||x−k|| =
(
lim
n→∞ |λn − λ0|k−1

)(
lim
n→∞ ||(λn − λ0)R(λn, x)||

)
= 0,

which contradicts x−k �= 0. Hence k = 1. �

To prove the main result of this section, we will make use of the following
basic property of resolvents of elements in OBAs.

Proposition 3.2. Let A be an OBA with a closed algebra cone C and suppose that
the spectral radius in (A,C) is monotone. If x, y ∈ A are such that 0 ≤ x ≤ y,
then R(λ, x) ≤ R(λ, y) for λ > r(y).
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Proof. By monotonicity, r(x) ≤ r(y) and so for any λ > r(y), the resolvent of x has

a Neumann series representation R(λ, x) =
1

λ

∑∞
k=0

(x
λ

)k
and the resolvent of y

has a Neumann series representation R(λ, y) =
1

λ

∑∞
k=0

( y
λ

)k
. Since C is closed,

it follows that
1

λ

∑∞
k=0

1

λk
(yk−xk) ∈ C, which implies that R(λ, x) ≤ R(λ, y). �

We now present the main result, which shows that under natural conditions
that come with the OBA structure, the spectral radius r(x) of a dominated element
x is a pole of the resolvent of x, if the spectral radius r(y) of the dominating element
y is a pole of the resolvent of y. In addition, the order of the pole r(x) is dominated
by the order of the pole r(y).

Theorem 3.3. Let A be an OBA with a closed, normal algebra cone C and let
x, y ∈ A such that 0 ≤ x ≤ y. Suppose that r(x) = r(y) and r(x) ∈ iso σ(x).
If r(y) is a pole the of resolvent of y, then r(x) is a pole of the resolvent of x.
Moreover, the order of r(x) is at most equal to the order of r(y).

Proof. Suppose that r(y) is a pole of order m of the resolvent of y. Since C is
closed, from 0 ≤ x ≤ y and the Neumann series representations of R(λ, x) and
R(λ, y) for λ > r(y), we have that

0 ≤ lim
λ↓r(x)

[(λ− r(x))mR(λ, x)] ≤ lim
λ↓r(y)

[(λ− r(y))mR(λ, y)]. (∗)

Now suppose that r(x) is not a pole of the resolvent of x or r(x) is a pole of
order k > m of the resolvent of x. If we consider the Laurent series expansions of
the resolvents of x and y about r(x) and r(y) respectively and use the fact the norm
is a continuous function, we obtain that || lim

λ↓r(x)
(λ− r(x))kR(λ, x)|| =∞ whereas

|| lim
λ→r(y)

(λ− r(y))kR(λ, y)|| = ||b−m||, where b−m is the coefficient in the Laurent

series expansion of the resolvent of y corresponding to the power (λ − r(y))−m.
But considering (∗) and the fact that C is a normal algebra cone, this is not
possible. �

From Example 2 and Theorem 3.3, we obtain the following result for positive
operators on a Banach lattice.

Corollary 3.4. Let E be a complex Banach lattice and let S, T ∈ K such that
0 ≤ S ≤ T and r(S) = r(T ), where K = {U ∈ L(E) : UC ⊆ C} and C = {x ∈ E :
x = |x|}. If r(S) is an isolated point of σ(S) and if r(T ) is a pole of order m of
the resolvent of T , then r(S) is a pole of order at most m of the resolvent of S.

The next corollary also follows immediately from Theorem 3.3.

Corollary 3.5. Let A be an OBA with a closed, normal algebra cone C and let
x, y ∈ A such that 0 ≤ x ≤ y. Suppose that r(x) = r(y) and r(x) ∈ iso σ(x). If r(y)
is a simple pole of the resolvent of y, then r(x) is a simple pole of the resolvent of x.
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Example 2 and Corollary 3.5 yield the following result regarding positive
operators on a Banach lattice.

Corollary 3.6. Let E be a complex Banach lattice and let S, T ∈ K such that
0 ≤ S ≤ T and r(S) = r(T ), where K = {U ∈ L(E) : UC ⊆ C} and C = {x ∈
E : x = |x|}. If r(S) is an isolated point of σ(S) and if r(T ) is a simple pole of
the resolvent of T , then r(S) is a simple pole of the resolvent of S.

4. Ergodic elements

In this section, fn(x) will denote the element
∑n−1

k=0

xk

n
in the Banach algebra A.

In [6] the problem of determining when a dominated element in an OBA is ergodic,
given that the dominating element is ergodic, was investigated. The following three
theorems are the main results.

Theorem 4.1 ([6], Theorem 5.1). Let (A,C) be an OBA with C closed and proper,
and let x, y ∈ A such that 0 ≤ 1 ≤ x ≤ y. Suppose that r(y) = 1 ∈ iso σ(x) and
r(y) is a simple pole of the resolvent of y. If y is ergodic with fn(y) → p(y, r(y))
and if p(x, r(x)) = p(y, r(y)), then x is ergodic with fn(x)→ p(x, r(x)).

Theorem 4.2 ([6], Theorem 5.2). Let A be an OBA with a closed, normal algebra
cone C and let x, y ∈ A such that 0 ≤ x ≤ y. Suppose that 1 ∈ iso σ(x) is a pole
of the resolvent of x. If y is ergodic, then x is ergodic.

Theorem 4.3 ([6, Theorem 5.5]). Let A be a semisimple OBA with a closed, normal
algebra cone C and let x, y ∈ A such that 0 ≤ x ≤ y. Let I be a closed inessential
ideal of A such that the spectral radius in (A/I, πC) is monotone. If y is ergodic
and if r(y) is a Riesz point of σ(y), then x is ergodic.

The next two theorems are complementary to Theorems 4.1, 4.2, and 4.3. We
start with the following, which strengthens Theorems 4.2 and 4.3.

Theorem 4.4. Let A be an OBA with a closed, normal algebra cone C and x, y ∈ A
such that 0 ≤ x ≤ y. Suppose that r(x) is a pole of the resolvent of x. If y is ergodic,
then x is ergodic.

Proof. Normality of C implies that the spectral radius in (A,C) is monotone
by ([9], Theorem 4.1). Since y is ergodic, it follows from ([6] Lemma 5.3) that
r(x) ≤ r(y) ≤ 1. This leads to four possibilities: r(x) < r(y) < 1, r(x) < r(y) = 1,

r(x) = r(y) < 1, r(x) = r(y) = 1. Now, from 0 ≤ x ≤ y, we obtain that 0 ≤ xn

n ≤
yn

n (for all n ∈ N). Since y is ergodic, yn

n → 0 as n → ∞ by ([6], Proposition 4.9

and Lemma 4.8). From normality of C, it follows that xn

n → 0 as n → ∞. In the

first three cases, we get that 1 /∈ σ(a). Thus
∑n−1

k=0

xk

n
→ 0 as n → ∞ by ([6],

Lemma 5.4), which means that x is ergodic. For the case r(x) = r(y) = 1, the
result follows immediately from Theorem 4.2. �



On Poles of the Resolvents of Dominated Elements 335

Theorem 4.2 is a corollary of ([6], Lemma 5.3) and Theorem 4.4, while The-
orem 4.3 is a corollary of ([6], Lemma 5.3), ([3], Lemma 2.1, Theorem 4.3), and
Theorem 4.4.

The next theorem, which strengthens Theorem 4.1 when the algebra cone is
normal, is obtained using a result from Section 3.

Theorem 4.5. Let A be an OBA with a closed, normal algebra cone C and x, y ∈ A
such that 0 ≤ x ≤ y. Suppose that r(y) = 1 ∈ iso σ(y) and r(x) ∈ iso σ(x). If y is
ergodic with fn(y)→ p(y, r(y)), then x is ergodic with fn(x)→ p(x, r(x)).

Proof. If r(x) < r(y), the fact that y is ergodic, together with ([6], Lemma 5.4)
imply that x ergodic with its sequence of ergodic sums converging to 0. If r(x) =
r(y), the result follows by applying ([6], Theorem 4.10), then Corollary 3.5 and
([6], Theorem 4.10) again. �

5. Eigenvalues and eigenvectors

The next two theorems about eigenvalues and eigenvectors for dominated elements
in OBAs are some of the main results in [8].

Theorem 5.1 ([8], Theorem 4.3). Let A be an OBA with a proper, closed algebra
cone C and let x, y ∈ A. Suppose that 0 < r(x) = r(y) and that 0 < r(y) ≤ x ≤ y.
If r(y) is a pole of the resolvent of y, then r(y) is an eigenvalue of y with a
corresponding eigenvector u, and r(x) is an eigenvalue of x with corresponding
eigenvector u.

Theorem 5.2 ([8], Theorem 4.4). Let (A,C) be a semisimple OBA with C closed
and such that the spectral radius in (A,C) is monotone. Let I be a closed inessential
of A such that the spectral radius in (A/I, πC) is monotone. Suppose that x, y ∈ A
such that 0 < x ≤ y and 0 < r(x) = r(y). If r(y) is an eigenvalue of y with a
positive corresponding eigenvector and with r(y) a Riesz point of σ(y), then r(x)
is an eigenvalue of x with a positive corresponding eigenvector.

The next corollary is complementary to Theorem 5.1. It shows how to con-
clude that the spectral radius of the dominated element is an eigenvalue of the
element, given the less restrictive inequality 0 < x ≤ y instead of 0 < r(y) ≤ x ≤ y.

Corollary 5.3. Let A be an OBA with a closed, normal algebra cone C and let
x, y ∈ A such that 0 < x ≤ y, r(x) = r(y) and 0 �= r(x) ∈ iso σ(x). If r(y) is
a pole of the resolvent of y, then r(y) is an eigenvalue of y with a positive corre-
sponding eigenvector, and r(x) is an eigenvalue of x with a positive corresponding
eigenvector.

Proof. The result follows from ([7], Theorem 3.2), then Theorem 3.3 and ([7],
Theorem 3.2) again. �
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The next result shows when r(y) in Corollary 5.3 is a simple pole of the
resolvent of y, the spectral projections associated with r(x) and r(y) are the cor-
responding eigenvectors.

Corollary 5.4. Let A be an OBA with a closed, normal algebra cone C and let
x, y ∈ A such that 0 < x ≤ y. Suppose that r(x) = r(y), r(x) ∈ iso σ(x), and r(y)
a simple pole of the resolvent of y. Then r(y) is an eigenvalue of y, with p(y, r(y))
a corresponding eigenvector, and r(x) is an eigenvalue of x with p(x, r(x)) a cor-
responding eigenvector.

Proof. By ([7], Theorem 3.2), r(y) is an eigenvalue of y, with corresponding eigen-
vector p(y, r(y)). By Corollary 3.5 and ([7], Theorem 3.2), r(x) is an eigenvalue of
x, with a corresponding eigenvector p(x, r(x)). �

The following corollary complements Corollary 5.4.

Corollary 5.5. Let A be an OBA with a closed, normal algebra cone C and let
x, y ∈ A such that 0 < x ≤ y, with r(x) = r(y) ∈ iso σ(x). If r(y) is an eigenvalue
of y with corresponding eigenvector p(y, r(y)), then r(x) is an eigenvalue of x with
corresponding eigenvector p(x, r(x)).

Proof. If r(y) is an eigenvalue of y with corresponding eigenvector p(y, r(y)), then
r(y) is a simple pole of the resolvent of y. It follows from Corollary 3.5 and
([7], Theorem 4.2) that r(x) is an eigenvalue of x with corresponding eigenvec-
tor p(x, r(x)). �

Another complementary result to Theorems 5.1 and 5.2 is the following.

Corollary 5.6. Let A be a semisimple OBA with a closed, normal algebra cone C
and let x, y ∈ A such that 0 < x ≤ y, with 0 < r(x). Suppose that I is a closed
inessential ideal of A such that the spectral radius in (A/I, πC) is monotone. If y
is Riesz relative to I, then r(y) is an eigenvalue of y with a positive corresponding
eigenvector, and r(x) is an eigenvalue of x with a positive corresponding eigenvec-
tor.

Proof. That r(y) is an eigenvalue of y with a positive corresponding eigenvector
follows directly from ([7], Theorem 3.7). From ([9], Theorem 6.2) and ([7], Theo-
rem 3.7), we obtain that r(x) is an eigenvalue of x with a positive corresponding
eigenvector. �

The next result proves that if r(x) = r(y) is assumed, we are still able to
make the conclusion of Corollary 5.6 without any assumptions about the quotient
algebra.

Corollary 5.7. Let A be a semisimple OBA with a closed, normal algebra cone C
and let x, y ∈ A such that 0 < x ≤ y, with 0 �= r(x) = r(y) ∈ iso σ(a). Suppose
that I is a closed inessential ideal of A such that y is Riesz relative to I. Then
r(y) is an eigenvalue of y with a positive corresponding eigenvector, and r(x) is
an eigenvalue of x with a positive corresponding eigenvector.
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Proof. Clearly, r(y) is an eigenvalue of y with a positive corresponding eigenvec-
tor. Now, since A is semisimple, ([7], Theorem 3.11) yields that r(y) is a pole
of the resolvent of y. To obtain that r(x) is an eigenvalue of x with a positive
corresponding eigenvector, we apply Theorem 3.3 and ([7], Theorem 3.2). �

In [5] we defined a commutatively ordered Banach algebra (COBA) as a
Banach algebra A ordered by a cone C which is closed under positive scalar mul-
tiplication and under multiplication of commuting elements. A COBA is a more
general structure than an OBA and obviously, every OBA is a COBA. We then
showed that much of the known spectral theory in OBAs is obtainable in COBAs
when appropriate modifications compatible with the COBA structure are adopted.
In the same spirit, we can establish COBA counterparts of the OBA results in this
paper when suitable adjustments are made.
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A Note on Universal Operators

Timur Oikhberg

Abstract. An operator T is called universal for the complement of the ideal A
if T does not belong to A, and factors through every element of the comple-
ment of A. We show that the complements of many ideals (such as the ideal
of strictly (co)singular operators, or any maximal normed ideal) have no uni-
versal operators. On the other hand, the complement of the ideal of finitely
strictly singular operators has a universal operator. Moreover, we show that,
for many ideals A, any positive operator which factors positively through any
positive member of the complement of A must be compact.
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47B10, 47B65.

Keywords. Operator ideal, universal operator, positive operator.

1. Introduction

Suppose A is an operator ideal (see, e.g., [2] for a concise introduction). We denote
by CA the complement of A. We say that T ∈ B(X,Y )\A(X,Y ) is universal for
CA if it factors through every operator S ∈ CA – that is, for any Banach spacesX0

and Y0, and any S ∈ B(X0, Y0)\A, there exist A ∈ B(X,X0) and B ∈ B(Y0, Y ) so
that T = BSA. In the cases mentioned below, the existence of universal operators
is known:

1. A is the ideal of compact operators: the formal identity from �1 to �∞ is a
universal operator for CA [8].

2. A is the ideal of weakly compact operators: the summing operator from �1
to �∞ is a universal operator for CA [9].
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to thank the staff of Carle Hospital in Urbana, IL, and of Heartland Rehabilitation Center in
Champaign, IL, where part of this work was carried out. Last but not least, the author is grateful

to the anonymous referee for many helpful comments, and in particular, for bringing [4], [6], and
[7] to the author’s attention.
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3. A is the ideal of �p-strictly singular or c0-strictly singular operators: any
isomorphic embedding from �p (or c0) to �∞ is a universal operator for CA,
cf. [2, Section 1].

4. A is the ideal of (c0, p, q)-summing operators: the formal identity from �p∗ to
�q is a universal operator for CA [7].

The situation is more complicated for Dunford–Pettis operators [5].

In this note, we further study the existence of universal operators. In Sec-
tion 2, we examine some ideals closed in the operator norm – namely, the ideals
of strictly singular, strictly cosingular, and finitely strictly singular operators. We
show that the complements of the first two ideals have no universal operators, while
the complement of the third one does. In Section 3 we prove that the complements
of quasi-normed ideals, verifying certain (very general) conditions, have no univer-
sal elements. These results apply, for instance, to all maximal Banach ideals. In
Section 4, we switch to the Banach lattice setting. SupposeX,Y,X0, Y0 are Banach
lattices. We say that T ∈ B(X,Y )+ positively factors through S ∈ B(X0, Y0)+ if
there exist A ∈ B(X,X0)+ and B ∈ B(Y0, Y )+ so that T = BSA. T ∈ CA(X,Y )+
is positively universal for CA if it positively factors through every member of CA+.
We establish the non-existence of positively universal operators, for a wide class
of operator ideals.

2. Ideals closed in the operator norm

First recall some definitions: an operator T ∈ B(X,Y ) is called

1. strictly singular if, for any infinite-dimensional E ⊂ X , the restriction T |E is
not an isomorphism.

2. strictly cosingular if, for any infinite-dimensional quotient q : Y → F , qT is
not surjective.

3. finitely strictly singular if, for every ε > 0, there exists N ∈ N so that, for
any N -dimensional subspace E ⊂ X , we can find a norm one e ∈ E so that
‖Te‖ < ε.

We refer the reader to [1] for the first two ideals, and to [12] for the third
one. Note that recently, the class of finitely strictly singular operators has been
studied intensively, see, e.g., [4] and [6].

First we show that the complements of strictly (co)singular operators possess
no universal objects.

Proposition 2.1. If an operator T factors through every non-strictly (co)singular
operator, then T itself is strictly (co)singular.

Proof. Suppose, for the sake of contradiction, that T ∈ B(X,Y ) is not strictly
singular, and factors through any non-strictly operator. By restricting the domain
of X , and extending its range, we may assume that T : X → �∞(Γ) is an isomor-
phism into. Clearly T factors through I�p for 1 � p � ∞, and through Ic0 . Thus,
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X embeds isomorphically into �p for any p. Thus, X is �p-saturated for any p,
which is clearly impossible.

The case of strictly cosingular operators is handled similarly. Suppose T ∈
B(X,Y ) is not strictly cosingular, and factors through any non-strictly cosingular
operator. By composing X with quotient maps �1(Γ)→ X and q : Y → Y/Y0, we
can assume that T ∈ B(�1(Γ), Y ) is such that T (B(�1(Γ))) ⊃ cB(Y ) (here and
below, B(Z) stands for the closed unit ball of the normed space Z). T factors
through �p for 1 < p < ∞, hence the same is true for T ∗ ∈ B(Y ∗, �∞(Γ)). As T ∗

is an isomorphism, be obtain a contradiction, as in the strictly singular case. �

The situation is different for finitely strictly singular operators.

Proposition 2.2. There exists an operator T ∈ B((
∑

n �
n
2 )�1 , �∞) which is not

finitely strictly singular, and factors through every non-finitely strictly singular
operator.

The folklore result below (needed to prove Proposition 2.2) can be established
by emulating the proof of [10, Lemma 1.a.6].

Lemma 2.3. Suppose E is a finite-dimensional subspace of an infinite-dimensional
space X. For any c > 1, X contains a finite codimensional subspace Y so that, for
any e ∈ E and y ∈ Y , c‖e+ y‖ � ‖e‖.

Proof of Proposition 2.2. Let id : (
∑

n �
n
2 )�1 → (

∑
n �

n
2 )c0 be the formal identity,

let j : (
∑

n �n2 )c0 → �∞ be an isometric embedding, and set T = j ◦ id. Clearly, T
is not finitely strictly singular. We establish its universality.

Suppose a contraction S ∈ B(X,Y ) is not FSS. By Dvoretzky Theorem, X
contains 2-Hilbertian subspaces E of arbitrarily large dimension so that ‖Sx‖ �
c‖x‖ for any x ∈ E (here c > 0 is a constant depending only on S). We now con-
struct a sequence of 2-Hilbertian subspaces En, of dimension n, so that ‖Sx‖ �
c‖x‖ for any x ∈ En, and let Fn = S(En). The sequence (En) must have a special
property: for any finite sequences e1 ∈ E1, . . . , en ∈ En, f1 ∈ F1, . . . , fn ∈ Fn, we
have ‖e1 + · · · + ek‖ � 2‖e1 + · · · + en‖, ‖f1 + · · · + fk‖ � 2‖f1 + · · · + fn‖
whenever k � n. Once this is done, we obtain a factorization of T through
S: for each n, pick a contraction un ∈ B(�n2 , En) so that ‖u−1

n ‖ � 2. Then
U : (

∑
n �

n
2 )1 → span[E1, E2, . . .] ⊂ X : (ξ1, ξ2, . . .) �→

∑
k ukξk is a contrac-

tion. Let vn = u−1
n (S|En)

−1 : Fn → �n2 , and observe that ‖vn‖ � 2c−1. Define
V : span[F1, F2, . . .]→ (

∑
n �

n
2 )c0 via V (f1+ · · ·+fn) = (v1f1, . . . , vnfn). We claim

that V is a bounded well-defined operator. Indeed, by construction, for k � n we
have

‖fk‖ � ‖f1 + · · ·+ fk‖+ ‖f1 + · · ·+ fk−1‖ � 4‖f1 + · · ·+ fn‖.
Consequently,

‖V (f1 + · · ·+ fn)‖ = max
1�k�n

‖vkfk‖ � 8c−1‖f1 + · · ·+ fn‖.

Now extend V to W : Y → �∞ using injectivity. Then T = WSU .
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The sequences (En) and (Fn) are constructed recursively. E1 can be selected
arbitrarily. Set F1 = S(E1). Use Lemma 2.3 to find finite codimensional X1 ⊂ X
and Y1 ⊂ Y so that 2‖e1 + x1‖ � ‖e1‖ and 2‖f1 + y1‖ � ‖f1‖ whenever e1 ∈ E1,
f1 ∈ F1, x1 ∈ X1, and y1 ∈ Y1.

Suppose E1, . . . , En, F1, . . . , Fn, X1, . . . , Xn, Y1, . . . , Yn have already been
constructed in such a way that, for 1 � k � n:

1. Ek and Fk = S(Ek) are finite dimensional, while Xk and Yk are finite codi-
mensional.

2. For k > 1, Ek ∪Xk ⊂ Xk−1, and Fk ∪ Yk ⊂ Yk−1.
3. For any x ∈ Xk, e ∈ E1 + · · ·+ Ek, y ∈ Yk, and f ∈ F1 + · · ·+ Fk, we have
‖e‖ � 2‖e+ x‖ and ‖f‖ � 2‖f + y‖.

Pick a 2-Hilbertian E ⊂ X , of dimension n + 1 + codimXn + codimYn, so that
‖Se‖ � c‖e‖ for any e ∈ E. Then the dimension of E′ = E ∩ Xn ∩ S−1(Yn)
is at least n + 1. Clearly, any (n + 1)-dimensional subspace of E′ can serve as
En+1. Complete the procedure by selecting Xn+1 ⊂ Xn and Yn+1 ⊂ Yn using
Lemma 2.3. �

3. Normed ideals

In this section, (A,α) is a quasi-Banach ideal of operators on Banach spaces. It is
well known that such ideals have an equivalent ideal p-norm, for some p ∈ (0, 1]
(see, e.g., [2, Section 2]). Throughout this section, we assume that A is p-normed,
and satisfies two conditions:

sup
{
α(IE) : dimE <∞

}
=∞. (3.1)

and
If T /∈ A(X,Y ), then sup

E⊂X,dimE<∞
α(T |E) =∞. (3.2)

These conditions hold, for instance, for all maximal Banach operator ideals, dif-
ferent from the ideal of all bounded operators (see, e.g., [3, Chapter 6]).

Theorem 3.1. If (A,α) is a quasi-Banach operator ideal satisfying (3.1) and (3.2),
then CA has no universal operator.

Begin by establishing a simple lemma.

Lemma 3.2. Suppose (A,α) is a p-normed quasi-Banach operator ideal. Then there
exists a constant C so that, for any finite-dimensional normed space E, α(IE) �
C(dimE)1/p.

Proof. Note first that, for any rank one operator x∗ ⊗ y ∈ B(X,Y ) (X and Y are
Banach spaces), α(x∗ ⊗ y) = C‖x∗‖‖y‖, where the constant C depends solely on
A. Indeed, let C = α(IF), where F is the underlying field of scalars (R or C).

Now consider non-zero x∗ ∈ X∗ and y ∈ Y . To show that α(x∗ ⊗ y) �
C‖x∗‖‖y‖, consider the contractions j : F → X : 1 �→ x (with ‖x‖ = 1) and q :
Y → F : z �→ 〈y∗, z〉 (with norm one y∗ selected in such a way that ‖y‖ = 〈y∗, y〉).



A Note on Universal Operators 343

Note that q ◦ (x∗ ⊗ y) ◦ j = 〈x∗, x〉‖y‖IF, hence α(x∗ ⊗ y) � α
(
q ◦ (x∗ ⊗ y) ◦ j

)
�

|〈x∗, x〉|‖y‖α(IF) = C|〈x∗, x〉|‖y‖. Taking the supremum over all x ∈ X of norm
one, we obtain α(x∗ ⊗ y) � C‖x∗‖‖y‖. The inequality α(x∗ ⊗ y) � C‖x∗‖‖y‖ is
proved in a similar fashion.

Now suppose E is an n-dimensional space. Using the Auerbach basis of E,
write IE = P1+ · · ·+Pn, where P1, . . . , Pn are contractive projections of rank one.

Then α(IE) �
(∑

i α(Pi)
p
)1/p

= Cn1/p. �

Next we quantify the “non-belonging” to A. For T ∈ B(X,Y ) and n ∈ N,
define

βn(T ) = sup
{
α(T |E) : E ⊂ X, dimE = n

}
.

Note that, by the ideal property, α(T |E) � α(T |F ) if F ⊂ E, hence, in the
definition of βn, we could have taken the supremum over all E ⊂ X of dimension
not exceeding n. We have:

Lemma 3.3. If S ∈ B(X0, Y0) factors through T ∈ B(X,Y ), then there exists a
constant c so that βn(S) � cβn(T ) for every n.

Proof. Write S = V TU . If E is a finite-dimensional subspace of X0, then, by the
ideal property, α(S|E) � ‖V ‖α(T |U(E))‖U‖, and therefore,

βn(S) = sup
dimE=n

α(S|E) � ‖V ‖ sup
dimE=n

α(T |U(E))‖U‖

� ‖U‖‖V ‖ sup
dimF�n

α(T |F ) = ‖U‖‖V ‖βn(T ),

as claimed. �

The following technical lemma is crucial.

Lemma 3.4. Suppose the quasi-normed ideal (A,α) satisfies (3.1). Then, for any
sequence 0 < α1 < α2 < · · · , increasing without a bound, there exists an operator
T , so that limn βn(T ) =∞, and βn(T ) � αn for infinitely many values of n.

Proof. By the discussion in the beginning of the section, we can assume that
α is a p-norm. Furthermore, by Lemma 3.2 and its proof, we can assume that
α(x∗⊗y) = ‖x∗‖‖y‖ for any x∗ ∈ X and y ∈ Y . Consequently, α(IE) � (dimE)1/p

for any finite-dimensional normed space E. We shall find finite-dimensional spaces
Ei and an operator T = ⊕γiIEi , acting on X =

(∑
i Ei

)
2
, with the desired

properties. We use the notation ki = dimEi, ci = α(IEi), and σi = γici. The
parameters will be selected in such a way that:

σi <
σi+1

21/p
for any i.

γn <
σi

2(n−i)/pk
1/p
i

whenever n > i.

σi <
αki

3
for any i.

(3.3)
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Suppose for a moment the selection has already been made. As En = T (En) is
contractively complemented in X ,

βkn(T ) � α(T |En) = σn,

and we conclude that limn βkn(T ) = ∞. On the other hand, suppose F is a sub-
space of X , with dimF = kn. Let Pi be the canonical projection onto Ei, and
set Fi = Pi(F ). Then α(T |F )p �

∑
iα(T |Fi)

p. Note that, for i � n, α(T |Fi) �
α(T |Ei) = σi, while for i > n, by the conditions imposed on A,

α(T |Fi) � γi(dimFi)
1/p � γik

1/p
n � σn

2(i−n)/p
.

Therefore,

α(T |F )p �
∑
i�n

σp
i +
∑
i>n

σp
n

2i−n
�
∑
i�n

σp
n

2n−i
+
∑
i>n

σp
n

2i−n
� 3σp

n < αp
kn
.

It remains to construct the sequences satisfying (3.3). To “prime the pump”,
select k1 = 1. Then c1 = 1. Let γ1 = α1/c1.

Now suppose E1, γ1, . . . , Es, γs have already been selected to satisfy (3.3).
Let

γ = min
1�i�s

2i−1−sσik
−1/p
i , σ = 21/pσs, and c =

σ

γ
.

Find k > 3ks so that α(IE) > c for some k-dimensional E, and αk > 81/pσ. Set
Es+1 = E. Then ks+1 = k, and cs+1 = α(IE). Finally, set

γs+1 = min

{
γ,

αks+1

4cs+1

}
.

Then

σs+1 = γs+1cs+1 = min
{
γcs+1,

αks+1

4

}
� σ � 21/pσs.

Thus, the first part of (3.3) holds for s + 1. It is even easier to check the second
and third parts. �

Proof of Theorem 3.1. Suppose, for the sake of contradiction, that CA contains
a universal operator S. By Lemma 3.3, for any T ∈ CA there exists c > 0 so
that βn(T ) � cβn(S) for any n. Furthermore, by the conditions imposed of A,
limn βn(S) =∞. However, by Lemma 3.4, there exists T ∈ CA for which βn(T ) �√
βn(S) infinitely often. This yields a contradiction. �

4. Positively universal operators

In this section we narrow our attention to positive operators on Banach lattices.

Theorem 4.1. Suppose A is an operator ideal, not containing an isomorphic em-
bedding of �1 into �∞. If T positively factors through every S ∈ CA, then T is
compact.
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Throughout this section, we work with real lattices. The complex case can
be obtained with minor modifications.

Remark 4.2. (1) If an ideal A contains an into isomorphism S : �1 → �∞, then
B(�1, �∞) ⊂ A. Indeed, consider T ∈ B(�1, �∞). Find U : S(�1) → �1, so that
US = I�1 . By the injectivity of �∞, the operator V = TU : S(�1) → �∞ has an
extension W : �∞ → �∞. It is easy to see that T = WS, hence T belongs to A.

(2) Any into isomorphism S : �1 → �∞ is universal for the complement of the
ideal of �1-strictly singular operators, see [2, 1.18].

The following lemma (needed to establish Theorem 4.1) may be folklore, but
we have not seen it in the literature. As before, we denote by B(Z) the unit ball
of Z.

Lemma 4.3. Suppose Z is a Banach lattice.

1. There exists a set I and a contractive positive map q : �1(I) → Z so that
B(Z) ⊂ 2q(B(�1(I))).

2. There exists a set J and a contractive positive map j : Z → �∞(J) so that
‖jz‖ � ‖z‖/2 for any z ∈ Z.

Proof. (1) Denote by I the positive part of B(Z). Then the map q : �1(I) → Z :
δz �→ z is positive and contractive. Moreover, B(Z) ⊂ I − I ⊂ 2q(B(�1(I)).

(2) Let J be the set of all contractive positive functionals on Z, and define
j : Z → �∞(J) : z �→

(
z∗(z)

)
z∗∈J

. Clearly, j is positive and contractive. Moreover,

for any z ∈ Z there exists z∗ ∈ B(Z∗)+ so that |z∗(z)| � ‖z‖/2. Indeed, consider
the disjoint decomposition z = z+ − z−. Without loss of generality, assume that
‖z+‖ � 1/2. Consider the subspace W ⊂ Z, spanned by z+ and all elements w
disjoint with z+. By [11, Theorem 1.1.1], ‖z+ + w‖ � ‖z+‖, for any w like this.
By the Hahn–Banach Theorem, there exists a norm one functional w∗ ∈ W ∗ so
that w∗(z+) = ‖z+‖, and w∗(w) = 0 whenever w ⊥ z+. Then z∗ = w∗

+ has
norm not exceeding 1. Recall that (cf. [11, Section 1.3]), for any u ∈ Z+, z

∗(u) =
sup
{
w∗(v) : 0 � v � u

}
. Consequently, z∗(z+) = ‖z+‖, and z∗(z−) = 0. We

conclude that |z∗(z)| � ‖z‖/2. Therefore, ‖jz‖ � ‖z‖/2 for any z ∈ Z. �

Proof of Theorem 4.1. Suppose, for the sake of contradiction, that a non-compact
T ∈ B(X,Y )+ positively factors through every S ∈ B(�1, �∞)+\A. By Lemma
4.3, there exists a set Γ, and positive contractive maps q : �1(Γ) → X and j :
Y → �∞(Γ), so that B(X) ⊂ 2q(B(�1(Γ))), and ‖jy‖ � ‖y‖/2 for any y ∈ Y . If T
positively factors through S, then so does jT q. Furthermore, jT q is not compact.
Thus, we can assume that X = �1(Γ), and Y = �∞(Γ).

Next we show that we can take Γ to be countable. To this end, denote the
canonical transfinite basis of �1(Γ) by (δi)i∈Γ. The convex hull of a relatively
compact set is relatively compact, hence there exists a countably infinite I ⊂ Γ so
that the family (Tδi)i∈I is c-separated, for some c > 0 (that is, ‖Tδi − Tδj‖ > c
for any distinct i, j ∈ I). Moreover, there exists a countable G ⊂ Γ so that, for
any distinct i, j ∈ I, there exists g ∈ G with |(Tδi − Tδj)g| > c.
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For Λ ⊂ Γ, let PΛ ∈ B(�1(Γ)) be the corresponding coordinate projection.
By the above, the family (P ∗

GTPIδi)i∈I is c-separated, and in particular, P ∗
GTPI

is not compact. We establish our claim by identifying G ∪ I with N.
Find a family of infinite subsets Ai ⊂ N (i ∈ N) so that, for any N ∈ N, and

any sequence (εi)
N
i=1 ⊂ {−1, 1}N , ∩N

i=1A
(εi)
i �= ∅ (here, A(1) = A, and A(−1) =

N\A). One can, or instance, let (qi) be an enumeration of prime numbers, and
define Ai as the set of multiples of qi.

Then U : �1 → �∞ : δi �→ ui = χAi − χN\Ai
is an isometric embedding. Now

for each n ∈ N define the operator Un : �1 → �∞ : δi �→ (1−2−n)1+2−nui ((δi)i∈N

is the canonical basis of �1). In other words, Un = (1− 2−n)U0 +2−nU , where, for
x = (x1, x2, . . .) ∈ �1, U0x = (

∑
i xi)1. Note that Un is a contraction. Moreover,

Un /∈ A, for any natural n. Indeed, U0 has rank 1, and operator ideals are stable
under finite rank perturbations.

Suppose, for the sake of contradiction, that there exists a non-compact T ∈
B(�1, �∞)+ so that, for every n ∈ N, T = BnUnAn, for some positive An and Bn.
Let vi = Tδi. By using TPI instead of T if necessary, we can assume inf ‖vi‖ > 0.
By considering TD, where D is a diagonal operator, we can further assume that
‖vi‖ = 1 for any i. Finally, in light of the previous reasoning, we can assume
that the sequence (vi) is c-separated, for some c ∈ (0, 1/2). Then, for i �= j,
either vi − (1 − c/2)vj or vj − (1 − c/2)vi is not positive. To establish this, write
vi = (vis)s∈N. For i �= j, there exists s ∈ N so that |vis − vjs| > c. If vis − vjs > c,
then

vjs −
(
1− c

2

)
vis < vjs −

(
1− c

2

)
(vjs + c)

= c
[vjs
2
−
(
1− c

2

)]
� c
[1
2
−
(
1− c

2

)]
< 0.

The case of vjs − vis > c is handled similarly.

Now fix n > log2(4/c). Let wi = UnAnδi. We can write Anδi = (aik)
∞
k=1.

Then aik � 0 for any i and k, and

‖An‖ � ‖Anδi‖ = αi :=
∑
k

aik � ‖BnUnAnδi‖
‖BnUn‖

� 1

‖Bn‖
.

Pick λ > 1 so that (1− 21−n)/λ > 1− c/2. By compactness, we can find i �= j so
that λ−1 < αi/αj < λ. The desired contradiction will be achieved once we prove
that both wi − (1 − c/2)wj and wj − (1 − c/2)wi are positive (indeed, then the
positive operator Bn cannot take wi and wj to vi and vj , respectively).

Recall that −1 � ui � 1, hence

wi =
∑
k

Unaikδk = (1− 2−n)αi + 2−n
∑
k

aikuk ∈ [(1− 21−n)αi1, αi1],
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and similarly, (1 − 21−n)αj1 � wj � αj1. Then

wi −
(
1− c

2

)
wj �

(
1− 21−n

)
αi1−

(
1− c

2

)
αj1

� αj

[(
1− 21−n

)
λ−1 −

(
1− c

2

)]
1 � 0,

and wj − (1 − c/2)wi is tackled similarly. �
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Matrix Monotone Functions and the
Generalized Powers–Størmer Inequality

Hiroyuki Osaka

Abstract. In this note a generalization of Powers–Størmer inequality for oper-
ator monotone functions on [0,+∞) and for positive linear functional on gen-
eral C∗-algebras will be introduced and be shown that the generalized Powers–
Størmer inequality characterizes the tracial functionals on C∗-algebras and
the monotonicity for a given function.
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Størmer inequality, trace.

1. Introduction

Let n ∈ N and Mn be the algebra of n× n matrices. We call a function f matrix
convex of order n or n-convex in short whenever the inequality

f(λA+ (1 − λ)B) ≤ λf(A) + (1− λ)f(B), λ ∈ [0, 1]

holds for every pair of selfadjoint matrices A,B ∈Mn such that all eigenvalues of
A and B are contained in an interval I (⊂ R). Matrix monotone functions on I
are similarly defined as the inequality

A ≤ B =⇒ f(A) ≤ f(B)

for an arbitrary selfadjoint matrices A,B ∈Mn such that A ≤ B and all eigenval-
ues of A and B are contained in I.

We denote the spaces of operator monotone functions and of operator convex
functions by P∞(I) and K∞(I) respectively. The spaces for n-monotone functions

This work was completed with the support by the JSPS grant for Scientific Research No.
20540220.
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and n-convex functions are written as Pn(I) and Kn(I). We have then

P1(I) ⊇ · · · ⊇ Pn−1(I) ⊇ Pn(I) ⊇ Pn+1(I) ⊇ · · · ⊇ P∞(I)

K1(I) ⊇ · · · ⊇ Kn−1(I) ⊇ Kn(I) ⊇ Kn+1(I) ⊇ · · · ⊇ K∞(I).

Here we meet the facts that ∩∞
n=1Pn(I) = P∞(I) and ∩∞

n=1Kn(I) = K∞(I).
We regard these two decreasing sequences as noncommutative counterpart of the
classical piling sequence {Cn(I), C∞(I),Anal(I)}, where the class Anal(I) denotes
the set of all analytic functions over I. We could understand that the class of
operator monotone functions P∞(I) corresponds to the class {C∞(I),Anal(I)} by
the famous characterization of those functions by Loewner as the restriction of
Pick functions.

In these circumstances, it will be well recognized that we should not stick our
discussions only to those classes P∞(I) and K∞(I), that is, the class of operator
monotone functions and that of operator convex functions. Those classes {Pn(I)}
and {Kn(I)} are not merely optional ones to P∞(I) and K∞(I). They should play
important roles in the aspect of noncommutative calculus as the ones {Cn(I)}
play in usual (commutative) calculus.

The first basic question is whether Pn+1(I) (resp. Kn+1(I)) is strictly con-
tained in Pn(I) (resp. Kn(I)) for every n. In [31] the gap for n = 2, that is,
P3([0,∞)) 
 P2([0,∞)), was pointed out. This gap problem for arbitrary n, how-
ever, has been solved only recently ([9], [25], [12]). (See Section 2.)

On the other hand, there are basic equivalent assertions known only at the
level of operator monotone functions and operator convex functions by [10], [11].
We shall discuss those (equivalent) assertions as the correlation problem between
two kinds of piling structures {Pn(I)} and {Kn(I)}, that is, we are planning at
first to discuss relations between those assertions at each level n.

In [26] (resp. [17]) we discussed about the following 3 assertions at each level
n among them in order to see clear insight of the aspect of the problems:

(i) f(0) ≤ 0 and f is n-convex (resp. n-concave) in [0, α),
(ii) For each matrix A with its spectrum in [0, α) and a contraction C in the

matrix algebra Mn,

f(C∗AC) ≤ C∗f(A)C,

(resp. f(C∗AC) ≤ C∗f(A)C)

(iii) The function f(t)
t (resp. t

f(t)) (= g(t)) is n-monotone in (0, α).

Then we showed that for each n the condition (ii) is equivalent to the condition
(iii) and the assertion that f is n-convex with f(0) ≤ 0 implies that g(t) is (n−1)-
monotone (resp. f is n-concave with f(0) ≥ 0 implies that g(t) is (n−1)-monotone).
(See Section 3.)

Powers–Størmer inequality (see, for example, [29, Lemma 2.4], [28, Theo-
rem 11.19]) asserts that for s ∈ [0, 1] the following inequality

2Tr(AsB1−s) ≥ Tr(A+B − |A−B|) (1.1)
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holds for any pair of positive matrices A,B. This is a key inequality to prove the
upper bound of Chernoff bound, in quantum hypothesis testing theory [1]. This
inequality was first proven in [1], using an integral representation of the function ts.
After that, N. Ozawa gave a much simpler proof for the same inequality, using fact
that for s ∈ [0, 1] function f(t) = ts (t ∈ [0,+∞)) is an operator monotone ([18,
Proposition 1.1]). Recently, Y. Ogata in [24] extended this inequality to standard
von Neumann algebras. The motivation for the present paper is to investigate
whether replacing the function f(t) = ts by another operator monotone function
(this class is intensively studied, see [9][25]) can yield a smaller upper bound for
Tr(A + B − |A − B|) than what is used in quantum hypothesis testing. Based
on N. Ozawa’s proof we formulate Powers–Størmer’s inequality for an arbitrary
operator monotone function on [0,+∞) in the context of general C∗-algebras. (See
Section 4.)

As applications, the generalized Powers–Størmer inequality characterizes the
trace property for a normal linear positive functional on a von Neumann algebras
and for a linear positive functional on a C∗-algebra. (See Section 5.) It also char-
acterizes the monotonicity of a given function in this inequality. (See Section 6.)

2. Preliminary

We shall sometimes use the standard regularization procedure, cf. for example
Donoghu [6, p11]. Let φ be a positive and even C∞-function defined on the real
axis, vanishing outside the closed interval [−1, 1] and normalized such that∫ 1

−1

φ(x) = 1.

For any locally integrable function f defined in an open interval (a, b) we form its
regularization

fε(t) =
1

ε

∫ b

a

φ(
t− s

ε
)f(s)ds, t ∈ R

for small ε > 0, and realize that it is infinitely many times differentiable. For
t ∈ (a+ ε, b− ε) we may also write

fε(t) =

∫ 1

−1

φ(s)f(t− εs)ds.

If f is continuous, then fε converges uniformly to f on any compact subinterval
of (a, b). If in addition f is n-convex (or n-monotone) in (a, b), then fε is n-convex
(or n-monotone) in the slightly smaller interval (a+ ε, b− ε). Since the pointwise
limit of a sequence of n-convex (or n-monotone) functions is again n-convex (or
n-monotone), we may therefore in many applications assume that an n-convex or
n-monotone function is sufficiently many times differentiable.
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For a sufficiently smooth function f(t) we denote its nth divided difference
for n-tuple of points {t1, t2, . . . , tn} defined as, when they are all different,

[t1, t2]f =
f(t1)− f(t2)

t1 − t2
, and inductively

[t1, t2, . . . , tn]f =
[t1, t2, . . . , tn−1]f − [t2, t3, . . . , tn]f

t1 − tn
.

And when some of them coincides such as t1 = t2 and so on, we put as

[t1, t1]f = f ′(t1) and inductively [t1, t1, . . . , t1]f =
f (n−1)(t1)

(n− 1)!
.

When there appears no confusion we often skip the referring function f . We
notice here the most important property of divided differences is that it is free
from permutations of {t1, t2, . . . , tn} in an open interval I.

Proposition 2.1.

(1) (Ia) Monotonicity (Loewner 1934 [21])

f ∈ Pn(I)⇐⇒ ([ti, tj ]) ≥ 0 for any {t1, t2, . . . , tn}

(IIa) Convexity (Kraus 1936 [20])

f ∈ Kn(I)⇐⇒ ([t1, ti, tj ]) ≥ 0 for any {t1, t2, . . . , tn},

where t1 can be replaced by any (fixed) tk.
(2) (Ib) Monotonicity (Loewner 1934 [21], Dobsch 1937 [5]-Donoghue 1974 [6])

For f ∈ C2n−1(I)

f ∈ Pn(I)⇐⇒Mn(f ; t) =

(
f (i+j−1)(t)

(i + j − 1)!

)
≥ 0 ∀t ∈ I.

(IIb) Convexity (Hansen–Tomiyama 2007 [12]) For f ∈ C2n(I)

f ∈ Kn(I) =⇒ Kn(f ; t) =

(
f (i+j)(t)

(i+ j)!

)
≥ 0 ∀t ∈ I.

In particular, for n = 2 the converse is also true.

We remind that to prove the implication Mn(f ; t) ≥ 0 ⇒ f ∈ Pn(I) in (Ib)
the local property for the monotonicity plays an essential role. Similarly to prove
the converse implication in the criterion of convexity in (IIb) in the above propo-
sition we need the local property conjecture for the convexity, that is, if f is n-
convex in the intervals (a, b) and (c, d) (a < c < b < d), then f is n-convex on (a, d).

Now we have only a partial sufficiency, that is, if Kn(f ; t0) is positive, then
there exists a neighborhood of t0 on which f is n-convex. (See [12, Theorem 1.2]
for example.)
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The method for the implication (IIb) ⇒ (IIa) under the assumption of the
local property theorem for the convexity may be familiar for some specialist.

Proposition 2.2. Let f ∈ C2n(I) such that Kn(f ; t) =
( f(i+j)(t)

(i+j)!

)
≥ 0 ∀t ∈ I.

Suppose that n-convexity has the local property. Then f ∈ Kn(I).

3. Double piling structure

As we have mentioned in the introduction, there are basic equivalent assertions
known for operator monotone functions and operator convex functions (cf. [10]).
Namely we have

Theorem A. For 0 < α ≤ ∞, the following assertions for a real-valued continuous
function f in [0, α) are equivalent:

(1) f is operator convex and f(0) ≤ 0.
(2) For an operator A with its spectrum in [0, α) and a contraction C,

f(C∗AC) ≤ C∗f(A)C.

(3) For two operators A,B with their spectra in [0, α) and two contractions C,D
such that C∗C +D∗D ≤ 1 we have the inequality

f(C∗AC +D∗BD) ≤ C∗f(A)C +D∗f(B)D.

(4) For an operator A with its spectrum in [0, α) and a projection P we have the
inequality,

f(PAP ) ≤ Pf(A)P

(5) The function g(t) = f(t)
t is operator monotone in the open interval (0, α).

In this section, we shall discuss mutual relationships of the above assertions
when we restrict the property of the function f at each fixed level n, that is, when
f and g are assumed to be only n-matrix convex and n- matrix monotone. We
regard the problem as the problem of double piling structure of those decreasing
sequences {Pn(I)} and {Kn(I)} down to P∞(I) and K∞(I) respectively. In this
sense, standard double piling structure known for these assertions before is the
following. We describe these implications using the following convention: if the fact
that the statement (A) holds for the matrix algebra Mm implies that statement
(B) holds for the matrix algebra Mn, then we write (A)m → (B)n.

Theorem A is proved in the following way.

(1)2n → (2)n → (5)n → (4)n, (2)2n → (3)n → (4)n, and (4)2n → (1)n.

Therefore, those assertions become equivalent when f is operator convex and g is
operator monotone by the piling structure.

Thus, the basic problem for double piling structure is to find the minimum
difference of degrees between those gaped assertions. Since, however, even single
piling problems are clarified only recently, as we have mentioned above, in spite of
a long history of monotone matrix functions and convex matrix functions, little is



354 H. Osaka

known for the double piling structure except the result by Mathias ([22]), which
asserts that a 2n-monotone function in the positive half-line [0,∞) becomes n-
concave.

Now in order to make our investigations more transparently we mainly con-
centrate our discussions to the relationships between (1), (2) and (5). In fact, we
need not say anything about (4) when n = 1, and for the reason choosing (2)
instead of (3) we just borrow the witty expression in [10], “correctness must bow
to applicability”. Before going into our discussions, we state each assertion in a
precise way but skipping the condition of the spectrum of a matrix A. Namely, in
the interval [0, α) we consider the following assertions.

(i) f(0) ≤ 0, and f is n-convex.
(ii) For each positive semidefinite element A with its spectrum in [0, α) and a

contraction C in Mn, we have

f(C∗AC) ≤ C∗f(A)C.

(iii) The function g(t) = f(t)
t is n-monotone in the interval (0, α).

We shall show then the equivalency of the assertions (ii) and (iii). Hence the
problem is reduced to the relationship between (i) and (iii) (or (ii)). Namely, we
have the following

Theorem 3.1 ([26]). Let n ∈ N.

1. The assertions (ii)n and (iii)n are equivalent,
2. The assertion (i)n implies the assertion (iii)n−1.

When f is a convex function, −f is a concave function. Hence we have the
following.

Theorem 3.2 ([17]). Let f : [0, α) → R (0 < α ≤ ∞) be a continuous function.
Consider the following three assertions:

(i) f(0) ≥ 0, and f is n-concave,
(ii) For each positive semidefinite element A with its spectrum in [0, α) and a

contraction C in Mn, we have

f(C∗AC) ≥ C∗f(A)C.

(iii) The function g(t) = t
f(t) is n-monotone in the interval (0, α).

Then we have for each n ∈ N

1. The assertions (ii)n and (iii)n are equivalent,
2. The assertion (i)n implies the assertion (iii)n−1.

4. Generalized Powers–Størmer inequality

One of the most basic tasks in quantum statistics is the discrimination of two
different quantum states. In the quantum hypothesis testing problem, one has to
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decide between two states of a system. The state ρ0 is the null hypothesis and ρ1
is alternative hypothesis.

The problem is to decide which hypothesis is true. The decision is performed
by a two-valued measurement {T, I − T }, where 0 ≤ T ≤ I is an observable. T
corresponds to the acceptance of ρ0 and I − T corresponds to the acceptance of
ρ1. T is called a test.

The total error Err(T ) of T is

Err(T ) =
1

2
Tr(ρ0(I − T )) +

1

2
Tr(ρ1T )

=
1

2
{1− Tr(T (ρ0 − ρ1))} .

Then asymptotic error exponent for ρ0 and ρ1 is

lim
n→∞

1

n
log Errn(T(n)),

where for all n ∈ N T(n) is a dn × dn quantum multiple test, and

Errn(T(n)) :=
1

2

{
1− Tr(T(n)(ρ

⊗n
0 − ρ⊗n

1 ))
}
.

If the limit limn→∞
1

n
log Errn(T(n)) exists, we refer to it as the asymptotic

error exponent.

The lower band and upper bounds for the asymptotic error exponent are
given by he following.

Theorem 4.1 ([1], [23]). Let {ρ0, ρ1} be hypothetic states on Cd, T(n) be quantum

multiple test, and Q(n) be a support projections on (ρ⊗n
0 − ρ⊗n

1 ). Then one has

(i) (M. Nussbaum and A. Szkola)

lim inf
n→∞

1

n
log Errn(T(n)) ≥ inf{logTr(ρ1−s

0 ρs1) | 0 ≤ s ≤ 1}.

(ii) ( K.M.R. Audenaert, et al.)

lim sup
n→∞

1

n
log Errn(Q(n)) ≤ inf{logTr(ρ1−s

0 ρs1) | 0 ≤ s ≤ 1}.

In the proof of the previous Theorem 4.1(ii) the following inequality played
a key role.

Theorem 4.2 ([1]). For any positive matrices A and B on Cd we have

1

2
(TrA+TrB − Tr |A−B|) ≤ Tr(A1−sBs) (s ∈ [0, 1]).

If we consider a function f(t) = t1−s and g(t) = ts =
t

f(t)
, then both

functions f and g are operator monotone. The inequality, then, can be reformed by

TrA+TrB − Tr |A−B| ≤ 2Tr(f(A)
1
2 g(B)f(A)

1
2 ).
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Theorem 4.3 ([16], [17]). Let f be a 2n-monotone function (or (n + 1)-concave
function) on [0,∞) such that f((0,∞)) ⊂ (0,∞). Then for any pair of positive
matrices A,B ∈Mn(C)

Tr(A) + Tr(B) − Tr(|A−B|) ≤ 2Tr(f(A)
1
2 g(B)f(A)

1
2 ),

where g(t) = t
f(t) .

We give a sketch of the proof.

Let A,B be positive matrices and, let

A−B = (A−B)+ − (A−B)− = P −Q

and |A−B| = P +Q. We may, then, show that

Tr(A) − Tr(f(A)
1
2 g(B)f(A)

1
2 ) ≤ Tr(P )

holds as follows:

Tr(A)− Tr(f(A)
1
2 g(B)f(A)

1
2 )

= Tr(f(A)
1
2 g(A)f(A)

1
2 )− Tr(f(A)

1
2 g(B)f(A)

1
2 )

≤ Tr(f(A)
1
2 g(B + P )f(A)

1
2 )− Tr(f(A)

1
2 g(B)f(A)

1
2 )

≤ Tr(f(B + P )
1
2 (g(B + P )− g(B))f(B + P )

1
2 )

≤ Tr(f(B + P )
1
2 g(B + P )f(B + P )

1
2 )− Tr(f(B)

1
2 g(B)f(B)

1
2 )

= Tr(P ).

In particular we have

Corollary 4.4. Let f be an operator monotone function on [0,∞) such that
f((0,∞)) ⊂ (0,∞). Then for any pair of positive matrices A,B ∈Mn(C)

Tr(A) + Tr(B) − Tr(|A−B|) ≤ 2Tr(f(A)
1
2 g(B)f(A)

1
2 ),

where g(t) = t
f(t) .

Since any C∗-algebra can be realized as a closed selfadjoint ∗-algebra of B(H)
for some Hilbert space H . We can generalize Corollary 4.4 in the framework of
C∗-algebras.

Theorem 4.5. Let τ be a tracial functional on a C∗-algebra A, f be a strictly posi-
tive, operator monotone function on [0,∞). Then for any pair of positive elements
A,B ∈ A

τ(A) + τ(B) − τ(|A−B|) ≤ 2τ(f(A)
1
2 g(B)f(A)

1
2 ), (4.1)

where g(t) = tf(t)−1.

Proof. Let π be the universal representation of A and τ̂ be a positive linear func-
tional on π(A) by τ̂(π(A)) = τ(A) for A ∈ A. Then τ̂ has the trace property. Since
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g is operator monotone on (0,∞) by [10, Corollary 6], through the same steps in
the proof of Theorem 4.3 we have that for any positive operators A and B in A

τ̂ (π(A)) + τ̂ (π(B)) − τ̂(π(|A −B|)) ≤ 2τ̂ (f(π(A))
1
2 g(π(B))f(π(A))

1
2 ),

that is,

τ(A) + τ(B) − τ(|A−B|) ≤ 2τ(f(A)
1
2 g(B)f(A)

1
2 ). �

5. Characterization of the trace property

In this section we shall show that the generalized Powers–Størmer inequality in
the previous section guarantees the trace property for a positive linear functional
on operator algebras.

Lemma 5.1 ([16]). Let ϕ be a positive linear functional on Mn and f be a continuous
function on [0,∞) such that f(0) = 0 and f((0,∞)) ⊂ (0,∞). If the following
inequality

ϕ(A +B)− ϕ(|A−B|) ≤ 2ϕ(f(A)
1
2 g(B)f(A)

1
2 ) (5.1)

holds true for all A,B ∈ M+
n , then ϕ should be a positive scalar multiple of the

canonical trace Tr on Mn, where

g(t) =

{ t
f(t) (t ∈ (0,∞))

0 (t = 0)
.

By analogy with a number of other similar cases (see [7] or [32]), the proof for
the trace property of a positive normal functional satisfying the inequality (5.1)
on a von Neumann algebra can be reduced to the case of the algebra M2 of all
matrices of order 2× 2.

Theorem 5.2 ([16]). Let ϕ be a positive normal linear functional on a von Neumann
algebra M and f be a continuous function on [0,∞) such that f(0) = 0 and
f((0,∞)) ⊂ (0,∞). If the following inequality

ϕ(A) + ϕ(B)− ϕ(|A−B|) ≤ 2ϕ(f(A)
1
2 g(B)f(A)

1
2 ) (5.2)

holds true for any pair A,B ∈M+, then ϕ is a trace, where

g(t) =

{ t
f(t) (t ∈ (0,∞))

0 (t = 0)
.

Proof. By [19, Proposition 8.1.1] we have only to show that ϕ(P1) = ϕ(P2) for
any pair of nonzero equivalent projections P1 and P2. Moreover, we may assume
that P1 and P2 are mutually orthogonal. Indeed, considering mutually orthogonal
equivalent projections P ′

1 = P1 ∨P2−P1 and P ′
2 = P1−P1 ∧P2 we can show that

ϕ(P1) =
ϕ(P1 ∧ P2) + ϕ(P1 ∨ P2)

2
.

By symmetry we have ϕ(P1) = ϕ(P2).
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Hence we assume that P1 and P2 are nonzero mutually orthogonal equivalent
projections inM. Note that (P1 +P2)M(P1 +P2) is isomorphic to M2. Then the
inequality (5.2) still holds true for the operators in N and for the restriction of the
functional ϕ to N . According to Lemma 5.1, this restriction is a tracial functional
on N , and hence ϕ(P1) = ϕ(P2). �

Corollary 5.3. Let ϕ be a positive linear functional on a C∗-algebra A and f be a
continuous function on [0,∞) such that f(0) = 0 and f((0,∞)) ⊂ (0,∞). If the
following inequality

ϕ(A) + ϕ(B)− ϕ(|A−B|) ≤ 2ϕ(f(A)
1
2 g(B)f(A)

1
2 ) (5.3)

holds true for any pair A,B ∈ A+, then ϕ is a tracial functional, where

g(t) =

{ t
f(t) (t ∈ (0,∞))

0 (t = 0)
.

The following is inspired by [30, Theorem 2.2].

Proposition 5.4 ([17]). Let n ∈ N (n ≥ 2), and ϕ a positive linear functional on
Mn. Let f be a strictly positive, continuous function on (0,∞). Assume that the
function g on (0,∞) defined by g(t) = t

f(t) , is differentiable and strictly increasing

on (0,∞). Suppose that

ϕ(A) ≤ ϕ(f(A)
1
2 g(B)f(A)

1
2 ) (5.4)

for any positive invertible A,B ∈Mn such that 0 < A ≤ B.
Then ϕ has the trace property if g satisfies the condition:

inf
λ>μ

√
g′(λ)g′(μ)
g(λ)−g(μ)

λ−μ

= 0. (5.5)

6. Characterization of operator monotonicity

In this section, following the idea from [4] we give a characterization of operator
monotonicity of matrix functions by the generalized Powers–Størmer type inequal-
ity. The following lemma is obvious.

Lemma 6.1. Let A = (aij), B = (bij) be positive invertible in Mn and S a non-
finite rank density operator on an infinite-dimensional, separable Hilbert space H.
Suppose that a11 > b11. Then there exist an orthogonal system {ξi}∞i=1 ⊂ H and
{λi}∞i=1 ⊂ [0, 1) such that

∑∞
i=1 λi = 1, Sξi = λiξi, and

∑n
i=1 aiiλi >

∑n
i=1 biiλi.

Theorem 6.2 ([17]). Let H be an infinite-dimensional, separable Hilbert space and
ϕ a normal state on B(H) such that its corresponding density operator Sϕ is not
finite rank. Let f be a strictly positive, continuous function on (0,∞), and g be a
function on (0,∞) defined by g(t) = t

f(t) . Suppose that

ϕ(A +B)− ϕ(|A−B|) ≤ 2ϕ(f(A)
1
2 g(B)f(A)

1
2 ) (6.1)
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for any positive invertible A,B ∈ B(H). Then both of functions f and g on (0,∞)
are operator monotone.

If f(t) = λt for some λ > 0, then g is constant on (0,∞). In this case, the
inequality (6.1) automatically holds. When the range of the density operator Sϕ,
however, is proper subspace in a Hilbert space H , the inequality (6.1) does not
hold for non-invertible positive operators.

Proposition 6.3 ([17]). Let H be a separable Hilbert space and ϕ be a normal state
on B(H). Let f be a strictly positive, continuous function on [0,∞) with f(0) = 0,
g a function on (0,∞) defined by g(t) = t

f(t) on (0,∞) and g(0) = 0. Suppose that

the range of the density operator Sϕ of ϕ is a proper subspace of H. Then there
exist positive non-invertible operators A and B which do not satisfy the inequality

ϕ(A+B)− ϕ(|A−B|) ≤ 2ϕ(f(A)
1
2 g(B)f(A)

1
2 ). (6.2)

Proof. We shall give a sketch of the proof.
Let {ξi}i∈N be an orthogonal system and {λi} ⊂ [0, 1) such that λ1 ≥ λ2 ≥

· · · ≥ 0, Sϕξi = λiξ and
∑∞

i=1 λi = 1.
Since Sϕ(H) 
 H , we take ξi0 such that Sϕ(ξi0 ) = 0. For δ, ε > 0 such that

δ > ε we set

A = ε|ξ1〉〈ξ1|+
√
ε(δ − ε)(|ξ1〉〈ξi0 |+ |ξi0〉〈ξ1|) + (δ − ε)|ξi0 〉〈ξi0 |

and

B = ε|ξ1〉〈ξ1| −
√
ε(δ − ε)(|ξ1〉〈ξi0 |+ |ξi0〉〈ξ1|) + (δ − ε)|ξi0 〉〈ξi0 |.

We have then

ϕ(A+B) = 2Tr(Sϕ(ε|ξ1〉〈ξ1|+ (δ − ε)|ξi0 〉〈ξi0 |))
= 2Tr(λ1ε|ξ1〉〈ξ1|) = 2λ1ε

ϕ(|A −B|) = 2Tr(Sϕ

√
ε(δ − ε)(|ξ1〉〈ξ1|+ |ξi0 〉〈ξi0 |))

= 2λ1

√
ε(δ − ε)

ϕ(f(A)1/2g(B)f(A)1/2) = ελ1
(δ − 2ε)2

δ2
.

Therefore, if positive operators A and B satisfy the inequality (6.2), we have

ε−
√
ε(δ − ε) ≤ ε

(δ − 2ε)2

δ2
.

But we have a contradiction if we take δ =
4ε

3
. �

The following problem is plausible.

Problem 6.4. Let f and g be the functions. Suppose that for any n and any positive
matrices A,B ∈Mn

Tr(A+B)− Tr(|A−B|) ≤ 2Tr(f(A)
1
2 g(B)f(A)

1
2 ).

Is the function f operator monotone?
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[20] F. Kraus, Über konvexe Matrixfunktionen, Math. Z. 41(1936), 18–42.
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Abstract. The inverse of an operator convex function is shown to be operator
monotone and due to the wide applications of the class of Nevanlinna–Pick
functions we formulate a function theoretic version of the results.
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1. Introduction

The class of Nevanlinna–Pick, or simply Pick, functions enters in, e.g., operator
theory, orthogonal polynomials and special functions. In operator theory the class
of functions that preserve the partial ordering induced by the cone of positive def-
inite operators have attracted much attention. These functions turn out to be a
subclass of the Pick functions. Jacobi matrices are studied through the so-called
m-function, which is a Stieltjes transform related to the resolvent of self-adjoint
operators in Hilbert space, see, e.g., [8], and Stieltjes transforms are closely re-
lated to Pick functions. Furthermore, Pick functions are used as parameter space
in Nevanlinna’s parametrization of all solutions to the classical Hamburger mo-
ment problem on the real line. See [1]. They have also been a fruitful tool when
investigating special functions, such as Euler’s Gamma function, see, e.g., [6], and
they enter in areas of geometric function theory, in connection with universally
convex and starlike functions. See, e.g., [15].

For a real-valued continuous function g defined on an interval I of the real
line, g(A) is defined by the functional calculus for any bounded linear self-adjoint
operator A having its spectrum in I. A function g is called operator monotone

The research of the first author was supported by grant 10-083122 from The Danish Council for

Independent Research | Natural Sciences.
The research of the second auhtor was supported by (JSPS) KAKENHI25400116.
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on I if g(A) ≤ g(B) for all bounded linear self-adjoint operators A and B having
their spectra in I and such that A ≤ B. This class of functions is denoted P(I).

A continuous function g : I → R is called operator convex on I if

g(sA+ (1− s)B) ≤ sg(A) + (1− s)g(B)

for every s ∈ (0, 1) and for every pair of bounded self-adjoint operators A and B
whose spectra are both in I. Operator concave functions are defined likewise. For
an introduction to operator monotone functions (and Pick functions) see [9] or [17].

For the reader’s convenience we state some fundamental facts concerning
Pick functions. A Pick function is a holomorphic function f defined in the upper
half-plane C+ for which 1f(z) ≥ 0 for all z ∈ C+. It is well known that there is
a one-to-one correspondence between Pick functions f and triples (a, b, μ), where
a ≥ 0, b ∈ R, and μ is a positive Borel measure on R such that∫ ∞

−∞

dμ(t)

t2 + 1
<∞.

The correspondence is given by the formula

f(z) = az + b+

∫ ∞

−∞

(
1

t− z
− t

t2 + 1

)
dμ(t).

Any Pick function f can be extended to C \ R by reflection. For an open interval
I of R it can be proved that f has a holomorphic extension across I, that is from
C\R to C\ (R\ I) if and only if the corresponding measure μ has no support in I.

The results in this paper are to a large extent based on properties of (con-
ditionally) positive definite kernels. A real-valued function K defined on I × I is
said to be a positive definite kernel if for any n, any points t1, . . . , tn ∈ I and any
complex numbers z1, . . . , zn,

n∑
k=1

K(ti, tj)zizj ≥ 0.

A real-valued function K defined on I × I is said to be a conditionally positive
definite kernel if it is symmetric and for any n, any t1, . . . , tn ∈ I and any complex
numbers z1, . . . , zn such that

∑n
j=1 zj = 0,

n∑
k=1

K(ti, tj)zizj ≥ 0.

The negative of a conditionally positive definite kernel is called a conditionally
negative definite kernel, or sometimes just negative definite. See, e.g., [5]. For a
C1-function f : I → R the Löwner kernel Kf is defined as

Kf (s, t) =
f(s)− f(t)

s− t
, s �= t, Kf (t, t) = f ′(t).

The following theorem, first proved by Löwner (see [13]), is a fundamental result
linking operator monotone functions, positive definite kernels and Pick functions
together. We refer the reader to [17], [9] or [16] for more recent proofs of this result.
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Theorem 1.1. Let I be an open interval of R. The following are equivalent for a
function f : I → R.

(i) f belongs to P(I);
(ii) The kernel Kf is positive definite on I × I;
(iii) f has a holomorphic extension to C \ (R \ I) such that f is a Pick function.

Another important result is Theorem 1.2 below, due to Krauss (see [11]), and
furnishing a connection between operator convex and operator monotone functions.
For more recent proofs, see [3] or [18].

Theorem 1.2. Let I be an open interval of R. If g is operator convex on I, then g
is of class C2(I) and for each c ∈ I the function t �→ Kg(t, c) is operator monotone
on I. Conversely, if g ∈ C2(I) and there exists c ∈ I such that Kg(t, c) is operator
monotone on I, then g is operator convex.

It is known that a function h is operator monotone on a half-line (a,∞) if
and only if h is operator concave and limt→∞ h(t) > −∞. See [18].

In the next section we give our main results concerning operator convex
functions and in the following section the results are discussed in the framework of
Pick functions. Apart from the main new result in Proposition 2.2 it is our aim to
exploit some of the connections between operator theory and complex analysis and
in particular the application of Pick functions in the theory of special functions,
by stressing the power of Löwner’s theorem.

2. Results for operator convex functions

A source of motivation for the results in this section is a recent result stating that
the so-called principal inverse of Euler’s Gamma function is operator monotone.
See [19]. The methods relied on certain conditionally negative definite kernels. The
connection is briefly explained in Remark 3.5. First, we state a well-known result.

Lemma 2.1. If K is a conditionally negative definite kernel on I×I and if K(x, y) >
0 for all x, y ∈ I, then 1/K is infinitely divisible.

We invoke this to prove our main result.

Proposition 2.2. Let g be a C1-function on I with g′(t) > 0 for all t ∈ I. If
t �→ Kg(t, c) is operator concave for some c ∈ I, then the inverse function g−1

belongs to P(g(I)).

Proof. Since g′(t) > 0, Kg is a strictly positive function on I × I. Put f(t) =
Kg(t, c) and then h(t) = Kf (t, c). Since −f(t) is operator convex on I, by Theorem
1.2, −h(t) is operator monotone. By Theorem 1.1, −Kh(t, s) is positive definite.
Since g(t) = f(t)(t− c) + g(c),

Kg(t, s) = f(t) + f(s)− f(c) + (t− c)Kh(t, s)(s− c) (for t �= s),
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and this equality also holds for t = s. The kernel Kg(t, s) is therefore conditionally
negative definite, and thus by Lemma 2.1, 1/Kg(t, s) is infinitely divisible, and
hence positive definite. Thus

Kg−1(x, y) =
1

Kg(g−1(x), g−1(y))

is also infinitely divisible, especially positive definite on g(I)× g(I). Theorem 1.1
yields that g−1 ∈ P(g(I)). �

Proposition 2.3. Let g be an increasing operator convex function on an infinite
interval I = (a,∞), with −∞ ≤ a. Then g−1 ∈ P(g(I)).

Proof. Since g is operator convex then by Theorem 1.2, t �→ Kg(t, c) is operator
monotone for all c ∈ I, and by the remark following Theorem 1.2, Kg(t, c) is
operator concave. Since g is increasing, Proposition 2.2 yields that g−1 ∈ P(g(I)).

�

Remark 2.4. In the case where I = [0,∞) and g(I) = [0,∞), namely for g(t) =
tf(t) with f ∈ P((0,∞)), Proposition 2.3 was first shown in [2] in a different way.

Corollary 2.5. Let g be an increasing function on I = (a,∞), with a ≥ −∞. Then

(i) g−1 ∈ P(g(I)) if g > 0 and log g is operator convex,
(ii) g−1 ∈ P(g(I)) if f ◦ g is operator convex for some f ∈ P(g(I)).

Proof. Suppose A ≤ B for A and B with spectra in g(I). Put A′ = g−1(A),
B′ = g−1(B). From g(A′) = A ≤ B = g(B′) it follows that log g(A′) ≤ log g(B′).
By Proposition 2.3, A′ ≤ B′. We consequently get (i); (ii) similarly follows. �

Corollary 2.6. Let g be a positive and increasing function on I = (a,∞) with
a ≥ −∞. Suppose g′/g ∈ P(I). Then g−1 ∈ P(g(I)).

Proof. It is known that for any c > a, log g(t) =
∫ t

c (g
′(s)/g(s))ds + log g(c) is

operator convex. By Corollary 2.5 we get the required result. �

3. Pick function counterparts

In this section we discuss briefly what these results say in the framework of Pick
functions. The equivalence of (ii) and (iii) in Löwner’s theorem describes the con-
nection between Pick functions and positive definite kernels. We feel that it is
worthwhile to include proofs of some of the results based only on this equivalence.

Proposition 3.1. A function g : (0,∞)→ [0,∞) has an extension to a Pick function
in C \ (−∞, 0] if and only if it admits the representation

g(z) = az +

∫ ∞

0

z

z + t
dσ(t),

where a ≥ 0, and σ is a positive measure on [0,∞) such that
∫∞
0

dσ(t)/(t+1) <∞.
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Remark 3.2. The proposition describes the class of positive operator monotone
functions in (0,∞). For a proof see [4] or [1, Addenda and Problems to Chapter 3].

The proposition can be used to give a direct proof of the following Lemma
3.3 about Pick functions. We remark that f =

∫
f ′(t)dt is operator convex, so the

lemma also follows from the previous section.

Lemma 3.3. Suppose that f is holomorphic in the cut plane C \ (−∞, 0], and that
f is real valued and increasing on (0,∞). If f ′ is a Pick function then f−1 can be
extended from f((0,∞)) to a Pick function defined in C \ (R \ f((0,∞))).

Proof. The kernel Kf is conditionally negative definite on (0,∞)× (0,∞). Indeed,
using the representation of f ′ in Proposition 3.1,

f(x)− f(c) =

∫ x

c

(
αs+

∫ ∞

0

s

s+ t
dσ(t)

)
ds

=
α(x2 − c2)

2
+

∫ ∞

0

(x− c− t(log(x + t)− log(c+ t))) dσ(t).

This gives

Kf(x, y) =
α

2
(x+ y) +

∫ ∞

0

(
1− t

log(x+ t)− log(y + t)

x− y

)
dσ(t).

Since (x, y) �→ x + y is conditionally negative definite and Klog(·+t) is positive
definite, Kf is conditionally negative definite. By Lemma 2.1, 1/Kf is positive
definite. If x, y ∈ f((0,∞)), we choose t, s ∈ (0,∞) such that f(t) = x and
f(s) = y, and then we have

Kf−1(x, y) =
f−1(x) − f−1(y)

x− y
=

t− s

f(t)− f(s)
.

We have just seen that this is a positive definite kernel and thus f−1 has an
extension across f((0,∞)) to a Pick function. �

Remark 3.4. Corollary 2.6 can also be proved using the composition of two Pick
functions: Indeed, if g satisfies the conditions of Corollary 2.6 then, by Lemma
3.3, the inverse h of log g is extended to a Pick function in the cut plane C \ (R \
log g((0,∞))). Since log is also a Pick function then h(log z) is a Pick function in
C \ (R \ g((0,∞))), and

g(h(log z)) = e(log g)(h(log z)) = elog z = z.

Hence g has an inverse on g((0,∞)) that can be extended to a Pick function.

Remark 3.5. It is a classical fact that Euler’s Gamma function Γ increases on the
interval (α,∞), where α denotes the only positive zero of the ψ-function (the loga-
rithmic derivative of Γ). In [19] it was shown that the inverse of Γ|(α,∞) has an ex-
tension to a Pick function in the complex plane cut along the half-line (−∞,Γ(α)].
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A central ingredient in the proof consisted in showing that the kernel Klog Γ is con-
ditionally negative definite. This result follows from Corollary 2.5 since

log Γ(t) = − log t− γt+

∞∑
n=1

(
t

n
− log

(
1 +

t

n

))
(where γ is Euler’s constant) is operator convex, and Γ is increasing on (α,∞).
The result about the Gamma function has been generalized to a certain class of
entire functions of genus 1, see [14], and this is also a consequence of Corollary 2.5
(or 2.6).

We end the paper with some remarks concerning the class of Laguerre–Pólya
functions. An entire function is said to be of Laguerre–Pólya class if it can be
approximated uniformly over compact subsets of the complex plane by polynomials
with real zeros only. This class consists of exactly those entire functions f admitting
the Weierstraß factorization

f(z) = zmeaz
2+bz+c

∞∏
k=1

(
1− z

zn

)
ez/zn ,

where zn ∈ R \ {0} such that
∑∞

n=1 |zn|−2 < ∞, a ≤ 0, b, c ∈ R and m ≥ 0. For
such a function f , log f is univalent in C+ and the conformal image of C+ is a so-
called comb-domain, obtained by removing certain horizontal half-lines from the
complex plane (or from a horizontal strip of the complex plane). Conversely, any
such comb-domain is the conformal image of the logarithm of a suitable function
from the Laguerre–Pólya class. See [10].

The class of Pólya functions is usually defined as the class of holomorphic
functions f defined in C+ for which ∂y|f(x + iy)| ≥ 0 for y > 0. (This class goes
back to de Branges, see [7].) By the Cauchy–Riemann equations it is not difficult
to see that the condition is equivalent to −f ′/f being a Pick function. It is also
easy to see that the class of Pólya functions contains the Laguerre–Pólya functions.

A domain D is a P-domain if for any w ∈ D and any t ≥ 0 we have w−t ∈ D.
It is known that the conformal image of the upper half-plane under log p is a so-
called P-domain for any function p in the Pólya class. See [12].

In order to stress the connection to complex analysis we end the paper by
formulating a result for the Pólya class.

Corollary 3.6. Suppose that a function p from the Pólya class can be holomor-
phically extended through (0,∞) and is positive and decreasing there. Then the
inverses of 1/p and of − log p can be extended to Pick functions. Furthermore, the
conformal image log p(C+) covers the whole of the lower half-plane.

Proof. This follows immediately, noting the general fact that if f(g(z)) = z for all
z ∈ C+ then the image f(C+) must contain C+. �
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Some Remarks on Approximation Properties
with Applications

Oleg Reinov

Abstract. We study some known approximation properties and introduce and
investigate several new approximation properties, closely connected with dif-
ferent quasi-normed tensor products. These are the properties like the APs

or AP(s,w) for s ∈ (0, 1], which give us the possibility to identify the spaces of
s-nuclear and (s, w)-nuclear operators with the corresponding tensor products
(e.g., related to Lorentz sequence spaces). Some applications are given (in par-
ticular, we present not difficult proofs of the trace-formulas of Grothendieck–
Lidskǐı type for several ideals of nuclear operators).

Mathematics Subject Classification (2010). 46B28.

Keywords. Nuclear operator, tensor product, approximation property, eigen-
value.

Introduction

In 1955 A. Grothendieck [7] has introduced the notion of the projective tensor prod-
uct of the locally convex vector spaces and developed the corresponding theory. It
was a very deep generalization of Schatten–von Neumann theory of Sp-spaces and
the corresponding theory of tensor products of Hilbert spaces [29]. One of the nice
properties of Grothendieck’s projective tensor product of type E⊗̂F is that its
topological dual can be described as the space B(E,F ) of all continuous bilinear
forms on E×F. In the particular case of the projective product Y ∗⊗̂X of Banach
spaces Y ∗ (dual to Y ) and X, one can identify the Banach dual to Y ∗⊗̂X with
the space L(X,Y ∗∗) of all linear continuous operators from X to Y ∗∗ in a natural
way (by using a linear continuous functional “trace”; see below). It turned out
that the topological (locally convex) dual to the subspace L(X,Y ) of L(X,Y ∗∗),
equipped with the topology of compact convergence (Lc(X,Y ) in notations of [7]),
can be identified with a quotient of Y ∗⊗̂X ([7], Chap. I, Prop. 22). As was shown
by A. Grothendieck, it follows from the last statement that the injectivity of the
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canonical map Y ∗⊗̂X → L(Y,X) is equivalent to the density of the set X∗ ⊗ Y
of all finite rank operators from X to Y in Lc(X,Y ). If X = Y, then the last is
equivalent to the fact that the identity map is in the closure of the set of finite
rank operators in the topology of compact convergence. This leads to the famous
Grothendieck’s definition of the notion of the AP (approximation property) for
a Banach space: Following A. Grothendieck, we say that a Banach space X has
the AP, if for every compact subset K of X and for any ε > 0 one can find a
finite rank operator R in X such that supx∈K ||Rx − x|| ≤ ε. The property is so
important that we can find its applications in a great number of papers devoted
to the theory of operators in Banach spaces.

Let us reformulate (following [7]) the definition of the AP in terms of tensor
products: X has the AP iff the natural mapping j : X∗⊗̂X → L(X,X) is one-to-
one (here by “natural map” we mean the unique extension of the natural linear
inclusion X∗ ⊗X → L(X,X) from the normed space (X∗ ⊗X, || · ||∧) (i.e., with
the projective norm) to the completion X∗⊗̂X). This fact becomes evident if we
note that the map j is one-to-one iff the closure of X∗ ⊗ X in Lc(X,X) is the
whole space L(X,X) (or, what is the same, the identity map idX is in this closure).
The image of the tensor product X∗⊗̂X in L(X,X) is, by definition, the space
N(X,X) of nuclear operators in X (with the norm induced from X∗⊗̂X). Thus,
X has the AP iff (as we can write) N(X,X) = X∗⊗̂X.

On the space X∗ ⊗X, the usual linear functional “trace” is defined which is
continuous on the normed space (X∗⊗X, || · ||∧). After extension to the projective
tensor product X∗⊗̂X, this linear functional is still bounded and it can be seen
that a Banach space Y has the AP iff every tensor element z ∈ Y ∗⊗̂Y which
generates a 0-operator in L(Y, Y ) has the property that trace U ◦ z = 0 for every
U ∈ L(Y, Y ∗∗).

In Chapter II of [7], A. Grothendieck has generalized the notion of nuclear
operators and also considered the more general tensor products: In the terminology
of [7], an element of X∗⊗̂Y is said to be a “noyau de Fredholm de puissance p.ème
sommable” (p ∈ (0, 1]), if it is of the form

∑
i λi x

′
i ⊗ yi, where (λi) ∈ lp and (xi)

(resp. yi) is a bounded sequence in X∗ (resp. Y ). We will use the notation X∗⊗̂pY

for the corresponding tensor product (in [7], it is denoted by X∗ (p)

⊗ Y ). This is
a linear subspace of the projective tensor product X∗⊗̂Y, and with the natural
metric (see [7], Chapter II, §1) it is a complete metric space.

If z ∈ X∗⊗̂pY, then the associated operator z̃ from X to Y is called (by A.
Grothendieck) as “une application de puissance p.ème sommable”. The natural
inclusion X∗⊗̂pY ↪→ X∗⊗̂Y is one-to-one for any pair of Banach spaces X and Y
(a priori, it is not evident; see [7], Chapter II, §1 for an explanation).

One of the interesting questions considered in [7], is the connection between
the “order” of a tensor element z ∈ X∗⊗̂pY and the “order” of the sequence of
all eigenvalues of the corresponding operator z̃ (evidently, z̃ is compact). Among
the results in this direction, let us mention only the following facts (which were
obtained in [7], Chapter II, §1, Section 4): Let X and Y be Banach spaces and 0 <
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p ≤ 2/3. Then the canonical map jp : X∗⊗̂pY → L(X,Y ) is injective. Moreover,

for every z ∈ X∗⊗̂pX the sequence (zi) of all eigenvalues of the associated operator
(counted according to their multiplicities) is absolutely summable and trace z =∑

i zi (the assertions are true for any locally convex vector space X).

Remembering one of the equivalent definitions of the AP, we see that it was, in
fact, shown by A. Grothendieck that every Banach space has some approximation
properties “of type p” for all p ∈ (0, 2/3].We can use, e.g., a notation “APp”. Thus,
A. Grothendieck considered the notion of “p-approximation property” already in
1955, though implicitly.

Let us mention that A. Grothendieck (applying deep results of complex anal-
ysis and H. Weyl’s [31] theorem on the Schatten–von Neumann classes Sp of com-
pact operators in Hilbert spaces) has proved firstly the “eigenvalue theorem” for
the case where 0 < p ≤ 2/3 and then, as a consequence, obtained the injectivity
of the above maps jp (surely, the main case is p = 2/3). In the paper [20] of the
author, the reader can find a more simple proof of these theorems, where it was
shown firstly that the map j2/3 is one-to-one and then the eigenvalue result was
obtained (by applying the Lidskǐı theorem for the trace-class operators in Hilbert
spaces [12]).

The question about the injectivity of the maps jp for p ∈ (2/3, 1) was not
considered by A. Grothendieck in [7] explicitly. He posed the corresponding ques-
tion only for the case p = 1. This famous approximation problem was solved in
negative in 1972 by Per Enflo [6] (for the further information see [3], [14], [16], [30].

It seems that the notion of the approximation property “of type p” (for
0 < p < 1) was (explicitly) considered firstly by the author in the paper [21],
where it appeared as the “approximation property of order p”. In [21], we used the
tensor product definition (i.e., the injectivity of the map jp). Some simple facts
and different (counter)examples were presented in [21]. Instead of the term “une
application de puissance p.ème sommable”, we used there the name “a p-nuclear
operator”. Later p-nuclear operators (for p ∈ (0, 1)) were studied, e.g., in [22], [23],
[27], [8]. We refer the reader to these papers for the further information.

Our aim in these notes is to discuss several old and new definitions of different
approximation properties and to formulate (and, partially, to present the proofs
of) some results in this direction. Also, we give applications (in particular, to
eigenvalues problems).

Preliminaries

All the spaces under considerations (X,Y, . . . ) are Banach, all linear mappings
(operators) are continuous; as usual, X∗, X∗∗, . . . are Banach duals (to X), and
x′, x′′, . . . (or y′, . . . ) are the functionals on X,X∗, . . . (or on Y, . . . ). If x ∈ X, x′ ∈
X∗ then 〈x, x′〉 = 〈x′, x〉 = x′(x). L(X,Y ) stands for the Banach space of all linear
bounded operators from X to Y. Every Banach space is considered as a Banach
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subspace of its second dual. If needed, by πY we denote the natural isometric
injection of Y into Y ∗∗.

We consider the algebraic tensor product X∗ ⊗ Y as the linear space of all
continuous finite rank operators fromX to Y. The projective tensor productX∗⊗̂Y
of the spaces X∗ and Y is the completion of X∗ ⊗ Y with respect to the norm
||z||∧ := inf{

∑
|λk|}, where the infimum is taken over all finite representations of

z ∈ X∗ ⊗ Y in the form z =
∑

λk x
′
k ⊗ yk with ||x′

k|| = ||yk|| = 1. Every element

z ∈ X∗⊗̂Y admits a representation z =
∑∞

k=1 λkx
′
k ⊗ yk such that

∑
|λk| < ∞

and ||x′
k|| = ||yk|| = 1. If X = Y, then the functional “trace” on the tensor product

X∗⊗̂X is well defined by the formula trace z :=
∑

λk 〈x′
k, yk〉. The Banach dual

to X∗⊗̂Y can be identify with the space L(Y,X∗∗) with duality given by “trace”:
for z ∈ X∗⊗̂Y and U ∈ L(Y,X∗∗) we put 〈U, z〉 := trace U ◦ z =

∑
λk 〈xk, Uyk〉.

We use standard notations for the classical Banach spaces such as Lp(μ),
C(K), lp, c0 etc. For the theory of (sequence) Lorentz spaces, we refer to [1], [16],
[17, Section 2.1]; see also [8, Section 5]. For the definitions of the notions of type and
cotype, see any of these references: [4], [16], [18], [19] (Rademacher type p = Gauss
type p and Rademacher cotype q = Gauss cotype q; so, we can apply results from
G. Pisier’s lecture [19], assuming that we are working with Rademacher notions).

Let us collect some facts we need. Recall that a subspace E of a Banach space
X is b-complemented (b > 0) in X, if there exists a linear continuous projection P
from X onto E such that ||P || ≤ b. As usual, if p ∈ [1,∞], then p′ is the conjugate
exponent: 1/p+ 1/p′ = 1.

Let X be a Banach space and 1 < p ≤ 2, 2 ≤ q < ∞. 1) If X is of type p
(cotype q) then every subspace is of type p (cotype q); 2) [4, Proposition 11.11] If
X is of type p then any quotient of X is of type p; 3) [4, Proposition 11.10] If X
is of type p then X∗ is of cotype p′; 4) If X∗ is of type p then X is of cotype p′;
5) If X is of type p then any subspace of any quotient (and any quotient of any
subspace) of X is of type p; 6) [4, Corollary 11.9] A Banach space has the same
type or cotype as its bidual; 7) [4, Corollary 11.7] Each Lr-space (1 ≤ r <∞) has
type min{r, 2} and cotype max{r, 2}; 8) [19, see Theorem 4.1 and its Corollaries]
If X is of type p and of cotype q then there is a constant Dp,q > 0 such that every

finite-dimensional subspace E of X is Dp.q (dimE)1/p−1/q-complemented in X.
Recall also the well-known general fact (due to M.J. Kadec and M.G. Sno-

bar [9]; see also [16, 28.2.6. Lemma]): in any Banach space every n-dimensional
subspace is n1/2-complemented.

Our main reference is [16]. All the notions, notations and facts, given here
without any explanation, can be found in [1, 5, 8, 14, 16, 17, 18].

Contents

In Section 1 we reformulate the definition of Grothendieck approximation property
in terms of 0-sequences that leads us to the consideration of more general approx-

imation properties ÃPs for s ∈ (0, 1]. We define them in terms of approximation
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of the identity maps in Banach spaces by finite rank operators on lp-sequences (p
depends on s). It seems that such properties, for the first time, were considered by
the author in [22] (cf. Lemma 2.1 there). The simplest examples of Banach spaces
possessing the properties of such a kind are subspaces of quotients of Lp-spaces.

In Section 2 we reformulate the ÃPs in terms of tensor products showing that

ÃPs = APs, where APs is the approximation property of order s introduced in
the author paper [21] and investigated also in [2], [23], [27].

In Section 3 we introduce and investigate new notions of the approximation
properties APt;p,r and AP(r,w) defined by some “Lorentz tensor products” (tensor
products generated by Lorentz sequence spaces). These notions are new and con-
sidered here for the first time. In particular, we obtain a characterization of the
AP(r,1) in terms of approximation of the identity maps by finite rank operators on
some (Lorentz) 0-sequences (Theorem 3.3).

In Section 4, with the help of a theorem of M.C. White [32], we prove The-
orem 4.1 which gives us sufficient conditions for the famous Grothendieck–Lidskǐı
trace formula to be valid for certain quasi-Banach operator ideals. We present
an application of the previous results about approximation properties to some
eigenvalue problems. Theorem 4.1 is applied then to the case of (2/3, 1)-nuclear
operators (related to the Lorentz space l2/3 1).

In Section 5 the results of Section 1 about subspaces of quotients of Lp-
spaces together with White’s theorem are applied for proving some more theorems
concerning the distribution of eigenvalues of the nuclear operators. We give new
relatively simple proofs of some recent results from the papers [25] and [28].

In Section 6 we prove two statements about the approximation properties
considered in Sections 1–V. For instance, it is well known that if X∗ has the AP
of Grothendieck, then X has the AP too. We show that the same is true for all
the natural approximation properties considered here, such that APs, AP(r,w) etc.

In Section 7 we introduce, following [24] and [26], two more notions of the
approximation properties by using the spaces of so-called (r, p)-nuclear operators (a
partial case of a class of (s, q, t)-nuclear operators from [16, 18.1]). Two theorems
about eigenvalues of the (r, p)-nuclear operators are proved. In these theorems,
trace formulas of Grothendieck–Lidskǐıtype are established for the cases where
1/r − 1/p = 1/2. The first one was proved in [24] and [26] with the help of
Fredholm Theory; the second theorem (Theorem 7.3) was obtained before by the
same authors, again by using Fredholm Theory (but its proof was unpublished).
Here, the different (more simple) method is used. Firstly, we show that every
Banach space has the corresponding approximation properties AP[r,p] and AP [r,p].
After this, we obtain the eigenvalue results by using simple arguments.

Finally, in Section 8, examples are given (they are taken from the paper [26]).
The examples give a possibility to conclude that all the positive results of Sections
1–7 concerning the approximation properties and trace formulas are sharp.

1 It is well known that every compact subset of a Banach space is contained in
the closed convex hull of a sequence converging to 0 (see, e.g., [7], p. 112 in
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Ch. I, Lemme 12, or [14], p. 30, Proposition 1.e.2). Therefore, the Grothendieck
approximation property for a Banach space X can be defined as follows: X has
the AP iff for every sequence (xn)

∞
n=1 ⊂ X tending to zero, for any ε > 0 there

exists a finite rank (continuous) operator R in X such that for each n ∈ N one has
||Rxn − xn|| ≤ ε. Consider a natural question: for which sequences (xn) ∈ c0(X),
under some additional assumptions, the identity map idX can be approximated
by finite rank operators, as above, and which of those conditions are sharp (or, if
one wishes, optimal)?

One of the simplest fact (we think, known for more than 30 years) is that

if (xn) ∈ l2(X), X is any, then the answer is positive. (∗)
Here is a reason of this: Assuming ||xn|| ↘ 0, take any N ∈ N and consider

the linear span EN := span[xn]
N
1 as a subspace of X. Define, fixing an ε > 0, a

finite rank operator R to be a projection from X onto EN whose norm ≤
√
N.

Now if N is such that, for every n ≥ N, we have ||xn|| ≤ ε√
N+1

, then

||Rxn − xn|| = 0 if n ≤ N,

and

||Rxn − xn|| ≤ (||R||+ 1) ||xn|| ≤ ε if n ≥ N.

Of course, instead of (∗) we can consider the statement

if (xn) ∈ l02,∞(X) (Lorentz space with “o”

small – lmin
(2,∞)(X) in notations of [16, 13.9.3 Remark]),

X is any, then the answer is affirmative.

(∗∗)

The idea of the above proof is very simple and can be applied in some more
general situations. For instance, every subspace of finite dimension n of an Lp-

space is n|1/2−1/p|-complemented in that Lp-space. So, if p ∈ [1,∞], α = | 12 −
1
p |

and X is a subspace of an Lp-space, then

for every sequence (xn) ∈ l0q,∞(X), where
1/q = α, the answer is affirmative.

(∗ ∗ ∗)

Remark 1.1. About sharpness: it will be discussed below.

Remark 1.2. The statement (∗∗∗) has, as a matter of fact, the following quantita-
tive aspect: Given α ∈ [0, 1/2] and a Banach space X with the property that every
finite-dimensional subspace F of X is contained in a finite-dimensional subspace
E ⊂ X, which in turn is C (dimF )α-complemented in X, we have

for every sequence (xn) ∈ l0q,∞(X), where
1/q = α, for any ε > 0 there is a finite rank
operator R in X so that supn ||Rxn − xn|| ≤ ε.

(∗ ∗ ∗)′

Particular cases:

(i) q = 2 and α = 1/2 or q =∞ and α = 0;
(ii) (xn) ∈ lq(X), q ∈ [2,∞).
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For a while let us introduce the notions of the corresponding approximation
properties for a Banach space X (taking into account that the possibility of ap-
proximations on c0-sequences by finite rank operators gives us the Grothendieck’s
approximation property AP ) : Let 0 < q ≤ ∞ and 1/s = 1/q + 1. We say that X

has the ÃP s [resp., the ÃP s,∞] if for every (xn) ∈ lq(X) [resp., l0q,∞(X)] (where
lq(X) means c0(X) for q =∞) and for every ε > 0 there exists a finite rank oper-

ator R ∈ X∗⊗X such that supn ||Rxn−xn|| ≤ ε. Trivially, e.g., ÃP s2 =⇒ ÃP s1

if s1 ≤ s2. Thus, ÃP 1(= AP ) implies any ÃP s.
The statement (∗) (and (∗∗)) says that every Banach space has the above

property ÃP 2/3 (and even the ÃP 2/3,∞). The statement (∗ ∗ ∗) gives the corre-
sponding result for Lp-subspaces. Moreover, the assertion mentioned in Remark
1.2, shows that, for instance, any subspace of any quotient (= any quotient of
any subspace) of a Banach space of type 2 (resp., of cotype 2) and of cotype

p, p ∈ [2,∞) (resp., of type p′), possesses the ÃP s (even the ÃP s,∞) with
1/s = 1 + |1/2− 1/p|.

2 Let us recall that the notion of the AP of Grothendieck can be reformu-
lated in terms of the projective tensor products “⊗̂”. Namely, a Banach

space X has the AP iff for every Banach space Y the canonical (natural) map-
ping Y ∗⊗̂X → L(Y,X) is one-to-one (or, what is the same, the natural mapping
X∗⊗̂X → L(X) := L(X,X) is injective). In [7], A. Grothendieck has considered
also some other tensor products (linear subspaces of “⊗̂’s”), which we will denote
by “⊗̂s” for 0 < s ≤ 1 (so that ⊗̂ = ⊗̂1) : For Banach spaces X and Y, let Y ∗⊗̂sX
be a subspace of the projective tensor product Y ∗⊗̂X consisting of the tensors
z ∈ Y ∗⊗̂X, which admit representations of the form

z =
∞∑
n=1

λny
′
n ⊗ xn,

where (λn) ∈ ls, (y
′
n) and (xn) are bounded sequences from Y ∗ and X respectively.

With a natural “quasi-norm” (see [16]) the linear subspace Y ∗⊗̂sX of the space
Y ∗⊗̂X can be considered as a “quasi-normed tensor product” (it is then a complete
metric space [7]).

One of the nice (with a nontrivial proof in [7]) theorem of Grothendieck is the
fact that the natural map from Y ∗⊗̂2/3X into L(Y,X) is injective for any Banach
spaces X,Y. Let us compare this Grothendieck’s result with a simple assumption
in Section 1, where “s = 2/3” appeared. Clearly, it is not a chance coincidence,
and we really have

Theorem 2.1. For s ∈ (0, 1] and for a Banach space X, the following statements
are equivalent:

1) X has the ÃP s in the sense of the definition in Section 1;
2) X has the APs in the sense of the definition in [23], i.e., for every Banach

space Y the natural mapping Y ∗⊗̂sX → L(Y,X) is one-to-one.
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Moreover, the following statement (APs) takes place:

(APs) A Banach space X has the APs, 0 < s ≤ 1, iff the canonical map
X∗⊗̂sX → L(X) is one-to-one (or, what is the same, there exists no
tensor element z ∈ X∗⊗̂sX with trace z = 1 and z̃ = 0, where z̃ is the
associated (with z) operator from X to X).

Maybe analogous theorems and facts are valid for the ÃP s,∞ and the APs,∞
from [23] (see Section 3 for a discussion).

Proof of the assertion (APs). Suppose that the APs-condition holds for X, but
there exists a Banach space Y such that the natural map Y ∗⊗̂sX → L(Y,X) is
not one-to-one. Take an element z ∈ Y ∗⊗̂sX which is not zero, but generates
a zero operator z̃ : Y → X. Then we can find an operator U ∈ L(X,Y ∗∗) so
that trace U ◦ z = 1. If z =

∑∞
k=1 λk y

′
k ⊗ xk is a representation of z in Y ∗⊗̂sX

((λk) ∈ ls, (xk) and (y′k) are bounded), then

1 = trace U ◦ z =
∞∑
k=1

λk〈Uxk, y
′
k〉 =

∞∑
k=1

λk 〈xk, U
∗y′k〉

and
∑∞

k=1 λk U
∗y′k(x)xk = 0 for every x ∈ X. Put x′

k := λkU
∗y′k, z0 :=

∑∞
k=1 x

′
k⊗

xk ∈ X∗⊗̂sX. We have

trace z0 = 1, z̃0 �= 0

(by the assumption about X). Consider a one-dimensional operator R = x′⊗ x in
X with the property that trace R ◦ z0 > 0. Then

0 < trace R ◦ z0 =

∞∑
k=1

〈x′
k, x〉〈x′, xk〉 =

∞∑
k=1

λk 〈U∗y′k, x〉〈x′, xk〉

=

〈 ∞∑
k=1

λk 〈Ux, y′k〉xk, x
′
〉

=

〈
x′,

∞∑
k=1

λk U
∗y′k(x)xk

〉
= 0. �

Proof of Theorem 2.1. We will use the assertion (APs).

1) =⇒ 2). Let z ∈ X∗⊗̂sX and trace z = 1. Write z =
∑

λk x
′
k ⊗ xk,

where the sequences (x′
k) and (xk) are bounded and (λk) ∈ ls, λk ≥ 0, (λk) is

non-increasing. Then

z =

∞∑
k=1

(λs
k x

′
k)⊗ (λ1−s

k xk)

(recall that 1/s = 1 + 1/q; so 1 − s = s/q). The sequence (λ1−s
k xk) is in lq(X).

By 1), for every ε > 0 there exists a finite rank operator R ∈ X∗ ⊗X such that
||R(λ1−s

k xk)− λ1−s
k xk|| ≤ ε for each k ∈ N. It follows that, for this operator R,

| trace (z −R ◦ z)| =
∣∣∣∣∣
∞∑
k=1

〈λs
kx

′
k, λ

1−s
k xk −R(λ1−s

k xk)〉
∣∣∣∣∣ ≤

∞∑
k=1

λs
k||x′

k|| · ε ≤ c · ε.
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Hence, for small ε > 0 we have that, for the operator R ∈ X∗ ⊗X,

| trace R ◦ z| ≥ 1/2

and therefore z generates a non-zero operator z̃.

Before consider a proof of the implication 2) =⇒ 1) we will make some
additional remarks. We collect the remarks in

Lemma 2.1. Let s ∈ (0, 1], q ∈ (0,∞], 1/s = 1 + 1/q. For a := (ak) ∈ l1 and
b := (bk) ∈ lq we have( ∞∑

k=1

|akbk|s
)1/s

≤
∞∑
k=1

|ak| ·
( ∞∑

k=1

|bk|q
)1/q

. (0.1)

Moreover,

||a||l1 = sup
||b||lq=1

( ∞∑
k=1

|akbk|s
)1/s

(if q =∞, evident changes must be made in (2.1)).

Proof of Lemma 2.1. We may consider the case where q ∈ (0,∞). Putting p := 1/s
(then 1/p′ = 1− s = s/q and sp′ = q), we obtain

∞∑
k=1

|akbk|s ≤
( ∞∑

k=1

|ak|sp
)1/p

·
( ∞∑

k=1

|bk|sp
′
)1/p′

=

( ∞∑
k=1

|ak|
)s

·
( ∞∑

k=1

|bk|q
)s/q

.

For the second part: Let a = (ak) ∈ l1. Take bk := |ak|1/q
||a||1/q

l1

. Then

∞∑
k=1

|bk|q =

∞∑
k=1

|ak|
||a||l1

= 1

and ( ∞∑
k=1

|akbk|s
)1/s

=

( ∞∑
k=1

|ak|s/q

||a||s/ql1

|ak|s
)1/s

=

( ∞∑
k=1

|ak|s/q+s

||a||s/ql1

)1/s

=

( ∞∑
k=1

|ak|s(1+1/q)

||a||s/ql1

)1/s

=

( ∞∑
k=1

|ak|
||a||s/ql1

)1/s

=
(
∑∞

k=1 |ak|)1/s

||a||1/ql1

=

( ∞∑
k=1

|ak|
)1/s−1/q

= ||a||l1 . �

Proof of Theorem 2.1 (continuation). 2) =⇒ 1). Suppose that X does not have

the ÃPs, 1/s = 1 + 1/q. Then there is a sequence (xn) ∈ lq(X) (if q = ∞,
we consider a sequence from c0(X) = l0∞(X)) such that there exists an ε > 0
with the property that for any finite rank operator R ∈ X∗ ⊗ X the inequality
supn ||Rxn−xn|| > ε is valid. Consider the space C0(K;X) forK := {xn}∞n=1∪{0}.
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Every operator U inX can be considered as a continuous function onK with values
in X by setting fU (k) := U(k) for k ∈ K. In particular, for the identity map id in
X and for any R ∈ X∗ ⊗X we have

||fid − fR||C0(K;X) ≥ ε.

The subset R := {fR : R ∈ X∗ ⊗X}C0(K;X)
of C0(K;X) is a closed linear sub-

space in C0(K;X). So, there exists an X∗-valued measure

μ = (x′
k)

∞
k=1 ∈ C∗

0 (K;X) = l1({xn}∞n=1) ∪ {0};X)

such that μ|R = 0 and μ(fid) = 1. In other words, we can find a sequence (x′
k)

with
∑∞

k=1 ||x′
k|| < ∞ such that

∑∞
k=1〈x′

k, xk〉 = 1 and
∑∞

k=1〈x′
k, Rxk〉 = 0 for

any R ∈ X∗ ⊗X.
Define a tensor element z ∈ X∗⊗̂X by z :=

∑∞
k=1 x

′
k⊗xk. Since (xk) ∈ lq(X)

and (x′
k) ∈ l1(X

∗), we get from Lemma 2.1 that( ∞∑
k=1

||x′
k||s ||xk||s

)1/s

≤
∞∑
k=1

||x′
k|| ·

( ∞∑
k=1

||xk||q
)1/q

.

Therefore, z ∈ X∗⊗̂sX, trace z =
∑∞

k=1〈x′
k, xk〉 = 1 and trace R ◦ z = 0 for every

R ∈ X∗ ⊗X. This means that X does not have the APs. �

After Theorem 2.1 has been proved, we can make a conclusion: APs = ÃP s

for any s ∈ (0, 1]. Let us mention that this equality appeared firstly (without
proofs) in [22, Lemma 2.1].

3 Now we are going to discuss some questions around the properties ÃP s,∞
and APs,∞. The ÃP s,∞ was defined above. Recall the definition of the APs,∞

from, e.g., [23]: We say that a Banach space X has the APs,∞, 0 < s < 1, if for

every Banach space Y the natural mapping Y ∗⊗̂s∞X → L(Y,X) is one-to-one,
where

Y ∗⊗̂s∞X

=

{
z ∈ Y ∗⊗̂X : z =

∞∑
k=1

λky
′
k ⊗ xk, (xk) and (y′k) are bounded, (λk)∈ l0s∞

}
.

Let us consider the connections between the APs,∞ and the ÃP s,∞. For a partial
discussion of this we need a lemma, which follows from Lemma 2.1 by interpolation
in Lorentz spaces.

Lemma 3.1. Let s ∈ (0, 1), q ∈ (0,∞), 1/s = 1 + 1/q, r ∈ (0,∞]. If a = (ak) ∈ l1,
b = (bk) ∈ lqr, then ab := (akbk)

∞
k=1 ∈ lsr. In particular, for a ∈ l1 and b ∈ lq∞

the sequence ab is in ls∞ (thus, evidently, in l0s∞).

The proof of Lemma 3.1 consists of the application of Lemma 2.1 and the gen-
eral interpolation theorem for the multiplication operator ã, induced by a fixed
sequence a = (ak) ∈ l1 : ã maps (bk) to (akbk).
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Namely, fix s ∈ (0, 1), q ∈ (0,∞) with 1/s = 1+ 1/q. Take s1, s2 ∈ (0, 1) and
q1, q2 ∈ (0,∞) so that for some θ ∈ (0, 1) we have

1

q
= (1− θ)

1

q1
+

1

q2
, 0 <

1

s2
<

1

s
<

1

s1
<∞, 0 <

1

q2
<

1

q
<

1

q1
<∞,

and
1

s1
= 1 +

1

q1
,

1

s2
= 1 +

1

q2
.

By Lemma 2.1, ã maps lq1q1 into ls1s1 and ã maps lq2q2 into ls2s2 . Applying, e.g.,
Theorem 5.3.1 from [1] or other results from the pages 113-114 in [1], we get that
ã maps lqr into lsr, 0 < r ≤ ∞ (note that 1/s = 1+ 1/q = 1+ (1− θ)/q1 + θ/q2 =
(1−θ)+θ+(1−θ)/q1+θ/q2 = (1−θ)(1+1/q1)+θ(1+1/q2) = (1−θ)/s1+θ/s2). �

Remark 3.1. As a matter of fact, l1 · lq∞ = ls1 in Lemma 3.1. We need now only
the above inclusion.

Now let t ∈ (0, 1], p ∈ (0,∞], r ∈ (0,∞] and consider a tensor product
⊗̂t;p,r, defined in the following way: For a couple of Banach spaces X,Y the tensor

product Y ∗⊗̂t;p,rX consists of those elements z of the projective tensor product

Y ∗⊗̂X which admit representations of the type

z =
∞∑
k=1

akbk y
′
k ⊗ xk; (y′k) and (xk) are bounded, (ak) ∈ lt, (bk) ∈ lpr

(recall that everywhere here we consider l0p∞ in the case r =∞).

Remark 3.2. As was noted in Remark 3.1, l1 · lq∞ = ls1(⊂ l0s∞ ⊂ ls∞), where
0 < s < 1, 1/s = 1 + 1/q. We have also

ls1 = l1 · l0q∞ and l1 · lq∞ = l1 · l0q∞
(so, for example, in the definition of ⊗̂1;q,∞ one can assume that (ak) ∈ l1 and
(bk) ∈ l0q∞). Indeed, if we use the equality l1 · lq∞ = ls1, take d ∈ ls1 (assuming

d = d∗ = (d∗k)). Then
∑∞

k=1 k
1/s d∗k/k < ∞, i.e.,

∑∞
k=1 k

1/q d∗k < ∞. Let ε = (εk)

be a scalar sequence such that εk ↘ 0 and
∑∞

k=1 ε
−1
k d∗kk

−1/q <∞. Put

αk :=
d∗kk

1/q

εk
, βk :=

εk
k1/q

.

Then α := (αk) ∈ l1 and β := (βk) ∈ l0q∞. So, d = αβ ∈ l1 · l0q∞. Another way
(not using “ls1”): Let 0 < q < ∞, α ∈ l1, β ∈ lq∞ (assuming, without loss of
generality, that β = β∗). Consider a sequence ε := (εk) such that εk ↘ 0 and

(αk/εk) ∈ l1. Put α̃ := α/ε = (αk/εk) and β̃ := εβ = (εkβk). Then α̃ ∈ l1,

β̃ ∈ l0q∞ and αβ = α̃β̃ ∈ l1 · l0q∞.

Let us say that X has the APt;p,r , if for every Banach space Y and for t, p, r

as above the canonical mapping Y ∗⊗̂t;p,rX → L(Y,X) is one-to-one.
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By Lemma 3.1, if s ∈ (0, 1) and 1/s = 1+1/q, then ⊗̂1;q,∞ ⊂ ⊗̂s,∞. Therefore,
we get

Corollary 3.1. If s ∈ (0, 1) and 1/s = 1 + 1/q, then APs,∞ =⇒ AP1;q,∞. �
Evidently, also APs,∞ =⇒ APs (for s ∈ (0, 1)).

Theorem 3.2. Let s ∈ (0, 1), q ∈ (0,∞) and 1/s = 1 + 1/q. If X has the AP1;q,∞,

then X has the ÃP s,∞. In particular, APs,∞ =⇒ ÃP s,∞.

Proof. It is enough to repeat word for word the proof of the implication 2) =⇒ 1)
of Theorem 2.1 (“continuation”), just changing “mlq(X)” by “l0q,∞” (no necessity
to apply Lemma 2.1 or Lemma 3.1). �

Remark 3.3. In this moment (when I am writing the text) I do not know whether

the implication “ÃP s,∞ =⇒ APs,∞” is true, for Banach spaces. Of course, no
questions about the cases where 0 < s ≤ 2/3 (but the reason is only that every

Banach space has the ÃP 2/3,∞ and the AP2/3,∞).

Let 0 < r < 1 and 0 < w ≤ ∞, or r = 1 and 0 < w ≤ 1. For Banach spaces
X,Y denote by Y ∗⊗̂(r,w)X the subset of Y ∗⊗̂X consisting of tensors z such that

z =

∞∑
k=1

λk y
′
k ⊗ xk, where (y′k) and (xk) are bounded and (λk) ∈ lrw.

As was noted in Remark 3.1, if s ∈ (0, 1), q ∈ (0,∞), 1/s = 1 + 1/q, then
l1 · lq∞ = ls1 (in the sense of the product in Lemma 3.1). In general case, where
0 < q1, q2, t1, t2 ≤ ∞, one has

lq1t1 · lq2t2 = ls,t provided that:
1

q1
+

1

q2
=

1

s
and

1

t1
+

1

t2
=

1

t
(0.2)

(cf. [17], 2.1.13 Proposition). We can introduce a new definition of approximation
properties, which are connected with Lorentz sequence spaces, namely: Let 0 <
r < 1 and 0 < w ≤ ∞. or r = 1 and 0 < w ≤ 1. A Banach space X has the
AP(r,w), if for every Banach space Y the natural map Y ∗⊗̂(r,w)X → L(Y,X) is
one-to-one.

It follows (from Remark 3.1 or from (3.1)) that AP1;q,∞ = AP(s,1) (for s ∈
(0, 1) and 1/s = 1+1/q) and, more generally, APt;p,r = AP(s,u) for 1/t+1/p = 1/s
and 1/t+ 1/r = 1/u (t ∈ (0, 1]).

Therefore, we have (for s ∈ (0, 1))

APs,∞ =⇒ AP(s,1) =⇒ ÃP s,∞.

Moreover, taking into account the equality ⊗̂1;q,∞ = ⊗̂(s,1) and applying the ar-

guments from the proof of the implication “ÃP s =⇒ APs” of Theorem 2.1, we
easily get

Theorem 3.3. AP(s,1) = ÃP s,∞.
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Proof. As was mentioned above, AP(s,1) =⇒ ÃP s,∞. Let X have the ÃP s,∞, i.e.,

for every sequence (xn) ∈ l0q,∞ (where 1/s = 1+ 1/q) and every ε > 0 there exists
a finite rank operator R ∈ X∗⊗X such that supn ||Rxn−xn|| < ε. Since AP(s,1) =

AP1;q,∞, it is enough to show that if Y is a Banach space, z ∈ Y ∗⊗̂1;q,∞X and
z �= 0, then the corresponding operator z̃ : Y → X is not zero too.

Let z =
∑∞

k=1 akbk y
′
k ⊗ xk be a representation of z with (xk), (y

′
k) bounded,

(ak) ∈ l1, (bk) ∈ l0q∞ and bk ↘ 0. Then (x̃k := bkxk) ∈ l0q∞ and, for an ε > 0 small
enough (to be chosen), we can find an operator R ∈ X∗ ⊗ X with the property
that supn ||Rx̃n − x̃n|| ≤ ε. Since z �= 0, we can find an operator V ∈ L(Y ∗, X∗)
such that

∑∞
k=1 ak 〈V y′k, x̃k〉 = 1. Now, when V is chosen, we have

1 =
∞∑
k=1

ak 〈V y′k, x̃k −Rx̃k〉+
∞∑
k=1

ak 〈V y′k, Rx̃k〉

≤ ε ||(ak)||l1 ||V || · const +
∣∣∣∣∣
∞∑
k=1

akbk 〈R∗V y′k, xk〉
∣∣∣∣∣ ,

and, if ε is small enough, we get for the finite rank operator R∗V : Y ∗ → X∗ that

| trace zt ◦ (R∗V )| = | trace (R∗V ) ◦ zt| =
∣∣∣∣∣
∞∑
k=1

akbk 〈R∗V y′k, xk〉
∣∣∣∣∣ > 0.

The last sum is the nuclear trace of the tensor element
∑∞

k=1 akbk R
∗V y′k ⊗ xk,

which is a composition R ◦ z0 of the finite rank operator R and the tensor element∑∞
k=1 akbk V y′k ⊗ xk, that belongs to the tensor product X∗⊗̂1;q,∞X. It follows

that both z0 and z generate the non-zero operators z̃0 and z̃. �

Remark 3.4. Because of the equality ⊗̂1;q,∞ = ⊗̂(s,1), it follows from the proof of

Theorem 3.3 that X has the AP(s,1) iff the canonical mapping X∗⊗̂(s,1)X → L(X)
is one-to-one (just like in the case of the classical Grothendieck approximation
property).

Remark 3.5. Of course, it follows from Theorem 3.3 that every Banach space has
the AP(2/3,1), but it is trivial because of the implication

AP 0
(2/3,∞) ≡ AP2/3,∞ =⇒ AP(2/3,w) for any w <∞

(and, again, since every X has the AP2/3,∞!).

Our question in Remark 3.3 can be reformulated now as:

Is it true that the AP(s,1) implies the APs,∞? (∗)

4 Let us consider an application of the previous considerations. Now we know,
in particular, that every Banach space has the AP(2/3,1). On the other hand,

the corresponding operator ideal N(2/3,1) (related to the Lorentz space l2/3 1) has
the eigenvalue type l1 (see, e.g., [8, p. 243]). Since the continuous trace is unique on
⊗̂(2/3,1) and ⊗̂(2/3,1) = N(2/3,1), it follows from White’s results [32] that for each
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Banach space X and for every operator T ∈ N(2/3,1)(X,X) the (nuclear) trace of
T is well defined and equals the sum of all eigenvalues of T :

trace T =

∞∑
k=1

μk(T ) (eigenvalues)∀X, ∀T ∈ N(2/3,1)(X)

(on the right is the so-called “spectral sum” of T ). More precisely, the last state-
ment follows from Theorem 4.1 below.

Let us explain in more details how we apply a result of M.C. White. To do
this, we formulate and prove a theorem which is almost an immediate consequence
of White’s theorem.

Theorem 4.1. Let A be a quasi-Banach operator ideal, X be a Banach space, for
which the set of all finite rank operators is dense in the space A(X). Suppose that
the natural functional “trace” is bounded on the subspace of all finite rank operators
of A(X) (and, therefore, can be extended to a continuous functional “traceA” on
the whole space A(X)). If the quasi-Banach operator ideal A is of eigenvalue type
l1, then the spectral trace (= “spectral sum”) is continuous on the space A(X) and
for any operator T ∈ A(X) we have

traceA(T ) =

∞∑
n=1

μn(T ).

where (μn(T ))
∞
n=1 is the sequence of all eigenvalues of T counted according to their

multiplicities.

Proof. Let T ∈ A(X). By the assumption, the sequence {μn(T )}∞n=1 of all eigenval-
ues of T (counted according to their multiplicities) is in l1. Since the quasi-normed
ideal A is of spectral (= eigenvalue) type l1, we can apply the main result from
the paper [32] of M.C. White, which asserts:

If J is a quasi-Banach operator ideal with eigenvalue
type l1, then the spectral sum is a trace on the ideal J .

(∗∗∗)

Recall (see [18], 6.5.1.1, or Definition 2.1 in [32]) that a trace on an operator
ideal J is a class of complex-valued functions, all of which they write as τ, one for
each component J(E,E) (where E is a Banach space) so that

(i) τ(e′ ⊗ e) = 〈e′, e〉 for all e′ ∈ E∗, e ∈ E;

(ii) τ(AU) = τ(UA) for all Banach spaces F and operators U ∈ J(E,F ) and
A ∈ L(F,E);

(iii) τ(S + U) = τ(S) + τ(U) for all S,U ∈ J(E,E);

(iv) τ(λU) = λτ(U) for all λ ∈ C and U ∈ J(E,E).

Our operator T belongs to the space A(X,X) = A(X) and A is of eigenvalue
type l1. Thus, the assertion (∗∗∗) implies that the spectral sum μ defined by
μ(U) :=

∑∞
n=1 μn(U) for U ∈ A(E,E) is a trace on A.
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By the principle of uniform boundedness (see [17], 3.4.6 (page 152), or [15]),
there exists a constant C > 0 such that

|μ(U)| ≤ ||{μn(U)}||l1 ≤ C a(U)

for all Banach spaces E and operators U ∈ A(E,E).
Now, remembering that all operators in A(X) can be approximated by finite

rank operators and taking in account the conditions (iii)–(iv) for τ = μ, we obtain
that the A-trace, i.e., traceA T, of our operator T coincides with μ(T ) (recall that
the continuous trace is uniquely defined in such a situation, that is on the space
A(X); cf. [18], 6.5.1.2). �

Since ⊗̂1;2,∞ = ⊗̂(2/3,1) (see Theorem 3.3), we can reformulate the result,
which we considered in the very beginning of this section, as

Corollary 4.1. For each Banach space X and for any operator T ∈ N1;2,∞(X) the
nuclear trace of T is well defined and equals the sum of all eigenvalues of T :

trace T =

∞∑
k=1

μk(T ) (eigenvalues)∀X, ∀T ∈ N(1;2,∞)(X). �

Remark 4.1. Recall that A. Grothendieck [7] has obtained the last assertion for
the case of 2/3-nuclear operators, i.e., for the ideal N2/3 = N(2/3, 2/3) (note that
l2/3 ⊂ l2/3 1).

5 The discussion in Section 1 shows that, for p ∈ [1,∞], any subspace of any

quotient (= any quotient of any subspace) of an Lp-space possesses the ÃP s

(even the ÃP s,∞) with 1/s = 1+|1/2−1/p|.We apply now these facts together with
White’s theorem for proving some more theorems concerning the distributions of
eigenvalues of the nuclear operators. Below we will use Theorem 2.1 and, therefore,
the fact that any subspace of any quotient of an Lp-space possesses the AP s (where
p, s as above). Thus, for such Banach spaces X, we can identify the tensor product
X∗⊗̂sX with its canonical image in the space L(X) = L(X,X), i.e., with the space
Ns(X) of all s-nuclear operators in X, equipped with the quasi-norm induced from
X∗⊗̂sX.

We give below relatively simple proofs of some recent results from the papers
[25] and [28].

Theorem 5.1. Let X be a subspace of an Lp-space, 1 ≤ p ≤ ∞. If T ∈ Ns(X,X),
where 1/s = 1 + |1/2− 1/p|, then
1. the (nuclear) trace of T is well defined,
2.

∑∞
n=1 |μn(T )| < ∞, where {μn(T )} is the system of all eigenvalues of the

operator T (written in according to their algebraic multiplicities) and

trace T =
∞∑
n=1

μn(T ).
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Proof. Let X be a subspace of an Lp-space Lp(μ) and T ∈ Ns(X,X) with an
s-nuclear representation

T =

∞∑
k=1

λkx
′
k ⊗ xk,

where ||x′
k||, ||xk|| = 1 and λk ≥ 0,

∑∞
k=1 λ

s
k < ∞. By Hahn–Banach, we can

find the functionals x̃′
k ∈ L∗

p(μ) (k = 1, 2, . . . ) with the same norms as for the

corresponding functionals x′
k and so that x̃′

k|X = x′
k for every k. Denote by T̃ the

operator

T̃ : Lp(μ)→ X, T̃ :=

∞∑
k=1

λkx̃
′
k ⊗ xk,

and by j : X → Lp(μ) the natural injection. Since the space X has the property

APs, we have Ns(Lp(μ), X) = L∗
p(μ)⊗̂sX and, therefore, the nuclear traces of the

operators jT̃ and T̃ j are well defined. We have a diagram

X
j→ Lp(μ)

T̃→ X
j→ Lp(μ),

in which T̃ j = T ∈ Ns(X). Hence, the complete systems of eigenvalues of the

operators T = T̃ j and jT̃ ∈ Ns(Lp(μ)) coincide. Applying Theorem 2.b.13 from

[10] (see also [25]), we obtain that the sequence (μk(jT̃ )) is summable. Therefore,
we have μk(T ) ∈ l1 and we can apply Theorem 4.1. But we apply the theorem
firstly for the simplest case (later on we will continue the proof of our Theorem 5.1).

The first assertion of the next theorem is due to A. Grothendieck [7], the
second one was proved by H. König in [11]. Surprisingly, but we could not find
anywhere the main statement of the theorem about coincidence of the nuclear and
spectral traces, neither in the monographs, nor in the mathematical journals. So
we have no reference for this statement and have to formulate and to prove the
next theorem here. Let us remark that, in any case, this theorem was proved (as
a partial case of the proved there our Theorem 5.1) in [25].

Theorem 5.1′. Let L be an Lp-space, 1 ≤ p ≤ ∞. If T ∈ Ns(L,L), where 1/s =
1 + |1/2− 1/p|, then
1. the (nuclear) trace of T is well defined,
2.

∑∞
n=1 |μn(T )| < ∞, where {μn(T )} is the system of all eigenvalues of the

operator T (written in according to their algebraic multiplicities) and

trace T =

∞∑
n=1

μn(T ).

Proof. As we have said above, the assertions 1 and 2 are well known. To prove the
last equality, consider the Banach operator ideal Lp of all operators which can be
factored through Lp-spaces. Then the product Lp ◦Ns is a quasi-Banach operator
ideal of spectral (=eigenvalue) type l1 (e.g., by the assertion 2, proved earlier by
H. König [11]). Now it is enough to apply Theorem 4.1 to finish the proof. �
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Proof of Theorem 5.1 (continuation). As we have said, the complete systems of

eigenvalues of the operators T = T̃ j and jT̃ ∈ Ns(Lp(μ)) coincide. By Theo-
rem 5.1′,

trace jT̃ =

∞∑
k=1

λk 〈x̃′
k, jxk〉 =

∞∑
n=1

μn(jT̃ ),

the last sum is equal to
∞∑
n=1

μn(T )

and the sum in the middle is
∞∑
k=1

λk 〈x̃′
k, jxk〉 =

∞∑
k=1

λk 〈x′
k, xk〉 = trace T.

The (nuclear) trace of the operator T is well defined, because the space X has the
APs. Therefore,

trace T =

∞∑
n=1

μn(T ),

and we are done. �

If Y is a quotient of an Lp-space, then, for a compact operator U ∈ L(E,E),
the adjoint U∗ is also a compact operator and these two operators have the same
eigenvalues μ �= 0 with the same multiplicities (see, e.g., [17], Theorem 3.2.26, or
[5], Exercise VII.5.35). Also, any quotient of an Lp-space has the APs (where p, s
are as above). So, it follows immediately from the just proved Theorem 5.1

Corollary 5.1. Let Y be a quotient of an Lp-space, 1 ≤ p ≤ ∞. If T ∈ Ns(Y, Y ),
where 1/s = 1 + |1/2− 1/p|, then
1. the (nuclear) trace of T is well defined,

2.
∑∞

n=1 |μn(T )| < ∞, where {μn(T )} is the system of all eigenvalues of the
operator T (written in according to their algebraic multiplicities) and

trace T =

∞∑
n=1

μn(T ). �

We used above some facts from Section 1. After Theorem 5.1 and its con-
sequence have been proved, we are ready to present a simple prove of the corre-
sponding result on the subspaces of quotients of the Lp-spaces (recall that, again,
all such spaces have the APs with s and p satisfying the same conditions).

Theorem 5.2. Let W be a quotient of a subspace (= a subspace of a quotient) of
an Lp-space, 1 ≤ p ≤ ∞. If T ∈ Ns(W,W ), where 1/s = 1 + |1/2− 1/p|, then
1. the (nuclear) trace of T is well defined,
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2.
∑∞

n=1 |μn(T )| < ∞, where {μn(T )} is the system of all eigenvalues of the
operator T (written in according to their algebraic multiplicities) and

trace T =

∞∑
n=1

μn(T ).

Proof. Let Lp(μ) be an Lp-space. Take Banach subspaces X0 ⊂ X ⊂ Lp(μ) and
consider the quotient X/X0.

If T ∈ Ns(X/X0, X/X0) (=(X/X0)
∗⊗̂sX/X0), then T admits a factorization

of the type

X/X0
A→ c0

D→ l1
B→ X/X0,

where A,B are continuous and D is a diagonal operator with a diagonal from ls.
Denoting by ϕ : X → X/X0 the factor map fromX ontoX/X0 and taking a lifting
Φ : l1 → X for B with B = ϕΦ, we obtain that the maps ϕΦDA : X/X0 → X/X0

and ΦDAϕ : X → X have the same eigenvalues μ �= 0 with the same multiplicities:

X
ϕ→ X/X0

A→ c0
D→ l1

Φ→ X
ϕ→ X/X0.

The spaces X and X/X0 have the APs. Therefore, we have (cf. the proof of The-
orem 5.1)

trace ϕΦDA = trace ΦDAϕ.

Since X is a subspace of Lp(μ), we have, by Theorem 5.1,

trace ΦDAϕ =

∞∑
n=1

μn(ΦDAϕ).

Therefore,

trace T = trace BDA = trace ϕΦDA =

∞∑
n=1

μn(ΦDAϕ)

=

∞∑
n=1

μn(ϕΦDA) =

∞∑
n=1

μn(BDA) = trace T. �

6 As is well known, in the classical case of the Grothendieck approximation
property AP, if X∗ has the AP then the space X also has this property. We

will show now that the same is true for all approximation properties which are
under consideration in this paper.

Denote by ⊗̂α any of the tensor product ⊗̂s, ⊗̂s,∞, ⊗̂t;p,r, ⊗̂(r,w) with the
parameters (see above), for which all these tensor products are the linear subspaces
of the projective tensor product ⊗̂. Also, let us say that a Banach space X has
the APα, if it is possesses the corresponding approximation property (i.e., APs,
APs,∞ etc.).

We need the following auxiliary result which may be of its own interest (com-
pare with Remark 3.4).
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Proposition 6.1. A Banach space X has the APα if and only if the canonical map
X∗⊗̂αX → L(X) is one-to-one.

Proof. Suppose that the canonical map X∗⊗̂αX → L(X) is one-to-one, but there
exists a Banach space Y such that the natural map Y ∗⊗̂αX → L(Y,X) is not
injective. Let z ∈ Y ∗⊗̂αX be such that z �= 0 and the associated operator z̃ is a
0-operator. Then we can find an operator V from L(Y ∗, X∗) (the dual space to
the projective tensor product Y ∗⊗̂X) so that trace V ◦ zt = 1, where, as usual,
zt is the transposed tensor element, z ∗ t ∈ X⊗̂Y ∗. Since V ◦ zt ∈ X⊗̂X∗ and
trace V ◦zt = 1, the tensor element (V ◦zt)t (which, evidently, belongs to X∗⊗̂αX)
is not zero. On the other hand, the operator induced by this element must be a
0-operator. Contradiction. �
Proposition 6.2. With the above understanding, if the dual space Y ∗ has the APα,
then Y has the APα too.

Proof. We use Proposition 6.1. As it is known [7], the projective tensor product
Y ∗⊗̂Y is a Banach subspace of the tensor product Y ∗⊗̂Y ∗∗. The tensor product
Y ∗⊗̂αY is a linear subspace of Y ∗⊗̂Y, as well as Y ∗⊗̂αY

∗∗ is a linear subspace
of Y ∗⊗̂Y ∗∗. Therefore, the natural map Y ∗⊗̂αY → Y ∗⊗̂αY

∗∗ is one-to-one. Now
if Y ∗ has the APα, then the canonical map Y ∗∗⊗̂αY

∗ → L(Y ∗, Y ∗) is one-to-
one. Since we can identify the tensor product Y ∗∗⊗̂αY

∗ with the tensor product
Y ∗⊗̂αY

∗∗ (because of the “symmetries” in the definitions of the corresponding
tensor products), it follows that the natural map Y ∗⊗̂αY → L(Y, Y ) is one-to-
one. Thus, if Y ∗ has the APα, then Y has the APα too. �
Remark 6.1. The inverse statement is not true. For example, if s ∈ (2/3, 1], then
there exists a Banach space, possessing the Grothendieck approximation property,
whose dual does not have the APs (it is well known for the case where s = 1).
Moreover, if s ∈ (2/3, 1], then we can find a Banach space W such that W has
a Schauder basis and W ∗ does not have the APs. Indeed, let E be a separable
reflexive Banach space without the APs (see [21] or [23]). Let Z be a separable
space such that Z∗∗ has a basis and there exists a linear homomorphism ϕ from
Z∗∗ onto E∗ so that the subspace ϕ∗(E) is complemented in Z∗∗∗ and, moreover,
Z∗∗∗ ∼= ϕ∗(E) ⊕ Z∗ (see [13, Proof of Corollary 1]). Put W := Z∗∗. This (second
dual) space W has a Schauder basis and its dual W ∗ does not have the APs.

7 Let us consider some more notions of the approximation properties asso-
ciated with some other tensor products. For Banach spaces X and Y and

r ∈ (0, 1], p ∈ [1, 2], define a quasi-norm || · ||N[r,p]
on the tensor product X∗⊗Y by

‖u‖N[r,p]
:= inf

{
‖(x′

i)
n
i=1‖�r(X∗) · ‖(yi)ni=1‖�w

p′(Y ) : u =

n∑
i=1

x′
i ⊗ yi

}
.

Here we denote, as usual, by lr(X
∗) and lwq (Y ) the spaces of r-absolutely summable

and weakly q-summable sequences, respectively.
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Denote by X∗⊗̂[r,p]Y the completion of the space
(
X∗ ⊗ Y, ‖ · ‖N[r,p]

)
. We

have a natural continuous injection

j[r,p] : X
∗⊗̂[r,p]Y → X∗⊗̂Y

with ||j[r,p]|| ≤ 1.

Every element u ∈ X∗⊗̂[r,p]Y has a representation of the type u =
∑∞

i=1 x
′
i⊗

yi, where (x′
i)

∞
i=1 ∈ �r(X

∗) and (yi)
∞
i=1 ∈ �wp′(Y ). Consider the natural mappings

X∗⊗̂[r,p]Y
j[r,p]→ X∗⊗̂Y j→ L(X,Y ).

The image of the tensor product X∗⊗̂[r,p]Y under the composition j̃[r,p] := j ◦
j[r,p] is denoted by N[r,p](X,Y ). This is a quasi-Banach space of the (r, p)-nuclear

operators (the quasi-norm is induced from the tensor product X∗⊗̂[r,p]Y ). It is not
difficult to see that every operator T ∈ N[r,p](X,Y ) admits a factorization of the
kind

X
A→ c0

Dr→ l1
i→ lp

B→ Y, (0.3)

whereA,B are compact, i is the injection,Dr is a diagonal operator with a diagonal
from lr.Also, every operator, which can be factored in such a way, is inN[r,p](X,Y ).

By the analogous way, we define the tensor product X∗⊗̂[r,p]
Y and the quasi-

normed operator ideals N [r,p](X,Y ). Namely, X∗⊗̂[r,p]
Y is a linear subspace of the

projective tensor product X∗⊗̂Y, consisting of tensor elements z which admit a
representation

u =

∞∑
i=1

x′
i ⊗ yi,

where (x′
i)

∞
i=1 ∈ �wp′(X∗) and (xi)

∞
i=1 ∈ �r(Y ). Its canonical image in L(X,Y ) is

the quasi-normed space N [r,p](X,Y ). It is not difficult to see that every operator
T ∈ N [r,p](X,Y ) admits a factorization of the kind

X
A→ lp′

Dr→ c0
i→ l1

B→ Y,

where A,B are compact, i is the injection, Dr is a diagonal operator with a di-
agonal from lr. Also, every operator, which can be factored in such a way, is in
N [r,p](X,Y ).

It is clear that T ∈ N[r,p](X,Y ) implies T ∗ ∈ N [r,p](Y ∗, X∗) and T ∈
N [r,p](X,Y ) implies T ∗ ∈ N[r,p](Y

∗, X∗). Inverse is not true (see, e.g., Example
8.3 below).

Now we can define the notions of the corresponding approximation properties
by the usual way. We say that the space X has the AP[r,p] (respectively, the

AP [r,p]) if for every Banach space Y the natural mapping Y ∗⊗̂[r,p]X → L(Y,X)

(respectively, Y ∗⊗̂[r,p]
X → L(Y,X)) is one-to-one. It can be seen that a Banach

space X has the AP[r,p] (or AP
[r,p]) iff the canonical map X∗⊗̂[r,p]X → L(X) (or

X∗⊗̂[r,p]
X → L(X)) is one-to-one (the proof is essentially the same as the proof
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of Theorem 6.1). Also, if X∗ has the AP[r,p] (or AP [r,p]) then X has the AP [r,p]

(or AP[r,p]) (the proof is the same as in Theorem 6.2).

Theorem 7.1. Let 1/r − 1/p = 1/2. Every Banach space has the properties AP[r,p]

and AP [r,p].

Proof. Suppose that X /∈ AP[r,p] where 1/r− 1/p = 1/2. Let z ∈ X∗⊗̂[r,p]X be an
element such that trace z = 1, z̃ = 0. Since z =

∑
x′
k ⊗ xk, where (x′

k) ∈ lr(X
∗)

and (xk) is weakly p′-summable, the operator z̃ can be factored as

z̃ : X
A→ l∞

Δ→ l1
j→ lp

V→ X,

where all the operators are continuous, j is an injection, Δ is a diagonal operator
with a diagonal from lr. Since z̃ = 0, we have V |jΔA(X) = 0. Consider S := jΔAV :

lp → lp. Evidently, S
2 = 0 and trace S = trace z = 1. Since S ∈ Nr(lp, lp), its

nuclear trace equals the sum of all its eigenvalues (see Theorem 5.1′ above). This
contradicts the fact that S2 = 0. Now, let Y be another Banach space and put
X := Y ∗. We have shown that X has the AP[r,p]. Therefore (see remarks before

the formulation of Theorem 7.1), Y has the AP [r,p]. �

We are ready to apply the above results to the investigation of eigenvalues
problems for N[r,p]- and N [r,p]-operators. The first theorem below was proved in
[26] by using Fredholm Theory. The same proof can be applied for the second
theorem. Below we present very different simple proofs of them.

Theorem 7.2. Let 1/r− 1/p = 1/2. For every Banach space X and every operator
T ∈ N[r,p](X), trace T is well defined and if (μi)

∞
i=1 is a system of all eigenvalues

of T, then (μi)
∞
i=1 ∈ l1 and

trace T =

∞∑
i=1

μi.

Theorem 7.3. Let 1/r− 1/p = 1/2. For every Banach space X and every operator
T ∈ N [r,p](X), trace T is well defined and if (μi)

∞
i=1 is a system of all eigenvalues

of T, then (μi)
∞
i=1 ∈ l1 and

trace T =

∞∑
i=1

μi.

Both theorems can be proved by the analogues methods and the proofs are
almost the same as the proof of Theorem 5.2 (by using Theorem 7.1). On the other
hand, Theorem 7.3 is a consequence of Theorem 7.2 and vice versa. Let us give,
firstly, a simple proof of Theorem 7.2 and then deduce Theorem 7.3.

Proof. Suppose that T ∈ N[r,p](X) and consider a factorization (7.1) (in which
Y = X) of the operator T. The sequence (μk) of all eigenvalues of T is the same as
the sequence of all eigenvalues of the operator iDrAB, which maps lp into lp. The
last operator is r-nuclear, where p ∈ [1, 2] and 1/r = 1/p+ 1/2. By Theorem 5.1′,
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(μk) ∈ l1 and trace iDrAB =
∑

μk. Since the trace of T is well defined (Theorem
7.1), it is clear that trace T = trace iDrAB =

∑
μk.

Now, let T ∈ N [r,p](X). Then T ∗ ∈ N[r,p](X
∗) and trace T ∗ = trace T (apply

Theorem 7.1). Since the operators T and T ∗ have the same systems of eigenvalues,
Theorem 7.3 follows from just proved statement of Theorem 7.2. �

8 The next examples are taken from [26], where one can find the corresponding
proofs. They show that all the above affirmative results concerning approxi-

mation properties and trace-formulas are sharp.

Example 8.1. Let r ∈ (2/3, 1], p ∈ (1, 2], 1/r − 1/p = 1/2. There exist Banach
spaces E and V, z0 ∈ E∗⊗̂V, S ∈ L(V,E) so that for every p0 ∈ [1, p)

1) z0 ∈ E∗⊗̂[r,1]V ;
2) V has a basis;
3) V is the space of type p0 and of cotype 2;
4) S ◦ z0 ∈ E∗⊗̂[r,p0]E;
5) trace S ◦ z0 = 1;

6) the corresponding operator S̃ ◦ z0 is a 0-operator and, therefore, has no
nonzero eigenvalues.

Example 8.2. Let r ∈ [2/3, 1), p ∈ [1, 2), 1/r − 1/p = 1/2. There exist Banach
spaces E and V, z0 ∈ E∗⊗̂V, S ∈ L(V,E) so that for every ε > 0

1) z0 ∈ E∗⊗̂[r+ε,1]V ;
2) V has a basis;
3) S ◦ z0 ∈ E∗⊗̂[r+ε,p]E;
4) trace S ◦ z0 = 1;

5) the corresponding operator S̃ ◦ z0 is a 0-operator and therefore, has no non-
zero eigenvalues.

Example 8.3. Let r ∈ (2/3, 1], p ∈ (1, 2], 1/r−1/p = 1/2. There exist two separable
Banach spaces X and Z so that

(i) Z∗∗ has a basis;
(ii) ∃V ∈ X∗⊗̂Z∗∗ : V =

∑∞
k=1 x

′
k ⊗ z′′k ; (x

′
k) weakly p′0-summable for each

p0 ∈ [1, p); (z′′k ) ∈ lr(Z
∗∗);

(iii) V (X) ⊂ Z; the operator V is not nuclear as a map from X into Z.
Moreover, there exists an operator U : Z∗∗ → Z such that

(α) πZU ∈ N [r,p0](Z∗∗, Z∗∗) = Z∗∗∗⊗̂[r,p0]
Z∗∗, ∀ p0 ∈ [1, p);

(β) U is not nuclear as a map from Z∗∗ into Z;
(γ) trace πZU = 1;
(δ) πZU : Z∗∗ → Z∗∗ has no nonzero eigenvalues.
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Math. Soc. 16 (1955).

[8] A. Hinrichs, A. Pietsch, p-nuclear operators in the sense of Grothendieck. Math.
Nachr. 283, No. 2 (2010), 232–261.

[9] M.J. Kadec, M.G. Snobar, Certain functionals on the Minkowski compactum (Rus-
sian). Mat. Zametki 10 (1971), 453–458.

[10] H. Konig, Eigenvalue distribution of compact operators. Birkhäuser, 1986.
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An Inequality Type Condition for Quasinearly
Subharmonic Functions and Applications

Juhani Riihentaus

Abstract. Generalizing older works of Domar and Armitage and Gardiner, we
give an inequality for quasinearly subharmonic functions. As an application of
this inequality, we improve Domar’s, Rippon’s and our previous results con-
cerning the existence of the largest subharmonic minorant of a given function.
Moreover, and as an another application, we give a sufficient condition for a
separately quasinearly subharmonic function to be quasinearly subharmonic.
Our result contains the previous results of Lelong, of Avanissian, of Arsove,
of Armitage and Gardiner, and of ours.
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harmonic functions.

1. Introduction

1.1. LetD be a domain in RN ,N ≥ 2, and let u : D �→ [−∞,+∞) be subharmonic.
(We consider the function u ≡ −∞ subharmonic.) Then u is upper semicontinuous
and satisfies the mean value inequality

u(x) ≤ 1

νN rN

∫
BN (x,r)

u(y) dmN (y)

for all balls BN (x, r) ⊂ D. It is an important fact that if u is also nonnegative and
p > 0, then there exists a constant C = C(N, p) such that

u(x)p ≤ C

νN rN

∫
BN (x,r)

u(y)p dmN (y). (1.1)

As a matter of fact, Fefferman and Stein [11], Lemma 2, p. 172, proved this
inequality for absolute values of harmonic functions. See also [12], Lemma 3.7,
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p. 116, [17], Theorem 1, p. 529, and [1], (1.5), p. 210 (also all these authors consid-
ered only absolute values of harmonic functions). However, the proof of Fefferman
and Stein apply verbatim also in the more general case of nonnegative subhar-
monic functions. See [23], Lemma, p. 69, and also [25], [26], [28] and the references
therein. A possibility for an essentially different proof was pointed out already
in [33], pp. 188–190. Later other different proofs were given in [20], p. 18, and
Theorem 1, p. 19 (see also [21], Theorem A, p. 15), [24], Lemma 2.1, p. 233, and
[25], Theorem, p. 188. Observe that the results in [20], [24] and [25] hold, in ad-
dition to nonnegative subharmonic functions, also for more general quasinearly
subharmonic functions.

The inequality (1.1) has many applications. Among others, it has been applied
to the weighted boundary behavior of subharmonic functions, to the nonintegra-
bility of subharmonic and superharmonic functions, and to the subharmonicity
of separately subharmonic functions, see [23], [6], [26], [28], [10], [30], and the
references therein.

1.2. In order to improve the above-referred results on the subharmonicity of sep-
arately subharmonic functions, we give below in Section 2 a rather general in-
equality type result which is related to the inequality (1.1), at least partly, and
which applies more generally also to quasinearly subharmonic functions. This re-
sult has its origin in the previous considerations of Armitage and Gardiner [2],
proof of Proposition 2, pp. 257–259, and in [27], Lemma 3.2, p. 5, [29], Lemma 2.2,
p. 6. Observe, however and as already Armitage and Gardiner have pointed out,
this inequality is based on an old argument of Domar [7], proof of Proposition 2,
pp. 257–259, and proof of Theorem 1, pp. 258–259. In Section 3 we will then ap-
ply the obtained inequality type result to domination conditions for families of
quasinearly subharmonic functions, improving Domar’s, Rippon’s and our previ-
ous results, see [7], Theorem 1 and Theorem 2, pp. 430–431, [31], Theorem 5,
p. 128, and [29], Theorem 2.1, pp. 4–5. In addition, in Section 4 we apply this in-
equality to the quasinearly subharmonicity of separately quasinearly subharmonic
functions, slightly improving our previous results [27], Theorem 4.1, pp. 8–9, [28],
Theorem 3.3.1, pp. e2621–e2622.

Though we indeed give improvements to our previous results, our presenta-
tion is, nevertheless and at least in some sense, of a survey type. Our notation
is rather standard, see, e.g., [14], [26], [27], [28] and [29]. However and for the
convenience of the reader, we begin by recalling here the definitions of nearly
subharmonic functions and quasinearly subharmonic functions.

1.3. Nearly subharmonic functions and quasinearly subharmonic functions

We say that a function u : D → [−∞,+∞) is nearly subharmonic, if u is Lebesgue

measurable, u+ ∈ L1
loc(D), and for all BN (x, r) ⊂ D,

u(x) ≤ 1

νN rN

∫
BN (x,r)

u(y) dmN(y).
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Observe that in the standard definition of nearly subharmonic functions one uses
the slightly stronger assumption that u ∈ L1

loc(D), see, e.g., [14], p. 14. However,
our above, slightly more general definition seems to be more practical, see, e.g.,
[26], Proposition 2.1 (iii) and Proposition 2.2 (vi), (vii), pp. 54–55, and [28], Propo-
sition 1.5.1 (iii) and Proposition 1.5.2 (vi), (vii), p. e2615. The following lemma
emphasizes this fact still more:

Lemma 1.1 ([26], Lemma, p. 52). Let u : D → [−∞,+∞) be Lebesgue measurable.
Then u is nearly subharmonic (in the sense defined above) if and only if there exists
a function u∗, subharmonic in D such that u∗ ≥ u and u∗ = u almost everywhere
in D. Here u∗ is the upper semicontinuous regularization of u:

u∗(x) = lim sup
x′→x

u(x′).

Proof. The proof follows at once from [14], proof of Theorem 1, pp. 14–15 (and
referring also to [26], Proposition 2.1 (iii) and Proposition 2.2 (vii), pp. 54–55). �

We say that a Lebesgue measurable function u : D → [−∞,+∞) is K-
quasinearly subharmonic, if u+ ∈ L1

loc(D) and if there is a constant

K = K(N, u,D) ≥ 1

such that for all BN (x, r) ⊂ D,

uM (x) ≤ K

νN rN

∫
BN (x,r)

uM (y) dmN (y) (1.2)

for all M ≥ 0, where uM := max{u,−M}+M . A function u : D → [−∞,+∞) is
quasinearly subharmonic, if u is K-quasinearly subharmonic for some K ≥ 1.

For basic properties of quasinearly subharmonic functions, see [26], [28], [22],
and the references therein. We recall here only that this function class includes,
among others, subharmonic functions, and, more generally, quasisubharmonic and
nearly subharmonic functions (see, e.g., [14], pp. 14, 26), also functions satisfying
certain natural growth conditions, especially certain eigenfunctions, and polyhar-
monic functions. Also, the class of Harnack functions is included, thus, among
others, nonnegative harmonic functions as well as nonnegative solutions of some
elliptic equations. In particular, the partial differential equations associated with
quasiregular mappings belong to this family of elliptic equations. See, e.g., [34].

Quasinearly subharmonic functions (perhaps with a different terminology,
and sometimes in certain special cases, or just the corresponding generalized mean
value inequalities (1.1) or (1.2)) have been considered in many papers, see, e.g.,
[23], [20], [26], [27], [28], [29], [22], [15], [8], [9], [16], [10], and the references therein.
However and as a matter of fact, already Domar [7] considered (essentially) non-
negative quasinearly subharmonic functions.

1.4. Two additional notational remarks

The below presented proofs for our results, that is, the proofs of Theorem 2.1,
Theorem 3.3 and Theorem 4.1, are quite much based on our previous arguments
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in [27], proofs of Lemma 3.2, pp. 5–7, and of Theorem 4.1, pp. 8–12, and [29], proof
of Theorem 2.1, pp. 4–8. Therefore, and in order to make the possible comparison
and checking etc. easier for the reader, we will use, as previously, certain constants
s0, s1, s2, s3, s4 and s5.

Below in Examples 1, 2, 3, 4 and 5, we consider increasing functions
φ : [0,+∞] → [0,+∞], say, and which are of a certain form far away, that is,
for big values of the argument. In such a case, we take the liberty to use the
convention that the function is then automatically defined for small values of the
argument in an appropriate way. As an example, if we write, for p > 0, q ∈ R,

φ(t) =
tp

(log t)q
,

we mean the following function:

ϕ(t) :=

{
tp

(log t)q , when t ≥ t1,
t
t1
φ(t1), when 0 ≤ t < t1,

where t1 ≥ 2 is some suitable integer in N, say.

2. An inequality for quasinearly subharmonic functions

As pointed out already above, our previous result [27], Lemma 3.2, p. 5, was a
generalized version of Armitage’s and Gardiner’s argument [2], proof of Proposi-
tion 2, pp. 257–258, and as such, it was based on an old argument of Domar [7],
Lemma 1, pp. 431–432 and 430. The following is another variant of this inequality
type result:

Theorem 2.1. Let K ≥ 1. Let ϕ : [0,+∞] → [0,+∞] and ψ : [0,+∞] → [0,+∞]
be increasing functions such that there are s0, s1 ∈ N, s0 < s1, such that

(i) the inverse functions ϕ−1 and ψ−1 are defined on [min{ϕ(s1 − s0), ψ(s1 −
s0) },+∞],

(ii) 2K(ψ−1 ◦ ϕ)(s− s0) ≤ (ψ−1 ◦ ϕ)(s) for all s ≥ s1,

(iii)
+∞∫
s1

[
(ψ−1◦ϕ)(s+2)
(ψ−1◦ϕ)(s)

1
ϕ(s−s0)

] 1
N−1

ds < +∞.

Let u : D → [0,+∞) be a K-quasinearly subharmonic function. Let s̃1 ∈ N,
s̃1 ≥ s1, be arbitrary. Then for each x ∈ D and r > 0 such that BN (x, r) ⊂ D
either

u(x) ≤ (ψ−1 ◦ ϕ)(s̃1 + 1)

or

Φ(u(x)) ≤ C

rN

∫
BN (x,r)

ψ(u(y)) dmN (y)
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where C = C(N,K, s0) and Φ : [0,+∞)→ [0,+∞),

Φ(t) :=

⎧⎪⎪⎨⎪⎪⎩
(

+∞∫
(ϕ−1◦ψ)(t)−2

[
(ψ−1◦ϕ)(s+2)
(ψ−1◦ϕ)(s) · 1

ϕ(s−s0)

] 1
N−1

ds

)1−N

, when t ≥ s3,

t
s3
Φ(s3), when 0 ≤ t < s3,

where s3 := max{ s1+3, s2, (ψ
−1◦ϕ)(s1+3) } and s2 := max{ s1, (ψ−1◦ϕ)(s1+1) }.

Proof. The proof follows at once from [27], proof of Lemma 3.2, pp. 5–7. As a
matter of fact, it is sufficient to observe the following:

• Instead of functions ϕ : [0,+∞) → [0,+∞) and ψ : [0,+∞) → [0,+∞) one
can equally well consider functions ϕ : [0,+∞]→ [0,+∞] and ψ : [0,+∞]→
[0,+∞]. See [29], p. 5.

• If (ψ−1 ◦ ϕ)(j0) ≤ t < (ψ−1 ◦ ϕ)(j0 + 1), then

+∞∑
k=j0

[
(ψ−1 ◦ ϕ)(k + 1)

(ψ−1 ◦ ϕ)(k) · 1

ϕ(k − s0)

] 1
N−1

≤
+∞∫

(ϕ−1◦ψ)(t)−2

[
(ψ−1 ◦ ϕ)(s+ 2)

(ψ−1 ◦ ϕ)(s) · 1

ϕ(s− s0)

] 1
N−1

ds. �

3. Domination conditions for families of quasinearly
subharmonic functions

We begin by recalling the results of Domar and Rippon. Let F : D → [0,+∞]
be an upper semicontinuous function. Let F be a family of subharmonic functions
u : D → [0,+∞), which satisfy the condition

u(x) ≤ F (x) for all x ∈ D.

Write

w(x) := sup
u∈F

u(x),

and let w∗ : D → [0,+∞] be the upper semicontinuous regularization of w, that is,

w∗(x) := lim sup
y→x

w(y).

Improving the original results of Sjöberg [32] and Brelot [5], cf. also Green [13],
Domar [7], Theorem 1 and Theorem 2, pp. 430–431, gave the following result:

Theorem 3.1. If for some ε > 0,∫
D

[log+ F (x)]N−1+ε dmN (x) < +∞,

then w is locally bounded above in D, and thus w∗ is subharmonic in D.



400 J. Riihentaus

As Domar points out, his method of proof applies also to more general func-
tions, that is, to the above-defined nonnegative quasinearly subharmonic functions.
Much later Rippon [31], Theorem 1, p. 128, generalized Domar’s result in the fol-
lowing form:

Theorem 3.2. Let ϕ : [0,+∞]→ [0,+∞] be an increasing function such that

+∞∫
1

dt

ϕ(t)
1

N−1

< +∞.

If ∫
D

ϕ(log+ F (x)) dmN (x) < +∞,

then w is locally bounded above in D, and thus w∗ is subharmonic in D.

As pointed out by Domar [7], pp. 436–440, and by Rippon [31], p. 129, the
above results are for many particular cases sharp.

In [29], Theorem 2.1, pp. 4–5, we gave a general and at the same time flexible
result which includes both Domar’s and Rippon’s results. Now we improve our
result still further:

Theorem 3.3. Let K ≥ 1. Let ϕ : [0,+∞] → [0,+∞] and ψ : [0,+∞] → [0,+∞]
be increasing functions for which there are s0, s1 ∈ N, s0 < s1, such that

(i) the inverse functions ϕ−1 and ψ−1 are defined on [min{ϕ(s1 − s0), ψ(s1 −
s0) },+∞],

(ii) 2K(ψ−1 ◦ ϕ)(s− s0) ≤ (ψ−1 ◦ ϕ)(s) for all s ≥ s1,
(iii) the following integral is convergent:

+∞∫
s1

[
(ψ−1 ◦ ϕ)(s + 2)

(ψ−1 ◦ ϕ)(s) · 1

ϕ(s− s0)

] 1
N−1

ds < +∞.

Let FK be a family of K-quasinearly subharmonic functions u : D → [−∞,+∞)
such that

u(x) ≤ FK(x) for all x ∈ D,

where FK : D → [0,+∞] is a Lebesgue measurable function. If for each compact
set E ⊂ D, ∫

E

ψ(FK(x)) dmN (x) < +∞,

then the family FK is locally (uniformly) bounded in D. Moreover, the function
w∗ : D → [0,+∞) is K-quasinearly subharmonic. Here

w∗(x) := lim sup
y→x

w(y),

where
w(x) := sup

u∈FK

u+(x).
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Proof. Let E be an arbitrary compact subset ofD. Write ρ0 :=dist(E, ∂D). Clearly
ρ0 > 0. Write

E1 :=
⋃
x∈E

BN
(
x,

ρ0
2

)
.

Then E1 is compact, and E ⊂ E1 ⊂ D. Take u ∈ F+
K arbitrarily, where

F+
K := { u+ : u ∈ FK }.

Let s̃1 = s1 + 2, say. Take x ∈ E arbitrarily and suppose that u(x) > s̃3, where
s̃3 := max{ s1 + 5, (ψ−1 ◦ ϕ)(s1 + 5) }, say. By Theorem 2.1 we have,

Φ(u(x)) ≤ C(
ρ0

2

)N ∫
BN (x,

ρ0
2 )

ψ(u(y)) dmN (y) ≤ C(
ρ0

2

)N ∫
E1

ψ(FK(y)) dmN (y) < +∞,

where

Φ(t) :=

⎛⎜⎝ +∞∫
(ϕ−1◦ψ)(t)−2

[
(ψ−1 ◦ ϕ)(s+ 2)

(ψ−1 ◦ ϕ)(s) · 1

ϕ(s− s0)

] 1
N−1

ds

⎞⎟⎠
1−N

.

Now we know that
+∞∫
s1

[
(ψ−1 ◦ ϕ)(s + 2)

(ψ−1 ◦ ϕ)(s) · 1

ϕ(s− s0)

] 1
N−1

ds < +∞.

Therefore, the set of function values

u(x), x ∈ E, u ∈ F+
K ,

is bounded above.
The rest of the proof goes then as in [29], proof of Theorem 2.1, pp. 7–8. �

Remark 3.4. In Theorem 3.3 one can, instead of the assumption (iii), use also the
following:

(iii′) the following series is convergent:

+∞∑
j=s1+1

[
(ψ−1 ◦ ϕ)(j + 1)

(ψ−1 ◦ ϕ)(j) · 1

ϕ(j − s0)

] 1
N−1

< +∞.

Instead of the above-used function Φ one uses then the function

Φ1 : [s2,+∞)→ [0,+∞),

Φ1(t) :=

⎛⎝ +∞∑
k=j0

[
(ψ−1 ◦ ϕ)(k + 1)

(ψ−1 ◦ ϕ)(k) · 1

ϕ(k − s0)

] 1
N−1

⎞⎠1−N

,

where j0 ∈ { s1, s1 + 2, . . . } is such that

(ψ−1 ◦ ϕ)(j0) ≤ t < (ψ−1 ◦ ϕ)(j0 + 1).



402 J. Riihentaus

The function Φ1 may of course be extended to the whole interval [0,+∞), for
example as follows:

Φ1(t) :=

{
Φ1(t), when t ≥ s3,
t
s3
Φ1(s3), when 0 ≤ t < s3.

Before giving examples, we write Theorem 3.3 in the following, perhaps more
concrete form, see also [29], Remark 2.5, pp. 8–9.

Corollary 3.5. Let K ≥ 1. Let ϕ : [0,+∞] → [0,+∞] and φ : [0,+∞] → [0,+∞]
be strictly increasing surjections for which there are s0, s1 ∈ N, s0 < s1, such that

(i) 2Kφ−1(es−s0) ≤ φ−1(es) for all s ≥ s1,
(ii) the following integral is convergent:

+∞∫
s1

[
φ−1(es+2)

φ−1(es)

1

ϕ(s− s0)

] 1
N−1

ds < +∞.

Let FK be a family of K-quasinearly subharmonic functions u : D → [−∞,+∞)
such that

u(x) ≤ FK(x) for all x ∈ D,

where FK : D → [0,+∞] is a Lebesgue measurable function. If for each compact
set E ⊂ D, ∫

E

ϕ(log+ φ(FK(x))) dmN (x) < +∞,

then the family FK is locally (uniformly) bounded in D. Moreover, the function
w∗ : D → [0,+∞) is K-quasinearly subharmonic. Here

w∗(x) := lim sup
y→x

w(y),

where
w(x) := sup

u∈FK

u+(x).

Proof. For the proof, just choose ψ(t) = ϕ(log+ φ(t)). Since only big values count,
we may simply use the formula ψ(t) = ϕ(logφ(t)). One sees easily that for some
s̃2 ≥ s1,

(ψ−1 ◦ ϕ)(s) = φ−1(es) for all s ≥ s̃2.

It is then easy to see that the assumptions of Theorem 3.3 are satisfied. �
Example 1. Let ϕ : [0,+∞] → [0,+∞] be a strictly increasing surjection such
that (for some s0 ∈ N),

+∞∫
s1

ds

ϕ(s− s0)
1

N−1

< +∞.

Choosing then various functions φ which, together with ϕ, satisfy the conditions
(i) and (ii) of Corollary 3.5, one gets more concrete results. If φ and φ−1 satisfy
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(at least far away) the Δ2-condition, then the conditions (i) and (ii) are surely
satisfied (see also [29], Remark 2.5, p. 8). Typical choices for φ might be, say, the
following:

φ(t) :=
tp

(log t)q
, p > 0, q ∈ R.

The choice p = 1, q = 0 gives then the results of Domar and Rippon, Theorem 3.1
and Theorem 3.2 above. Choosing 0 < p < 1 and q ≥ 0, one gets (at least formal)
improvements.

Example 2. Let φ : [0,+∞]→ [0,+∞] be a strictly increasing surjection for which
there is t1 > 1 such that

s = φ(t) = log t for t ≥ t1

and

t = φ−1(s) = es for s ≥ log t1.

One sees easily that the condition (i) of Corollary 3.5 holds. In this case φ−1

does not satisfy a Δ2-condition. Therefore, in order to apply Corollary 3.5 to a
family FK ofK-quasinearly subharmonic functions, we must choose an appropriate
strictly increasing surjection ϕ : [0,+∞]→ [0,+∞] such that for some s̃1 ∈ N,

+∞∫
s̃1

[
φ−1(es+2)

φ−1(es)
· 1

ϕ(s− s0)

] 1
N−1

ds =

+∞∫
s̃1

e
e2−1
N−1 es

ϕ(s− s0)
1

N−1

ds < +∞.

Therefore, we have two restrictions for ϕ. As a first condition the above quite
strong restriction and, as a second one, the following, at least seemingly mild
condition: For each compact set E ⊂ D,∫

E

ϕ(log+(logFK(x))) dmN (x) < +∞.

4. On the subharmonicity of separately subharmonic functions
and generalizations

Wiegerinck [35], Theorem, p. 770, see also [36], Theorem 1, p. 246, has shown
that separately subharmonic functions need not be subharmonic. On the other
hand, Armitage and Gardiner [2], Theorem 1, p. 256, showed that a separately
subharmonic function u in a domain Ω of Rm+n, m ≥ n ≥ 2, is subharmonic,
provided φ ◦ log+ u+ ∈ L1

loc(Ω), where φ : [0,+∞) → [0,+∞) is an increasing
function such that

+∞∫
1

s
n−1
m−1

φ(s)
1

m−1

ds < +∞.

Armitage’s and Gardiner’s result included all the previous existing results, that is,
the results of Lelong [18], Théorème 1 bis, p. 315, of Avanissian [4], Théorème 9,



404 J. Riihentaus

p. 140, see also [19], Proposition 3, p. 24, and [14], Theorem, p. 31, of Arsove
[3], Theorem 1, p. 622, and ours [23], Theorem 1, p. 69. Though Armitage’s and
Gardiner’s result was close to being sharp, see [2], p. 255, it was, however, possible
to improve their result slightly further. This was done in [27], Theorem 4.1, pp. 8–
9, with the aid of quasinearly subharmonic functions. See also [28], Theorem 3.3.1
and Corollary 3.3.3, pp. e2621-e2622. Now we improve our result still further:

Theorem 4.1. Let K ≥ 1. Let Ω be a domain in Rm+n, m ≥ n ≥ 2. Let u : Ω →
[−∞,+∞) be a Lebesgue measurable function. Suppose that the following condi-
tions are satisfied:

(a) For each y ∈ Rn the function

Ω(y) " x �→ u(x, y) ∈ [−∞,+∞)

is K-quasinearly subharmonic.
(b) For each x ∈ Rm the function

Ω(x) " y �→ u(x, y) ∈ [−∞,+∞)

is K-quasinearly subharmonic.
(c) There are increasing functions ϕ : [0,+∞) → [0,+∞) and ψ : [0,+∞) →

[0,+∞) and s0, s1 ∈ N, s0 < s1, such that
(c1) the inverse functions ϕ−1 and ψ−1 are defined on [min{ϕ(s1−s0), ψ(s1−

s0) },+∞),
(c2) 2K(ψ−1 ◦ ϕ)(s− s0) ≤ (ψ−1 ◦ ϕ)(s) for all s ≥ s1,
(c3) the following integral is convergent:

+∞∫
s5

[
(ψ−1 ◦ ϕ)(s + 2)

(ψ−1 ◦ ϕ)(s) · 1

ϕ(s− s0)

] 1
m−1

·

⎛⎝ s+s0+2∫
s5+s0+2

[
(ψ−1 ◦ ϕ)(t + 2)

(ψ−1 ◦ ϕ)(t)

] 1
n−1

dt

⎞⎠
n−1
m−1

ds < +∞,

where s5 := max{ s0+s1+3, s0+(ψ−1◦ϕ)(s1+3), s0+(ϕ−1◦ψ)(s1+3) },
(c4) ψ ◦ u+ ∈ L1

loc(Ω).

Then u is quasinearly subharmonic in Ω.

Proof. Recall that s2 = max{ s1, (ψ−1◦ϕ)(s1+1) } and s3 = max{ s1+3, s2, (ψ
−1◦

ϕ)(s1 + 3) }. Write s4 := max{ s0 + s3, (ϕ
−1 ◦ ψ)(s1 + 3) }, say. Clearly, s0 < s1 <

s3 < s4 < s5. (We may of course suppose that s3, s4 and s5 are integers.) One
may replace u by max{ u+,M }, where M = max{ s5+3, (ψ−1 ◦ϕ)(s4 +3), (ϕ−1 ◦
ψ)(s4 + 3) }, say. We continue to denote uM by u.

Step 1 Use of Theorem 2.1.

Take (x0, y0) ∈ Ω and r > 0 arbitrarily such that Bm(x0, 2r)×Bn(y0, 2r) ⊂
Ω. Take (ξ, η) ∈ Bm(x0, r)×Bn(y0, r) arbitrarily. We know that u(·, y) is K-quasi-
nearly subharmonic for each y ∈ Bn(y0, 2r). In order to apply Theorem 2.1, it is
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clearly sufficient to show that

+∞∫
s5+s0+2

[
(ψ−1 ◦ ϕ)(s+ 2)

(ψ−1 ◦ ϕ)(s) · 1

ϕ(s− s0)

] 1
m−1

ds < +∞.

But this follows at once from the assumption (c3), since for all s ≥ s5 + s0 + 2,⎛⎝ s+s0+2∫
s5+s0+2

[
(ψ−1 ◦ ϕ)(t+ 2)

(ψ−1 ◦ ϕ)(t)

] 1
n−1

dt

⎞⎠
n−1
m−1

≥

⎛⎝ s+s0+2∫
s5+s0+2

1 dt

⎞⎠
n−1
m−1

= (s− s5)
n−1
m−1 ≥ (s0 + 2)

n−1
m−1 .

From Theorem 2.1 it then follows that for all y ∈ Bn(y0, 2r)

Φ̃(u(ξ, y)) ≤ C

rm

∫
Bm(ξ,r)

ψ(u(x, y))dmm(x), (4.1)

where

Φ̃(t) :=

⎧⎪⎪⎨⎪⎪⎩
(

+∞∫
(ϕ−1◦ψ)(t)−2

[
(ψ−1◦ϕ)(s+2)
(ψ−1◦ϕ)(s)

1
ϕ(s−s0)

] 1
m−1

ds

)1−m

, when t ≥ s3,

t
s3
Φ̃(s3), when 0 ≤ t < s3.

Step 2 Take mean values on both sides of (4.1).

Taking (generalized) mean values with respect to the variable y over the ball
Bn(η, r) on both sides of (4.1), we get:

C

rn

∫
Bn(η,r)

Φ̃(u(ξ, y))dmn(y) ≤
C

rn

∫
Bn(η,r)

⎡⎢⎣ C

rm

∫
Bm(ξ,r)

ψ(u(x, y))dmm(x)

⎤⎥⎦ dmn(y)

≤ C

rm+n

∫
Bm(ξ,r)×Bn(η,r)

ψ(u(x, y))dmm+n(x, y)

≤ C

rm+n

∫
Bm(x0,2r)×Bn(y0,2r)

ψ(u(x, y))dmm+n(x, y).

Here one must of course check that both ψ ◦ u(·, ·) and Φ̃(u(ξ, ·)) are Lebesgue
measurable!

Step 3 In order to apply Theorem 2.1 once more, define new functions ϕ1 and ψ1.

Write ψ1 : [0,+∞)→ [0,+∞),

ψ1(t) := Φ̃(t) =

⎧⎪⎪⎨⎪⎪⎩
(

+∞∫
(ϕ−1◦ψ)(t)−2

[
(ψ−1◦ϕ)(s+2)
(ψ−1◦ϕ)(s)

1
ϕ(s−s0)

] 1
m−1

ds

)1−m

, when t ≥ s3,

t
s3
Φ̃(s3), when 0 ≤ t < s3.
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It is easy to see that ψ1 is defined, strictly increasing and continuous. Write then
ϕ1 : [0,+∞)→ [0,+∞),

ϕ1(t) :=

{
ψ1((ψ

−1 ◦ ϕ)(t)) = Φ̃(ψ−1(ϕ(t))), when t ≥ s3,
t
s3
ψ1((ψ

−1 ◦ ϕ)(s3)) = t
s3
Φ̃(ψ−1(ϕ(s3))), when 0 ≤ t < s3.

Also ϕ1 is defined, strictly increasing and continuous. This follows from the facts
that ψ1 is defined, strictly increasing and continuous (similarly as the functions
ϕ|[s1 − s0,+∞) and ψ|[s1 − s0,+∞)). Observe here that for t ≥ s4, say,

ϕ1(t) =

⎛⎜⎝ +∞∫
(ϕ−1◦ψ)((ψ−1◦ϕ)(t))−2

[
(ψ−1 ◦ ϕ)(s+ 2)

(ψ−1 ◦ ϕ)(s)
1

ϕ(s− s0)

] 1
m−1

ds

⎞⎟⎠
1−m

=

⎛⎝ +∞∫
t−2

[
(ψ−1 ◦ ϕ)(s+ 2)

(ψ−1 ◦ ϕ)(s)
1

ϕ(s− s0)

] 1
m−1

ds

⎞⎠1−m

.

One sees easily that (ψ−1
1 ◦ ϕ1)(t) = (ψ−1 ◦ ϕ)(t) for all t ≥ s3, thus 2K(ψ−1

1 ◦
ϕ1)(s− s0) ≤ (ψ−1

1 ◦ ϕ1)(s) for all s ≥ s1 ≥ s4.
To show that

+∞∫
s5+s0+2

[
(ψ−1

1 ◦ ϕ1)(s+ 2)

(ψ−1
1 ◦ ϕ1)(s)

1

ϕ1(s− s0)

] 1
n−1

ds < +∞,

we proceed as follows.
Write F : [s5,+∞)× [s5 + s0 + 2,+∞)→ [0,+∞),

F (s, t) :=

⎧⎪⎪⎨⎪⎪⎩
[
(ψ−1

1 ◦ϕ1)(t+2)

(ψ−1
1 ◦ϕ1)(t)

(ψ−1◦ϕ)(s+2)
(ψ−1◦ϕ)(s)

1
ϕ(s−s0)

] 1
m−1

,

when s5 + s0 + 2 ≤ t− s0 − 2 ≤ s,

0, when s5 ≤ s < t− s0 − 2.

Suppose that m > n ≥ 2. Then just calculate, use Minkowski’s inequality and
assumption (c3):⎛⎝ +∞∫

s5+s0+2

[
(ψ−1

1 ◦ ϕ1)(t+ 2)

(ψ−1
1 ◦ ϕ1)(t)

1

ϕ1(t− s0)

] 1
n−1

dt

⎞⎠
n−1
m−1

=

⎛⎝ +∞∫
s5+s0+2

[
(ψ−1

1 ◦ ϕ1)(t+ 2)

(ψ−1
1 ◦ ϕ1)(t)

] 1
n−1

×

⎛⎝ +∞∫
t−s0−2

[
(ψ−1 ◦ ϕ)(s+ 2)

(ψ−1 ◦ ϕ)(s)
1

ϕ(s− s0)

] 1
m−1

ds

⎞⎠− 1−m
n−1

dt

⎞⎟⎠
n−1
m−1
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=

⎛⎝ +∞∫
s5+s0+2

[
(ψ−1

1 ◦ ϕ1)(t+ 2)

(ψ−1
1 ◦ ϕ1)(t)

] 1
n−1

×

⎛⎝ +∞∫
t−s0−2

[
(ψ−1 ◦ ϕ)(s+ 2)

(ψ−1 ◦ ϕ)(s)
1

ϕ(s− s0)

] 1
m−1

ds

⎞⎠
m−1
n−1

dt

⎞⎟⎠
n−1
m−1

=

⎛⎝ +∞∫
s5+s0+2

⎛⎝ +∞∫
t−s0−2

([
(ψ−1

1 ◦ ϕ1)(t+ 2)

(ψ−1
1 ◦ ϕ1)(t)

· (ψ
−1 ◦ ϕ)(s+ 2)

(ψ−1 ◦ ϕ)(s)
1

ϕ(s− s0)

] 1
m−1

)
ds

)m−1
n−1

dt

⎞⎠
n−1
m−1

=

⎛⎜⎝ +∞∫
s5+s0+2

⎡⎣ +∞∫
s5

F (s, t) ds

⎤⎦
m−1
n−1

dt

⎞⎟⎠
n−1
m−1

≤

⎛⎜⎝ +∞∫
s5

⎡⎣ +∞∫
s5+s0+2

F (s, t)
m−1
n−1 dt

⎤⎦
n−1
m−1

ds

⎞⎟⎠
=

+∞∫
s5

⎛⎝ s+s0+2∫
s5+s0+2

([
(ψ−1

1 ◦ ϕ1)(t+ 2)

(ψ−1
1 ◦ ϕ1)(t)

] 1
m−1

·
[
(ψ−1 ◦ ϕ)(s+ 2)

(ψ−1 ◦ ϕ)(s)
1

ϕ(s− s0)

] 1
m−1

)m−1
n−1

dt

⎞⎠
n−1
m−1

ds

=

+∞∫
s5

[
(ψ−1 ◦ ϕ)(s+ 2)

(ψ−1 ◦ ϕ)(s)
1

ϕ(s− s0)

] 1
m−1

×

⎛⎝ s+s0+2∫
s5+s0+2

[
(ψ−1

1 ◦ ϕ1)(t+ 2)

(ψ−1
1 ◦ ϕ1)(t)

] 1
n−1

dt

⎞⎠
n−1
m−1

ds

=

+∞∫
s5

[
(ψ−1 ◦ ϕ)(s+ 2)

(ψ−1 ◦ ϕ)(s)
1

ϕ(s− s0)

] 1
m−1

×

⎛⎝ s+s0+2∫
s5+s0+2

[
(ψ−1 ◦ ϕ)(t + 2)

(ψ−1 ◦ ϕ)(t)

] 1
n−1

dt

⎞⎠
n−1
m−1

ds < +∞.

The case m = n is considered similarly, just replacing Minkowski’s inequality with
Fubini’s theorem.

Step 4 Apply Theorem 2.1 to conclude that u(·, ·) is bounded in Bm(x0, r) ×
Bn(y0, r).
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With the aid of Theorem 2.1 we get

Ψ(u(ξ, η)) ≤ C

rn

∫
Bn(η,r)

Φ̃(u(ξ, y))dmn(y)

≤ C

rm+n

∫
Bm(x0,2r)×Bn(y0,2r)

ψ(u(x, y))dmm+n(x, y),

where now

Ψ(t) :=

⎧⎪⎪⎨⎪⎪⎩
⎛⎝ +∞∫

(ϕ−1
1 ◦ψ1)(t)−2

[
(ψ−1

1 ◦ϕ1)(s+2)

(ψ−1
1 ◦ϕ1)(s)

1
ϕ1(s−s0)

] 1
n−1

ds

⎞⎠1−n

, when t ≥ s3,

t
s3
Ψ(s3), when 0 ≤ t < s3,

or equivalently

Ψ(t) :=

⎧⎪⎪⎨⎪⎪⎩
(

+∞∫
(ϕ−1◦ψ)(t)−2

[
(ψ−1

1 ◦ϕ1)(s+2)

(ψ−1
1 ◦ϕ1)(s)

1
ϕ1(s−s0)

] 1
n−1

ds

)1−n

, when t ≥ s3,

t
s3
Ψ(s3), when 0 ≤ t < s3.

Observe that we know that

+∞∫
s5+s0+2

[
(ψ−1

1 ◦ ϕ1)(s+ 2)

(ψ−1
1 ◦ ϕ1)(s)

1

ϕ1(s− s0)

] 1
n−1

ds

≤
+∞∫
s5

[
(ψ−1 ◦ ϕ)(s + 2)

(ψ−1 ◦ ϕ)(s)
1

ϕ(s− s0)

] 1
m−1

×

⎛⎝ s+s0+2∫
s5+s0+2

[
(ψ−1 ◦ ϕ)(t+ 2)

(ψ−1 ◦ ϕ)(t)

] 1
n−1

dt

⎞⎠
n−1
m−1

ds,

and that by assumption (c3),

+∞∫
s5

[
(ψ−1 ◦ ϕ)(s + 2)

(ψ−1 ◦ ϕ)(s)
1

ϕ(s− s0)

] 1
m−1

⎛⎝ s+s0+2∫
s5+s0+2

[
(ψ−1 ◦ ϕ)(t + 2)

(ψ−1 ◦ ϕ)(t)

] 1
n−1

dt

⎞⎠
n−1
m−1

ds <∞.

Hence the set of function values

(ϕ−1
1 ◦ ψ1)(u(ξ, η)) − 2 = (ϕ−1 ◦ ψ)(u(ξ, η)) − 2, (ξ, η) ∈ Bm(x0, r) ×Bn(y0, r),



An Inequality Type Condition 409

must be bounded. Thus the function u(·, ·) is bounded above in Bm(x0, r) ×
Bn(y0, r). By [26], Proposition 3.1, p. 57, (or by [28], Proposition 3.2.1, p. e2620)
we see that u(·, ·) is quasinearly subharmonic. �

Corollary 4.2. Let K ≥ 1. Let Ω be a domain in Rm+n, m ≥ n ≥ 2. Let u :
Ω → [−∞,+∞) be a Lebesgue measurable function. Suppose that the following
conditions are satisfied:

(a) For each y ∈ Rn the function

Ω(y) " x �→ u(x, y) ∈ [−∞,+∞)

is K-quasinearly subharmonic.
(b) For each x ∈ Rm the function

Ω(x) " y �→ u(x, y) ∈ [−∞,+∞)

is K-quasinearly subharmonic.
(c) There are strictly increasing surjections ϕ : [0,+∞) → [0,+∞) and φ :

[0,+∞)→ [0,+∞) and s0, s1 ∈ N, s0 < s1, such that

(c1) 2Kφ−1(es−s0) ≤ φ−1(es) for all s ≥ s1,

(c2) the following integral is convergent:

+∞∫
s5

[
φ−1(es+2)

φ−1(es)

1

ϕ(s− s0)

] 1
m−1

⎛⎝ s+s0+2∫
s5+s0+2

[
φ−1(et+2)

φ−1(et)

] 1
n−1

dt

⎞⎠
n−1
m−1

ds < +∞,

(c3) ϕ ◦ log+ φ(u+) ∈ L1
loc(Ω).

Then u is quasinearly subharmonic in Ω.

Corollary 4.3. Let K ≥ 1. Let Ω be a domain in Rm+n, m ≥ n ≥ 2. Let u :
Ω → [−∞,+∞) be a Lebesgue measurable function. Suppose that the following
conditions are satisfied:

(a) For each y ∈ Rn the function

Ω(y) " x �→ u(x, y) ∈ [−∞,+∞)

is K-quasinearly subharmonic.
(b) For each x ∈ Rm the function

Ω(x) " y �→ u(x, y) ∈ [−∞,+∞)

is K-quasinearly subharmonic.
(c) There are strictly increasing surjections ϕ : [0,+∞) → [0,+∞) and φ :

[0,+∞)→ [0,+∞) and s0, s1 ∈ N, s0 < s1, such that

(c1) 2Kφ−1(es−s0) ≤ φ−1(es) for all s ≥ s1,

(c2) φ−1 satisfies a Δ2-condition,
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(c3) the following integral is convergent:

+∞∫
s1

s
n−1
m−1

ϕ(s− s0)
1

m−1

ds < +∞,

(c4) ϕ ◦ log+ φ(u+) ∈ L1
loc(Ω).

Then u is quasinearly subharmonic in Ω.

Example 3. Let u be separately subharmonic in Ω. Let ϕ : [0,+∞)→ [0,+∞) be
a strictly increasing surjection such that

+∞∫
s1

s
n−1
m−1

ϕ(s− s0)
1

m−1

ds < +∞.

Choosing then various functions φ, which, together with ϕ and u, satisfy the
conditions (c1), (c2) and (c4) of Corollary 4.3, one gets more concrete results.
Possible choices are, e.g.,

φ(t) =
tp

(log t)q
, p > 0, q ∈ R.

The case p = 1 and q = 0 gives the result of Armitage and Gardiner.

Example 4. Let u be separately subharmonic in Ω and ϕ : [0,+∞)→ [0,+∞) be
a strictly increasing surjection. Let p > 0, q ≥ 0. Let φ : [0,+∞)→ [0,+∞) be a
strictly increasing surjection for which there is t1 > 1 such that

s = φ(t) = e(
log t
p )

1
q+1

= e
q+1

√
log t
p for t ≥ t1,

thus t = φ−1(s) = ep(log s)q+1

. One sees easily that the condition (c1) of Corol-
lary 4.3 is satisfied, but the condition (c2) not. As a matter of fact, and as one
easily sees,

φ−1(es+2)

φ−1(es)
→ +∞ as s→ +∞.

Therefore, in this case one cannot use Corollary 4.3 to conclude that u is sub-
harmonic. However, using Corollary 4.2 we see that u is subharmonic, provided
that

+∞∫
s5

e
p

m−1 [(s+2)q+1−sq+1]

ϕ(s− s0)
1

m−1

⎛⎝ s+s0+2∫
s5+s0+2

e
p

n−1 [(t+2)q+1−tq+1]dt

⎞⎠
n−1
m−1

ds < +∞, (4.2)

and (this is just (c3))

ϕ ◦
([

log+ u

p

] 1
q+1

)
∈ L1

loc(Ω).

The condition (4.2) is of course complicated, but it is easy to get simpler (but)
stronger conditions, e.g., just estimating the inner integral.
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Example 5. Let u be separately subharmonic in Ω and ϕ : [0,+∞)→ [0,+∞) be
a strictly increasing surjection. Let p > 0 and φ : [0,+∞)→ [0,+∞) be a strictly
increasing surjection for which there is t1 > 1 such that

s = φ(t) = (log t)p for t ≥ t1, and thus t = φ−1(s) = es
1
p
.

Corollary 4.3 cannot now be applied, but from Corollary 4.2 it follows that u is
subharmonic, provided that, in addition to the integrability condition (c3),

ϕ ◦ log+ ◦((log+ u+)p) ∈ L1
loc(Ω),

also the condition (c2) holds. One possibility to replace the, again rather compli-
cated, condition (c2) by a simpler, but stronger one, is the following (we leave the
details to the reader):

+∞∫
s5

e
2

m−1 [e
1
p
(s+s0+4)−e

1
p
(s+s0+2)

] s
n−1
m−1

ϕ(s− s0)
1

m−1

ds < +∞.

Remark 4.4. As is seen above, the proof of Theorem 4.1 is essentially based on
a previous simple result of separately quasinearly subharmonic functions, namely
on [26], Proposition 3.1, p. 57, see also [28], Proposition 3.2.1, p. e2620. The situ-
ation is of course similar in the special case of separately subharmonic functions:
Armitage and Gardiner [2], proof of Theorem 1, pp. 257–259, base their result on
the classical result of Avanissian [4], Théorème 9, p. 140. Equally well one might
of course base the result on any of the following later results: [19], Proposition 3,
p. 24, [14], Theorem, p. 31, Arsove [3], Theorem 1, p. 622, or [23], Theorem 1, p. 69.
See also Lelong [18], Théorème 1 bis, p. 315, and Cegrell and Sadullaev [6], Theo-
rem 3.1, p. 82. Therefore, there are indeed good reasons to improve also these old
basic results. In this connection, we point out the following recent improvement:

Theorem 4.5 ([30], Theorem 2, pp. 367–368). Let K1,K2 ≥ 1. Let Ω be a domain
in Rm+n, m,n ≥ 2. Let u : Ω→ [−∞,+∞) be such that

(a) for each y ∈ Rn the function

Ω(y) " x �→ u(x, y) ∈ [−∞,+∞)

is K1-quasinearly subharmonic, and, for almost every y ∈ Rn, subharmonic,
(b) for each x ∈ Rm the function

Ω(x) " y �→ u(x, y) ∈ [−∞,+∞)

is upper semicontinuous, and, for almost every x ∈ Rm, K2-quasinearly sub-
harmonic,

(c) for some p > 0 there is a function v ∈ L
p
loc(Ω) such that u+ ≤ v.

Then for each (a, b) ∈ Ω,

lim sup
(x,y)→(a,b)

u(x, y) ≤ K1K2 u
+(a, b).
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Observe that the proof of the above (quasinearly subharmonicity) result, and
thus also the proof of the following special case result, is simpler than the proofs of
the older subharmonicity results. (See also the previous versions [26], Corollary 3.2
and Corollary 3.3, p. 61, and [28], Corollary 3.2.4 and Corollary 3.2.5, p. e2621).

Corollary 4.6 ([30], Corollary 2, p. 369). Let Ω be a domain in Rm+n, m,n ≥ 2.
Let u : Ω→ [−∞,+∞) be such that

(a) for each y ∈ Rn the function

Ω(y) " x �→ u(x, y) ∈ [−∞,+∞)

is nearly subharmonic, and, for almost every y ∈ Rn, subharmonic,
(b) for each x ∈ Rm the function

Ω(x) " y �→ u(x, y) ∈ [−∞,+∞)

is upper semicontinuous, and, for almost every x ∈ Rm, (nearly) subhar-
monic,

(c) for some p > 0 there is a function v ∈ L
p
loc(Ω) such that u+ ≤ v.

Then u is upper semicontinuous and thus subharmonic in Ω.

Proof. It is easy to see that for each M ≥ 0, the function uM := max{u,−M}+
M satisfies the assumptions of Theorem 4.5. Thus uM is upper semicontinuous.
Since by [26], Corollary 3.1, p. 59 (see also [28], Corollary 3.2.3, pp. e2620–e2621,
and [30], Corollary 1, p. 367), uM is anyway nearly subharmonic, it is in fact
subharmonic. Using then a standard result, see, e.g., [14], a), p. 8, one sees that u
is subharmonic and thus also upper semicontinuous. �

Remark 4.7. Observe that Corollary 4.6 is partially related to the result [14],
Proposition 2, pp. 34–35. Though our assumptions are partly slightly stronger,
our proof (see [30], pp. 367–370) is, on the other hand, different and shorter.
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[15] V. Kojić, Quasi-nearly subharmonic functions and conformal mappings, Filomat. 21,
no. 2 (2007), 243–249.
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for Homogeneous Order-preserving Maps and
the Monotone Companion Norm
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Abstract. It is well known that an ordered normed vector space X with nor-
mal cone X+ has an order-preserving norm that is equivalent to the original
norm. Such an equivalent order-preserving norm is given by

	x	 = max{d(x,X+), d(x,−X+)}, x ∈ X.

This paper explores the properties of this norm and of the half-norm ψ(x) =
d(x,−X+) independently of whether or not the cone is normal. We use ψ to
derive comparison principles for the solutions of abstract integral equations
and compare Collatz–Wielandt numbers, bounds, and order-spectral radii for
order-preserving homogeneous maps and give conditions for a local upper
Collatz–Wielandt radius to have a lower positive eigenvector. For illustration,
we consider a rank-structured population with mating.
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cone spectral radius, Collatz–Wielandt numbers, Krein–Rutman theorem,
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population models with mating, rank structure.

1. Introduction and exposé of concepts and results

For models in the biological, social, or economic sciences, there is a natural interest
in solutions that are positive in an appropriate sense, i.e., they take their values
in the cone of an ordered normed vector space.

1.1. Cones and their properties

A closed subset X+ of a normed real vector space X is called a wedge if

(i) X+ is convex,
(ii) αx ∈ X+ whenever x ∈ X+ and α ∈ R+.
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A wedge is called a cone if X+∩(−X+) = {0}. A wedge is called solid if it contains
interior points. A wedge X+ is called generating if X = X+ −X+, and total if X
is the closure of X+ −X+. A cone X+ is called normal, if there exists some δ > 0
such that

‖x+ z‖ ≥ δ whenever x ∈ X+, z ∈ X+, ‖x‖ = 1 = ‖z‖. (1.1)

Equivalent conditions for a cone to be normal are given in Theorem 2.1.
Nonzero points in a cone or wedge are called positive. In function spaces,

typical cones are formed by the nonnegative functions.
X+ is called an inf-semilattice [1] (or minihedral [24]) if x ∧ y = inf{x, y}

exist for all x, y ∈ X+. X+ is called a sup-semilattice if x∨ y = sup{x, y} exist for
all x, y ∈ X+. X+ is called a lattice if x ∧ y and x ∨ y exist for all x, y ∈ X+.

X is called a lattice if x∨y exist for all x, y ∈ X . Since x∧y = −((−x)∨(−y)),
also x ∧ y exist for all x, y in a lattice X .

If X+ is a cone in X , we introduce a partial order on X by x ≤ y if y−x ∈ X+

for x, y ∈ X and call X an ordered normed vector space.
Every ordered normed vector space carries the monotone companion half-

norm ψ(x) = d(x,−X+),

ψ(x) ≤ ψ(y), x, y ∈ X, x ≤ y,

and the monotone companion norm �x� = max{ψ(x), ψ(−x)}. See [2], [25, (4.2)],
[9, L.4.1]. The cone X+ is normal if and only if the monotone companion norm
is equivalent to the original norm. By the open mapping theorem, X cannot be
complete with respect to both norms unless X+ is normal. The properties of the
companion (half-) norm are studied in Section 3. In the following, we describe its
applications to homogeneous order-preserving maps. Another application, positiv-
ity of solutions to abstract integral inequalities is given in Section 6.

1.2. Spectral radii for homogeneous order-preserving maps

For a linear bounded map B on a complex Banach space, the spectral radius of B
is defined as

r(B) = sup{|λ|;λ ∈ σ(B)}, (1.2)

where σ(B) is the spectrum of B, σ(B) = C \ ρ(B), and ρ(B) the resolvent set of
B, i.e., the set of those λ ∈ C for which λ− B has a bounded everywhere defined
inverse. The following alternative formula holds,

r(B) = inf
n∈N

‖Bn‖1/n = lim
n→∞ ‖B

n‖1/n, (1.3)

which is also meaningful in a real Banach space. If B is a compact linear map
on a complex Banach space and r(B) > 0, then there exists some λ ∈ σ(B) and
v ∈ X such that |λ| = r(B) and Bv = λv �= 0. Such a λ is called an eigenvalue
of B. This raises the question whether r(B) could be an eigenvalue itself. There
is a positive answer, if B is a positive operator and satisfies some generalized
compactness assumption.
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Throughout the rest of this paper, let X be an ordered normed vector space
with cone X+. We use the notation

Ẋ = X \ {0} and Ẋ+ = X+ \ {0}.

Definition 1.1. Let X and Z be ordered vector space with cones X+ and Z+ and
U ⊆ X . B : U → Z is called positive if B(U ∩X+) ⊆ Z+.

B is called order-preserving (or monotone or increasing) if Bx ≤ By whenever
x, y ∈ U and x ≤ y.

Positive linear maps from X to Y are order-preserving. Positive linear maps
on X have the remarkable property that their spectral radius is a spectral value
[8] [38, App. 2.2] if X is a Banach space and X+ a normal generating cone.

The celebrated Krein–Rutman theorem [27], which generalizes parts of the
Perron–Frobenius theorem to infinite dimensions, establishes that a compact pos-
itive linear map B with r(B) > 0 on an ordered Banach space X with total cone

X+ has an eigenvector v ∈ Ẋ+ such that Bv = r(B)v and a positive bounded
linear eigenfunctional v∗ : X → R, v∗ �= 0, such that v∗ ◦ B = r(B)v∗. This the-
orem has been generalized into various directions by Bonsall [7] and Birkhoff [5],
Nussbaum [34, 35], and Eveson and Nussbaum [15] (see these papers for additional
references).

1.2.1. Homogenous maps. In the following,X , Y and Z are ordered normed vector
spaces with cones X+, Y+ and Z+ respectively.

Definition 1.2. B : X+ → Y is called (positively) homogeneous (of degree one), if
B(αx) = αB(x) for all α ∈ R+, x ∈ X+.

Since we do not consider maps that are homogeneous in other ways, we will
simply call them homogeneous maps. If follows from the definition that B(0) = 0.
Homogeneous maps are not Fréchet differentiable at 0 unless B(x + y) = B(x) +
B(y) for all x, y ∈ X+. For the following holds.

Proposition 1.3. Let B : X+ → Y be homogeneous. Then the directional derivatives
of B exist at 0 in all directions of the cone and

∂B(0, x) = lim
t→0+

B(tx) −B(0)

t
= B(x), x ∈ X+.

There are good reasons to consider homogeneous maps. Here is a mathemat-
ical one.

Theorem 1.4. Let F : X+ → Y and u ∈ X. Assume that the directional derivatives
of F at u exist in all directions of the cone. Then the map B : X+ → Y , B =
∂F (u, ·), is homogeneous,

B(x) = ∂F (u, x) = lim
t→0+

F (u+ tx)− F (u)

t
, x ∈ X+.
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Proof. Let α ∈ R+. Obviously, if α = 0, B(αx) = 0 = αB(x). So we assume
α ∈ (0,∞). Then

F (u+ t[αx]) − F (u)

t
= α

F (u + [tα]x) − F (u)

tα
.

As t→ 0, also αt→ 0 and so the directional derivative in direction αx exists and
∂F (u, αx) = αF (u, x). �

Another good reason are mathematical population models that take into
account that, for many species, reproduction involves a mating process between
two sexes. The maps involved therein are not only homogeneous but also order-
preserving.

The eigenvector problem for homogeneous maps is quite different from the
one for linear maps. Consider the following simple two sex population model xn =
Bxn−1 where xn = (fn,mn) and Bx = (B1x,B2x),

B1(f,m) =pff + βf
fm

f +m
, B2(f,m) = pmm+ βm

fm

f +m
. (1.4)

This system models a population of females and males which reproduce once a year
with fn and mn representing the number of females and males at the beginning of
year n. The numbers pf , pm are the respective probabilities of surviving one year.
The harmonic mean describes the mating process and the parameters βf and βm

scale with the resulting amount of offspring per mated pair.
B always has the eigenvectors (1, 0) and (0, 1) associated with pf and pm

respectively. Looking for a different eigenvalue, λ, ofB, we can assume that f+m =
1 and obtain

λ− pf
βf

= m,
λ− pm
βm

= f, m+ f = 1.

We add and solve for λ,

λ =
βfβm + βmpf + βfpm

βf + βm
,

and then for m and f ,

m =
βm + pm − pf

βf + βm
, f =

βf + pf − pm
βf + βm

.

The eigenvector (m, f) lies in the biological relevant positive quadrant if and only
if the eigenvalue λ is larger than the two other eigenvalues pf and pm.

We notice that we generically have three linearly independent eigenvectors
(rather than at most two as for a 2 × 2 matrix) with the third being biological
relevant if and only if it is associated with the largest eigenvalue.

The spectral radius of a positive linear map has gained considerable notoriety
because of its relation to the basic reproduction number of population models
which have a highly dimensional structure but implicitly assume a one to one sex
ratio [3, 12, 13, 41, 48]. A spectral radius for homogeneous order-preserving maps
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should play a similar role as an extinction versus persistence threshold parameter
for structured populations with two sexes [20, 21, 22, 23].

1.2.2. Cone norms for homogeneous bounded maps. For a homogeneous map B :
X+ → Y , we define

‖B‖+ = sup{‖B(x)‖;x ∈ X+, ‖x‖ ≤ 1} (1.5)

and call B bounded if this supremum is a real number. Since B is homogeneous,

‖B(x)‖ ≤ ‖B‖+ ‖x‖, x ∈ X+. (1.6)

Let H(X+, Y ) denote the set of bounded homogeneous maps B : X+ → Y ,
H(X+, Y+) denote the set of bounded homogeneous maps B : X+ → Y+, and
HM(X+, Y+) the set of those maps in H(X+, Y+) that are order-preserving.

H(X+, Y ) is a real vector space and ‖ · ‖+ is a norm on H(X+, Y ) called
the cone-norm. H(X+, Y+) and HM(X+, Y+) are cones in H(X+, Y ). We write
H(X+) = H(X+, X+) and HM(X+) =HM(X+, X+).

If B ∈ H(X+, Y+) and C ∈ H(Y+, Z+), then CB ∈ H(X+, Z+) and

‖CB‖+ ≤ ‖C‖+ ‖B‖+. (1.7)

1.2.3. Cone and orbital spectral radius. Let B ∈ H(X+) and define φ : Z+ → R
by φ(n) = ln ‖Bn‖+. Then φ(m + n) ≤ φ(m) + φ(n) for all m,n ∈ Z+, and a
well-known result implies the following formula for the cone spectral radius

r+(B) := inf
n∈N

‖Bn‖1/n+ = lim
n→∞ ‖B

n‖1/n+ , (1.8)

which is analogous to (1.3). Mallet-Paret and Nussbaum [31, 32] suggest an alter-
native definition of a spectral radius for homogeneous (not necessarily bounded)
maps B : X+ → X+. First, define asymptotic least upper bounds for the geometric
growth factors of B-orbits,

γ(x,B) := γB(x) := lim sup
n→∞

‖Bn(x)‖1/n, x ∈ X+, (1.9)

and then

ro(B) = sup
x∈X+

γB(x). (1.10)

Here γB(x) := ∞ if the sequence (‖Bn(x)‖1/n) is unbounded and ro(B) = ∞ if
γB(x) =∞ for some x ∈ X+ or the set {γB(x);x ∈ X+} is unbounded.

The number r+(B) has been called partial spectral radius by Bonsall [8], X+

spectral radius by Schaefer [37, 38], and cone spectral radius by Nussbaum [35].
Mallet-Paret and Nussbaum [31, 32] call r+(B) the Bonsall cone spectral radius
and ro(B) the cone spectral radius. For x ∈ X+, the number γB(x) has been called
local spectral radius of B at x by Förster and Nagy [16].

We will follow Nussbaum’s older terminology [35] which shares the spirit
with Schaefer’s [37] term X+ spectral radius and stick with cone spectral radius for
r+(B) and call ro(B) the orbital spectral radius of B. Later, we will also introduce
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a Collatz–Wielandt radius. We refer to all of them as order-spectral radii. One
readily checks that

r+(αB) = αr+(B), α ∈ R+, r+(B
m) = (r+(B))m, m ∈ N. (1.11)

The same properties hold for ro(B) though proving the second property takes some
more effort [31, Prop. 2.1]. Actually, as we show in Section 3, if B is bounded,

γ(x,Bm) = (γ(x,B))m, m ∈ N, x ∈ X+, (1.12)

which implies

ro(B
m) = (ro(B))m, m ∈ N. (1.13)

The cone spectral radius and the orbital spectral radius are meaningful if B is
just positively homogeneous and bounded, but as in [31, 32] we will be mainly
interested in the case that B is also order-preserving and continuous.

The two concepts coincide for many practical purposes. Gripenberg [17], gives
an example for ro(B) < r+(B).

Theorem 1.5. Let X be an ordered normed vector with cone X+ and B : X+ → X+

be bounded, homogeneous and order-preserving.
Then r+(B) ≥ ro(B) ≥ γB(x), x ∈ X+.

Further ro(B) = r+(B) if one of the following hold:

(i) X+ is complete and normal.
(ii) B is continuous and power compact.
(iii) X+ is complete and B is continuous and additive (B(x + y) = B(x) +B(y)

for all x ∈ X+).
(iv) X+ is normal and a power of B is uniformly order-bounded.

The inequality is a straightforward consequence of the respective definitions.
For the concepts and the proof of (iv) see Section 10 and Theorem 12.10. The
conditions (ii) and (iii) have been verified in [31, Sec. 2] as has the condition (i)
under the assumption that B is continuous (the overall assumption of [31] that X
is a Banach space is not used in the proofs). Statement (i), without continuity of
B, has been proved in [17] where also the normality assumption is shifted from
the cone X+ to the map B. See Theorem 3.1 for a further step in that direction.

Under assumptions (i), (ii) and (iv), there exists some x ∈ X+ such that
r+(B) = γB(x), but only under (iv) the element x is known. See Theorems 3.1,
3.2 and 12.10.

For a bounded positive linear operator on an ordered Banach space, the spec-
tral radius and cone spectral radius coincide provided that the cone is generating
[32, Thm. 2.14]. This is not true if the cone is only total [8, Sec. 2.8].

1.2.4. Lower Collatz–Wielandt numbers. For homogeneous order-preserving B :
X+ → X+, the lower Collatz–Wielandt number of B at x ∈ Ẋ+ is defined as [16]

[B]x = sup{λ ≥ 0;B(x) ≥ λx}. (1.14)
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Since X+ is closed, [B]x ∈ R+ and it is a lower eigenvalue of B,

B(x) ≥ [B]xx, x ∈ Ẋ+. (1.15)

Lemma 1.6. Let B,C : X+ → X+ be homogeneous and order-preserving. Let

x ∈ Ẋ+. Then [CB]x ≥ [C]x[B]x.

This obvious result implies

bn+m ≥ bnbm, bn = [Bn]x, n,m ∈ N. (1.16)

The lower local Collatz–Wielandt radius of B at x ∈ Ẋ+ is defined as

ηx(B) =: sup
n∈N

[Bn]1/nx . (1.17)

This implies

ηx(B
n) ≤ (ηx(B))n, n ∈ N. (1.18)

The lower Collatz–Wielandt bound is defined as

cw(B) = sup
x∈Ẋ+

[B]x = sup{λ ≥ 0; ∃x ∈ Ẋ+ : B(x) ≥ λx}, (1.19)

and the Collatz–Wielandt radius of B is defined as

rcw(B) = sup
x∈Ẋ+

ηx(B). (1.20)

From the definitions, cw(B) ≤ rcw(B) and, by (1.18),

rcw(B
n) ≤ (rcw(B))n, n ∈ N. (1.21)

A homogeneous, bounded, order-preserving map B : X+ → X+ is also
bounded with respect to the monotone companion norm and �B�+ ≤ ‖B‖+. See
Section 5. So we can define the companion cone spectral radius, r�+(B), and the

companion orbital spectral radius, r�o(B), in full analogy to (1.8) and (1.10). If X+

is normal (and the original and the companion norm are equivalent), the compan-
ion radii coincide with the original ones.

The monotonicity of the companion norm makes it possible to connect the
Collatz–Wielandt radius and the other spectral radii by inequalities (Section 8).

Theorem 1.7. Let B : X+ → X+ be homogeneous, bounded, and order-preserving.
Then

cw(B) ≤ rcw(B) ≤ r�o(B) ≤
{

ro(B)

r�+(B)

}
≤ r+(B).

If X+ is complete (with respect to the original norm), then r�+(B) ≤ ro(B).

If B is also compact, the following progressively more general results have
been proved over the years which finally lead to an extension of the Krein–Rutman
theorem from linear to homogeneous maps.
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Theorem 1.8. Let B be compact, continuous, homogeneous and order-preserving
and let r be any of the numbers cw(B), rcw(B), r+(B). Then, if r > 0, there exists

some v ∈ Ẋ+ with B(v) = rv. More specifically,

r = cw(B) : Krein–Rutman 1948 [27],
r = rcw(B) : Krasnosel’skii 1964 [24, Thm. 2.5],
r = r+(B) : Nussbaum 1981 [34], Lemmens Nussbaum [30].

Actually, if r = r+(B), then cw(B) = rcw(B) = r+(B).

A proof for r = cw(B) can also been found in [9]. [24, Thm. 2.5] is only
formulated for the case that B is defined and linear on X , but the proof also
works under the assumptions made above. The case r = rcw(B) can also been
found in [34, Cor. 2.1]. The case r = r+(B) is basically proved in [34, Thm. 2.1],
but some finishing touches are contained in the introduction of [30]. If B(v) = rv

with v ∈ Ẋ+ and r = r+(B), then r ≤ [B]v ≤ cw(B) and equality of all three
numbers follows.

It is well known that the compactness of B can be substantially relaxed
though not completely dropped if B is linear [34]. This is also possible (to a lesser
degree) if B is just homogeneous using homogeneous measures of noncompactness
[31, 32]. We only mention two special cases of [31, Thm. 3.1] and [32, Thm. 4.9],
respectively.

Theorem 1.9. Let X+ be complete. Let B : X+ → X+ and B = K + H where
K : X+ → X+ is homogeneous, continuous, order-preserving and compact and
H : X+ → X+ is homogeneous, continuous, and order-preserving.

Then there exists some v ∈ Ẋ+ with B(v) = r+(B)v if r+(B) > 0 and one
of the two following conditions is satisfied in addition:

(a) H is Lipschitz continuous on X+, ‖H(x)−H(y)‖ ≤ Λ‖x− y‖ for all x, y ∈
X+, with Λ < r+(B).

(b) X+ is normal, H is cone-additive (H(x+y) = H(x)+H(y) for all x, y ∈ X+),
and r+(H) < r+(B).

The following observation is worth mentioning [25, Thm. 9.3] [35, Thm. 2.2].

Proposition 1.10. Let B : X+ → X+ be positively linear, i.e., B(αx+y) = αB(x)+

B(y) for all x, y ∈ X+ and α ≥ 0. If r > 0, w ∈ Ẋ+, m ∈ N and Bm(w) = rmw,

then B(v) = rv for some v ∈ Ẋ+.

Simply set

v =
m−1∑
j=10

r−jBj(w). (1.22)

It seems to be an open problem (with a beer barrel scent [33, 47]) whether any
of the results in Theorem 1.8 holds if B2 or some higher power of B is compact
rather than B itself. For additional conditions to make such a result hold, see [1,
Thm. 7.3], conditions (i) and (iii), and [42, Sec. 7].

The construction in (1.22) can be modified to yield the following result.
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Proposition 1.11. Let X+ be a sup-semilattice and B : X+ → X+ be homogeneous

and order-preserving. If r > 0, w ∈ Ẋ+, m ∈ N and Bm(w) ≥ rmw, then B(v) ≥
rv for some v ∈ Ẋ+.

This time, choose v as in the proof of [1, Thm. 5.1],

v =
m−1∨
j=0

r−jBj(w). (1.23)

Notice that the number r in Proposition 1.11 satisfies r ≤ [B]v ≤ cw(B).
This observation provides conditions for equality to hold in Theorem 1.7. In

order not to burden our representation with technical language or a list of various
special cases and to include possible further developments, we make the following
definition.

Definition 1.12. A homogeneous bounded map B : X+ → X+ has the KR property

(the Krein–Rutman property) if there is some v ∈ Ẋ+ with B(v) = r+(B)v
whenever r+(B) > 0.

B has the lower KR property if there is some v ∈ Ẋ+ with B(v) ≥ r+(B)v
whenever r+(B) > 0.

The maps in Theorem 1.9 are examples that satisfy the KR property while
power-compact, homogeneous, order-preserving, continuous maps on sup-semi-
lattices are examples that satisfy the lower KR property (Proposition 1.11). B :
X+ → X+ is called power-compact if Bm is compact for some m ∈ N.

We emphasize the lower KR property in addition to the KR property because
of our interest in population dynamics. If B is the homogeneous first order approx-
imation of a nonlinear map F at 0, the condition r+(B) < 1 is often enough to
guarantee the local (and some sometime the global) stability of 0 for the dynamical
system induced by F whether or not r+(B) is an eigenvalue associated with a pos-
itive eigenvector. To prove persistence of the dynamical system, it is very helpful
to have a positive lower eigenvector B(v) ≥ rv with r > 1 [21, 22, 23]. So the lower
KR property of B (more generally the equality cw(B) = r+(B)) guarantees r+(B)
to be a sharp threshold parameter that separates local stability of the extinction
equilibrium 0 from persistence of the population. It should be mentioned that the
KR property only refers to one part of the Krein–Rutman theorem, the existence
of an eigenvector associated with the cone spectral radius. As for the existence of
a homogeneous order-preserving eigenfunctional, see [42, 44].

The lower KR property turns some of the inequalities in Theorem 1.7 into
equalities.

Theorem 1.13. Let B be bounded, homogeneous, order-preserving and Bm have the
lower KR property for some m ∈ N. Then

rcw(B) = r�o(B) = r�+(B) = ro(B) = r+(B).

If X+ is a sub-semilattice or m = 1, then also cw(B) = r+(B) and B has the
lower KR property.
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The significance of cw(B) = r+(B) is that the lower Collatz–Wielandt num-
bers [B]x provide lower estimates for r+(B) that get arbitrarily sharp by choosing

x ∈ Ẋ+ in the right way. See Section 14 for attempts in that direction for a
rank-structured population model with mating.

Proof. The equalities follow from Theorem 1.7 if r+(B) = 0. So we can assume
that r+(B) > 0. If B has the lower KR property, it follows immediately from the
definitions that r+(B) ≤ cw(B) and equality follows from Theorem 1.7. If Bm has
the lower KR property, by (1.11) and (1.21),

(r+(B))m = r+(B
m) ≤ cw(Bm) ≤ rcw(B

m) ≤ (rcw(B))m,

and the equalities follow again from Theorem 1.7. If r = r+(B) > 0, there exists

some w ∈ Ẋ+ with Bm(w) ≥ rmw. By Proposition 1.11, B(v) ≥ rv for some

v ∈ Ẋ+ and r ≥ cw(B). �

The following monotone dependence of the various spectral radii on the map
can be shown without assuming normality of the cone.

Theorem 1.14. Let A,B : X+ → X+ be bounded and homogeneous. Assume that
A(x) ≤ B(x) for all x ∈ X+.

If A is order-preserving and has the lower KR property, then r+(A) = cw(A) ≤
cw(B).

1.2.5. Upper Collatz–Wielandt numbers. For x ∈ Ẋ+, the upper Collatz–Wielandt
numbers of B at x [16] is defined as

‖B‖x = inf{λ ≥ 0;B(x) ≤ λx},

with the convention that inf ∅ = ∞, and the local upper Collatz–Wielandt radius
ηu(B) at u ∈ Ẋ+ as

ηu(B) = inf
n∈N

‖Bn‖1/nu .

Collatz–Wielandt numbers, without this name, became more widely known when
Wielandt used them for a new proof of the Perron–Frobenius theorem [49]. We
will use them closer to Collatz’ original purpose proving inclusion theorems (Ein-
schließungssätze) for r+(B) which generalize those in [10, 11].

If the cone X+ is solid, with nonempty interior X̆+, one can define an upper
Collatz–Wielandt bound (cf. [1, Sec. 7]) by

CW (B) = inf
x∈X̆+

‖B‖x.

These new numbers, bound, and radius relate to the former bounds and radii in the
following way and show that upper Collatz–Wielandt numbers taken at interior
points provide upper estimates of the cone spectral radius. For this exposé, we
illustrate our results for the special case of a solid cone.
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Theorem 1.15. Let X+ be solid with nonempty interior X̆+ and B : X+ → X+ be

homogeneous, bounded and order-preserving. Then, for all u ∈ X̆+,

γB(u) = lim
n→∞ ‖B

n(u)‖1/n, ηu(B) = lim
n→∞ ‖B

n‖1/nu ,

and

cw(B) ≤ rcw ≤ r�+(B) ≤ ηu(B) ≤
{

γu(B),

CW (B).

We obtain some equalities in the following cases.

• If X+ is normal, r+(B) = γu(B) = ηu(B) ≤ CW (B) for all u ∈ X̆+.
• If Bm has the lower KR property for some m ∈ N, rcw(B) = r+(B) =

γu(B) = ηu(B) ≤ CW (B) for all u ∈ X̆+.
• If B has the lower KR property, cw(B) = rcw(B) = r+(B) = γu(B) =

ηu(B) ≤ CW (B) for all u ∈ X̆+.

Notice that the equality r+(B) = γu(B) = limn→∞ ‖Bn(u)‖1/n means that
the cone spectral radius can be determined by following the growth factors of an

arbitrarily chosen u ∈ X̆+.

The estimates from above by upper Collatz–Wielandt numbers ‖B‖u with

u ∈ X̆+ can be arbitrarily sharp by appropriate choice of u if the map is compact.
The next result should be compared to [1, Thm. 7.3]. Notice that CW (B) here is
cw(B) in [1, Thm. 7.3]. Use of the companion half-norm makes it possible to drop
the normality of the cone.

Theorem 1.16. Let X+ be solid and complete. Let B : X+ → X+ and B = K +A
where K : X+ → X+ is homogeneous, continuous, order preserving and compact
and A : X → X is linear, positive, and bounded and r(A) < r+(B).

Then cw(B) = rcw(B) = r+(B) = γB(u) = ηu(B) = CW (B) for all u ∈ X̆+.

If r = CW (B) > 0, then there exists some v ∈ Ẋ+ such that B(v) = rv.

The equality r+(B) = CW (B) has also been established in [28, Thm. 4.6] for

B : X̆+ → X̆+ without any compactness assumption for B and without normality
of the cone.

In Section 12, we prove more general versions of these theorems replacing
solidity of the cone by uniform order-boundedness of the map.

Using the monotone companion half-norm, we show for certain classes of
homogeneous maps B for which it is not clear whether they have the lower KR
property that there is some v ∈ Ẋ+ such that Bv ≥ rv for r = ηu(B) provided
that r > 0 (Section 13).

In Section 14, we illustrate some of our results in a discrete model for a
rank-structured population with mating.

A preliminary version of this paper has been posted on arXiv under a slightly
different title [43].
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2. More about cones

The cone X+ of an ordered normed vector space is called regular if any decreasing
sequence in X+ converges. X+ is called fully regular if any increasing bounded
sequence in X+ converges.

The norm of X is called additive on X+ if ‖x + z‖ = ‖x‖ + ‖z‖ for all
x, z ∈ X+. If the norm is additive, then the cone X+ is normal.

2.1. Normal cones

The following result is well known [24, Sec. 1.2].

Theorem 2.1. The following three properties are equivalent:

(i) X+ is normal: There exists some δ > 0 such that ‖x + z‖ ≥ δ whenever
x ∈ X+, z ∈ X+ and ‖x‖ = 1 = ‖z‖.

(ii) The norm is semi-monotonic: There exists some M ≥ 0 such that ‖x‖ ≤
M‖x+ z‖ for all x, z ∈ X+.

(iii) There exists some M̃ ≥ 0 such that ‖x‖ ≤ M̃‖y‖ whenever x ∈ X, y ∈ X+,
and −y ≤ x ≤ y.

Remark 2.2. If X+ were just a wedge, property (iii) would be rewritten as

There exists some M̃ ≥ 0 such that ‖x‖ ≤ M̃‖y‖ whenever x ∈ X ,
y ∈ X+, and y + x ∈ X+, y − x ∈ X+.

Notice that this property implies that X+ is cone: If x ∈ X+ and −x ∈ X+, then

0 + x ∈ X+ and 0− x ∈ X+ and (iii) implies ‖x‖ ≤ M̃‖0‖ = 0.

Definition 2.3. An element u ∈ X+ is called a normal point of X+ if the set
{‖x‖;x ∈ X+, x ≤ u} is a bounded subset of R; u ∈ X+ is called a regular point of
X+ if every monotone sequence (xn) in X+ with xn ≤ u for all n ∈ N converges.

Each regular point in X+ is a normal point [44]. The following is proved in
[25, Thm. 4.1].

Theorem 2.4. Let X be an ordered normed vector space with cone X+. If X+ is
a normal cone, then all elements of X+ are normal points and all sets {‖x‖ ∈
X ;u ≤ x ≤ v} with u, v ∈ X, u ≤ v, are bounded subsets of R.

If all elements of X+ are normal points and X+ is complete or fully regular,
then X+ is a normal cone.

Proof. The first statement is obvious. Assume that X+ is not a normal cone but
complete or fully regular. Then there exist sequences (xn) and (yn) in X+ such
that xn ≤ yn and ‖xn‖ ≥ 4n‖yn‖ for all n ∈ N. Set vn = yn

2n‖yn‖ and un = xn

2n‖yn‖ .
Then un ≤ vn and ‖vn‖ ≤ 2−n and ‖un‖ ≥ 2n. Since X+ is complete or fully
regular, the series v =

∑∞
n=1 vn converges in X+ and un ≤ v for all n ∈ N. So v is

not a normal point. �

Completeness or full regularity of X+ are necessary for the normality of X+

as shown by the forthcoming Example 2.11. Connections between completeness,
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normality, regularity and full regularity of cones are spelt out in the next result.
The proofs in [24, 1.5.2] and [24, 1.5.3] only need completeness of X+.

Theorem 2.5. Let X be an ordered normed vector space with cone X+.

(a) If X+ is complete and regular, then X+ is normal.
(b) If X+ is complete and fully regular, then X+ is normal.
(c) If X+ is normal and fully regular, then X+ is regular.
(d) If X+ is complete and fully regular, then X+ is regular.

Theorem 2.6. Let X be an ordered normed vector space with cone X+. If X+ is
complete with additive norm, then X+ is fully regular.

Proof. Let (xn) be an increasing sequence in X+ such that there is some c > 0
such that ‖xn‖ ≤ c for all n ∈ N . Define yn = xn+1 − xn. Then yn ∈ X+ and, for
m ≥ j,

∑m
k=j yn = xm+1 − xj . Since the norm is additive on X+,

m∑
k=1

‖yn‖ =
∥∥∥∥ m∑
k=1

yn

∥∥∥∥ = ‖xm+1 − x1‖ ≤ 2c, m ∈ N.

So (xn) is a Cauchy sequence in the complete cone X+ and converges. �

The cones of nonnegative functions of the Banach spaces Lp(Ω), 1 ≤ p <∞,
are regular and completely regular, while the cones of BC(Ω), the Banach space of
bounded continuous functions, and of L∞(Ω) are neither regular nor completely
regular. The cone of nonnegative measures in the Banach spaces of signed measures
is fully regular because the norm is additive on the cone. All these cones are normal
and generating. Forthcoming examples will present a cone that is regular, but
neither completely regular, normal, nor complete.

2.2. An example where the cone is not normal: The space of sequences
of bounded variation

Recall the Banach sequence spaces �∞, c, c0 of bounded sequences, converging se-
quences and sequences converging to 0 with the supremum norm and the space
�1 of summable sequences with the sum-norm. The cones of c0 and �1 are regular
(and thus normal), and the cones of �∞ and c are solid and normal.

The subsequent example for an ordered Banach space whose cone is not
normal follows a suggestion by Wolfgang Arendt. A sequence (xn) in RN is called
of bounded variation if the following series converges

|x1|+
∞∑
n=1

|xn+1 − xn| =: ‖(xn)‖bv. (2.1)

The sequences of bounded variation form a vector space, bv, over R with ‖ · ‖bv
being a norm called the variation-norm [14, IV.2.8]. Notice

�1 ⊆ bv ⊆ c,

{ ‖x‖∞ ≤ ‖x‖bv, x ∈ bv,

‖x‖bv ≤ 2‖x‖1, x ∈ �1.
(2.2)
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Lemma 2.7. bv with the variation-norm is a Banach space.

This is easily seen from (2.2) and the fact that �∞ is complete under the
sup-norm. Notice that bv contains all constant sequences and ‖(xn)‖bv = |x1| =
‖(xn)‖∞ if (xn) is a constant sequence. Actually, all monotone bounded nonneg-
ative sequences are of bounded variation.

Lemma 2.8. If (xn) is a nonnegative bounded increasing sequence, then (xn) is of
bounded variation and ‖(xn)‖bv = ‖(xn)‖∞ = limn→∞ xn.

If (xn) is a nonnegative decreasing sequence, then (xn) is of bounded variation
and ‖(xn)‖bv = 2x1 − limn→∞ xn.

There are several cones we can consider in bv. The one we are going to consider
here is the cone of nonnegative sequences of bounded variation, bv+. Others are
the cone of nonnegative bounded increasing sequences and the cone of nonnegative
decreasing sequences.

Proposition 2.9. bv+ is generating, solid, but not normal (and not regular and not
fully regular). X is a lattice and the lattice operations are continuous. If x = (xj),
then |x| = (|xj |) ∈ bv and

∥∥|x|∥∥
bv
≤ ‖x‖bv with strict inequality being possible.

Every monotone nonnegative sequence that is bounded away from zero is in
the interior of bv+ as can be seen from (2.2). The space of Lipschitz continuous
functions with Lipschitz norm is an example of an ordered normed vector space
and lattice where the cone of nonnegative functions is not normal and the lattice
operations are not continuous [31, p. 535].

That bv+ is not normal follows from the following result that characterizes
the normal points. Since bv+ is complete, bv+ is then also not regular and not fully
regular (Theorem 2.5).

Theorem 2.10. The following are equivalent for x = (xn) ∈ bv+: (i) x is a normal
point, (ii) x ∈ �1, (iii) x is a regular point. If x ∈ �1, then

‖x‖1 − (1/2)x1 ≤ sup{‖v‖bv; v ∈ bv+, x− v ∈ bv+} ≤ 2‖x‖1.

Proof. Assume that x = (xn) ∈ bv+ is a normal element. Let y be the sequence
(x1, 0, x3, 0, x5, . . .). Then 0 ≤ y ≤ x and y ∈ bv and ‖y‖bv = |x1|+2

∑∞
j=1 |x2j+1|.

Further let z be the sequence (0, x2, 0, x4, 0, . . .). Then 0 ≤ z ≤ x and z ∈ bv and
‖z‖bv = 2

∑∞
j=1 ‖x2j‖. Hence x ∈ �1 and

2‖x‖1 − x1 = ‖y‖bv + ‖z‖bv ≤ 2 sup{‖v‖bv; 0 ≤ v ≤ x} ≤ 4‖x‖1.
Now let x = (xj) ∈ �1 and (xn) be a monotone sequence in �1+ with xn ≤ x,

xn = (xn
j )j∈N. Then xn

j ≤ xj for all j, n ∈ N and all sequences (xn
j )n∈N are

monotone. So there exists some y = (yj) in �1+ such that, for each j ∈ N, xn
j → yj

as n → ∞, y ≤ x. By the dominated convergence theorem, xn → y in �1 and so
also in bv. Recall (2.2).

It is a general fact that each regular point is a normal point [44]. �
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Example 2.11 (Wolfgang Arendt). The cone �1+ in �1 with the variation norm is

not normal though all points in �1+ are normal elements. It is regular, but not fully
regular.

Proof. Let xm be the sequence where xm
j = 0 for j > 2m, xm

j = 0 for all odd
indices and xm

j = 1 otherwise. Let um be the sequence where um
j = 0 for j > 2m

and um
j = 1 otherwise. Then ‖um‖bv = 2 and ‖xm‖bv = 2m. For all m ∈ N,

xm ≤ um but ‖xm‖bv = m‖um‖bv. So �1+ is not normal under the variation norm.
Theorem 2.4 implies that �1+ is not fully regular under the variation norm. Let
(xn) be a decreasing sequence in �1+. Since �1+ is regular under the sum-norm,

there exists some x ∈ �1+ with ‖xn − x‖1 → 0. By (2.2), ‖xn − x‖bv → 0. �

2.3. A convergence result

The following convergence principle, which has been distilled from the proof of [1,
Thm. 5.2], will be applied several times.

Proposition 2.12. Let X be an ordered normed vector space. Let S ⊆ XN be
a set of sequences with terms in X with the property that with (xn) ∈ S also
all subsequences (xnj ) ∈ S. Assume that every increasing (decreasing) sequence
(xn) ∈ S has a convergent subsequence. Then every increasing (decreasing) se-
quence (xn) ∈ S converges.

Proof. Let (xn) ∈ S be increasing (the decreasing case is similar). Then there exist
a subsequence (xnj ) and some x ∈ X such that xnj → x. Suppose that (xn) does
not converge to x. Then there exist some ε > 0 and a strictly increasing sequence
(ki) in N such that ‖xki − x‖ ≥ ε for all i ∈ N. By assumption, (xki) ∈ S; further
it is an increasing sequence. So, after choosing a subsequence, xki → y for some
y �= x. Fix nj . If i is sufficiently large, ki ≥ nj and xnj ≤ xki . Taking the limit
i → ∞ yields xnj ≤ y because the cone is closed. Now we let j → ∞ and obtain
x ≤ y. By symmetry, y ≤ x, a contradiction. �

3. More on cone and local spectral radii

Let B : X+ → X+ be homogeneous and bounded, and x ∈ X+. We prove (1.12),
γ(x,Bm) = (γ(x,B))m for all m ∈ N.

From the properties of the limit superior,

γ(x,Bm) = lim sup
k→∞

‖(Bm)k(x)‖1/k = lim
j→∞

sup
k≥j
‖Bmk(x)‖m/(mk)

≤ lim
j→∞

sup
n≥mj

(‖(Bn(x)‖1/n)m =
(
lim sup
n→∞

‖(Bn(x)‖1/n
)m

= (γ(x,B))m.

To prove the opposite inequality, suppose that γ(x,Bm) < (γ(x,B))m. Then
there exists some s ∈ (0, 1) such that γ(x,Bm) < sm(γ(x,B))m. By definition
of γ(x,Bm), there exists some N ∈ N such that

‖Bmn(x)‖1/(mn) < sγ(x,B), n ≥ N. (3.1)
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Choose a sequence (kj) in N such that kj → ∞ and ‖Bkj (x)‖1/kj → γ(x,B).
Then there exist sequences nj and pj such that nj → ∞ and 0 ≤ pj < m and
kj = mnj + pj . By (1.7),

‖Bkj (x)‖1/kj ≤ ‖Bpj‖1/kj

+ ‖Bmnj (x)‖1/kj .

By the properties of the limit superior,

γ(x,B) ≤ lim sup
j→∞

(‖Bpj‖1/kj

+ ) lim sup
j→∞

(‖Bmnj (x)‖1/(mnj))(kj−pj)/kj .

By (3.1) and pj/kj → 0,

γ(x,B) ≤ lim sup
j→∞

(sγ(x,B))(kj−pj)/kj

≤ lim sup
j→∞

(sγ(x,B))1−(pj/kj) = sγ(x,B),

a contradiction.
The next results revisit conditions that imply the equality of cone and orbital

spectral radius [17, 31] stressing the point that the cone spectral radius equals one
of the local spectral radii (geometric growth factors).

Theorem 3.1. Let X be an ordered normed vector space with complete cone X+.
Let B : X+ → X+ be homogeneous, bounded, and order-preserving and satisfy
the following normality condition: There exist some m ∈ N and c > 0 such that
‖Bm(x)‖ ≤ c‖Bm(y)‖ for all x, y ∈ X+ with x ≤ y. Then there exists some
x ∈ X+ such that r+(B) = γB(x) = ro(B) = limk→∞ ‖Bk(x)‖1/k.

Since B is order-preserving, the normality condition for B is weaker than
condition (iv) in [17, Thm. 2.1] (there are m ∈ N and c > 0 such that ‖x‖ ≤ c‖y‖
for all x, y ∈ Bm(X+) with x ≤ y). The proof remains almost the same, but
requires a modification. Since it is not too long, we give it here for the ease of the
reader.

Proof. We can assume that r+(B) > 0. For each k ∈ N, there exists some xk ∈ X+

with ‖xk‖ = 1 and ‖Bk‖+ ≤ k+1
k ‖Bk(xk)‖. Since X+ is complete, the series

x =
∑∞

k=1 k
−2xk converges and x ∈ X+. Since B is order-preserving and xk ≤ k2x,

Bj(xk) ≤ Bj(k2x), j ∈ Z+.

For k ≥ m,

Bk(xk) = Bm(yk), Bk(k2x) = Bm(zk),

yk := Bk−m(xk) ≤ Bk−m(k2x) =: zk.

By the normality condition for B, ‖Bk(xk)‖ ≤ c‖Bk(k2x)‖ for k ≥ m. Since B is
homogeneous,

‖Bk‖+ ≤
k + 1

k
‖Bk(xk)‖ ≤ c

k + 1

k
k2‖Bk(x)‖, k > m.
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So

r+(B) ≤ lim inf
k→∞

(
[c(k + 1)k]1/k‖Bk(x)‖1/k

)
= lim inf

k→∞
‖Bk(x)‖1/k.

Since lim supk→∞ ‖Bk(x)‖1/k ≤ r+(B), r+(B) = limk→∞ ‖Bk(x)‖1/k. �

We combine ideas from [31, Thm. 2.3] and [17, Thm. 2.1] to obtain the same
result for compact continuous B.

Theorem 3.2. Let X be an ordered normed vector space with cone X+. Let B :
X+ → X+ be homogeneous, continuous, order-preserving, and power compact.
Then there exists some x ∈ X+ such that

r+(B) = ro(B) = γB(x) = lim
k→∞

‖Bk(x)‖1/k.

Proof. Suppose lim infk→∞ ‖Bk(x)‖1/k < r+(B) for all x ∈ X+ Since B is homo-
geneous, we can scale B such that r+(B) = 1 > lim infk→∞ ‖Bk(x)‖1/k for all
x ∈ X+. By (1.12) and (1.11), we can assume that B is compact.

For each k ∈ N, there exists some xk ∈ X+ with ‖xk‖ = 1 and ‖Bk‖+ = 1 ≤
k+1
k ‖Bk(xk)‖.

We define yk =
∑k

j=1 j
−2xj , k ∈ N. Then (yk) is an increasing bounded

sequence in X+. Since B is compact and order-preserving, B(yk) → x ∈ X+ as
k →∞ and B(yk) ≤ x for all k ∈ N. Since B is order-preserving and homogeneous
and xk ≤ k2yk,

Bk(xk) ≤ k2Bk(yk) ≤ k2Bk−1(x), k ∈ N.

Since lim infk→∞ ‖Bk(x)‖1/k < 1, there exists a strictly increasing sequence (ki) in
N such that k2iB

ki−1(x)→ 0 as i→∞. By the proof of [31, Thm. 2.3], {Bk(xk); k ∈
N} has compact closure and, after choosing another subsequence, Bki(xki) → z
for some z ∈ X+. On the one hand, ‖z‖ ≥ 1, and on the other hand, since the
cone is closed, z = 0, a contradiction. So r+(B) ≤ lim infk→∞ ‖Bk(x)‖1/k. Since
lim supk→∞ ‖Bk(x)‖1/k ≤ r+(B), the assertion follows. �

It is worth mentioning that a normality condition as in Theorem 3.1 makes
order-preserving homogeneous maps bounded. In fact, the normality condition can
be weakened.

Definition 3.3. Let u ∈ Ẋ+ and B : X+ → X+ be homogeneous. Then u is called
a normal point for B if there exists some c = cu > 0 such that ‖B(x)‖ ≤ c for all
x ∈ X+ with x ≤ u.

Notice that u is a normal point for B if B is order-preserving and B(u) is a
normal point of X+.

Theorem 3.4. Let X be an ordered normed vector space with complete cone X+.
Let B : X+ → X+ be homogeneous and assume that every point in X+ is a normal
point for B. Then B is bounded.
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Proof. Suppose that B is not bounded. There there exists a sequence (xn) in X+

such that ‖xn‖ = 1 and ‖B(xn)‖ ≥ n4 for all n ∈ N. Since X+ is complete, the
series u =

∑∞
n=1 n

−2xn converges. For all n ∈ N, n−2xn ≤ u; by assumption, u
is a normal point for B. So there exists some c > 0 such that c ≥ ‖B(n−2xn)‖ =
n−2‖B(xn)‖ ≥ n2, a contradiction. �

Normal points for B (or rather powers of B) will return in Section 12.

4. Monotone companion norm and half-norm

Every ordered normed vector space carries an order-preserving half-norm which
we call the (monotone) companion half-norm (called the canonical half-norm in
[2]).

Proposition 4.1 (cf. [2], [25, (4.2)], [9, L.4.1]). We define the (monotone) companion
half-norm ψ : X → R+ by

ψ(x) = inf{‖x+ z‖; z ∈ X+} = d(x,−X+) (4.1)

= inf{‖y‖;x ≤ y ∈ X}, x ∈ X. (4.2)

Then the following hold:

(a) ψ is positively homogenous and order-preserving on X.
(b) ψ is subadditive on X (ψ(x + y) ≤ ψ(x) + ψ(y), x, y ∈ X),

|ψ(x)− ψ(y)| ≤ ‖x− y‖, x, y ∈ X.

(c) For x ∈ X, ψ(x) = 0 if and only if x ∈ −X+. In particular ψ is strictly

positive: ψ(x) > 0 for all x ∈ Ẋ+.
(d) X+ is normal if and only if there exists some δ > 0 such that δ‖x‖ ≤ ψ(x)

for all x ∈ X+.
(e) If the original norm ‖ · ‖ is order-preserving on X+, then ‖x‖ = ψ(x) for all

x ∈ X+.

Here d(x,−X+) denotes the distance of x from −X+.

Proof. The functional ψ inherits positive homogeneity from the norm. That ψ is
order-preserving is immediate from (4.2). For all x ∈ X , x ≤ x and so ‖x‖ ≥ ψ(x).

Most of the other properties follow from (4.1) and the assumption that X+

is a cone. Since ψ is subadditive,

|ψ(x) − ψ(y)| ≤ ψ(x− y) ≤ ‖x− y‖.
If −x ∈ X+, then x ≤ 0 and ψ(x) ≤ ‖0‖ = 0.

Assume that x ∈ X and ψ(x) = 0. By definition, there exists a sequence (yn)
in X with ‖yn‖ → 0 and yn ≥ x for all n ∈ N. Then yn − x ∈ X+. Since X+ is
closed, −x = limn→∞(yn − x) ∈ X+.

The strict positivity of ψ follows from X+ ∩ (−X+) = {0}.
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(d) Assume that X+ is normal. By Theorem 2.1 (ii), there exists some c > 0
such that ‖x‖ ≤ c‖y‖ whenever x, y ∈ X+ and x ≤ y. Hence ‖x‖ ≤ cψ(x) for all
x ∈ X+. Set δ = 1/c.

The converse follows from ψ being order-preserving and ψ(x) ≤ ‖x‖ for all
x ∈ X+. �

The functional ψ induces a monotone norm on X which is equivalent to the
original norm if and only if X+ is a normal cone.

Theorem 4.2 (cf. [25, Thm. 4.4]). With ψ from Proposition 4.1, define

�x� = max{ψ(x), ψ(−x)}, x ∈ X.

Then � · � is a norm on X with the following properties.

• �x� ≤ ‖x‖ for all x ∈ X, �x� = ψ(x) if x ∈ X+, and �x� = ψ(−x) if −x ∈ X+.
• � · � is order-preserving on X+: �x� ≤ �y� for all x, y ∈ X+ with x ≤ y.
Moreover, for all x, y, z ∈ X with x ≤ y ≤ z,

�y� ≤ max{�x�, �z�}. (4.3)

• X+ is a normal cone if and only if the norm � · � is equivalent to the original
norm.

• If the original norm ‖ · ‖ is order-preserving on X+, then ‖x‖ = �x� for all
x ∈ X+ ∪ (−X+).

Proof. It is easy to see from the properties of ψ that �αx� = |α|�x� for all α ∈ R,
x ∈ X , and that � · � is subadditive. Now ψ(x) ≤ ‖x‖ and ψ(−x) ≤ ‖ − x‖ = ‖x‖
and so �x� ≤ ‖x‖.

To prove (4.3), let x, y, z ∈ X and x ≤ y ≤ z. Then y ≤ z and −y ≤ −x.
Since ψ is order-preserving on X ,

ψ(y) ≤ ψ(z) ≤ �z�, ψ(−y) ≤ ψ(−x) ≤ �x�.

(4.3) now follows from the definition of ψ as do most of the remaining assertions.
That ‖ · ‖ and � · � are equivalent norms if the cone is normal is shown in [25, Thm.
4.4]. The converse follows from Theorem 2.1 (ii). �
Definition 4.3. The norm � · � is called the (monotone) companion norm on the
ordered normed vector space X .

Corollary 4.4. Let X+ be a normal cone. Then there exists some c ≥ 0 such that
‖y‖ ≤ cmax{‖x‖, ‖z‖} for all x, y, z ∈ X with x ≤ y ≤ z.

Proof. Let � · � be the monotone companion norm from Theorem 4.2, which is
equivalent to the original norm because X+ is normal. Choose c ≥ 0 such that
�x� ≤ ‖x‖ ≤ c�x� for all x ∈ X . Let x ≤ y ≤ z. By Theorem 4.2,

‖y‖ ≤ c�y� ≤ cmax{�x�, �z�} ≤ cmax{‖x‖, ‖z‖}. �
Corollary 4.5 (Squeezing theorem [25, Thm. 4.3]). Let X+ be a normal cone. Let
y ∈ X and (xn), (yn), (zn) be sequences in X with xn ≤ yn ≤ zn for all n ∈ N
and xn → y and zn → y. Then yn → y.
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Proof. Notice that xn − y ≤ yn − y ≤ zn − y. By Corollary 4.4, with some c ≥ 0
that does not depend on n,

‖yn − y‖ ≤ cmax{‖zn − y‖, ‖xn − y‖} → 0. �

Example 4.6. (a) Let X = R with the absolute value. Then the monotone compan-
ion norm is also the absolute value and the companion half-norm is the positive
part, ψ(x) = max{x, 0} for all x ∈ R.

(b) Let X = R2 with the maximum norm and X+ = R2
+. Then the monotone

companion norm is also the maximum norm.

(c) Let X = R2 with ‖ · ‖ being either the Euclidean norm or the sum norm and
X+ = R2

+. Then �x� = ‖x‖ if x ∈ X+ ∪ (−X+) while �x� is the maximum
norm of x otherwise.

Example 4.7. Let X be a normed vector lattice [39, II.5]. Since x ≤ x+, ψ(x) ≤
‖x+‖. Let x ≤ y. Then x+ ≤ y+, and ‖x+‖ ≤ ‖y+‖ ≤ ‖y‖. Hence ‖x+‖ ≤ ψ(x).
In combination,

ψ(x) = ‖x+‖, x ∈ X.

Further ψ(−x) = ‖(−x)+‖ = ‖x−‖. So

�x� = max{‖x+‖, ‖x−‖}, x ∈ X,

and �x� = ‖x‖ for all x ∈ X+ ∪ (−X+). If X is an abstract M-space [39, II.7],

�x� = ‖x+ ∨ x−‖ =
∥∥|x|∥∥ = ‖x‖.

We turn to ordered Banach space the cone of which may be not normal.

Example 4.8. Let X ⊆ X̃ where X, X̃ are ordered normed vector spaces with
norms ‖ · ‖ and ‖ · ‖∼ and ‖x‖ ≥ ‖x‖∼ for all x ∈ X . Let ψ, ψ̃ be the respective

monotone companion half-norms. Then ψ(x) ≥ ψ̃(x) for all x ∈ X .

Assume that (X̃, ‖ · ‖∼) is an abstract M-space. By the previous example,

�x� ≥ ‖x‖∼, x ∈ X.

Now assume that there exists some u ∈ X with ‖u‖ ≤ 1 and |x| ≤ ‖x‖∼u for all
x ∈ X . Then ψ(±x) ≤ ‖x‖∼ and �x� ≤ ‖x‖∼. In combination,

�x� = ‖x‖∼, x ∈ X.

Example 4.9. To determine the monotone companion (half-) norm in a concrete
case where the cone is not normal we revisit the space bv of sequences of bounded
variation with the variation-norm.

Recall that bv ⊆ �∞ and ‖x‖bv ≥ ‖x‖∞ for all x ∈ bv. �∞ is an abstract
M-space under the sup-norm. We apply the previous example with u being the
sequence all the terms of which are 1. Then ‖u‖bv = 1 and |x| ≤ ‖x‖∞u. We obtain
that �x� = ‖x‖∞ for all x ∈ bv.
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5. Order-preserving maps and the companion norm

In the following, let X and Y be ordered normed vector spaces. We use the same
symbols ‖ · ‖, ψ and � · � for the norms and the monotone companion (half-) norms
on X and Y .

Theorem 5.1. Let B : X+ → Y+ be bounded, homogeneous, and order-preserving.
Then ψ(B(x)) ≤ ‖B‖+ψ(x) for all x ∈ X+. In particular, B is bounded with
respect to the monotone companion norms and �B�+ ≤ ‖B‖+.

Proof. Since B is order-preserving, for x ∈ X+,

{y ∈ Y ;B(x) ≤ y} ⊇ {B(z);x ≤ z ∈ X+}.
By definition of ψ,

ψ(B(x)) ≤ inf{‖B(z)‖; z ∈ X+, x ≤ z} ≤ inf{‖B‖+‖z‖;x ≤ z ∈ X}
= ‖B‖+ψ(x). �

Theorem 5.2. Let B : X → Y be bounded, linear and positive. Then B is bounded
with respect to the monotone companion norm, ψ(B(x)) ≤ ‖B‖ψ(x) for all x ∈ X,
and �B� ≤ ‖B‖.

Proof. By a similar proof as for Theorem 5.1, since B is order-preserving, ψ(B(x))
≤ ‖B‖ψ(x) for all x ∈ X and ψ(−B(x)) = ψ(B(−x)) ≤ ‖B‖ψ(−x). The assertion
now follows from �x� = max{ψ(x), ψ(−x)}. �

Various concepts of continuity are preserved if one switches from the original
norm to the monotone companion norm. We only look at the most usual concept
here.

Proposition 5.3. Let B : X → Y be order-preserving and continuous at x with
respect to the original norms. Then B is continuous at x with respect to the mono-
tone companion norms.

Proof. Let x ∈ X and B be continuous at x. Let y ∈ X as well. For any z ≥ y−x,
z ∈ X , we have

B(y)−B(x) = B(x+ y − x)−B(x) ≤ B(x+ z)−B(x).

By definition of the monotone companion half-norm,

ψ(B(y)−B(x)) ≤ ‖B(x+ z)−B(x)‖, y − x ≤ z ∈ X.

Let ε > 0. Then there exists some δ+ > 0 such that ‖B(x + z) − B(x)‖ < ε for
all z ∈ X , ‖z‖ < δ+. Now let y ∈ X and ψ(y − x) < δ+. Then there exists some
z ∈ X such that y − x ≤ z and ‖z‖ < δ+. Then ‖B(x + z) − B(x)‖ < ε and
ψ(B(y)−B(x)) < ε.

Also, for any z ∈ X with x− y ≤ z, we have

B(x) −B(y) = B(x)− B(x− (x− y)) ≤ B(x) −B(x− z).
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By definition of the monotone companion half-norm

ψ(B(x) −B(y)) ≤ ‖B(x)−B(x− z)‖, z ∈ X, x− y ≤ z.

Let ε > 0. Then there exists some δ− > 0 such that ‖B(x) − B(x − z)‖ < ε for
all z ∈ X , ‖z‖ < δ−. Now let y ∈ Y and ψ(x − y) < δ−. Then there exists some
z ∈ X such that x− y ≤ z and ‖z‖ = ‖ − z‖ < δ−. Thus ψ(B(x) −B(y)) < ε.

Set δ = min{δ+, δ−} and �y−x� < δ. Then ψ(±(y−x)) < δ± and ψ(±(B(y)−
B(x)) < ε. This implies �B(y)−B(x)� < ε. �

Proposition 5.4. Let φ : X+ → R+ be homogeneous.

(a) If φ is bounded with respect to the monotone companion norm, then it is
bounded with respect to the original norm and ‖φ‖+ ≤ �φ�+.

(b) If φ is order-preserving and bounded with respect to the original norm, then it
is bounded with respect to the monotone companion norm and ‖φ‖+ = �φ�+.
Further φ(x) ≤ ψ(x)‖φ‖+ for all x ∈ X+.

Proof. (a) Let x ∈ X+. Since φ is bounded with respect to the monotone compan-
ion norm,

φ(x) ≤ �φ�+ � x� ≤ �φ�+ ‖x‖.
(b) This follows from part (a) and Theorem 5.1. �

Proposition 5.5. Let φ : X → R be linear.

(a) If φ is bounded with respect to the monotone companion norm, then it is
bounded with respect to the original norm and ‖φ‖ ≤ �φ�.

(b) If φ is positive and bounded with respect to the original norm, then it is
bounded with respect to the monotone companion norm and ‖φ‖ = �φ� and
φ(x) ≤ ‖φ‖ψ(x) for all x ∈ X.

Proof. (a) The proof is similar to the one for Proposition 5.4.
(b) follows from part (a) and Theorem 5.2 and the fact that the monotone

half-norm on R is given by the positive part. �

LetX∗
+ be the dual wedge of positive linear functionals onX that are bounded

with respect to the original norm ‖·‖. By Proposition 5.5,X∗
+ is also the dual wedge

of linear functions that are bounded with respect to the monotone companion norm
� · �. The respective norms induced on X∗ are the same on X∗

+.

Proposition 5.6. Let x ∈ X. Then there exists x∗ ∈ X∗
+ such that x∗x = ψ(x) and

‖x∗‖ = �x∗� ≤ 1. If x ∈ X+, ‖x∗‖ = 1 can be achieved. Actually,

ψ(x) = max{x∗x;x∗ ∈ X∗
+, ‖x∗‖ ≤ 1}, x ∈ X,

ψ(x) = max{x∗x;x∗ ∈ X∗
+, ‖x∗‖ = 1}, x ∈ X+.

(5.1)

Further [25, (4.3)], for all x ∈ X,

�x� = max{|x∗x|;x ∈ X∗
+, ‖x∗‖ = 1} = max{|x∗x|;x ∈ X∗

+, ‖x∗‖ ≤ 1}. (5.2)
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Proof. Recall that X∗
+ and its norm do not depend on whether we consider X with

the original norm or its monotone companion norm (Proposition 5.5).
Let u ∈ X . By [50, IV.6], we find x∗ ∈ X∗ with x∗u = ψ(u) and

−ψ(−x) ≤ x∗x ≤ ψ(x), x ∈ X,

and so

|x∗x| ≤ �x� ≤ ‖x‖, x ∈ X.

Since ψ(−x) = 0 for all x ∈ X+, x
∗ ∈ X∗

+. By Proposition 5.5, �x∗� = ‖x∗‖ ≤ 1.
Now let u ∈ X+. Then x∗u = ψ(u) = �u� and so �x∗� = 1. Notice that we

have proved ≤ in (5.1).
Suppose that ψ(u) > ψ(−u). Then there exists x∗ ∈ X∗

+ with �x∗� ≤ 1 such
that x∗u = ψ(u) = �u�. Hence �x∗� = 1.

If ψ(u) < ψ(−u), there exists x∗ ∈ X∗
+ with �x∗� ≤ 1 such that x∗(−u) =

�u� = |x∗u|. Again �x∗� = 1.
If ψ(u) = ψ(−u) > 0, then u,−u �∈ X+ and we can make the same conclusion.
It remains the case ψ(u) = ψ(−u) = 0. But then u = 0, and all equalities

hold trivially. So the ≤ inequalities hold in (5.2). The ≥ inequalities follow from
Proposition 5.5 (b). �

Corollary 5.7. X+ is closed with respect to the monotone companion norm.

Proof. Let (xn) be a sequence in X+, x ∈ X and �xn − x� → 0. Suppose that
x /∈ X+. By a theorem of Mazur [50, IV.6., Thm. 3′], there exists a bounded linear
φ : X → R such that φ(x) < −1 and φ(y) ≥ −1 for all y ∈ X+. Let z ∈ X+,
n ∈ N. Then nz ∈ X+ and φ(nz) ≥ −1. So φ(z) ≥ −1/n. We let n → ∞ and
obtain φ(z) ≥ 0. By Proposition 5.5, φ is continuous with respect to the monotone
companion norm. So 0 ≤ φ(xn)→ φ(x) and φ(x) ≥ 0, a contradiction. �

6. Positivity of solutions to abstract integral inequalities

We consider integral inequalities of the following kind on an interval [0, b],
0 < b <∞,

u(t) ≥
∫ t

0

K(t, s)u(s)ds, t ∈ [0, b]. (6.1)

Here u : [0, b)→ X is a continuous function, K(t, s), 0 ≤ s ≤ t ≤ b, are bounded
linear positive operators such that, for each x ∈ X , K(t, s)x is a continuous func-
tion of (t, s), 0 ≤ s ≤ t ≤ b.

Theorem 6.1. Let X be an ordered Banach space. Let u : [0, b]→ X be a continuous
solution of the inequality (6.1). Then u(t) ∈ X+ for all t ∈ [0, b].

Proof. We define v : [0, b)→ X by v(t) = −u(t). Then

v(t) ≤
∫ t

0

K(t, s)v(s)ds, t ∈ [0, b]. (6.2)
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Since the monotone companion half-norm ψ is order-preserving,

ψ(v(t)) ≤ ψ
(∫ t

0

K(t, s)v(s)ds
)
, t ∈ [0, b].

Since ψ is convex and homogeneous,

ψ(v(t)) ≤
∫ t

0

ψ(K(t, s)v(s))ds, t ∈ [0, b]. (6.3)

By Theorem 5.2,

ψ(K(t, s)v(s)) ≤ ‖K(t, s)‖ψ(s), 0 ≤ s ≤ t ≤ b.

By the uniform boundedness theorem, there exists some c ≥ 0 such that
‖K(t, s)‖ ≤ c whenever 0 ≤ s ≤ t ≤ b. So

ψ(K(t, s)v(s)) ≤ cψ(v(s)), 0 ≤ s ≤ t ≤ b. (6.4)

We substitute the last inequality into (6.3),

ψ(v(t)) ≤ c

∫ t

0

ψ(v(s))ds, t ∈ [0, b].

Let λ > 0. Then

e−λtψ(v(t)) ≤ c

∫ t

0

e−λ(t−s)e−λsψ(v(s))ds, t ∈ [0, b].

Define α(λ) = sup0≤t≤b e
−λtψ(v(t)). Then

e−λtψ(v(t)) ≤ c

∫ t

0

e−λ(t−s)α(λ)ds ≤ c
α(λ)

λ
, 0 ≤ t ≤ b, and α(λ) ≤ c

α(λ)

λ
.

Choosing λ > 0 large enough, α(λ) ≤ 0 and, since it is nonnegative, α(λ) = 0.
This implies ψ(v(t)) = 0 for all t ∈ [0, b]. By Proposition 4.1, v(t) ∈ −X+ and so
u(t) = −v(t) ∈ X+ for all t ∈ [0, b]. �

7. The space of certain order-bounded elements
and some functionals

Definition 7.1. Let x ∈ X and u ∈ X+. Then x is called u-bounded if there exists
some c > 0 such that −cu ≤ x ≤ cu. If x is u-bounded, we define

‖x‖u = inf{c > 0;−cu ≤ x ≤ cu}. (7.1)

The set of u-bounded elements in X is denoted by Xu. If x, u ∈ X+ and x is not
u-bounded, we define

‖x‖u =∞.

Two elements v and u in X+ are called comparable if v is u-bounded and u is
v-bounded, i.e., if there exist ε, c > 0 such that εu ≤ v ≤ cu. Comparability is
an equivalence relation for elements of X+, and we write u ∼ v if u and v are
comparable. Notice that Xu = Xv if and only if u ∼ v.
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If X is a space of real-valued functions on a set Ω,

‖x‖u = sup
{ |x(ξ)|

u(ξ)
; ξ ∈ Ω, u(ξ) > 0

}
.

Since the cone X+ is closed,

−‖x‖uu ≤ x ≤ ‖x‖uu, x ∈ Xu. (7.2)

Xu is a linear subspace of X , ‖ · ‖u is a norm on Xu, and Xu, under this norm, is
an ordered normed vector space with cone X+ ∩Xu which is normal, generating,
and has nonempty interior.

Lemma 7.2. Let u ∈ Ẋ+. Then the following hold:

(a) �x� ≤ ‖x‖u � u� = ‖x‖u max{d(u,−X+), d(u,X+)}, x ∈ Xu.
(b) u is a normal point of X+ if and only if there exists some c ≥ 0 such that

‖x‖ ≤ c‖x‖u for all x ∈ Xu ∩X+.
(c) If X+ is solid and u in the interior of X+, then X = Xu, d(u,X \X+) > 0,

and

‖x‖ ≥ ‖x‖u d(u,X \X+), x ∈ X.

(d) In turn, if Xu = X and there exists some ε > 0 such that ‖x‖ ≥ ε‖x‖u for
all x ∈ X, then u is an interior point of X+.

(e) If X+ is solid and u is both an interior and a normal point of X+, then ‖ · ‖
and ‖ · ‖u are equivalent.

Proof. (a) By (7.2), if x ∈ Xu,

x,−x ≤ ‖x‖uu.
Since the companion functional is order-preserving on X ,

ψ(x) ≤ ‖x‖uψ(u), ψ(−x) ≤ ‖x‖uψ(u)
and so �x� ≤ ‖x‖u�u�.

(b) Let u be normal point of X+. Then there exists some c > 0 such that
‖y‖ ≤ c for all y ∈ X+ with y ≤ u. For x ∈ X+ ∩ Xu, x ≤ ‖x‖uu. If x �= 0 in
addition, ‖x‖−1

u x ≤ u. Hence
∥∥‖x‖−1

u x
∥∥ ≤ c.

The other direction is obvious.
(c) Let u be an interior element of X+. Then d(u,X \ X+) > 0. For any

δ ∈ (0, d(u,X \X+)), we have u ± δ
‖x‖x ∈ X+ for all x ∈ Ẋ. So ±x ≤ ‖x‖

δ u and

so x ∈ Xu and ‖x‖u ≤ ‖x‖
δ . Since this holds for any δ ∈ (0, d(u,X \X+), it also

holds for δ = d(u,X \X+).
(d) Assume that Xu = X and there exists some ε > 0 such that ‖x‖ ≥ ε‖x‖u

for all x ∈ X . This means that

±x ≤ ‖x‖uu ≤ (1/ε)‖x‖u.

Hence u± ε
‖x‖x ∈ X+ for all x ∈ Ẋ. This implies that u is an interior point of X+.

(e) follows from combining (b) and (c). �
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If X+ is normal, by Theorem 2.1, there exists some M ≥ 0 such that

‖x‖ ≤M‖x‖u‖u‖, x ∈ Xu. (7.3)

If X+ is a normal and complete cone of X , then X+ ∩Xu is a complete subset of
Xu with the metric induced by the norm ‖ · ‖u. For more information see [24, 1.3]
[6, I.4], [25, 1.4].

For u ∈ X+, one can also consider the functionals

(x/u)� = inf{α ∈ R;x ≤ αu}
(x/u)� = sup{β ∈ R;βu ≤ x}

}
x ∈ X,

with the convention that inf(∅) = ∞ and sup(∅) = −∞. If X is a space of real-
valued functions on a set Ω,

(x/u)� = sup
{x(ξ)
u(ξ) ; ξ ∈ Ω, u(ξ) > 0

}
(x/u)� = inf

{x(ξ)
u(ξ) ; ξ ∈ Ω, u(ξ) > 0

}
⎫⎬⎭ x ∈ X.

Many other symbols have been used for these two functionals in the literature;
see Thompson [45] and Bauer [4] for some early occurrences. For x ∈ X+, ‖x‖u =
(x/u)�. Since we will use this functional for x ∈ X+ only, we will stick with the
notation ‖x‖u. Again for x ∈ X+, (x/u)� is a nonnegative real number, and we
will use the leaner notation

[x]u = sup{β ≥ 0;βu ≤ x}, x, u ∈ X+. (7.4)

Since the cone X+ is closed,

x ≥ [x]uu, x, u ∈ X+. (7.5)

Further [x]u is the largest number for which this inequality holds.

Lemma 7.3. Let u ∈ Ẋ+. Then the functional φ = [·]u : X+ → R+ is homogeneous,
order-preserving and concave. It is bounded with respect to the original norm on
X and also to the monotone companion norm,

[x]u ≤
�x�

�u�
≤ ‖x‖

�u�
, x ∈ X+, and ‖φ‖+ = �φ�+ ≤

1

� u�
.

φ is upper semicontinuous with respect to the original norm and∣∣[y]u − [x]u
∣∣ ≤ ‖y − x‖u, y, x ∈ Xu ∩X+. (7.6)

Recall that �u� = d(u,−X+).

Proof. We apply the monotone companion norm to (7.5),

� x� ≥ [x]u � u�, x ∈ X+.

The equality ‖φ‖+ = �φ�+ follows from Proposition 5.4. (7.6) has been proved in
[44]. The other properties are readily derived from the definitions. �

See [26] for an in-depth treatment of this functional.
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8. Companion spectral radii

If B : X+ → X+ is homogeneous and bounded with respect to the original norm,
then, by Proposition 5.1, B is also bounded with respect to the monotone com-
panion norm � ·� and �B�+ ≤ ‖B‖+. So, we can define the companion cone spectral
radius, the companion growth bounds, and the companion orbital spectral radius by

r�+(B) = inf
n∈N

�Bn�
1/n
+ = lim

n→∞ �Bn�
1/n
+ (8.1)

and

r�o(B) = sup
x∈X+

γ�
B(x), γ�

B(x) = lim sup
n→∞

�Bn(x)�1/n. (8.2)

Since � x� ≤ ‖x‖ for all x ∈ X , we have the estimates

r�o(B) ≤ r�+(B) ≤ r+(B),

r�o(B) ≤ ro(B) ≤ r+(B).
(8.3)

If the cone X+ is normal, the companion norm is equivalent to the original norm
and the respective spectral radii equal their companion counterparts. The following
proposition implies Theorem 1.7. Recall Section 1.2.4, in particular

[B]x = sup{λ ≥ 0;B(x) ≥ λx} = [B(x)]x. (8.4)

Proposition 8.1. Let B be bounded, homogeneous and order-preserving. Then, for
all x ∈ Ẋ+,

[B]x ≤ ηx(B) ≤ γ�
B(x) ≤ γB(x).

Further cw(B) ≤ �B� ≤ ‖B‖ and

cw(B) ≤ rcw(B) ≤ r�o(B) ≤
{

r�+(B)

ro(B)

}
≤ r+(B).

Proof. Let x ∈ ẊB. The first inequality follows from (1.17). By (8.4), B(x) ≥
[B]xx. By induction Bn(x) ≥ [B]nxx.

We apply the monotone companion half-norm ψ, which is homogeneous, and
obtain ψ(Bn(x)) ≥ [B]nxψ(x). Since ψ(x) > 0, γx(B) ≥ γ�

x(B) ≥ [B]x. Since, for
all n ∈ N, Bn is homogeneous and order-preserving,

[Bn]x ≤ γ�
x(B

n) ≤ γ�
x(B)n.

The last equality follows from (1.12). Since this holds for all n ∈ N, by (1.17)
ηx(B) ≤ γ�

x(B).
The remaining assertions follow directly from the definitions. �

The following criteria for the positivity of the lower Collatz–Wielandt bound
and the Collatz–Wielandt radius are obvious from their definitions.

Lemma 8.2. Let B : X+ → X+ be homogeneous and order-preserving.

Then cw(B) > 0 if and only if there exist ε > 0 and x ∈ Ẋ+ such that
B(x) ≥ εx.
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Further rcw(B) > 0 if and only if there exists ε > 0, m ∈ N, and x ∈ Ẋ+

such that Bm(x) ≥ εx.

The proof of the following results uses ideas from [17].

Theorem 8.3. Let X be an ordered normed vector space with complete cone X+

and B : X+ → X+ be homogeneous, bounded and order-preserving. Then there
exists some x ∈ X+ such that

r�+(B) = r�o(B) = γ�
B(x) ≤ γB(x) ≤ ro(B).

Proof. We can assume that r�+(B) > 0. For each k ∈ N, there exists some xk ∈ X+

with ψ(xk) = 1 and �Bk�+ ≤ k+1
k ψ(Bk(xk)). By (4.2), there exists some yk ∈ X+

with xk ≤ yk and ‖yk‖ ≤ 2. Since X+ is complete, the series x =
∑∞

k=1 k
−2yk

converges, x ∈ X+. Since ψ and B are order-preserving and homogeneous and
yk ≤ k2x,

�Bk�+ ≤
k + 1

k
ψ(Bk(yk)) ≤

k + 1

k
k2ψ(Bk(x)).

Thus

r�+(B) ≤ lim sup
k→∞

((k + 1)k)1/kγ�(x,B) = γ�(x,B). �

9. Strictly increasing maps

We introduce a class of order-preserving homogeneous maps for which the lower KR
property implies the KR property (see Definition 1.12). The following definition is
similar to the one in [6, III.2.1].

Definition 9.1. Let θ : X+ → R+ be order-preserving and homogeneous. An order-
preserving map B : X+ → X+ is called strictly θ-increasing if for any x, y ∈ X+

with x ≤ y and θ(x) < θ(y) there exists some ε > 0 and some m ∈ N such that
Bm(y) ≥ (1 + ε)Bm(x).

B is called strictly increasing if B is strictly θ-increasing where θ is the
restriction of the norm to X+.

Theorem 9.2. Let θ : X+ → X+ be order-preserving and homogeneous and B :
X+ → X+ be continuous, homogeneous, and strictly θ-increasing. Assume that
there is some p ∈ N such that (Bp(xn))n∈N has a convergent subsequence for any
increasing sequence (xn) in X+ where {θ(xn);n ∈ N} is bounded. Then B has the
KR property whenever it has the lower KR property.

Proof. Since B is homogeneous, we can assume that r+(B) = 1 and that there

exists some x ∈ Ẋ+ such that B(x) ≥ x. Then the sequence (xn) defined by xn =
Bn(x) is increasing. We claim that (θ(xn)) is bounded. If not, then there exists
some n ∈ N with θ(xn−1) < θ(xn) where x0 = x. Since B is strictly θ-increasing,
there exists some ε > 0 and some m ∈ N such that Bm(xn) ≥ (1 + ε)Bm(xn−1).
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By definition of (xn), B(y) ≥ (1 + ε)y for y = Bm(xn−1) ≥ x. Since y ∈ Ẋ+,
r+(B) ≥ cw(B) ≥ 1 + ε, a contradiction.

Choose p ∈ N according to the assumption of the theorem. We apply the
convergence principle in Proposition 2.12. Let S be the set of sequences (Bp(yn))
where (yn) is a increasing sequence in X+ such that (θ(yn)) is bounded. Then S
has the property required in Proposition 2.12 and so every increasing sequence in
S converges.

Since (xn) is increasing and bounded, (Bp(xn)) ∈ S converges with limit
v. Since Bp(xn) = xn+p, xn → v. Since xn+1 = B(xn) and B is continuous,
B(v) = v. �

We mention some interesting properties of strictly θ-increasing maps.

Proposition 9.3. Let θ : X+ → R+ be order-preserving and homogeneous and B :
X+ → X+ be homogeneous and strictly θ-increasing. Let r, s > 0 and v, w ∈ X+

with θ(v) > 0 and θ(w) > 0.

(a) If B(v) ≥ rv and B(w) ≤ sw and v is w-bounded, then r ≤ s and r = s

implies w ≥ θ(w)
θ(v) v.

(b) If B(v) = rv and B(w) = sw and v and w are comparable, then r = s and

w = θ(w)
θ(v) v.

Proof. We first assume that θ(v) = 1 = θ(w).

(a) Since v is w-bounded, w ≥ [w]vv with [w]v > 0.

Case 1: θ(w) = θ([w]vv).
Then 1 = [w]v and w ≥ v. So rv ≤ B(v) ≤ B(w) ≤ sw. We apply θ and

obtain r ≤ s.

Case 2: θ(w) > θ([w]vv)
Since B is strictly θ-increasing, there exists some δ > 0 such that

sw ≥ B(w) ≥ (1 + ε)B([w]vv) = (1 + ε)[w]vB(v) ≥ (1 + ε)[w]vrv,

which implies that [w]v ≥ (1 + ε)(r/s)[w]v and so r < s.
In either case r ≤ s. If r = s, the second case cannot occur and the first case

holds where w ≥ v.

(b) From part (a), by symmetry, r = s and w ≥ v and then w = v.
If just θ(v) > 0 and θ(w) > 0, we set ṽ = 1

θ(v)v and w̃ = 1
θ(w)w. Then

θ(ṽ) = 1 = θ(w̃) and Bṽ ≥ rṽ and Bw̃ ≤ sw̃. We apply the previous considerations
to ṽ and w̃ and obtain (a) and (b) also in the general case. �

10. Order-bounded maps

The following terminology has been adapted from various works by Krasnosel’skii
[24, Sec. 2.1.1] and coworkers [25, Sec. 9.4] though it has been modified.
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Definition 10.1. Let B : X+ → X+, u ∈ X+. B is called pointwise u-bounded if,
for any x ∈ X+, there exist some n ∈ N and γ > 0 such that Bn(x) ≤ γu. The
point u is called a pointwise order bound of B.

B is called uniformly u-bounded if there exists some c > 0 such that B(x) ≤
c‖x‖u for all x ∈ X+. The element u is called a uniform order bound of B.

B is called uniformly order-bounded if it is uniformly u-bounded for some
u ∈ X+. B is called pointwise order-bounded if it is pointwise u-bounded for some
u ∈ X+.

If B : X+ → X+ is bounded and X+ is solid, then B is uniformly u-bounded
for every interior point u of X+.

Uniform order boundedness is preserved if the original norm ‖ · ‖ is replaced
by its monotone companion norm � · �.

Proposition 10.2. Let B : X+ → X+ be order-preserving. Let u ∈ X+ and B
be uniformly u-bounded. Then B is also uniformly u-bounded with respect to the
monotone companion norm.

Proof. Let x ∈ X+. By (4.2), for each n ∈ N there exists some yn ∈ X+ such
that x ≤ yn and ψ(x) ≤ ‖yn‖ ≤ ψ(x) + (1/n). Since B is order-preserving and
uniformly u-bounded,

B(x) ≤ B(yn) ≤ c‖yn‖u, n ∈ N.

We take the limit as n→∞ and obtain B(x) ≤ cψ(x)u. �

Proposition 10.3. Let X+ be a complete cone, u ∈ X+, and B : X+ → X+ be
continuous, order-preserving and homogeneous. Then the following hold.

(a) B is uniformly u-bounded if for any x ∈ X+ there exists some c = cx ≥ 0
such that B(x) ≤ cu.

(b) If B be pointwise u-bounded, then some power of B is uniformly u-bounded.

Proof. We prove (b); the proof of (a) is similar. Define

Mn,k = {x ∈ X+;B
n(x) ≤ ku}, n, k ∈ N.

Since B is continuous and X+ is closed, each set Mn,k is closed. Since B is assumed
to be pointwise u-bounded, X+ =

⋃
k,n∈N

Mn,k. Since X+ is a complete metric
space, by the Baire category theorem, there exists some n, k ∈ N such that Mn,k

contains a relatively open subset of X+: There exists some y ∈ X+ and ε > 0 such
that y+εz ∈Mn,k whenever z ∈ X , ‖z‖ ≤ 1, and y+εz ∈ X+. Now let z ∈ X+ and
‖z‖ ≤ 1. Since B is order-preserving and y+ εz ∈ X+, B

n(εz) ≤ Bn(y+ εz) ≤ ku.

Since B is homogeneous, for all x ∈ Ẋ+,

Bn(x) =
‖x‖
ε

Bn
( ε

‖x‖x
)
≤ k

ε
‖x‖u. �
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11. Upper semicontinuity of the companion spectral radius

In order to be able to compare the companion spectral radius to the upper Collatz-
Wielandt bound which will be defined later, some results on the upper semiconti-
nuity of the cone spectral radius are useful. For more results of that kind see [30].

In the following, let X be an ordered normed vector space with cone X+.

Lemma 11.1. Let B be bounded and homogeneous, x ∈ X+, and B be continuous
at Bn(x) for all n ∈ N. Let (Bk) be a sequence of bounded homogeneous maps such
that ‖Bk −B‖+ → 0 as k →∞ and (xk) be a sequence in X+ such that xk → x.
Then, for all n ∈ N, Bn

k (xk)→ Bn(x) as k →∞.

Proof. For k ∈ N,

‖Bk(xk)−B(x)‖ ≤ ‖Bk(xk)−B(xk)‖ + ‖B(xk)−B(x)‖

≤ ‖Bk −B‖+ ‖xk‖+ ‖B(xk)−B(x)‖ k→∞−→ 0. �
This provides the basis step for an induction proof. The induction step follows in
the same way.

Theorem 11.2. Let u ∈ X+, u �= 0. Let B : X+ → X+ be homogeneous and bounded
and B be continuous at Bn(u) for all n ∈ N. Let (Bk) be a sequence of bounded,
homogeneous, order-preserving maps such that ‖Bk−B‖+ → 0 as k →∞. Assume
that there exist m ∈ N and c ≥ 0 such that Bm

k (x) ≤ c‖x‖u for all k ∈ N and all
x ∈ X+. Then

lim sup
k→∞

r�+(Bk) ≤ γ�
B(u) ≤ r�o(B) ≤ r�+(B).

Proof. Choosem ∈ N and c ≥ 0 as in the statement of the theorem. By Proposition
10.2 and its proof,

Bm
k (x) ≤ c�x�u, k ∈ N, x ∈ X+.

Since Bk is order-preserving and homogeneous,

Bn+m
k (x) ≤ c�x�Bn

k (u), k, n ∈ N, x ∈ X+.

We apply the monotone companion norm,

�Bn+m
k (x)� ≤ c�x� �Bn

k (u)�, k, n ∈ N, x ∈ X+.

So

�Bn+m
k �+ ≤ c�Bn

k (u)�, n ∈ N.

Let r > γ�
B(u). Then there exists some N ∈ N such that

�Bn(u)� < rn, n > N.

Let n ∈ N, n > N . Since Bn
k (u)

k→∞−→ Bn(u) by Lemma 11.1, there exists some
kn ∈ N such that

�Bn
k (u)� < rn, k ≥ kn.
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We combine the inequalities.

�Bn+m
k �+ ≤ crn, k ≥ kn.

Then
r�+(Bk) ≤ �Bn+m

k �
1/(n+m)
+ ≤ c−(n+m)rn/(n+m), k ≥ kn.

So, for any n > N ,

lim sup
k→∞

r�+(Bk) ≤ c−(n+m)rn/(n+m).

We take the limit as n→∞ and obtain

lim sup
k→∞

r�+(Bk) ≤ r.

Since this holds for any r > γ�
B(u), the assertion follows. �

12. Upper Collatz–Wielandt numbers

From Section 1.2.5, recall the upper Collatz–Wielandt number of B at x ∈ Ẋ+,

‖B‖x = ‖B(x)‖x = inf{r ≥ 0;B(x) ≤ rx}. (12.1)

where ‖B‖x = ∞ if B(x) is not x-bounded. Also recall the upper local Collatz–
Wielandt radius of B at x ∈ X+,

ηx(B) = inf
n∈N

‖Bn‖1/nx . (12.2)

Lemma 12.1. Let B,C : X+ → X+ be homogeneous and order-preserving. Let x ∈
Ẋ+, and B(x) and C(x) be x-bounded. Then C(B(x)) is x-bounded and ‖CB‖x ≤
‖C‖x‖B‖x.

Proof. By (7.2), C(x) ≤ ‖C‖xx and B(x) ≤ ‖B‖xx and CB(x) ≤ ‖B‖xC(x)
≤ ‖B‖x‖C‖xx; so ‖CB‖x ≤ ‖B‖x‖C‖x. �

Lemma 12.2. Let u ∈ Ẋ+.

(a) Then ηu(Bm) ≥ (ηu(B))m for all m ∈ N.
(b) If there exists some k ∈ N such that Bm(u) is u-bounded for all m ≥ k, then

ηu(B) = limn→∞ ‖Bn‖1/nu <∞ and ηu(Bm) = (ηu(B))m for all m ∈ N.

Proof. (a) Let u ∈ Ẋ+, m ∈ N. Then

ηu(Bm) = inf
n∈N

‖Bmn‖1/nu = ( inf
n∈N

‖Bmn‖1/(mn)
u )m ≥ ( inf

k∈N

‖Bk‖1/ku )m.

(b) Now let k ∈ N such that Bm(u) is u-bounded for all m ≥ k. By
Lemma 12.1,

cn+m ≤ cncm, n,m ≥ k, cn = ‖Bn‖u.
Let r be an arbitrary number such that ηu(B) = infn∈N ‖Bn‖1/nu < r. Then there

exists some m ∈ N such that c
1/m
m = ‖Bm‖1/mu ≤ r. So Bm(u) ≤ rmu. By applying

Bm as often as necessary, we can assume that m ≥ k.
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Any number n ∈ N with n ≥ 2m has a unique representation n = pm + q
with p ∈ N and m ≤ q < 2m. Then, for n ≥ 2m,

cn ≤ cpmcq ≤ rmpcq.

If cq = 0, then both the limit inferior and the limit are zero and equal. So we can
assume that cq �= 0. We have

c1/nn ≤ rpm/nc1/nq .

As n → ∞, pm/n → 1 and lim supn→∞ c
1/n
n ≤ r. Since r was any number larger

than the infimum, the limes superior and inferior coincide and the limit exists and
equals the infimum.

The second equality in (b) follows from the fact that every subsequence of a
convergent sequence converges to the same limit. �

Remark 12.3. If B(u) is u-bounded, ‖B‖u is the cone norm of B in Xu with
u-norm, and ηu(B) is the cone spectral radius of B taken in Xu.

Recall the concepts of a normal point u ∈ Ẋ+ for B in Definition 3.3 (inspired
by [17]) and of a normal point of X+ in Definition 2.3.

Remark 12.4.
(a) If u ∈ Ẋ+ is a normal point of X+, then u is a normal point for all bounded

homogeneous B : X+ → X+.

(b) If u ∈ Ẋ+ and B(u) is a normal point of X+ and B is order-preserving, then
u is a normal point for B.

Proof. (a) There exists some c > 0 such that ‖x‖ ≤ c for all x ∈ X+ with x ≤ u.
Then ‖B(x)‖ ≤ ‖B‖+c for all x ∈ X+ with x ≤ u.

(b) There exists some c > 0 such that ‖y‖ ≤ c for all y ∈ X+ with y ≤
B(u). Let x ∈ X+ and x ≤ u. Since B is order-preserving, B(x) ≤ B(u) and
‖B(x)‖ ≤ c. �

Theorem 12.5. Let B : X+ → X+ be homogeneous, bounded and order-preserving.
Let u ∈ X+, α ∈ R+ and k ∈ N such that Bk(u) ≤ αku.

Let u be a normal point for some power of B or B be power-compact. Then
γB(u) ≤ α.

Proof. Since γ(u,Bk) = (γ(u,B))k by (1.12), we can assume that k = 1. Since B is
homogenous, it is enough to show that B(u) ≤ u implies that γB(u) = γ(u,B) ≤ 1.

Let B(u) ≤ u. Then Bn(u) ≤ u for all n ∈ N.
We first assume that u is a normal point for some power of B. By Definition

3.3, there exist some c̃ > 0 and m ∈ N such that ‖Bm(x)‖ ≤ c̃ for all x ∈ X+ with
x ≤ u. Then ‖Bm+n(u)‖ ≤ c̃ for all n ∈ N. This implies γB(u) ≤ 1.

Now assume that B� is compact for some � ∈ N and that γB(u) > 1. Then
the sequence (an) with

an = ‖Bn(u)‖ (12.3)
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is unbounded. By a lemma by Bonsall [8], there exists a subsequence anj such that

anj →∞, j →∞, ak ≤ anj , k = 1, . . . , nj , j ∈ N.

Set vj =
1

anj
Bnj (u). Then

vj = B�(wj), wj =
1

‖Bnj (u)‖B
nj−�(u).

Now

‖wj‖ ≤
anj−�

anj

≤ 1.

So, after choosing a subsequence, (vj) converges to some v ∈ X+, ‖v‖ = 1. Since
Bn(u) ≤ u for all n ∈ N,

vj ≤
1

anj

u.

Since anj →∞ and X+ is closed, we have v ≤ 0, a contradiction. �

Corollary 12.6. Let B : X+ → X+ be homogeneous, bounded and order-preserving.

Let u ∈ Ẋ+ and Bk(u) be u-bounded for all but finitely many k ∈ N. Assume
that u is a normal point for some power of B or that B is power-compact. Then
γB(u) ≤ ηu(B).

Proof. By definition, Bk(u) ≤ ‖Bk‖uu for all k ∈ N with ‖Bk‖u <∞. By Theorem

12.5, γB(u) ≤ ‖Bk‖1/ku for all k ∈ N. So γB(u) ≤ ηu(B). �

Theorem 12.7. Let B : X+ → X+ be homogeneous, bounded and order-preserving.
Let u ∈ X+, α ∈ R+ and k ∈ N such that Bk(u) ≤ αku.

(a) Let u be a normal point for some power of B. Then ro(B) ≤ α if B is
pointwise u-bounded, and r+(B) ≤ α if some power of B is uniformly u-
bounded,

(b) Let B be pointwise u-bounded and power-compact. Then ro(B) ≤ α.

Proof. As in the proof of Theorem 12.5, we can reduce the proof to the implication

B(u) ≤ u =⇒ ro(B) ≤ 1.

Assume that B(u) ≤ u. Let x ∈ X+. Since B is pointwise u-bounded, there exists
somem ∈ N and c > 0 such that Bm(x) ≤ cu. For all n ∈ N, Bm+n(x) ≤ cBn(u) ≤
cu. Since u is a normal point for some power of B, by Definition 3.3, there exist
some k ∈ N and some c̃ > 0 such that ‖Bk+m+n(c−1x)‖ ≤ c̃ for all n ∈ N. This
implies γB(x) ≤1. Since x ∈ X+ has been arbitrary, ro(B) ≤ 1.

If B is bounded and Bm is uniformly u-bounded, we can replace c by c‖x‖
and we obtain r+(B) ≤ 1.

Now let B be power-compact and assume that there is some x ∈ X+ with
γB(x) > 1. The same proof as for Theorem 12.5 provides a sequence (nj) in N with
‖Bnj (x)‖ → ∞ and vj = ‖Bnj (x)‖−1Bnj (x) → v with some v ∈ X+, ‖v‖ = 1.
But, for large enough j, Bnj (x) ≤ cu and vj ≤ c‖Bnj(x)‖−1u and so v ≤ 0, a
contradiction �
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Similarly as for Corollary 12.6, this yields the following result.

Corollary 12.8. Let B : X+ → X+ be homogeneous, bounded and order-preserving.

(a) Let u be a normal point for some power of B. Then ro(B) ≤ ηu(B) if B is
pointwise u-bounded, and r+(B) ≤ ηu(B) if B is bounded and some power of
B is uniformly u-bounded.

(b) If B is power-compact and pointwise u-bounded, then ro(B) ≤ ηu(B).

For those x ∈ X+ for which the sequence �Bn(x)�1/n is bounded, we extend
the definition of the companion growth bound of the B-orbit of x by

γ�
B(x) := lim sup

n→∞
�Bn(x)�1/n (12.4)

and set it equal to infinity otherwise. We extend the definition of the orbital com-
panion spectral radius of B by

r�o(B) := sup
x∈X+

γ�
B(x). (12.5)

Theorem 12.9. Let B : X+ → X+ be homogeneous and order-preserving, u ∈ X+.
Let B be pointwise u-bounded and assume that there is some � ∈ N such that Bn(u)
is u-bounded for all n ≥ �. Then

ηx(B) ≤ γ�
B(x) ≤ γ�

B(u) ≤ ηu(B)

for all x ∈ X+ and

cw(B) ≤ rcw(B) ≤ r�o(B) = γ�
B(u) ≤ ηu(B).

If B is bounded and Bm has the lower KR property for some m ∈ N, then γB(u) ≤
r+(B) ≤ ηu(B).

Proof. Let x ∈ X+. We can assume x �= 0. Since B is pointwise u-bounded, there
exists some k = k(x) ∈ N and some c = c(x) > 0 such that Bk(x) ≤ cu. Since B is
order-preserving and homogeneous, Bn(x) ≤ cBn−k(u) for all n > k. This implies

Bn(x) ≤ cBn−k(u) ≤ c‖Bn−k‖uu.
We apply the monotone companion norm,

�Bn(x)� ≤ c�Bn−k(u)� ≤ c‖Bn−k‖u�u�.
So

�Bn(x)�1/n ≤ c1/n�Bn−k(u)�1/n ≤ ‖Bn−k‖ 1/n
u

(
c�u�

)1/n
.

We take the limit superior as n→∞, use Lemma 12.2 (b), recall Proposition 8.1
and obtain the first inequality. The second then follows by taking the supremum
over x ∈ X+ and recalling cw(B) ≤ rcw(B) from Proposition 8.1.

Assume that B is bounded and Bm has the lower KR property for some m ∈
N. We can assume that r = r+(B) > 0. Then Bm(v) ≥ rmv with r = r+(B) and

some v ∈ Ẋ+. Since B is pointwise u-bounded, there exists some c > 0 and k ∈ N
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(which depend on v) such that Bk(v) ≤ cu. So rm+kv = Bm+k(v) ≤ cBm(u). For
all n ∈ N, rm+k+n(v) ≤ cBm+n(u). Then

rk+j‖v‖u ≤ c‖Bj‖u, j ∈ N, j ≥ m.

So

r ≤ (c/rk‖v‖u)1/j‖Bj‖1/ju , j ∈ N, j ≥ m.

Taking the limit as j →∞ yields the desired result. �

Theorem 12.10. Let B : X+ → X+ be homogeneous, bounded and order-preserving,
u ∈ X+. Let some power of B be uniformly u-bounded. Then

cw(B) ≤ rcw(B) ≤ r�o(B) = r�+(B) = γ�
B(u) = ηu(B) ≤ γB(u) ≤ r+(B).

Under additional assumptions, the following hold:

• If u is a normal point for some power of B, then ηu(B) = ro(B) = r+(B) =

γB(u) = lim
n→∞ ‖B

n(u)‖1/n.
• If some power of B has the lower KR property, then rcw(B) = ηu(B) =
γB(u) = ro(B) = r+(B).

• If B has the lower KR property, then cw(B) = rcw(B) = ηu(B) = γB(u) =
ro(B) = r+(B).

Proof. Let k ∈ N such that Bk is uniformly u-bounded. By Proposition 10.2, Bk

is also uniformly u-bounded with respect to the monotone companion norm. Then
there exists some c > 0 such that Bk(x) ≤ c�x�u for all x ∈ X+. For all n ∈ N,
Bk+n(x) = Bk(Bn(x)) ≤ c�Bn(x)�u. By definition of upper Collatz–Wielandt
numbers, with x = u,

‖Bk+n‖u ≤ �Bn(u)�c, n ∈ N.

By (12.2),

(ηu(B))(k+n)/n ≤ �Bn(u)�1/nc1/n, n ∈ N.

We take the limit as n→∞,

ηu(B) ≤ lim inf
n→∞ �Bn(u)�1/n ≤ lim inf

n→∞ ‖Bn(u)‖1/n. (12.6)

This implies ηu(B) ≤ γ�
B(u). The other inequalities and equalities follow from

Theorem 12.9.
Let u be a normal point. By Corollary 12.8,

ηu(B) ≥ r+(B) ≥ ro(B) ≥ γB(u) = lim sup
n→∞

‖Bn(u)‖1/n.

Together with (12.6), this implies equalities.
Since the companion norm is order-preserving,

�Bk+n(x)� ≤ c�x� �Bn(u)� and �Bk+n� ≤ c�Bn(u)�, n ∈ N.

Since B is bounded, r�+(B) ≤ γ�
B(u).

The other statements now follow from the previous theorems. �
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In view of estimating the cone spectral radius from above the following ob-
servation may be of interest.

Corollary 12.11. Let B : X+ → X+ be a homogeneous, bounded, order-preserving
map. Assume that X+ is normal and complete or some power of B has the lower
KR property.

Then r+(B) is a lower bound for all upper Collatz–Wielandt numbers ‖B‖u
where u ∈ Ẋ+, B(u) is u-bounded and B is pointwise u-bounded.

Proof. Combine the previous theorems with (12.2) and recall that r�o(B) = r+(B)
if X+ is normal and complete. �
12.1. The upper Collatz–Wielandt bound

Let u ∈ Ḃ+ and B(u) be u-bounded. ThenB(x) is x-bounded for any u-comparable
x ∈ X+. Recall Definition 7.1.

So we define the upper Collatz–Wielandt bound with respect to u by

CWu(B) = inf{‖B‖x;x ∈ X+, x ∼ u}. (12.7)

If x ∈ X+ and x ∼ u, ηx(B) = ηu(B). Since ηx(B) ≤ ‖B‖x,
ηu(B) ≤ CWu(B). (12.8)

We have the following inequalities from Theorem 12.9 and Theorem 12.10.

Theorem 12.12. Let B be homogeneous and order-preserving. Let u ∈ Ẋ+, B(u)
be u-bounded and B be pointwise u-bounded. Then

cw(B) ≤ rcw(B) ≤ ηu(B) ≤ CWu(B).

Lower KR property of the map turns some of the inequalities in equalities
(Theorem 12.10).

Theorem 12.13. Let B be homogeneous, bounded, and order-preserving and some
power of B have the lower KR property. Let u ∈ Ẋ+ and some power of B be
uniformly u-bounded. Then

rcw(B) = ro(B) = r+(B) = ηu(B) ≤ CWu(B).

12.2. Monotonicity of order-spectral radii and the Collatz–Wielandt radius

If the cone X+ is normal, the cone and orbital spectral radius are increasing func-
tions of the homogeneous bounded order-preserving maps (cf. [1, L.6.5]). Collatz–
Wielandt numbers, bounds, and radii and the companion radii are increasing func-
tions of the map even if the cone is not normal.

Theorem 12.14. Let A,B : X+ → X+ be bounded and homogeneous. Assume that
A(x) ≤ B(x) for all x ∈ X+ and that A or B are order-preserving.

Then cw(A) ≤ cw(B), rcw(A) ≤ rcw(B), r�+(A) ≤ r�+(B), r�o(A) ≤ r�o(B).
Further, for all x ∈ X+, ‖A‖x ≤ ‖B‖x and ηx(A) ≤ ηx(B).

If u ∈ Ẋ+ and A(u) and B(u) are u-bounded, then CWu(A) ≤ CWu(B).
If X+ is a normal cone, then also r+(A) ≤ r+(B) and ro(A) ≤ ro(B).
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Proof. We claim that An(x) ≤ Bn(x) for all x ∈ X+ and all n ∈ N. For n = 1,
this holds by assumption. Now let n ∈ N and assume the statement holds for n. If
A is order-preserving, then, for all x ∈ X+, since Bn(x) ∈ X+,

An+1(x) = A(An(x)) ≤ A(Bn(x)) ≤ B(Bn(x)) = Bn+1(x).

If B is order-preserving, then, for all x ∈ X+, since An(x) ∈ X+,

An+1(x) = A(An(x)) ≤ B(An(x)) ≤ B(Bn(x)) = Bn+1(x).

Since the companion norm is order-preserving, �An(x)� ≤ �Bn(x)� for all x ∈ X+,

n ∈ N. Further �An�+ ≤ �Bn�+ for all n ∈ N and r�+(A) ≤ r�+(B). Further

γ�
A(x) ≤ γ�

B(x) and so r�o(A) ≤ r�o(B).
If X+ is normal, the respective order radii taken with the original norm

coincide with those taken with the companion norm.
As for the Collatz–Wielandt radius,

Bn(x) ≥ An(x) ≥ [An]xx.

By (1.14), [Bn]x ≥ [An]x, and the claim follows from (1.17), (1.19), and (1.20).
The proofs for ‖ · ‖x, ηx, and CWu are similar. �
Proof of Theorem 1.14. By Theorem 12.14, cw(A) ≤ cw(B). The assertion now
follows from Theorem 1.13. �
12.3. The upper Collatz–Wielandt bound as eigenvalue

Conditions which make CWu(B) an eigenvalue of B with positive eigenvector
and imply equality between all these numbers including CWu(B) can be found in
[1, Thm. 7.3]. Using the companion half-norm ψ, one can drop that the cone is
normal and complete provided that the map is compact. Solidity of the cone can
be replaced by the weaker assumption that the map is uniformly u-bounded.

Theorem 12.15. Let B : X+ → X+ be continuous, compact, homogeneous, and

order-preserving. Let u ∈ Ẋ+ and B be uniformly u-bounded.
Then cw(B) = rcw(B) = r+(B) = ηu(B) = CWu(B).

If r = CWu(B) > 0, then there exists some v ∈ Ẋu such that B(v) = rv.

Remark 12.16. If X+ is complete, we also obtain this result if we replace compact-
ness of B by the assumptions in Theorem 1.9 with part (a) or by assumption (ii)
in [1, Thm. 7.3].

More generally, the following holds.

Theorem 12.17. Let B : X+ → X+ be homogeneous and order-preserving. Let

u ∈ Ẋ+ and B be uniformly u-bounded and continuous at Bn(u) for all n ∈ N.
Assume there is some ε0 > 0 such that, for all ε ∈ (0, ε0), the maps Bε, Bε(x) =

B(x) + εψ(x)u, have eigenvectors Bε(vε) = λεvε with vε ∈ Ẋ+ and λε > 0.
Then r+(B) ≥ γu(B) ≥ CWu(B) = ηu(B) with equality holding everywhere

if u is a normal point for some power of B or some power of B has the lower KR
property.
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Further, if B has the KR property and CWu(B) > 0, there exists some v ∈
Ẋ+ such that B(v) = CWu(B)v.

Proof. Choose a sequence (εn) in (0, ε0) with εn → 0. Set Bn = Bεn . The maps
Bn inherit uniform u-boundedness from B.

By assumption, there exist vn ∈ Ẋ+ and rn > 0 such that B(vn)+εnψ(vn)u =
rnvn. Since B is uniformly u-bounded and ψ(vn) > 0, vn is u-comparable. By
(12.7), rn ≥ CWu(Bn). Also rn ≤ cw(Bn) by (1.19). By Theorem 12.12 and

Theorem 12.10, ηu(Bn) = r�+(Bn) = CWu(Bn) for all n ∈ N. Further, CWu(Bn) ≥
CWu(B).

Suppose that r�+(B) < CWu(B). Since εn → 0, ‖Bn−B‖+ → 0. By Theorem

11.2, r�+(Bn) < CWu(B) for large n, a contradiction.

So r�+(B) ≥ CWu(B). By Theorem 12.10, also ηu(B) = r�+(B). Since ηu(B) ≤
CWu(B), we have ηu(B) = CWu(B). The other inequalities follow from Theorem
12.10.

If some power of B has the lower KR property, equality holds by Theorem
12.13. If u is a normal point of X+, equality follows from Theorem 12.10. Assume
that B has the KR property and CWu(B) > 0. Then r+(B) = CWu(B) > 0 and

there exists some v ∈ Ẋ+ such that B(v) = r+(B)v. �

The equality r+(B) = CWu(B) guarantees that, at least in theory, one can
get arbitrarily sharp estimates of r+(B) from above in terms of upper Collatz–

Wielandt numbers ‖B‖x by choosing an appropriate x ∈ Ẋ+ for which B(x) is
x-bounded and B pointwise x-bounded (Corollary 12.11). Crude attempts in this
direction are made for the rank-structured discrete population model with mating
in Section 14.

The idea of perturbing the map B as above or in a similar way is quite old;
see [36, Satz 3.1] and [46, Thm. 3.6].

Theorem 12.18. Let X+ be complete. Assume that B = K+A where K : X+ → X+

is compact, homogeneous, continuous and order preserving and A : X → X is
linear, positive and bounded and r(A) < r+(B). Let u ∈ Ẋ+ and B be uniformly
u-bounded.

Then cw(B) = rcw(B) = r+(B) = ηu(B) = CWu(B).

If r = CWu(B) > 0, then there exists some v ∈ Ẋu such that B(v) = rv.

Proof. For ε ∈ [0, 1], we define Bε : X+ → X+ by Bε(x) = B(x) + εψ(x)u where
ψ is the companion half-norm. Then Bε = Kε + A with Kε(x) = K(x) + εψ(x)u,
and Kε is compact, continuous, order-preserving and homogeneous.

Since A is linear and bounded, Bn
ε = Kn,ε + An with compact, continuous,

homogeneous, order-preserving maps Kn,ε.
If n is chosen large enough, ‖An‖ < r+(B

n). By Theorem 1.9 (a), some power
of B has the KR property, and r+(B) = ηu(B) = γB(u) = rcw(B) ≤ CWu(B) by
Theorem 12.13. Since B(x) ≤ Bε(x) for all x ∈ X+, r+(B) = rcw(B) ≤ rcw(Bε) ≤
r+(Bε) by Theorem 12.14.
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So r(A) < r+(B) ≤ r+(Bε). By Theorem 1.9 (a), for large enough n, there

exist eigenvectors vε ∈ Ẋ+ such that Bn
ε (vε) = rnε vε with rε = r+(Bε).

For ε ∈ (0, 1], Bε is strictly ψ-increasing (Definition 9.1), and Bn
ε inherits this

property. Set wε = Bε(vε). Then Bn
ε (wε) = rnε wε. Since Bε is uniformly u-bounded

and ψ(vε) > 0, wε is u-comparable. Since Bk
ε (vε) ∈ Ẋ+ for all k ∈ N, Bn

ε (vε) is
u-comparable and so vε and wε are comparable.

By Proposition 9.3, Bε(vε) = αεvε for some αε > 0 which must then equal
rε. Since vε is u-comparable rε = cw(Bε) = rcw(Bε) = r+(Bε) = CWu(Bε) for all
ε ∈ (0, 1]. By Theorem 12.17, CWu(B) ≤ r+(B) = ηu(B) = γu(B) and equality
holds everywhere by our earlier inequality.

Now choose a decreasing sequence (εk) in (0, 1] with εk → 0. Then rk =
r+(Bεk) form a decreasing sequence with rk ≥ CWu(B). Suppose CWu(B) > 0.
Set vk = vεk . We can assume that ‖vk‖ = 1 for all k ∈ N. Then

rkvk = K(vk) +Avk + εkψ(vk)u.

Let r = limk→∞ rk. Since K is compact,

(r −A)vk = (r − rk)vk +K(vk) + εkψ(vk)u

converges as k →∞ after choosing a subsequence. Since r ≥ CWu(B) = r+(B) >
r+(A), (r−A)−1 =

∑∞
j=0(1/r)

j+1Ak exists as a continuous additive homogeneous
map and acts as the inverse of r −A. This implies that vk → v for some v ∈ X+,
‖v‖ = 1. Since B is continuous, rv = B(v) which implies that r = r+(B). Then
r ≤ cw(B) and equality follows. If CWu(B) = 0, equality holds anyway. �

13. Monotonically compact maps on semilattices

As before, let X be an ordered normed vector space with cone X+.

Definition 13.1. Let u ∈ Ẋ+. B : X+ → X+ ∩Xu is called antitonically u-compact
if (B(xn)) has a convergent subsequence for each decreasing sequence (xn) in X+

for which there is some c > 0 such that xn ≤ cu for all n ∈ N.
B is called monotonically u-compact if (B(xn)) has a convergent subsequence

for each monotone sequence (xn) in X+ for which there is some c > 0 such that
xn ≤ cu for all n ∈ N.

If u ∈ X+ and B(u) is a regular point and B is order-preserving, then B is
monotonically u-compact. If X+ is regular (Section 2), then every order-preserving
homogeneous continuousB :X+→X+ is monotonically u-compact for any u ∈ X+.

Definition 13.2. Let u ∈ Ẋ+, B : X+ → X+ and B(u) be u-bounded. B is called
antitonically continuous at x ∈ X+ if, for for any decreasing sequence (xk) in
X+ with x ≤ xk ≤ cu for all k ∈ N (with some c > 0 independent of k) and
‖xk − x‖ → 0, we have ψ(B(xk)−B(x))→ 0.
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B is called monotonically continuous at x ∈ X+ with for every monotone
sequence (xk) in Xu with xk ≤ cu for all k ∈ N (with some c > 0 independent of
k) and ‖xk − x‖ → 0, we have �B(xk)−B(x)�→ 0.

Here ψ is the monotone companion half-norm, and � · � is the monotone
companion norm.

Recall the definition of an inf-semilattice in Section 1.1 ( x ∧ y = inf{x, y}
exists for all x, y ∈ X+) and the upper local Collatz–Wielandt spectral radius of
B at u ∈ X+ in Section 1.2.5,

ηu(B) = inf
n∈N

‖Bn‖1/nu .

Theorem 13.3. Let X+ be an inf-semilattice and B : X+ → X+ be order-preserving

and homogeneous. Let u ∈ Ẋ+, and B(u) be u-bounded. Assume that B is anti-
tonically u-compact and antitonically continuous. Finally assume that ηu(B) > 0
and ‖B(yn)‖u → 0 for any decreasing sequence (yn) in Xu ∩X+ with ‖yn‖ → 0.

Then there exists some x ∈ Ẋ+, such that B(x) ≥ ηu(B)x and ηu(B) ≤
cw(B).

The first part of the proof has been adapted from [25, L.9.5] where B is
assumed to be a linear operator on the ordered Banach space X and the cone X+

to be normal. Use of the monotone companion metric allows to drop normality as
assumption. However, without u being a normal point of the cone, compactness of
B may not imply monotonic compactness.

Proof of Theorem 13.3. Let u ∈ X+ such that B(u) is u-bounded. Since B is
homogeneous, we can assume that ηu(B) = 1. Otherwise, we consider 1

ηu(B)B. We

define

x0 = u, xk = yk ∧ u, yk = B(xk−1) + 2−ku, k ∈ N. (13.1)

Then xk ≤ u = x0 for all n ∈ N. By induction, since B is order-preserving,
xk+1 ≤ xk for all k ∈ N. We apply the convergence principle in Proposition 2.12
with S being the set of sequences (B(vn)) with (vn) being decreasing and v1 ≤ cu
for some c > 0. S has the properties requested in Proposition 2.12. Since B is
antitonically u-compact, every sequence in S has a convergent subsequence. So
every sequence in S converges.

Since (B(xn)) ∈ S, there exists some z ∈ X+ such that (B(xk)) converges to
z as k →∞ and B(xk) ≥ z for all k ∈ N. By (13.1), yk → z. Further

z ≤ B(xk−1) ≤ yk ≤ B(u) + 2−ku.

By (13.1),

xk = yk ∧ u ≥ z ∧ u =: x.

Notice that yk ∧ u+ z − yk ≤ z ∧ u = x. So

0 ≤ xk − x ≤ yk − z, k ∈ N. (13.2)
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Further

�B(xk)−B(x)� = ψ(B(xk)− B(x)) ≤ ψ(B(yk − z + x)−B(x))

≤ ‖B(yk − z + x) −B(x)‖.

Also x ≤ yk−z+x ≤ B(u)+u+x ≤ (c‖u‖+2)u. Recall that (yk−z+x) converges
to x with respect to the original norm.

Since B is antitonically continuous, (B(xk)) converges to B(x) with respect
to the monotone companion norm. Since B(xk)→ z with respect to the monotone
companion norm, we have B(x) = z ≥ x.

Moreover, x = z ∧ u = B(x) ∧ u.

It remains to show that x �= 0. Suppose that x = 0. Then z = B(x) = 0.
Recall that xk = yk ∧ u and ‖yk‖ → 0. Since B is order-preserving, ‖B(xk)‖u ≤
‖B(yk)‖u → 0 with the latter holding by assumption.

So there exists some m ∈ N such that B(xk−1) + 2−ku ≤ u for all k ≥ m.
Hence

xk = B(xk−1) + 2−ku = yk, k ≥ m.

In particular, 2mxm ≥ u and xk ≥ B(xk−1) for all k ≥ m. Since B is order-
preserving and homogeneous,

2mxm+n ≥ Bn(2mxm) ≥ Bn(u)

and

2mB(xm+n) ≥ Bn+1(u).

Now 2mB(xm+n) ≤ (1/2)u for sufficiently large n. This shows that, for some
n ∈ N, Bn+1(u) ≤ (1/2)u and ‖Bn+1‖u ≤ 1/2. By Lemma 12.2, ηu(B) =

infn∈N ‖Bn‖1/nu < 1, a contradiction.
This shows that x �= 0 and B(x) ≥ x. Then Bn(x) ≥ x for all n ∈ N. By

(1.14), [Bn]x ≥ 1 and, by (1.19), cw(B) ≥ 1 = ηu(B). �

Theorem 13.4. Let the cone X+ be a lattice and B : X+ → X+ be order-preserving

and homogeneous. Further let u ∈ Ẋ+ and some power of B be monotonically u-
compact and continuous and some power of B be uniformly u-bounded. Finally
assume that r = ηu(B) > 0.

Then there exists some x ∈ Ẋ+ such that B(x) ≥ rx and ηu(B) = r�o(B) =
rcw(B) = cw(B).

Proof. Replacing B by 1
ηu(B)B, we can assume that ηu(B) = 1. Let Bm be mono-

tonically u-compact and continuous and B� be uniformly u-bounded. Set p = m+�.
Then Bp is monotonically u-compact and uniformly u-bounded and continuous.
By Theorem 13.3, there exists some w ∈ Ẋ+ such that Bp(w) ≥ w. By Proposition

1.11, there exists some v ∈ Ẋ+ such that B(v) ≥ v. By (1.19), cw(B) ≥ 1 = ηu(B).
By Theorem 12.9, ηu(B) ≥ r�o(B) ≥ rcw(B) ≥ cw(B) and equality follows. �

Recall the definition of B being strictly increasing in Definition 9.1.
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Theorem 13.5. Let X+ be a lattice and B : X+ → X+ be monotonically continuous,
strictly increasing, and homogeneous. Further assume that a power of B is mono-
tonically u-compact and some power is uniformly u-bounded for some u ∈ Ẋ+.
Finally assume that r = ηu(B) > 0.

Then there exists some x ∈ Ẋ+ such that B(x) = rx.

Proof. We can assume that ηu(B) = 1. By Theorem 13.3, there exists some x ∈
X+, ‖x‖ = 1 such that B(x) ≥ x. Then the sequence (xn)n∈Z+ in X+ defined
by xn = Bn(x) is increasing. The same proof as for Theorem 9.2 implies that
{‖xn‖;n ∈ N} is a bounded set in R.

Set x0 = x. Then xn = B(xn−1) for n ∈ N. Since some power ofB is uniformly
u-bounded, there exists some c ≥ 0 and m ∈ N such that xn ≤ c‖xn−m‖u = cu for
n ≥ m. Since some power of B is monotonically u-compact and (xn) = (Bn(x)) is
increasing, a similar application of the convergence principle in Proposition 2.12
provides that xn → y for some y ∈ X+ with ‖y‖ = 1. Since B is monotonically
continuous, ψ(B(y) − B(xn)) → 0. So ψ(B(y) − xn+1) → 0. Then �y − B(y)� ≤
�y−xn+1�+�xn+1−B(y)� = ψ(y−xn+1)+ψ(B(y)−xn+1)→ 0. Thus y = B(y). �

Proposition 13.6. Let u ∈ Ẋ+ and B : X+ → X+∩Xu be homogeneous and order-
preserving. Further let B be monotonically u-compact, uniformly u-bounded and
monotonically continuous.

Let ε > 0 and ψ the companion half-norm. Set Bε(x) = B(x) + εψ(x)u.

Then there exists some v ∈ Ẋ+ such that Bε(v) = rεv with rε = ηu(Bε) =
CWu(Bε) = rcw(Bε) = cw(Bε) > 0.

Proof. One readily checks that Bε satisfies the assumptions of Theorem 13.3 and
rε = ηu(Bε) ≥ ε > 0.

We can assume that rε = 1. By Theorem 13.3, there exists some w ∈ X+,
ψ(w) = 1, such that Bεw ≥ w. Let wn = Bn

ε (w) for n ∈ Z+. Then (wn) is an
increasing sequence in X+ ∩Xu. We claim that ψ(wn) = 1 for all n ∈ N. Suppose
not. Then there exists some n ∈ N such that ψ(wn) > ψ(wn−1). Then there exists
some δ > 0 such that

Bε(wn) ≥ Bε(wn−1) + δu.

Since wn = Bε(wn−1) ∈ Xu, there exists some δ̃ > 0 such that

Bε(wn) ≥ (1 + δ̃)wn.

This implies ηu(Bε) ≥ 1 + δ̃, a contradiction. Since B is uniformly u-bounded,
it is also uniformly u-bounded with respect to the companion half-norm ψ by
Proposition 10.2. So there exists some c > 0 such that wn = B(wn−1) + εu ≤ cu.
Since (wn) is increasing and Bε is monotonically u-compact, wn+1 = Bε(wn)→ v
for some v ∈ X+, ψ(v) = 1. Since Bε is monotonically continuous, v = Bε(v) and
1 ≤ cw(Bε) ≤ rcw(Bε) ≤ ηu(Bε). Since v ≥ εu and B is uniformly u-bounded, v is
u-comparable. This implies CWu(Bε) ≤ 1 = ηu(B). Since CWu(Bε) ≥ ηu(Bε), we
have equality. �
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Theorem 13.7. Let u ∈ Ẋ+ and B : X+ → X+ be homogeneous, order-preserving
and continuous. Assume that B is uniformly u-bounded and monotonically u-
compact.

Then r+(B) ≥ CWu(B) = ηu(B) with equality holding if u is a normal point
of X+ or a power of B has the lower KR property. If r := CWu(B) > 0, there

exists some v ∈ Ẋ+ such that B(v) ≥ rv.

Proof. By Theorem 12.10, r+(B) ≥ γB(u) ≥ ηu(B) with equality holding if u is
a normal point of X+ or some power of B has the lower KR property. By (12.8),
ηu(B) ≤ CWu(B).

If CWu(B) = 0, the assertion holds; so we assume that CWu(B) > 0.
Choose a sequence (εn) in (0, 1) with εn → 0. Let Bn : X+ → X+ be given by

Bn(x) = B(x) + εnψ(x)u. We combine Proposition 13.6 and Theorem 12.17 and
obtain ηu(B) = CWu(B) ≤ r+(B).

If u is a normal point of X+ or some power of B has the lower KR property,
ηu(B) = r+(B) which implies CWu(B) = r+(B).

Assume that r := CWu(B) > 0. Then ηu(B) = r > 0 and there exists some

v ∈ Ẋ+ with B(v) ≥ rv by Theorem 13.3. �

14. A rank-structured population model with mating

Let X ⊆ RN be an ordered normed vector space with cone X+ = X ∩RN
+. Assume

that the norm has the property that xj ≤ ‖x‖ for all x = (xj) ∈ X+ and all j ∈ N.
This implies that X ⊆ �∞ and ‖x‖∞ ≤ ‖x‖ for all x ∈ X .

Define a map B : X+ → RN
+, B(x) = (Bj(x)), by

B1(x) = q1x1 +

∞∑
j,k=1

βjk min{xj , xk}

Bj(x) = max{pj−1xj−1, qjxj}, j ≥ 2

⎫⎪⎬⎪⎭x = (xj) ∈ X+. (14.1)

Here pj, qj ≥ 0, βj,k ≥ 0 for all j, k ∈ N.
∑∞

j,k=1 is to be understood as

limn→∞
∑n

j,k=1.

The dynamical system (Bn)n∈N can be interpreted as the dynamics of a rank-
structured population and, in a way, is a discrete version (in a double sense) of
the two-sex models with continuous age-structure in [18, 19]. B1(x) is the number
of newborn individuals who all have the lowest rank 1. Procreation is assumed to
require some mating. Mating is assumed to be rank-selective and is described by
taking the minimum of individuals in two ranks. The numbers βjk represent the
probabilities that females of rank j and males of rank k mate and the per pair
fertilities, where a 1:1 sex ratio is assumed at each rank. The maps Bj , j ≥ 2,
describe how individuals survive and move upwards in the ranks from year to year
where one cannot move by more than one rank within a year. We assume that

pj ≤ 1, qj ≤ 1, j ∈ N, (14.2)
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which is reasonable if xk is interpreted as the number of individuals at rank k.
If xk were the biomass of individuals at rank k, such an assumption would make
less sense. An individuals at rank j is at least j − 1 years old, and so mortality
eventually wins the upper hand such that the assumption pj → 0 and qj → 0 is
natural though we will not always assume this.

Since Bj(x) ≤ (pj−1 + qj)‖x‖ for j ≥ 2, B is u-bounded with respect to
u = (uj) with

u1 = 1, uj = pj−1 + qj , j ≥ 2, (14.3)

provided that u ∈ X .

If we choose X = �1, it is sufficient to assume that

sup
k∈N

∞∑
j=1

βjk <∞ or sup
j∈N

∞∑
k=1

βjk <∞. (14.4)

If X = �∞, it is sufficient to assume that

∞∑
j,k=1

βjk <∞. (14.5)

It does not appear that (14.5) can be improved for X = c0 or X = bv. To make
B map bv into itself, it is sufficient to assume that (pj), (qj) ∈ bv. If X = c, c0, �

p

(1 ≤ p ≤ ∞), no assumptions other than (14.2) are needed for B to map X into X .

To derive estimates for the cone spectral radius of B, one runs into algebraic
difficulties very soon except when attempting cw(B). Let xn be the sequence where
the first n terms are 1 and all others zero. Then, for m ≥ 2,

cw(B) ≥ [B]xm =min

{
q1 +

m∑
j,k=1

βj,k,
m

inf
j=2

max{pj−1, qj}
}
. (14.6)

Let em be the sequence where the mth term is one and all other terms zero. Then

[B]e1 = q1 + β11, [B]em = qm, m ≥ 2.

Since cw(B) is an upper bound for all these numbers, we obtain that

cw(B) ≥ max{q1 + β11, sup
j≥2

qj}. (14.7)

Lemma 14.1. Let r > qj for all j ∈ N, j ≥ 2, and v ∈ Ẋ+ with B(v) ≥ rv. Then

1 ≤ r−1q1 +

∞∑
j,k=1

βjk min{r−jPj , r
−kPk}. (14.8)

Here, the right-hand side of the equality may be infinite.



460 H.R. Thieme

Proof. From rv ≤ B(v), we obtain the inequalities,

rv1 ≤ q1v1 +

∞∑
j,k=1

βjk min{vj , vk},

rvj ≤ max
{
pj−1vj−1, qjvj

}
, j ≥ 2.

(14.9)

We claim that

vj ≤
pj−1

r
vj−1, j ≥ 2. (14.10)

Suppose that j ≥ 2 and rvj > pj−1vj−1. Then rvj ≤ qjvj . So vj = 0 because
r > qj , a contradiction.

By iteration of (14.10), for all j ∈ N,

vj ≤ r1−jPjv1, Pj =

j−1∏
i=1

pi, j ≥ 2, P1 = 1. (14.11)

We notice that v1 = 0 implies v = 0; so we can assume v1 > 0. We substitute this
formula into the one for v1 and divide by rv1; this yields (14.8). �

The following conditions are necessary and sufficient for cw(B) > 0.

Theorem 14.2. cw(B) > 0 if and only if at least one of the subsequent three
conditions hold:

(i) qj > 0 for some j ∈ N; (ii) β11 > 0;
(iii) for some j, k ∈ N with m = max{j, k} ≥ 2, we have βjk > 0 and pi > 0 for

i = 1, . . . ,m− 1.

Proof. That each of the conditions is sufficient follows from (14.6) and (14.7). To
see necessity, assume that qj = 0 for all j ∈ N and cw(B) > 0. Then there exists

some r > 0 and v ∈ Ẋ+ such that B(v) ≥ rv. By Lemma 14.1,

1 ≤
∞∑

j,k=1

βjk min{r−jPj , r
−kPk},

with the right-hand side possibly being infinity. Then β11 > 0 or there exists
i, k ∈ N with m = max{j, k} > 1 and Pm > 0. �

Inspired by (14.11), for m ∈ N and r > 0, we define

w1 = 1, wj = r1−jPj for j = 2, . . . ,m, wj = 0 for j > m. (14.12)

Lemma 14.3. B(w) ≥ s(r,m)w with s(r,m)

= min

{
q1 +

m∑
j,k=1

βjk min{r1−jPj , r
1−kPk},max{r, q2}, . . . ,max{r, qm}

}
.

So

cw(B) ≥ sup{s(r,m);m ∈ N, r > 0}.
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Proof. For j ≥ 2, . . . ,m,

Bj(w) = max{pj−1wj−1, qjwj} = max{r2−jPj , qjr
1−jPj} = max{r, qj}wj .

For j > m, Bj(w) ≥ 0 = max{r, qj}wj . Finally,

B1(w) ≥
(
q1 +

m∑
j,k=1

βjk min{r1−jPj , r
1−kPk}

)
w1.

So B(w) ≥ s(r,m)w. The last inequality follows from the definition of cw(B) in
Section 1.2.4. �

Motivated by these results, we set

R0 := q1 +

∞∑
j,k=1

βjk min{Pj , Pk}. (14.13)

Notice that Pj is the probability of reaching rank j within j years after birth. So,
with a grain of salt, R0 is the average number of rank 1 individuals one typical
rank 1 individual can produce during its lifetime, and R0 can be interpreted as a
basic reproduction number.

Theorem 14.4. Assume that R0 < ∞. Then R0 > 1 if and only if cw(B) > 1.
If R0 > 1, then 1 < cw(B) < R0 and cw(B) is the unique solution r > 1 of the
equation

1 = r−1q1 +

∞∑
j,k=1

βjk min{r−jPj , r
−kPk}. (14.14)

Moreover B(v) = rv for some v ∈ Ẋ+. Finally, there exist some s > 1 and some
w ∈ X+ with w1 = 1 and wj = 0 for all but finitely many j such that B(w) ≥ sw.

Proof. Assume ∞ > R0 > 1. Then the right-hand side of (14.14) is a strictly
decreasing continuous function of r ≥ 1 that converges to 0 as r → ∞. By the
intermediate value theorem, there exists a unique solution r = r0 > 1 of (14.14).
Let 1 < t < r0 be arbitrary. Then, for sufficiently large m ∈ N,

1 < t−1q1 +

m∑
j,k=1

βjk min{t−jPj , t
−kPk}.

By Lemma 14.3, s(t,m) = t and cw(B) ≥ t. Since this holds for any t ∈ (1, r0),
cw(B) ≥ r0 > 1.

Now assume thatR0 <∞ and cw(B) > 1. Choose an arbitrary s∈(1,cw(B)).

Then B(v) ≥ sv for some v ∈ Ẋ+. By Lemma 14.1,

1 ≤ s−1q1 +

∞∑
j,k=1

βjk min{s−jPj , s
−kPk} < R0.

This also implies s ≤ r0 where again r0 is the unique solution of (14.14). Since
s ∈ (1, cw(B)) can be arbitrarily chosen, cw(B) ≤ r0.



462 H.R. Thieme

Since r0 = cw(B) > 1 solves (14.14), r−1
0 R0 > 1 and so cw(B) < R0.

Similarly as in the proof of Lemma 14.3, one shows that v = (vj) with

vj = r1−j
0 Pj satisfies B(v) = r0v.

Recall Lemma 14.3. Since R0 > 1, by choosing m ∈ N large enough and
r ∈ (1,R0) close enough to 1, one can achieve that s(r,m) > r > 1 and B(w) ≥
s(r,m)w for some w ∈ RN

+, w1 = 1 and wj = 0 for j > m. �

Theorem 14.5. Let R0 < ∞ and q� := supj≥2 qj . Then the following two equiva-
lences hold:

• cw(B) < 1 if and only if max{R0, q
�} < 1.

• cw(B) = 1 if and only if max{R0, q
�} = 1.

Further, the following hold:

If R0 ≤ 1, then cw(B) ≥ max{R0, q
�}.

If lim supj→∞ pj < 1 and R0 < 1, then R0 < cw(B) < 1.

Proof. By (14.7), cw(B) ≥ q�.
By contraposition of Theorem 14.4, R0 ≤ 1 if and only if cw(B) ≤ 1.

Let R0 ≤ 1. By Lemma 14.3, s(1,m) = q1 +
∑m

j,k βjk min{Pj, Pk} and

cw(B) ≥ s(1,m) for all m ∈ N. By taking the limit as m→∞, cw(B) ≥ R0.

In particular, if R0 = 1, then cw(B) = 1.

Suppose that 1 ≤ cw(B) and q� < 1. By Lemma 14.1, for all r ∈ (q�, 1) there
exists some v ∈ Ẋ+ such that B(v) ≥ rv and (14.8) holds. Taking the limit r → 1
yields 1 ≤ R0.

By contraposition of this result and of Theorem 14.4,R0 ≤ 1 implies cw(B) ≤
1, and R0 < 1 and q� < 1 imply cw(B) < 1.

Suppose lim supj→∞ pj < 1 and R0 < 1. We can assume that q� ≤ R0 < 1;
otherwise cw(B) ≥ q� > R0.

Choose α strictly between lim supj→∞ pj and 1. Then there exists some c > 0

such that Pk ≤ cαk for all k ∈ N. So there exists some r ∈ (α, 1), r > q�,
such that

∑∞
j,k βjk min{r1−jPj , r

1−kPk} < r. By Lemma 14.3, for all m ∈ N,
s(r,m) ≥

∑m
j,k=1 βjk min{r1−jPj , r

1−kPk}. So

cw(B) ≥
∞∑

j,k=1

βjk min{r1−jPj , r
1−kPk} > R0. �

The following trichotomy holds.

Corollary 14.6. Let R0 < ∞ and q� := supj≥2 qj < 1. Then one and only of the
following three possibilities hold:

Either R0 ≤ cw(B) < 1, or cw(B) = R0 = 1, or R0 > cw(B) > 1. In
particular R0 − 1 and cw(B) − 1 have the same sign.

We now make the connection to the cone spectral radius r+(B).
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Theorem 14.7. Let X = �∞ and
∑∞

j,k=1 βjk <∞. Further assume

lim sup
j→∞

pj < 1 and sup
j≥2

qj < 1.

Then R0 > r+(B) > 1, or R0 = r+(B) = 1, or R0 < r+(B) < 1.

If, in addition, lim supj→∞ pj ≤ R0 and lim supj→∞ qj ≤ R0, cw(B) =
r+(B) = CW (B) := infx∈X̆+

‖B‖x.

Proof. We first show that B = K + H where K,H : X+ → X+ are continuous,
homogeneous, and order-preserving, K compact and H a strict contraction. Let
α > p∞ = lim supj→∞ pj and α < q∞ = lim supj→∞ qj .

Choose some m ∈ N and α < 1 such that pj ≤ α and qj ≤ α for j ≥ m.
Define H(x) = (Hj(x)) with Hj(x) = 0 for j = 1, . . . ,m and Hj(x) = Bj(x) =
max{pj−1xj−1, qjxj} for j ≥ m+1. Set K = B−H . Then Kj(x) = 0 for j ≥ m+1
and K is compact. An elementary but tedious calculation with many cases shows
that |max{s, t} −max{u, v}| ≤ max{|s− u|, |t− v|} for s, t, u, v ∈ R. So

|Hj(x)−Hj(y)| ≤ max{pj−1|xj−1 − yj−1|, qj |xj − yj|}
≤ max{pj−1, qj}‖x− y‖∞, j ∈ N, x = (xj), y = (yj) ∈ �∞.

This implies ‖H(x)−H(y)‖∞ ≤ α < 1. Assume that R0 ≥ p∞ and R0 ≥ q∞. By
Theorem 14.5, r+(B) ≥ cw(B) > max{p∞, q∞}. Choose α strictly between r+(B)
and max{p∞, q∞}. By Theorem 1.9 (a), B has the KR property, and r+(B) =
cw(B) by Theorem 1.15. Further, in Theorem 12.17, the maps Bε have the KR
property and so r+(B) = CW (B). The remaining statements now follow from
Theorem 14.5. �

B is compact on X+ and uniformly u-bounded with u in (14.3) if B1 : X+ →
R+ is bounded and ⎧⎪⎨⎪⎩

u ∈ �p, X = �p, p ∈ [1,∞)

u ∈ c0, X = c0, c, �
∞

(pj), (qj) ∈ bv ∩ c0, X = bv, bv ∩ c0.

(14.15)

Notice that, if xn = (xn
j ) is a bounded sequence inX , then it is a bounded sequence

in �∞ and, after a diagonalization procedure, has a subsequence (ym) such that
(ymj )m∈N converges for each j ∈ N.

Apparently, X = �∞, c, c0 require the weakest assumption for compactness
of B in terms of u. It is not clear, however, whether an eigenvector in any of these
three spaces would also be in bv if (qj), (pj) ∈ bv∩c0. If u ∈ �1, then u is also in all
the other spaces we have considered, and cw(B) = rcw(B) = ηu(B) = CWu(B) in
all spaces with the radii and bounds not depending on the space. If X is normal,
then also r+(B) = cw(B) does not depend on the space. For X = bv, we have
r+(B) = cw(B) as well provided that (pj), (qj) ∈ bv ∩ c0 such that B is compact
also in bv or in bv ∩ c0.
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Corollary 14.8. Let X be one of the spaces in (14.15) and (14.15) hold and B1 :
X+ → R+ be bounded. Let qj < 1 for all j ∈ N. Then either R0 > r+(B) > 1, or
R0 = r+(B) = 1, or R0 < r+(B) < 1. Further r+(B) = CWu(B) = cw(B).

These results will be used in [23] to establish r+(B) as a sharp threshold
parameter deciding about local stability of the extinction equilibrium versus pop-
ulation persistence in a nonlinear version of this population model.

Proof. If (14.15) holds and B1 is bounded, then B is compact and cw(B) =
r+(B) = CWu(B) by Theorem 12.18. The trichotomy now follows in the same
way as in the proof of Theorem 14.7. �

We have not succeeded in obtaining further estimates of r+(B) using CW (B).
To find estimates of r+(B) from above, we can use Corollary 12.11.

Assume
∑∞

j,k=1 βjk < ∞. Take the sequence e where all terms are 1 for
X = �∞ or for X = bv provided that u ∈ bv ∩ c0. Then

r+(B) ≤ ηe(B) ≤ ‖B(e)‖e = max
{
q1 +

∞∑
j,k=1

βjk,
∞
sup
m=1

pm,
∞
sup
m=2

qm

}
.

Notice that the estimate is only of interest if R0 < 1. If R0 ≥ 1, the estimate
r+(B) ≤ R0 is better. We obtain this estimate also for X = c0, bv∩ c0, �1 if u ∈ X
and there exist θ ∈ (0, 1) and c > 0 such that pm−1 + qm ≤ cθm for all m ≥ 2.
Then B is uniformly w-bounded for w = (θn) and

r+(B) ≤ ‖B‖w = max
{
q1 +

∞∑
j,k=1

βjkθ
j+k−1,

∞
sup
m=1

pm/θ,
∞
sup
m=2

qm

}
.

This estimate also holds for all θ̃ ∈ (θ, 1), and so we can take the limit for θ → 1
and obtain the previous estimate.

We obtain another estimate if there exist α > 1 and c > 1 such that pm−1 +
qm ≤ cm−α for all m ≥ 2. Then B is uniformly w-bounded for w = (n−α)n∈N and

r+(B) ≤ ‖B‖w = max
{
q1 +

∞∑
j,k=1

βjkj
−αk−α,

∞
sup
m=1

pm
(m+ 1

m

)α
,

∞
sup
m=2

qm

}
.

This estimate also holds for all α̃ ∈ (1, α), so we can take the limit α→ 1.
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torräumen, Math. Ann. 129, 1955, 323–329

[37] H.H. Schaefer, Halbgeordnete lokalkonvexe Vektorräume. II, Math. Ann. 138 (1959),
259–286

[38] H.H. Schaefer, Topological Vector Spaces, Macmillan, New York 1966



Spectral Radii and Collatz–Wielandt Numbers 467

[39] H.H. Schaefer, Banach Lattices and Positive Operators, Springer, Berlin Heidelberg
1974

[40] Smith, H.L., H.R. Thieme, Dynamical Systems and Population Persistence, Amer.
Math. Soc., Providence 2011

[41] H.R. Thieme, Spectral bound and reproduction number for infinite dimensional pop-
ulation structure and time-heterogeneity, SIAM J. Appl. Math. 70 (2009), 188–211

[42] H.R. Thieme, Eigenvectors and eigenfunctionals of homogeneous order-preserving
maps, arXiv:1302.3905v1 [math.FA], 2013

[43] H.R. Thieme, Comparison of spectral radii and Collatz–Wielandt numbers for homo-
geneous maps, and other applications of the monotone companion norm on ordered
normed vector spaces, arXiv:1406.6657v2 [math.FA], 2016

[44] H.R. Thieme, Eigenfunctionals of homogeneous order-preserving maps with applica-
tions to sexually reproducing populations, J. Dynamics and Differential Equations
(to appear)

[45] A.C. Thompson, On certain contraction mappings in a partially ordered vector space,
Proc. AMS 14 (1963), 438–443

[46] A.C. Thompson, On the eigenvectors of some not-necessarily-linear transformations,
Proc. London Math. Soc. 15 (1965), 577–598

[47] A.J. Tromba, The beer barrel theorem, a new proof of the asymptotic conjecture in
fixed point theory, Functional Differential Equations and Approximations of Fixed
Points (H.-O. Peitgen, H.-O. Walther, eds.), 484–488, Lecture Notes in Math. 730,
Springer, Berlin Heidelberg 1979

[48] P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold en-
demic equilibria for compartmental models of disease transmission, Math. Biosci.
180 (2002), 29–48

[49] H. Wielandt, Unzerlegbare, nicht negative Matrizen, Math. Z. 52 (1950), 642–648

[50] K. Yosida, Functional Analysis, sec. ed., Springer, Berlin Heidelberg 1965–1968

Horst R. Thieme
School of Mathematical and Statistical Sciences
Arizona State University
Tempe, AZ 85287-1804, USA
e-mail: hthieme@asu.edu

mailto:hthieme@asu.edu


Ordered Structures and Applications: Positivity VII

Trends in Mathematics, 469–480
c© 2016 Springer International Publishing

Piling Structure of Families of
Matrix Monotone Functions and of
Matrix Convex Functions

Jun Tomiyama

Abstract. Given a nontrivial open interval I on the real line, we consider the
set Pn(I) (resp. Kn(I)) of all n-monotone (resp. n-convex) functions defined
on I . Then {Pn(I)}∞n=1 (resp. {Kn(I)}∞n=1) is a decreasing sequence of sets
“piled” on their intersection, the set of all operator monotone functions P∞(I)
(resp. the set of all operator convex functions K∞(I)) on I . In this article we
give criteria for a function to belong to such a set, and we describe the gap
between the sets for n and n + 1. In fact, for every n we provide abundant
examples of n-monotone (resp. n-convex) functions in the gap between Pn(I)
and Pn+1(I) (resp. Kn(I) and Kn+1(I)). When I is finite we show that this
gap contains polynomials of degree 2n− 1 and 2n (resp. 2n and 2n+ 1).

Mathematics Subject Classification (2010). Primary 47A53; Secondary 26A48,
26A51.

Keywords. Matrix monotone functions, matrix convex functions, gaps.

1. Introduction

Let I be an interval (open, closed, any type of an interval on the real line R is
admissible) and let f(t) be a real-valued continuous function on I. Let Mn be
the matrix algebra of the degree n. Throughout this article then every matrix a
treated here is assumed to be selfadjoint and its spectrum σ(a) is contained in I.
We call the function f n-monotone if for any pair of matrices {a, b} in Mn we have
the order f(a) ≤ f(b) whenever a ≤ b. Similarly call f n-convex if for such a pair
we have

f(λa+ (1− λ)b) ≤ λf(a) + (1− λ)f(b),

where 0 ≤ λ ≤ 1. The sequence {Pn(I)}∞n=1 of sets of all n-monotone functions,
and likewise the sequence {Kn(I)}∞n=1 of sets of all n-convex functions, is decreas-
ing with intersections P∞(I) resp. K∞(I). Members of these classes are said to be
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operator monotone and operator convex. These notions were introduced and devel-
oped by K. Loewner with his two students O. Dobsch and U. Kraus (1934–1936).
Since then the theory has been developed with a large variety of applications to
many fields of both pure and applied mathematics and quite recently to quantum
information theory.

As to the structure of the piles, it has been suggested in the literature that
the inclusion Pn+1(I) ⊂ Pn(I) must be proper for all n (and likewise for the convex
case). Yet concrete examples of functions in the gap between Pn(I) and Pn+1(I)
are surprisingly lacking; even for n = 2 only one example was known in [17]. In
this article, mainly based on the joint works [7] and [8] together with other joint
works [4] and [13], we discuss the existence of gaps for both sequences {Pn(I)}
and {Kn(I)} providing abundance examples in those gaps for all n.

2. Criteria for n-monotonicity and n-convexity
and the Local Property Theorem

In case of piling structure of classical calculus, we have a gap between the set of all
C∞-functions and that of analytic functions on the interval I. A great contribution
by Loewner [10] was to show that we do not have such gap for operator monotone
functions through the following characterization of an operator monotone function.

Theorem 2.1. A function f defined on an open interval I becomes operator mono-
tone if and only if it has an analytic continuation to the upper half-plane as a Pick
function, that is, keeping this half-plane as its range.

Now in order to look for the piling structure for {Pn(I)} and {Kn(I)} we
need criteria for n-monotone functions and n-convex functions.

To begin with we first introduce the notion of divided differences and regu-
larization process. Let t1, t2, t3, . . . be a sequence of distinct points. We write those
divided differences with respect to a function f as

[t1, t2]f =
f(t1)− f(t2)

t1 − t2
and inductively,

[t1, t2, . . . , tn+1]f =
[t1, t2, . . . , tn]− [t2, t3, . . . , tn+1]

t1 − tn+1
.

When f is sufficiently smooth, we can define

[t1, t1]f = f ′(t1),
and then inductively such as

[t1, t1, t2]f =
f ′(t1)− [t1, t2]

t1 − t2
, [t1, t1, t1] = f”(t1)/2.

When there appears no confusion we omit the index f . In this way we see that
(n+ 1)th divided difference [t0, t0, . . . , t0] is f

(n)(t0)/n!, which is nothing but the
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nth coefficient of the Taylor expansion of f(t) at the point t0. An important
property of divided differences is that they are permutation free so that one may
find another forms of the definition for divided differences in different orders of t′is.

In the following calculation we often assume that relevant functions are
smooth enough. This is allowed because of the following so-called regularization
process of those functions. Let ϕ(t) be an even C∞-function defined on R. It is
required to be positive, supported on the interval [−1, 1], and with the integral
being one, that is, a mollifier. Let f(t) be a continuous function on (α, β), then we
form its regularization fε(t) for a small positive ε by

fε(t) = 1/ε

∫
ϕ(

t− s

ε
)f(s)ds =

∫
ϕ(s)f(t− εs)ds.

This regularization converges to f uniformly on any closed subinterval when
ε goes to zero. Moreover fε(t) becomes a C∞-function, and important points are
the facts that when f is monotone or convex at some level (such as n-monotone
or n-convex) on (α, β) fε becomes monotone or convex at the same level on the
interval (α+ε, β−ε). Therefore, we may prove the required property for the smooth
function fε and come back to the original function f keeping that property. Here
it is also to be noticed that the regulation of a derivative is the derivative of the
regulation, that is, (f ′)ε(t) = (fε)

′(t).
Now we state the criteria of n-monotone functions. There are two criteria;

one global (combinatorial) and the other local. Given a function f on the interval
I and an n-tuple {t1, t2, . . . , tn} (not necessarily assumed to be distinct) from I
the following matrix

Lf
n(t1, t2, . . . , tn) = ([ti, tj]f )

n
i,j=1

is called the Loewner matrix for a function f . In the following we often write Lf
n

instead of Lf
n(t1, t2, . . . , tn).

Criterion Ia. Let f be a class C1-function on I. Then f is n-monotone if and
only if for an arbitrary n-tuple {t1, t2, . . . , tn} in I its Loewner matrix is positive
semidefinite.

For the proof of this result we just refer to [1, Theorem V.3.4] or [5, Theorem
6.6.36].

Comparing with this criterion the next local criterion for n-monotonicity is
quite useful although in the form we should know the differentiated forms in high
differentiation.

Criterion Ib. Let f be a function in C2n−1 on the above interval I. Then f is
n-monotone if and only if the following n× n Hankel matrix

Mn(f ; t) =

(
f (i+j−1)(t)

(i + j − 1)!

)
is positive semidefinite for every t ∈ I.
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In fact, with this criterion we can show that the function log t on the positive
half-line is operator monotone whereas the exponential function et is not even
2-monotone (a drastic appearance of noncommutativity). These two criteria are
now established facts. There were however serious troubles to establish Criterion
Ib. Assuming enough smoothness as mentioned above, for the implication from Ia
to Ib we make use of the method using the so-called extended Loewner matrix
Lef
n (t1, t2, . . . , tn) defined for an n-tuple {t1, t2, . . . , tn} in I as

Lef
n (t1, t2. . . . , tn) = ([t1, t2, . . . , ti, t1, t2, . . . , tj ])

n
i,j=1.

As in the case of the Loewner matrix we write often Lef
n as a shorthand notation

for Lef
n (t1, t2, . . . .tn).
For the implication Ia → Ib we leave its details to the comprehensive book [3].
The conclusion of Ib is obtained by the semidefiniteness of the extended

Loewner matrix Lef
n and then by considering the limiting case where all {ti}

coincide, The general relation between determinant of the Loewner matrix Lf
r of

size r and that of its extended form Lef
r for {t1, t2, . . . , tr} is

detLf
r =

∏
i>j

(ti − tj)
2 detLef

r .

Hence they have the same sign provided that all tk’s are distinct. Thus, considering
this situation positive semidefiniteness of Mn(f ; t) is obtained through determi-
nants of principal submatrices of Lef

n .

A starting point for the converse assertion is the next proposition. We state
here its proof because of its importance in our discussion although such proof is
found in the book [3].

Proposition 2.2. Let f be a function in the class C2n−1(I). Suppose there exist an
interior point t0 such that Mn(f ; t0) > 0. Then there exists a positive number δ
such that f is n-monotone in the subinterval (t0 − δ, t0 + δ).

Proof. Note first that, by the standard result in linear algebra, determinant of each
leading principal submatrix of Mn(t0; f) is positive. It follows by the continuous
dependence of matrix entries on points that we can find a small positive δ such that
determinants of all leading principal submatrices of the extended Loewner matrix
Lef
n are positive in the open interval (t0 − δ, t0 + δ) inside I. Thus from the above

relations between determinants of principal submatrices of Lf
n and those of the

extended Loewner matrix Lef
n we see that those of leading principal submatrices

of Lf
n are positive provided that given n-tuple {tk} consists of distinct points.

Therefore, here the corresponding Loewner matrix becomes positive definite by
the standard result in linear algebra. Since the set of such n-tuples is dense in the
set of all n-tuples without restrictions, the matrix Lf

n becomes positive semidefinite
in this open interval and then by Ia the function f becomes n-monotone in the
interval. �

Thus for a closed subinterval inside I we have a covering of open intervals
and hence a finite numbers of covering in each of which f is n-monotone. We
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have to however connect these facts to assert that f is n-monotone on that closed
subinterval of I and then shift to the whole I. Therefore for these steps we need
the following Local Property Theorem.

Theorem (Local Property Theorem). Let (α, β) and (γ, δ) be two overlapping open
intervals, where α < γ < β < δ. Suppose a function f is n-monotone on these
intervals, then f is n-monotone on the larger interval (α, δ)

Though its formulation looks very simple, this theorem is very deep and its
proof is extremely hard. Nevertheless, to our surprise, Loewner himself wrote in his
paper [10, p. 212, Theorem 5.6] that “the proof of this theorem is very easy, hence
we leave its proof to the reader”. Furthermore, when his student Dobsch used this
result in [2], he just cited the result as already proved one by Loewner. Fortunately,
forty years later Donoghue gave a comprehensive proof in his book [3], which
amounts almost fifty (!) pages (together with the theory of interpolation functions
of complex variable), and Criterion Ib is now assumed to be an established one.
Since, however, Donoghue’s proof is too long (as a whole) we are still looking
for a simple minded proof of this Local Property Theorem for matrix monotone
functions. On the other hand, the Local Property Theorem for matrix convex
functions is still far beyond our scope as we shall explain later.

As for the criteria of n-convexity of functions we are in a similar situation
having a serious trouble for the second criterion lacking in the Local Property
Theorem of convexity! In fact, we are at present in the situation as follows.

Criterion IIa. Let f be a function in C2 on I. Then f is n-convex if and only if
for an arbitrary n-tuple {t1, t2, . . . , tn} in I the Kraus matrix of size n,

Kf
n(s) = ([ti, tj, s])

n
i,j=1 = ([ti, s, tj])

n
i,j=1

is positive semidefinite. Here s is fixed among {t1, t2, . . . , tn}.
An expected local criterion would be

Criterion IIb. Let f be a function in C2n in the interval I, then f is n-convex if
and only if the following Hankel matrix

Kn(f ; t) =

(
f (i+j)(t)

(i+ j)!

)
is positive semidefinite for every t ∈ I

For the proof of Criterion IIa we refer to [5, Theorem 6.6.52 (1)]. The im-
plication from IIa to IIb has been proved in a similar way as in the case of Cri-
teria Ia and Ib in [7] and [8]. Here however because of the difference of the order
of relevant divided differences computations become much more complicated to
paraphrase the original determinant into the determinant of the extended Kraus
matrix, Kef

n (s) = ([t1, . . . , ti, s, t1, . . . , tj])
n
i,j=1 similar to Lef

n .
On the other hand, the Local Property Theorem for n-convex functions is

proved only in the case n = 2 in [7] and at present we have been unable to prove
the theorem even for 3-convex functions. For the moment, all we can say now is
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the following fact that corresponds to the previous Proposition 2.2 for n-monotone
functions.

Proposition 2.3. Suppose that Kn(f ; t0) > 0 at some interior point t0 in I, then
there exists a small open subinterval J in I containing t0 on which the function f
is n-convex.

This is proved along the similar way as in the above-mentioned proposition
for monotone functions through the relations between leading determinants of the
Kraus matrix and those of the extended Kraus matrix Kef

n (s) defined above.
A general relation between determinant of the Kraus matrix Kf

r (s) of size r
and determinant of the extended Kraus matrix Kef

r (s) of the same size r is given
in the following form (cf. [7]),

detKf
r (s) =

r−1∏
k=1

r−k∏
l=1

(tk+l − tl)
2 detKef

r (s).

Hence they have the same sign for r = 2, 3, . . . , n provided that those r-tuples
consist of distinct points.

We skip the proof of the local property for 2-convex functions (cf. [8]).
The following observation is useful through this note.

Proposition 2.4.

(1) Let f be a function in C1 and 2-monotone on the interval I. If the derivative
f ′ vanishes at some point t0, then f becomes a constant function.

(2) Let f be a function in C2 and 2-convex on the interval I. If the second
derivative f” vanishes at some point t0, then f is at most a linear function.

We leave their proofs by using Ia and IIa as an exercise for the reader.

3. Existence of proper examples of n-monotone functions and
n-convex functions with gaps for them

For many years, as examples of n-monotone functions and n-convex functions for
an arbitrary n most literatures were used to present operator monotone functions
and operator convex functions. This is right anyway but sounds somewhat strange
in true mathematical sense because they are somewhat out of proper examples.
Both classes of matrix monotone functions {Pn(I)} and matrix convex functions
{Kn(I)} form decreasing sequences down to the classes P∞(I) and K∞(I). Thus
the natural question about the piling structure of these sequences is the existence
of gaps for each inclusion for Pn(I) and Kn(I).

In this situation, so many papers on monotone operator functions have been
published since the introduction of this concept by Loewner, and most papers
(notably Donoghue’s book [3, p. 84])had been asserting the existence of gaps for
the sequence {Pn(I)} for arbitrary n, but no explicit examples were given for n ≥ 3
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until we provided first such examples in [4]. Before this article, only one example
was known by [17] for the gap between P2(I) and P3(I).

Here we shall provide abundance of proper such examples with explicit con-
tents of the gaps for arbitrary n. Moreover, in case of finite intervals we can provide
such examples even as polynomials. Before going into our discussions we review
general aspect of the existence problem for gaps depending on intervals. Let I and
J be finite interval in the same types (open, closed etc). There is then a linear tran-
sition function with a positive coefficient for t from I to J and for the converse too.
Since this function together with its inverse are both operator monotone and oper-
ator convex, once we find functions belonging to the gap Pn(I) \Pn+1(I) (likewise
Kn(I) \Kn+1(I) ) for any n those transposed functions on J belong to the gap on
J in the same order.Therefore so far finite intervals are concerned we may choose
any convenient interval for which we usually employ the interval of the form [0, α).
Relations between two (nontrivial) infinite intervals are more or less the same.
In fact, if they are in the same direction the transferring function is just a shift.
When they are in the opposite direction it becomes a combination of a shift and
the reflection. Anyway in both cases we can easily transfer gaps for the one interval
to those of the other one. Therefore the rest is the case where the one is a finite
interval, say [0, 1), and the other is an infinite one, say [0,∞). For this relation
we notice first that the function 1/t is known to be operator convex in the inter-
val (0,∞). Hence the function h(t) = t

1−t : [0, 1) → [0,∞) is operator monotone

and operator convex. The inverse of this function, h−1(t) = t
1+t : [0,∞) → [0, 1)

is also operator monotone but operator concave.It follows that although we can
freely transfer gaps for matrix monotone functions each other between arbitrary
intervals, we can not treat the case of matrix convex functions in the same way.

Anyway, however, the following result solves the problem of the existence of
proper examples with gaps for finite intervals.

Theorem 3.1 ([7, 13]). Let I be a finite interval and let n and m be natural numbers
with n ≥ 2.

(1) If m ≥ 2n− 1, there exists an n-monotone polynomial pm on I of degree m.
(2) If m ≥ 2n there exists an n-convex and n-monotone polynomials pm on I of

degree m. Likewise there exists an n-concave and n-monotone polynomial qm
on I of degree m.

(3) If m = 2, 3, . . . , 2n− 2, there are no n-monotone polynomials of degree m on
I.

(4) If m = 3, 4, . . . , 2n− 1, there are no n-convex polynomials of degree m on I.

Sketch of the proof. We first introduce the polynomial pm of degree m given by

pm(t) = b1t+ b2t
2 + · · ·+ bmtm,

where

bk =

∫ 1

0

tk−1dμ with supp(μ) = [0, 1]
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Then the �th derivative p
(�)
m (0) = �!b� for � = 1, 2, . . . , 2n− 1, and consequently

Mn(pm; 0) =

(
p
(i+j−1)
m (0)

(i + j − 1)!

)n

i,j=1

= (bi+j−1)
n
i,j=1.

Now take a vector c = (c1, c2, . . . , cn) in an n-dimensional space, then

(Mn(pm; 0)c|c) =
n∑

i,j=1

bi+j−1cj c̄i =

∫ 1

0

∣∣∣∣∣
n∑

i=1

cit
i−1

∣∣∣∣∣
2

dμ.

From this we can say that the matrix Mn(pm; 0) is positive definite, and then by
Proposition 2.2 we can find a positive number α such that Mn(pm; t) is positive
in the interval [0, α). Hence by Criterion Ib the polynomial pm(t) becomes n-
monotone here. This shows the assertion (1).

The first half of the proof of (2) goes in a similar way but use both matrices
Mn(pm; 0) and Kn(pm; 0). Here besides the calculation for Mn(pm; 0) as above we
have

Kn(pm; 0) =

(
p
(i+j)
m (0)

(i+ j)!

)n

i,j=1

= (bi+j)
n
i,j=1

and

(Kn(pm; 0)c|c) =
n∑

i,j=1

bi+jcj c̄i =

∫ 1

0

t

∣∣∣∣∣
n∑

i=1

cit
i−1

∣∣∣∣∣
2

dμ.

Thus, both matrices are positive definite. Hence by Proposition 2.2 and 2.3 we can
find a positive number α such that pm becomes both n-monotone and n-convex in
the interval [0, α).

For the second assertion we consider the polynomial qm(t) of degree m whose
coefficients {bk} are defined as

bk =

∫ 0

−1

tk−1dν with supp(ν) = [−1, 0] .

The corresponding computation forMn(qm; 0) shows that it is still positive definite
whereas Kn(qm; 0) becomes negative definite because of the range of the integra-
tion. Therefore, by the same reason as above there exists a positive number α such
that qm becomes n-monotone and n-concave in the interval [0, α).

Proof of (3). Let fm be an n-monotone polynomial of degree m on I with
2 ≤ m ≤ 2n−2. We may assume as above that I contains 0. Write

fm(t) = b0 + b1t+ · · ·+ bmtm where bm �= 0.

We have then

f (m−1)
m (0) = (m− 1)!bm−1, f (m)

m (0) = m!bm, f (m+1)
m (0) = 0.

Consider the matrix Mn(fm; 0). We have to check two cases where m = 2k, even
and m = 2k − 1, odd. Note first that in both cases k + 1 ≤ n. In the first case,
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the principal submatrix of Mn(fm; 0) consisting of the rows and columns with
numbers k and k + 1 is given by(

bm−1 bm
bm 0

)
and it has determinant −b2m < 0. In the latter case, we consider the principal
submatrix consisting of rows and columns with numbers k− 1 and k+ 1 given by(

bm−2 bm
bm 0

)
and this matrix also has determinant −b2m < 0. Since Mn(fm; 0) is supposed to be
positive semidefinite by Ib we have in both cases contradictions.

The assertion (4) is proved in a similar way using the matrix Kn(fm; 0) since
we have now the implication IIa → IIb. �

The above theorem provides for a finite interval I abundance of examples of
polynomials of proper examples of n-monotone functions and n-convex functions
according to the choice of those probability measures μ and ν. Moreover the asser-
tions (3) and (4) assure the contents of gaps Pn(I)\Pn+1(I) and Kn(I)\Kn+1(I)
for any natural number n. In fact, those polynomials of degrees 2n−1 and 2n con-
structed in (1) (resp. of degrees 2n and 2n+ 1 constructed in (2)) are belonging
to the gap for monotone functions (resp. for convex functions).

Here the author is wondering how fat are those sets of polynomials in the set
of Pn(I) and Kn(I) for a finite interval I, for instance dense?

Now as an immediate consequence of the theorem we have as we noticed
above

Corollary 3.2. Let I be a nontrivial infinite interval. Then for any natural number
n there exists a gap between Pn(I) and Pn+1(I).

We remark however that those transferred functions are no longer polynomi-
als but rational functions instead.

For gaps of matrix convex functions we need further arguments but finally
obtain the same result.

Proposition 3.3. Let I be a nontrivial infinite interval. Then for any natural num-
ber n the gap between Kn(I) and Kn+1(I) is not empty.

For this result we need the following.

Lemma 3.4. A nonnegative n-concave function f defined in the interval [0,∞) is
necessarily n-monotone.

Proof. Take a pair of n× n matrices a, b such that 0 ≤ a ≤ b. Then for 0 < λ < 1
we can write as

λb = λa+ (1− λ)λ(1 − λ)−1(b− a).
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Hence by assumptions,

f(λb) ≥ λf(a) + (1− λ)f(λ(1 − λ)−1(b − a)) ≥ λf(a).

Taking λ to go to 1, we have that f(a) ≤ f(b). �

Proof of Proposition 3.3.. Assuming that I = [0,∞) we prove the result in a con-
cave version. Let f be an n-monotone and n-concave polynomial in [0, 1) of degree
2n. By adding a suitable constant we may assume that f is nonnegative. The
composition function

g(t) = f

(
t

1 + t

)
, t ≥ 0

is n-concave. Note that by (3) of the theorem f can not be (n+ 1)-monotone and
so g can not be (n + 1)-monotone either. Now suppose g to be (n + 1)-concave,
then by the above lemma it becomes (n+ 1)-monotone, a contradiction. �

In connection with the above fact the following result shows that on an (non-
trivial) infinite interval we seldom have matrix monotone (resp. convex) polyno-
mials.

Proposition 3.5. Let I be an infinite interval and n a natural number with n ≥ 2.

(1) An n-monotone polynomial on I is at most a linear function.
(2) An n-convex polynomial on I is at most a quadratic function.

We skip proofs of these standard results but only mention that for proofs we
make use of the following result, that is, for a natural integer p ≥ 2 the function
tp is not 2-monotone and for p ≥ 3 the function tp is not 2-convex (use Criterion
Ib and the first part of IIb).

4. Concluding remark

We could regard the theory of matrix functions as a noncommutative calculus
comparing with usual calculus based on numbers, and then meet the first appear-
ance of noncommutativity in the theory when we begin to treat matrices in M2.
In this aspect it is to be particularly noticed and interesting to see that many
results known for operator monotone functions (likewise for operator convex func-
tions) are already found at the step of 2-monotonicity (2-convexity as well). For
instance, the well-known Loewner–Heinz theorem in the operator theory states
that (in terms of operator monotone functions) the function f(t) = tp on the pos-
itive half-line becomes operator monotone if and only if 0 ≤ p ≤ 1. As proved in
[8, Prop. 3.1], however,this restriction of p is already obtained at the stage of 2-
monotonicity, that is, the function tp becomes 2-monotone if and only if 0 ≤ p ≤ 1,
and no further obstruction appears through 2 to the infinity (similar fact holds for
operator convexity of this function too). It should be however noticed that this
does not mean the whole proof itself is finished at the stage of 2-monotonicity. We
have to show the rest that in this restriction the function keeps the monotonicity
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for all degrees. In case of Proposition 2.4 aspects of those results are different be-
cause assertions there hold already at the step of 2-monotonicity, whereas results
were known before as results for operator monotone functions and operator convex
functions.

So far we have clarified the basic structure of single piling structure provid-
ing proper examples of n-monotone functions and n-convex functions with the
existence of gaps for arbitrary n. There are however problems about the inter-
play between two kinds of piling structure, {Pn(I)} and {Kn(I)} in the following
meaning. Actually there are many important equivalent relations between operator
monotone functions and operator convex function, notably the things surround-
ing around operator Jensen’s inequality discussed in [6]. The results are proved
as consequences of seesaw games in such a way that if one assertion holds at the
degree 2n for one piling then the counter assertion holds at the degree n for an-
other piling, and finally they become an equivalent version at the top. We regard
the thing about the classes of n-monotone functions and n-convex functions as
problems of double piling structure, which are extensively discussed in [14] and
[16]. These works are however only the beginning of the double piling problems,
and there remain still many problems. For instance, suppose that if the one as-
sertion holds at the degree m(n), then the other assertion holds at the degree n.
We could call the relation is bounded if the set {m(n)−n} becomes bounded and
say it an unbounded relation if the set is unbounded. Very few relations however
we have proved them bounded (cf. [14]), and for many other relations known in
literature we do not know whether they would be bounded or unbounded relations.
Moreover, we could say that no truly unbounded relation has ever been found yet,
although we see many unbounded relations as a glance.
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The Riesz Space of Minimal Usco Maps

Jan Harm van der Walt

Abstract. We consider upper semi-continuous compact-valued (usco) maps
with values in a Banach lattice. Recently, it was shown that the spaceM(X,Y )
of minimal upper semi-continuous compact-valued maps from a topological
space X into a metrizable topological vector space Y is a vector space which
contains the space C(X,Y ) of continuous functions from X into Y as a linear
subspace. In this paper, we consider the situation when the range space is a
Banach lattice E. In this case, C(X,E) is a Riesz space with respect to the
usual pointwise ordering. We show that M(X,E) is equipped in a natural way
with a partial order that extends the order on C(X,E). With respect to this
order, M(X,E) is an Archimedean Riesz space. Moreover, if E has compact
order intervals, then M(X,E) is Dedekind complete. An application is made
to the characterisation of the Dedekind completion of C(X,E).

Mathematics Subject Classification (2010). Primary 54C60, 54C40, 58C06,
46A40; Secondary 46B42.

Keywords. Set-valued map, Banach lattice, Riesz space.

1. Introduction

Set-valued maps appear naturally in many areas of mathematics and its applica-
tions including functional analysis [25], optimisation and control theory [9, 19],
mathematical economics [18] and biomathematics [22], but is also of intrinsic in-
terest. However, the study of the structure and properties of spaces of set-valued
maps is fairly recent. Here we may mention the early work of Aseev [4] and the
more recent contributions of Anguelov and Kalenda [2], Hammer and McCoy [13],
McCoy [23, 24] and Holá [14, 15, 16]. The results presented in the current paper is
a contribution to this direction of inquiry. In particular, we consider here the order
structure of spaces of set-valued maps, specifically of the spaceM(X,E) of mini-
mal upper semi-continuous compact-valued (musco) maps with values in a Banach
lattice E. It will be shown thatM(X,E) is in a natural way an Archimedean Riesz
space, containing the Riesz space C(X,E) as a Riesz subspace.
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The paper is organized as follows. In Section 3, for the convenience of the
reader unfamiliar with set-valued analysis, we recall some basic notions and re-
sults related to this field. Section 4 deals with the relationship between upper
semi-continuous compact-valued (usco) maps and semi-continuous (point-valued)
functions in a Banach lattice. These results are extensions of known results in the
case when the range space is R, see for instance [2]. The Riesz space structure of
M(X,E) is introduced in Section 5. As an application we show, in Section 6, that
the Dedekind completion of C(X,E) is Riesz isomorphic toM(X,E) whenever X
is compact and E is an AM-space with compact order intervals.

Finally, let us fix some notation. We will denote by X , Y and Z topological
spaces with no additional structure, unless otherwise stated. K(Y ) denotes the set
of non-empty compact subsets of Y , while F(Y ) is the set of nonempty closed
subsets of Y . The set of open neighbourhoods at x ∈ X is denoted by Vx. E is
always a Banach lattice. For those readers who are less familiar with the theory
of Riesz spaces, and Banach lattices in particular, we have attempted to include
references to all results from this field that are used in the paper.

2. Set-valued maps

A set-valued map f : X ⇒ Y is a function from X into 2Y . That is, f(x) is a
subset of Y for each x ∈ X . We will always assume that f(x) �= ∅ for all x ∈ X . A
map f : X ⇒ Y may be identified with its graph

Gr(f) = {(x, y) ∈ X × Y | y ∈ f(x)}.
This enables us to define set-theoretic notions such as inclusion, intersections and
unions of set-valued maps in terms of the graphs of such maps. In particular,
f ⊆ g means that Gr(f) ⊆ Gr(g), while f ∩ g denotes the map with graph
Gr(f ∩ g) = Gr(f) ∩Gr(g), that is, (f ∩ g)(x) = f(x) ∩ g(x) for every x ∈ X . In
the same way, (f ∪ g)(x) = f(x) ∪ g(x).

Next we recall three concepts of continuity for set-valued maps.

Definition 2.1. f : X ⇒ Y is upper semi-continuous at x0 ∈ X if for every open
set U ⊇ f(x0) there exists V ∈ Vx0 so that f(x) ⊆ U for every x ∈ V . If f is upper
semi-continuous at every x ∈ X , then we say that f is upper semi-continuous.

Definition 2.2. f : X ⇒ Y is lower semi-continuous at x0 ∈ X if for every open
set U ⊆ Y so that f(x0) ∩ U �= ∅ there exists V ∈ Vx0 so that f(x) ∩ U �= ∅ for
every x ∈ V . If f is lower semi-continuous at every x ∈ X , then we say that f is
lower semi-continuous.

Definition 2.3. f : X ⇒ Y is continuous at x ∈ X if f is both upper semi-
continuous and lower semi-continuous at x ∈ X . If f is continuous at every x ∈ X ,
then f is said to be continuous.

In this paper we are concerned with compact-valued maps only. That is, maps
f : X ⇒ Y such that f(x) is a compact subset of Y for every x ∈ X . For this
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reason, all results in this section will be formulated for compact-valued maps, even
in cases when the result is known in a more general form.

An usco map f : X ⇒ Y is one which is upper semi-continuous and compact
valued. An usco map f is called minimal (musco) if g = f for every usco map g
satisfying g ⊆ f , while f is quasi-minimal if it contains exactly one usco map. If f
is quasi-minimal, then we denote by 〈f〉 the unique usco map contained in f . The
set of all musco maps is denoted by M(X,Y ). Clearly every continuous function
f : X → Y may be identified, in a canonical way, with a musco map S(f) by
setting S(f)(x) = {f(x)} for every x ∈ X . That is, we have an injective function

S : C(X,Y )→M(X,Y ). (2.1)

In general, equality does not hold in the inclusion C(X,Y ) ⊆M(X,Y ), as can be
seen at the hand of elementary examples. However, if X is a Baire space and Y is
a metric space, then every usco map f : X ⇒ Y is nearly everywhere continuous,
see [12].

Proposition 2.4. Assume that X is a Baire space and Y is a metric space. If
f : X ⇒ Y is usco, then there exists a dense G − δ set D ⊆ X so that f is
continuous at every point in D. Furthermore, if f is musco, then f is point valued
at every point in D.

Let us now recall some further results on usco maps that will be used in
subsequent sections. The first result shows that musco maps are abundant, at
least relative to the usco maps. It is worth noting that this result is equivalent to
the axiom of choice, see for instance [5].

Proposition 2.5. If f : X ⇒ Y is usco, then there is a musco map g : X ⇒ Y so
that g ⊆ f .

Proposition 2.6. Consider a map f : X ⇒ Y and a point x ∈ X. Then the following
statements are equivalent.

(i) f is usco at x.
(ii) If a net (xα) in X converges to x and yα ∈ f(xα), then the net (yα) contains

a subnet that converges to some y ∈ f(x).

The following well-known result may be found in [8].

Proposition 2.7. Consider two maps f, g : X ⇒ Y with f usco. Then the following
statements are true.

(i) The graph Gr(f) of f is a closed subset of X × Y .
(ii) If the graph Gr(g) of g is closed and g ⊆ f , then g is usco.

Given a map f : X ⇒ Y , one can generate an usco map containing f ,
provided that Gr(f) is contained in the graph of some usco map, see [6].

Proposition 2.8. Consider a dense subset D of X and a map f : D ⇒ Y . If Y is
Hausdorff and the graph of f is contained in the graph of an usco map g : X ⇒ Y ,
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then there exists a unique usco map USC(f) : X ⇒ Y such that f ⊆ USC(f) ⊆ h
for every usco map h : X ⇒ Y that satisfies h ⊇ f . In particular,

USC(f)(x) =
⋂
{f(V ) | V ∈ Vx}, x ∈ X.

New usco maps may be generated from a given usco map, or a family of usco
maps, in the following ways, see for instance [2].

Proposition 2.9. Let f : X ⇒ Y be usco, U ⊆ X an open set and C ⊆ Y a closed
set. If f(x) ∩ C �= ∅ for every x ∈ U , then the map g : X ⇒ Y defined by

g(x) =

{
f(x) ∩ C if x ∈ U

f(x) if x /∈ U

is usco.

Proposition 2.10. Let fi : X ⇒ Y be usco for every i ∈ I. The following statements
are true:

(i)
⋃
i∈I

fi is usco if I is finite.

(ii) If
⋂
i∈J

fi(x) �= ∅ for every x ∈ X and every finite set J ⊆ I, then
⋂
i∈I

fi

is usco.

Proposition 2.11. Suppose that f : X ⇒ Y1 and g : X ⇒ Y2 are usco. Then the
map f × g : X ⇒ Y1 × Y2 given by (f × g)(x) = f(x)× g(x), x ∈ X, is usco.

The next result may be found in [6].

Proposition 2.12. Assume that Y and Z are Hausdorff. If f : X ⇒ Y is usco and
ϕ : Y → Z is continuous, then the map g : X ⇒ Z defined by g(x) = ϕ(f(x)),
x ∈ X, is usco. If f is musco, then so is g.

Lastly, we give a characterisation of quasi-minimal usco maps, see [27].

Proposition 2.13. Let Y be a metric space. An usco map f : X ⇒ Y is quasi-
minimal if and only if there exists for each ε > 0 an open and dense subset Dε of
X so that diam(f(x)) < ε for every x ∈ Dε.

3. The linear space M(X, Y )

We now recall the way in which the linear structure is defined on M(X,Y ), with
Y a metrizable (real)1 topological vector space, see for instance [27]. For all f, g :
X ⇒ Y and any α ∈ R the Minkowski operations, see for instance [3], are defined as

(f ⊕ g)(x) = {y + z | y ∈ f(x), z ∈ g(x)},
(f ' g)(x) = {y − z | y ∈ f(x), z ∈ g(x)}

1The results concerning the linear structure of M(X, Y ) hold also for vector spaces Y over the

complex numbers. However, since we are interested here only in real Banach lattices, we restrict
ourselves to this more particular setting.
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and

(α2 f)(x) = {αy | y ∈ f(x)}.
Proposition 3.1. Let Y be a metrizable topological vector space, f, g : X ⇒ Y
quasi-minimal usco maps and α a real number. Then f ⊕ g, f ' g and α 2 f are
quasi-minimal usco maps.

Proposition 3.1 allows us to formulate the following.

Definition 3.2. Let Y be a metrizable topological vector space. For f, g ∈M(X,Y )
and α ∈ R, set f + g = 〈f ⊕ g〉, f − g = 〈f ' g〉 and αf = 〈α2 f〉.
Theorem 3.3. Let Y be a metrizable topological vector space. Then M(X,Y ) is a
vector space over R with respect to the operations given in Definition 3.2. Further-
more, C(X,Y ), equipped with the usual pointwise operations, is a linear subspace
of M(X,Y ).

Note that Definition 3.2 implies that

f + g ⊆ f ⊕ g, f − g ⊆ f ' g, αf ⊆ α2 f (3.1)

for all f, g ∈ M(X,Y ) and α ∈ R. In fact, α 2 f is musco for every α ∈ R and
f ∈M(X,Y ) so that (αf)(x) = (α2 f)(x), x ∈ X .

4. Usco maps with values in a Banach lattice

We now consider usco maps with values in a Banach lattice E. We examine the
relationship between such maps and point-valued upper and lower semi-continuous
functions taking values in E, as introduced by Ercan and Wickstead [11].

Definition 4.1. A function f : X → E is lower semi-continuous if f−1(U + E+)
is open in X for every open subset U of E, while f is upper semi-continuous if
f−1(U − E+) is open in X for every open subset U of E.

When E = R, Definition 4.1 reduces to the usual ones for lower and upper
semi-continuity of real-valued functions.

In the case of an usco map f : X ⇒ R it is known [2] that the functions
Lf : X " x �→ inf f(x) ∈ R and Uf : X " x �→ sup f(x) ∈ R are lower and upper
semi-continuous, respectively. Conversely, it is easy to see that if f, g : X → R are
lower semi-continuous and upper semi-continuous, respectively, and f ≤ g, then
the map h : X ⇒ R given by h(x) = [f(x), g(x)], x ∈ X , is usco. Combining these

results, we see that for an usco map f : X ⇒ R, the map f̃ : X ⇒ R defined
by f̃(x) = [Lf (x), Uf (x)], x ∈ X , is also usco. We now provide generalisations of
these results to functions with values in a Banach lattice.

Proposition 4.2. Suppose that f : X ⇒ E is usco and E is an AM space. Then Lf :
X " x �→ inf f(x) ∈ E is lower semi-continuous and Uf : X " x �→ sup f(x) ∈ E
is upper semi-continuous in each of the following cases:

(i) E has a strong order unit e.
(ii) E has an order-continuous norm.
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Proof. Note that every relatively compact subset of E has a supremum and an
infimum, see [26, Theorem 2.1.12], so that the functions Lf and Uf are well defined.

(i) Suppose that E has a strong order unit. Let U = Bδ(z) for some δ > 0
and z ∈ E, and suppose that x0 ∈ L−1

f (U + E+). Without loss of generality, we

may assume that Lf(x0) ≥ z so that Lf (x0) ∈ W = Bδ/2(z) + E+. Therefore
f(x0) ⊂ W , and since W is open in E and f is usco, there exists V ∈ Vx0 so
that f(x) ⊂ W for every x ∈ V . But, since E is an AM-space with unit, W is
bounded from below by some y ∈ U . Therefore f(x) ⊂ y + E+ for every x ∈ V
so that x0 ∈ V ⊆ L−1

f (U + E+). Thus L−1
f (U + E+) is open so that Lf is lower

semi-continuous. The proof that Uf is upper semi-continuous follows by essentially
similar arguments.

(ii) Assume that E has order-continuous norm. Note that for all z1, . . . , zk
and y1, . . . , yk in E we have∣∣∣∣ k∧

i=1

zi −
k∧

i=1

yi

∣∣∣∣ ≤ k∨
i=1

|zi − yi|.

Therefore, since E is an AM-space, it follows that∥∥∥∥ k∧
i=1

zi −
k∧

i=1

yi

∥∥∥∥ ≤ k∨
i=1

‖zi − yi‖. (4.1)

Since f(x) is compact for every x ∈ X , there exists a countable set C(x) =
{zn(x) | n ∈ N} ⊆ f(x) which is norm dense in f(x) and has the same infimum
as f(x), that is, Lf (x) = inf C(x), see for instance [26, proof of Theorem 2.1.12].
Fix x0 ∈ X and ε > 0. Since f is usco, there exists V ∈ Vx0 so that f(x) ⊂ Uε =⋃∞

n=1 Bε/2(zn(x0) for every x ∈ V . Now consider some arbitrary but fixed x ∈ V .
For every n ∈ N there exists mn ∈ N so that ‖zn(x) − zmn(x0)‖ < ε

2 . Therefore
(4.1) implies that ∥∥∥∥ k∧

n=1

zn(x)−
k∧

n=1

zmn(x0)

∥∥∥∥ < ε

2
(4.2)

for every k ∈ N. But, since E has an order-continuous norm, it follows that the

sequence
(∧k

n=1 zn(x)
)

converges in norm to Lf(x) while
(∧k

n=1 zmn(x0)
)
con-

verges in norm to some z ≥ Lf (x0). Setting w = Lf (x0)−z+Lf (x), it is clear that
w ≤ Lf(x). It follows from (4.2) that ‖Lf(x) − z‖ < ε so that w ∈ Bε(Lf (x0)).

Therefore V ⊆ L−1
f (Bε(Lf (x0)) + E+) so that Lf is lower semi-continuous. That

Uf is upper semi-continuous follows in the same way. �

Proposition 4.3. Consider two functions f, g : X → E so that f(x) ≤ g(x) for
every x ∈ X, and let h : X ⇒ E be given by h(x) = [f(x), g(x)], x ∈ X. The
following statements are true:

(i) If h is upper semi-continuous, then f is lower semi-continuous and g is upper
semi-continuous.
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(ii) If f is lower semi-continuous, g is upper semi-continuous and E has compact
order intervals, then h is usco.

Proof. (i) Let U ⊆ E be an open set. If x0 ∈ f−1(U +E+), then h(x0) ⊂ U +E+.
Since h is upper semi-continuous, it follows that there exists V ∈ Vx0 so that
f(x) ∈ h(x) ⊂ U + E+ whenever x ∈ V . Hence V ⊆ f−1(U + E+) so that f is
lower semi-continuous. That g is upper semi-continuous follows in the same way.
(ii) Consider x0 ∈ X and an open subset U of E containing h(x0). We claim that
there exists ε > 0 so that Vε = (Bε(f(x0)) + E+) ∩ (Bε(g(x0)) − E+) ⊆ U . Since
h(x0) is compact, it follows from the Lebesgue Covering Lemma [17, Theorem 26]
that there exists δ > 0 so that Uδ =

⋃
y∈h(x0)

Bδ(y) ⊆ U . Let ε < δ
2 , and fix some

y′ ∈ Vε. Then there exists z, w ∈ E so that z ≤ y ≤ w, and ‖f(x0) − z‖ < ε and
‖g(x0) − w‖ < ε. Without loss of generality, we may assume that z ≤ f(x0) ≤
g(x0) ≤ w. Let y = inf{sup{y′, f(x0)}, g(x0)} so that y ∈ [f(x0), g(x0)] = h(x0).
According to [20, Theorem 12.1 and Theorem 12.4 (ii)] we have

|y − y′| = | inf{sup{y′, f(x0)}, g(x0)} − inf{y′, w}|
≤ | sup{y′, f(x0)} − y′|+ |g(x0)− w|
= | sup{y′, f(x0)} − sup{y′, z}|+ |g(x0)− w|
≤ |f(x0)− z|+ |g(x0)− w|.

Therefore ‖y − y′‖ ≤ ‖f(x0) − z‖ + ‖g(x0) − w‖ < 2ε < δ so that y ∈ Uδ.
Consequently Vε ⊆ Uδ ⊆ U , as desired. Since f is lower semi-continuous and g
is upper semi-continuous there exists W ∈ Vx0 so that f(x) ∈ Bε(f(x0)) + E+

and g(x) ∈ Bε(g(x0)) − E+ for all x ∈ W . Therefore h(x) = [f(x), g(x)] ⊂ Vε ⊆
U whenever x ∈ W so that h is upper semi-continuous at x0. Since x0 ∈ X
was arbitrary, it follows that h is upper semi-continuous on X , and since h(x) is
compact for every x ∈ X by assumption, it follows that h is usco. �

Before stating the final result of this section, let us recall some terminology
and notation. A subset A of a Riesz space L is order convex if w ∈ A whenever
there exist y, z ∈ A so that y ≤ w ≤ z. The order-convex cover of A is the smallest
order-convex subset of L containing A, and is denoted by [A]. One may note that

[A] =

{
w ∈ L

∃ y, z ∈ A :

y ≤ w ≤ z

}
.

Proposition 4.4. If f : X ⇒ E is usco and E has compact order intervals, then
the map [f ] : X ⇒ E given by [f ](x) = [f(x)], x ∈ X, is usco.

Proof. Since E has compact order intervals, it follows from [7, Theorem 1] that
[f ](x) is compact for every x ∈ X . Fix x0 ∈ X and a net (xα) in X converging to
x0. Consider a net (yα)α∈J in Y so that yα ∈ [f ](xα) for each α ∈ J . For every
α ∈ J there exist zα, wα ∈ f(xα) so that zα ≤ yα ≤ wα. In view of Proposition 2.6
we may assume, without loss of generality, that there exist z, w ∈ f(x) so that (zα)
converges to z and (wα) converges to w. It follows from [31, Theorem 100.2 (i)] that
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z ≤ w. For every ε > 0, let U ε
2
=
⋃

y∈[z,w]B ε
2
(y). As in the proof of Proposition

4.3 (ii), we find a number δ > 0 so that Vδ = (Bδ(z) +E+)∩ (Bδ(w)−E+) ⊆ U ε
2
.

Hence there exists αε ∈ J so that yα ∈ U ε
2
for every α ≥ α ε

2
. Let (εn) be a

sequence of real numbers that decreases to 0, and let (αn) be a strictly increasing
sequence in J so that, for each n ∈ N, yα ∈ U εn

2
for all α ≥ αn. For each α ∈ J

so that α ≥ α1 and α � α2, select uα ∈ [z, w] so that ‖yα − uα‖ < ε1
2 . In

general, if α ≥ αn and α � αn+1, select uα ∈ [z, w] so that ‖yα − uα‖ < εn
2 .

Since [z, w] is compact, the net (uα)α≥α1 has a subnet (uα)α∈K , with K cofinal
in {α ∈ J | α ≥ α1}, that converges to some y ∈ [z, w]. The subnet (yα)α∈K also
converges to y. Indeed, for every n ∈ N there exists α′

n ∈ K so that ‖uα− y‖ < εn
2

whenever α ∈ K and α ≥ α′
n. If α ∈ K satisfies α ≥ α′

n and α ≥ αn, then
‖yα − y‖ ≤ ‖yα − uα‖ + ‖y − uα‖ < εn. Since (εn) decreases to 0 it follows that
(yα)α∈K converges to y. But zα ≤ yα ≤ wα for all α ∈ J , so z ≤ y ≤ w by [31,
Theorem 100.2 (i)]. Since z, w ∈ f(x) it follows that y ∈ [f ](x) so that [f ] is usco
by Proposition 2.6. �

5. The Riesz space M(X,E)

We now introduce the structure of a Riesz space on the set M(X,E) of minimal
usco maps. In this regard, we define the positive cone of M(X,E) in a rather
obvious way. Let M(X,E)+ denote the subset of M(X,E) consisting of those
maps f that satisfy the inclusions

f(x) ⊂ E+, x ∈ X. (5.1)

Theorem 5.1. The set M(X,E)+ is a cone in M(X,E). Furthermore, M(X,E)
is an Archimedean Riesz space with respect to the order induced by M(X,E)+.

Proof. The cone axioms are trivially satisfied due to the inclusions given in (3.1).
To see that M(X,E) is a Riesz space with respect to the order induced by
M(X,E)+, consider f ∈M(X,E). Denote by f+ : X ⇒ E the map defined by

f+(x) = {z+ | z ∈ f(x)}, x ∈ X. (5.2)

Since the function E " z �→ z+ is continuous [31, Theorem 100.1], it follows
from Proposition 2.12 that f+ : X ⇒ E is musco. Since f+(x) ⊆ E+ for every
x ∈ X , it follows that f+ ≥ 0. Furthermore, (f+ ' f)(x) ∩ E+ �= ∅ for every
x ∈ X . Since E+ is closed in E, it follows from Proposition 2.9 that g : X ⇒ E
given by g(x) = (f+ ' f)(x) ∩ E+, x ∈ X , is usco. Because f+ ' f is quasi-
minimal by Proposition 3.1, it now follows from (3.1) and Proposition 2.5 that
(f+ − f)(x) ⊆ g(x) ⊂ E+ for every x ∈ X . Thus f ≤ f+. In order to show
that f+ = f ∨ 0, we consider any h ∈ M(X,E)+ so that f ≤ h. For every
x ∈ X , we have (h − f)(x) ⊆ E+ so that (h ' f)(x) ∩ E+ �= ∅ by (3.1). Since
h(x) ⊂ E+, it therefore follows by (5.2) that (h ' f+)(x) ∩ E+ �= ∅ for every
x ∈ X . Thus by Propositions 2.5 and 2.9 there is a musco map p : X ⇒ E such
that p(x) ⊆ (h' f+)(x) and p(x) ⊂ E+ for every x ∈ X . But h− f+ ⊆ h' f+ by
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(3.1). Since f+ and h are both minimal, and hence quasi-minimal, it follows from
Proposition 3.1 that h' f+ is quasi-minimal. Definition 3.2 therefore implies that
h − f+ = p ≥ 0 so that f+ ≤ h, which shows that f+ = f ∨ 0. Since this is true
for any f ∈ M(X,E), it follows from [20, Theorem 11.5 (v)] that M(X,E) is a
Riesz space with respect to the order induced by the coneM(X,E)+.

Lastly we verify that M(X,E) is Archimedean. To this end, consider f, g ∈
M(X,E)+ so that nf ≤ g for every n ∈ N. Then (g − nf)(x) ⊆ E+ for every
x ∈ X and n ∈ N so that, by (3.1), we have (g ' n 2 f)(x) ∩ E+ �= ∅ for x ∈ X
and n ∈ N. Fix x ∈ X . It follows that for each n ∈ N there exist yn ∈ f(x) and
zn ∈ g(x) so that nyn ≤ zn. Since f(x) and g(x) are compact we may assume,
without loss of generality, that the sequences (yn) and (zn) converge to y ∈ f(x)
and z ∈ g(x), respectively. Since 0 ≤ nyn ≤ zn it follows that ‖yn‖ ≤ 1

n‖zn‖
for every n ∈ N. Hence y = 0 so that the musco map g : X " x �→ {0} ⊆ E is
contained in f . Since f is musco, it follows that f = 0. ConsequentlyM(X,E) is
Archimedean by [20, Theorem 22.2 (ii)]. �

It follows immediately from the definition of the coneM(X,E)+ ofM(X,E)
that the order on M(X,E) may be characterised in terms of the order on E as
follows: For all f, g ∈ M(X,E), f ≤ g if and only if, for all x ∈ X , z ≤ y for some
z ∈ f(x) and y ∈ g(x). However, more can be said.

Proposition 5.2. For all f, g ∈ M(X,E), the following statements are true:

(i) f ≤ g if and only if for every x ∈ X there exist y ∈ f(x) and z ∈ g(x) so
that y ≤ z.

(ii) f ≤ g if and only if the following two conditions are satisfied for every x ∈ X:
(a) For every y ∈ f(x) there exists z ∈ g(x) so that y ≤ z.
(b) For every z ∈ g(x) there exists y ∈ f(x) so that y ≤ z.

(iii) f ∨ g = 〈f∨g〉 where f∨g : X ⇒ E is defined by (f∨g)(x) = {y ∨ z | y ∈
f(x), z ∈ g(x)}, x ∈ X.

(iv) f ∧ g = 〈f∧g)〉 where f∧g : X ⇒ E is defined by (f∧g)(x) = {y ∧ z | y ∈
f(x), z ∈ g(x)}, x ∈ X.

Proof. (i) Suppose that f ≤ g. Then (g − f)(x) ⊆ E+ for every x ∈ X . But
according to (3.1), (g − f)(x) ⊆ (g ' f)(x) = {z − y | y ∈ f(x), z ∈ g(x)}, x ∈ X .
Thus (g ' f)(x) ∩ E+ �= ∅ for each x ∈ X . That is, for each x ∈ X there exist
y ∈ f(x) and z ∈ g(x) so that y ≤ z. Now assume that, for each x ∈ X , there is
y ∈ f(x) and z ∈ g(x) so that y ≤ z. Then (g ' f)(x) ∩ E+ �= ∅ for each x ∈ X .
By Proposition 2.9 the map h : X ⇒ E given by h(x) = (g ' f)(x) ∩ E+, x ∈ X ,
is usco so that, by Proposition 2.5, there is a musco map k : X ⇒ E contained
in h. Since k ⊆ h ⊆ g ' f and g ' f is quasi-minimal usco by Proposition 3.1, it
follows by Definition 3.2 that g − f = k. But k ≥ 0 by definition, so f ≤ g.

(ii) Suppose that f ≤ g. Define Mf : X ⇒ E and Mg : X ⇒ E as

Mf(x) =

{
y ∈ f(x)

∃ z ∈ g(x) :
y ≤ z

}
, x ∈ X (5.3)
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and

Mg(x) =

{
z ∈ g(x)

∃ y ∈ f(x) :
y ≤ z

}
, x ∈ X.

By (i), Mf (x),Mg(x) �= ∅ for each x ∈ X . Next we show that Mf (x) is compact
for every x ∈ X . Consider some y0 in the closure of Mf(x). Then there exists a
sequence (yn) ⊆Mf(x) which converges to y0. According to the definition (5.3) of
Mf , there is a sequence (zn) ⊆ g(x) so that yn ≤ zn, n ∈ N. Since g(x) is compact,
there is a subsequence (znk

) of (zn) which converges to some z0 ∈ g(x). Since
ynk

≤ znk
for each k ∈ N, it follows from [31, Theorem 100.2 (i)] that y0 ≤ z0.

Furthermore, (yn) ⊆ f(x) so that, by compactness of f(x), y0 ∈ f(x). Therefore
y0 ∈Mf(x) by the definition of Mf . We have therefore established that Mf (x) is
closed for each x ∈ X . Since Mf (x) ⊆ f(x), it follows from the compactness of
f(x) that, for each x ∈ X , Mf(x) is compact. In exactly the same way it follows
that Mg(x) is compact for every x ∈ X . We now show that the graph Gr(Mf ) of
Mf is a closed subset of X ×E. Let (x0, y0) be a limit point of Gr(Mf ). For each
n ∈ N, let

Un =

{
y ∈ E

∃ z ∈ g(x0) :
‖y − z‖ < 1

2n

}
.

Clearly Un is open in E and g(x0) ⊆ Un. Since g is usco, there exists Vn ∈ Vx0 so
that g(x) ⊂ Un for all x ∈ Vn. Since (x0, y0) is a limit point of Gr(Mf ), there exist
xn ∈ Vn and yn ∈ Mf(xn) so that ‖yn − y0‖ < 1/2n. According to the definition
of Mf there exists zn ∈ g(xn) so that yn ≤ zn. Since g(xn) ⊆ Un there exists
wn ∈ g(x0) so that ‖zn − wn‖ < 1/2n. Since (wn) ⊂ g(x0) and g(x0) is compact,
there exist a subsequence (wnk

) of (wn) and w0 ∈ g(x0) so that (wnk
) converges to

w0. Since ‖zn − wn‖ < 1/2n for every n ∈ N it follows that (znk
) converges to w0

as well. Furthermore, the sequence (yn) converges to y0 so that the subsequence
(ynk

) also converges to y0. Therefore y0 ≤ w0 by [31, Theorem 100.2(i)]. But
(x0, y0), being an accumulation point of Gr(Mf ) ⊆ Gr(f), is an element of Gr(f)
by Proposition 2.7 (i), that is, y0 ∈ f(x0). It therefore follows that y0 ∈ Mf(x0)
so that (x0, y0) ∈ Gr(Mf ), hence Gr(Mf ) is closed in X × E. Thus Mf is usco
by Proposition 2.7 (ii). In exactly the same way, it follows that Mg is usco. But
Mf ⊆ f and Mg ⊆ g with f and g both musco. Hence Mf = f and Mg = g which
proves that (a) and (b) hold. The converse follows by (i) of this proposition.

(iii) Since E×E : (a, b) �→ a∨b ∈ E is continuous, it follows from Propositions
2.11 and 2.12 that f∨g is usco. Fix ε > 0. Since f and g are minimal, and hence
quasi-minimal usco maps, it follows by Proposition 2.13 that there exists an open
and dense subset Dε of X so that diam(f(x)) < ε

2 and diam(g(x)) < ε
2 for every

x ∈ Dε. Fix x ∈ Dε and w0 = y0 ∨ z0, w1 = y1 ∨ z1 ∈ f∨g(x) where y0, y1 ∈ f(x)
and z0, z1 ∈ g(x). Using [20, Theorem 11.18 (v)] and the triangle inequality, it
follows that |w0 − w1| ≤ |y0 − y1| + |z0 − z1|. Therefore ‖w0 − w1‖ < ε so that
diam(f∨g(x)) < ε for every x ∈ Dε. Proposition 2.13 now implies that f∨g is
quasi-minimal. Since 〈f∨g〉 ⊆ f∨g, it follows by part (i) of this proposition that
f ≤ 〈f∨g〉 and g ≤ 〈f∨g〉. According to [20, Theorem 11.8 (i)], f∨g = (f−g)++g
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so that, for each x ∈ X , (f ∨ g)(x) ⊆ h(x) where h : X ⇒ E is given by h(x) =
{(y0 − z0)

+ + z1 | y0 ∈ f(x), z0, z1 ∈ g(x)}, x ∈ X . Using arguments similar
to those used to show that f∨g is quasi-minimal, as well as Proposition 3.1, it
follows that h is a quasi-minimal usco map. By [20, Theorem 11.8 (i)] it follows
that (f∨g)(x) = {(y − z)+ + z | y ∈ f(x), z ∈ g(x)} ⊆ h(x) for every x ∈ X .
Therefore 〈f∨g〉 ⊆ h and f ∨ g ⊆ h. Since h is quasi-minimal, it therefore follows
that 〈f∨g〉 = f ∨ g, as required.

(iv) The proof is similar to that of (iii). �

The following consequence of Proposition 5.2 is an extension of an elementary
property of continuous functions to musco maps.

Corollary 5.3. The following are equivalent for all f, g ∈M(X,E).

(i) f ≤ g.
(ii) There exists a dense subset D of X so that for each x ∈ D, there exist

y ∈ f(x) and z ∈ g(x) so that y ≤ z.

Proof. That (i) implies (ii) follows trivially from Proposition 5.2 (i). Now assume
that (ii) is true. Suppose that (g ' f)(x0) ∩ E+ = ∅ for some x0 ∈ X . Since
g ' f is usco by Proposition 3.1 and E+ is closed in E, there exists V ∈ Vx0 so
that (g ' f)(x) ∩ E+ = ∅ for every x ∈ V . But (g ' f)(x) ∩ E+ �= ∅ for every x
in the dense set D, and hence for some x ∈ V , contradicting the assertion that
(g' f)(x)∩E+ = ∅ for all x ∈ V . Thus (g' f)(x)∩E+ �= ∅ for all x ∈ X . It now
follows from Proposition 5.2 (i) that f ≤ g. �

The remainder of this section is concerned with infima and suprema of arbi-
trary subsets ofM(X,E). Three characterisations of suprema of upward directed
sets will be considered. In two cases, Corollaries 5.10 and 5.13, we first derive
characterisations of sets downward directed towards 0 and then obtain the results
for upward directed sets in the obvious way. Before we present these results, we
note the following technical result.

Proposition 5.4. Assume that f, g ∈ M(X,E) and f ≤ g. Let h : X ⇒ E be
defined by

h(x) =

{
w ∈ E

∃ y ∈ f(x), z ∈ g(x) :
y ≤ w ≤ z

}
.

Then the following statements are true:

(i) h(x) is closed and order convex for each x ∈ X.
(ii) The graph of h is closed in X × E.
(iii) If E has compact order intervals, then h is usco.

Proof. (i) Consider a sequence (yn) in h(x) that converges to some y ∈ E. Ac-
cording to the definition of h, there exist two sequences (zn) and (wn) in f(x)
and g(x), respectively, so that zn ≤ xn ≤ wn for each n ∈ N. Since f(x) and
g(x) are compact, there exist subsequences (znk

) and (wnk
) of (zn) and (wn) con-

verging to z ∈ f(x) and w ∈ g(x), respectively. Since (ynk
) converges to y and
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znk
≤ ynk

≤ wnk
for each k ∈ N it follows that z ≤ y ≤ w, see [31, Theorem 100.2

(ii)], so that y ∈ h(x). Hence h(x) is closed in E. To see that h(x) is order convex,
consider y0, y1 ∈ h(x) and y ∈ E so that y0 ≤ y ≤ y1. It follows from the definition
of h that there exist z0 ∈ f(x) and z1 ∈ g(x) so that z0 ≤ y0 ≤ y ≤ y1 ≤ z1 so
that y ∈ h(x).

(ii) Suppose that (x0, y0) is a limit point of Gr(h). Then for every ε > 0 and
V ∈ Vx0 there exist xV ∈ V and yε ∈ h(xV ) so that ‖y0 − yε‖ < ε

2 . For ε > 0, let
Uε = {y ∈ E | inf{‖y − z‖ | z ∈ f(x0)} < ε

2}, Wε = {y ∈ E | inf{‖y − z‖ | z ∈
g(x0)} < ε

2}. Since f and g are upper semi-continuous, there exists Vε ∈ Vx0 so
that f(x) ⊂ Uε and g(x) ⊆Wε whenever x ∈ Vε. According to the definition of h,
for every ε > 0 there exist zε ∈ f(xVε) and wε ∈ g(xVε) so that zε ≤ yε ≤ wε. Since
zε ∈ Uε and wε ∈Wε, there exist z′ε ∈ f(x0) and w′

ε ∈ g(x0) so that ‖zε − z′ε‖ < ε
2

and ‖wε−w′
ε‖ < ε

2 . Since f(x0) and g(x0) are compact there exist a sequence εn ↓ 0
and z0 ∈ f(x0), w0 ∈ g(x0) so that (z′εn) converges to z0 and (w′

εn) converges to
w0. It follows that the sequences (yεn), (zεn) and (wεn) converge to y0, z0 and w0,
respectively. Since zεn ≤ yεn ≤ wεn for all n ∈ N, it follows from [31, Theorem
100.2 (i)] that z0 ≤ y0 ≤ w0 so that y0 ∈ h(x0), hence Gr(h) is closed in X × E.

(iii) Suppose that E has compact order intervals. According to Proposition 2.10
(i), f ∪ g is usco so that [f ∪ g] is usco by Proposition 4.4. But h is contained in
[f ∪ g] and has a closed graph. Therefore h is usco by Proposition 2.7. �

Consider an upward directed subset {fλ} = {fλ | λ ∈ Λ} of M(X,E)+

which is bounded from above. Let {gσ} = {gσ | σ ∈ Σ} be the set of upper bounds
of {fλ}. Since M(X,E) is Archimedean by Theorem 5.1, the set {gσ − fλ} is
downward directed towards 0, that is, inf{gσ − fλ | λ ∈ Λ, σ ∈ Σ} = 0, see [20,
Theorem 22.5]. For each λ ∈ Λ and σ ∈ Σ, let

hλ
σ(x) =

{
w ∈ E

∃ y ∈ fλ(x), z ∈ gσ(x) :
y ≤ w ≤ z

}
, x ∈ X. (5.4)

Define the map h : X ⇒ E by setting

h(x) =
⋂

σ∈Σ,λ∈Λ

hλ
σ(x), x ∈ X. (5.5)

The supremum of {fλ}, if it exists, can now be characterised as follows.

Theorem 5.5. Let {fλ} ⊆ M(X,E) be upward directed and bounded from above.
The map h : X ⇒ E defined through (5.4)–(5.5) satisfies the following:

(i) If f0 ⊆ h is musco, then f0 = sup fλ.
(ii) If f0 = sup fλ ∈M(X,E), then f0 ⊆ h.

Proof. (i) Suppose that f0 ⊆ h is musco. Then f0(x) ⊆ hλ
σ(x) for all fλ and gσ

and every x ∈ X . That is, for every y ∈ f0(x) there exist z ∈ fλ(x) and w ∈ gσ(x)
so that z ≤ y ≤ w. Therefore, by Proposition 5.2 (i), fλ ≤ f0 ≤ gσ for all fλ and
gσ so that f0 = sup fλ.
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(ii) Suppose that f0 = sup fλ so that fλ ≤ f0 ≤ gσ for all λ and σ. Applying
Proposition 5.2 (ii) we find that for each x ∈ X , y ∈ f0(x) and all fλ and gσ there
exist zλ ∈ fλ(x) and wσ ∈ gσ(x) so that zλ ≤ y ≤ wσ. Therefore f0 ⊆ hλ

σ for every
fλ and each gσ. Hence f0 ⊆ h, as desired. �

Corollary 5.6. If E has compact order intervals, then M(X,E) is Dedekind com-
plete.

Proof. Let {fλ | λ ∈ Λ} be upward directed and bounded from above, and denote
by {gσ | σ ∈ Σ} the set of upper bounds of {fλ}. Since E has compact order
intervals, it follows from Proposition 5.4 (iii) that the map hλ

σ associated with
each fλ and gσ through (5.4) is usco. Consider a finite subset {hλ1

σ1
, . . . , hλ1

σ1
} of

{hλ
σ | λ ∈ Λ, σ ∈ Σ}. Since {fλ} is upward directed and {gσ} is downward

directed, it follows that there exist fλ′ and gσ′ so that fλi ≤ fλ′ ≤ gσ′ ≤ gσi for

all i = 1, . . . , n. Therefore hλ′
σ′ ⊆ hλi

σi
for every i = 1, . . . , n so that

⋂n
i=1 h

λi
σi
(x) �= ∅

for every x ∈ X . Thus Proposition 2.10 (ii) implies that h is usco. It now follows
from Proposition 2.5 and Theorem 5.5 (i) that {fλ} has supremum in M(X,E),
and the proof is complete. �

In order to formulate the remaining results of this section, we introduce the
following.

Definition 5.7. A Riesz space L has property (C) if there exists a countable subset
A of L+ \ {0} so that, for every z ∈ L, z = 0 if |z| � y for all y ∈ A.

Before proceeding to formulate our next result, it is worth noting some ex-
amples of Riesz spaces with property (C).

Example. The following Riesz spaces have property (C):

(i) The Banach lattices c0 and �p, with 1 ≤ p ≤ ∞. In each of these spaces the
set {αen | α ∈ Q ∩ (0,∞), n ∈ N}, where en is the sequence with all terms
equal to 0 except for a 1 in the nth entry, serves to verify Definition 5.7.

(ii) Every finite-dimensional Banach lattice E. If E has dimension k, let {e1,
. . . , ek} be an algebraic basis for E consisting of positive elements. The set
{αei | α ∈ Q ∩ (0,∞), i = 1, . . . , k} satisfies the condition in Definition 5.7.

(iii) The space C([0, 1]). Let A = {(pn, qn) ∈ Q2 ∩ [0, 1]2 | pn < qn}, and set
In = [pn, qn] for each (pn, qn) ∈ A. For n, k ∈ N, let

fn,k(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if t ∈ In

kt− kpn + 1 if pn − 1
k ≤ t < pn

−kt+ kqn + 1 if qn < t ≤ qn + 1
k

0 if t < pn − 1
k or t > qn + 1

k .

The set {αfn,k | α ∈ Q∩ (0,∞), n, k ∈ N} fulfils the conditions on Definition
5.7. More generally, C(X) has property (C) whenever X is completely regular
and separable.
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We now proceed to establish two further characterisations of suprema in
M(X,E), one in terms of the norm on E and one in terms of the order on E.
As we will see, neither of these results are entirely general as each requires some
conditions, either on E or on X .

Theorem 5.8. Consider a downward directed set {fλ}λ∈Λ in M(X,E)+. If X is
completely regular and fλ ↓ 0 then for every z ∈ E+ \ {0}, there exists an open
and dense subset Dz of X so that

∀ x ∈ Dz :
∃ λx ∈ Λ :
∀ λ ∈ Λ, fλ ≤ fλx :

fλ(x) ⊂ {w ∈ E+ | w � z}.
(5.6)

If E has property (C) and X is a Baire space, then (5.6) implies that fλ ↓ 0.
The proof of Theorem 5.8 relies on the following.

Lemma 5.9. Let X be completely regular. Suppose that {fλ | λ ∈ Λ} decreases to
0 in M(X,E). If U ⊆ X is nonempty and open, then {fλ|U} decreases to 0 in
M(U,E).

Proof. Suppose that, for some nonempty and open subset U of X , {fλ|U} does
not decrease to 0 in M(X,U). Then there exists g ∈ M(U,E)+ so that g �= 0
and g ≤ fλ|U for every λ ∈ Λ. Without loss of generality, we may assume that
0 /∈ g(x) for every x ∈ U . Consider an open subset V of U so that V ⊂ U and a
point x0 ∈ V . Let ϕ : X → [0, 1] be a continuous function so that ϕ(x0) = 1 and
ϕ(X \ V ) = {0}. Let

h(x) =

{
ϕ(x)g(x) if x ∈ U

{0} if x /∈ U.

Clearly h is compact valued on X and upper semi-continuous on X \V . To see that
h is usco on U , we apply Proposition 2.11 and Proposition 2.12 to the set-valued
map U " x �→ h(x)× {ϕ(x)} ⊆ E × [0, 1] and the continuous function E × [0, 1] "
(y, t) �→ ty ∈ E. Thus h is usco onX . By Proposition 2.5 there exists f ∈ M(X,E)
so that f ⊆ h. It is obvious that f ≥ 0. But 0 /∈ {ϕ(x0)z | z ∈ g(x0)} ⊇ f(x0)
so that f �= 0. Fix x1 ∈ U and z ∈ f(x1). Since f ⊆ h there exists z0 ∈ g(x1)
so that z = ϕ(x1)z0 ≤ z0. But g ≤ fλ|U for every λ ∈ Λ. Thus, for each λ ∈ Λ,
there exists yλ ∈ fλ(x1) so that z ≤ yλ. For x /∈ U , f(x) = {0} and 0 ≤ yλ for
every λ ∈ Λ and yλ ∈ fλ(x). Thus, by Proposition 5.2 (i), f is a lower bound for
{fλ | λ ∈ Λ}. Hence {fλ | λ ∈ Λ} does not decrease to 0 in M(X,E). �
Proof of Theorem 5.8. Suppose that fλ ↓ 0. Fix z ∈ E+ \ {0} and let fz(x) = {z}
for every x ∈ X . Since fz ∈M(X,E)+ \ {0} and fλ ↓ 0 it follows that there exists
λz ∈ Λ so that fλ � fz for all fλ ≤ fλz . Therefore Proposition 5.2 (i) implies that
the set

Dz =

⎧⎨⎩x ∈ X
∃ λx ∈ Λ :
∀ λ ∈ Λ, fλ ≤ fλx :

fλ(x) ⊆ {w ∈ E+ | w � z}

⎫⎬⎭
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is nonempty. Since {fλ} is downward directed, it follows that if fλ0(x) ⊂ {w ∈
E+ | w � z} and fλ ≤ fλ0 , then fλ(x) ⊂ {w ∈ E+ | w � z}. Hence

Dz =

{
x ∈ X

∃ λx ∈ Λ :
fλx(x) ⊆ {w ∈ E+ | w � z}

}
.

Since {w ∈ E+ | w � z} is open in E+ and fλx : X ⇒ E+ is usco, the set Dz

is open. Dz is also dense in X . Indeed, suppose that Dz is not dense in X . Then
there exists a nonempty open set U of X so that U ⊆ X \ Dz. For every x ∈ U
and λ ∈ Λ, there exists y ∈ fλ(x) so that y ≥ z. It follows from Proposition 5.2
(i) that fz|U ≤ fλ|U inM(U,E) for all λ ∈ Λ. But X is completely regular, so by
Lemma 5.9 fλ|U ↓ 0 in M(U,E). Thus fz|U = 0 so that z = 0, contrary to our
assumption that z ∈ E+ \ {0}.

Now assume that E has property (C) and that X is a Baire space. Let

A = {zn | n ∈ N} ⊂ E+ \ {0}

be a set that satisfies the conditions in Definition 5.7. Suppose that Dz is open
and dense in X for every z ∈ E+ \ {0}. In particular, Dzn is open and dense in X
for every n ∈ N. Since X is a Baire space, the set D =

⋂
n∈N

Dzn is dense in X . It
follows from (5.6) that

∀ x ∈ D, n ∈ N :
∃ λn

x ∈ Λ :
∀ λ ∈ Λ, fλ ≤ fλn

x
:

fλ(x) ⊆ {w ∈ E+ | w � zn}

Let f ∈ M(X,E)+ be a lower bound for {fλ}. For every x ∈ D and w ∈ f(x) we
have w � zn, n ∈ N. Therefore, according to Definition 5.7, f(x) = {0} for every
x ∈ D. Since D is dense in X it follows from Corollary 5.3 that f = 0 so that
fλ ↓ 0. �

Corollary 5.10. Consider an upward directed set {fλ}λ∈Λ in M(X,E)+, bounded
from above by f ∈M(X,E). If X is completely regular and fλ ↑ f , then for every
z ∈ E+ \ {0} there exists an open and dense subset Dz of X so that

∀ x ∈ Dz :
∃ λx ∈ Λ :
∀ λ ∈ Λ, fλ ≥ fλx :

(f − fλ)(x) ⊆ {w ∈ E+ | w � z}.
(5.7)

If E has property (C) and X is a Baire space, then (5.7) implies that fλ ↑ f .

Proof. Since fλ ↑ f if and only if f − fλ ↓ 0, the result follows directly from
Theorem 5.8. �

The final result of this section is a metric characterisation of the supremum
of an upward directed set. This result may be compared to [28, Theorems 5 and
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6] where order-convergence of sequences of nearly finite real normal lower semi-
continuous functions is characterised in terms of pointwise convergence on a resid-
ual set.

Theorem 5.11. Suppose that {fλ}λ∈Λ is a downward directed subset ofM(X,E)+.
If, for every ε > 0, there exists an open and dense set Dε ⊆ X so that

∀ x ∈ Dε :
∃ V ∈ Vx, λx ∈ Λ :
∀ y ∈ V, fλ ≤ fλx , z ∈ fλ(y) :
‖z‖ < ε,

(5.8)

then fλ ↓ 0 in M(X,E). The converse is true if X is a completely regular Baire
space, the norm on E is order continuous and E has property (C).

The proof of Theorem 5.11 relies on the following.

Lemma 5.12. If f : X ⇒ E is usco, then the functions

Lf : X " x �→ inf{‖y‖ | y ∈ f(x)} ∈ R

and

Uf : X " x �→ sup{‖y‖ | y ∈ f(x)} ∈ R

are lower semi-continuous and upper semi-continuous, respectively.

Proof. Fix x0 ∈ X and m < Lf (x0) so that, for some ε > 0, ‖z‖ > m + ε for all

z ∈ f(x0). Therefore f(x0) ⊂ E \ Bm+ε(0). Since f is upper semi-continuous, it
follows that there exists V ∈ Vx0 so that f(x) ⊂ E \ Bm+ε(0) for every x ∈ V .
Thus Lf(x) ≥ m+ ε > m for all x ∈ V so that Lf is lower semi-continuous at x0.
Since x0 ∈ X is arbitrary, Lf is lower semi-continuous on X .

That Uf is upper semi-continuous follows by an essentially similar argument. �

Proof of Theorem 5.11. Suppose that {fλ} does not decrease to 0 in M(X,E).
That is, there exists f0 ∈M(X,E)+ \ {0} so that f0 ≤ fλ for all λ ∈ Λ. Consider
the function

Lf0 : X " x �→ inf{‖y‖ | y ∈ f(x)} ∈ R.

Since f0 �= 0 is musco, it follows from Proposition 2.8 that there exists a nonempty,
open subset U of X so that 0 /∈ f0(x) for every x ∈ U . Therefore, as f0(x) is
compact, Lf0(x) > 0 for every x ∈ U . Since Lf0 is lower semi-continuous by
Lemma 5.12, there exist an ε > 0 and a nonempty, open subset V of U so that
Lf0(x) > ε for every x ∈ V . Since f0 ≤ fλ for each λ ∈ Λ, it follows from
Proposition 5.2 (ii) that ‖z‖ ≥ Lf0(x) for every x ∈ X , λ ∈ Λ and z ∈ fλ(x).
Therefore ‖z‖ > ε for every x ∈ V , λ ∈ Λ and z ∈ fλ(x) so that (5.8) does not
hold.

Now assume that E has order-continuous norm, satisfies property (C) and X
is a completely regular Baire space. Suppose that fλ ↓ 0 but (5.8) does not hold
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for some fixed ε > 0. Note that, due to the upper semi-continuity of the fλ, the set

Dε =

⎧⎨⎩x ∈ X
∃ λ0 ∈ Λ :
∀ fλ ≤ fλ0 , z ∈ fλ(x) :
‖z‖ < ε

⎫⎬⎭ =

⎧⎨⎩x ∈ X
∃ λ ∈ Λ :
∀ z ∈ fλ(x) :
‖z‖ < ε

⎫⎬⎭
is open in X . Since (5.8) does not hold, Dε is not dense in X . Therefore X \Dε

has nonempty interior. Then there exists a nonempty, open subset U of X so that
for every λ ∈ Λ and x ∈ U , there exists z ∈ fλ(x) so that ‖z‖ ≥ ε. According to
Proposition 2.9, the map gλ : X ⇒ E defined by

gλ(x) =

{
fλ(x) ∩ (E \Bε(0)) if x ∈ U

fλ(x) if x /∈ U

is usco for every λ ∈ Λ. But gλ ⊆ fλ and fλ is musco, so that gλ = fλ for
each λ ∈ Λ. Hence ‖z‖ ≥ ε for all z ∈ fλ(x) with λ ∈ Λ and x ∈ U . Let
A = {wn | n ∈ N} be a countable subset of E+ \ {0} satisfying the conditions of
Definition 5.7. According to Theorem 5.8 each of the sets

Dn =

⎧⎨⎩x ∈ X
∃ λx ∈ Λ :
∀ λ ∈ Λ, fλ ≤ fλx :

fλ(x) ⊆ {w ∈ E+ | w � wn}

⎫⎬⎭
is open and dense in X . Let D denote the intersection of the Dn. Since X is a Baire
space, it follows that D is dense in X . Fix x0 ∈ D ∩U . Since x0 ∈ D, there exists
for each n ∈ N a λn ∈ Λ so that fλ(x0) ⊂ {w ∈ E+ | w � wn} for all fλ ≤ fλn . The
sequence (λn) may be chosen in such a way that (fλn) is a decreasing sequence.
For each n ∈ N, select yn ∈ fλn(x0) so that (yn) is a decreasing sequence. Note
that, since yn ∈ fλn(x0) and x0 ∈ U , it follows that ‖yn‖ ≥ ε for all n ∈ N. E
is super Dedekind complete since it has order-continuous norm, see [31, Theorem
103.9]. Therefore inf{yn | n ∈ N} exists in E. Suppose that inf{yn | n ∈ N} > 0.
Then there exists k ∈ N so that inf{yn | n ∈ N} ≥ wk so that yn ≥ wk for all
n ∈ N. Since this is clearly not possible, it follows that inf{yn | n ∈ N} = 0. It
now follows from the order-continuity of the norm on E that ‖yn‖ ↓ 0, contrary
to the fact that ‖yn‖ ≥ ε > 0 for all n ∈ N. Hence our assumption that (5.8) does
not hold for some fixed ε > 0 is false. This completes the proof. �

Corollary 5.13. Suppose that {fλ} is an upward directed subset of M(X,E), and
f ∈M(X,E) is an upper bound for {fλ}. If, for every ε > 0, there exists an open
and dense set Dε ⊆ X so that

∀ x ∈ Dε :
∃ V ∈ Vx, λx ∈ Λ :
∀ y ∈ V, fλ ≥ fλx , z ∈ fλ(y), w ∈ f(y) :
‖w − z‖ < ε,

(5.9)

then fλ ↑ f in M(X,E). The converse is true if X is a completely regular Baire
space, the norm on E is order continuous and E has property (C).
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Proof. Suppose that (5.9) holds. Since {f − fλ} ⊂ M(X,E)+ and (f − fλ)(x) ⊆
{w−z | w ∈ f(x), z ∈ fλ(x)} by (3.1), it follows by Theorem 5.11 that f −fλ ↓ 0,
hence fλ ↑ f .

Now assume that X is a completely regular Baire space, the norm on E is
order continuous and E has property (C). Suppose that fλ ↑ f so that f − fλ ↓ 0.
It follows from (3.1) and Theorem 5.11 that for every ε > 0 there exists an open
and dense set D′

ε ⊆ X so that

∀ x ∈ D′
ε :

∃ V ∈ Vx, λx ∈ Λ :
∀ y ∈ V, fλ ≥ fλx :
∃ z ∈ fλ(y), w ∈ f(y) :
‖w − z‖ < ε.

Since f ' fλ is quasi-minimal usco by Proposition 3.1, the result follows from
Proposition 2.13 and the monotonicity of the norm. �

We may note that the requirement on the order-continuity of the norm in
Theorem 5.11 and Corollary 5.13 cannot be omitted, as is shown in the following.

Example. Let E = C([−1, 1]). Consider the sequence (fn) ⊂ M(R, E)+ where
fn(x) = {wn} for each x ∈ R, with

wn(t) =

{
1− n|t| if |x| ≤ 1

n

0 if 1 ≥ |x| > 1
n

for each n ∈ N. For every x ∈ R, n ∈ N and w ∈ fn(x), ‖w‖ = 1 so that the
decreasing sequence (fn) does not satisfy (5.8). However, if f ∈ M(R, E)+ is a
lower bound for (fn), then for each x ∈ R and w ∈ f(x), w(t) = 0 if t �= 0. Thus
f(x) = {0} for each x ∈ R so that f = 0. Hence (fn) decreases to 0 in M(R, E).

6. An application: Dedekind completion of C(X,E)

In this final section we apply the results obtained so far to the problem of character-
ising the Dedekind completion of the Riesz space C(X,E) of continuous functions
from X into E in terms of functions defined on the same topological space X . In
most cases, our results apply only to rather particular situations involving restric-
tions both on the topological space X and the Banach lattice E. However, the
following is true in the most general setting considered here.

Proposition 6.1. C(X,E) is a Riesz subspace of M(X,E).

Proof. C(X,E) is a linear subspace of M(X,E) by Theorem 3.3. In particular,
the function S : C(X,E) → M(X,E) defined by S(f)(x) = {f(x)}, x ∈ X , is a
linear injection. To see that S is a Riesz homomorphism, so that C(X,E) is a Riesz
subspace of M(X,E), consider f, g ∈ C(X,E). The continuous function h(x) =
f(x) ∨ g(x) is the supremum of f and g in C(X,E). However, (S(f)∨S(g))(x) =
{h(x)} for every x ∈ X so that S(f) ∨ S(g) = S(f ∨ g) inM(X,E). �



The Riesz Space of Minimal Usco Maps 499

We now proceed with the main result of this section. We will show that
the Dedekind completion C(X,E)� of C(X,E) is Riesz isomorphic to M(X,E)
whenever X is a compact Hausdorff space and E is an AM-space with compact
order intervals. Recall [20, Definition 32.1] that a Dedekind complete Riesz space
K is the Dedekind completion of the Riesz space L whenever L is Riesz isomorphic
to some Riesz subspace L̂ of K, and for every f ∈ K,

sup{ĝ ∈ L̂ | ĝ ≤ f} = f = inf{ĝ ∈ L̂ | f ≤ ĝ}.
An immediate application of a result of Veksler [29], see also [31, Theorem 83.18],
yields the following.

Theorem 6.2. Suppose that E has compact order intervals. Then there exists a
Riesz subspace L ofM(X,E) that is Riesz isomorphic to the Dedekind completion
C(X,E)� of C(X,E) under an isomorphism that leaves C(X,E) invariant.

Proof. The result follows immediately from Corollary 5.6, Proposition 6.1 and [31,
Theorem 83.18]. �

We should note that, in general, it is not known whether or not the embedding
of C(X,E)� intoM(X,E) is unique. However, in a very special case, more can be
said.

Theorem 6.3. Suppose that X is a compact Hausdorff space and E is an AM-space
with compact order intervals. Then C(X,E)� is Riesz isomorphic to M(X,E).

Proof. Since E has compact order intervals, it follows from [30, Theorem 5] that E
has order-continuous norm and is therefore Dedekind complete, see [31, Theorem
103.9]. Consider any f ∈ M(X,E). Since Lf : X "�→ inf f(x) ∈ E is lower semi-
continuous by Proposition 4.2 and X is compact and Hausdorff, it follows from
[11, Proposition 5.11] that Lf is the pointwise supremum of the set

A = {g ∈ C(X,E) | g(x) ≤ Lf(x), x ∈ X}.
If g ∈ A, then g ≤ f . Conversely, if g ≤ f and g ∈ C(X,E) then, for every
x ∈ X , g(x) ≤ y for each y ∈ f(x). Thus g(x) ≤ Lf (x) for every x ∈ X so that
A = {g ∈ C(X,E) | g ≤ f}. Let h = supA so that g ≤ h ≤ f for every g ∈ A.
Since X is compact, and hence a Baire space, it follows from Proposition 2.4 that
there is a dense G− δ set D ⊆ X so that both f and h are point valued on D. For
every x ∈ D and g ∈ A we have g(x) ≤ h(x) ≤ f(x) = Lf (x) so that h(x) = f(x).
It now follows from Corollary 5.3 that f = h = supA. In exactly the same way, it
follows that f = inf{g ∈ C(X,E) | f ≤ g}. Since M(X,E) is Dedekind complete
by Corollary 5.6, the proof is complete. �

Theorem 6.3 has a rather limited scope. Indeed, the assumption that E has
both compact order intervals and an M-norm is highly restrictive. In fact, Wick-
stead [30, Theorem 8] showed that relatively compact sets and order-bounded sets
in E coincide if and only if E is linearly order isomorphic and homeomorphic to the
space C0(T ) of continuous functions vanishing at infinity on some discrete space
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T . On the other hand, E is an AM-space if and only if every relatively compact
subset of E has a supremum and an infimum, see for instance [26, Theorem 2.1.12].
Therefore Theorem 6.3 applies only to spaces of the form E = C0(T ), as described
above.

We may note that Theorem 6.3 applies to the case when E is finite dimen-
sional. However, in this case we may relax the assumptions on X – it is sufficient
to assume that X is a completely regular cb-space. Recall [21] that a topologi-
cal space is a cb-space if every real-valued, locally bounded lower semi-continuous
function on X is bounded from above by a continuous function.

Theorem 6.4. If E is finite dimensional and X is a completely regular weak cb-
space, then M(X,E) is Riesz isomorphic to the Dedekind completion of C(X,E).

Proof. Let E have dimension n with algebraic basis B = {e1, . . . , en} ⊂ E+. Con-
sider any f ∈ M(X,E). Since Lf : X "�→ inf f(x) ∈ E is lower semi-continuous
by Proposition 4.2, it follows that each of the coordinate functions

Li
f (x) = πi(Lf (x) = inf πi(f(x)),

with πi : E → R the canonical projection associated with the basisB, is lower semi-
continuous. Hence, X being completely regular, each Li

f is the poinwise supremum

of the set Ai = {g ∈ C(X) | g(x) ≤ Li
f(x), x ∈ X}. Thus Lf is the pointwise

supremum of A =
∏n

i=1Ai = {g ∈ C(X,E) | g ≤ Lf}. The arguments used in
the proof of Theorem 6.3, applied to the specific case under consideration here,
lead to the conclusion that f = sup{g ∈ C(X,E) | g ≤ f}. That f = inf{g ∈
C(X,E) | f ≤ g} follows in the same way. Hence the proof is complete. �

Theorems 6.3 and 6.4 are generalizations of Anguelov’s characterisation [1]
of the Dedekind completion of C(X) in terms of Hausdorff-continuous interval
functions. In [1] it is shown that for a completely regular space X , the Dedekind
completion of C(X) is order isomorphic to the ideal generated by C(X) in the space
Hft(X) of finite Hausdorff continuous functions. Dăneţ [10] showed that the ideal
generated by C(X) in Hft(X) is all of Hft(X) if and only if X is a weak cb-space,
in particular when X is a cb-space. Anguelov and Kalenda [2] showed that Hft(X)
may be identified in a natural way withM(X,R). Therefore Anguelov and Dăneţ’s
results on the Dedekind completion of C(X) may be rephrased as follows: For a
completely regular topological space X , the Dedekind completion of C(X) is the
ideal generated by C(X) in M(X,R). This ideal is equal to M(X,R) if and only
if X is a weak cb-space.
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23. Çavuşoǧlu, Özlem, Delft University of Technology, Delft, the Netherlands

24. Chen, Guiling, Leiden University, Leiden, the Netherlands

25. Chen, Jin Xi, Southwest Jiaotong University, Chengdu, P.R. China

26. Chen, Zi Li, Southwest Jiaotong University, Chengdu, P.R. China

27. Chil, Elmiloud, Tunis, Monflery, Tunisia

28. Choi, Yun Sung, Postech, Pohang, South Korea
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