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Abstract. It is well understood that solving parity games is equivalent,
up to polynomial time, to model checking of the modal mu-calculus. It
is a long-standing open problem whether solving parity games (or model
checking modal mu-calculus formulas) can be done in polynomial time.
A recent approach to studying this problem has been the design of partial
solvers, algorithms that run in polynomial time and that may only solve
parts of a parity game. Although it was shown that such partial solvers
can completely solve many practical benchmarks, the design of such par-
tial solvers was somewhat ad hoc, limiting a deeper understanding of
the potential of that approach. We here mean to provide such robust
foundations for deeper analysis through a new form of game, alternating
reachability under parity. We prove the determinacy of these games and
use this determinacy to define, for each player, a monotone fixed point
over an ordered domain of height linear in the size of the parity game
such that all nodes in its greatest fixed point are won by said player in
the parity game. We show, through theoretical and experimental work,
that such greatest fixed points and their computation leads to partial
solvers that run in polynomial time. These partial solvers are based on
established principles of static analysis and are more effective than par-
tial solvers studied in extant work.

1 Introduction

Model checking [9,24] is an approach to formal methods in which a system is
represented as a model M , system behavior of interest is represented as a formula
φ of a suitable temporal logic, and the question of whether the model satisfies
that property (written M |= φ) is decided using an algorithm parametric in M
and φ. For infinite models, this question often is undecidable and may therefore
require the abstraction of models to finite ones [2].

Program analyses (see e.g. [23]) consider programs P and aim to answer
questions such as “Are there portions of code in P that can never be reached
during execution?”. Since exact answers may be undecidable, abstraction is often
used to under-approximate or over-approximate such answers, for example, the
set of program points that can never be reached. Many program analyses can be
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computed by a static analysis that computes a least fixed point of a monotone
function over a complete lattice; see for example Chapter 6 in [23] for more details
on this approach based on worklist algorithms.

These two approaches, model checking and static analysis, appear to be quite
different even though they share the need for abstraction. For example, it is not
immediately clear whether each program analysis might correspond to a property
φ of some suitable logic. But there is a body of research that points out a close
relationship and connections between these approaches. For example, in [26] it
is shown how data-flow analyses can be seen as instances of model checking: if
programs are represented as models of a modal logic, one can capture a data-flow
analysis as a formula in that modal logic, and then partially evaluate the model
checker for that logic to thus implement the data-flow analyzer. This insight led
to an actual methodology: in [25] one converts a program into a transition system
as program model – using its operational semantics, then applies abstraction [3,4]
to eliminate details of that model that are irrelevant to the analysis/formula in
question, and finally one can do model checking on the abstract model using
formulas that capture the analysis in question.

These contributions furthered the understanding of how program analysis can
be seen within the framework of model checking. Conversely, it turns out that
the central question of model checking, whether M |= φ holds, can be computed
with techniques from static analysis. In [22], an alternation-free fixed-point logic
was defined and it was shown how static analysis over the resulting flow logic can
decide model-checking instances for modal logics such as computation tree logic
(CTL) [9]. The flow logic in [22] was also demonstrated to have applications in
data-flow analysis and constraint solving [11]. In later work [28], this alternation-
free least fixed-point logic was extended so that one could capture model checking
of the modal mu-calculus [18] (not just of CTL) in this manner, and a Moore
family result was proved for this logic; Moore families are the set of closed sets
of a closure operator.

The temporal logic CTL and the linear-time temporal logic LTL can be seen
as subsets of the temporal logic CTL* (see e.g. [15]). The logic CTL* can in
turn be embedded into the modal mu-calculus [5], although at an exponential
cost [19]. LTL and CTL capture many practically important property patterns
[7] and are therefore very useful. But some have argued that these logics are
mathematically somewhat ad hoc. The modal mu-calculus, on the other hand, is
more canonical since it does not limit the manner in which fixed-point patterns
can be composed (apart from syntactic restrictions that ensure monotonicity
of meaning). It is therefore apt to understand the connections between static
analysis and model checking over the modal mu-calculus as well, and the work
reported in [28] shows how static analysis in the form of flow logics can capture
model checking of the modal mu-calculus.

There is another important aspect to the study of such connections though.
It is well understood [8,10,27] that model checking of the modal mu-calculus is
equivalent (within polynomial time) to the solving of parity games. These are
directed graphs whose nodes are owned by one of two players and colored by a
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natural number. In this chapter, we assume that such graphs are finite. Plays
between these players generate infinite paths in these graphs whose winners are
decided by minimal colors of cycles generated by these paths. A player wins
a node if she can play such that all plays beginning in that node are won by
her in this manner. A central result for parity games states that these games
are determined [8,21,29]: each node is won by exactly one of the two players.
Deciding which player wins which nodes, and how they can achieve these wins
is what one means by solving parity games.

Using the aforementioned results in [8,10,27], we can therefore understand
how to use static analysis for model checking by understanding how static analy-
ses may solve parity games. Known approaches of solving parity games in this
manner, for example the ones based on small progress measures [17], all suffer
from the fact that the height of the ordered domain derived from the parity game
may be exponentially larger than that game – leading to exponential worst-case
running times of least fixed-point computations in the resulting worklist algo-
rithm that implements a static analysis. In fact, the decision problem of whether
a given node in a parity game is won by a given player is in UP∩ coUP [16], and
its exact complexity has been an open problem for over twenty years now.

The work that we report here means to combine static analysis with abstrac-
tion. The analyses we design below run in polynomial time by construction. But
this efficiency is gained by possibly under-approximating the solution of a parity
game: the used static analysis may not decide the winners of all (or indeed some)
nodes although they often solve games completely. Furthermore, in local modal
checking (see e.g. [27]) it suffices to know whether one or several designated
states satisfy a property. In the setting of parity games, this means that it may
suffice to statically decide the winner of one or several nodes – which the static
analyses we present here may often achieve.

Outline of Chapter: In Sect. 2, we recall background on parity games. Our
new type of alternating reachability game is defined and studied in Sect. 3. In
Sect. 4, we show how this game induces monotone functions for each player of
a parity game, and that we can use these functions to build static analyses of
parity games that repeatedly compute greatest fixed points of such functions
on (residual) games. We discuss, in Sect. 5, how this approach generalizes our
earlier work on fatal attractors in [13]. Our experimental results are reported in
Sect. 6, related work not discussed above already is presented in Sect. 7, and the
chapter concludes in Sect. 8.

2 Background

In this section, we define key concepts of parity games, and fix technical notation
used in this chapter. We write N for the set {0, 1, . . . } of natural numbers.
A parity game G is a tuple (V, V0, V1, E, c), where V is a set of nodes partitioned
into possibly empty node sets V0 and V1, with an edge relation E ⊆ V × V
(where for all v in V there is a w in V with (v, w) in E), and a coloring function
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c : V → N. In figures, c(v) is written within nodes v, nodes in V0 are depicted
as circles and nodes in V1 as squares. For v in V , we write v.E for node set
{w ∈ V | (v, w) ∈ E} of successors of v. Below we write C(G) for the set of
colors in game G, i.e. C(G) = {c(v) | v ∈ V }, and C(G)⊥ for set C(G) ∪ {⊥}.

Throughout, we write p (or sometimes p′) for one of 0 or 1 and 1 − p for the
other player. In a parity game, player p owns the nodes in Vp. A play from some
node v0 results in an infinite play π = v0v1 . . . in (V,E) where the player who
owns vi chooses the successor vi+1 such that (vi, vi+1) is in E. Let Inf(π) be the
set of colors that occur in π infinitely often:

Inf(π) = {k ∈ N | ∀j ∈ N : ∃i ∈ N : i > j and k = c(vi)}

Player 0 wins play π iff min Inf(π) is even; otherwise player 1 wins play r.
A strategy for player p is a total function σp : V ∗ · Vp → V where the pair

(v, σp(w · v)) is in E for all v in Vp and w in V ∗. A play π conforms with σp

if for every finite prefix v0 . . . vi of π with vi in Vp we have vi+1 = σp(v0 . . . vi).
A strategy σp is memoryless if for all w,w′ in V ∗ and v in Vp we have σp(w ·v) =
σp(w′ · v) and such a σp can be seen to have type Vp → V .

It is well known that each parity game is determined [8,21,29]: (i) node set
V is the disjoint union of two, possibly empty, sets W0 and W1, the winning
regions of players 0 and 1 (respectively); and (ii) there are memoryless strategies
σ0 and σ1 such that all plays beginning in W0 and conforming with σ0 are won
by player 0, and all plays beginning in W1 and conforming with σ1 are won by
player 1. Solving a parity game means computing such data (W0,W1, σ0, σ1).

Throughout this chapter, we write G for a parity game (V, V0, V1, E, c), denote
by p one of its players, and let X be a non-empty set of nodes of G. We write
x%2 for x modulo 2 for an integer x, and Attrp[G,X] to denote the attractor of
node set X for player p, which computes the standard alternating reachability
of X for that player in the game graph of G (see e.g. Definition 1 in [13]).

Example 1. In the parity game G depicted in Fig. 1, the winning regions are
W1 = {} and W0 = V . The memoryless strategy σ0, defined by σ0(v1) = v2, is
a winning strategy for player 0 on W0.

Fig. 1. A parity game: circles denote nodes in V0, squares denote nodes in V1.
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3 Alternating Reachability Under Parity

In this section, we generalize alternating reachability in parity game graphs, so
that this reachability is aware of minimal colors encountered en route:

Definition 1. Given parity game G, player p, and non-empty node set X, let
π = v0v1 . . . be an infinite play in G.

1. Player p wins play π in the reachability game for (X, p) under parity iff there
is some j > 0 such that vj is in X and min({c(vi) | 0 ≤ i ≤ j}%2 = p.
Dually, player 1 − p wins play π in that reachability game iff she detracts
from (X, p) under parity, that is to say iff for all j > 0 we have that vj in X
implies that min({c(vi) | 0 ≤ i ≤ j}%2 = 1 − p.

2. A strategy for player p′ in this game is defined like a strategy for that player in
the parity game G. Also, the definition of when plays conform with strategies
in this game is the same as for parity game G.

3. Player p′ wins a node v for reachability of (X, p) under parity iff she has
a strategy σp′ such that all plays starting from v and conforming to σp′ are
winning for player p′ in the reachability game for (X, p) under parity.

4. We write Wp
r(G,X) for the set of nodes that player p wins in this manner

(we won’t need notation for the set of nodes won by player 1 − p).

This acceptance condition binds p to X: it is player p who wants to reach
(X, p) under parity. Also, starting from X in a play does not yet mean that X
has been reached. In particular, player 1−p wins all plays that don’t visit X after
the initial node. An immediate question is whether such games are determined
and how complex it is to solve them. We answer these questions next.

Lemma 1. For all parity games G, players p, and non-empty node sets X, the
derived game in G of reaching (X, p) under parity is determined.

Proof. For a color i in C(G) and node set S ⊆ V let Si = {v ∈ S | c(v) = i}
and S≥i = {v ∈ S | c(v) ≥ i}. Also, let C = {c ∈ C(G) | c%2 = p}. The set of
winning plays for player p in the reachability game for (X, p) under parity is the
union of (V ∗

≥i · Vi · V ∗
≥i · X≥i · V ω) ∪ (V +

≥i · Xi · V ω) over all i in C. Note that, for
each such i, both expressions in this union capture the non-deterministic choice
of reaching X in Definition 1. The difference in these expressions is merely that
the minimal color i may be witnessed before that non-deterministic choice of
reaching X. The set of winning plays for player p is thus a Borel definable set of
paths. From the Borel determinacy of turn-based games [20] it therefore follows
that the game is determined. �

Next, we derive from parity game G and node set X a game graph that
reduces reachability of (X, p) under parity to (the usual alternating) reachability
in the derived game graph. This derived game has nodes of form (v, l) where l
records the history of the minimal color encountered so far. In particular, we use
l = ⊥ to model that a play is just beginning.
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Definition 2. For parity game G = (V, V0, V1, E, c), player p, and non-empty
node set X, game graph Gp

X = (V × C(G)⊥, E′) is defined as follows: For c in
C(G)⊥, player 0 owns all nodes (v, c) with v ∈ V0. Player 1 owns all nodes (v, c)
with v ∈ V1. And the edge relation E′ ⊆ (V × C(G)⊥) × (V × C(G)⊥) is defined
as

E′ = {((v,⊥), (v′,min(c(v), c(v′)))) | (v, v′) ∈ E} ∪ (1)
{((v, c), (v′,min(c, c(v′)))) | (v, v′) ∈ E, c ∈ C(G), (v �∈ X or c%2 �= p)}

Fig. 2. Game graph Gp
X for G from Fig. 1 and X being {v0}; only nodes and edges

reachable (in non-alternating sense) from X × {⊥} in Gp
X are shown, as this is all

that is needed for deciding which nodes in X are contained in Wp
r(G,X). The winning

strategy for player 0 requires her to make different choices from the same nodes of G
when they are combined with different colors: player 0 needs to move from (v1, 3) to
(v2, 2) and from (v1, 2) to (v0, 2) in Gp

X

Note that relation E′ is even contained in (V × C(G)⊥) × (V × C(G)) and
contains dead ends (nodes that don’t have outgoing edges in the game graph).
The latter is not an issue since all dead ends in Gp

X are target nodes for the
alternating reachability in Gp

X . Figures 2 and 3 show examples of this construc-
tion.

The intuition of game graph Gp
X is that player p can win node v in G for

reaching (X, p) under parity iff player p can win the (alternating) reachability
game in Gp

X for target set X × {c ∈ C(G) | c%2 = p}. We state this formally:

Theorem 1. For G and Gp
X as above, let Z be X × {c ∈ C(G), c%2 = p} and

W be {v ∈ V | (v,⊥) ∈ Attrp(G
p
X , Z)}. Then W is the winning region of player

p in G for reachability of (X, p) under parity.

Proof. First, let Wp = Wp
r(G,X) be the winning region of player p in G for

reachability of (X, p) under parity. Since this game has a Borel defined winning
condition, there exists a strategy τ : V ∗ ×Vp → V such that all plays conforming
with τ and starting in Wp are won by player p for reachability of (X, p) under
parity.

We write τ ′ for the same strategy but applied to Gp
X whilst ignoring the

second component of nodes in Gp
X . (We note that E′ updates the second com-

ponent of nodes in Gp
X deterministically.) Consider a play π in Gp

X that starts in
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Fig. 3. Game graph Gp
X for G from Fig. 1 and X being {v0, v2}. As in Fig. 2, only

nodes and edges reachable (in non-alternating sense) from X × {⊥} in Gp
X are shown.

The winning strategy for player 0 allows her to make choices that do not depend on
the color annotating the states. She can move from (v1, c) to (v2, 2) regardless of the
value of c.

Wp × {⊥} and conforms with τ ′. The projection of π onto the first components
of its nodes is a play in G that starts in Wp and conforms with τ . Therefore,
that play is won by player p in G, and so it is also won by player p in Gp

X .
Second, it remains to show that {v | (v,⊥) ∈ Attrp(G

p
X , Z)} is contained in

Wp. Let δ′ be a winning (attractor) strategy for player p in Gp
X for the attractor

Attrp(G
p
X , Z). As an attractor strategy, δ′ is memoryless. That is, for every node

(v, c) ∈ Vp×C(G)⊥ we can write δ′(v, c) and this is in V ×C(G). For a sequence of
nodes π = v0, . . . , vn, let c(π) denote min{c(vi) | 0 ≤ i ≤ n}. Let δ : V ∗ · Vp → V
be the strategy obtained from δ′ by setting δ(π · v) = δ′(v, c(π · v)). Then δ is a
strategy in G. Every play that begins in W = {v | (v,⊥) ∈ Attrp(G

p
X , Z)} and

conforms with δ in G can be extended to a play in Gp
X that begins in Attrp(G

p
X , Z)

and conforms with δ′ by adding the deterministic second components. Therefore,
this play is winning for player p in Gp

X . It follows from the construction of E′

that player p reaches X from W = {v | (v,⊥) ∈ Attrp(G
p
X , Z)} such that the

minimal color encountered on the way in G has parity p. �
This theorem also gives us an upper bound on the complexity of solving

games for reachability of (X, p) under parity, noting that alternating reachability
is linear in the number of edges of the game graph, and that Gp

X has at most
|E | · |C(G) | many edges.

Corollary 1. For G, p, and X as above, the reachability game in G for (X, p)
under parity can be solved in time O(|E | · |C(G) |).

We later consider the issue of whether memoryless strategies suffice for win-
ning in G for reachability of (X, p) under parity (they do not). However, from
the proof of Theorem 1 it follows that the size of memory required is bounded
by the number of colors in the game (plus 1).

4 Monotone Functions for a Partial Solver

Let player p win node v for reaching (X, p) under parity in G. Then player p can
make sure that X is reached from v, and that X can be reached from v such
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that the minimal color encountered so far has color parity p. If all nodes in X
are won by player p, node set X is then won by player p in the parity game G:

Lemma 2. For all G, X, and p such that X is contained in Wp
r(G,X), player

p wins all nodes from X in parity game G.

Proof. For each v in X, player p has a strategy σv with finite memory such that
all plays beginning at node v and conforming with σv will reach again some node
in X such that the minimal color of that finite play has parity p. Because X is
contained in Wp

r(G,X), player p can compose all these strategies to a strategy
σp with finite memory as follows:

From v0 in X, she plays conform with σv0 until a finite play v0 . . . vk is
generated such that vk is in X and min{c(vj) | 0 ≤ j ≤ k} has color parity p. We
know that such a finite subplay will be generated by σv0 as it is a winning strategy
for player p witnessing that v is in Wp

r(G,X). At node vk, player p now continues
to play conform with strategy σvk

. She can continue this composition pattern to
generate an infinite play π = v0 · · · vk · · · that is partitioned into infinitely many
finite sub-plays (πi)i≥0 that begin and end in X (and may contain other nodes
in X) and that each have some minimal color ci with parity p.

Since G has only finitely many nodes, this means that all colors that occur
infinitely often in π are greater than or equal to some color that occurs as
minimal color in infinitely many sub-plays πi (and so has parity p and also
occurs infinitely often in π). Therefore, player p wins π in the parity game G
and so the described strategy is also winning for player p on node set X in parity
game G. �

We now put this lemma to use by characterizing such winning node sets as
fixed points of a monotone function. For that, let V p be the (possibly empty) set
of nodes of G that have color parity p, that is V p equals {v ∈ V | c(v)%2 = p}.
Let us consider the function F p

G, defined by

F p
G : P(V p) → P(V p), F p

G(X) = X ∩ Wp
r(G,X) (2)

Lemma 2 then says, in particular, that all non-empty fixed points of F p
G are node

sets won by player p in parity game G. That function is monotone:

Lemma 3. For all G and p, function F p
G defined in (2) is monotone.

Proof. Let X and Y be subsets of V p such that X is contained in Y . We need to
show that F p

G(X) is contained in F p
G(Y ) as well. By definition of F p

G, monotonic-
ity follows if X or Y is empty. So let X and Y be non-empty. Since X ⊆ Y and
since intersection is monotone, it suffices to show that Wp

r(G,X) is contained in
Wp

r(G,Y ). So let v be in Wp
r(G,X). Then player p has a winning strategy that

ensures that all plays from node v reach X such that the minimal color encoun-
tered thus far has parity p. Since X is contained in Y , this means that all such
plays will also reach Y with minimal color encountered en route. Therefore, the
winning strategy for v ∈ Wp

r(G,X) is also a winning strategy for v ∈ Wp
r(G,Y ),

and so v is in Wp
r(G,Y ) as claimed. �
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Fig. 4. Function F 0
G is no longer always monotone when Wp

r(G,X) has acceptance
condition that looks at the minimal color of the prefix for the first reached element of
X instead of a non-deterministally chosen first or future element of X. For G above
and X = {v3, v5} and Y = V 0, we would then have X ⊆ Y but F 0

G(X) = {v3, v5}
would not be contained in F 0

G(Y ) = {v0, v1} under that modified acceptance condition

Neither the monotonicity of F p
G nor the result of Lemma 2 depend on the fact

that all nodes in X have color parity p, nor that anything is known about colors
in X; for Lemma 2, it only matters that all nodes in X are also in Wp

r(G,X).
It is of interest to note that function F p

G would not be monotone if we were to
change the acceptance condition for reaching (X, p) under parity to mean that
player p has to get minimal color parity p at the first time she reaches X after
the first node in the play. Formally, player p would win a play π iff there were
some j > 0 with πj in X such that min{c(πi) | 0 ≤ i ≤ j}%2 equals p and
there were no k with 0 < k < j such that πk would be in X. The resulting
non-monotonicity of this modified acceptance condition is illustrated in Fig. 4.

Monotonicity of F p
G means that either all its fixed points are empty or its

greatest fixed point is non-empty. This suggests an algorithm that recursively
computes such greatest fixed points for each player p, and removes non-empty
ones as being recognized winning regions for player p from parity game G until
either G is solved completely or both F 0

G and F 1
G have only empty fixed points.

The pseudo-code for this algorithm psolC is shown in Fig. 5.
When a greatest fixed point is discovered for player p, the partial solver

removes the p attractor of that fixed point in parity game G from G, not just
the fixed point. This is sound since winning node sets for players in parity games
are closed under attractors for those players. The pseudo-code does not show the
accumulation of the removed node sets into winning regions, as these are routine
administrative matters that only detract from the essence of this partial solver.

We show soundness and upper bounds on the complexity of psolC:
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Fig. 5. Partial solver psolC: in Gp
X , only X ∩Wp

r(G,X) needs to be computed. So this
is implemented by only constructing nodes and edges in Gp

X that are reachable from
X × {⊥} in the non-alternating sense

Theorem 2. Let G be a parity game as above. Then psolC(G) runs in time
O(|E | · |C(G) | · |V |2), space O(|E | · (1+ |C(G) |)), and all node sets Attrp[G,X]
it removes from (residual instances of) G are won by player p in the parity
game G.

Proof. Since Wp
r(G,X) can be computed in O(|E | · |C(G) |), each fixed-point

computation in psolC(G) runs in O(|E | · |C(G) | · |V |) as it can have at most
|V | iterations. But there can also be at most 2 · |V | many such fixed-point
computations in total as each subsequent such computation requires that at
least one node has been removed from G beforehand.

The upper bound on the space complexity follows since the size of Gp
X is the

dominating factor for space requirements of psolC – larger than the size of G,
since there are at most |E | · (1 + |C(G) |)) many edges in Gp

X , and since there is
no need to keep copies of Gp

X once X ∩Wp
r(G,X) has been computed in psolC.

The remaining soundness claim for partial solver psolC directly follows from
Lemma 2 and from the aforementioned fact that winning regions of players in
parity games are closed under attractors of those players. The latter also ensures
that winning regions of recursive instances of G are winning regions of G. �
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It turns out that reachability of (X, p) under parity cannot be solved with
memoryless strategies in general, in contrast to the solving of parity games:

Theorem 3. Solving alternating reachability under parity requires finite mem-
ory in general.

Proof. It suffices to give an example where this is the case. Recall the simple par-
ity game G from Fig. 1. Let p be 0 and X be {v0}. Then W0

r(G,X) equals V and
so player 0 wins all nodes for reachability of (X, 0) under parity. But she cannot
realize this with a memoryless strategy σ0, for either σ0(v1) would equal v2 (and
then player 1 can detract from X by moving from v2 back to v1) or σ0(v1) would
have to equal v0 (in which case player 1 can move from v0 to v1 to generate an
infinite play in which all prefixes that reach X have odd color 3). Let the strategy
σ′
0 : V ∗ · {v1} → V be defined, for all w in V ∗, by σ′

0(w · v1) = v0 if v2 is in w;
and σ′

0(w · v1) = v2 otherwise. Strategy σ′
0 has finite memory and is winning on

all nodes for reachability of (X, 0) under parity: σ′
0 ensures that v0 is reached, and

that v0 is reached only after v2 has been reached. This means that the minimal
color encountered until X is reached equals 2, a win for player 0. �

The implication of Theorem 3 is that even though psolC identifies winning
regions in the parity game the strategies that it allows us to construct, in gen-
eral, require memory. At the same time, we know that there exist memoryless
strategies for both players from their respective winning regions in the parity
game.

Although finite memory is required in general, we note that Y = V 0 is the
greatest fixed point of FG

0 for G from Fig. 1, and that the memoryless strategy
σ0 above is winning for W0

r(G,Y ) = V . This raises the question of whether non-
empty greatest fixed points of F p

G ever require corresponding winning strategies
with finite memory or whether they always can be memoryless. This is also
apparent in the derived games G0

X and X0
Y depicted in Figs. 2 and 3, respectively.

We formulate this problem as a research question:

Question 1. Is there a parity game G and player p where the greatest fixed
point X of F p

G is non-empty and player p does not have memoryless strategies
for witnessing that X is contained in Wp

r(G,X)?

If no finite memory is needed for greatest fixed points of F p
G, then psolC

might be able to compute memoryless winning strategies for parity game G. Let
us next give an example of how psolC may solve games completely:

Example 2. Let us consider the execution of psolC(G) for parity game G in
Fig. 4 (for the acceptance condition as in Definition 1). Initially, p = 0 and
X = {v0, v1, v3, v5} = G0. Then psolC detects in fixedPoint that X is the
greatest fixed point of F 0

G and removes its 0 attractor in G (which is all of V )
from G. Thus psolC completely solves G and recognizes that all nodes are won
by player 0. Note that X is a fixed point of F 0

G since W0
r(G,X) equals V : (i)

player 0 wins node v0 as player 1 can only move to v3 or v5 from there and so
reach X with minimal color 0; (ii) player 0 wins node v1 since player 1 can only
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Fig. 6. Parity game G, owned by player 1, won by player 0, and where psolC cannot
solve even a single node

move to v0 from there and so reach X with minimal color 0; (iii) player 0 wins
node v2 since player 1 can only generate the prefix v2v1v0 from there and so get
minimal color 0 for this second reach of X; (iv) player 0 wins v3 since player 1
can either move from there to v2 and so generate a prefix v3v2v1v0 with minimal
color 0 for his second reach of X or player 1 can move to v4 from where she can
only move to X with minimal color 2 for the first reach of X; (v) player 0 wins
v5 for symmetric reasons; and (vi) player 0 wins v4 because player 1 can only
reach X from here with minimal color 2 on the first reach of X.

Solver psolC is partial in that it may not solve even a single node in a parity
game. We illustrate this with an example:

Example 3. Figure 6 shows a parity game G for which psolC solves no nodes
at all. For p = 0, set X is initially V \ {v1}. (i) Node v0 is lost by player 0
since player 1 can move from there into the cycle (v2v6)ω with minimal color
1. Player 0 wins all other nodes in X. Therefore, the next value of X equals
{v2, v3, v4, v5, v6}. (ii) Now, nodes v4 and v5 are lost by player 0, as player 1 can
move from them to node v0 (which is no longer in X) and then play as for the
initial X to get minimal color 1. Player 0 wins all other nodes in X. Therefore,
the next value of X equals {v2, v3, v6}. (iii) Next, node v3 is lost by player 0, as
player 1 can move from there directly to node v4 (which is no longer in X) and
then enter the cycle (v0v5)ω and so avoid X altogether. Player 0 wins nodes v2
and v6 though. Therefore, the next value of X equals {v2, v6}. (iv) Now, player
0 loses v2 as player 1 can avoid reaching that node again from v2. Player 0 still
wins node v6. Thus, the next value of X equals {v6}. (v) Finally, player 1 can
avoid reaching X again from node v6 and so wins v6, making X empty.

Clearly, F 1
G computes an empty fixed point as all nodes in parity game G are

won by player 0. The inability of psolC to solve even a single node in G seems to
stem from the fact that the acceptance condition for W0

r(G,X) captures a weak
parity acceptance condition [1] and not a parity acceptance condition.

We could extend the types of F p
G to be P(V ) → P(V ). The proofs for

monotonicity and for fixed points being won by player p in the parity game
G would still carry through then. It may be of interest to compare a variant of
psolC based on greatest fixed points for this extended type of F p

G to psolC: that
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variant may run slower in practice but may solve more nodes in G. However,
it will still be a partial solver as can be seen from Example 3: for the version
of psolC based on this extended type, both v0 and v1 would be removed from
initial X = V in the first iteration and so this still would compute empty fixed
points only.

5 Fatal Attractors

Our work in [13] defined and studied monotone attractors and built partial solvers
out of them. Let X be a non-empty node set of G where all nodes in X have color
c, and set p to be c%2. Monotone attractors MA(X) were defined in [13]. For X as
above, and subsets A of V this definition is as follows:

mprep(A,X, c) = {v ∈ Vp | c(v) ≥ c ∧ v.E ∩ (A ∪ X) �= ∅} ∪
{v ∈ V1−p | c(v) ≥ c ∧ v.E ⊆ A ∪ X}

MA(X) = μZ.mprep(Z,X, c) (3)

where μZ.f(Z) denotes the least fixed point of a monotone function f : P(V ) →
P(V ). It follows that MA(X) is the set of nodes in G from which player p can
attract to X whilst avoiding nodes of color less than c. In [13], we called such
an X fatal if all of X is in that attractor (i.e. when X ⊆ MA(X)). In Theorem 2
in [13], we showed that all such fatal attractors are won by player p.

To relate this to our work in this chapter, an infinite play π would be won in
this monotone attractor game by player p iff there is some j > 0 with πj in X
and c(πi) ≥ c for all i with 0 ≤ i < j; so X can be reached on π with minimal
color c at πj . This implies that all such fatal attractors X with node color c are
fixed points of F p

G and are therefore contained in the greatest fixed point of F p
G.

We can use this to prove that psolC is more effective than the partial solver
psolB defined in [13]:

Theorem 4. Let psolB be the partial solver defined in Fig. 7 and let G be a
parity game. The call psolC(G) decides the winner of all nodes for which call
psolB(G) decides a winner.

Proof. For all players p, the acceptance condition for monotone attractors as
discussed above implies that all fatal attractors for that player in G (node sets
X of some color c with parity p such that X ⊆ MA(X)) are contained in the
greatest fixed point Z of F p

G. By Theorem 5 in [13], the order of fatal attractor
detection does not affect the output of partial solver psolB. Therefore, we can
assume that all fatal attractors X for player p are contained in the greatest fixed
point Z of F p

G. But by monotonicity, their p-attractors Attrp[G,X] are then also
contained in the p-attractor Attrp[G,Z] of Z. Thus, it follows that all nodes that
are decided by psolB(G) are also decided by psolC(G). �

In [13], we also studied a more precise but more complex partial solver psolQ.
Although the design of psolQ has superficial similarities to that of psolC, the
latter is more precise: at noted in [13], psolQ does not solve even a single node
for the parity game in Fig. 8. But psolC solves this game completely.
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Fig. 7. Partial solver psolB from [13] (figure is a reproduction of Fig. 3 in [13])

Fig. 8. A 1-player parity game that psolC solves completely (as {v0, v4, v7} is greatest
fixed point of F 0

G) but for which psolQ in [13] solves no nodes (figure is Fig. 5 in [13])

6 Experimental Results

By Theorem 4, we know that psolC will solve completely all games that psolB
solves completely. From [13], we know that psolB completely solves many struc-
tured benchmarks. Therefore, there is little value in running psolC over these
structured benchmarks again. This is why we focused our experimental effort
here an random parity games.

We now report our experiments we did on randomly generated games. The
aims of these experiments are

1. to experimentally confirm that psolC solves all nodes that psolB solves, as
proved in Theorem 4

2. to compare running times of psolC and psolB over a large set of random
games

3. to determine game configurations for which psolC does not really solve more
than psolB does.

All our experiments were conducted on a test server that has two Intel R©

E5 CPUs, with 6-core each running at 2.5 GHz and 48 G of RAM. Experiments
were grouped into game configurations, where we generated 100,000 games for
each such configuration and ran psolB and psolC against these games. We also
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used Zielonka’s solver [29] for regression tests to ensure that psolB and psolC
correctly under-approximate winning regions, all of these tests passed.

The game configurations used are shown in the “Game Mode” column of
Fig. 9. Each such mode is denoted by xx-yy-aa-bb. The xx is the number of nodes
in a game, and the owners (player 0 or 1) of the nodes are chosen independently at
random. The color of each node is also uniformly chosen from set {0, 1, . . . , yy},
and has between aa and bb out-going edges to randomly selected successors in
the game.

We now summarize key facts that we can observe from the experimental
results shown in Fig. 9:

– psolB has never solved more nodes than psolC, experimentally confirming
Theorem 4 (column #10).

– For games with low edge density (i.e., when aa-bb equals 1-5), psolC solves
more than psolB for around 10 % of games (#9).

– For games with higher edge density (i.e., when aa-bb is different from 1-5),
psolC doesn’t appear to have an effect over psolB (#9).

– psolC takes significantly more time to execute than psolB for high edge den-
sity games (#2).

– Our experimental results suggest that the psolC lapse time increases as the
color cap increases, whereas we don’t observe a similar increase for psolB (#2
and #3).

Fig. 9. Our experimental results for the partial solver psolC. The legend for the 10
data columns above is given in Table 1.

We note that these experiments took quite some time to complete. For exam-
ple, the total running time of psolC for these 800,000 random games was more
than 28 days (if converted to calendar time). The experimental data we collected
suggest that the comparison between psolB and psolC is bimodal on random
games: either psolC is no more effective than psolB on a given game mode, or
it appears to be more effective on about 10% of games for a given game mode.

The partial solver psolC may therefore have more theoretical than practical
value. However, a staging of psolB and psolC may work reasonably well in
practice: on input game G, first run psolB to obtain residual game G′; and then
run psolC only on G′ and only when G′ is not empty.
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Table 1. Legend for experimental data shown in Fig. 9: G’B represents the number of
games not completely solved by psolB. Similarly, G’C represents the number of games
not completely solved by psolC.

7 Other Related Work

Some easy static analyses for parity games have become part of the folklore of
how to preprocess parity games. For example, the tool PGSolver can eliminate
self-loops (nodes v with (v, v) in E) and dead ends (nodes v for which there is
no w with (v, w) in E) [12]. The latter can be seen as justification for defining
parity games not to have dead ends, as we have done in this chapter.

In [17], progress measures are defined and recognized as representations of win-
ning strategies. A monotone function over a complete lattice is then defined such
that pre-fixed points of that function capture progress measures. A least fixed-
point computation therefore can compute the winning region and a winning strat-
egy for a chosen player. This algorithm has exponential running time, since the
complete lattice may be exponentially larger than the parity game. However, the
algorithm runs on polynomial space, unlike some other known algorithms for solv-
ing parity games.

Our work relates to research on the descriptive complexity of parity games.
In [6], it is investigated whether the winning regions of players in parity games
can be defined in suitable logics. We mention two results from this paper: it
is shown that this is indeed possible for guarded second-order logic (even for
infinite game graphs with an unbounded number of colors); and for an arbitrary
finite game graph G (the setting of our chapter), it is proved that least fixed-
point logic can define the winning regions of G iff these winning regions are
computable in polynomial time.

In [14], a transformation is studied that can map a partial solver ρ for parity
games to another partial solver lift(ρ) that first applies ρ until it has no effect on
the residual game. Then, lift(ρ) searches for some node v in Vp with more than one
outgoing edge such that the commitment to one such edge (i.e. the removal of all
other edges outgoing from v) would make partial solver ρ discover that node v is
won by player 1 − p in that modified game. If so, it is sound to remove edge (v, w)
from G and then try lift(ρ) again until no such effect can be observed for both p.
It was proved in [14] that lift(ρ) is sound if ρ is sound, idempotent, and satisfies a
locality principle; and it was shown that psolB satisfies these properties.
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8 Conclusions

In this chapter, we studied how one may define static analyses of parity games
that run in polynomial time and space and compute parts of the games’ winning
regions. In particular, the quality of such a static analysis could then be measured
by how often it computes winning regions completely, or by what percentage
of the winning region it computes across a range of random and structured
benchmarks. We developed firm foundations for designing such static analyses,
using a novel kind of game derived from parity games: reachability under parity.
The intuition of such a game is that player p can reach a node set X whilst
ensuring that the minimal color encountered en route has parity p.

We showed that such new reachability games are determined, demonstrated
how one can implement their solution efficiently, and used this notion of game
to define monotone functions over parity games – one for each player of the
parity game. The greatest fixed-points of these functions were proved to be con-
tained in the winning region of the corresponding player in the parity game.
This insight led us to design a partial solver psolC and its experimental evalua-
tion demonstrated that it is a powerful static analysis of parity games that can
solve completely many types of random and structured benchmarks. Theoretical
analysis also showed that these monotone functions generalize, in a more canon-
ical and less ad hoc manner, work on fatal attractors that we had conducted
previously [13]. In particular, we proved that psolC is more effective that the
partial solver psolB in [13] that performed best in practice.

The decision problem for parity games, whether a given node is won by a
given player, is in UP∩ coUP [16] and so contained in NP∩ coNP. It is therefore
perhaps no great surprise that all known algorithms that completely compute
such winning regions run in worst-case exponential or sub-exponential time in
the size of these games. One may therefore think of our chapter as taking a com-
plementary approach to attempting to answer the longstanding open problem of
the exact complexity of said decision problem for parity games: how to design
static analyses that run in polynomial time (relatively easy to do) and that are
provably computing the exact winning regions of all parity games (likely very
hard to do under these constraints of efficient static analysis). We hope that the
reader may find this approach to be of genuine interest so that he or she may
pursue it further.
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