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Abstract. In order to perform probabilistic program analysis we need to
consider probabilistic languages or languages with a probabilistic seman-
tics, as well as a corresponding framework for the analysis which is
able to accommodate probabilistic properties and properties of proba-
bilistic computations. To this purpose we investigate the relationship
between three different types of probabilistic semantics for a core imper-
ative language, namely Kozen’s Fixpoint Semantics, our Linear Oper-
ator Semantics and probabilistic versions of Maximal Trace Semantics.
We also discuss the relationship between Probabilistic Abstract Inter-
pretation (PAI) and statistical or linear regression analysis. While classi-
cal Abstract Interpretation, based on Galois connection, allows only for
worst-case analyses, the use of the Moore-Penrose pseudo inverse in PAI
opens the possibility of exploiting statistical and noisy observations in
order to analyse and identify various system properties.

1 Introduction

In this contribution we will address a topic which we believe is dear to the hearts
of Hanne and Flemming, namely Abstract Interpretation based techniques in
program analysis [1–4]. We will concentrate on the treatment of the probabilistic
setting where either the program or its semantics or both contain an element
of chance that can be used to refine the possible nondeterminism associated
with their models. As program analysis is essentially based on the semantics of
programs, we will first describe three different probabilistic semantics that could
be used as a basis for probabilistic analysis by clarifying the differences and
relationship between them, and discussing their potential for the construction of
precise program analyses. As a result of this comparison it will be clear that the
Probabilistic Abstract Interpretation framework originally introduced in [5,6] is
not an instance of a probabilistic application of classical Abstract Interpretation
as recently suggested in [7] in order to analyse probabilistic programs.

The use of linear operators on vector spaces – more concretely on Hilbert
spaces – for the definition of a probabilistic semantics is an important feature
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of the Probabilistic Abstract Interpretation framework for several reasons: (i) it
provides a well-defined notion of generalised inverse that enjoys properties similar
to the concretisation/abstraction functions in the Galois connection framework;
(ii) it allows us to exploit a well-defined metric (the Euclidean distance) in order
to achieve quantitative results for our static analyses; (iii) it is an appropriate
setting where statistical models can be used to enhance the power of static
analysis techniques with information gathered via observations.

While we have variously addressed the first two points in our previous work,
the potentiality of Probabilistic Abstract Interpretation for performing a kind
of statistical program analysis was never completely explored before. As another
result we will show in this paper that, contrary to the typical computer scientist
approach that constructs observations from models, it is sometimes useful to
define a model starting from observations, as typically done in statistics. To this
end, the particular notion of generalised inverse defining Probabilistic Abstract
Interpretation – namely the Moore-Penrose pseudo-inverse [8–10] – makes it
very natural to use statistical techniques such as linear regression [10,11] for
constructing abstractions that are as close as possible to the actual system with
respect to the observed behaviour.

2 Probabilistic Semantics

There exist a number of proposals for probabilistic languages. These can be
based on procedural languages, e.g. [12–14], functional ones, e.g. [15–17], but
also declarative ones, like [5,18]. Besides this there is also a substantial work in
probabilistic process algebras [19,20]. It would be impossible to discuss or even
to mention all these approaches here in detail, so we will only concentrate on a
small (core) procedural language, which will call pWhile and which is essentially
the same as the one in [12].

Similarly, a number of approaches have been proposed for defining a seman-
tics for probabilistic programs, not least in order to allow for some form of static
program analysis. Usually, it is straightforward to define an operational seman-
tics for a probabilistic extension of a deterministic language; this can be achieved
for example by replacing the original (unlabelled) transition relation of an SOS
semantics with a weighted version, where the weights represent the probabili-
ties associated with random choices or assignments. Some arguably more useful
kinds of semantics are, for example, Kozen’s Fixed-Point Semantics (KFS) [12],
the Linear Operator Semantics (LOS) introduced by the authors in [21], and the
probabilistic Maximal Trace Semantics (MTS) of [7]. We will concentrate in the
following on these three models but again stress that many other approaches
exist, which are based e.g. on domain theory [22–24], weakest preconditions
[25,26], and the monadic approach in [16,27].

2.1 A Probabilistic Language

The syntax of the language we consider is a straightforward extension of an
imperative language with a probabilistic assignment “x ?= ρ” where ρ repre-
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sents a probability distribution on the set Value of possible values of x which
associates to every vi ∈ Value a probability pi. As usual we require for distri-
butions that 0 ≤ pi ≤ 1 and

∑
i pi = 1; these probabilities are all constant, i.e.

we do not consider here dynamical changes of distributions. For so-called sub-
probability distributions we require 0 ≤ pi ≤ 1 but only

∑
i pi ≤ 1. We denote

(sub-)probability distributions by sets of pairs {〈vi, pi〉}i which express the fact
that a constant value vi has probabilities pi (pairs with probability pi = 0 can
be omitted).

The syntax of statements is given below. We also provide a labelled version
of this syntax (cf. [4]) in order to be able to refer to certain program points in a
program analysis context. For details on (arithmetic) expressions f(x1, . . . , xn)
(sometimes denoted simply by e or a) and (Boolean) expressions or tests b, etc.
we refer to e.g. [4,14].

S ::= skip
| x := f(x1, . . . , xn)
| x ?= ρ
| S1; S2

| if b then S1 else S2 fi
| while b do S od

S ::= [skip]�

| [x := f(x1, . . . , xn)]�

| [x ?= ρ]�

| S1; S2

| if [b]� then S1 else S2 fi
| while [b]� do S od

It would also be possible to allow for a probabilistic choice construct of the
form “choose p1 : S1 or p2 : S2 ro”, but in order to keep things simple we
omit it in our treatment. This statement can be implemented, for example, as
c ?= ρ; if c == 0 then S1 else S2 fi with ρ = {〈0, p1〉, 〈1, p2〉}. Further details
on the (intuitive and operational) semantics of this language can be found for
example in [14,21,28].

Though we only deal with constant probabilities in the following we will
implicitly always normalise probabilities in a distribution (we cannot assume
that a programmer provides the correct probabilities), and we will only allow
for rational values (non-rational real values for pi raise issues of computability
we will avoid). This means that we can also require that the pi are integers
indicating the probability ratio between different alternatives.

Example 1. We will consider the following pWhile program as a running exam-
ple throughout the paper (its labelled version can be found below in Example 5):

while true do
if (x == 1)

then x ?= {〈0, p〉, 〈1, 1 − p〉}
else x ?= {〈0, 1 − q〉, 〈1, q〉}

fi
od

This program may be thought of implementing a scheduler in some protocol
where x �→ 0 and x �→ 1 determines which of two processes has, for example,
control over a communication channel.
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Clearly the execution of this program never terminates: a random switching
between the state x �→ 0 and x �→ 1 is performed indefinitely according to the
probabilities p and q.

In the following we will assume that the state space (and thus the set of
configurations) is finite. This makes the treatment substantially simpler as we
can avoid topological and measure theoretic details (for which we refer to [28])
and work with just linear algebraic notions instead of functional analytical or
operator algebraic ones, cf. [29,30] etc. This finiteness condition is fulfilled by the
example above. It should be noted that the finiteness of the state space however
still allows for infinite executions.

2.2 Kozen’s Fixed-Point Semantics (KFS)

A well-known denotational semantics for probabilistic programs was introduced
by Kozen in the 1980s [12] based on bounded Banach space operators. This is a
fixed-point I/O semantics that describes how an input probability distribution
(or in general a measure) is transformed into an output sub-probability dis-
tribution/measure. It only records contributions of terminating processes. The
probabilities of non-terminating, i.e. infinite, computations “gets lost” so the
final outcome is no longer normalised or a full probability distribution/measure.
As a consequence the semantics of all non-terminating processes is the same (cf.
also [28]).

In Kozen’s language in [12] the element of chance is introduced via random
assignments. In the semantical interpretation of this language, all the actual exe-
cutions of a program are however deterministic, as all possible choices are made
beforehand [12, Section 3.2.2,p336]. More precisely, before the execution of a pro-
gram commences, all later probabilistic choices have already been resolved by
picking an ω ∈ Ω with (Ω, E , μ) an appropriate measure space (E the σ-algebra
of measurable events and μ a probability measure). The semantics of a program
is then parametric in this event or scenario ω which determines the probability
that the otherwise deterministic execution of a program may effectively happen.

Example 2. Consider the following simple program:

x ?= {〈0,
1
3
〉, 〈1,

2
3
〉}; x ?= {〈0,

1
2
〉, 〈1,

1
2
〉}.

The minimal event space we need for defining a semantics for this program is
Ω = {0, 1}×{0, 1} and, because this is a finite set, we can take the whole power-
set E = P(Ω) as the σ-algebra of measurable sets. The probability measure of
the elements in Ω is then: μ({(0, 0)}) = 1

6 , μ({(0, 1)}) = 1
6 , μ({(1, 0)}) = 1

3 , and
μ({(1, 1)}) = 1

3 .
After a scenario ω has been picked, the program behaves exactly as one of

the following deterministic programs:

for ω = (0, 0) we execute ”x := 0; x := 0” with probability 1
6 ,

for ω = (0, 1) we execute ”x := 0; x := 1” with probability 1
6 ,

for ω = (1, 0) we execute ”x := 1; x := 0” with probability 1
3 ,

for ω = (1, 1) we execute ”x := 1; x := 1” with probability 1
3 .
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In the Kozen semantics we can identify a state with a distribution on Valuen,
where n is the number of variables and Value is the set of possible values of a
variable which we assume here – as said before – to be finite. Thus, a probabilistic
state (as a distribution σ ∈ D(Valuen)) can be seen as a normalised element (in
the sense of the 1-norm) in the vector space V(Valuen). The space V(X), which
allows for the representation of distributions as well as sub-distributions on X,
is defined as the set of linear combinations of elements in X, i.e.

V(X) =

{
∑

i

λixi | xi ∈ X ∧ λi ∈ R

}

.

This space is isomorphic to R
|X| with |X| the cardinality of X. Vector addi-

tion and scalar product are defined pointwise. We can identify xi ∈ X with the
base vectors of V(X) and any element in V(X) with its coordinates, i.e. the
tuple (λi)i. This space is equipped with an inner product 〈(λi)i|(νi)i〉 =

∑
i λiνi

and one of various norms, e.g. ‖(λi)i‖1 =
∑

i |λi| and ‖(λi)i‖2 =
√∑

i |λi|2 =
√

〈(λi)i|(λi)i〉. The choice of one norm or another is nevertheless largely irrel-
evant in the finite dimensional case where all norms are equivalent. In fact,
the topology on finite dimensional vector spaces is uniquely determined by the
algebraic structure, cf. e.g. [31, 1.22].

The Kozen semantics of a program P is then given by the linear operator
[[P ]]KFS ∈ L(V(Valuen)) where L(X) is the set of linear maps T on X, i.e.
T(x + y) = T(x) + T(y) and T(λx) = λT(x):

[[P ]]KFS : V(Valuen) → V(Valuen),

which is the solution to the following set of equations:

[[skip]]KFS = I
[[x := f(x1, . . . , xn)]]KFS = U(x ← f(x1, . . . , xn))

[[x ?= ρ]]KFS =
∑

v ρ(v)U(x ← v)
[[S1;S2]]KFS = ([[S1]]KFS [[S2]]KFS)

[[if b then S1 else S2 fi]]KFS = (P(b)[[S1]]KFS + P(¬b)[[S2]])
[[while b do S od]]KFS = (P(b)[[S]]KFS [[while b do S od]]KFS+P(¬b)).

The operator I is the identity on V(Valuen) represented by a matrix with (I)vv =
1 and 0 otherwise for v = (v1, . . . , vn) ∈ Valuen. The matrix representation of
the test or projection operators P is given by a diagonal matrix with (P(b))vv = 1
if b(v) holds for v ∈ Valuen and 0 otherwise. Note that P(true) = I and that
P(¬b) = I−P(b). The assignment or update operator U is given by a matrix with
entries (U(xi ← f(x1, . . . , xn)))v,F (v) = 1 for all v ∈ Valuen and 0 otherwise,
where F : Valuen → Valuen is defined as

F (v1, . . . , vi−1, vi, vi+1, . . . , vn) = (v1, . . . , vi−1, f(v1, . . . , vn), vi+1, . . . , vn).

This definition is equivalent to that given in [12, p339]).
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The existence of a solution to these equations is guaranteed in general (i.e.
also for infinite state spaces) by the Brouwer-Schauders fixed-point theorem (see
e.g. [30,32]). The least fixed-point can be constructed iteratively via a “super-
operator” τ : L(V(Valuen)) → L(V(Valuen)) which encodes the above equa-
tions and by exploiting the lifted point-wise order on distributions/measures.

Example 3. Consider again the program P in Example 1. As no executions of
this program will ever terminate, there is no proper (sub-)probability distribu-
tion describing the final state. Thus Kozen’s semantics, which describes the I/O
behaviour, is trivial:

[[P ]]KFS =
(

0 0
0 0

)

= O

i.e. the zero operator [[P ]]KFS : V({x �→ 0, x �→ 1}) → V({x �→ 0, x �→ 1}).
This is also justified by the fixed-point construction described in [12, p 341].

The semantics of the statement S given by

if (x == 1) then x ?= {〈0, p〉, 〈1, 1 − p〉} else x ?= {〈0, 1 − q〉, 〈1, q〉} fi

forming the body of the loop is easily computed as:

[[S]]KFS =
(

p 1 − p
1 − q q

)

,

but whatever the semantics [[S]]KFS of the body of loop is, the Kozen semantics
of the whole program P is the (appropriate) supremum of a sequence of matrices
τn(O) with n = 1, 2, 3, . . . (starting with the zero matrix O):

τn(O) =
n−1∑

k=0

(P(true)[[S]]KFS)kP(false) =
n−1∑

k=0

(I[[S]]KFS)kO = O.

That is, for all n = 1, 2, 3, . . . we have τn(O) = O and thus [[P ]]KFS = O.

We also represent (sub-)probability distributions as row vectors; the applica-
tion of an operator or linear map T(x) is thus expressed by post-multiplication
x · T rather than pre-multiplication as it can be found elsewhere (e.g. [12]).

Example 3 describes the situation of a program that never terminates on all
inputs. More interestingly, Kozen’s semantics also allows us to model programs
that terminate with probability 0 < p < 1, as shown in the following example.

Example 4. Consider the programs Q, Q′ and Q′′ which incorporate the program
P in Example 3:

if (x == 1)
then x := 0
else P

fi

x := 1;
if (x == 1)

then x := 0
else P

fi

x ?= {〈0, 1
2 〉, 〈1, 1

2 〉;
if (x == 1)

then x := 0
else P

fi
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The operator [[Q]]KFS of the first program can be easily computed (based on
[[P ]]KFS in Example 3). We have the Kozen semantics of the two branches of the
if statements:

[[x := 0]]KFS =
(

1 0
1 0

)

[[P ]]KFS =
(

0 0
0 0

)

as well as for the tests guarding the if statement:

[[x = 0]]KFS =
(

1 0
0 0

)

[[x = 1]]KFS =
(

1 0
0 0

)

= I − [[x = 0]]KFS

Thus by the fifth equation in the definition of the KFS (or section (3.3.4) in [12,
p 340]) we get:

[[Q]]KFS = [[x = 1]]KFS [[x := 0]]KFS + [[x = 0]]KFS [[P ]]KFS =
(

1 0
0 0

)

This means that if we have an initial state σ = (p, 1 − p)t which describes the
fact that the initial value of x is zero with probability p, and one with probability
1 − p, then σ[[Q]]KFS = (p, 0)t (where .t denotes vector transposition). This is
in general (unless p = 1) only a sub-probability distribution expressing the fact
that this program will terminate with probability p with a zero value for x and
that with probability 1 − p we have non-termination.

If we consider instead the second program Q′ then we have

[[x := 1]]KFS =
(

0 1
0 1

)

and thus [[Q′]]KFS = [[x := 1]]KFS [[Q′]]KFS =
(

1 0
1 0

)

That means that independently of the initial value of x we always get (i.e. with
probability one) a termination and a zero value for x.

Finally, if we consider the program Q′′ we get

[[Q′′]]KFS =
(

1
2
[[x := 0]]KFS +

1
2
[[x := 1]]KFS

)

[[Q]]KFS =
(

1
2 0
1
2 0

)

Here we terminate (again with the resulting x being zero) with a half probability,
independently from the initial value of x.

2.3 Linear Operator Semantics (LOS)

The Linear Operator Semantics in [21,28] constructs the generator of a Discrete
Time Markov Chain (DTMC) in a syntax directed fashion. Like Kozen’s seman-
tics we can represent the LOS as an operator on the vector space of probabilistic
states. However, differently from Kozen’s semantics, the definition of this oper-
ator is based on the syntax rather than on a denotational domain. Moreover, in
order to provide a suitable base for static analysis, we do not construct the LOS
of a program by simply translating the SOS transition relation into a DTMC
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generator. Instead, we define it in a structured way by composing the operators
associated with each syntactic elementary components of the program by means
of the tensor (or Kronecker) product operation “⊗” on vector spaces (cf. e.g.
[33,34] or [21]).

The state space is constructed starting from the classical states, i.e. states
that associate concrete values in vi ∈ Value to variables xi ∈ Var = {x1, . . . ,
xn}. The classical state space can therefore be defined as State = Var → Value
or equivalently State = Value1 × . . . × Valuen = Valuen.

In order to describe the probabilistic state of a computation we consider
(probability) distributions over (classical) states again – as in Kozen’s con-
struction – as elements in V(Valuen). However, we can use the tensor prod-
uct operation “⊗” to decompose this probabilistic state space, i.e. V(X × Y ) =
V(X)⊗V(Y ) and represent probabilistic states thus as elements in V(Valuen) =
V(Value1) ⊗ V(Value2) ⊗ . . . ⊗ V(Valuen) = V(Value)⊗n.

The LOS is based on the labelled version of the syntax of pWhile. This
allows us to record not only the values of all variables but also the current point
in the program we are executing, i.e. the “program counter”. Thus, the state
space of the corresponding DTMC is a space of configurations which also contain
information about the current label. This is defined as the space Conf = State×
Label of distributions in D(Conf) ⊆ V(Conf) = V(State) ⊗ V(Label) =
V(Value)⊗n ⊗ V(Label).

The LOS [[P ]]LOS of a program P is then an operator in L(V(Conf)) or,
more precisely

[[P ]]LOS : V(Valuen) ⊗ V(Label) → V(Valuen) ⊗ V(Label).

It is constructed by means of a set {{P}}LOS of linear operators describing local
changes (at individual labels) as follows:

[[P ]]LOS =
∑

{{P}}LOS =
∑

{G | G ∈ {{P}}LOS}.

The {{S}}LOS associated to a statement S is given by a set of global and
local operators, i.e. {{.}}LOS : Stmt → P(Γ ∪ Λ). Global operators are linear
operators on V(Conf) i.e. Γ = L(V(Valuen) ⊗ V(Label)) = L(V(Conf)), and
local operators are pairs of operators on V(State) and labels � ∈ Label, i.e.
Λ = L(V(Valuen)) × Label.

Global operators provide information about how the computational state
changes at a label as well as the control flow; in other words, they define the
label of the next statement to be executed. Local operators represent statements
for which a “continuation” is not yet known. In order to transform local operators
into global ones, we define a continuation operation 〈F, �〉 � �′ = F ⊗ E(�, �′)
which we extend in the obvious way to sets of operators by {〈Fi, �i〉} � �′ =
{Fi ⊗E(�i, �

′)} (for global operators, clearly, we have G� �′ = G). Here, E(i, j)
denotes the matrix unit with (E(i, j))ij = 1 and 0 otherwise.

The set {{S}}LOS of operators for a statement S is defined inductively on the
syntactic structure of S as follows:
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{{[skip]�}}LOS = {〈I, �〉}
{{[x := e]�}}LOS = {〈U(x ← e), �〉}
{{[x ?= ρ]�}}LOS = {〈

∑

〈v,p〉∈ρ

p · U(x ← v), �〉}

{{S1; S2}}LOS = ([[S1]] � init(S2)) ∪ [[S2]]

{{if [b]� then S1 else S2 fi}}LOS = {〈P(b), �〉} � init(S1)} ∪ {{S1}}LOS ∪
{〈P(b)⊥, �〉} � init(S2)} ∪ {{S2}}LOS

{{while [b]� do S od}}LOS = {〈P(b), �〉} � init(S)} ∪ {{S}}LOS ∪ {〈P(b)⊥, �〉}

We use elementary update and test operators U and P (and its complement
P⊥ = I − P) as in Kozen’s semantics. However, the tensor product structure
allows us to define these operators in a different (although equivalent) way.

For a single variable the assignment to a constant value v ∈ Value is repre-
sented by the operator on V(Value) given by U(v) = 1 if v = i and 0 otherwise.
Testing if a single variable satisfies a Boolean test b is achieved by a projection
operator on V(Value) with (P(b))ii = 1 if b(i) holds and 0 otherwise.

We extend these to the multivariable case, i.e. for |Var| = n > 1 by defining
the following operators on V(Value)⊗n:

P(s) =
n⊗

i=1

P(xi = s(xi)) P(e = v) =
∑

E(e)s=v

P(s),

where P(s) is for testing if we are in a classical state s ∈ Valuen while P(e = v)
checks if an expression e evaluates to a constant v (assuming an appropriate
evaluation function E : Expr → State → Value).

Operators for updating a variable xk in the context of other variables to a
constant v or to the value of an expression e are defined on V(Value)⊗n by:

U(xk ← v) =
k−1⊗

i=1

I⊗U(v)⊗
n⊗

i=k+1

I U(xk ← e) =
∑

v

P(e = v)U(xk ← v)

As we model the semantics of a program as a DTMC, we need to add a
final loop �∗ (for �∗ a fresh label not appearing already in P ) when we consider
a complete program. This is because a DTMC never terminates and thus we
have to simulate termination by an infinite repetition of the final state. We will
therefore use ({{P}}LOS � �∗) ∪ {I ⊗ E(�∗, �∗)} for the construction of [[P ]]LOS .
In this way we also resolve all open or dangling control flow steps, i.e. we deal
ultimately with a set containing only global operators.



120 A. Di Pierro and H. Wiklicky

Example 5. Consider the labelled version of the program in Example 1

while [true]1 do
if [(x == 1)]2

then [x ?= {〈0, p〉, 〈1, 1 − p〉}]3

else [x ?= {〈0, 1 − q〉, 〈1, q〉}]4

fi
od

In order to define the LOS of this program we construct the state space as
V({x �→ 0, x �→ 1}) = R

2 (since we have only one variable we do not need
the tensor product for this). The space of configurations is V({x �→ 0, x �→
1}) ⊗ V({1, 2, 3, 4, 5}), where label 5 is the label of the additional final loop. We
will omit the final label (which in this program we actually never reach) in order
to deal with smaller matrices. The set {{P}}LOS of P will contain the following
operators:

{{P}}LOS = {P(true) ⊗ E(1, 2),P(x = 1) ⊗ E(2, 3),P(x = 1)⊥ ⊗ E(2, 4),
(p · U(x ← 0) + (1 − p) · U(x ← 1) ⊗ E(3, 1)),
((1 − q) · U(x ← 0) + q · U(x ← 1) ⊗ E(4, 1))}

The concrete matrices representing the operators on V({x �→ 0, x �→ 1}) ⊗
V({1, 2, 3, 4}) are of the form

{{P}}LOS =

{(
1 0
0 1

)
⊗ E(1, 2),

(
0 0
0 1

)
⊗ E(2, 3),

(
1 0
0 0

)
⊗ E(2, 4),

((
p 0
p 0

)
+

(
0 (1 − p)
0 (1 − p)

))
⊗ E(3, 1),

((
(1 − q) 0
(1 − q) 0

)
+

(
0 q
0 q

))
⊗ E(4, 1)

}

or, explicitly

{{P}}LOS =

⎧
⎪⎪⎨

⎪⎪⎩

(
1 0
0 1

)

⊗

⎛

⎜
⎜
⎝

0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠ ,

(
0 0
0 1

)

⊗

⎛

⎜
⎜
⎝

0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠ ,

(
1 0
0 0

)

⊗

⎛

⎜
⎜
⎝

0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠ ,

(
p (1 − p)
p (1 − p)

)

⊗

⎛

⎜
⎜
⎝

0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠ ,

(
(1 − q) q
(1 − q) q

)

⊗

⎛

⎜
⎜
⎝

0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

⎞

⎟
⎟
⎠

⎫
⎪⎪⎬

⎪⎪⎭

The sum of these 8 × 8 matrices gives the operator [[P ]]LOS , i.e. the generator of
the corresponding DTMC. By including also the final label �∗ = 5, we obtain a
10 × 10 matrix, which we depict in the following for the case p = q = 1

2 :
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[[P ]]LOS =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
1
2 0 0 0 0 1

2 0 0 0 0
1
2 0 0 0 0 1

2 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
1
2 0 0 0 0 1

2 0 0 0 0
1
2 0 0 0 0 1

2 0 0 0 0
0 0 0 0 0 0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. . . x �→ 0, � = 1

. . . x �→ 0, � = 2

. . . x �→ 0, � = 3

. . . x �→ 0, � = 4

. . . x �→ 0, � = 5

. . . x �→ 1, � = 1

. . . x �→ 1, � = 2

. . . x �→ 1, � = 3

. . . x �→ 1, � = 4

. . . x �→ 1, � = 5

The entries of this matrix represent the probability of the configuration (i.e.
value of x and current label �) each row and column corresponds to. It is perhaps
worth noting that this – as one would expect for a DTMC – is indeed a stochastic
matrix (i.e. all row sums are one) representing the SOS transition relation.

There is a close relationship between the KFS and the LOS. For basic
blocks B – i.e. (random) assignments, tests and skips – the LOS operator is
the same as the KFS operator except for an additional control flow step. That
means that {{. . . [B]i . . .}}LOS = {. . . , 〈[[B]]KFS , i〉, . . .} or {{. . . [B]i . . .}}LOS =
{. . . , [[B]]KFS ⊗ E(i, j), . . .} for some label j.

Example 6. For the programs in Example 4 with the following labelling

if [(x == 1)]1

then [x := 0]2

then P
fi

[x := 1]0;
if [(x == 1)]1

then [x := 0]2

then P
fi

[x ?= {〈0, 1
2 〉, 〈1, 1

2 〉]0;
if [x == 1]1

then [x := 0]2

then P
fi

(the labels of P are as in the previous example shifted by an offset of 2), we can
describe the LOS using the KFS operators as follows:

{{Q}}LOS = {[[x = 1]]KFS ⊗ E(1, 2), [[x = 0]]KFS ⊗ E(1, 3),
〈[[x := 0]]KFS , 2〉, 〈[[false]]KFS , 3〉} ∪ {{P}}LOS

{{Q′}}LOS = {[[x := 1]]KFS ⊗ E(0, 1)} ∪ {{Q}}LOS

{{Q′′}}LOS = {(
1
2
[[x := 1]]KFS +

1
2
[[x := 1]]KFS) ⊗ E(0, 1), } ∪ {{Q}}LOS

where we can re-use the LOS semantics of program P (with shifted labelling):

{{P}}LOS = {[[true]]KFS ⊗ E(3, 4), [[x = 1]]KFS ⊗ E(4, 5), [[x = 0]]KFS ⊗ E(4, 6),
(p[[x := 0]]KFS + (p − 1)[[x := 1]]KFS) ⊗ E(5, 3),
((q − 1)[[x := 0]]KFS + q[[x := 1]]KFS) ⊗ E(6, 3)}
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Note that the LOS of the three small programs contain not just global but also
local operators, namely 〈[[x := 0]]KFS , 2〉 and 〈[[false]]KFS , 3〉. This is because
we still have to add a terminal label �∗ = 7 for the construction of the complete
DTMC generators [[Q]]LOS , [[Q′]]LOS and [[Q′′]]LOS . The terminal label can be
reached from both branches of the if statement labelled 2 and 3. However,
as [[false]]KFS is O this operator (which would correspond to a terminating
program P ) does not actually contribute to the DTMC generator.

2.4 Maximal Trace Semantics (MTS)

Maximal Trace Semantics for non-probabilistic programs has been discussed in
[35,36] and shown to be the most concrete semantics in a hierarchy of various
semantics for (non-)deterministic programs. In [7] the MTS is extended to the
probabilistic case.

Similar to the Kozen semantics, the conceptual idea is to ban any probabilistic
steps from the actual execution of the program and resolve all probabilistic choices
(coin flips, rolling of dices) beforehand. The actual execution of a program is there-
fore purely (non-)deterministic but parameterised by the results of the “pre-run”
choices (cf. [7, p 171]). These outcomes represent the events or scenarios of a prob-
ability space Ω, which the execution traces depend on.

Given a set of states Σ, a trace σ = s1s2 . . . is a finite or infinite sequence
of elements si ∈ Σ. Concatenation of traces is juxtaposition, i.e. for s ∈ Σ we
have sσ = ss1s2 . . . and for σ1 = s11 . . . s1n and σ2 = s21 . . . we have σ1σ2 =
s11 . . . s1ns21 . . .. We denote by Σ+ the set of finite traces, by Σ∗ the set Σ+∪{ε},
where ε is the empty trace of length 0, by Σ∞ the infinite traces, by Σ+∞ the
set Σ+ ∪ Σ∞ and by Σ∗∞ the set Σ∗ ∪ Σ∞. For sets of traces X,Y, . . . in Σ∗∞,
we can define the following operations: X∞ = X ∩ Σ∞, X+ = X ∩ Σ+, X|Y =
{sσX ∈ X | ∃σ : σs ∈ Y +}, and X;Y = X∞∪{σXsσY | σXs ∈ X+ ∧ sσY ∈ Y }.

The MTS is defined as a function [[S]]MTS : Stmt → Ω → P(Σ+∞) where
Σ = State. In order to combine non-determinism with probabilities each sce-
nario ω ∈ Ω is associated to a whole set of possible traces. Thus [[S]]MTS is
defined by

[[skip]]MTS(ω) = {ss | s ∈ Σ}
[[x := e]]MTS(ω) = {ss[x �→ [[e]](ω)s] | s ∈ Σ}
[[S1;S2]]MTS(ω) = [[S1]]MTS(ω); [[S2]]MTS(ω)

[[b]]MTS(ω) = {s | [[b]](ω)s}
[[if b then S1 else S2 fi]]MTS(ω) = [[b]]MTS(ω); [[S1]]MTS(ω) ∪ [[¬b]]MTS(ω); [[S2]]MTS(ω)

[[while b do S od]]MTS(ω) = lfpλX.[[b]]MTS(ω) ∪ [[¬b]]MTS(ω); [[S]]MTS(ω);X

According to the definition in [7, Example 4] the evaluation [[e]] of an expression
e depends on the scenario ω, i.e. [[e]] : Ω → (Σ → Σ). The language considered in
[7] does actually not have either random assignments or a choice construct; the
former is instead implemented via a kind of “system call”, i.e. x := random(ρ).

We can reformulate the MTS in the case of the pWhile language where no
non-determinism is present: Once a scenario ω is fixed there is only one trace
for every initial state or configuration which is actually executed. We are not
interested in the scenarios ω ∈ Ω themselves but only in their probabilities μ(ω),
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i.e. the probability that a certain trace gets executed. Thus, for a fixed initial
state or configuration s the MTS of a program in pWhile can be seen as a
distribution over traces. The probability for each trace σ is inherited from the
scenario ω it depends on. We will use in the following the notation {〈σ, μ(ω)〉}
to express that a trace σ is executed with probability μ(ω).

We can define the map [[.]]MTS : Stmt → V(Σ+∞) implicitly, i.e. as solution
to the following equations:

[[skip]]MTS = {〈ss, 1〉 | s ∈ Σ}
[[x := e]]MTS = {〈ss[x �→ [[e]]s], 1〉 | s ∈ Σ}
[[x ?= ρ]]MTS = {〈ss[x �→ v], ρ(v)〉 | s ∈ Σ ∧ ρ(v) 
= 0}
[[S1;S2]]MTS = [[S1]]MTS ; [[S2]]MTS

[[if b then S1 else S2 fi]]MTS = {〈s, 1〉 | for [[b]](s) = true}; [[S1]]MTS
∪ {〈s, 1〉 | for [[b]](s) = false}; [[S2]]MTS

[[while b do S od]]MTS = {〈s, 1〉 | for [[b]](s) = true}; [[S; while b do S od]]MTS
∪ {〈s, 1〉 | for [[b]](s) = false};

Clearly, the evaluation of deterministic functions or expressions is indepen-
dent of the scenario ω. For random assignments we produce a set of weighted
traces, one trace for each v ∈ Value with non-vanishing probability according
to the distribution ρ. We extend the concatenation operation for traces to prob-
abilistic ones in the obvious way: 〈X, pX〉; 〈Y, pY 〉 = 〈X;Y, pXpY 〉 in order to
define the semantics of sequential statements. The operation “;” also extends
pointwise to sets of weighted traces in V(Σ+∞). The union construction ∪ of
sets of weighted tuples corresponds to a sum if we take them as elements in the
vector space V(Σ+∞).

It should be noted that this formulation of the MTS for a purely probabilistic
language eliminates the dependency on the scenarios ω ∈ Ω but not on the
initial state s ∈ Σ. This means that for a statement S the weighted set of traces
[[S]]MTS ∈ V(Σ+∞) does in general itself not represent a distribution (on traces)
but just a (positive) vector in V(Σ+∞). However, if we collect all those traces
which start with the same state s then we obtain a distribution over traces, i.e.∑

{p | 〈σ, p〉 with σ = s . . .} = 1.
It would be possible to formulate the MTS also as a map which expresses

the dependency on the initial state explicitly and returns directly distributions
over traces, i.e. [[.]]MTS : Stmt → Σ → D(Σ+∞) ⊆ V(Σ+∞), in which case
[[S]]MTS(s) would simply represent a distribution over traces. However, our aim
is to stay as close as possible to the formulation in [7], which is based on the
typing [[.]]MTS : Stmt → Ω → P(Σ+∞) rather than, for example, [[.]]MTS :
Stmt → Ω → Σ → P(Σ+∞).

Example 7. In order to illustrate the basic construction of the MTS we consider
the following program in both its unlabelled and labelled version, with x, y ∈
{0, 1}:
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if (y < 1)
then x ?= {〈0, p〉, 〈1, 1 − p〉}
else x := 0

fi;
if (x < 1)
then y ?= {〈0, q〉, 〈1, 1 − q〉}
else y := 0

fi

if [(y < 1)]1

then [x ?= {〈0, p〉, 〈1, 1 − p〉}]2

else [x := 0]3

fi;
if [(x < 1)]4

then [y ?= {〈0, q〉, 〈1, 1 − q〉}]5

else [y := 0]6

fi

In this example we have no loops or recursions, so we know that we will need
(at most) two “coin flips”. Thus, the space of scenarios Ω is defined via the two
choices, one for x and one for y, i.e. as Σ = {x �→ 0, x �→ 1} × {y �→ 0, y �→ 1},
which we will denote by Σ = {[00], [01], [10], [11]} with [00] the state x �→ 0,
y �→ 0, etc. Following the reformulation of the MTS we have:

[[x := 0]]MTS =
= {〈[00][00], 1〉, 〈[01][01], 1〉, 〈[10][00], 1〉, 〈[11][01], 1〉}
[[y := 0]]MTS =
= {〈[00][00], 1〉, 〈[01][00], 1〉, 〈[10][10], 1〉, 〈[11][10], 1〉}
[[x ?= {〈0, p〉, 〈1, 1 − p〉}]]MTS =
= {〈[00][00], p〉, 〈[01][01], p〉, 〈[10][00], p〉, 〈[11][01], p〉,

〈[00][10], 1 − p〉, 〈[01][11], 1 − p〉, 〈[10][10], 1 − p〉, 〈[11][11], 1 − p〉}
[[y ?= {〈0, q〉, 〈1, 1 − q〉}]]MTS =
= {〈[00][00], q〉, 〈[01][00], q〉, 〈[10][10], q〉, 〈[11][10], q〉,

〈[00][01], 1 − q〉, 〈[01][01], 1 − q〉, 〈[10][11], 1 − q〉, 〈[11][11], 1 − q〉}

With these sets of weighted traces we can now construct the MTS for the
two if statements:

[[if (y < 1) then x ?= {〈0, p〉, 〈1, 1 − p〉} else x := 0 fi]]MTS =
= {〈[00][00][00], p〉, 〈[10][10][00], p〉, 〈[00][00][10], 1 − p〉,

〈[10][10][10], 1 − p〉, 〈[01][01][01], 1〉, 〈[11][11][01], 1〉}
[[if (x < 1) then y ?= {〈0, q〉, 〈1, 1 − q〉} else y := 0 fi]]MTS =
= {〈[00][00][00], q〉, 〈[01][01][00], q〉, 〈[00][00][01], 1 − q〉,

〈[01][01][01], 1 − q〉, 〈[10][10][10], 1〉, 〈[11][11][10], 1〉}

Note that some traces which we constructed for the branches disappear
because when we apply the operator “;” the last state of the first (one step)
trace (representing the test) and the first state of the continuation (in one of the
two branches) do not match.
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The traces for the whole program are then given by:

[[P ]]MTS = {〈[00][00][00], p〉; 〈[00][00][00], q〉, 〈[00][00][00], p〉; 〈[00][00][01], 1 − q〉,
〈[10][10][00], p〉; 〈[00][00][00], q〉, 〈[10][10][00], p〉; 〈[00][00][01], 1 − q〉,
〈[00][00][10], 1 − p〉; 〈[10][10][10], 1〉, 〈[10][10][10], 1 − p〉; 〈[10][10][10], 1〉,
〈[01][01][01], 1〉; 〈[01][01][00], q〉, 〈[01][01][01], 1〉; 〈[01][01][01], 1 − q〉,
〈[11][11][01], 1〉; 〈[01][01][00], q〉, 〈[11][11][01], 1〉; 〈[01][01][01], 1 − q〉},

where again the matching condition eliminates a number of possible traces.
Finally we get:

[[P ]]MTS = {〈[00][00][00][00][00], pq〉, 〈[00][00][00][00][01], p(1 − q)〉,
〈[10][10][00][00][00], pq〉, 〈[10][10][00][00][01], p(1 − q)〉,
〈[00][00][10][10][10], 1 − p〉, 〈[10][10][10][10][10], 1 − p〉,
〈[01][01][01][01][00], q〉, 〈[01][01][01][01][01], 1 − q〉,
〈[11][11][01][01][00], q〉, 〈[11][11][01][01][01], 1 − q〉}.

Here we have three possible traces starting with the initial state s = [00] or
s = [10] but only two for s = [01] and [11]. We also observe that the probabilities
associated to the traces starting with each of the four initial states sum up to
one, e.g. for s = [00] we have the probabilities (pq) + (p − pq) + (1 − p) = 1.

In this presentation of the MTS the states only record the values of the
variables but not the current label (or program counter). This makes it possible
to obtain the same trace for completely different executions of the program. To
keep track of the control flow through the program, its labelled version allows to
record in the labels the information about the configurations executed and not
just the states. For the labelled version of the program we would then replace
a trace like [00][00][00][00][00] by 〈[00], 1〉〈[00], 2〉〈[00], 4〉〈[00], 5〉〈[00], �∗〉 with �∗

the final label indicating termination.

3 Probabilistic Vs Classical Abstract Interpretation

Abstract Interpretation (AI) is a well known mathematical theory at the base of
a number of static analysis techniques [4]. Because of the need to consider com-
putable domains for performing the analysis of program properties, abstraction
and approximation are essential features of any static analysis technique. The
theory of AI establishes when the approximation is such that an analysis can be
safely performed on an abstract rather than the concrete domain of computation.
More precisely, the correctness of an abstract semantics is guaranteed by ensuring
that a pair of functions α and γ can be defined which form a Galois connection
between two lattices C and D representing concrete and abstract properties.
This classical theory originally introduced for (non-)deterministic programs can
be extended so as to include the treatment of probabilistic programs by consid-
ering the appropriate (abstract and concrete) domains as recently shown in [7]
(see also [37]).
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Though the approximations allowed by the AI theory will always be safe,
they might also be quite unrealistic, addressing a worst case scenario rather
than the average case [38]. This latter is typically the aim of a probabilistic
analysis which is therefore hardly correct in the classical sense of the AI theory.
However, although such an average case analysis is not guaranteed to ‘err on
the safe side’, we can still define it so as to reduce the error margin. In order to
provide a mathematical framework for probabilistic analysis, we have previously
introduced in [5,6], a theory of linear operators on Hilbert spaces (i.e. here just
finite dimensional spaces as discussed before) where the notion of approximation
is characterised in terms of least square approximation, which we have called
Probabilistic Abstract Interpretation (PAI).

The PAI approach is based, as in the classical case, on a concrete and abstract
domain C and D – except that C and D are now vector spaces instead of lattices.
We assume that the pair of abstraction and concretisation function A : C → D
and G : D → C are again structure preserving, i.e. in our setting they are
(bounded) linear maps represented by matrices A and G. Finally, we replace
the notion of a Galois connection by the notion of Moore-Penrose pseudo-inverse
[8,10].

Definition 1. Let C and D be two finite dimensional vector spaces, and let
A : C → D be a linear map between them. The linear map A† = G : D → C is
the Moore-Penrose pseudo-inverse of A iff

A ◦ G = PA and G ◦ A = PG

where PA and PG denote orthogonal projections (i.e. P∗
A = PA = P2

A and
P∗

G = PG = P2
G where .∗ denotes the adjoint [33, Ch 10]) onto the ranges of A

and G.

Alternatively, if A is Moore-Penrose invertible (and all finite dimensional
operators or matrices are), its Moore-Penrose pseudo-inverse, A† satisfies the
following:

(i) AA†A = A,
(ii) A†AA† = A†,
(iii) (AA†)∗ = AA†,
(iv) (A†A)∗ = A†A.

It is instructive to compare these equations with the classical setting. For exam-
ple, a Galois connection (α, γ) satisfies the properties α◦γ◦α = α and γ◦α◦γ = γ
which are similar to conditions (i) and (ii) in Definition 1. Moreover, we also
have in a similar way as in the AI setting that A and A† determine each other
uniquely, i.e. (A†)† = A (cf. e.g. [10]).

The Moore-Penrose pseudo-inverse allows us to construct the closest (i.e.
least square) approximation T# : D → D of a concrete semantics T : C → C as:

T# = G · T · A = A† · T · A = A ◦ T ◦ G.
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In [5] we show how we can transform a Probabilistic Abstract Interpreta-
tion into a classical Abstract Interpretation by forgetting the concrete values of
probabilities and only considering the support set of a distribution as the set
of “possibilities”. One can also lift (in a non-unique way) a classical Abstract
Interpretation to a Probabilistic Abstract Interpretation (e.g. by using uniform
distributions). This method is conceptually equivalent to the probabilistic ver-
sion of Abstract Interpretation presented in [7], although the result does not
refer explicitly to the Maximal Trace Semantics. However, AI and PAI are not
equivalent in terms of the analyses that they support. Besides the relaxation of
the safety constraint for the analysis results, PAI is also a suitable mathematical
framework for testing, as we will show in Sect. 5.

4 Comparison of Probabilistic Semantics

For the language pWhile, the Kozen semantics describes the I/O behaviour of
programs, the LOS semantics gives the generator for a step-wise execution of
the program (as a DTMC), and the MTS determines the possible traces and
their corresponding probabilities (inherited from the scenarios of the probability
space). In this section we will discuss in some detail the relationship between
them with the aim of clarifying their different role in the static analysis of pro-
grams.

Kozen’s Semantics and LOS. One important difference between the LOS and
Kozen’s semantics (Semantics 2 in [12]) is the use of labels (as a kind of program
counter) to model the computational steps.

As already mentioned, in Kozen’s semantics all non-terminating executions
are treated equally, i.e. have a trivial or zero semantics. Another difference is
that Kozen’s semantics is based on a state space V(Valuen) as opposed to the
LOS state space V(Value)⊗n which allows for an independent treatment of
each variable. In general, the tensor construction of the LOS allows for a kind
of ‘compositional’ program analysis where the various syntactic components of
a program can be analysed individually, which is not possible with Kozen’s
semantics.

In [28] we have shown that Kozen’s operator [[P ]]KFS is an abstraction of
a limit of iterations of the LOS semantics [[P ]]LOS . This abstraction is defined
by the PAI operator which “forgets” about the computational state at all labels
except �:

A� = I ⊗ . . . ⊗ I ⊗ e�,

where e� is a unit or base vector in V(Label) corresponding to label � ∈ Label,
i.e. e� = (0, 0, . . . , 0, 1, 0 . . . , 0) with only one non-zero entry for the coordinate �.
This can also be seen as 1 × |Label| matrix. This operation keeps all the infor-
mation about the state, i.e. values of the variables, but only when the execution
is in label �. If we take � = �∗, i.e. the terminal looping state in the semantics of
a program, then this gives the probabilities of the values of all variables for those
computations which have already reached the end. So for any initial (classical)
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state s0 and initial label � = 0 we can obtain the computational state in the final
label �∗ by iteration. The following propositions hold (cf. [28]):

Proposition 1. Given a pWhile program P and initial state s0 in
V(Value)⊗n, then (s0 ⊗ e0)[[P ]]tLOSA�∗ corresponds to the distributions over all
states on which P terminates in t or fewer computational steps.

This covers all finite computations of t steps or fewer. In order to get the I/O
behaviour for all terminating computations, i.e. the Kozen semantics, we need
just to consider the limit of all computations of any length:

Proposition 2. Given a pWhile program P and initial state s0 in V(Value)⊗n,
let [[P ]]KFS be Kozen’s semantics of P and [[P ]]LOS the DTMC generator for P .
Then

(s0 ⊗ e0)( lim
t→∞ [[P ]]tLOS)A�∗ = s0[[P ]]KFS .

Maximal Trace Semantics and LOS. The probabilistic semantics in [7] is a clas-
sical abstraction of the probabilistic MTS corresponding to a “strongest post-
condition semantics”. This is in effect an operator semantics which maps input
distributions into some output distributions (cf. formula (2) in [7, 7.4]). A com-
mon interpretation of the claims made in Sect. 7.3 of [7] is that the LOS is just
an abstraction of the probabilistic MTS. We show here that this interpretation
is incorrect.

In order to investigate the relationship between LOS and MTS in more detail
we will look at a concrete construction of probabilistic traces by means of the
LOS. It is somewhat unclear if the MTS in [7] should be based on Σ = State
or Σ = Conf . In the first case it is straightforward to see that the LOS actually
contains more information than an MTS based only on state information. We
will thus consider the MTS based on Σ = Conf , i.e. the reformulation of the
probabilistic MTS as an element in V(Conf+∞), which associates with every
possible trace a probability that this is indeed the trace which will be executed
during the program run. We will then relate this set of ‘weighted’ traces to the
LOS as an operator on V(Conf) where we also provide the initial distribution
so ⊗ e0 = ρ0 ∈ V(Conf).

The LOS allows for the construction of a sequence of distributions over states
(fronts): Given an initial state we can calculate for every t the probabilities of
reaching any state after t steps by applying the LOS operator t times to the
initial state. The MTS does not construct fronts but rather a distribution over
sequences (traces): given an initial state we can calculate the probabilities of all
the execution traces starting from that initial state. The two notions are thus
somewhat orthogonal. However, they turn out to be equivalent for languages
that, like pWhile, can be modelled via a DTMC. This is because DTMC’s
abstract from the history of a computation as only the current configuration
determines the probabilities of the successor configurations. Transition proba-
bilities are exactly what is specified in the generator matrix of the DTMC and is
all one needs to reconstruct both the fronts and the computational traces with
their probabilities.



Probabilistic Abstract Interpretation: From Trace Semantics 129

Instantiated for purely probabilistic languages the classical abstraction given
by formula (2) in [7, 7.4] is an operator from distributions over traces to distri-
bution transformers (for a fixed initial configuration s), i.e.

αs : V(Conf+∞) → L(V(Conf))

rather than (Ω → P(Conf+∞)) → (V(Conf) → V(Conf)) as in [7, 7.4]. In this
purely probabilistic case, the abstraction map becomes:

((αs({〈p,X〉})(δ))(s′)) =
∑

s∈Σ

{δ(s) · p | for sσs′ ∈ X+}.

In other words, we associate to every distribution over traces {〈p,X〉} a linear
operator (αs({〈p,X〉})) ∈ L(V(Conf)). To see how this operator transforms
a distribution δ ∈ V(Conf) into another distribution αs({〈p,X〉})(δ) = δ′ ∈
V(Conf) we describe the probability of every configuration s′ ∈ Conf in the
new distribution δ′. This is the sum of all products of the probabilities associated
with all the traces which, starting from any s, reach s′ in finitely many steps
and the probability δ(s) that we start indeed with s. The probability δ′(s′) is
the probability that we terminate with s′. Therefore this abstraction gives the
Kozen I/O semantics. However, it does not give the LOS which instead would
require a classical abstraction of the form

((ᾱs({〈p,X〉})(δ))(s′)) =
∑

s∈Σ

{δ(s) · p | if ss′ . . . ∈ X}

i.e. an operator that collects the probabilities that we reach s′ in one step rather
than eventually. Note that this abstraction does not require that s′ is a termi-
nating state. The question is now whether ᾱs is indeed an abstraction or not. If
we consider the dimension of the spaces involved, the answer is positive as there
is obviously a loss of information when considering the space L(V(Conf)) of
n×n matrices (for Conf with n states) with dimension n2 in place of the space
of distributions V(Conf)⊗t (on traces of finite length t) whose dimension is nt.
However, due to the memory-less property of DTMC, we only need to consider
traces of length 2 (i.e. transition steps) and thus a space V(Conf) ⊗ V(Conf)
whose dimension is n2. Thus, no information is lost and the abstraction is not
really an abstraction but only a recasting of the MTS. If the MTS is the most
concrete semantics (in the sense of [36]) then so is the LOS. In fact, we can show
the following proposition.

Proposition 3. Given a pWhile program P , then the LOS [[P ]]LOS and the
MTS [[P ]]MTS are equivalent, i.e. it is possible to construct either semantics
from the other one.

It is straightforward to construct the LOS operator out of the MTS by consid-
ering for all initial configurations (i.e. point-distributions) the single step traces
(or single step trace-prefixes) starting from each initial configuration. In fact,
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the probability associated to these traces is exactly the transition probabil-
ity recorded in the DTMC generator, i.e. the LOS – this is indeed what the
map ᾱs above achieves. On the other hand, the probability associated with
a trace si1si2si3 . . . is the product of the transition probabilities ([[P ]]LOS)i1i2 ,
([[P ]]LOS)i2i3 etc. – i.e.

∏
j([[P ]]LOS)ijij+1 – times the probabilities given by the

initial distribution δ(si1).
As already mentioned, these constructions require that the semantics of

pWhile is modelled by a homogeneous DTMC, i.e. that the transition prob-
abilities from one configuration to another one do not change over time. This
and the memory-less property of DTMC’s seems to be a reasonable requirement
for a programming language.

5 Statistical Analysis of Probabilistic Programs via PAI

Probabilistic semantics provides the basis for the static analysis of probabilistic
programs. While both the AI and the PAI framework allow us to use traces as a
basis for constructing more abstract semantics, there is an important difference
between the two frameworks. In the AI setting these traces are assumed to be
ideal traces, i.e. traces that are actually obtained when a program is executed.
In the PAI setting – similar to the situation in statistical analysis, learning etc. –
we can attempt to utilise not just ideal traces but also experimentally observed,
maybe corrupted, i.e. distorted by noise, traces in order to reconstruct the most
plausible underlying abstract semantics.

In this section we show an approach where the probabilistic information
about the program executions is inferred by observing some sample runs. This
establishes a link between static program analysis and testing and demonstrates
the use of PAI to calculate best estimates for program’s properties in a way
similar to the so-called linear statistical model or linear regression method.

The approach we are going to present is based on the idea of identifying obser-
vations with a linear combination of a set of random variables xi, whose weights
are chosen with the method of least squares so as to minimise the distance from
the observations and the actual model expressing the program behaviour. Thus
the framework of Probabilistic Abstract Interpretation is particularly appropri-
ate as a base of this approach.

5.1 The Linear Statistical Model

In several contexts it is often useful to predict or estimate a variable β (or a
vector of variables), given that we have the opportunity to observe variables
y1, y2, . . . , yn that somehow (statistically) depend on β. This is a very important
statistical problem which is typically faced by using so-called linear regression
analysis, also known as linear statistical model (cf e.g. [11], [10, Section 8.3] or [8,
Section 6.4]). This widely used statistical technique applies to situations such as
the one mentioned above, where a random vector y depends linearly on a vector
of parameters β, i.e. (using post-multiplication)

y = βX + ε, (1)
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where y represents some measurement results, the parameters β are unknown,
the matrix X is the design matrix, and ε is a random vector representing the
errors of observing y. This error is conventionally assumed to have expected
value equal to zero and some further statistical conditions regarding its variance
and co-variance are typically imposed. These requirements mean that there is
no underlying or systematic reason for the distortions ε and this is only due to
random noise.

The role of least square approximations and the Moore-Penrose pseudo-
inverse in this context is of particular relevance for the well-known Gauss-Markov
theorem (cf. [10, Section 8.3,Thm. 1]).

Theorem 1 (Gauss-Markov). Consider the linear model y = βX+ ε with X
of full column rank and ε fulfilling the conditions in [10, Section 8.3]. Then the
Best Linear Unbiased Estimator (BLUE) is given by

β̂ = yX†.

In its simplest version, the Gauss-Markov theorem thus asserts that the best
estimate β̂ of the unknown parameters β can be obtained from some experimen-
tally observed y by calculating yX† , i.e. via the Moore-Penrose pseudo-inverse
of the design matrix X, cf. [10, Section 8.3, eqn (35)].

5.2 Application to Security Analysis

We discuss the relevance of the reconstruction of unknown parameters or prop-
erties of a system in the field of computer security by presenting a simplified
version of the well-known Kocher’s attack on crypto-protocols [39].

Modular exponentiation is a basic operation for computing the private key in
crypto-systems using the Diffie-Hellman or the RSA protocols. In [39], it is shown
that by carefully measuring the time required to perform such an operation, an
attacker may be able to find the Diffie-Hellman exponents or factor the RSA
keys and break the crypto-systems.

The crucial point is the estimation of a single bit b in the secret key k. Since
modular exponentiation takes very different execution times depending on the
value of a certain bit b being 0 or 1, what the attacker needs are good estimate
of these execution times in order to deduce the value of each bit of the key.
Thus, linear statistical models play a crucial role in the analysis of security. We
show how the problem of the timing attacks can be described as a statistical
analysis problem, by using as an example a simplified implementation of the
RSA exponentiation algorithm. This will also highlight the relationship between
PAI and linear regression.

Suppose that t0 is the time it takes to perform multiplication in the modular
exponentiation procedure if a single bit b of the cryptographic key k is b = 0
and t1 if b = 1. We thus need to consider two possible DTMC models, one for
the case b = 0 and one for b = 1. In realistic situations we also need to take
into account the noise due for example to the fact that the physical device we
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observe is also involved in other tasks/threads such as network communication.
The aim is to guess correctly which of the two models is actually being executed,
i.e. the value of b, by observing the (possibly distorted) running time. We can
also set the vector β to represent the strength/weights/probabilities that in a
given model we have b = 0 or b = 1, respectively. More concretely, we can set
the vector β0 = (1, 0) to represent the models of the system where the bit b of
the key is b = 0 and β1 = (0, 1) to the key with b = 1. We can now define a
linear statistical model by constructing a design matrix X (in the PAI sense a
concretisation operator), which maps a model (element in the abstract domain)
onto its timing behaviour (element in the concrete domain). As an example, we
can consider the situation where we can observe ten possible execution times ti
that we enumerate and use as column indices for X. Suppose that t0 corresponds
to the 3rd and t1 to the 7th column in this enumeration. In this case we obtain
a design matrix of the form:

X =
(

0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0

)

,

and we can calculate

β0X = (1, 0) · X = (0, 0, 1, 0, 0, 0, 0, 0, 0, 0)

which tells us that for b = 0 the chances of observing any other time signature
than t0 is zero, and that t0 will definitively be observed. A similar calculation
can be done for β1 = (0, 1).

If we begin instead by observing the time behaviour, i.e. if we test the program
and obtain, for example, an (undistorted) observation vector of the form

y = (0, 0, 1, 0, 0, 0, 0, 0, 0, 0),

then, by calculating yX† = (1, 0) we will get that b is definitely 0. If we now add
a (Gaussian) error to our experiment then the observed times, corresponding to
an estimate y would perhaps be something like (cf. Figures 1 and 2 in [39]):

ŷ = (0.1, 0.2, 0.7, 0.2, 0.1, 0, 0, 0, 0, 0),

because, for example, in 10 measurements we have observed once the first pos-
sible time, twice the second, etc. The estimation based on these observations
leads to a guess of the weights of the parameters in β that we calculate as
ŷX† = (0.7, 0). This result reflects the fact that it is very likely that the value
of bit b is 0 as we have observed, although with some errors, a time behaviour
where the times cluster around the value t0.

5.3 Abstraction and Linear Regression

Statistics can be used in static analysis in all those cases where we have some
observations at hand and we want to use them in order to improve the precision
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of the analysis. To this purpose the theory of linear regression provides us with
a useful means to determine a best estimate of the model underlying those
observations, e.g. the DTMC generator that with highest probability produces
the traces that we observe.

Note that classical abstract interpretation cannot be used in this scenario
even in its probabilistic re-formulation as given e.g. in [7]; this is because the
safety constraint at the base of the framework does not permit the consideration
of expectation values in the analysis result, as these would not guarantee the
correctness of the analysis (cf. Section 3).

In the setting of linear statistical models, the concretisation operator G of the
PAI framework corresponds to a mapping from an abstract domain consisting of
all possible DTMC models for the observed program to all possible observable
traces corresponding to the different runnings of the program. Thus, G plays
the role of the design matrix of the statistical model. If y is a vector defining the
probabilities of certain traces according to some observations and β represents
a parameterised DTMC model, then we can use the linear statistical Eq. (1) in
its simplest instance, i.e. with ε = 0, y ∈ R

n,X ∈ R
n×p and β ∈ R

p, in order to
obtain the best estimate of the concrete DTMC model by β̂ = yX†.

Example 8. Consider the following simple examples of DTMC’s:

0 1
1

1 0 11
2

1
2

1

0 1

1

1
2

1
2 0 1

1
2

1
2

1
2

1
2

with generator matrices

T0,1 =
(

0 1
0 1

)

T 1
2 ,1 =

(
1
2

1
2

0 1

)

T0, 12
=

(
0 1
1
2

1
2

)

T 1
2 , 12

=
(

1
2

1
2

1
2

1
2

)

.

Clearly with T 1
2 , 12

we can generate all infinite 0/1 sequences. Note that since
these are uncountably many, the probability structure on the maximal trace
space will require a measure theoretical treatment. By restricting ourselves to
traces of finite length we can however stay withing a finite-dimensional setting.

These DTMC’s are in essence the processes which, for different values of p
and q, describe the core (loop body) of Example 1 in the LOS or Kozen semantics
(cf. also [[S]]KFS in Example 3).

The processes above depend on the parameters p and q in the real interval
[0, 1] which we can see as the probability to remain in state 0 and state 1,
respectively. They are represented by the parametric DTMC
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0 1p

1 − p

1 − q

q

with generator

Tpq =
(

p 1 − p
1 − q q

)

Any property of a program whose behaviour can be described as above will
depend on the parameters p and q. Moreover, observing the property may be
influenced by some distorted execution of Tpq. Applying the statistical linear
model to find best estimates for the parameters p and q corresponds to perform-
ing a statistical analysis based on PAI, as shown in the the following example.

Example 9. Consider the DTMC in Example 8 with generator

Tpq =
(

p 1 − p
1 − q q

)

.

This system is completely specified when both the values of p and q and the
initial state s are specified. Thus we can identify the abstract semantic domain
with the set of all pairs of initial states s ∈ {0, 1} and matrices Tpq, i.e.

M = {〈s,Tpq〉} =
{

〈s,
(

p 1 − p
1 − q q

)

〉
}

or equivalently with the set of triples M = {〈s, p, q〉 | s ∈ {0, 1}, p, q ∈ [0, 1]}.
Note that this parametric DTMC generator encodes the same information

as the set of all parametric traces starting from any initial state (cf. Section 4).
In order to apply PAI we consider the distributions over M, i.e. the space D =
V(M) of all normalised, positive elements in the vector space over M.

The concrete computational space consists of the set of all sequences of 0 and
1 in T = {0, 1}+∞, representing the execution traces resulting from fixing actual
values of the parameters p and q and the input state. The concrete domain of
PAI is therefore the space of distributions on traces C = V(T ).

Numerical Experiments. Even for the simple example given above, the sets
involved are uncountably infinite. In order to be able to compute an analysis
of the system in Example 8 we will consider here the simple case where transi-
tion probabilities can only assume values in a finite set, i.e. p, q ∈ {p0, . . . , pn}
and where traces can only be of length t, for a given t. We report below some of
the results we obtained from numerical experiments performed using the Octave
system [40]. In these experiments we considered p, q ∈ {0, 1

2 , 1}, thus obtaining 9
possible semantics, with possible initial states either 0 or 1. This corresponds to
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an abstract domain D = V({0, 1})⊗V({0, 1
2 , 1})⊗V({0, 1

2 , 1}) = R
2 ⊗R

3 ⊗R
3 =

R
18.

For different models – i.e. different values of p and q – as well as different
noise levels we simulated 10000 executions of the system and observed traces of
length t = 10. In this setting, concrete domain is therefore C = V({0, 1}10) =
V({0, 1})⊗10 = (R2)⊗10 = R

1024, i.e. there are about one thousand possible
traces that can be observed.

The concretisation/design matrix G : D → C associates to each of the 18
instance models and initial inputs one of the distributions over the 1024 traces,
namely the one representing those traces that are obtained in that model. As
it is impossible to reproduce here the actual 18 × 1024 matrix G (due to its
size) we give in Fig. 1 the matrix G for the restricted case of 8 possible traces
of 3 steps, with rows representing the possible instance models and columns the
possible traces. The entries of this matrix specify the probabilities that a given
model (row) generates a certain trace (column). For example, the entry G33 = 1

2
means that with the third model in the enumeration given above, i.e. for initial
state s = 0, p = 1

2 and p = 0, we get the third trace, i.e. 010, with probability 1
2 .

In order to calculate the best estimators of the parameters p and q, we com-
puted the Moore-Penrose pseudo-inverse G† of G, which is also reported in
Fig. 1 for the restricted case. Intuitively, G† gives us the probabilities that when
a certain trace is observed this comes from a certain model.

In our experiments we considered systems without distortion, i.e. no error,
as well as the cases where a noise of “strength” ε was applied according to a
normal distribution (cf. randn() in Octave 3.8.0 [40, p391]).

The observations were aggregated to a distribution over all 210 possible
traces. The probability associated to each trace σi is the ratio between the num-
ber of times σi was actually observed and the number of experiments we ran (i.e.
10000 in our case). For the undistorted case we denote this distribution vector
by y, for ε = 0.01 by y′, for ε = 0.1 by y′′, and for ε = 0.25 by y′′′. The initial
state was always chosen with probability 1

2 as state 0 or state 1.

Model p = 0 = q: The vectors we obtained in the case when the true model is
given by p = 0 = q are for the different noise levels:

yG† =
(
0.50 0.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

)

y′G† =
(
0.47 0.49 0.02 0.01 0 0 0.01 0.03 −0.02 −0.02 0 0 0 0 0 0 0 0

)

y′′G† =
(
0.33 0.34 0.17 0.11 0 0 0.11 0.18 −0.12 −0.12 0 0 0 0 0 0 0 0

)

y′′′G† =
(
0.18 0.17 0.28 0.18 0 0 0.18 0.26 −0.13 −0.12 0 0 0 0 0 0 0 0

)

Model p = 1
2 = q: The same observations for the case that p = 1

2 = q gave us:

yG† =
(
0 0 0 0 0 0 0 0 0.51 0.50 0 0 0 0 0 0 0 0

)

y′G† =
(
0 0 0 0 0 0 0 0 0.51 0.49 0 0 0 0 0 0 0 0

)

y′′G† =
(
0 0 0 0 0 0 0 0 0.51 0.49 0 0 0 0 0 0 0 0

)

y′′′G† =
(
0 0 0 0 0 0 0 0 0.50 0.50 0 0 0 0 0 0 0 0

)
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Fig. 1. Relating models (s, p, q) and traces of length 3

Model p = 0, q = 1
2 : Finally, for the case of an underlying model with p = 0 and

q = 1
2 we obtained:

yG† =
(
0 0 0 0 0 0 0.50 0.49 0 0.01 0 0 0 0 0 0 0 0

)

y′G† =
(
0 0 0 0 0 0 0.49 0.50 0.01 0 0 0 0 0 0 0 0 0

)

y′′G† =
(
0 0 0 0 0 0 0.43 0.43 0.07 0.06 0 0 0 0 0 0 0 0

)

y′′′G† =
(
0 0 0.01 0 0 0 0.33 0.35 0.16 0.16 0 0 0 0 0 0 0 0

)

These results demonstrate that if we observe the undisturbed DTMC in order
to obtain experimentally the probabilities y for all possible 210 traces then we can
identify the underlying model more or less uniquely. The abstract distribution
β̂ = yG† (i.e. when ε = 0) gives an estimate which corresponds precisely to the
true parameters p and q and the probability 1

2 for the initial states 0 and 1 (cf.
the enumeration of models in Fig. 1).

For ε = 0.01 we can also identify the unknown system with high probability.
However, there are coordinates of y′G† which are non-zero although they do not
correspond to the actual system. These stem from the fact that y′ has non-zero



Probabilistic Abstract Interpretation: From Trace Semantics 137

probability for traces which actually should not be realised but due to the noise
distortion are nevertheless observed.

If we increase the error term in the simulation, i.e. for the distortion ε = 0.1
or ε = 0.25, the possibility of a wrong identification of the actual model(s) is (as
expected) higher: The weights associated to the actual system tends to decrease
further, while other possible models get stronger. If we further increase ε the
estimate β̂ will still be the optimal one (BLUE) but ultimately it will not allow
any meaningful identification of the actual system – we will get only (white)
noise. We obtained similar results also for other choices of p and q.

6 Conclusions

We have presented a comparison of three different probabilistic semantics: (i)
Kozen’s I/O Fixed-Point Semantics, (ii) the Linear Operator Semantics previ-
ously introduced by the authors, and (iii) a probabilistic version of the Max-
imal Trace Semantics. We have argued that Kozen’s semantics can be recov-
ered as an abstract limit from the LOS (cf. [28]) and that the abstraction αs

in [7, Section 7.4] in fact gives Kozen’s semantics (by collecting the informa-
tion/probability along finite traces in the MTS). We also demonstrated that
LOS contains more information than MTS, namely information about the con-
trol flow, but that otherwise LOS and MTS are equivalent.

The second part of this paper relates the Probabilistic Abstract Interpreta-
tion framework introduced in [5] with the most widely used statistical technique,
namely Linear Regression. As already shown in [5], classical Abstract Interpreta-
tions can be recovered from a Probabilistic Abstract Interpretation by means of a
forgetful functor that restricts probabilistic domains to their support sets. In this
paper we have extended the (re)construction of the LOS from the MTS alluded
to in [7] – though this involves the “abstraction” ᾱs rather than αs – to deal
also with distorted observations of traces. This provides a bridge between sta-
tistics (testing) and static program analysis. Intended application areas include
problems in computer security like covert channels and non-interference notions
reinterpreted as process equivalence.

Our presentation was restricted to finite state spaces. However a full treat-
ment of the different semantical models is possible though slightly more complex
as it involves a deeper study of the underlying measure-theoretic notion (e.g.
the σ-algebras generated by trace pre-fixes) as well as topological notions (e.g.
Hilbert vs Banach spaces and their operators, weak limits etc., cf. [28]).

Finally, it might be worth pointing out the rich literature on filtering, system
identification, Hidden Markov Models (e.g. [41–43]), and related topics which
we did not discuss but are clearly related. Our approach to Linear Regression
could be considered to be very simple and basic. However, we think it is worth
highlighting the relationship between PAI and statistics. Given the role that least
square methods – i.e. the Moore-Penrose pseudo-inverse – play in control theory
etc. – for example, for the well-known and celebrated technique of Kalman filters
[11] – we aim to further explore this field.
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