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Abstract. Abstract interpretation is successfully used for determining
execution-time bounds of real-time programs. The particular problem
it solves is the determination of invariants at all program points that
describe the set of all execution states that are possible at these pro-
gram points. These invariants are then used to exclude some of the pos-
sible costly executions of instructions, thereby reducing the execution-
time bounds. This article considers the properties of this application of
abstract interpretation that differ from those in the standard applica-
tions of abstract interpretation in compilation and in verification. It also
shows how some particular designs of the underlying abstract domains
made efficient timing analysis possible.

1 Introduction

1.1 Timing Analysis

Timing analysis of embedded real-time programs attempts to determine tight
upper, and sometimes also lower bounds on the execution times of the pro-
grams. Ideally, one would find out the worst-case and best-case execution times.
This is possible in principle since real-time programs are programmed in a way
that termination is guaranteed, and since the execution platform has only finite
resources. However, the complete exploration of the associated state space would
take far too long to be practically feasible.

It was therefore clear that abstraction would need to be applied to arrive at
sound execution-time bounds in acceptable times. Our entry into the timing-
analysis area started with the (quite successful) attempt to predict the cache
behavior by abstract interpretation [3,10]. Abstract interpretation had not been
applied to the timing-analysis problem. The existing approaches were rather ad
hoc and of doubtful correctness. It turned out that using abstract interpretation
was the recipe for success.

1.2 What is Different?

The standard textbook on static programanalysis, authored byFlemmingNielson,
Hanne Riis Nielson, and Chris Hankin, covers most needs of a designer of abstract
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interpretations. At least this was what we thought when we started out to design
static analyses of the cache behavior of real-time programs. However, it turned
out that timing analysis offers a number of challenges that were not foreseen by
the existing theory or not used in previous practice. Here is a list, some items more
absent from the Nielson/Nielson/Hankin book than others, some that could be
covered by adaptations of the theory. Some concern cache analysis, others more
general timing analysis.

– All traditional static program analyses we found in the literature were, in the
best case, based on a semantics of the programming language that abstracted
from the underlying execution platform. However, any timing analysis needs
to talk about architectural behavior. Hence, the behavior of the execution plat-
form must be an integral part of the semantics of the programming language,
on which the static analysis is based.

– Any timing analysis is composed of many component analyses, one for each
architectural component contributing to the timing behavior of programs.
These component analyses interact in possibly complex ways, essentially orig-
inating from the dependencies of the architectural components on each other.
Worst are cyclic dependencies since they render separate analyses of compo-
nent behavior more or less impossible [18]. An adequate design of the indi-
vidual analyses and of the composition is needed to arrive at overall timing
analyses that are both precise and efficient.

This composition of timing analysis of many component analyses is in contrast
with the application of static program analysis in compilation, where typically
one static analysis checks the applicability of one program transformation [26].
It is also different from the composition of abstract domains as in [5] used to
increase precision of one static analysis by using information from another
one.

– Timing analyses need to analyze programs on the executable level since the
source level does not contain the information on memory allocation of instruc-
tions and data, indispensable for cache analyses, nor the information on when
memory is accessed, needed for the analysis of bus-access conflicts.

– The replacement strategy of a cache architecture always needs some book-
keeping mechanism about past memory accesses. The state representation of
this mechanism is optimized for the speed and the size of the update logic.
Cache analysis, however, is interested in the state itself, not its representation.
The design of cache analyses therefore starts with a lossless abstraction of the
HW implementation of the cache.

This is somewhat comparable to the situation in shape analysis [24], which
is based on a storeless semantics abstracting from actual heap addresses, but
keeping connectivity information.
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– The cache semantics shows many indirect effects of state changes of one object
on another independent object, e.g. memory block a is loaded into the cache,
thereby replacing memory block b.

These indirect effects are different from the ones caused by manipulations
through pointers: These may also have side-effects, however, only on aliases,
i.e. pointer expressions reaching the same object. So, these indirect effects
result from program execution.
In contrast, cache loads have indirect effects on objects related by the execu-
tion platform, i.e., by the cache-set mapping.

– A particularly hard problem is the static analysis of write-back caches. Here
a modification of the contents of a memory block a residing in the cache
leads to a temporary inconsistency in the value of a in the memory hierarchy.
This inconsistency is repaired by a write back, possibly much later, when
a is evicted by loading some other memory block b. These delayed cause-
effect chains are quite unusual in the semantics of programming languages
and therefore also in traditional static program analyses.

– The invariant at a program point, computed by some static analysis, may
have different expressivity (precision), depending on whether the invariant
is to hold for all executions reaching this program point or only for a sub-
set corresponding to a particular context and/or a particular control flow.
Traditional static program analyses may therefore be context- and/or flow
sensitive or insensitive depending on the desired precision of the results and
the required effort. The notion of context is defined by some abstraction of
the set of call strings.

Timing analyses must be flow-sensitive in order to obtain any precision at all.
In addition, timing analyses need and use a generalized notion of context to
be precise. Different iterations of a loop may have vastly different execution
times. Hence, they have to be considered as contexts for the instructions
in the body. This is an instance of trace partitioning, invented before trace
partitioning was proposed in the literature [21].

– Static analyses of concurrent systems focus on the interaction of the concur-
rently executed tasks on global variables. In contrast to this, cache analysis,
and more general timing analysis, has to determine safe approximations of
the resource-occupancy interaction [1]. An additional complication, compared
to the static analysis of concurrent systems, is the non-transparency of which
objects compete with which other objects for resources.

– Cache analysis, and more general timing analysis, determines invariants about
execution states at program points and derives safety properties from these
invariants, i.e., certain timing accidents like a cache miss will never happen
at a program point. The proof of such safety properties allows reducing the
execution-time bound by the timing penalty corresponding to the excluded
timing accident. This use is different from that in traditional static program
analyses used in verification, where such a safety property typically proves the
absence of a run-time error.
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– The profitability of code optimizations involving static analyses as check for
their applicability is seldom clear. In contrast, excluding a timing accident by
a strong invariant computed by a timing analysis is often associated with the
elimination of a very clear penalty.

2 From Microarchitectures to Abstractions for Timing
Analysis

When developing a timing analysis, the first task is to obtain a faithful model of
the microarchitecture that the analysis is targeted at. This can be very challeng-
ing because documentation at the required level of detail is seldom available. One
promising approach is to start from cycle-accurate models in hardware descrip-
tion languages like VHDL or Verilog if those are made available by the hardware
manufacturer [25]. If such models are not provided by the manufacturer, they
have to be constructed manually based on processor manuals and extensive mea-
surements on evaluation boards. For some microarchitectural features, such as
caches the modeling process can be partially automated [2]. In the remainder of
this section, we assume that a cycle-accurate model of the microarchitecture has
already been obtained by one of the ways described above.

Mathematically, a cycle-accurate model is a transition relation R ⊆ S × S
that captures the behavior of the processor in a single execution cycle. Programs
and their input data are part of the states S of the processor. So the initial states
of a program P under all possible inputs are a subset IP of S. The goal of timing
analysis is then to determine a bound on the number of cycles from any possible
state in IP to the program’s termination, i.e., until it reaches one of its final
states FP . Brute-force exploration of all possible reachable states from the set
of initial states is practically infeasible due to its large number. Therefore, a
number of abstractions have been introduced to arrive at safe approximations
of the worst-case execution time. In the following, we will discuss the two most
important such abstractions.

2.1 Analysis Framework

Microarchitectures implement instruction set architectures (ISA). The semantics
of binary programs in terms of the computed values in registers and memory are
governed by the instruction set architecture. In particular, they are independent
of its microarchitectural implementation.

As a consequence, analysis at the ISA level can be separated from analy-
ses specific to a microarchitecture. This separation has led to the high-level
structure of WCET analysis tools depicted in Fig. 1. For a given instruction
set, in a preprocessing step, a value analysis [4] determines the possible values
of registers and memory locations, usually based on interval and congruence
abstractions. The control-flow graph of the program under analysis is annotated
with the results of value analysis for use in the subsequent analysis steps. They
are required for precise data-cache analysis within microarchitectural analysis,
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Fig. 1. Main components of a timing-analysis framework and their interaction.

as well as in control-flow analysis. Control-flow analysis [7,9,19,27] determines
loop bounds and other characterizations of the set of semantically-feasible paths
through the control-flow graph.

The task of microarchitectural analysis [6,8,11,12,29], which we will illu-
minate further in the following section, is to determine bounds on the exe-
cution times of small program fragments such as basic blocks. These bounds,
together with the results of the control-flow analysis are then used in path analy-
sis [20,28] to determine an upper bound on the execution time of the program
as a whole. Path analysis is usually performed using integer linear programming
formulations.

2.2 Separation into Value and Microarchitectural Analysis

Microarchitectural analysis first computes an overapproximation of the set of all
reachable microarchitectural states. From this approximation and the transitions
between the different reachable states, execution time bounds for basic blocks
can be determined.

A relatively simple microarchitecture may consist of the following compo-
nents: pipeline control, pipeline datapath, register file, branch predictor, cache,
and main memory. The microarchitecture’s space can be modeled as the carte-
sian product of the state spaces of its components:

S = PipelineControl × PipelineDatapath × RegisterFile

× BranchPredictor × Cache × Memory

The set of reachable states of program P is the least fixed point of the next
operator containing the initial states IP of program P :

Col(P ) = IP ∪ next(IP ) ∪ next2(IP ) ∪ . . . ,

where next captures the effect of one execution cycle:

next(M) = {s′ | (s, s′) ∈ R}
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The first abstraction, discussed informally in the previous section, is to per-
form value analysis separately, prior to microarchitectural analysis. Value analy-
sis can be formalized as abstracting values in the register file and the memory.

Let Value# be the abstract domain used in value analysis. A concretization
function γVA : Value# → P(RegisterFile×Memory) provides the meaning
of a result of value analysis. Such analyses are flow- or even context-sensitive
so that information about registers and memory is available for each program
location separately. Formally,

Value# = (Loc × Context) → (Register# × Memory#),

where Loc and Context are sets of program locations and contexts, and
Register# and Memory# are abstractions of the register file and memory,
respectively. For reasons of brevity we cannot further elaborate on these abstrac-
tions. A correct abstract next#VA : Value# → Value# operator guarantees
global correctness of the value analysis.

Given value analysis results, microarchitectural analysis can thus focus on
the remaining parts of the microarchitecture, pipeline control, as well as the
state of the branch predictor and the cache. The state of the pipeline datapath
can be inferred from the state of the pipeline control and the values of registers
and memory, and is thus not explicitly represented by either value analysis or
by microarchitectural analysis.

Let μArch# be the abstract domain used in microarchitectural analysis, and
let γµA : μArch# → P(PipelineControl×BranchPredictor×Cache) be
its concretization function. While value analysis does not depend on microarchi-
tectural analysis, the converse is not true. In particular, next#µA depends on the
results of value analysis: next#µA : μArch# × Value# → μArch#. For exam-
ple, upon a memory access, microarchitectural analysis will query the results of
value analysis, which have been annotated to the program’s control-flow graph,
to determine which memory block is being accessed to be able to classify the
access as a cache hit or a cache miss.

For a correctness argument, the abstract operators next#VA and next#µA can
be combined to obtain the abstract next# operator as follows:

next#(v#,m#) := (next#VA(v#),next#µA(m#, v#)).

Given correctness of next#VA and next#µA, it can be shown that next#’s least fixed
point,

Col#(P ) = (i#v , i#m) � next#(i#v , i#m) � next#
2
(i#v , i#m) . . . ,

overapproximates the set of reachable states Col(P ), with the combined con-
cretization function

γ(v#,m#) := {(pc, pd, rf, bd, c,m) ∈ S |
(rf,m) ∈ γVA(v#) ∧ (pc, bd, c) ∈ γµA(m#), }

given that γ(i#v , i#m) ⊇ IP .
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From the formalization it is apparent that value analysis can be performed in
a preprocessing step, as it does not depend upon the results of microarchitectural
analysis. This preprocessing step produces a control-flow graph annotated with
the results of value analysis, which is then used by microarchitectural analysis.
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Fig. 2. Transitions from two different initial states of a simple processor consisting of
an in-order pipeline, a 2-way fully-associative cache, and a 1-bit branch predictor.

2.3 Microarchitectural Analysis

Now let us turn to the internal structure of μArch#. Can the pipeline control,
the branch predictor, and the cache be analyzed independently of each other?
Unfortunately, this is not the case due to the mutual dependencies of the three
components. This is best explained with the help of Fig. 2. At the top, we see two
microarchitectural states of a simple processor, consisting of an in-order pipeline
containing an instruction fetch buffer, two integer units, one floating-point unit,
a cache, and a 1-bit branch predictor. The two processor states initially only
differ in their cache states. The pipeline is about to dispatch the add instruction
from the instruction fetch buffer to integer unit 1. Assume this add instruction
adds the contents of a memory address to the contents of a register. Then, the
instruction can be dispatched as soon as the memory operand is available. In
the state on the left, the operand a is in the cache, and so add is dispatched
immediately. On the other hand, in the state on the right, operand a needs to be
fetched from memory, as it is not in the cache, and the add instruction cannot
be dispatched yet. So the cache state has an influence on the pipeline state.
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Now consider the successor states. On the left, the next instruction from the
instruction fetch buffer to execute is a branch equal zero instruction. As the con-
dition upon which the branch depends has not yet been evaluated, the pipeline
queries the branch predictor to decide in which direction to speculate. The predic-
tion influences which instruction to fetch next, which in turn will affect the cache
contents. So the future cache state depends on the current state of the pipeline and
the branch predictor. Due to this tight coupling of the three components, they need
to be analyzed relationally to obtain reasonably precise results.

The example also demonstrates that pipeline states cannot easily be ordered
in terms of “progress”: Intuitively, the successor state on the left has progressed
further than the state on the right, as the add instruction has already been
dispatched in this case. However, if speculative execution proceeds in the wrong
direction, the pipeline state on the left may result in a longer execution time
than the state on the right, which has no potential to speculate. Due to this lack
of a natural ordering, which are usually the basis of abstractions1, no efficient
and precise abstractions are known so far for sets of pipeline states. In Sect. 3,
we speculate about the design of abstractable pipelines and its abstraction.

The analysis essentially operates on the power-set domain of sets of concrete
pipeline states, where only the datapath is abstracted away, as discussed earlier.
For the cache, however, precise and efficient abstractions have been found.

2.4 Two Abstractions for Caches

The abstraction described in the following applies to caches with least-recently-
used (LRU) replacement and was originally proposed by Ferdinand and
Wilhelm [12]. For simplicity we assume a fully-associative cache, i.e., the cache
consists of a single cache set, as the example cache in Fig. 2. The extension to
set-associative caches is straightforward, as set-associative caches can be seen
as cartesian products of multiple independent fully-associative caches, each of
which can be abstracted independently of the others.

A Lossless Logical Abstraction. The first abstraction to perform in the
analysis of caches is a cache’s physical implementation to a formal, logical model
of its behavior. In physical implementations, caches consists of multiple memories
containing data, tags, and status bits. In particular, each cache line is associated
with a tag to keep track of which memory block is cached in the respective line.
In addition, a number of status bits are maintained in each cache set to record
the “logical” state of the replacement policy.

For instance, an implementation of least-recently-used replacement needs sta-
tus bits to remember in which order the cache lines of each set have been used.
Abstracting from the data stored in the cache, a model of a fully-associative
cache with LRU replacement fairly close to the physical implementation might
thus consist of two functions: (1) a function cl : {1, . . . , k} → B that captures
1 In interval analysis for example a set of values is abstracted by its least and their

greatest element.
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which memory block is stored in each of the k cache lines, and (2) a function
agecl : {1, . . . , k} → {0, . . . , k − 1} that maintains the “age” of each cache line,
i.e., the number of distinct cache lines that have been accessed since the last
access to the given cache line.

For cache analysis it is irrelevant in which physical cache line a memory block
is stored; only the relative ages of different cached memory blocks are required to
predict the future cache hit behavior. Thus, a lossless abstraction can be applied
that captures the age of each memory block age : Cache = B → {0, . . . , k−1, k},
where uncached blocks assume age k. One can relate the two models by an
abstraction function α defined as follows:

α(cl, agecl) := λb ∈ B :

{
agecl(i) : if cl(i) = b

k : if cl(i) 	= b∀i ∈ {1, . . . , k}
Upon a load of memory block b, the ages are updated as follows:

up(age, b) := λb′ ∈ B :

⎧⎪⎨
⎪⎩

0 : if b′ = b

age(b′) : if age(b) ≤ age(b′)
age(b′) + 1 : if age(b) > age(b′)

An Interval Abstraction. Cache analysis needs to represent sets of cache
states. In particular, at program start no knowledge about the cache state may
be available, and so cache analysis needs to represent all possible cache states.
Obviously, explicit representations are practically infeasible in such cases. A
further abstraction is required to compactly represent large sets of cache states
with little precision loss.

Fortunately, such abstractions are possible in the case of LRU. This is because
LRU exhibits a form of monotonicity. Intuitively, the “younger” a memory block,
i.e., the lower its age, the better. Thus, it is sufficient to maintain upper and
lower bounds on the age of each memory block independently of the ages of the
other memory blocks. This yields the following abstract domain

̂CacheInterval = {(l, u) | l, u ∈ B → {0, . . . , k − 1, k}
∧ ∀b ∈ B : l(b) ≤ u(b)}

storing a lower and an upper bound on the age of each memory block.
In the literature, the two analyses have been proposed separately, where

lower bounds are maintained in what is called may analysis and upper bounds
are maintained in must analysis. Lower bounds can be used to reason about
which memory blocks may be cached, whereas upper bounds can be used to
reason about which memory blocks must be cached.

̂CacheInterval forms a join semi-lattice with the following order:

(âmay, âmust) � (â′
may, â

′
must) :⇔ âmay �may â′

may ∧ âmust �must â′
must

âmay �may â′
may :⇔ ∀b ∈ B : âmay(b) ≥ â′

may(b)

âmust �must â′
must :⇔ ∀b ∈ B : âmust(b) ≤ â′

must(b)
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Fig. 3. Must and may cache abstractions.

Abstract cache states are related to sets of concrete cache states by a Galois
connection via the following abstraction and concretization functions:

α(C) := (αmay(C), αmust(C)),with
αmay(C) := λb ∈ B : min

age∈C
age(b)

αmust(C) := λb ∈ B : max
age∈C

age(b)

and

γ(âgemay, âgemust) := γmay(âgemay) ∩ γmust(âgemust),with

γmay(âge) := {age | ∀b ∈ B : âge(b) ≤ age(b)}
γmust(âge) := {age | ∀b ∈ B : age(b) ≤ âge(b)}

In Fig. 3, the two abstractions are illustrated at the example of the set of cache
states found in the two initial states of Fig. 2. In the concrete cache states the
ith row contains the memory block with age i. In the abstract cache states the
ith row contains all memory blocks with age bound i.

The abstract update functions for the lower and upper bounds closely resem-
ble the concrete update function and can be proven correct rather easily:

upmay(âge, b) := λb′ ∈ B :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 : if b′ = b

age(b′) : if âge(b) < âge(b′)
age(b′) + 1 : if âge(b) ≥ âge(b′) 	= k

k : if âge(b′) = k

upmust(âge, b) := λb′ ∈ B :

⎧⎪⎨
⎪⎩

0 : if b′ = b

age(b′) : if âge(b) ≤ âge(b′)
age(b′) + 1 : if âge(b) > âge(b′)

Integration of Cache Analysis Within Microarchitectural Analysis. As
discussed earlier, no good abstractions for sets of pipeline control states are
known, and so they are analyzed using a power-set domain. How can the analysis
of the pipeline be integrated with the analysis of the cache behavior? Due to their
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mutual dependencies they need to be analyzed in a relational manner. The idea
is to associate with each possible pipeline state, one cache state:

̂μArchitecture := PipelineControl → ( ̂CacheInterval ∪ {⊥}),

where ⊥ is used to express that the respective pipeline state is not possible. For
simplicity, here, we omit branch predictors, which can be treated similarly to
caches.

Other Replacement Policies. We have seen a precise and efficient abstraction
for caches with LRU replacement. For other replacement policies, similarly effi-
cient abstractions have been developed [13–17,22]. However, they do not reach
the same level of precision as the replacement policies are less predictable [23].

3 An Abstractable Pipeline

We have seen in the previous section that pipelines in modern high-performance
microprocessors don’t provide for compact abstractions similar to abstract cache
states. This forced the pipeline analysis to work with a power-set domain [29].
We now speculate about an abstractable instruction pipeline, i.e. an instruction
pipeline that has a compact abstract domain, simple update and join functions,
and thereby admits efficient and precise pipeline analysis. The goal is to have
an abstract instruction pipeline which looks much like a concrete instruction
pipeline. The concrete state of an instruction pipeline contains a set of instruc-
tions of a given program, each in one particular pipeline stage. In addition, the
pipeline is connected to a set of queues, buffers, and functional units holding
instructions to be fetched next, stores to still be executed, or operations under
execution.

The progress in executing a given program, as given by a particular concrete
pipeline state, consists in

– which instructions of the program have already retired from the pipeline,
– how far other instructions of the program have progressed in the pipeline,
– how many instructions to be executed next have been prefetched into prefetch

queues,
– how far operations dispatched by instructions currently in the pipeline have

progressed in the pipelined functional units,
– how many outstanding stores are still in the store buffer.

An abstract state of an instruction pipeline, as we envision it, should look much
like a concrete pipeline state. However, the interpretation (concretization) is
different:

– Any progress of an instruction in the abstract pipeline state is a guaranteed
progress of the instruction.

– the contents of the abstract prefetch queue is a sequence of instructions, guar-
anteed to have been prefetched,
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– the progress of dispatched operations in the functional units is guaranteed
progress, and

– the stores removed from the store buffer have definitely been performed, the
ones still in the store buffer may be still outstanding.

This notion of progress is the basis for defining a partial order of the abstract
pipeline domain.

Let us discuss the implication for the pipeline architecture. It means that
the pipelines should be an in-order pipeline, i.e., without reordering of instruc-
tions. An out-of-order pipeline admits several dynamically selected schedules of
a given sequence of instructions. The join function would be applied to the dif-
ferent schedules resulting in an abstract pipeline state where each instruction
is recorded with its slowest possible progress. Thus the effect of out-of-order
execution would be completely lost in the pipeline analysis.

A first step towards abstractable pipelines has been done in [18]. We proposed
a strictly in-order pipeline, i.e., one where no phase of a later instruction can
block execution of a phase of an earlier instruction. This restriction excludes
timing anomalies, which were still possible in in-order pipelines, against common
beliefs. The simple pipeline design admits a compact abstract domain based on
the maximally guaranteeable progress.

Pipeline analysis is typically performed on basic blocks. For each predecessor
block of a basic block to be analyzed it has produced a final abstract state. These
final states need to be combined to an initial state by applying the join function of
the abstract domain. Different predecessor basic blocks will consist of different
instruction sequences, such that their final abstract states will have different
subsequences of instructions in the pipeline. Joining the set of abstract final
states would roughly correspond to flushing the pipeline, a costly approach if the
pipeline is deep. The efficiency gain of overlapping execution across basic-block
boundaries would always get lost. A way out of this dilemma could consist in
delaying the join at the beginning of basic blocks until the remaining instructions
of the predecessor blocks have retired.

4 Conclusions

We have shown how the architectural basis of static timing analysis influences
the character of static timing analysis, which includes a particular instance
of abstract interpretation as its most important component. In particular, we
have described how two important transformations of the underlying complex
cartesian-product domain were needed and successfully used to arrive at efficient
analyses.
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