
Formal Modelling and Analysis
of Socio-Technical Systems

Christian W. Probst1(B), Florian Kammüller2, and René Rydhof Hansen3

1 Technical University of Denmark, Kongens Lyngby, Denmark
cwpr@dtu.dk

2 Middlesex University, London, UK
f.kammueller@mdx.ac.uk

3 Aalborg University, Aalborg, Denmark
rrh@cs.aau.dk

Abstract. Attacks on systems and organisations increasingly exploit
human actors, for example through social engineering. This non-technical
aspect of attacks complicates their formal treatment and automatic iden-
tification. Formalisation of human behaviour is difficult at best, and
attacks on socio-technical systems are still mostly identified through
brainstorming of experts. In this work we discuss several approaches to
formalising socio-technical systems and their analysis. Starting from a
flow logic-based analysis of the insider threat, we discuss how to include
the socio aspects explicitly, and show a formalisation that proves prop-
erties of this formalisation. On the formal side, our work closes the gap
between formal and informal approaches to socio-technical systems. On
the informal side, we show how to steal a birthday cake from a bakery
by social engineering.

1 Introduction

Applying formal methods [1] to an informal world is difficult. It often requires
to loosen the precision of analysis results, or to overly restrict the aspects that
can be modelled. This dilemma causes many approaches that try to understand
events in the real world to abstract away its difficult parts. In this paper we
present an application of formal methods to organisations to analyse socio-
technical systems, and illustrate how aspects of the informal world can be han-
dled in formal analyses.

Socio-technical systems, as the name implies, are a mix of social and techni-
cal aspects. Organisations are a good example for socio-technical systems, since
they combine technical infrastructure and policies with human actors, who oper-
ate (in) this infrastructure and interact with it. An increasing number of attacks
against organisations exploit this mix and involve attack steps on the “socio”
part, for example, through social engineering. Security in socio-technical systems
should therefor not only consider both individual parts, but also their interactions.

c© Springer International Publishing Switzerland 2016
C.W. Probst et al. (Eds.): Nielsons’ Festschrift, LNCS 9560, pp. 54–73, 2016.
DOI: 10.1007/978-3-319-27810-0 3

Formal Modelling and Analysis of Socio-Technical Systems 55

The recent attack on a German steel mill [2] was a combination of both targeted
phishing emails and social engineering attacks. The phishing helped the hackers
extract information they used to gain access to the plant’s office network and
then its production systems. As a result, the technical infrastructure of the
mill suffered severe damage. Traditional and well-established risk assessment
methods often identify potential threats against socio-technical systems, but
often abstract away the internal structure of an organisation and ignore human
factors.

Actually, only few, if any, approaches to systematic risk assessment take such
“human factor”-based attacks into consideration. Probably the strongest threat
against socio-technical systems is the insider threat [3,4]. Insiders have access
to parts of the organisation’s infrastructure and assets, and they are trusted to
perform certain operations on these. Starting from a flow logic [5] based analysis
of the insider threat, we discuss how to include the socio aspects explicitly, and
show a formalisation that proves properties of this formalisation.

On the formal side, our work closes the gap between formal and informal
approaches to socio-technical systems. On the informal side, we show how to
steal a birthday cake from a bakery by social engineering.

Our work thereby closes the gap by developing models and analytic processes
that support assessing both the socio and the technical side of organisations as
socio-technical systems, thus combining human factors and physical infrastruc-
ture. Our approach simplifies the identification of possible attacks and provides
qualified assessment and ranking of attacks based on the expected impact.

The rest of this chapter is structured as follows. After introducing the bakery
example as our socio-technical system, Sect. 3 presents a formalisation of such
systems followed by a flow logic-based analysis in Sect. 4. A discussion of the
limitations of this formal approach when facing human actions leads to a more
general identification of possible attacks in Sect. 5, followed by an attempt to
formalise human behaviour in Sect. 6. After discussing related work Sect. 7, we
conclude the paper with an outlook on future developments.

2 The Drama of the Birthday Cake in Three Pictures

In this section, we provide a case study of a very recent insider attack where
a baker’s wife socially engineered her husband the baker with the malicious
intention to steal Hanne and Flemming’s birthday cake. What is worse, is that
she succeeded—due to the lack of formal analysis in this bakery. In the rest of
this paper we will illustrate the attack and then show different formalisations
to identify this attack. Figures 1, 2, and 3 illustrate the sequence of events that
lead to the devastating outcome. The part of the bakery that is not illustrated
is presented in the next section.

56 C.W. Probst et al.

Fig. 1. The baker bakes a cake for Hanne and Flemming’s birthday and protects it by
putting it in the cake locker—but his wife sees it all.

Fig. 2. The baker’s wife uses a social engineering attack on the baker to get his cre-
dentials: the key to the cake locker.

Fig. 3. Disaster: Hanne and Flemming’s birthday cake vanished from cake locker!

Formal Modelling and Analysis of Socio-Technical Systems 57

3 Modelling Socio-Technical Systems

Our model represents the infrastructure of organisations, in this case the bakery,
as nodes in a directed graph [6], representing rooms, access control points, and
similar locations. Actors are represented by nodes and can possess assets, which
model data and items that are relevant in the modelled scenario. Assets can be
annotated with a value and a metric, e.g., the likelihood of being lost. Nodes rep-
resenting assets can be attached to locations or actors; assets attached to actors
move around with that actor. Actors perform actions on locations, including
physical locations or other actors. These actions are restricted by policies that
represent both access control and the behaviour as expected by an organisation
from its employees. Policies consist of required credentials and enabled actions,
representing what an actor needs to provide in order to enable the actions in a
policy, and what actions are enabled if an actor provides the required credentials,
respectively.

Our modelling approach is based on Klaim [7]. In contrast to Klaim, we
attach processes and actors to special nodes that move around with the process.
This makes the modelling of actors and items carried by actors more intuitive
and natural, but can easily be mapped back to original Klaim. The metrics
mentioned above can represent any quantitative knowledge about components,
for example, likelihood, time, price, impact, or probability distributions. The
latter could describe behaviour of actors or timing distributions.

3.1 Semantics of Socio-Technical Models

In the following we briefly summarise the formal semantics of our socio-technical
models. The calculus follows previous presentations closely and we will there-
fore not go deep into details here, merely refer to [8]. As already mentioned,
the semantics is based on a variant of the Klaim calculus [7], called bacKlaim,
which in turn is based on acKlaim [6,8]. The Klaim calculus uses the tuple space
paradigm, in which systems are composed of a set of distributed nodes that
communicate and interact by reading and writing tuples in shared tuples spaces.
The following presentation of bacKlaim is an adaptation and simplification of
the calculus presented in [8].

In keeping with tradition, the semantics of the bacKlaim calculus is split
into three layers: nets, processes, and actions. Nets define the overall, distributed
structure of the system by specifying where individual nodes and tuple spaces
are located. Processes and actions define the actual behaviour of the nodes.
The syntax of nets, processes, and actions is shown in Fig. 4. In the bacKlaim
calculus there are two actions for reading a tuple in a remote tuple space: in
for destructive read and read for non-destructive read. Both these input actions
allow for template specifications of the tuple(s) to be read, facilitating a simple
form of pattern matching with variable binding. The syntax for templates is
shown in Fig. 5 and the corresponding semantics is shown in Fig. 7.

One of the key differences between classic Klaim and bacKlaim is the explicit
support for access control policies in the latter, through a reference monitor

58 C.W. Probst et al.

Fig. 4. Syntax of nets, processes, and actions.

Fig. 5. Syntax for tuples and templates.

embedded in the semantics. Before going further into the semantics of bacKlaim,
we first need to define these access control policies. In the bacKlaim calculus,
the kind of access that is relevant to control, is whether or not a process at a
given location is allowed to perform a specific action at a remote location. Thus
we can formalise access control policies as follows:

π ⊆ AccMode = {i, r,o, e,n,m}
δ ∈ Policy = (Loc ∪ {�}) → P (AccMode)

where the access modes correspond to the actions that can be taken in the
semantics: i for (destructively) reading a tuple, r for (non-destructively) reading
a tuple, o for outputting (writing) a tuple, e for remote evaluation of a process,
and n for the capability to create new locations. The special ‘�’ location is used
to denote default policies, i.e., access modes that are allowed from all locations
not specifically mentioned.

We can now continue with the semantics for bacKlaim, by defining the reduc-
tion relation for processes and actions, shown in Fig. 6. In general, a process is
composed of sequences of actions, (sub-)processes that execute in parallel, or a
recursive invocation through a place-holder variable. The actions a process can
perform are: out, that writes a tuple to the specified tuple space; in, that reads
a tuple (at the specified tuple space) matching the template and then removes
the tuple in question; read that also reads a tuple (at the specified tuple space)
matching the given template but does not remove the tuple; eval that evaluates
the given process at the specified (remote) location. Finally, the move action
relocates the node representing the actor or process. However, we only wish to
allow certain moves between nodes, e.g., a node representing a (physical) actor

Formal Modelling and Analysis of Socio-Technical Systems 59

Fig. 6. Reduction semantics for bacKlaim.

Fig. 7. Semantics for template matching.

should only be able to move between nodes representing physical localities. We
formalise this in the form of the so-called infrastructure of the underlying nets:

I ∈ Infrastructure = P (Locality × Locality)

Essentially, the infrastructure is a graph, relating the pairs of nodes between
which moves are allowed (still subject to access control rules).

In addition to the reduction relation, the semantics also incorporates a struc-
tural congruence, simplifying (re-)presentation of, computation with, and rea-
soning about processes and nets. The congruence is shown in Fig. 8.

Fig. 8. Structural congruence on nets and processes.

60 C.W. Probst et al.

Locker

workstation WS
pwd: eval

Wife

Baker

keypwd

recipe

sugar

key: in

Pbake := in(!recipe)@self.

out(cake)@bakery

marci-
pan

bakery

Fig. 9. Graphical representation of the crime scene, the bakery. The rectangles repre-
sent actors, locations, assets, and processes. The baker is (still) in possession of the key
and the password for the computer.

3.2 The Bakery Model

The bakery example introduced in Sect. 2 is based on the baker and his wife,
and of course the cake. The assets in this example are the key to the cake locker,
the cake itself, and, to add to the excitement, a computer with the recipe for the
cake. The recipe is input to a process on the computer that outputs a cake in
the bakery.1 We assume the baker to have an (internalised) policy that forbids
the cake to leave the bakery prematurely. Figure 9 shows the formalisation of the
bakery, consisting of the baker shop, the office, the cake locker, and the outside
world. The baker has the key and the Password to his computer. The policies
in the model require, e.g., the key to enter the cake locker and the password
to log into the computer. Actor nodes also represent processes running on the
corresponding locations. The process at the computer represents the “creation”
of a cake, that is output at the bakery.

4 Flow Logic-Based Analysis of Processes

The first analysis for catching the thief is a flow logic analysis similar to [8]. This
analysis takes a sequence of actions and performs a static control flow analysis
to compute and assess its effect by a conservative approximation of the possible
flow between actors, processes, and tuple spaces. Following the Flow Logic frame-
work [9], we specify a judgements for nets, processes, and actions that determine
whether or not an analysis estimate correctly describes all configurations that
are reachable from the initial state. The definitions are shown in Fig. 10.

The tuple spaces and variable values are collected in T̂ and σ̂. For space
reasons we do not consider the newloc action that dynamically creates new
locations. Similar to [8] we could use canonical names. For the pattern matching
we reuse the Flow Logic specification, shown in Fig. 11 from [8].
1 To simplify treatment we assume the bakery to be high-tech. A different approach

would have been to model the baking process at the baker or the bakery, requiring
the recipe as input.

Formal Modelling and Analysis of Socio-Technical Systems 61

Fig. 10. Flow logic specification for control flow analysis of bacKlaim.

Fig. 11. Flow logic specification for pattern match analysis [8].

Having specified the analysis it remains to be shown that the information
computed by the analysis is correct. In the Flow Logic framework this is usually
done by establishing a subject reduction property for the analysis:

Theorem 1 (Subject Reduction). If (T̂ , σ̂, Î) |= N N and L � N �−→I L′ �
N ′ then (T̂ , σ̂, Î) |= N N ′.

Proof. (Sketch) By induction on the structure of L � N �−→I L′ � N ′ and
using auxiliary results for the other judgements.

4.1 Analysing the Bakery Example

Before we conclude this section, we quickly want to see whether the flow logic
analysis can help the baker in protecting the cake. We consider the two processes
shown in Fig. 12; the first process represents the baker going to the office and
starts the “bake” process on the workstation. As a result, the cake appears in
the bakery, the baker goes there and picks up, goes to the Locker and puts it
down, and then returns to the bakery. The wife meets the baker somewhere, in

62 C.W. Probst et al.

Pbaker := move (office) .eval (Pbake)@WS .move (bakery) .in (cake)@bakery .
move (Locker) .out (cake)@Locker .move (bakery)

Pwife := move (bakery) .in (key)@baker .
move (Locker) .in (cake)@Locker .move (bakery)

Fig. 12. The two processes for the Flow logic analysis. The baker bakes the cake and
brings it to the Locker, and his wife picks the key from him, goes also to the Locker,
and steals the cake.

our case in the bakery, picks the key from his pocket, goes to the Locker, gets
the cake, and returns to the bakery.

The result of the flow logic analysis of the two processes shown in Fig. 12 is
that the cake will be at the baker, the bakery, and the Locker. However, it will
also be at the wife, which is what the baker wanted to prevent, knowing her
sweet tooth. This means that from the flow logic analysis, the baker can learn
that his wife has stolen the cake.

5 Attack Generation

Unfortunately, there is a problem with the processes described in the previous
section. Processes are a suitable abstraction for programs, but we are in general
not able to obtain processes describing human behaviour. If the baker knew,
which actions his wife had performed, he also would know that she stole cake—
without any analysis or tool support.

If we cannot obtain processes to identify attacks, we need a different method
to do so. In this section we present a recent development to attack genera-
tion based on the negation of policies [10,11]. The policies we consider describe
global system states that should be fulfilled at all times; our approach identifies
sequences of actions that results in a policy violation.

In the bakery example, the baker could have the global policy that only the
birthday children or he should get the cake, or more concretely, that his wife
should not have the cake. Since she is determined to obtain the cake, she would
violate this global policy by obtaining it.

We choose attack trees as a succinct way of representing attacks. In attack
trees [12,13], the root represents a goal, and the children represent sub-attacks.
Sub-attacks can be alternatives for reaching the goal (disjunctive node) or they
must all be completed to reach the goal (conjunctive node). We assume an
implicit, left to right order for children of conjunctive nodes. For example, an
attacker first needs to move to a location before being able to perform an action.
Leaf nodes represent the basic actions in an attack. The operators ⊕∨ and ⊕∧
combine attack trees by adding a disjunctive or conjunctive root, respectively.

In the remainder of this section we present the rules for generating attack
trees from models. The rules take as arguments the infrastructure I and an actor
component A, which stores reached locations, obtained data, and acquired iden-
tities for the attacker. The rules either succeed and return an (possibly empty)

Formal Modelling and Analysis of Socio-Technical Systems 63

attack tree, or they block if no valid result can be computed. Our approach for
invalidating a policy consists of four basic steps:

Identify Attackers: Choose the policy to invalidate, and identify the possible
actors who could invalidate it.

Target Locations: Identify a set of locations where the prohibited actions can
be performed.

Goto Target Location: Generate attacks for reaching target locations. This
will identify and obtain required assets to perform any of these actions, and
obtain all assets required to reach the target location.

Move to Target Location and Perform Action: Finally, move to the loca-
tion identified in the second step and perform the action.

In the first step we identify possible attackers and locations where the action
violating the global policy can be applied (see Fig. 13). These are the goals for
the attacker, and are the basis for generating attack trees (Fig. 14). For each goal
we generate a tree for moving to the location and another one for performing
the action. While moving to the location new credentials may be required, which
recursively invoke the attack generation again. The resulting new knowledge is
added to the actor component A.

The rules in Figs. 15 and 16 generate attack trees for moving around, per-
forming actions, and obtaining credentials, resulting in attack trees for every
single action of the attacker. The function missingCredentials uses the unifica-
tion described above to match policies with the assets available in the model.
The attack generation then generates one attack for each of these assets and
combines the resulting trees with a disjunctive node.

Fig. 13. Attack generation starts from the global policy not(actor , credentials,
enabled). Attack trees are generated for all possible policy violations. As every attack
tree represents a violation of the policy, the resulting attack trees are combined by an
or node.

Fig. 14. For each identified goal (consisting of a location and an action) an attacker
moves to the location and performs the action. The rules result in an attack tree and
a new state of the attacker, which includes the obtained keys and reached locations.

64 C.W. Probst et al.

Fig. 15. Going to a location and performing an action results in two attack trees. The
function getAllPaths returns all paths from the current locations of the actor to the
goal location l, and the resulting attack trees are alternatives for reaching this location.

Fig. 16. Depending on the missing credential, different attacks are generated. If the
actor lacks an identity, an attack node representing an abstract social engineering
attack is generated, for example, social engineering or impersonating. If the missing
credential is an asset, the function availableAt returns a set of pairs of locations from
which this asset is available, and the according in actions. If the missing credential is
a predicate, a combination of credentials fulfilling the predicate must be obtained.

Attack generation also considers triggering processes to obtain assets. We do
not present this interaction between actors and processes for space reasons, as
it follows the rules presented above.

5.1 Post-Processing Attack Trees

The generated attack trees only represent the factual attack steps for reach-
ing the final goal. The trees do not contain any annotation or metrics about
the likelihood of success of actions such as social engineering, or the potential
impact of actions. Also the likelihood of a given attacker to succeed or fail is not
considered.

Computing qualitative and quantitative measures [14,15] on attack trees is
orthogonal to our approach and beyond the scope of this work. The generated
attack trees also often contain duplicated sub-trees, due to similar scenarios
being encountered in several locations, for example, the social engineering of the
same actor, or the requirement for the same credentials. This is not an inherent
limitation, but may clutter attack trees. Similar to [16], a post-processing of
attack trees can simplify the result.

Formal Modelling and Analysis of Socio-Technical Systems 65

5.2 Attack Tree for the Bakery Example

Figure 17 shows part of the attack tree generated for the bakery example. The
first attack is the one described in the previous section and shown in Fig. 12: the
wife steals the key from the baker and gets the cake from the Locker after it has
been baked. A variant of this attack is that she breaks the Locker door open.
In the second attack, she social engineers the baker to bake the cake, and then
picks up the cake in the bakery before the baker does so. In the third attack,
she gets the password to the work station from the baker, and then starts Pbake

herself. Finally, she can social engineer the baker to give her the cake, maybe
promising him to share it. All attacks, where assets are stolen also occur in a
variant where actors with access to the asset are social engineered to obtain the
asset and give it to the attacker.

Fig. 17. Attack tree generated for the bakery example. The double-lined borders indi-
cate disjunctive nodes.

6 Analysis of Socio-Technical Attacks in Isabelle

We now consider a third approach to modelling socio-technical systems using
the interactive theorem prover Isabelle. We first illustrate the attack and then
we discuss how the socio-technical model can be transfered to the modeling
and verification of insider threats using our Isabelle framework [17]. Finally, we
extend the Isabelle technique here further to Isabelle Attack Trees.

66 C.W. Probst et al.

6.1 Social Explanation for Insider Threats in Isabelle

In earlier work [17], we have used the process of sociological explanation based
on Max Weber’s Grundmodell and its logical interpretation to explain insider
threats by moving between societal level (macro) and individual actor level
(micro). The interpretation into a logic of explanation is formalized in Isabelle’s
Higher Order Logic thereby providing a tool to prove global security properties
with machine assistance [17]. Isabelle/HOL is an interactive proof assistant based
on Higher Order Logic (HOL). It enables specification of so-called object-logics
for an application. Object-logics comprise new types, constants and definitions
and reside in theory files, e.g., the file Insider.thy contains the object-logic we
define for social explanation of insider threats below. We construct our theory
as a conservative extension of HOL guaranteeing consistency. I.e., we do not
introduce new axioms that could lead to inconsistencies.

We first provide here only the elements of this Insider theory necessary as
a basis for attack trees and for modeling the bakery application. For a more
complete view, please refer to [17] and the related online Isabelle resources [18].

In the Isabelle/HOL theory for Insiders, we express policies over actions get,
move, eval, and put.

datatype action = get | move | eval | put

We abstract here from concrete data – actions have no parameters. Policies
describe prerequisites for actions to be granted to actors given by pairs of pred-
icates (conditions) and sets of (enabled) actions.

type_synonym policy = ((actor ⇒ bool) × action set)

We integrate policies with a graph into the infrastructure providing an organ-
isational model where policies reside at locations and actors are adorned with
additional predicates to specify their ‘credentials’.

datatype infrastructure = Infrastructure

"node graph" "location ⇒ policy set" "actor ⇒ bool"

These local policies serve to provide a specification of the ‘normal’ behaviour of
actors but are also the starting point for possible attacks on the organisation’s
assets. The enables predicate specifies that an actor a can perform an action
a’∈ e at location l in the infrastructure I if a’s credentials (stored in the tuple
space tspace I a) imply the location policy’s (stored in delta I l) condition
p for a.

enables I l a a’ ≡
∃ (p,e) ∈ delta I l. a’ ∈ e ∧ (tspace I a −→ p(a))

For the application to the bakery senario, we only model two identities, Baker
and Wife representing the baker and his wife. We define the set of bakery actors
as a local definition in the locale scenarioBakerNN. We show here in a first
instance the full Isabelle/HOL syntax but in all subsequent definitions we omit
the fixes and defines keywords and also drop the types for clarity of the
exposition. The double quotes ‘‘s’’ create a string in Isabelle/HOL.

Formal Modelling and Analysis of Socio-Technical Systems 67

fixes bakery_actors :: identity set

defines bakery_actors_def: bakery_actors ≡ {‘‘Baker’’}

The graph representing the infrastructure of the bakery case study contains only
the minimal structure: (1) Kitchen, (2) Cake locker, (3) Home.

bakery_locations ≡ {Location 1, Location 2, Location 3}

The global policy is ‘no one except bakery employees can get anything from the
cake locker’.

global_policy I a ≡ a /∈ bakery actors −→
¬(enables I (Location 2) (Actor a) get)

Next, we have to provide the definition of the infrastructure. We first define the
graph representing the organisation’s locations and the positions of its actors.
Locations are wrapped up with the datatype constructor NL and actors using
the corresponding constructor NA to enable joining them in the datatype node
and thus creating the following node graph as a set of pairs between locations
or actors.

ex_graph ≡ Graph {(NA (‘‘Baker’’), NL (Location 3)),

(NL (Location 3), NL(Location 1)),

(NL (Location 2), NL(Location 1)),

(NA (‘‘Wife’’), NL (Location 1))}

Policies are attached to locations in the organisation’s graph using a function
that maps each location to the set of the policies valid in this location. The
policies are again pairs. The first element of these pairs are credentials which
are defined as predicates over actors, i.e., boolean valued functions describing,
for example, whether an actor inhabits a role, or, whether an actor possesses
something, like an identity or a key. The second elements are sets of actions that
are authorised in this location for actors authenticated by the credentials.

local_policies ≡
(λ x. if x = Location 1 then

{(λ x. (ID x ‘‘Baker’’)∨(ID x ‘‘Wife’’), {get,put}), (λ x. True, {move})}

else (if x = Location 2 then

{((λ x. has (x, ‘‘key’’)), {get,put,move})}

else (if x = Location 3 then

{((λ x. True, {get,put,move}))}

else {})))

The final component of any infrastructure is the credentials contained in a
tspace. We define the assignment of the credentials to the actors similarly as a
predicate over actors that is true for actors that have the credentials.

ex_creds ≡ (λ if x = Actor ‘‘Baker’’ then has (x, ‘‘key’’) else False)

Finally, we can put the graph, the local policies, and the credential assignment
into an infrastructure.

68 C.W. Probst et al.

Bakery_scenario ≡ Infrastructure ex_graph local_policies ex_creds

Note, that all the above definitions have been implemented as local definitions
using the locale keywords fixes and defines. Thus they are accessible whenever
the locales scenarioBakerNN is invoked but are not axioms that could endanger
consistency. We now also make use of the possibility of locales to define local
assumptions. This is very suitable in this context since we want to emphasize
that the following formulas are not general facts or axiomatic rules but are
assumptions we make in order to explore the validity of the infrastructure’s
global policy. The first assumption provides that the precipitating event has
occurred which leads to the second assumption that provides that Charly can
act as an insider.

assumes Bakers_Wife_precipitating_event: tipping_point (astate ‘‘Wife’’)

assumes Insider_Wife : Insider ‘‘Charly_comp’’ {‘‘Charly_priv’’}

So far, we have specified the model. Based on these definitions and assumptions
we can now state theorems about the security of the model and interactively
prove them in our Isabelle/HOL framework. We can now first prove a sanity
check on the model by validating the infrastructure for the “normal” case. For
the baker as a bakery actor, everything is fine: the global policy does hold. The
following is an Isabelle/HOL theorem ex inv that can be proved automatically
followed by the proof script of its interactive proof. The proof is achieved by
locally unfolding the definitions of the scenario, e.g., Bakery scenario def and
applying the simplifier.

lemma ex inv:

global_policy Bakery_scenario (‘‘Baker’’)

by (simp add: Bakery scenario def global policy def bakery actors def)

However, since the baker’s Wife is at tipping point, she will ignore the global
policy. This insider threat can now be formalised as an invalidation of the global
company policy for ‘‘Wife’’ in the following “attack” theorem named ex inv1.

theorem ex_inv1:

¬ global_policy Bakery_scenario ‘‘Wife’’

The proof of this theorem consists of a few simple steps largely supported by
automated tactics. Thus Wife can get access to the cake leading to devastating
outcomes (see Fig. 3). The attack is proved above as an Isabelle/HOL theorem.
Applying logical analysis, we thus exhibit that under the given assumptions the
organisation’s model is vulnerable to an insider. This overall procedure corre-
sponds to the approach of invalidation of a global policy based on local policies
for a given application scenario [10].

However, to systematically derive the actual attack vector the present paper
provides a more constructive approach. We will next see how we can extend the
Isabelle Insider framework to this.

Formal Modelling and Analysis of Socio-Technical Systems 69

6.2 Attack Trees in Isabelle

We now extend the theory Insider by Attack trees. The base attacks figure in an
attack sequence (see Sect. 5). We represent them in Isabelle/HOL as a datatype
and a list over this datatype.

datatype baseattack = None | Goto ‘‘location’’

| Perform ‘‘action’’| Credential ‘‘location’’

type_synonym attackseq = ‘‘baseattack list’’

The following definition of attack tree, really defines the nodes of an attack tree.
The simplest case is when a node in an attack tree is a base attack. Attacks
can also be combined as the “and” of other attacks as defined in Sect. 5. This
prescribes that the third element of type attree is a baseattack (usually a
Perform action) that represents this attack, while the first element is an attack
sequence and the second element is a label describing the attack (here a string).

datatype attree = BaseAttack ‘‘baseattack’’ (‘‘N (_)’’) |

AndAttack ‘‘attackseq’’ ‘‘string’’ ‘‘baseattack’’ (‘‘_ ⊕()
∧ _’’)

As the corresponding projection functions for attree we define get attseq and
get attack returning the entire attack sequence or the final base attack, respec-
tively.

The following inductive predicate get then move shows how we represent
the static analysis rules for the derivation of attack sequences. It translates the
two rules of Fig. 15 and formalizes how the impossible base attack Goto l’ can
be achieved by first going to location l and getting the credential from there.
Logically, this is justified if an actor a can get to location l’ in the extended
infrastructure add credential I a s where he possesses the credential s – as
is expressed by the third enables proviso.

� enables I l a move; enables I l a get;

enables (add_credential I a s) l’ a get �
=⇒ get_then_move I s

(get_attackseq ([Goto l, Credential l, Goto l’] ⊕get−move
∧ Perform get))

(Goto l’)

An attack tree is constituted from the above defined nodes of type attree but
children nodes must be refinement of their parents. Refinement means that some
portion of the attack sequence has been extended according to rules like the
above get then move. We formalize this constructor relation of the attack trees
by the following refinement. The rules trans and refl make the refinement a
preorder; the rule get moveI shows how the get then move rule is integrated:
If we replace the attack a by the get then move sequence l we get refine the
attack sequence A into A’ (the auxiliary function sublist rep replaces a symbol
in list by a list).

inductive

refines_to :: ‘‘[attree, infrastructure, attree] ⇒ bool’’ (‘‘_ �() _’’)

where

70 C.W. Probst et al.

get_moveI: � get_then_move I s l a;

sublist_rep l a (get_attseq A) = (get_attseq A’);

get_attack A = get_attack A’ � =⇒ A �I A’ |

trans: � A �I A’; A’ �I A ‘‘ � =⇒ A �I A’’ |

refl : A �I A

The refinement of attack sequence allows the expansion of top level abstract
attacks into longer sequences. Ultimately, we need to have a notion of when
a sufficiently refined sequence of attacks is valid. This notion is provided by
the final inductive predicate is and attack tree. It integrates the base cases
where base attacks can be directly logically derived from corresponding enables
properties; it states that an attack sequence is valid if all its constituent attacks
are so and it allows to transfer validity to shorter attacks if a refinement exists.

inductive

is_and_attack_tree :: [infrastructure, actor, attree] ⇒ bool (‘‘_, _ � _’’)

where

att_act: enables I l a a’ =⇒ I , a � N(Perform(a’)) |

att_goto: enables I l a (move) =⇒ I, a � N(Goto l) |

att_cred: enables I l a (get) =⇒ I, a � N(Credential l) |

att_list: � ∀ a ∈ (set(as)). I, a’ � N(a) � =⇒ I, a’ � as ⊕s∧ a’’ |

att_ref: � A 	I A’; I, a � A’ � =⇒ I, a � A

The Isabelle/HOL theory library provides a lot of list functions. We can thus
simply define the “or” of attack trees by folding the above validity over a list of
attacks.

I, a 	G⊕∨ al ≡ fold (λ x y. (I, a 	 x) ∨ y) al False

To validate this formalisation of the attack trees, we now show how the bakery
scenario attack can be derived.

First, we prove the following get then move property.

lemma get_move_lem: get_then_move Bakery_scenario ‘‘key’’

(get_attseq ([Goto (Location 1), Credential (Location 1), Goto (Location 2)]

⊕get−move
∧ Perform get))

(Goto (Location 2))

After reducing with the defining rule of get then move above, proof requires
resolving three “enables” subgoals; the final one uses the add credential for
Wife. This lemma rather immediately implies the following refines property.

([Goto (Location 2)] ⊕get−cake
∧ Perform get)

�Bakery−scenario

([Goto (Location 1), Credential (Location 1), Goto (Location 2)]

⊕get−move
∧ Perform get)

We can show this refined attack as valid mainly showing that each step in it is
valid.

lemma final_attack: Bakery_scenario, Actor ‘‘Wife’’ 	
([Goto (Location 1), Credential (Location 1), Goto (Location 2)]

⊕get−move
∧ Perform get)

Formal Modelling and Analysis of Socio-Technical Systems 71

The last lemma together with the refinement gives us finally that the top level
abstract attack is a valid attack.

theorem bakery_attack:

Bakery_scenario, Actor ‘‘Wife’’ � ([Goto (Location 2)] ⊕get−cake
∧ Perform get)

7 Related Work

System models such as ExASyM [6,8] and Portunes [19] also model infrastruc-
ture and data, and analyse the modelled organisation for possible threats. How-
ever, Portunes supports mobility of nodes, instead of processes, and represents
the social domain by low-level policies that describe the trust relation between
people to model social engineering. Pieters et al. consider policy alignment to
address different levels of abstraction of socio-technical systems [20], where poli-
cies are interpreted as first-order logical theories containing all sequences of
actions and expressing the policy as a “distinguished” prefix-closed predicate in
these theories. In contrast to their use of refinement for policies we use the secu-
rity refinement paradox, i.e., security is not generally preserved by refinement.

Attack trees [21] specify an attacker’s main goal as the root of a tree; this goal
is then disjunctively or conjunctively refined into sub-goals until the reached sub-
goals represent basic actions that correspond to atomic components. Disjunctive
refinements represent alternative ways of achieving a goal, whereas conjunctive
refinements depict different steps an attacker needs to take in order to achieve a
goal. Techniques for the automated generation of attack graphs mostly consider
computer networks only [22,23]. While these techniques usually require the spec-
ification of atomic attacks, in our approach the attack consists in invalidating a
policy, and the model just provides the infrastructure and methods for doing so.

8 Conclusion

Modelling socio-technical systems with formal methods is a difficult undertaking.
Due to the unpredictability of human behaviour, formal methods are often too
restrictive to capture essential aspects. This results in the human factor often
being ignored in these formalisations, since it cannot be represented in the model
used.

In this work we have presented different techniques for modelling and analysing
systems including human factors using recent advances in systemmodels.Our app-
roach supports all kinds of human factors that can be instantiated once an attack
has been identified.The presented techniques address different aspects of analysing
socio-technical systems. The flow-logic based approach (Sect. 4) supports analysis
of observedactions; this canbe compared toanaposteriori analysis to identifywhat
has happened, or in combination with logged information, what might have hap-
pened. The attack generation (Sect. 5) identifies all possible attacks with respect
to the model; this constitutes an a priori analysis of the modelled system. Finally,
the formalisation with Isabelle (Sect. 6) provides a different view on system models
and attacks, and a proof that the contributes the soundness of attack generation.

72 C.W. Probst et al.

The attacks generated by the last two techniques include all relevant steps
from detecting the required assets, obtaining them as well as any credentials
needed to do so, and finally performing actions that are prohibited in the system.
The generated attacks are precise enough to illustrate the threat, and they are
general enough to hide the details of individual steps. The generated attacks are
also complete with respect to the model; whenever an attack is possible in the
model, it will be found.

Acknowledgments. Part of the research leading to these results has received funding
from the European Union Seventh Framework Programme (FP7/2007-2013) under
grant agreement no. 318003 (TRESPASS). This publication reflects only the authors’
views and the Union is not liable for any use that may be made of the information
contained herein.

References

1. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,
Heidelberg (2004)

2. BBC News: Hack attack causes ‘massive damage’ at steel works (2014). http://
www.bbc.com/news/technology-30575104. Accessed 15 October 2015

3. Cappelli, D.M., Moore, A.P., Trzeciak, R.F.: The CERT Guide to Insider Threats:
How to Prevent, Detect, and Respond to Information Technology Crimes (Theft,
Sabotage, Fraud). Addison-Wesley Professional, Boston (2012)

4. Hunker, J., Probst, C.W.: Insiders and insider threats–an overview of definitions
and mitigation techniques. J. Wirel. Mob. Netw. Ubiquitous Comput. Dependable
Appl. 2(1), 3–25 (2011)

5. Nielson, H.R., Nielson, F., Pilegaard, H.: Flow logic for process calculi. ACM
Comput. Surv. 44(1), 3 (2012)

6. Probst, C.W., Hansen, R.R.: An extensible analysable system model. Inf. Secur.
Tech. Rep. 13(4), 235–246 (2008)

7. de Nicola, R., Ferrari, G.L., Pugliese, R.: KLAIM: a kernel language for agents
interaction and mobility. IEEE Trans. Softw. Eng. 24(5), 315–330 (1998)

8. Probst, C.W., Hansen, R.R., Nielson, F.: Where can an insider attack? In: Dimi-
trakos, T., Martinelli, F., Ryan, P.Y.A., Schneider, S. (eds.) FAST 2006. LNCS,
vol. 4691, pp. 127–142. Springer, Heidelberg (2007)

9. Riis Nielson, H., Nielson, F.: Flow logic: a multi-paradigmatic approach to static
analysis. In: Mogensen, T.Æ., Schmidt, D.A., Sudborough, I.H. (eds.) The Essence
of Computation. LNCS, vol. 2566, pp. 223–244. Springer, Heidelberg (2002)

10. Kammüller, F., Probst, C.W.: Invalidating policies using structural information.
In: Proceedings of the 2nd International IEEE Workshop on Research on Insider
Threats (WRIT 2013), pp. 76–81, May 2013

11. Kammüller, F., Probst, C.W.: Combining generated data models with formal
invalidation for insider threat analysis. In: Proceedings of the 3rd International
IEEE Workshop on Research on Insider Threats (WRIT 2014), pp. 229–235, May
2014

12. Schneier, B.: Secrets and Lies: Digital Security in a Networked World. Wiley, New
York (2004)

http://www.bbc.com/news/technology-30575104
http://www.bbc.com/news/technology-30575104

Formal Modelling and Analysis of Socio-Technical Systems 73

13. Kordy, B., Piètre-Cambacédès, L., Schweitzer, P.: Dag-based attack and defense
modeling: don’t miss the forest for the attack trees. Comput. Sci. Rev. 13–14,
1–38 (2014)

14. Aslanyan, Z., Nielson, F.: Pareto efficient solutions of attack-defence trees. In:
Focardi, R., Myers, A. (eds.) POST 2015. LNCS, vol. 9036, pp. 95–114. Springer,
Heidelberg (2015)

15. Buldas, A., Lenin, A.: New efficient utility upper bounds for the fully adaptive
model of attack trees. In: Das, S.K., Nita-Rotaru, C., Kantarcioglu, M. (eds.)
GameSec 2013. LNCS, vol. 8252, pp. 192–205. Springer, Heidelberg (2013)

16. Vigo, R., Nielson, F., Nielson, H.R.: Automated generation of attack trees. In:
Proceedings of the 27th Computer Security Foundations Symposium (CSF), pp.
337–350. IEEE (2014)

17. Kammüller, F., Probst, C.W.: Modeling and verification of insider threats using
logical analysis. IEEE Syst. J., Special issue on Insider Threats to Information
Security, Digital Espionage, and Counter Intelligence. Accepted for publication
(2016)

18. Kammüller, F.: Isabelle formalisation of an insider threat framework with exam-
ples entitled independent and ambitious leader (2015). https://www.dropbox.
com/sh/rx8d09pf31cv8bd/AAALKtaP8HMX642fi04Og4NLa?dl=0

19. Dimkov, T.: Alignment of Organizational Security Policies - Theory and Practice.
University of Twente (2012)

20. Pieters, W., Dimkov, T., Pavlovic, D.: Security policy alignment: a formal app-
roach. IEEE Syst. J. 7(2), 275–287 (2013)

21. Salter, C., Saydjari, O.S., Schneier, B., Wallner, J.: Toward a secure system engi-
neering methodology. In: Proceedings of the 1998 Workshop on New Security
Paradigms (NSPW). pp. 2–10, September 1998

22. Phillips, C., Swiler, L.P.: A graph-based system for network-vulnerability analysis.
In: Proceedings of the 1998 Workshop on New security paradigms (NSPW 1998),
pp. 71–79 (1998)

23. Sheyner, O., Haines, J., Jha, S., Lippmann, R., Wing, J.M.: Automated generation
and analysis of attack graphs. In: Proceedings of the 2002 IEEE Symposium on
Security and Privacy (S&P 2002), vol. 129, pp. 273–284 (2002)

https://www.dropbox.com/sh/rx8d09pf31cv8bd/AAALKtaP8HMX642fi04Og4NLa?dl=0
https://www.dropbox.com/sh/rx8d09pf31cv8bd/AAALKtaP8HMX642fi04Og4NLa?dl=0

	Formal Modelling and Analysis of Socio-Technical Systems
	1 Introduction
	2 The Drama of the Birthday Cake in Three Pictures
	3 Modelling Socio-Technical Systems
	3.1 Semantics of Socio-Technical Models
	3.2 The Bakery Model

	4 Flow Logic-Based Analysis of Processes
	4.1 Analysing the Bakery Example

	5 Attack Generation
	5.1 Post-Processing Attack Trees
	5.2 Attack Tree for the Bakery Example

	6 Analysis of Socio-Technical Attacks in Isabelle
	6.1 Social Explanation for Insider Threats in Isabelle
	6.2 Attack Trees in Isabelle

	7 Related Work
	8 Conclusion
	References

