
Schedulers are no Prophets

Arnd Hartmanns, Holger Hermanns, and Jan Krčál(B)

Computer Science, Saarland University, Saarbrücken, Germany
{arnd,hermanns,krcal}@cs.uni-saarland.de

Abstract. Several formalisms for concurrent computation have been
proposed in recent years that incorporate means to express stochastic
continuous-time dynamics and non-determinism. In this setting, some
obscure phenomena are known to exist, related to the fact that sched-
ulers may yield too pessimistic verification results, since current non-
determinism can surprisingly be resolved based on prophesying the tim-
ing of future random events. This paper provides a thorough investigation
of the problem, and it presents a solution: Based on a novel semantics of
stochastic automata, we identify the class of schedulers strictly unable to
prophesy, and show a path towards verification algorithms with respect
to that class. The latter uses an encoding into the model of stochastic
timed automata under arbitrary schedulers, for which model checking
tool support has recently become available.

1 Introduction

The modelling of concurrent systems operating in continuous time is at the heart
of several branches of computing sciences. In the systems world, discrete event
simulation tools like OMNeT [23], NS-2 or NS-3 [1,2], or GlomoSim [30]
are routinely used to gain insight into phenomena that are difficult to study
“in the wild”. However, the validity of results obtained in this manner is often
questionable, and comes with notorious suspicions about hidden assumptions
that affect the simulation studies [3,9,19,26]. The predominant mathematical
objects that such simulators operate on are classes of stochastic processes, in
particular generalised semi-Markov processes [13,21] (GSMP). Stochasticity is
used to conveniently reflect variations in behaviour due to mass effects.

Over the past decades, concurrent systems operating in stochastic continuous
time have also received attention from a foundational perspective, especially in
the formal methods community. Process calculi for stochastic timed systems
have been proposed, starting with the work of Harrison and Strulo [15,27].
D’Argenio proposed stochastic automata (SA) [10] as a compositional formalism
akin to timed automata. Bravetti proposed the IGSMP calculus [8] for interact-
ing GSMP. A comparative reflection of the two latter approaches can be found
in [7]. The work of D’Argenio inspired the Modest language, which operates
with stochastic timed automata (STA) [6] and is supported by the Modest
Toolset [16]. Lately, Zeng, Nielson and Nielson proposed the stochastic qual-
ity calculus SQC [22] as an intriguing formalism to reason about distributed
systems with broadcast communication.
c© Springer International Publishing Switzerland 2016
C.W. Probst et al. (Eds.): Nielsons’ Festschrift, LNCS 9560, pp. 214–235, 2016.
DOI: 10.1007/978-3-319-27810-0 11

Schedulers are no Prophets 215

All the approaches discussed above use semantic objects that extend the
model of GSMP in a particular dimension: nondeterminism. Albeit with dif-
ferent flavors, the nondeterminism is essentially intertwined with the concept
of an interleaving semantics, which assumes that no specific temporal ordering
can be assumed for events that may happen in independent components—unless
the ordering is specified in some way. In fact, it might not be far fetched to
claim that in the systems community much of the above mentioned criticism
which has accumulated with respect to GSMP simulation results is rooted in
well-hidden assumptions determining certain event orderings, yet thereby dis-
criminating against behaviour well possible “in the wild”. For instance, Opnet
is known to use a default round-robin schedule between enabled processes if no
other information is at hand, and so does GlomoSim.

The correct treatment of stochastic processes with nondeterminism can best
be explained in the simplistic setting of Markov chains and their nondetermin-
istic extension, Markov decision processes [24]. A Markov decision process turns
into a Markov chain by fixing a resolution of nondeterminism. A scheduler is a
mathematical object for this task, and the correct analysis of a Markov decision
process is based on the principle of considering any Markov chain induced by any
realistic scheduler. A verification task then gives rise to an entire range of quan-
titative results, such as an interval of reachability probabilities. Interestingly, if
the class of schedulers at hand contains schedulers that can be considered unre-
alistic, then the analysis, albeit being correct, may become overly pessimistic in
the sense that the interval returned is larger than realistically needed [12].

So, which family of schedulers is to be used for nondeterministic extensions
of GSMP? This is the main question we aim at answering with this paper.

To shed some light on this, we discuss the problem in the context of stochas-
tic automata. Roughly speaking, a stochastic automaton is a timed automaton
where each clock, whenever reset, expires after a random amount of time. The
randomness is specified by a probability measure associated to each clock. An
edge is guarded by a (possibly empty) set of clocks and can be taken only when
all clocks from this set are expired. When location �1 is entered in the model in
Fig. 1 on the left, a clock x is reset to 0. At this moment, the (random) time until
its expiration, say distributed uniformly between 0 and 1, starts. Any outgoing
edge can be taken only after clock x expires. Once this happens, there are multi-
ple concurrently enabled edges, and one of them is chosen nondeterministically.
Assume we want to reach the desired state �. The probabilities of this to happen
now depends on the scheduler we consider. In the worst case, the probability is
0, because a scheduler can just decide to take the left edge in �1. Note that a
random resolution of the non-determinism (or a kind of round-robin schedule)
would result in a higher probability of reaching state �.

The formal semantics of stochastic automata is defined by uncountable timed
probabilistic transition systems (TPTS) where each state consists of the current
location and the current valuation. As for timed automata, a valuation is used to
store for each clock the amount of time elapsed since its last reset. In addition,
it also stores the (randomly chosen) clock expiration times. Non-determinism in

216 A. Hartmanns et al.

Fig. 1. Examples of stochastic automata.

the TPTS is resolved by schedulers that can base their decisions on all values in
the current valuation including the clock expiration times, i.e. the information
when in the future each individual clock expires. Therefore, in the model in
Fig. 1 on the right, a scheduler can always choose in location �2 the appropriate
edge so that the desired state � is never reached (based on the fact whether
y occurs before z). However, no realistic scheduler not knowing the timing of
future random events can make the probability smaller than 1/2.

The semantics indicated above is known as residual lifetimes semantics [7],
and is the one (at least conceptually) used in Modest, in SQC, in the works of
D’Argenio, and in those of Strulo. Bravetti’s IGSMP use a different and at first
sight more adequate approach, based on continuous resampling. This prevents
schedulers from exploiting stored sampled values, and is called spent lifetimes
semantics [7]. However we will argue that this semantics is in fact even more
pessimistic and unrealistic.

We overcome this problem by introducing a new semantics based on sepa-
rating the flow of time from non-deterministic choices. The set of all schedulers
of the new semantics forms a strict subset of schedulers of the standard residual
lifetimes semantics. As this new subclass excludes exactly those schedulers that
observe the timing of future random events, we call them non-prophetic sched-
ulers. We are then interested in worst-case and best-case guarantees with respect
to non-prophetic schedulers.

We show that verification problems for non-prophetic schedulers can be trans-
lated to verification problems with respect to all schedulers on an induced model
from the more expressive class of stochastic timed automata. Stochastic timed
automata come from the same theoretical background and are thus also based
on residual lifetimes semantics. Their higher expressiveness nevertheless allows
us to emulate the behaviour of the SA while obfuscating the knowledge of the
future timing. Using this translation, the verification of probabilistic reachabil-
ity and expected-reward properties for stochastic automata under non-prophetic
schedulers based on extensions of STA model checking techniques [14] is on the
horizon.

Schedulers are no Prophets 217

2 Preliminaries

For a given set S, its power set is P(S). We denote by R, R
+, and R

+
0 the set of

real numbers, positive real numbers and non-negative real numbers, respectively.

2.1 Probability Theory

A (discrete) probability distribution over a countable sample space Ω is a function
μ ∈ Ω → [0, 1] s.t.

∑
ω∈Ω μ(ω) = 1. The support of μ is support(μ) def= {ω ∈

Ω | μ(ω) > 0 }. We denote by Dist(Ω) the set of all probability distributions
over Ω. Furthermore, we write D(ω) for the Dirac distribution for ω, defined by
D(ω)(x) def= 1 if x = ω and D(ω)(x) def= 0 otherwise.

We say that a set Ω is a measurable space if it is endowed with a σ-algebra
Σ(Ω), a collection of measurable subsets of Ω. A (continuous) probability measure
over Ω is a function μ ∈ Σ(Ω) → [0, 1] such that μ(∪i∈I Bi) =

∑
i∈I μ(Bi)

for any countable index set I and pairwise disjoint measurable sets Bi. Each
probability distribution μ induces a probability measure and we thus also use
D(s) for the corresponding Dirac measure. We denote by Prob(Ω) the set of
probability measures over Ω.

Given a a pair of probability measures μ1, μ2 we denote by μ1 ⊗ μ2 the
product measure which is the unique probability measure such that

(μ1 ⊗ μ2)(B1 × B2) = μ1(B1) · μ2(B2) for all measurable B1, B2.

For a collection of measures (μi)i∈I , we analogously denote the product measure
by

⊗
i∈I μi. We lift the same notation to a collection of sets of probability

measures (Mi)i∈I by
⊗

i∈I Mi
def= {⊗

i∈I μi | μi ∈ Mi for all i ∈ I }. For a
probability measure F over R

+
0 and any c ∈ R

+
0 such that F ([c,∞)) > 0, we

denote by Fc the measure F conditioned by ≥ c, defined for any interval [a, b]
by F|c([a, b]) def= F ([a, b] ∩ [c,∞))/F ([c,∞)).

2.2 Stochastic Automata

Definition 1. A stochastic automaton (SA) is a 6-tuple

〈Loc, C, A = Ad
 Au, E, F, �init 〉

where

– Loc is a countable set of locations;
– C is a finite set of clock variables;
– A is the automaton’s finite action alphabet partitioned into a set Ad of

delayable and a set Au of urgent actions;
– E ∈ Loc → P(P(C) × A × Dist(P(C) × Loc)) is the edge function, which maps

each location to a finite set of edges, which in turn consist of a guard set, a label
and a probability distribution over sets of clocks to reset and target locations;

218 A. Hartmanns et al.

– F ∈ C → Prob(R+
0) is the delay measure function that maps each clock to an

absolutely continuous probability measure1; and
– �init ∈ Loc is the initial location.

We also write � C,a−−→E μ for 〈C, a, μ〉 ∈ E(�), and for two edge functions E1 and
E2, we define

E1 < E2 ⇔ ∀ � ∈ Loc : E1(�) ⊆ E2(�) ∧ ∃ � ∈ Loc : E1(�) � E2(�),

i.e. an edge function is “smaller” if it maps to “smaller” sets of edges.
Intuitively, a stochastic automaton starts its execution in the initial location

with all clocks expired. Any edge � C,a−−→E μ may be taken only if all clocks in its
guard set C are expired. If it is taken, the action associated to the edge is a, and
the distribution μ encodes the discrete branching of this edge: when a branch
〈R, �′〉 is taken (which happens with probability μ(R, �′)), all clocks from the set
R get (re)started, other expired clocks remain expired, and the process moves
into the successor location �′. Here, another edge may be taken immediately or
the automaton may need to wait until some further clocks expire and so on.

If a clock c gets started, it expires again after an amount of time chosen
randomly according to the probability measure F (c). Implementing the abstract
notions of clock start and clock expiration is the crucial step in defining a formal
semantics. In this paper, we focus on what power such an implementation gives
to schedulers—objects that choose which edge to take when several of them may
be taken at the same point in time.

Defining the semantics of stochastic automata formally is the core topic of this
paper. We discuss various approaches in Sects. 3 and 4. In the rest of this section,
we lay the foundations for defining the semantics. First, we define probabilistic
timed transition system with uncountable state and action spaces. This is needed
since we need to store the current valuation of real-valued clocks and variables in
each state. Second, we introduce assignments and clock expressions to simplify
manipulation with these valuations.

2.3 Uncountable Transition Systems

The semantics of (non-Markovian) continuous-time stochastic models with non-
determinism can be defined using the following formalism [6,7,29].

Definition 2. A timed probabilistic transition system (TPTS) is a 4-tuple

〈S,A, T, sinit 〉

where
1 In this paper we restrict all F (c) to absolutely continuous measures as it simplifies
the overall notation and the technical treatment. Recall that a measure is absolutely
continuous if it assigns 0 to any set with Lebesgue measure 0.

Schedulers are no Prophets 219

– S is a (usually uncountable) measurable space of states;
– A = R

+
 A′ is the system’s (uncountable) alphabet that can be partitioned
into delays in R

+ and normal actions in A′;
– T ∈ S → P(A × Prob(S)) is the transition function, which is explicitly allowed

to map a state to an uncountable set of transitions; and
– sinit ∈ S is the initial state.

We also write s a−→T μ for 〈a, μ〉 ∈ T (s), and the < relation can be defined for
transition functions analogously to its definition for edge functions.

A behavior of a TPTS is a run, an infinite alternating sequence s0a0s1a1. . . of
states and actions. The system starts in the initial state s0 = sinit . Assuming the
current state is si, the next transition si

a1−→T μ is chosen non-deterministically
by a scheduler based on the whole history s0a0 . . . ai−1si up to this point. The
successor state si+1 is then chosen randomly according to the probability mea-
sure μ.

Formally, a scheduler is a measurable function σ that maps every s0a0 . . . si ∈
(S × A)∗ × S to a measure over transitions from T (si) (i.e. the scheduler may
randomize over available transitions). Every scheduler σ defines a probability
measure P

σ over the set of all runs. For a full formal definition, see e.g. [29].
Following the standard approach, we restrict to non-Zeno schedulers that allow
time to diverge with probability one. More precisely, we require that P

σ(D) = 1
where D is the set of runs where the sum of all actions from R

+ along the run
is ∞.

Inspired by [25], we define the timed trace distribution Tr(T, σ) of a TPTS
T induced by a scheduler σ as follows. First, a timed trace is a finite or infinite
sequence of actions, obtained as the natural projection (denoted ttrace) mapping
each run s0a0s1a1 · · · to a timed trace obtained from a0a1 · · · by merging every
maximal sequence of real numbers into its sum (a potential infinite sequence at
the end of a run is simply removed, resulting in a finite trace). With this, the
timed trace distribution Tr(T, σ) is a distribution over the measurable space of
timed traces such that every measurable set of timed traces A has probability
P

σ(ttrace−1(A)). We denote by Tr(T) the set of timed trace distributions of T
ranging over all schedulers of T . Finally, we say that two TPTS T1, T2 are timed
trace distribution equivalent if Tr(T1) = Tr(T2).

Remark 1. The example discussed in Fig. 1 works with state-based properties,
in particular considering state reachability probabilities. We can encode such
properties in a trace-based setting by, for example, adding a loop � ∅,a−−→ � to the
state whose reachability probability we intend to compute, where a is a unique
urgent action. We can then ask for the probability of the set of timed traces
that include a instead. In this sense, timed trace distribution equivalence can be
ensured to preserve timed reachability probabilities.

2.4 Variables and Expressions

In this subsection, we introduce a unified way to deal with the evaluation and
modification of valuations over a set of variables. For a finite set of (real-valued)

220 A. Hartmanns et al.

variables Var , we let Val def= Var → R denote the set of valuations. By 0 ∈ Val , we
denote the valuation that assigns value 0 to all variables. We now first introduce
an abstract notion of expressions which we use for two operations: updates to
modify a valuation, and (timed automata-like) clock constraints to evaluate a
valuation. Similarly to timed automata, we also define how the flow of time
modifies a valuation.

Expressions. By Exp(C) we denote the set of expressions over the set of vari-
ables C ⊆ Var . We simply write Exp for the set of expressions over the whole
set Var . We treat expressions in an abstract manner: We assume a standard
expression syntax (as in e.g. ML or C) with extensions for nondeterministic
and randomly sampled values. We formally work only with the semantics �e� of
expressions e, which are functions that take a valuation over Var and return the
value of e depending on the expression class:

– Bxp: Boolean expressions e have �e� ∈ Val → { true, false }. Bxp include e.g.

i = 1, tt , x ≥ 2.5.

– Axp: Arithmetic expressions e have �e� ∈ Val → R. Axp include e.g.

2.5 + x, 3 + (if i = 1 then x + 1 else x − 1).

– Sxp: Sampling expressions e have �e� ∈ Val → P(Prob(R)). These are con-
ceptually arithmetic expression featuring two additional constructs: nondeter-
ministic choice and random sampling. Sxp include, e.g.,

x + sample(F) + any(I), 3 + sample(Exp(x)), x ∗ y ∗ any([x, y))

where sample(F) denotes the random selection of a value according to the
probability measure F and any(I) the nondeterministic selection of a value out
of the interval I. In the example, Exp(x) denotes the exponential distribution
with rate given by the current value of variable x.

The semantics of a sampling expression maps to a set (representing the nonde-
terministic choice) of probability measures (representing the random sampling).
For example, the semantics �3+x+sample(Exp(1))+any((0, 1))� applied to valu-
ation 0 returns the set {μi | i ∈ (3, 4) } where each measure μi is the exponential
distribution “shifted” by i. For a sampling expression e without nondeterminism,
we denote by �e�1 ∈ Val → Prob(R) the function that maps a valuation v to the
single probability measure in �e�(v).

Updates. An assignment , written as x := e, is a pair 〈x, e〉 ∈ Var × Sxp. Two
assignments 〈x1, e1〉 and 〈x2, e2〉 are consistent if x1 �= x2 or �e1�(v) = �e2�(v)
for all valuations v. The set of all assignment is denoted by Asgn. A finite set of
pairwise consistent assignments is called an (atomic) update, and two updates
are consistent if their union is an update. The set of all updates is denoted Upd .

Schedulers are no Prophets 221

Similar to sampling expressions, the semantics of an update U ∈ Upd is
a function �U� ∈ Val → P(Prob(Val)). Due to consistency, we can treat
every update U = { 〈x1, e1〉, . . . , 〈xn, en〉 } consisting of n ∈ N assignments
as a function U ∈ Var → Sxp (even though we may have xi = xj for some
i �= j). Assuming some fixed total order on the variables, we can identify val-
uations with tuples of values. This then allows us to define straightforwardly
�U�(v) def=

⊗
x∈Var �U(x)�(v).

Clocks and Clock Constraints. Later, (similarly to timed automata) we
restrict operations that can be applied to clock variables. Let us fix a set C ⊆ Var
of clock variables. Clock constraints over C are expressions constructed according
to the following grammar:

CC :: = b | CC ∧ CC | CC ∨ CC | c ∼ e | c1 − c2 ∼ e

where ∼ ∈ {>,≥, <,≤,=, �= }, c, c1, c2 ∈ C, and b and e are Boolean and arith-
metic expressions over Var \ C, respectively. The semantics of a clock constraint
g is again a function �e� ∈ Val → { true, false }. Similarly, an update is called
clock update if all its assignments to clocks c ∈ C are of the form c := 0. The set
of all clock updates is denoted by CUpd . Finally, we define for any valuation v
and any delay t ∈ R

+ a valuation v + t by

(v + t)(c) def=

{
v(c) + t for c ∈ C, and
v(c) for c ∈ Var \ C.

3 Prophetic and Divine Scheduling

In this section we review two existing semantics for stochastic automata. Both
map SA to TPTS with uncountable state spaces. A scheduler for an SA is then
defined as a scheduler in the underlying TPTS.

In the first subsection, we introduce the more common residual lifetimes
semantics that however allows a scheduler to be prophetic. Then, we address the
spent lifetimes semantics that at first sight appears to solve this problem. We
show that (a) it still allows a scheduler to be prophetic (though in a limited way)
and more importantly (b) it allows a scheduler to act divine in the sense of being
able to manipulate the future in unexpected and unintuitive ways.

We fix for the rest of the paper an SA M = 〈Loc, C, A = Ad
Au, E, F, �init 〉.
The presentation of the two semantics is closely inspired by their comparison
in [7] which in turn slightly deviates from the respective original definitions [8,10]
without affecting core properties.

3.1 Residual Lifetimes [10]

In the residual lifetimes semantics, the states of the TPTS are pairs 〈�, v〉 of the
current location � and a valuation v over the set of variables

Var def= C ∪ { dc | c ∈ C }.

222 A. Hartmanns et al.

For each clock c, the (non-clock) variable dc stores the value sampled for c when
c was reset most recently. For a set R of clocks, both reset and sampling can be
done by the update

Sample(R) def= { c := 0, dc := sample(F (c)) | c ∈ R }.

The value of each clock then increases with the flow of time; a clock c is called
expired when its value reaches the value of the sampled variable dc. An edge
� C,a−−→E μ may be taken only if all clocks from the guard set C are expired,
captured by the clock constraint

Expired(C) def=
∧

c∈C

c ≥ dc.

Let us now define the induced TPTS precisely:

Transition System. The residual lifetimes semantics of an SA M is the TPTS

�M�r = 〈Loc × Val , R+
 A, TM , 〈�init ,0〉〉
where TM is the smallest (according to relation <) transition function satisfying
the following two inference rules:

�
C,a−−→E μ �Expired(C)�(v)

〈�, v〉 a−→TM

∑
〈R,�′〉∈P(C)×Loc μ(〈R, �′〉) · (D(�′) ⊗ �Sample(R)�1(v))

(jumpr)

t ∈ R
+ ∀ t′ ∈ [0, t) : �¬Urgentr(�)�(v + t′)

〈�, v〉 t−→TM
D(〈�, v + t〉)

(delayr)

where the first rule formalizes the preconditions and effects of taking an edge
and the second rule states that time may flow in a location � only if there is no
edge to be taken urgently where

Urgentr(�)
def=

∨

a∈Au,〈C,a,μ〉∈E(�)

Expired(C).

Recall that when an edge � C,a−−→E μ is taken, a successor location �′ and a set R of
clocks is randomly picked according to the distribution μ. For a fixed pair 〈R, �′〉,
the term D(�′) ⊗ �Sample(R)�1(v) appearing in the first rule is a distribution
over states, say αR,�′ . The sum

∑
R,�′ μ(〈R, �′〉) ·αR,�′ then represents the overall

distribution obtained by weighting the α··· by μ.

Prophetic Schedulers. In light of the TPTS as defined above, we consider the
SA model on the right below, which is a notationally more formal variation of the
one from Fig. 1. The TPTS starts in the initial state 〈�init ,0〉. Since the outgoing
edge from �init has an empty guard set and we assume action a to be urgent,

Schedulers are no Prophets 223

no delay is possible in 〈�init ,0〉 and the only outgoing transition is with action
a to a probability measure over states of the form 〈�1, v〉 where v(x) = v(y) =
v(z) = 0 and the values v(dx), v(dy) and v(dz) are sampled randomly according
to the continuous uniform distributions Uni([0, 1]), Uni([2, 3]) and Uni([2, 3]),
respectively.

�init

�1

�2 �3

�×

x ∼ ([0, 1])
y ∼ ([2, 3])
z ∼ ([2, 3])

x := 0
y := 0
z := 0

∅, a

{ x }, b { x }, c

{ y }, d{ z }, d { y }, d { z }, d

From any such location, there are
uncountably many outgoing transitions cor-
responding to all possible delays 0 < t ≤
v(dx). If a scheduler chooses some action
t0 < v(dx), then the remaining time to
delay decreases by t0 and in the next state,
the choice options are reduced to actions
0 < t ≤ v(dx) − t0 and so on. In the end,
all (non-Zeno) delay sequences t0, t1, . . . end
up in some state 〈�1, v〉 where v(x) = v(dx)
where a scheduler needs to choose between
b and c.

In such a state 〈�1, v〉, one possible scheduler σ can decide to choose action
b only if dz < dy and action c otherwise (and to choose always maximal delay
whenever delaying is possible): One can then easily argue that the probability
induced by scheduler σ to reach a state with location � is 0, while our intuition
says that less than 0.5 is not achievable. However, that scheduler can be consid-
ered prophetic, since its decisions are effectively based on the timing of events
that will occur in the future.

3.2 Spent Lifetimes [8]

The spent lifetimes semantic TPTS is defined over the same state space, but
in order to avoid prophetic decisions, each transition comes with a complete
resampling of the variables dc that represent the residual time for each clock c.
Thereby, the current value of dc (on which the scheduler may base its decisions)
becomes irrelevant right with the execution of the decision of the scheduler, i.e.
whenever taking a transition.

In order to keep the delay between resetting c and its expiration distributed
according to F (c), the resampling needs to take into account the time already
spent which is captured by the value of the clock c. This is achieved by condi-
tioning the delay measure F (c) on the time spent. As an example, consider a
clock c with F (c) being uniform on [1, 2]. The clock is initially sampled to, say,
1.3. After taking a delay transition of 1.1 time units, we need to resample it
according to the distribution F (c)|1.1, which is distributed uniformly on [1.1, 2].
If instead the resampling were to occur already after 0.5 time units, we actually
would have F (c)|0.5 = F (c) (as knowing that the event does not occur before 0.5
does not change the chances of when it will occur in the future). Resampling of
a set C ⊆ C can be expressed by the update

Resample(C) def= { dc := if c < dc then sample(F (c)|c) else dc | c ∈ C }

224 A. Hartmanns et al.

where F (c) should be interpreted as one literal giving a distribution that is then
within the expression conditioned by the current elapsed time of c. Observe that
the update resamples only values for clocks that are not expired.

Transition System. The spent lifetimes semantics of an SA M is the TPTS

�M�s = 〈Loc × Val , R+
 A, TM , 〈�init ,0〉〉

where TM is the smallest transition function satisfying the following two inference
rules:

�
C,a−−→E μ �Expired(C)�(v)

〈�, v〉 a−→TM

∑
R,�′ μ(〈R, �′〉) · (D(�′) ⊗ �Sample(R) ∪ Resample(C \ R)�1(v))

(jumps)

t ∈ R
+ ∀ t′ ∈ (0, t) : �¬Urgents(�)�(v + t′)

〈�, v〉 t−→TM
D(�) ⊗ �Resample(C)�1(v + t)

(delays)

where the first rule again describes that an edge is taken and the second rule
again describes the flow of time. The clock constraint Urgents is defined by

Urgents(�)
def= Urgentr(�) ∨

∨

c∈C
Expiring(c)

where Expiring(c) def= (c = dc). It differs from Urgentr used in the residual
lifetimes semantics by forcing each delay not to exceed the moment when the
next clock is expiring. This condition means that whenever some clock expires,
all other active clocks get resampled. The rule delays requires v + t′ to satisfy
¬Urgents(�) only for positive time points t′ because Expiring(c) is violated by v
if the clock c has just expired.

Fig. 2. Examples of prophetic and divine scheduling.

Schedulers are no Prophets 225

Prophetic Scheduling. We now discuss that the spent lifetimes semantics,
despite its intention, is not free of prophetic power. In the SA in Fig. 2 on the
left, after some delay t ∈ [0, 1], clock x expires and clocks y and z get resampled
both independently according to U [2, 3]|t = U [2, 3]. In other words, a state 〈�1, v〉
is reached where v(x) = v(y) = v(z) = v(dx) = t and v(dy), v(dz) ∈ [2, 3]. We
can distinguish two cases:

1. If v(dz) < v(dy), the scheduler σ may choose the maximal enabled delay
v(dz) − t by which z becomes expired (in one step, i.e. z does not get resam-
pled) and the location × is reached.

2. Otherwise, the scheduler σ repeatedly takes the enabled self-loop edge reset-
ting y and z until a state 〈�1, v〉 with v(dz) < v(dy) is reached. In this state
the scheduler behaves as described in point 1 above.

By this scheduler σ, a state with location � is again reached with probability
0. In other words, the crucial property of the spent lifetimes semantics is that
the scheduler observes what is the first clock to expire and when will it happen.
If the scheduler prefers this observed plan, it may let it happen by one delay
transition. Otherwise, it may block this from happening by taking some other
(non-urgent) edge.

Divine Scheduling. Actually, the self-loop edge in the example above is not
needed for a scheduler to guarantee that � is reached with probability 0. Consider
the SA in Fig. 2 on the right. Remarkably, another way how a scheduler may
influence the sampled timing in this SA is to take ever shorter delay transition.
Each of them induces a resampling of all running clocks. Thus, such a scheduler
also gets arbitrarily many chances to resample the clocks by delaying, say for
1/2, then for 1/4, 1/8, 1/16, and so on.2 In this way, a scheduler can arguably
effectuate divine power by forcing a particular ordering of events through the
way in which it lets time progress.

In general, this means that a scheduler can force one of the active clocks c
in some location to expire first (unless the lower bound of the support of its
associated probability measure disallows that). But the power of schedulers does
not stop here: A scheduler can also use the same technique to force a clock to
expire in an arbitrarily small subinterval I of its support (with F (c)(I) > 0);
so in the example above, it could achieve probability 1 for reaching location ×
before 2.1 time units have elapsed.

Furthermore, a scheduler in the spent lifetimes
semantics can prevent urgent actions from ever tak-
ing place, even when no alternative action is available,
and without letting time converge. Consider the small
example on the right, where we assume both actions
a and d to be urgent. �1 must thus be reached within

2 Note that this is not Zeno behaviour: An edge will eventually be taken after a finite
number of steps with probability 1.

226 A. Hartmanns et al.

zero time units, and we would expect location � to be reached after a further
delay according to the exponential distribution with rate 1, i.e. after on aver-
age a further 1 time unit. However, a scheduler in the spent lifetimes semantics
for this model can prevent � from being reached at all: When in state 〈�1, v1〉
with v1(dx) = t1 > 0, it can choose to delay by t1 − ε (ε > 0) time units. The
value for dx is then resampled, and we again end up in a state 〈�1, v2〉 with
v2(dx) = t2 > 0. Due to the unbounded support and the memoryless property of
the exponential distribution (i.e. Exp|t(1) = Exp(1) for all t ∈ R

+
0), this process

can be repeated ad infinitum, and
∑

i ti = ∞ with probability 1.
These anomalies are clearly not intended conceptually, but overarch the exist-

ing solutions. It thus appears that the concepts currently at hand for stochastic
automata and related models are not adequate. We therefore aim at settling a
semantics that makes sure that the schedulers are neither prophetic nor divine.
We define such a semantics, that we call non-prophetic, in the next section.

4 Non-prophetic Semantics

This section introduces a novel semantics for stochastic automata where sched-
ulers can neither act divine nor prophetic. It is a spent lifetimes semantics in the
sense that the residual times (variables dc for clocks c) are resampled whenever
delays are to be performed. However, the choice of the actual time to delay and
this resampling are performed in one atomic step. In this way, the scheduler
cannot know the residual times at the point where it has to choose the delay.
After the choice and resampling, the amount of time that passes is at least the
minimum of the sampled residual times and the chosen delay. Only when this
amount of time has passed can a jump be performed or a new delay be chosen
(including another resampling of the residual times).

4.1 Definition

Technically, to achieve this kind of behaviour, we split the evolution of the system
into two alternating phases, denoted as ◦ and •. In the ◦-phase, the scheduler
may only take jump transitions, or it may decide to switch to the •-phase. On
this switch, it chooses the next delay, and the residual times for the clocks are
resampled. Then, in the •-phase, the scheduler can only let time pass via delay
transitions or switch back to the ◦-phase. However, the switch back is only
enabled at the exact points in time where either a clock has just expired, or the
amount of time that has passed is the delay previously chosen by the scheduler.
As usual, if an edge with an urgent action has become enabled, no more time
can pass and the switch back to ◦ must occur immediately.

Definition 3. The non-prophetic semantics of an SA M is the TPTS

�M�n = 〈Loc × {◦, • } × Val), R+
 A
 {τ}, TM , 〈�init , ◦,0〉〉

Schedulers are no Prophets 227

where Val are valuations over the set of variables Var = C′
{ dc | c ∈ C′ } where
C′ def= C
 {w } are the clock variables and TM is the smallest transition function
such that the following inference rules are satisfied:

�
C,a−−→E μ �Expired(C)�(v)

〈�, ◦, v〉 a−→TM

∑
R,�′ μ(〈R, �′〉) · D(〈�′, ◦〉) ⊗ �Sample(R)�1(v)

(jumpn)

d ∈ R
+ �¬Urgentr(�)�(v)

〈�, ◦, v〉 τ−→TM
D(〈�, •〉) ⊗ �Resample(C) ∪ Setn(d)�1(v)

(choicen)

t ∈ R
+ ∀ t′ ∈ [0, t) : �¬Urgentn(�)�(v + t′)

〈�, •, v〉 t−→TM
D(〈�, •, v + t〉)

(delayn)

c ∈ C′ �Expiring(c)�(v)

〈�, •, v〉 τ−→TM
D(〈�, ◦〉) ⊗ �{ dc := 0 }�

(expiringn)

where Setn(d) def= {w := 0, dw := d } and

Urgentn(�)
def= Urgentr(�) ∨

∨

c∈C′
Expiring(c).

The rules choicen and expiringn take care of switching between the phases
whereas the rules jumpn and delayn echo the rules of the residual lifetimes seman-
tics. The precondition of delayn uses the predicate Urgentn, which prevents the
rule from being applied not only when the clock for an urgent action has expired
(as in Urgentr), but also when the new clock w or the clock of a delayable action
is just expiring. The update dc := 0 on expiringn makes sure that the clock can
expire only once at a given moment of time.

4.2 Absence of Prophetic and Divine Behaviour

In light of the shortcomings of earlier approaches discussed in Sect. 3, the ques-
tion arises in what sense this new semantics is any good. We argue in the sequel
that the non-prophetic semantics meets its design goals. Formally, we consider
a restricted class of schedulers on this new semantics �M�n such that the sched-
ulers in this class clearly only enable non-prophetic scheduling. This is because
their decisions are only based on spent lifetimes. We then show that this sched-
uler class is no less powerful than the class of all imaginable schedulers on �M�n
w.r.t. timed trace distribution equivalence. Notably, the same does not hold for
�M�r and �M�s, as shown by our earlier examples.

Procrastination. First, we define and show one technical property that simpli-
fies the proofs later and reveals additional structure of scheduling: we will require
that after waiting for the delay previously chosen by the scheduler without being
interrupted by the expiration of any clock, the scheduler cannot choose to wait
further, i.e. it needs to choose some edge. We say that a scheduler σ in �M�n is
procrastination-free if for all histories h = s0a0 · · · an−1sn we have the following
two properties:

228 A. Hartmanns et al.

1. if an−1 = τ and sn = 〈�, ◦, v〉 with v(w) = v(dw), then the scheduler σ chooses
in h any τ transition with probability zero;

2. if sn = 〈�, •, v〉, the scheduler σ chooses in h the delay transition with maxi-
mum possible label value (i.e. maximum delay) with probability one.

Next, we show that we can restrict to procrastination-free schedulers.

Lemma 1. For any scheduler σ in �M�n, there is a procrastination-free sched-
uler σ′ in �M�n such that the stochastic processes induced by σ and σ′ have the
same timed trace distribution.

Proof (Sketch). We define the scheduler σ′ for a given history h as follows. We
observe the measure over sequences of several delay steps that end by choosing
some non-waiting action from A. The scheduler then takes the delay according
to this measure in one step. In the next step (if not interrupted by expiration
of some clocks earlier), the non-waiting action is also taken according to this
measure (conditioned by the chosen waiting).

Non-prophetic schedulers in �M�n We say that a scheduler σ in �M�n is
non-prophetic if σ(h) = σ(h′) for all histories h = s0a0 · · · an−1sn and h′ =
s′
0a

′
0 · · · a′

n−1s
′
n such that

– for all 0 ≤ i < n we have ai = a′
i and

– for all 0 ≤ i ≤ n the valuations in si agree on values of C.

Lemma 2. For any procrastination-free scheduler σ′ in �M�n, there is a
procrastination-free non-prophetic scheduler σ′′ in �M�n such that the stochastic
processes induced by σ′ and σ′′ are timed trace distribution equivalent.

Proof. We define each choice of the scheduler σ′′ by randomization over choices
of σ′ over all sampled values of variables that a non-prophetic scheduler cannot
observe. This can be easily defined locally as the variables are resampled in every
step and the scheduler σ is procrastination-free.

Non-prophetic schedulers in �M�r. Next, we observe that every scheduler
in a non-prophetic semantics can be mimicked by a scheduler in the standard
residual lifetimes semantics. The following theorem bridges the two semantics.

Theorem 1. For any scheduler σ in �M�n, there is a scheduler σ̄ in �M�r such
that the stochastic processes induced by σ and σ̄ have the same timed trace dis-
tribution.

Proof (Sketch). Owed to the preceding lemmata, we can assume σ to be
procrastination-free and non-prophetic, since otherwise we could switch to
another scheduler satisfying these assumptions with the same timed trace dis-
tribution.

We define the scheduler σ̄ in �M�r with the same timed trace distribution as
follows. It always takes the decision only based on the spent lifetimes of every
clock (which are stored in the state space of �M�r). When a decision (say to wait

Schedulers are no Prophets 229

for t time units) is taken, it sticks to this decision: even if some clock expires
earlier (say after t′ < t time units), the decision is not changed up to the point
where the expiration happens (so there is indeed waiting for t′ time units). At
this point, the observations of σ̄ do change, and it may thus take another decision
according to σ.

Finally, we say that a scheduler σ̄ in �M�r is non-prophetic if there is a scheduler
σ in �M�n such that the stochastic processes induced by σ̄ and σ are timed trace
distribution equivalent. In the next section, we address the problem of analysing
SA w.r.t. the non-prophetic semantics, or equivalently w.r.t. the class of non-
prophetic schedulers in the standard residual lifetimes semantics.

5 Towards Non-Prophetic Model Checking

In this section, we discuss how the non-prophetic semantics of stochastic
automata can equivalently be encoded into the more expressive formalism of
stochastic timed automata. This is possible despite the fact that STA use the
residual lifetimes approach for expressing stochastic delays. We will finally dis-
cuss ways to perform model checking of non-prophetic SA based on this encoding.

We first define the formalism of STA and its semantics using TPTS. We then
explain the translation from SA to STA, before we turn to the model checking
discussion.

5.1 Stochastic Timed Automata [6]

The STA formalism is somewhat similar to SA, with the main difference being
that the sampling from probability measures is now made explicit in the model:
In addition to clock variables as in SA, an STA can also have real-valued non-
clock variables. These do not change over time, but when an edge is taken, they
can be set to values sampled according to probability measures. Edges in STA are
decorated with a guard and a deadline. Both of these are clock constraints, and
in particular, can contain comparisons between clocks and non-clock variables. In
this way, the residual lifetimes semantics can be encoded explicitly in an STA,
but at the same time, also nondeterministic timing is possible by simply not
making use of the possibility of sampling and instead comparing a clock with
constant values in guards and deadlines.

Definition 4. A stochastic timed automaton (STA) is a 5-tuple

〈Loc,Var , A,E, �init 〉

where

– Loc is a countable set of locations;
– Var ⊇ C is a finite set of variables with a subset C of clock variables;
– A is the automaton’s countable action alphabet;

230 A. Hartmanns et al.

– E ∈ Loc → P(CC × CC × A × Dist(CUpd × Loc)) is the edge function, which
maps each location to a set of edges, which in turn consist of a guard, a dead-
line, a label and a probability distribution over updates and target locations;
and

– �init ∈ Loc is the initial location.

We also write � g,d,a−−−→E μ for 〈g, d, a, μ〉 ∈ E(�).
Intuitively, an STA M evolves as follows: It starts in the initial location �init

with all variables having value 0. When time passes, values of all clock variables
synchronously increase. An outgoing edge � g,d,a−−−→E μ may be taken only when
its guard g is satisfied by the current values of the variables. If the deadline d of
any outgoing edge is satisfied, then some outgoing edge must be taken before
time can pass again. Whenever an edge as above is taken, a clock update and a
successor location is chosen randomly according to μ. The update is applied on
the current values of variables and the process moves to the successor location.

On the right, we illustrate how an STA
can be used to express stochastic delays.
The edges (all of which lead to Dirac
distributions here, i.e. they have a sin-
gle successor location each) are annotated
by their guard (in green) and their dead-
line (in red), their action, and the updates
of their single target (if non-empty). The
edge from the initial location, sampling
the delay for clock c, needs to be taken
immediately because its deadline is true. In location �1, we need to wait at least
until “c expires”. Note that the waiting can be longer (depending on nondeter-
ministic choice) as the deadline occurs only 1 time unit after that.

Formally, the semantics of STA [6] is defined using TPTS:

Definition 5. The semantics of an STA M is the TPTS

�M� = 〈Loc × Val , R+
0
 A, TM , 〈�init ,0Var 〉〉

where TM is the smallest function satisfying the following two inference rules:

�
g,d,a−−−→E μ �g�(v)

〈�, v〉 a−→TM

∑
〈U,�′〉∈support(μ) μ(〈U, �′〉) · ({D(�′) } ⊗ �U�(v))

(jumpsta)

t ∈ R
+ ∀ t′ ∈ [0, t) : �¬Urgentsta(�)�(v + t′)

〈�, v〉 t−→TM
D(〈�, v + t〉)

(delaysta)

where Urgentsta(�)
def=

∨
〈g,d,a,μ〉∈E(�) d.

Both rules above are not surprising, since they closely resemble the residual
lifetimes semantics of SA.

Schedulers are no Prophets 231

5.2 Residual-Lifetimes Embedding of SA

Before addressing our ultimate target, the non-prophetic semantics, we start by
showing that stochastic automata (with respect to the residual lifetimes seman-
tics) are a subclass of stochastic timed automata by the following simple embed-
ding: An SA

M = 〈Loc, C, A = Ad
 Au, E, F, �init 〉
is mapped to an STA with the same set of locations,

M r = 〈Loc, C ∪ { dc | c ∈ C }, A, Ē, �init 〉.
For each clock c, we again have one variable dc with the sampled value. For each
edge in the SA, there is one edge in the STA as given by the inference rule

�
C,a−−→E μ

�
Expired(C),Deadline(a,C),a−−−−−−−−−−−−−−−−−−→Ē

∑
R,�′ μ(R, �′) · D(〈Sample(R), �′〉)

(jumpr̄)

where Expired(C) is the guard of the edge and Deadline(a,C) is its deadline.
The deadline coincides with the guard if the action is urgent, i.e.

Deadline(a,C) def=

{
Expired(C) if a ∈ Au,

ff if a ∈ Ad.

5.3 Embedding of SA with Non-prophetic Semantics

We move on to the crucial translation, namely the one that embeds the non-
prophetic SA semantics into STA. The embedding proceeds similar to the embed-
ding from the previous subsection, but makes sure that nothing but spent life-
times are considered.

Definition 6. The STA translation of an SA M as above is the STA

M = 〈Loc × {◦, • }, C′ ∪ { dc | c ∈ C′ }, A
 { τ }, Ē, 〈�init , ◦〉〉
where C′ def= C ∪ {w } are the clock variables and Ē is the smallest edge function
such that the following inference rules are satisfied:

�
C,a−−→E μ

〈�, ◦〉 Expired(C),Deadline(a,C),a−−−−−−−−−−−−−−−−−−→Ē

∑
R,�′ μ(R, �′) · D(〈Sample(R), 〈�′, ◦〉〉)

(jumpn̄)

〈�, ◦〉 ¬Urgentsta(�),tt,τ−−−−−−−−−−−→Ē D(〈Resample(C) ∪ Setn̄, 〈�, •〉〉)
(choicen̄)

c ∈ C′

〈�, •〉 Expiring(c),Expiring(c),τ−−−−−−−−−−−−−−−−→Ē D(〈{ dc := 0 }, 〈�, ◦〉〉)
(expiringn̄)

where Setn̄ = {w := 0, dw := any((0,∞)) }.

232 A. Hartmanns et al.

The update Setn̄ resets the newly introduced clock w and allows the nonde-
terministic selection of a value in R

+ for dw. It thus corresponds to the non-
deterministic choice of “scheduler delay” of rule choicen in the non-prophetic
semantics of SA.

Notably, this embedding is linear in the size of the original SA. The inference
rules of Definitions 5 and 6 together build the very same TPTS as the rules
for the non-prophetic semantics in Definition 3, as expressed by the following
theorem:

Theorem 2. We have �M� = �M�.

Remark 2. For decidability reasons, definitions of timed automata concepts usu-
ally avoid the possibility to read clock values in update assignments. We instead
do read clock values, but, in fact, this is done only to simplify the exposition.
Actually, as all delays are stored into (non-clock) variables before each waiting,
we can determine the current value of any clock on expiration by accessing non-
clock variables only. When adapting the STA model in such a way, the resulting
TPTS would however not be identical but only bisimilar to the non-prophetic
semantics of TPTS.

5.4 Analysis of STA

The above semantic translation maps on STA models, for which, in turn, two dif-
ferent analysis techniques are available: Simulation (also called statistical model
checking), as for example implemented in the modes [5] tool, and model checking
using an abstraction of the continuous measures as implemented in the mcsta
tool [14]. Both are part of the Modest Toolset [16].

The simulation approach is inherently restricted to models that do not con-
tain nondeterministic choices, neither in terms of the discrete jumps nor when
it comes to delays. It is thus of limited use for the cases we consider in this
paper where schedulers, and thus nondeterministic choices, play an important
role. Some techniques based on partial order and confluence reduction are avail-
able to simulate restricted classes of nondeterministic models [4,17] in a sound
manner, however they focus thus far on the untimed model of Markov decision
processes, and are limited to cases where the scheduler choices are guaranteed
to not influence the analysis results. The confluence-based approach has been
lifted to the Markov automata [28] model, which is semantically very close to
stochastic automata [18]. If properly lifted to STA, it would then be applica-
ble to SA models where scheduling power does not matter with respect to the
non-prophetic semantics.

On the other hand, the model-checking technique implemented in mcsta is
generally applicable across STA. It can deliver upper and lower bounds on max-
imum or minimum reachability probabilities and expected cumulative reward
values. Technically, it proceeds by replacing the sampling from continuous prob-
ability measures by sampling from a discrete probability distribution over a
number of intervals that cover the measure’s support, followed by a continuous

Schedulers are no Prophets 233

nondeterministic choice over the concrete values from the chosen time interval.
This turns an STA into an overapproximating probabilistic timed automaton
(PTA), for which existing model checking techniques such as the digital clocks
approach [20] can be used to compute the values in question. That PTA analysis
relies on the inability to read the exact values of clock variables, as mentioned
above. It therefore makes it necessary to resort to the notationally more com-
plex workaround discussed in Remark 2. When connecting this with the mcsta
approach, a technical obstacle remains in the abstraction of continuous sampling
by discrete sampling plus nondeterministic choices over time intervals: The res-
olution of the latter is in fact delegated to the PTA analysis, but the concrete
values picked inside the time intervals need to be taken into account for resam-
pling, which so far is not supported. One viable way to overcome this lifts the
digital clocks semantics to STA by restricting to integer clock valuations prior
to moving to PTA. This appears not to affect the soundness of the abstraction.
We consider this approach as an interesting technical challenge, for which we
have presented the foundations along with this paper.

6 Discussion and Conclusion

This paper has discussed to what extent formalisms for concurrent systems oper-
ating in stochastic continuous time can be equipped with a meaningful seman-
tics, especially in the sense that schedulers are not supposed to be prophets. The
results presented do enable us to encode the SQC calculus of Zeng, Nielson and
Nielson into STA, and pave the way for non-prophetic model checking provided
via the Modest Toolset.

Relative to the survey paper by Bravetti and D’Argenio [7] we did, for sim-
plicity, not consider priorities of actions. However, we see no obstacle in including
this feature in our setting, since the concept is orthogonal to the other SA ingre-
dients.

Unlike D’Argenio [10] and Bravetti [8], we only focussed on closed systems,
i.e. systems which are not subject to composition with other systems. This is
rooted in the observation that the semantics we propose is not compositional.
Let us illustrate this on a simple example of two components that need to get
synchronised by a delayable action a: component A needs to finish some task
(modelled by the expiration of a clock c) before the synchronization, whereas
component B is ready to synchronize from the start. In the SA A‖B obtained
by parallel composition [11] of A and B, one naturally obtains a transition with
the delayable action a that can be taken at any time after the clock c expires.

The (natural) parallel compositions of the TPTS induced by the residual
lifetimes semantics or the spent lifetimes semantics, i.e. �A�r‖�B�r or �A�s‖�B�s,
coincide with the semantics of the composed SA, i.e. �A‖B�r or �A‖B�s: They
include the possibility of action a being scheduled at any time after clock c
expires. However, as we pointed out in this paper, these semantics enable unde-
sired prophetic or divine scheduling.

Unfortunately, the parallel composition �A�n‖�B�n of the TPTS induced by
our non-prophetic semantics allows different behaviour than the semantics of

234 A. Hartmanns et al.

the composed SA, �A‖B�n. The former does not allow the a-labelled transition
to be freely scheduled at any time after c expires. In particular, the scheduler
can take the transition at the moment when c expires only with probability 0.
This is because the scheduler needs to choose a delay d first (for B); then the
composed system needs to wait for d time units; and only then, action a can be
taken (by A), provided clock c has expired in the meantime. If it has not expired
yet, the scheduler needs to choose another delay d′ and so on. This does not
allow the scheduler to react immediately to the fact that c has just expired. On
the other hand the latter approach, �A‖B�n, which applies our non-prophetic
semantics to the composed SA avoids any such problems and captures exactly
the desired behaviour.

We leave a compositional and non-prophetic semantics as an open problem
and conjecture that it is not possible, unless striving for a different parallel
composition operator that would circumvent the problem sketched above.

Acknowledgements. This work is partly supported by the German Research Council
(DFG) as part of the Transregional Collaborative Research Center AVACS (SFB/TR
14), by the Czech Science Foundation under grant agreement P202/12/G061, by the EU
7th Framework Programme under grant agreement no. 295261 (MEALS) and 318490
(SENSATION), by the CDZ project 1023 (CAP), and by the CAS/SAFEA Interna-
tional Partnership Program for Creative Research Teams.

References

1. ns-2 wiki. http://nsnam.isi.edu/nsnam/
2. ns-3. https://www.nsnam.org/
3. Andel, T.R., Yasinsac, A.: On the credibility of Manet simulations. IEEE Computer

39(7), 48–54 (2006)
4. Bogdoll, J., Ferrer Fioriti, L.M., Hartmanns, A., Hermanns, H.: Partial Order

Methods for Statistical Model Checking and Simulation. In: Bruni, R., Dingel, J.
(eds.) FORTE 2011 and FMOODS 2011. LNCS, vol. 6722, pp. 59–74. Springer,
Heidelberg (2011)

5. Bogdoll, J., Hartmanns, A., Hermanns, H.: Simulation and statistical model check-
ing for Modestly nondeterministic models. In: Schmitt, J.B. (ed.) MMB/DFT.
LNCS, vol. 7201, pp. 249–252. Springer, Heidelberg (2012)

6. Bohnenkamp, H.C., D’Argenio, P.R., Hermanns, H., Katoen, J.-P.: MoDeST: a
compositional modeling formalism for hard and softly timed systems. IEEE Trans.
Software Eng. 32(10), 812–830 (2006)

7. Bravetti, M., D’Argenio, P.R.: Tutte le algebre insieme: concepts, discussions and
relations of stochastic process algebras with general distributions. In: Baier, C.,
Haverkort, B.R., Hermanns, H., Katoen, J.-P., Siegle, M. (eds.) Validation of Sto-
chastic Systems. LNCS, vol. 2925, pp. 44–88. Springer, Heidelberg (2004)

8. Bravetti, M., Gorrieri, R.: The theory of interactive generalized semi-Markov
processes. Theor. Comput. Sci. 282(1), 5–32 (2002)

9. Cavin, D., Sasson, Y., Schiper, A.: On the accuracy of MANET simulators. In:
POMC, pp. 38–43. ACM (2002)

10. D’Argenio, P.R., Katoen, J.-P.: A theory of stochastic systems, part I: stochastic
automata. Inf. Comput. 203(1), 1–38 (2005)

http://nsnam.isi.edu/nsnam/
https://www.nsnam.org/

Schedulers are no Prophets 235

11. D’Argenio, P.R., Katoen, J.-P.: A theory of stochastic systems, part II: process
algebra. Inf. Comput. 203(1), 39–74 (2005)

12. Giro, S., D’Argenio, P.R.: Quantitative model checking revisited: neither decidable
nor approximable. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007.
LNCS, vol. 4763, pp. 179–194. Springer, Heidelberg (2007)

13. Haas, P.J., Shedler, G.S.: Regenerative generalized semi-Markov processes. Com-
mun. Stat. Stoch. Models 3(3), 409–438 (1987)

14. Hahn, E.M., Hartmanns, A., Hermanns, H.: Reachability and reward checking for
stochastic timed automata. In: ECEASST, 70 (2014)

15. Harrison, P.G., Strulo, B.: SPADES - a process algebra for discrete event simula-
tion. J. Log. Comput. 10(1), 3–42 (2000)

16. Hartmanns, A., Hermanns, H.: The Modest Toolset: an integrated environment
for quantitative modelling and verification. In: Ábrahám, E., Havelund, K. (eds.)
TACAS 2014 (ETAPS). LNCS, vol. 8413, pp. 593–598. Springer, Heidelberg (2014)

17. Hartmanns, A., Timmer, M.: Sound statistical model checking for MDP using
partial order and confluence reduction. STTT 17(4), 429–456 (2015)

18. Hermanns, H., Krčál, J., Křet́ınský, J.: Probabilistic bisimulation: naturally on
distributions. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704,
pp. 249–265. Springer, Heidelberg (2014)

19. Kurkowski, S., Camp, T., Colagrosso, M.: MANET simulation studies: the incred-
ibles. Mob. Comput. Commun. Rev. 9(4), 50–61 (2005)

20. Kwiatkowska, M.Z., Norman, G., Parker, D., Sproston, J.: Performance analysis
of probabilistic timed automata using digital clocks. Formal Methods Syst. Design
29(1), 33–78 (2006)

21. Matthes, K.: Zur Theorie der Bedienungsprozesse. In: Transactions of the 3rd
Prague Conference on Information Theory, Statistics Decision Functions and Ran-
dom Processes, pp. 513–528 (1962)

22. Nielson, F., Nielson, H.R., Zeng, K.: Stochastic model checking of the stochastic
quality calculus. In: De Nicola, R., Hennicker, R. (eds.) Wirsing Festschrift. LNCS,
vol. 8950, pp. 522–537. Springer, Heidelberg (2015)

23. Pongor, G.: OMNeT: objective modular network testbed. In: MASCOTS, pp. 323–
326. The Society for Computer Simulation (1993)

24. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming, 1st edn. John Wiley & Sons Inc, New York (1994)

25. Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Sys-
tems. Ph.D thesis, Laboratory for Computer Science, Massachusetts Institute of
Technology (1995)

26. Stojmenovic, I.: Simulations in wireless sensor and ad hoc networks: matching and
advancing models, metrics, and solutions. IEEE Commun. Mag. 46(12), 102–107
(2008)

27. Strulo, B.: Process algebra for discrete event simulation. Ph.D thesis, Imperial
College of Science, Technology and Medicine. University of London, October 1993

28. Timmer, M., van de Pol, J., Stoelinga, M.I.A.: Confluence reduction for Markov
automata. In: Braberman, V., Fribourg, L. (eds.) FORMATS 2013. LNCS, vol.
8053, pp. 243–257. Springer, Heidelberg (2013)

29. Wolovick, N.: Continuous probability and nondeterminism in labeled transaction
systems. PhD thesis, Universidad Nacional de Córdoba, Córdoba (2012)

30. Zeng, X., Bagrodia, R., Gerla, M.: GloMoSim: a library for parallel simulation
of large-scale wireless networks. In: PADS, pp. 154–161. IEEE Computer Society
(1998)

	Schedulers are no Prophets
	1 Introduction
	2 Preliminaries
	2.1 Probability Theory
	2.2 Stochastic Automata
	2.3 Uncountable Transition Systems
	2.4 Variables and Expressions

	3 Prophetic and Divine Scheduling
	3.1 Residual Lifetimes [10]
	3.2 Spent Lifetimes [8]

	4 Non-prophetic Semantics
	4.1 Definition
	4.2 Absence of Prophetic and Divine Behaviour

	5 Towards Non-Prophetic Model Checking
	5.1 Stochastic Timed Automata [6]
	5.2 Residual-Lifetimes Embedding of SA
	5.3 Embedding of SA with Non-prophetic Semantics
	5.4 Analysis of STA

	6 Discussion and Conclusion
	References

